Max-Planck-Institut für Mathematik Bonn

On periodic self-homeomorphisms of closed orientable surfaces determined by their orders
by

Cz. Bagiński
M. Carvacho
G. Gromadzki
R. Hidalgo

Max-Planck-Institut für Mathematik
Preprint Series 2014 (1)

On periodic self-homeomorphisms of closed orientable surfaces determined by their orders

Cz. Bagiński
M. Carvacho
G. Gromadzki
R. Hidalgo

Max-Planck-Institut für Mathematik	Faculty of Computer Science
Vivatsgasse 7	Białystok University of Technology
53111 Bonn	Białystok
Germany	Poland
	Departamento de Matemática
	UTFSM
	Valparaíso
	Chile
	Institute of Mathematics
	Gdańsk University
	Gdańsk
	Poland

ON PERIODIC SELF-HOMEOMORPHISMS OF CLOSED ORIENTABLE SURFACES DETERMINED BY THEIR ORDERS

CZ. BAGIŃSKI, M. CARVACHO, G. GROMADZKI, R. HIDALGO

Abstract

The fundamentals for the topological classification of periodic orientation preserving self-homeomorphisms of a closed orientable topological surface X_{g} of genus $g \geq 2$ have been established, by Nielsen, in the thirties of the last century. Recently, Hirose has shown that the order $N \geq 3 g$ of a cyclic action on closed surface of genus $g \neq 4,6,9,10,12$ determines this action up to topological conjugation. Actually in such case, we have very few possibilities for such orders; $N=4 g+2,4 g, 3 g$ or $3 g+3$ and for the first three cases such actions actually exist for arbitrary g while the last exists if and only if $g \not \equiv 2(\bmod 3)$. Motivated by this phenomenon, we call the order N of a cyclic action of $G=\mathrm{Z}_{N}$ on $X=X_{g}$ to be rigid if for any other cyclic action G^{\prime} of order N on X, G and G^{\prime} are conjugate by certain orientation preserving self-homeomorphism of X. It seems that rigidity property, observed by Hirose for mentioned orders of cyclic actions, is a rather rare phenomenon. Here, apart of it, we consider and study another related property of periodic cyclic actions called weak rigidity. We say that the cyclic action G on X is weakly rigid if any other cyclic action G^{\prime} of the same order with singular orbits of the same size is conjugate to it by a homeomorphism of X. Using combinatorial techniques, we characterise a large class of weakly rigid cyclic actions with three singular orbits.

1. Introduction

The fundamentals for the topological classification of periodic orientation preserving self-homeomorphisms of a closed topological surface X_{g} of genus $g \geq 2$ have been established, by Nielsen, in the thirties of the last century. Certain classification has been given also by Yokayama [15] and, recently, Hirose [5] has shown that an order $N \geq 3 g$ of a cyclic action on a closed surface of genus $g \neq 4,6,9,10,12$ is uniquely determined up to a topological conjugation. Actually in such case, we have very few possibilities for such orders; $N=4 g+2,4 g, 3 g$ or $3 g+3$ and for the first three cases such configuration actually exists for arbitrary g while the last exists if and only if $g \not \equiv 2$ $(\bmod 3)$. The order N of a cyclic action of $G=\mathrm{Z}_{N}$ on $X=X_{g}$ is said to be topologically rigid if for any other cyclic action G^{\prime} of order N on X, G and G^{\prime} are conjugate by certain orientation-preserving self-homeomorphism not necessarily periodic.

[^0]It seems that rigidity property, observed by Hirose for mentioned orders of cyclic actions, is a rather rare phenomenon and here, apart of it, we consider and study another related property of periodic cyclic actions called weak rigidity. We say that the cyclic action G on X is weakly rigid if any other cyclic action G^{\prime} of the same order with singular orbits of the same size is conjugate to it by an orientation preserving homeomorphism of X. Using combinatorial techniques, we characterise a large class of weakly rigid cyclic actions having three singular orbits and the orbit genus zero; such actions are examples of quasi-platonic or Belyi actions well known in the literature.

The class of actions considered in the paper, apart of being proved to be weakly rigid, has some extra pleasant features. Namely, due to the geometrization theorem of Nielsen and the Riemann uniformization theorem they can be realized as holomorphic actions on complex algebraic curves. Due to a celebrated theorem of Belyi [2], these curves can be defined over the algebraic numbers. By results of Greenberg [3] and Singerman [13] these curves are unique. Another result due to Singerman [14] states that they have one or two real form. Finally due to Kock-Singerman [10] these forms can be defined over the algebraic reals. To find explicitly equation of these forms does not seems to be hopeless.

Another interesting problem, not considered here, concerns relations between rigidity and weak rigidity of periodic cyclic actions. Namely rigidity implies, obviously, weak rigidity but, and though some explicit examples show the converse is not true, it seems that such exceptions are rather rare and there is a series of natural problems concerning, roughly speaking, the number of them and the estimation of the number of weakly rigid actions of given order on a closed surface of given genus. A sequel concerning these and other problems is planned. We use multiplicative notation for cyclic groups throughout the whole paper.

2. Description of the approach

We shall use the following ingredients. Throughout of this section X will denote a closed orientable surface of genus $g \geq 2$.
2.1. Nielsen's geometrization. Let φ be an orientation-preserving self-homeomorphism of X of finite order N. There exists a structure of a Riemann surface on X (we still denote the resulting Riemann surface also by X by abuse of language) so that φ is a conformal automorphism. In the rest of the section, we assume X to have such a Riemann surface structure when necessary.

2.2. Riemann uniformization theorem and elementary covering theory. A

 closed orientable Riemann surface X is isomorphic to the orbit space \mathcal{H} / Γ of the hyperbolic upper half plane \mathcal{H} with the holomorphic structure inherited from \mathcal{H}, where Γhas signature ($h ;-$). Such a group Γ has the presentation

$$
\begin{equation*}
\left\langle a_{1}, b_{1}, \ldots, a_{h}, b_{h} \mid\left[a_{1}, b_{1}\right] \ldots\left[a_{h}, b_{h}\right]\right\rangle . \tag{1}
\end{equation*}
$$

Furthermore having an automorphism φ of X, we have an isomorphism $\langle\varphi\rangle \cong \Lambda / \Gamma=$ $\left\langle x \mid x^{N}=1\right\rangle$ for some Fuchsian group Λ, say with signature $\left(h ; m_{1}, \ldots, m_{r}\right)$, which means that it has the presentation

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{h}, b_{h} \mid x_{1}^{m_{1}}, \ldots, x_{r}^{m_{r}}, x_{1} \ldots x_{r}\left[a_{1}, b_{1}\right] \ldots\left[a_{h}, b_{h}\right]\right\rangle . \tag{2}
\end{equation*}
$$

Particular role in our considerations will play triangle groups which are Fuchsian groups with signatures $\left(0 ; m_{1}, m_{2}, m_{3}\right)$ which will be also abbreviated to (m_{1}, m_{2}, m_{3}) that is the ones algebraically isomorphic to

$$
\begin{equation*}
\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{m_{1}}=x_{2}^{m_{2}}=x_{3}^{m_{3}}=x_{1} x_{2} x_{3}=1\right\rangle \tag{3}
\end{equation*}
$$

Furthermore, the Hurwitz-Riemann formula says in this special situation

$$
\begin{equation*}
2(g-1)=N\left(1-\frac{1}{m_{1}}-\frac{1}{m_{2}}-\frac{1}{m_{3}}\right) \tag{4}
\end{equation*}
$$

2.3. Harvey criterion. Let Λ be a Fuchsian group with signature ($h ; m_{1}, \ldots, m_{r}$) and let $M=\operatorname{lcm}\left(m_{1}, \ldots, m_{r}\right)$. Then there exists a smooth epimorphism from Λ onto $\left\langle x \mid x^{N}=1\right\rangle$ if and only if
(a) $\quad M=\operatorname{lcm}\left(m_{1}, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{r}\right)$ for all i;
(b) M divides N and if $h=0$ then $M=N$;
(c) $r \neq 1$ and if $h=0$ then $r \geq 3$;
(d) if N is even then the number of periods m_{i} such that N / m_{i} is odd is also even.
2.4. Maclachlan decomposition. (Hidalgo [4]) In the case that $r=3$, condition (a) in (5) above for the triple $\left(m_{1}, m_{2}, m_{3}\right)$ is equivalent to have the following canonical decomposition

$$
\left\{\begin{array}{l}
m_{1}=A A_{2} A_{3} \tag{6}\\
m_{2}=A A_{1} A_{3} \\
m_{3}=A A_{1} A_{2}
\end{array}\right.
$$

where $A=\operatorname{gcd}\left(m_{1}, m_{2}, m_{3}\right), A_{k}=\operatorname{gcd}\left(m_{i} / A, m_{j} / A\right)$, for $k \neq i, j$. Note that the integers A_{i} are pairwise relatively prime and, by (b) in (5), that $N=A A_{1} A_{2} A_{3}$. Condition (d) in (5), states that $N=A A_{1} A_{2} A_{3}$ even is equivalent to have just one of A_{i} even. This decomposition has been discovered in [4] and the collection A, A_{1}, A_{2}, A_{3} will be called Maclachlan decomposition of (m_{1}, m_{2}, m_{3}) and we shall call the triple (m_{1}, m_{2}, m_{3}) or the quadruple (A, A_{1}, A_{2}, A_{3}) admissible.

Furthermore, this signature is said to be rigid if the corresponding cyclic action, say of order N, is rigid in the sense described in the Introduction which in turn means that
any two smooth epimorphism $\theta_{1}, \theta_{2}: \Lambda \rightarrow\left\langle x \mid x^{N}=1\right\rangle$ are equivalent in the sense described in Subsection 2.5.
2.5. Few words on topological conjugacy. Two orientation-preserving self-homeomorphisms φ_{1}, φ_{2} of a surface X are topologically equivalent if they are conjugate by an orientation-preserving self-homeomorphism f of X. For periodic case in described above hyperbolization this is equivalent to classify up to conjugation by an orientationpreserving self-homeomorphism of conformal automorphisms. The general definition is that two conformal actions G_{1}, G_{2} on Riemann surfaces X_{1}, X_{2} given by surface-kernel epimorphisms $\theta_{1}: \Lambda_{1} \rightarrow G_{1}$ and $\theta_{2}: \Lambda_{2} \rightarrow G_{2}$ (means that their kernels are torsion free) are topologically equivalent if and only if the diagram

commutes for some isomorphisms $\Phi: \Lambda_{1} \rightarrow \Lambda_{2}, \Psi: G_{1} \rightarrow G_{2}$. The Nielsen isomorphism theorem asserts that Φ can be chosen to be the conjugation by a self-homeomorphism f of \mathcal{H} and, throughout the paper, we understand that f preserves orientation.

3. Rigid and weakly rigid actions

Let Λ be a Fuchsian group with the presentation (3). For a smooth epimorphism $\theta: \Lambda \rightarrow\left\langle a \mid a^{N}=1\right\rangle$ we have

$$
\theta\left(x_{1}\right)=a^{m N / m_{1}}, \theta\left(x_{2}\right)=a^{k N / m_{2}}, \theta\left(x_{1}\right)=a^{l N / m_{3}},
$$

where $\operatorname{gcd}\left(m, m_{1}\right)=\operatorname{gcd}\left(k, m_{2}\right)=\operatorname{gcd}\left(l, m_{3}\right)=1$ and

$$
m\left(\frac{N}{m_{1}}\right)+k\left(\frac{N}{m_{2}}\right)+l\left(\frac{N}{m_{3}}\right) \equiv 0 \quad(\bmod N) .
$$

Let m^{\prime} be the inversion of m modulo m_{1}. Let also A_{1}^{\prime} be the maximal divisor of $A_{1}=N / m_{1}$ coprime to m_{1}. Then by the Chinese Remainder Theorem there exists α such that $\alpha \equiv m^{\prime}\left(\bmod m_{1}\right)$ and $\alpha \equiv 1\left(\bmod A_{1}^{\prime}\right)$. Then $\operatorname{gcd}(\alpha, N)=1$ and

$$
\left(a^{m N / m_{1}}\right)^{\alpha}=\left(a^{N / m_{1}}\right)^{m \alpha}=a^{N / m_{1}}
$$

and so we see that, up to a powering of fixed generator of $\left\langle a \mid a^{N}=1\right\rangle$, our θ is defined by

$$
\begin{equation*}
\theta\left(x_{1}\right)=a^{N / m_{1}}, \theta\left(x_{2}\right)=a^{k N / m_{2}}, \theta\left(x_{1}\right)=a^{l N / m_{3}}, \tag{7}
\end{equation*}
$$

where $\operatorname{gcd}\left(k, m_{2}\right)=\operatorname{gcd}\left(l, m_{3}\right)=1$ and

$$
\frac{N}{m_{1}}+k\left(\frac{N}{m_{2}}\right)+l\left(\frac{N}{m_{3}}\right) \equiv 0 \quad(\bmod N)
$$

Let $\mathcal{K}=\left\{k<m_{2} \mid \operatorname{gcd}\left(k, m_{2}\right)=1\right\}$. Then $K=\varphi\left(m_{2}\right)$ is its cardinality, where φ is the Euler function. Let also \mathcal{L} be the subset of \mathcal{K} consisting of those k for which

$$
\begin{equation*}
a^{N / m_{1}+k N / m_{2}} \tag{8}
\end{equation*}
$$

has order m_{3} and let L be its cardinality. We see that with these notation we have
Lemma 3.1. There are just L surface-kernel epimorphisms $\theta: \Lambda \rightarrow\left\langle a \mid a^{N}=1\right\rangle$, where Λ is a Fuchsian group with the presentation (3) for which $\theta\left(x_{1}\right)=a^{N / m_{1}}$.

Now let \mathcal{S} be the stabilizer of $a^{N / m_{1}}$ in $\operatorname{Aut}\langle a\rangle=\mathbb{Z}_{N}^{*}$. Then for its cardinality S we have

Lemma 3.2. $S=\varphi(N) / \varphi\left(m_{1}\right)$.
Proof. Indeed

$$
\begin{aligned}
\varphi\left(m_{1}\right) & =\left|\operatorname{Orb}_{\mathbb{Z}_{N}^{*}}\left(a^{N / m_{1}}\right)\right| \\
& =\left[\mathbb{Z}_{N}^{*}: \operatorname{Stab}_{\mathbb{Z}_{N}^{*}}\left(a^{N / m_{1}}\right)\right] \\
& =\frac{\varphi(N)}{\left|\operatorname{Stab}_{\mathbb{Z}_{N}^{*}}\left(a^{N / m_{1}}\right)\right|}
\end{aligned}
$$

and so the assertion.

Lemma 3.3. Each element of \mathcal{S} acts on \mathcal{K} without fixed points and so in particular the group \mathcal{S} acts faithfully on \mathcal{K}.

Proof. Let us take $k \in \mathcal{K}$ and $s, s^{\prime} \in \mathcal{S}$. Recall that these mean $\operatorname{gcd}\left(k, m_{2}\right)=1$ and $\operatorname{gcd}\left(s^{\prime}, N\right)=\operatorname{gcd}(s, N)=1$. Furthermore, from the definition of \mathcal{S} we have $\left(a^{N / m_{1}}\right)^{s}=$ $a^{N / m_{1}}$ which in turn gives $N(s-1) / m_{1} \equiv 0(N)$ which in particulary means that m_{1} divides $s-1$ and similarly for s^{\prime} and in particular m_{1} divides $s^{\prime}-s$. Assume that

$$
\left(a^{N k / m_{2}}\right)^{s}=\left(a^{N k / m_{2}}\right)^{s^{\prime}} .
$$

Then

$$
N \frac{k\left(s-s^{\prime}\right)}{m_{2}} \equiv 0(N) .
$$

We see that m_{2} divides $k\left(s-s^{\prime}\right)$ and therefore m_{2} divides $s-s^{\prime}$ which give $s \equiv s^{\prime}$ $(\bmod N)$.

For counting L it will be crucial the decomposition (6). For, we have

$$
N=\operatorname{lcm}\left(m_{1}, m_{2}, m_{3}\right)=\operatorname{lcm}\left(m_{1}, m_{2}\right)=\operatorname{lcm}\left(m_{1}, m_{3}\right)=\operatorname{lcm}\left(m_{2}, m_{3}\right),
$$

where $N=A A_{1} A_{2} A_{3}, N / m_{i}=A_{i}$. Furthermore we know by (5) that if N is even, then the number of those A_{i} which are odd is even and therefore, since all A_{i} can not be even, only one of them is even. With these notations, elements (8) become

$$
a^{A_{1}+k A_{2}}
$$

and so the set \mathcal{L} becomes

$$
\begin{equation*}
\mathcal{L}=\left\{k<A A_{1} A_{3} \mid \operatorname{gcd}\left(A_{1}+k A_{2}, N\right)=A_{3}, \operatorname{gcd}\left(k, A A_{1} A_{3}\right)=1\right\} . \tag{9}
\end{equation*}
$$

We define $\psi(1)=1$ and given a decomposition $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}>1$

$$
\begin{equation*}
\psi(n)=\prod_{i=1}^{r}\left(p_{i}-2\right) p_{i}^{\alpha_{i}-1} \tag{10}
\end{equation*}
$$

With this definition we have
Theorem 3.4. Let C be the biggest divisor of A coprime with $A_{1} A_{2} A_{3}$ and let $B=A / C$. Then

$$
\begin{equation*}
L=\varphi\left(A_{1} B\right) \psi(C) . \tag{11}
\end{equation*}
$$

Proof. Let $C=p_{1}^{\gamma_{1}} \cdots p_{r}^{\gamma_{r}}$ and let $B=B_{1} B_{2} B_{3}$, where for $i=1,2,3$ each prime dividing B_{i} divides A_{i}. Then the numbers $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}, C$ are pairwise coprime and so

$$
\mathbb{Z}_{N} \cong \mathbb{Z}_{A_{1} B_{1}} \oplus \mathbb{Z}_{A_{2} B_{2}} \oplus \mathbb{Z}_{A_{3} B_{3}} \oplus \mathbb{Z}_{p_{1}^{\gamma_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p_{r}^{\gamma_{r}}}
$$

and

$$
\mathbb{Z}_{A A_{1} A_{3}} \cong \mathbb{Z}_{A_{1} B_{1}} \oplus \mathbb{Z}_{B_{2}} \oplus \mathbb{Z}_{A_{3} B_{3}} \oplus \mathbb{Z}_{p_{1}^{\gamma_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p_{r}^{\gamma_{r}}} .
$$

Hence every element $x \in \mathbb{Z}_{A A_{1} A_{3}}$ can be represented as a sequence

$$
\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right)
$$

with $x_{1} \in \mathbb{Z}_{A_{1} B_{1}}, x_{2} \in \mathbb{Z}_{B_{2}}, x_{3} \in \mathbb{Z}_{A_{3} B_{3}}$ and $x_{j}^{\prime} \in \mathbb{Z}_{p_{j} \gamma_{j}}$. Similarly the elements of \mathbb{Z}_{N} are represented. Moreover if x is invertible in $\mathbb{Z}_{A A_{1} B_{1}}^{*}$ then all components of the sequence corresponding to x are invertible in suitable rings.

Now, the correspondence $x \rightarrow A_{1}+x A_{2}$ is an injection from $\mathbb{Z}_{A A_{1} A_{3}}^{*}$ to \mathbb{Z}_{N}. Let ($A_{1}+$ $x_{1} A_{2}, A_{1}+x_{2} A_{2}, A_{1}+x_{3} A_{2}, A_{1}+x_{1}^{\prime} A_{2}, \ldots, A_{1}+x_{r}^{\prime} A_{2}$) be the sequence corresponding to $A_{1}+x A_{2}$ with entries taken modulo a suitable number. We need to know how many images of the function satisfy the condition $\operatorname{gcd}\left(A_{1}+x A_{2}, N\right)=A_{3}$ that is how many corresponding sequences have all components invertible beside the third one which has to be of the form $A_{1}+x_{3} A_{2}=t A_{3}$, where $\operatorname{gcd}\left(t, B_{3}\right)=1$.

Note first that all possible values of t satisfyjng the above condition is achievable that is we have $\varphi\left(B_{3}\right)$ values of it. Next, for $x \in Z_{A A_{1} A_{3}}^{*}$ we have $\operatorname{gcd}\left(A_{1}+x A_{2}, A_{1} B_{1} A_{2} B_{2}\right)=$ 1, so for a fixed $t A_{3}$ we have $\phi\left(A_{1} B_{1}\right) \times \phi\left(B_{2}\right)$ possibilities for the first two entries of the sequence.

Finally let us consider $A_{1}+x_{j}^{\prime} A_{2}$. Write $x_{j}^{\prime}=y_{j}+p_{j} z_{j}$, where $1 \leq x_{1} \leq p_{j}-1$ and $0 \leq z_{j} \leq p_{j}^{\gamma_{j}-1}-1$. Then $A_{1}+x_{j}^{\prime} A_{2}=\left(A_{1}+y_{j} A_{2}\right)+p_{j} z_{1} A_{2}$ and for exactly one value of y_{j} we have $A_{1}+y_{j} A_{2} \equiv 0\left(\bmod p_{j}\right)$. Therefore we have $\left(p_{j}-2\right) p_{j}^{\gamma_{j}-1}$ values of x_{j}^{\prime} modulo $p_{j}^{\gamma_{j}}$ such that $A_{1}+x_{j}^{\prime} A_{2}$ is coprime to p_{j}.

Summarising we have

$$
\begin{aligned}
L & =\varphi\left(B_{3}\right) \cdot \varphi\left(A_{1} B_{1}\right) \cdot \varphi\left(B_{2}\right) \cdot \prod_{i=1}^{r}\left(p_{i}-2\right) p_{i}^{\gamma_{i}-1} \\
& =\varphi\left(A_{1} B_{1} B_{2} B_{3}\right) \psi(C) \\
& =\varphi\left(A_{1} B\right) \psi(C)
\end{aligned}
$$

Remark 3.5. Observe surprising analogy of the function (10) with the classical Eulerfunction, both in this what concern its algebraic properties and the explicit formula

$$
\varphi(n)=\prod_{i=1}^{r}\left(p_{i}-1\right) p_{i}^{\alpha_{i}-1}
$$

for it as well. We see that both of them can be seen as particular cases of function

$$
\varphi_{k}(n)=\prod_{i=1}^{r}\left(p_{i}-k\right) p_{i}^{\alpha_{i}-1}
$$

which can be defined for arbitrary k.

As a corollary we obtain our first main result.
Theorem 3.6. Let C be the biggest divisor of A coprime with $A_{1} A_{2} A_{3}$ and let $B=A / C$. Then $L=S$ if and only if $B \in\{1,2\}$ and $C \in\{1,3\}$.

Proof. Let $B=B_{1} B_{2} B_{3}$, where B_{i} are defined in the proof of Theorem 3.4. Then

$$
\begin{aligned}
S & =\frac{\varphi(N)}{\varphi\left(m_{1}\right)} \\
& =\frac{\varphi\left(A_{1} B_{1}\right) \varphi\left(A_{2} B_{2}\right) \varphi\left(A_{3} B_{3}\right) \varphi(C)}{\varphi\left(A_{2} A_{3}\right)} \\
& =\frac{\varphi\left(A_{1} B_{1}\right) \varphi\left(A_{2} B_{2}\right) \varphi\left(A_{3} B_{3}\right) \varphi(C)}{\varphi\left(B_{1}\right) \varphi\left(A_{2} B_{2}\right) \varphi\left(A_{3} B_{3}\right) \varphi(C)} \\
& =\frac{\varphi\left(A_{1} B_{1}\right)}{\varphi\left(B_{1}\right)}
\end{aligned}
$$

Since $\varphi\left(A_{1} B\right) \geq \varphi\left(A_{1} B_{1}\right)$, we have $C \in\{1,3\}$ and $\varphi\left(B_{1}\right)=1$ i.e. $B_{1} \in\{1,2\}$. If $B_{1}=2$ then for $B>B_{1}$ we get a contradiction as in this case $\varphi\left(A_{1} B\right)>\varphi\left(A_{1} B_{1}\right)$. So $B=B_{1}$. If $B_{1}=1$ then we get $\varphi\left(A_{1} B\right)=\varphi\left(A_{1}\right)$ which happens when $B \in\{1,2\}$.

Lemma 3.7. Let A, A_{1}, A_{2}, A_{3} be the Maclachlan decomposition 2.4 of an admissible triple $\left(m_{1}, m_{2}, m_{3}\right)$ for N with $m_{1}=m_{2}$ and let $S=1$. Then $1<L \leq 6$ if and only if it is given in Table 1 or in Table 2.

A_{1}	A_{2}	A	A_{3}	C	B	L	N
1	1	5	1	5	1	3	5
1	1	7	1	7	1	5	7
1	1	9	1	9	1	3	9
1	1	15	1	15	1	3	15

TABLE 1. $L \leq 6$ for $m_{1}=m_{2}=m_{3}=N$

Proof. Observe that $S=1$ if and only if if $m_{1}=N$ by the Lemma 3.2. So $m_{1}=m_{2}=$ N. The list of all cases for which $L \leq 6$ can be easily derived from the formula (11). First of all, it follows from it that $C \in\{1,3,5,7,9,15\}$ (note that C cannot be even). After fixing C we take the condition $C \varphi\left(A_{1} B\right) \leq 6$ to be satisfied.

Let first $m_{3}=N$ and let us list all cases giving a triple (N, N, N) with $1<L \leq 6$. Here we have $A=N, A_{1}=A_{2}=A_{3}=1, C=N, B=1$ and so $1<L \leq 6$ if and only if it is given in Table 1.

Now let $m=m_{3}<N$. In this case we have $A_{1}=A_{2}=1$ and so $B_{1}=B_{2}=1$. The only condition on A_{3} is that it must be divisible by primes dividing $B=B_{3}$ if $B>1$, and coprime to C. So we have all cases listed in Table 2.

Theorem 3.8. If $S=L$ for an admissible triple $\left(m_{1}, m_{2}, m_{3}\right)$ then it defines a weakly rigid action. The converse holds for such triples except $(5,5,5),(9,9,9),(15,15,15)$, for which we have weakly rigid action with $S<L=3$ and the following cases for which we have rigid action with $S=1, L=2$:

$$
\begin{array}{lll}
(N, N, 3), & \text { for } N=9 t, & t \in \mathbb{N} \\
(N, N, 4), & \text { for } N=16 t, & t \in \mathbb{N} \\
(N, N, 6), & \text { for } N=36 t, & t \in \mathbb{N} \\
(N, N, 12), & \text { for } N=48 t, & t \in \mathbb{N}, 3 \nmid t
\end{array}
$$

Proof. For $L=S$, the rigidity follows from the faithfulness of the action of \mathcal{S} on \mathcal{L}, which we proved in the Lemma 3.3.

The converse is a bit more involved since distinct elements of \mathcal{L} may produce topologically equivalent actions. This is however not the case if m_{i} are pairwise distinct and so $S<L$ implies non-rigidity in this case. It is also true if $L>6$. So assume that $L \leq 6$ and not all m_{i} are distinct, say $m_{1}=m_{2}$. Then they are equal to N and so in particular $S=1$ and the list of all configuration of N, m_{1}, m_{2}, m_{3} are given in the Lemma 3.7. The case $m_{3}=N$ is easy; here one can show that $(5,5,5),(9,9,9)$ and

A_{1}	A_{2}	A	$\begin{gathered} A_{3} \\ \operatorname{gcd}\left(A_{3}, C\right)=1 \end{gathered}$	C	B	L	N divisible by
1	1	$\begin{gathered} 3,4,6 \\ 5,8,10,12 \\ 7,9,18 \end{gathered}$	$\begin{gathered} \frac{N}{3}, \frac{N}{4}, \frac{N}{6} \\ \frac{N}{5}, \frac{N}{8}, \frac{N}{10}, \frac{N}{12} \\ \frac{N}{7}, \frac{N}{9}, \frac{N}{18} \end{gathered}$	1	$\begin{gathered} 3,4,6 \\ 5,8,10,12 \\ 7,9,18 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 9,8,36 \\ 25,16,100,72 \\ 49,27,108 \end{gathered}$
		$\begin{gathered} 12 \\ 15,24,30 \\ 21 \end{gathered}$	$\begin{gathered} \frac{N}{12} \\ \frac{N}{15}, \frac{N}{24}, \frac{N}{30} \\ \frac{N}{21} \end{gathered}$	3	$\begin{gathered} 4 \\ 5,8,10 \\ 7 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 24 \\ 45,48,300 \\ 147 \end{gathered}$
		$\begin{gathered} 5 \\ 15,20,30 \end{gathered}$	$\begin{gathered} \frac{N}{5} \\ \frac{N}{15}, \frac{N}{20}, \frac{N}{30} \end{gathered}$	5	$\begin{gathered} 1 \\ 3,4,6 \end{gathered}$		$\begin{gathered} 5 \\ 45,40,180 \end{gathered}$
		7	$\frac{N}{7}$	7	1	5	7
		$\begin{gathered} 9,18 \\ 36 \end{gathered}$	$\begin{gathered} \frac{N}{9}, \frac{N}{18} \\ \frac{N}{36} \end{gathered}$	9	$\begin{gathered} 1,2 \\ 4 \end{gathered}$	3 6	$\begin{gathered} 9,36 \\ 72 \end{gathered}$
		$\begin{gathered} 15,30 \\ 60 \end{gathered}$	$\begin{gathered} \frac{N}{15}, \frac{N}{30} \\ \frac{N}{60} \end{gathered}$	15	$\begin{gathered} 1,2 \\ 4 \end{gathered}$	3 6	15,60 120

TABLE 2. $L \leq 6$ for $m_{1}=m_{2}=N, m_{3}<N$
$(15,15,15)$ are rigid signatures, while $(7,7,7)$ allows two nonequivalent actions corresponding to $\left(a, a, a^{5}\right),\left(a, a^{2}, a^{4}\right)$. The case $m_{3}<N$ described in Table 2 is a little bit more involved. First note, that there is no rigid action for $L>2$. Hence we have to consider only the cases listed in the first part of Table 3 . One can easily prove that the triples $(N, N, 3)$ and $(N, N, 6)$ determine rigid configuration. Let us consider the triple $(N, N, 8), N=8 t$. We have two actions

$$
\left(a, a^{2 t-1}, a^{6 t}\right), \quad\left(a, a^{6 t-1}, a^{2 t}\right)
$$

m_{1}	m_{2}	m_{3}	N divsible by	L
N	N	3	9	2
		4	8	2
		6	36	2
		12	24	2
N	N	5	25	4
		8	16	4
		10	72	4
N		7	9	49
		18	108	6
				6

TABLE 3. $L \leq 6$ for $m_{1}=m_{2}=N, m_{3}<N$

Now the function induced by the correspondence $a \rightarrow a^{6 t-1}$ moves $a^{2 t-1}$ to $a^{(2 t-1)(6 t-1)}=$ $a^{4 t^{2}+1}$. If t is even then this element is equal to a and we have equivalence of both actions. If t is odd then $t^{2} \equiv 1(\bmod 8)$ hence $4 t^{2}+1 \equiv 5(\bmod 8)$, which means that $a^{4 t^{2}+1} \neq a$ and so both actions are not equivalent.

Finally take the triple $(N, N, 12), N=24 t$. Note that in this case $3 \nmid t$ as by Table 2 $A_{3}=N-m_{3}$ is coprime to $C=3$. We have now four possibilities for actions

$$
\left(a, a^{2 t-1}, a^{22 t}\right), \quad\left(a, a^{10 t-1}, a^{14 t}\right), \quad\left(a, a^{14 t-1}, a^{10 t}\right), \quad\left(a, a^{22 t-1}, a^{2 t}\right)
$$

but only two of them are of the type $(N, N, 12)$. In fact, if $t \equiv 1(\bmod 3)$, then $10 t-1,22 t-1 \equiv 0(\bmod 3)$ and if $t \equiv 2(\bmod 3)$, then $2 t-1,14 t-1 \equiv 0(\bmod 3)$. Let us consider the first case. The function induced by the correspondence $a \rightarrow a^{14 t-1}$ moves $a^{2 t-1}$ to $a^{(2 t-1)(14 t-1)}=a^{4 t^{2}+8 t+1}$. Since $4 t^{2}+8 t+1=4 t(t+2)+1$, we see that only for even t we have $4 t^{2}+8 t+1 \equiv 1(\bmod 24 t)$. Hence, only in this case both actions are equivalent. In the end let $t \equiv 2(\bmod 3)$ and take the function induced by the correspondence $a \rightarrow a^{22 t-1}$. It moves $a^{10 t-1}$ to $a^{(22 t-1)(10 t-1)}=a^{4 t^{2}+16 t+1}$. Again, since $4 t^{2}+16 t+1=4 t(t+4)+1 \equiv 1(\bmod 24 t)$ only for even t.

Corollary 3.9. Let Z_{N} be a cyclic action with signature $\left(m_{1}, m_{2}, m_{3}\right)$ and let A, A_{1}, A_{2}, A_{3} be Maclachlan decomposition 2.4 of $\left(m_{1}, m_{2}, m_{3}\right)$. Then the action is rigid if and only if one the following happen
(1) $A \in\{1,2\}$,
(2) $A \in\{3,6\}$, and $\operatorname{gcd}\left(A_{1} A_{2} A_{3}, 3\right)=1$
(3) $A \in\{5,9,15\}$, and $A_{1}=A_{2}=A_{3}=1$
(4) $A=3, A_{1}=A_{2}=1$, and $A_{3} \equiv 0(\bmod 3)$
(5) $A=4, A_{1}=A_{2}=1$, and $A_{3} \equiv 0(\bmod 4)$
(6) $A=6, A_{1}=A_{2}=1$, and $A_{3} \equiv 0(\bmod 6)$
(7) $A=12, A_{1}=A_{2}=1, A_{3} \equiv 0(\bmod 4)$, and $\operatorname{gcd}\left(A_{3} / 4,3\right)=1$.

In particular the signature $\left(m_{1}, m_{2}, m_{3}\right)$ is no rigid for $A \notin\{1,2,3,4,5,6,12\}$.

4. Examples, equations, Problems and Remarks

4.1. Rigid signature vs rigid order. Let X be a closed orientable surface of genus $g \geq 2$ which we left fixed. The notion of rigid cyclic action on X leads us to define the concept of rigid order N for g and, similarly, the notion of weakly rigid action give rise to the concept of rigid signature for g which next allow to define the concept of weakly rigid order which means that all admissible signatures are rigid. In this subsection we shall consider cyclic actions with the orbit genus zero and having three singular orbits of the lengths m_{1}, m_{2}, m_{3}, calling such actions triangular. Let N_{1}, \ldots, N_{k} be all possible orders of all such actions on X. Now $N=N_{i}$ can fail to be rigid order for two reasons. The first is that there may exist few distinct admissible signatures and, in principle, some of them may be rigid and the other not. The second, more subtle reason for nonrigidity of N for genus g, is that although there may exists just one admissible signature, this signature is not rigid. Mentioned results of Hirose mean that the cyclic actions of orders $4 g+1,4 g, 3 g+3,3 g$ on closed orientable surfaces of genus g, where $g \geq 12$ and additionally in the last case $g \not \equiv 2(\bmod 3)$, are rigid. All of these phenomena, which show that rigidity of cyclic actions is essentially coarser than week rigidity indeed, are well illustrated in Tables 4 and 5 ; the rider will easily deduce rigidity of signatures in the last column using definitions.
4.2. Cyclic actions with fixed-points free self-homeomorphisms. The signature (m_{1}, m_{2}, m_{3}) is said to be (g, N)-admissible if there exists a self-homeomorphism φ of order N acting on a closed orientable surface X of genus g so that X / φ is the sphere ramified over three points with ramification indices m_{1}, m_{2}, m_{3}. An interesting case we have for $(g, N)=(11,30)$ in Table 5 since these g, N are the smallest values for which exists an action with fixed-point free acting self-homeomorphism.

There are much more cyclic action containing fixed point acting self-homeomorphisms (the next to $(g, N)=(11,30)$ are rigid actions for $(g, N)=(16,42),(25,60)$ with signatures $(21,14,6)$ and $(20,15,12)$). But particularly interesting is $N=210$ which allow such actions of Z_{N} on surfaces of three consecutive genera $g=95,96,97$. The corresponding ramification data are $(70,42,15),(70,30,21),(42,35,30)$ all of which are rigid since $A=1$ for all of them. In addition there are nor other (95,210)-admissible signatures and so 210 is the rigid order for $g=95$. For $g=96$, we have one more $(96,210)$-admissible signatures $(210,42,15)$ which gives rigid action. In fact, let G be a
cyclic group of order 210. Let us represent elements of G as 4 -tuples that is elements of the direct product $G=\left\langle a_{2}\right\rangle \times\left\langle a_{3}\right\rangle \times\left\langle a_{5}\right\rangle \times\left\langle a_{7}\right\rangle$, where a_{i} has order i. Now for a fixed element x of order 210 , say $x=\left(a_{2}, a_{3}, a_{5}, a_{7}\right)$ we have exactly one element y of order 42 such that $x y$ has order 15 , namely $y=\left(a_{2}, a_{3}, 1, a_{7}^{-1}\right)$. So we see that $N=210$ is the weakly rigid order for $g=96$. Finally we have three more $(97,210)$ admissible signatures $(210,30,21),(210,70,15),(210,105,14)$ whose Maclachlan decomposition are respectively $(3,1,7,10),(5,1,3,14),(7,1,2,15)$. The first case defines rigid action as for $x=\left(a_{2}, a_{3}, a_{5}, a_{7}\right)$ again we have exactly one element $y=\left(a_{2}, a_{3}, a_{5}^{-1}, 1\right)$ of order 30 such that $x y$ has order 21. The last two cases are not rigid. In the case $(210,70,15)$ for $x=\left(a_{2}, a_{3}, a_{5}, a_{7}\right)$ we have exactly three elements y of order 70 such that $x y$ has order 15 , namely $y=\left(a_{2}, 1, a_{5}^{k}, a_{7}^{-1}\right), k=1,2,3$. In the case $(210,105,14)$ for $x=\left(a_{2}, a_{3}, a_{5}, a_{7}\right)$ we have exactly five elements y of order 105 such that $x y$ has order 14 , namely $y=\left(1, a_{3}^{-1}, a_{5}^{-1}, a_{7}^{k}\right), k=1,2,3,4,5$. So for $g=97, N=210$ is not weakly rigid order. So, all three phenomena: rigidity, weak rigidity and not weak rigidity can occur for cyclic action allowing fixed point free self-homeomorphisms for the same order on surfaces of three consecutive genera.

4.3. Infinite series of non-rigidity examples.

Example 1. Let p be an odd prime and let $\mathbb{Z}_{p^{n}}$ be an action on a surface X defined by admissible triple (m_{1}, m_{2}, m_{3}), and assume that ($m_{1} \geq m_{2} \geq m_{3}$). Then $m_{1}=m_{2}=p^{n}$ and $m_{3}=p^{m}$ for some $m \leq n$.

Let us first assume $m=n$. Then

$$
\left(a, a, a^{-2}\right) \text { and }\left(a, a^{2}, a^{-3}\right)
$$

are non-equivalent under the action of $\mathrm{Z}_{p^{n}}^{*} \rtimes \mathrm{~S}_{3}$. These two triples correspond to the algebraic curves

$$
C_{1}:=y^{p^{n}}=x(x-1) \text { and } C_{2}:=y^{p^{n}}=x(x-1)^{2} .
$$

Now let $m<n$. Then for arbitrary $q<p,\left(a, a^{q p^{n}-1}, a^{q p^{n}}\right)$ is defining triple. These triples for $q=1$ and q satisfying congruence

$$
\left(p^{n-m}-1\right)\left(q p^{n-m}=1\right) \not \equiv 1 \quad\left(\bmod p^{n}\right)
$$

are not equivalent under the action of $\mathrm{Z}_{p^{n}}^{*} \rtimes \mathrm{Z}_{2}$. These triples correspond to the algebraic curves

$$
C_{1}:=y^{p^{n}}=x(x-1)^{q p^{n}-1}
$$

Example 2. Let p, q be distinct odd primes with $p<q$ and let $\mathrm{Z}_{p q}$ be an action on a surface X defined by the admissible triple $\left(m_{1}, m_{2}, m_{3}\right)$. Then for $\left(m_{1}, m_{2}, m_{3}\right)=$ $(p, q, p q)$ the action is rigid while for $\left(m_{1}, m_{2}, m_{3}\right)=(p q, p q, p q)$ we have two generating triples of elements from $\mathrm{Z}_{p q}$

$$
\left(a, a, a^{-2}\right) \text { and }\left(a, a^{2}, a^{-3}\right)
$$

Genus	Order	Signature	Rigidity of order	Rigidity of signature
2	$\begin{gathered} \hline 10 \\ 8 \\ 6 \\ 5 \end{gathered}$	$\begin{gathered} \hline(10,5,2) \\ (8,8,2) \\ (6,6,3) \\ (5,5,5) \end{gathered}$	rigid rigid rigid rigid	
3	$\begin{aligned} & \hline 14 \\ & 12 \\ & 9 \\ & 8 \\ & 7 \end{aligned}$	$\begin{gathered} (14,7,2) \\ (12,4,3) \\ (12,12,2) \\ (9,9,3) \\ (8,8,4) \\ (7,7,7) \\ \hline \end{gathered}$	rigid weakly-rigid rigid rigid non-rigid	
4	$\begin{gathered} 18 \\ 16 \\ 15 \\ 12 \\ \\ 10 \\ 9 \end{gathered}$	$\begin{gathered} (18,9,2) \\ (16,16,2) \\ (15,5,3) \\ (12,6,4) \\ (12,12,3) \\ (10,10,5) \\ (9,9,9) \\ \hline \end{gathered}$	rigid rigid rigid weakly-rigid non-rigid rigid	
5	$\begin{aligned} & 22 \\ & 20 \\ & 15 \\ & 12 \\ & 11 \end{aligned}$	$\begin{gathered} \hline(22,11,2) \\ (20,20,2) \\ (15,15,3) \\ (12,12,6) \\ (11,11,11) \\ \hline \end{gathered}$	rigid rigid rigid rigid non-rigid	
6	$\begin{aligned} & 26 \\ & 24 \\ & 21 \\ & 20 \\ & 18 \\ & 16 \\ & 15 \\ & 14 \\ & 13 \end{aligned}$	$\begin{gathered} (26,13,2) \\ (24,24,2) \\ (21,7,3) \\ (20,5,4) \\ (18,18,3) \\ (16,16,4) \\ (15,15,5) \\ (14,14,7) \\ (13,13,13) \end{gathered}$	rigid rigid rigid rigid rigid rigid non-rigid non-rigid non-rigid	
7	$\begin{aligned} & 30 \\ & 28 \\ & 24 \\ & 21 \\ & 20 \\ & 18 \\ & 16 \\ & 15 \end{aligned}$	$\begin{gathered} \hline(30,15,2) \\ (28,28,2) \\ (24,8,3) \\ (21,21,3) \\ (20,10,4) \\ (18,9,6) \\ (16,16,8) \\ (15,15,15) \\ \hline \end{gathered}$	rigid rigid rigid rigid rigid non-rigid non-rigid rigid	

TABLE 4. Rigidity of triangular cyclic actions on surfaces of low genera

Genus	Order	Signature	Rigidity of order	Rigidity of signature
8	$\begin{aligned} & 34 \\ & 32 \\ & 24 \\ & 20 \\ & 18 \\ & 17 \end{aligned}$	$\begin{gathered} \hline(34,17,2) \\ (32,32,2) \\ (24,24,3) \\ (20,20,5) \\ (18,18,9) \\ (17,17,17) \end{gathered}$	rigid rigid rigid non-rigid non-rigid non-rigid	
9	$\begin{aligned} & 38 \\ & 36 \\ & 30 \\ & 28 \\ & 27 \\ & 24 \\ & 21 \\ & 20 \\ & 20 \\ & 19 \end{aligned}$	$\begin{gathered} (38,19,2) \\ (36,36,2) \\ (30,10,3) \\ (28,7,4) \\ (27,27,3) \\ (24,8,6) \\ (24,24,4) \\ (21,21,7) \\ (20,20,10) \\ (19,19,19) \end{gathered}$	rigid rigid rigid rigid rigid non-rigid non-rigid non-rigid non-rigid	rigid
10	42 40 33 30 28 25 24 22 21	$\begin{gathered} \hline(42,21,2) \\ (40,40,2) \\ (33,11,3) \\ (30,6,5) \\ (30,30,3) \\ (28,14,4) \\ (25,25,5) \\ (24,24,6) \\ (24,12,8) \\ (22,22,11) \\ (21,21,21) \end{gathered}$	rigid rigid rigid weakly-rigid rigid non-rigid non-rigid non-rigid non-rigid	rigid
11	$\begin{aligned} & 46 \\ & 44 \\ & 33 \\ & 30 \\ & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & (46,23,2) \\ & (44,44,2) \\ & (33,33,3) \\ & (15,10,6) \\ & (24,24,12) \\ & (23,23,23) \end{aligned}$	rigid rigid rigid rigid non-rigid non-rigid	

Table 5. Rigidity of triangular cyclic actions on surfaces of low genera
which define non-equivalent actions for $p \geq 5$. By direct calculus we obtain non-rigidity for $p=3$ except for $q=5(q=7)$. These two triples correspond to the algebraic curves

$$
C_{1}:=y^{p q}=x(x-1) \text { and } C_{2}:=y^{p q}=x(x-1)^{2} .
$$

4.4. Conformal rigidity of weakly rigid actions. Observe that for $A=1,2$ no nonfinitely maximal signature from Greenberg [3] and Singerman [13] lists is admissible. This means that the corresponding cyclic group Z_{N} of self-homeomorphisms of the corresponding topological surface X_{g} can not be finitely extended. In particular this means that there is just one conformal structure on X for which Z_{N} is the full group of conformal automorphisms. So the topological rigidity implies conformal rigidity. In the case $A=1$, explicit projective equations were obtained in [4].
4.5. Real forms. Observe that all our surfaces are also symmetric, due to the result of Singerman [14], since the map $a \mapsto a^{-1}, b \mapsto b^{-1}$ induces an automorphism of any abelian group generated by a, b and also the map $a \mapsto b^{-1}, b \mapsto a^{-1}$ induce an automorphism if a and b have the same order. In our case our surfaces have two or one conjugacy classes of symmetries according to N being even or odd respectively.

4.6. Open problems.

(1) The preceding subsections allow us to deduce that X, with the unique conformal structure making Z_{N} the full group of its conformal automorphisms, is a symmetric Riemann surface, with one or two conjugacy classes of symmetries to which correspond one or two real forms for its defining equations according to N being odd or even. We do not consider the problem of finding these forms for equations given in [4] for $A=1$, since a sequel concerning the general case of arbitrary A is planned.
(2) Consider the numbers $R(g)$ and $W R(g)$ of all rigid and weakly rigid actions on a closed orientable surface of genus $g \geq 2$. This problem consist in finding a most precise upper bounds for them and investigate asymptotic behaviour of the ratios $A(g) / R(g), A(g) / W R(g)$ and $R(g) / A(g), W R(g) / A(g)$, where $A(g)$ denotes the number of all quasi-platonic actions.

Acknowledgements. The authors are grateful to dr Błażej Szepietowski for indicating a minor gap in our approach, a minor but painful imprecision in the statement of Theorem 3.8 and other helpful remarks generously shared with us. We are also grateful to prof Xuezhi Zhao for his conversations with the third named author which turned out to be very helpful.

References

[1] T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto-Montesinos theorem, Tohoku Math. J. 54 (2), (2002), 195-226.
[2] G. Belyi. On Galois extensions of a maximal cyclotomic field, Math, USSR Izv. 14 (2), 247-256 (1980).
[3] L. Greenberg, Maximal Fuchsian Groups. Bull. Amer. Math. Soc. 69 (1963), 569-573.
[4] R.A. Hidalgo. Homology closed Riemann surfaces. Quarterly Journal of Math. 63 (2012), 931-952.
[5] S. Hirose, On periodic maps over surfaces with large periods, Tohoku Math. J. 62 (1) (2010), 45ñ53.
[6] S. Hirose, Presentations of periodic maps on oriented closed surfaces of genera up to 4, Osaka J. Math. 47 (2) (2010), 385ñ421.
[7] A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-61.
[8] M. Ishizaka, Presentation of hyperelliptic periodic monodromies and splitting families, Rev. Mat. Complut. 20 (2007), 483-495.
[9] Y. Kasahara, Reducibility and orders of periodic automorphisms of surfaces, Osaka J. Math. $\mathbf{2 8}$ (1991), 985-997.
[10] B. Köck, D. Singerman, Real Belyi Theory, The Quarterly Journal of Math. 58, 463-478 (2007).
[11] C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15 (3) (1965), 699ñ712.
[12] J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Math. -fys. Medd. Danske Vid. Selsk 15 (1) (1937), English transl. in Jakob Nielsen collected works, Vol. 2, 65-102.
[13] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29-38.
[14] D. Singerman, Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 17-32.
[15] K. Yokoyama, Classification of periodic maps on compact surfaces. I, Tokyo J. Math. 6 (1983), 75-94.

Cz.Bagiński: Faculty of Computer Science, Białystok University of Technology, Białystok, Poland, email: c.baginski@pb.edu.pl
M.Carvacho, R.Hidalgo: Departamento de Matemática, UTFSM, Valparaíso, Chile, email: ruben.hidalgo@usm.cl mariela.carvacho@usm.cl
G.Gromadzki: Institute of Mathematics, Gdańsk University, Gdańsk, Poland, email: grom@mat.ug.edu.pl

[^0]: Cz. Bagiński and G. Gromadzki supported by Research Grant of Polish National Center of Sciences NCN 2012/05/B/ST1/02171. G. Gromadzki supported additionally by the Fondecyt 1110001 of Chilean Ministry of Sciences and Max Planck Mathematical Institute in Bonn. R. Hidalgo supported by Fondecyt 1110001 and UTFSM 12.13.01.

