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ON PERIODIC SELF-HOMEOMORPHISMS OF CLOSED

ORIENTABLE SURFACES

DETERMINED BY THEIR ORDERS

CZ. BAGIŃSKI, M. CARVACHO, G. GROMADZKI, R. HIDALGO

Abstract. The fundamentals for the topological classification of periodic orientation

preserving self-homeomorphisms of a closed orientable topological surface Xg of genus

g ≥ 2 have been established, by Nielsen, in the thirties of the last century. Recently,

Hirose has shown that the order N ≥ 3g of a cyclic action on closed surface of genus

g ̸= 4, 6, 9, 10, 12 determines this action up to topological conjugation. Actually in

such case, we have very few possibilities for such orders; N = 4g + 2, 4g, 3g or 3g + 3

and for the first three cases such actions actually exist for arbitrary g while the last

exists if and only if g ̸≡ 2 (mod 3). Motivated by this phenomenon, we call the order

N of a cyclic action of G = ZN on X = Xg to be rigid if for any other cyclic action G′

of order N on X, G and G′ are conjugate by certain orientation preserving self-homeo-

morphism of X. It seems that rigidity property, observed by Hirose for mentioned

orders of cyclic actions, is a rather rare phenomenon. Here, apart of it, we consider

and study another related property of periodic cyclic actions called weak rigidity. We

say that the cyclic action G on X is weakly rigid if any other cyclic action G′ of the

same order with singular orbits of the same size is conjugate to it by a homeomorphism

of X. Using combinatorial techniques, we characterise a large class of weakly rigid

cyclic actions with three singular orbits.

1. Introduction

The fundamentals for the topological classification of periodic orientation preserving

self-homeomorphisms of a closed topological surface Xg of genus g ≥ 2 have been

established, by Nielsen, in the thirties of the last century. Certain classification has

been given also by Yokayama [15] and, recently, Hirose [5] has shown that an order

N ≥ 3g of a cyclic action on a closed surface of genus g ̸= 4, 6, 9, 10, 12 is uniquely

determined up to a topological conjugation. Actually in such case, we have very few

possibilities for such orders; N = 4g + 2, 4g, 3g or 3g + 3 and for the first three cases

such configuration actually exists for arbitrary g while the last exists if and only if g ̸≡ 2

(mod 3). The order N of a cyclic action of G = ZN on X = Xg is said to be topologically

rigid if for any other cyclic action G′ of order N on X, G and G′ are conjugate by certain

orientation-preserving self-homeomorphism not necessarily periodic.
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It seems that rigidity property, observed by Hirose for mentioned orders of cyclic

actions, is a rather rare phenomenon and here, apart of it, we consider and study

another related property of periodic cyclic actions called weak rigidity. We say that

the cyclic action G on X is weakly rigid if any other cyclic action G′ of the same order

with singular orbits of the same size is conjugate to it by an orientation preserving

homeomorphism of X. Using combinatorial techniques, we characterise a large class of

weakly rigid cyclic actions having three singular orbits and the orbit genus zero; such

actions are examples of quasi-platonic or Belyi actions well known in the literature.

The class of actions considered in the paper, apart of being proved to be weakly rigid,

has some extra pleasant features. Namely, due to the geometrization theorem of Nielsen

and the Riemann uniformization theorem they can be realized as holomorphic actions

on complex algebraic curves. Due to a celebrated theorem of Belyi [2], these curves can

be defined over the algebraic numbers. By results of Greenberg [3] and Singerman [13]

these curves are unique. Another result due to Singerman [14] states that they have

one or two real form. Finally due to Kock-Singerman [10] these forms can be defined

over the algebraic reals. To find explicitly equation of these forms does not seems to be

hopeless.

Another interesting problem, not considered here, concerns relations between rigidity

and weak rigidity of periodic cyclic actions. Namely rigidity implies, obviously, weak

rigidity but, and though some explicit examples show the converse is not true, it seems

that such exceptions are rather rare and there is a series of natural problems concerning,

roughly speaking, the number of them and the estimation of the number of weakly rigid

actions of given order on a closed surface of given genus. A sequel concerning these and

other problems is planned. We use multiplicative notation for cyclic groups throughout

the whole paper.

2. Description of the approach

We shall use the following ingredients. Throughout of this section X will denote a

closed orientable surface of genus g ≥ 2.

2.1. Nielsen’s geometrization. Let φ be an orientation-preserving self-homeomor-

phism of X of finite order N . There exists a structure of a Riemann surface on X (we

still denote the resulting Riemann surface also by X by abuse of language) so that φ

is a conformal automorphism. In the rest of the section, we assume X to have such a

Riemann surface structure when necessary.

2.2. Riemann uniformization theorem and elementary covering theory. A

closed orientable Riemann surface X is isomorphic to the orbit space H/Γ of the hy-

perbolic upper half plane H with the holomorphic structure inherited from H, where Γ
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has signature (h;−). Such a group Γ has the presentation

(1) ⟨a1, b1, . . . , ah, bh | [a1, b1] . . . [ah, bh]⟩.

Furthermore having an automorphism φ of X, we have an isomorphism ⟨φ⟩ ∼= Λ/Γ =

⟨x | xN = 1⟩ for some Fuchsian group Λ, say with signature (h;m1, . . . ,mr), which

means that it has the presentation

(2) ⟨x1, . . . , xr, a1, b1, . . . , ah, bh |xm1
1 , . . . , xmr

r , x1 . . . xr[a1, b1] . . . [ah, bh]⟩.

Particular role in our considerations will play triangle groups which are Fuchsian

groups with signatures (0;m1,m2,m3) which will be also abbreviated to (m1,m2,m3)

that is the ones algebraically isomorphic to

(3) ⟨x1, x2, x3 | xm1
1 = xm2

2 = xm3
3 = x1x2x3 = 1⟩

Furthermore, the Hurwitz-Riemann formula says in this special situation

(4) 2(g − 1) = N

(
1 − 1

m1
− 1

m2
− 1

m3

)

2.3. Harvey criterion. Let Λ be a Fuchsian group with signature (h;m1, . . . ,mr)

and let M = lcm(m1, . . . ,mr). Then there exists a smooth epimorphism from Λ onto

⟨x | xN = 1⟩ if and only if

(5)



(a) M = lcm(m1, . . . ,mi−1,mi+1, . . . ,mr) for all i;

(b) M divides N and if h = 0 then M = N ;

(c) r ̸= 1 and if h = 0 then r ≥ 3;

(d) if N is even then the number of periods mi such that

N/mi is odd is also even.

2.4. Maclachlan decomposition. (Hidalgo [4]) In the case that r = 3, condition (a)

in (5) above for the triple (m1,m2,m3) is equivalent to have the following canonical

decomposition

(6)


m1 = AA2A3

m2 = AA1A3

m3 = AA1A2

where A = gcd(m1,m2,m3), Ak = gcd(mi/A,mj/A), for k ̸= i, j. Note that the integers

Ai are pairwise relatively prime and, by (b) in (5), that N = AA1A2A3. Condition (d)

in (5), states that N = AA1A2A3 even is equivalent to have just one of Ai even. This

decomposition has been discovered in [4] and the collection A,A1, A2, A3 will be called

Maclachlan decomposition of (m1,m2,m3) and we shall call the triple (m1,m2,m3) or

the quadruple (A,A1, A2, A3) admissible.

Furthermore, this signature is said to be rigid if the corresponding cyclic action, say

of order N , is rigid in the sense described in the Introduction which in turn means that
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any two smooth epimorphism θ1, θ2 : Λ → ⟨x | xN = 1⟩ are equivalent in the sense

described in Subsection 2.5.

2.5. Few words on topological conjugacy. Two orientation-preserving self-homeo-

morphisms φ1, φ2 of a surface X are topologically equivalent if they are conjugate by

an orientation-preserving self-homeomorphism f of X. For periodic case in described

above hyperbolization this is equivalent to classify up to conjugation by an orientation-

preserving self-homeomorphism of conformal automorphisms. The general definition is

that two conformal actions G1, G2 on Riemann surfaces X1, X2 given by surface-kernel

epimorphisms θ1 : Λ1 → G1 and θ2 : Λ2 → G2 (means that their kernels are torsion

free) are topologically equivalent if and only if the diagram

Λ1
Φ // Λ2

G1
Ψ //

��
θ1

G2

��
θ2

commutes for some isomorphisms Φ : Λ1 → Λ2,Ψ : G1 → G2. The Nielsen isomorphism

theorem asserts that Φ can be chosen to be the conjugation by a self-homeomorphism

f of H and, throughout the paper, we understand that f preserves orientation.

3. Rigid and weakly rigid actions

Let Λ be a Fuchsian group with the presentation (3). For a smooth epimorphism

θ : Λ → ⟨a| aN = 1⟩ we have

θ(x1) = amN/m1 , θ(x2) = akN/m2 , θ(x1) = alN/m3 ,

where gcd(m,m1) = gcd(k,m2) = gcd(l,m3) = 1 and

m

(
N

m1

)
+ k

(
N

m2

)
+ l

(
N

m3

)
≡ 0 (mod N).

Let m′ be the inversion of m modulo m1. Let also A′
1 be the maximal divisor of

A1 = N/m1 coprime to m1. Then by the Chinese Remainder Theorem there exists α

such that α ≡ m′ (mod m1) and α ≡ 1 (mod A′
1). Then gcd(α,N) = 1 and

(amN/m1)α = (aN/m1)mα = aN/m1

and so we see that, up to a powering of fixed generator of ⟨a| aN = 1⟩, our θ is defined

by

(7) θ(x1) = aN/m1 , θ(x2) = akN/m2 , θ(x1) = alN/m3 ,

where gcd(k,m2) = gcd(l,m3) = 1 and

N

m1
+ k

(
N

m2

)
+ l

(
N

m3

)
≡ 0 (mod N).
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Let K = {k < m2 | gcd(k,m2) = 1}. Then K = φ(m2) is its cardinality, where φ is the

Euler function. Let also L be the subset of K consisting of those k for which

(8) aN/m1+kN/m2

has order m3 and let L be its cardinality. We see that with these notation we have

Lemma 3.1. There are just L surface-kernel epimorphisms θ : Λ → ⟨a| aN = 1⟩, where
Λ is a Fuchsian group with the presentation (3) for which θ(x1) = aN/m1 . �

Now let S be the stabilizer of aN/m1 in Aut⟨a⟩ = Z∗
N . Then for its cardinality S we

have

Lemma 3.2. S = φ(N)/φ(m1).

Proof. Indeed
φ(m1) =

∣∣OrbZ∗
N

(aN/m1)
∣∣

= [Z∗
N : StabZ∗

N
(aN/m1)]

=
φ(N)∣∣StabZ∗
N

(aN/m1)
∣∣

and so the assertion. �

Lemma 3.3. Each element of S acts on K without fixed points and so in particular the

group S acts faithfully on K.

Proof. Let us take k ∈ K and s, s′ ∈ S. Recall that these mean gcd(k,m2) = 1 and

gcd(s′, N) = gcd(s,N) = 1. Furthermore, from the definition of S we have (aN/m1)s =

aN/m1 which in turn gives N(s − 1)/m1 ≡ 0 (N) which in particulary means that m1

divides s− 1 and similarly for s′ and in particular m1 divides s′ − s. Assume that(
aNk/m2

)s
=

(
aNk/m2

)s′
.

Then

N
k(s− s′)

m2
≡ 0 (N).

We see that m2 divides k(s − s′) and therefore m2 divides s − s′ which give s ≡ s′

(mod N). �

For counting L it will be crucial the decomposition (6). For, we have

N = lcm(m1,m2,m3) = lcm(m1,m2) = lcm(m1,m3) = lcm(m2,m3),

where N = AA1A2A3, N/mi = Ai. Furthermore we know by (5) that if N is even, then

the number of those Ai which are odd is even and therefore, since all Ai can not be

even, only one of them is even. With these notations, elements (8) become

aA1+kA2
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and so the set L becomes

(9) L = {k < AA1A3 | gcd(A1 + kA2, N) = A3, gcd(k,AA1A3) = 1}.

We define ψ(1) = 1 and given a decomposition n = pα1
1 . . . pαr

r > 1

(10) ψ(n) =
r∏

i=1

(pi − 2)pαi−1
i .

With this definition we have

Theorem 3.4. Let C be the biggest divisor of A coprime with A1A2A3 and let B = A/C.

Then

(11) L = φ(A1B)ψ(C).

Proof. Let C = pγ11 · · · pγrr and let B = B1B2B3, where for i = 1, 2, 3 each prime

dividing Bi divides Ai. Then the numbers A1B1, A2B2, A3B3, C are pairwise coprime

and so

ZN
∼= ZA1B1 ⊕ ZA2B2 ⊕ ZA3B3 ⊕ Zp

γ1
1

⊕ · · · ⊕ Zpγrr .

and

ZAA1A3
∼= ZA1B1 ⊕ ZB2 ⊕ ZA3B3 ⊕ Zp

γ1
1

⊕ · · · ⊕ Zpγrr
.

Hence every element x ∈ ZAA1A3 can be represented as a sequence

(x1, x2, x3, x
′
1, . . . , x

′
r)

with x1 ∈ ZA1B1 , x2 ∈ ZB2 , x3 ∈ ZA3B3 and x′j ∈ Z
p
γj
j

. Similarly the elements of

ZN are represented. Moreover if x is invertible in Z∗
AA1B1

then all components of the

sequence corresponding to x are invertible in suitable rings.

Now, the correspondence x→ A1+xA2 is an injection from Z∗
AA1A3

to ZN . Let (A1+

x1A2, A1 + x2A2, A1 + x3A2, A1 + x′1A2, . . . , A1 + x′rA2) be the sequence corresponding

to A1 +xA2 with entries taken modulo a suitable number. We need to know how many

images of the function satisfy the condition gcd(A1 + xA2, N) = A3 that is how many

corresponding sequences have all components invertible beside the third one which has

to be of the form A1 + x3A2 = tA3, where gcd(t, B3) = 1.

Note first that all possible values of t satisfyjng the above condition is achievable that

is we have φ(B3) values of it. Next, for x ∈ Z∗
AA1A3

we have gcd(A1+xA2, A1B1A2B2) =

1, so for a fixed tA3 we have ϕ(A1B1) × ϕ(B2) possibilities for the first two entries of

the sequence.

Finally let us consider A1 + x′jA2. Write x′j = yj + pjzj , where 1 ≤ x1 ≤ pj − 1 and

0 ≤ zj ≤ p
γj−1
j − 1. Then A1 + x′jA2 = (A1 + yjA2) + pjz1A2 and for exactly one value

of yj we have A1 + yjA2 ≡ 0 (mod pj). Therefore we have (pj − 2)p
γj−1
j values of x′j

modulo p
γj
j such that A1 + x′jA2 is coprime to pj .
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Summarising we have

L = φ(B3) · φ(A1B1) · φ(B2) ·
r∏

i=1
(pi − 2)pγi−1

i

= φ(A1B1B2B3)ψ(C)

= φ(A1B)ψ(C).

�

Remark 3.5. Observe surprising analogy of the function (10) with the classical Euler-

function, both in this what concern its algebraic properties and the explicit formula

φ(n) =

r∏
i=1

(pi − 1)pαi−1
i

for it as well. We see that both of them can be seen as particular cases of function

φk(n) =

r∏
i=1

(pi − k)pαi−1
i

which can be defined for arbitrary k.

As a corollary we obtain our first main result.

Theorem 3.6. Let C be the biggest divisor of A coprime with A1A2A3 and let B = A/C.

Then L = S if and only if B ∈ {1, 2} and C ∈ {1, 3}.

Proof. Let B = B1B2B3, where Bi are defined in the proof of Theorem 3.4. Then

S =
φ(N)

φ(m1)

=
φ(A1B1)φ(A2B2)φ(A3B3)φ(C)

φ(AA2A3)

=
φ(A1B1)φ(A2B2)φ(A3B3)φ(C)

φ(B1)φ(A2B2)φ(A3B3)φ(C)

=
φ(A1B1)

φ(B1)
.

Since φ(A1B) ≥ φ(A1B1), we have C ∈ {1, 3} and φ(B1) = 1 i.e. B1 ∈ {1, 2}. If B1 = 2

then for B > B1 we get a contradiction as in this case φ(A1B) > φ(A1B1). So B = B1.

If B1 = 1 then we get φ(A1B) = φ(A1) which happens when B ∈ {1, 2}. �

Lemma 3.7. Let A,A1, A2, A3 be the Maclachlan decomposition 2.4 of an admissible

triple (m1,m2,m3) for N with m1 = m2 and let S = 1. Then 1 < L ≤ 6 if and only if

it is given in Table 1 or in Table 2.
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A1 A2 A A3 C B L N

1 1 5 1 5 1 3 5

1 1 7 1 7 1 5 7

1 1 9 1 9 1 3 9

1 1 15 1 15 1 3 15

Table 1. L ≤ 6 for m1 = m2 = m3 = N

Proof. Observe that S = 1 if and only if if m1 = N by the Lemma 3.2. So m1 = m2 =

N . The list of all cases for which L ≤ 6 can be easily derived from the formula (11).

First of all, it follows from it that C ∈ {1, 3, 5, 7, 9, 15} (note that C cannot be even).

After fixing C we take the condition Cφ(A1B) ≤ 6 to be satisfied.

Let first m3 = N and let us list all cases giving a triple (N,N,N) with 1 < L ≤ 6.

Here we have A = N,A1 = A2 = A3 = 1, C = N,B = 1 and so 1 < L ≤ 6 if and only if

it is given in Table 1.

Now let m = m3 < N . In this case we have A1 = A2 = 1 and so B1 = B2 = 1. The

only condition on A3 is that it must be divisible by primes dividing B = B3 if B > 1,

and coprime to C. So we have all cases listed in Table 2. �

Theorem 3.8. If S = L for an admissible triple (m1,m2,m3) then it defines a weakly

rigid action. The converse holds for such triples except (5, 5, 5), (9, 9, 9), (15, 15, 15), for

which we have weakly rigid action with S < L = 3 and the following cases for which we

have rigid action with S = 1, L = 2:

(N,N, 3), for N = 9t, t ∈ N,
(N,N, 4), for N = 16t, t ∈ N,
(N,N, 6), for N = 36t , t ∈ N,
(N,N, 12), for N = 48t, t ∈ N, 3 - t.

Proof. For L = S, the rigidity follows from the faithfulness of the action of S on L,

which we proved in the Lemma 3.3.

The converse is a bit more involved since distinct elements of L may produce topo-

logically equivalent actions. This is however not the case if mi are pairwise distinct and

so S < L implies non-rigidity in this case. It is also true if L > 6. So assume that

L ≤ 6 and not all mi are distinct, say m1 = m2. Then they are equal to N and so

in particular S = 1 and the list of all configuration of N,m1,m2,m3 are given in the

Lemma 3.7. The case m3 = N is easy; here one can show that (5, 5, 5), (9, 9, 9) and
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A1 A2 A A3 C B L N divisible

gcd(A3, C) = 1 by

1 1 3,4,6
N

3
,
N

4
,
N

6
1 3,4,6 2 9,8,36

5,8,10,12
N

5
,
N

8
,
N

10
,
N

12
5,8,10,12 4 25,16,100 ,72

7,9,18
N

7
,
N

9
,
N

18
7,9,18 6 49,27,108

12
N

12
3 4 2 24

15,24,30
N

15
,
N

24
,
N

30
5,8,10 4 45,48,300

21
N

21
7 6 147

5
N

5
5 1 3 5

15, 20, 30
N

15
,
N

20
,
N

30
3,4,6 6 45,40,180

7
N

7
7 1 5 7

9,18
N

9
,
N

18
9 1,2 3 9,36

36
N

36
4 6 72

15,30
N

15
,
N

30
15 1,2 3 15,60

60
N

60
4 6 120

Table 2. L ≤ 6 for m1 = m2 = N,m3 < N

(15, 15, 15) are rigid signatures, while (7, 7, 7) allows two nonequivalent actions corre-

sponding to (a, a, a5), (a, a2, a4). The case m3 < N described in Table 2 is a little bit

more involved. First note, that there is no rigid action for L > 2. Hence we have to

consider only the cases listed in the first part of Table 3. One can easily prove that the

triples (N,N, 3) and (N,N, 6) determine rigid configuration. Let us consider the triple

(N,N, 8), N = 8t. We have two actions

(a, a2t−1, a6t), (a, a6t−1, a2t).
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m1 m2 m3 N divsible by L

N N 3 9 2

4 8 2

6 36 2

12 24 2

N N 5 25 4

8 16 4

10 100 4

12 72 4

N N 7 49 6

9 27 6

18 108 6

Table 3. L ≤ 6 for m1 = m2 = N,m3 < N

Now the function induced by the correspondence a→ a6t−1 moves a2t−1 to a(2t−1)(6t−1) =

a4t
2+1. If t is even then this element is equal to a and we have equivalence of both ac-

tions. If t is odd then t2 ≡ 1 (mod 8) hence 4t2 + 1 ≡ 5 (mod 8), which means that

a4t
2+1 ̸= a and so both actions are not equivalent.

Finally take the triple (N,N, 12), N = 24t. Note that in this case 3 - t as by Table 2

A3 = N −m3 is coprime to C = 3. We have now four possibilities for actions

(a, a2t−1, a22t), (a, a10t−1, a14t), (a, a14t−1, a10t), (a, a22t−1, a2t),

but only two of them are of the type (N,N, 12). In fact, if t ≡ 1 (mod 3), then

10t − 1, 22t − 1 ≡ 0 (mod 3) and if t ≡ 2 (mod 3), then 2t − 1, 14t − 1 ≡ 0 (mod 3).

Let us consider the first case. The function induced by the correspondence a → a14t−1

moves a2t−1 to a(2t−1)(14t−1) = a4t
2+8t+1. Since 4t2 + 8t + 1 = 4t(t + 2) + 1, we see

that only for even t we have 4t2 + 8t+ 1 ≡ 1 (mod 24t). Hence, only in this case both

actions are equivalent. In the end let t ≡ 2 (mod 3) and take the function induced by

the correspondence a → a22t−1. It moves a10t−1 to a(22t−1)(10t−1) = a4t
2+16t+1. Again,

since 4t2 + 16t+ 1 = 4t(t+ 4) + 1 ≡ 1 (mod 24t) only for even t. �

Corollary 3.9. Let ZN be a cyclic action with signature (m1,m2,m3) and let A, A1,

A2, A3 be Maclachlan decomposition 2.4 of (m1,m2,m3). Then the action is rigid if and

only if one the following happen

(1) A ∈ {1, 2},
(2) A ∈ {3, 6}, and gcd(A1A2A3, 3) = 1
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(3) A ∈ {5, 9, 15}, and A1 = A2 = A3 = 1

(4) A = 3, A1 = A2 = 1, and A3 ≡ 0 (mod 3)

(5) A = 4, A1 = A2 = 1, and A3 ≡ 0 (mod 4)

(6) A = 6, A1 = A2 = 1, and A3 ≡ 0 (mod 6)

(7) A = 12, A1 = A2 = 1, A3 ≡ 0 (mod 4), and gcd(A3/4, 3) = 1.

In particular the signature (m1,m2,m3) is no rigid for A /∈ {1, 2, 3, 4, 5, 6, 12}. �

4. Examples, equations, problems and remarks

4.1. Rigid signature vs rigid order. Let X be a closed orientable surface of genus

g ≥ 2 which we left fixed. The notion of rigid cyclic action on X leads us to define the

concept of rigid order N for g and, similarly, the notion of weakly rigid action give rise

to the concept of rigid signature for g which next allow to define the concept of weakly

rigid order which means that all admissible signatures are rigid. In this subsection

we shall consider cyclic actions with the orbit genus zero and having three singular

orbits of the lengths m1,m2,m3, calling such actions triangular. Let N1, . . . , Nk be

all possible orders of all such actions on X. Now N = Ni can fail to be rigid order

for two reasons. The first is that there may exist few distinct admissible signatures

and, in principle, some of them may be rigid and the other not. The second, more

subtle reason for nonrigidity of N for genus g, is that although there may exists just

one admissible signature, this signature is not rigid. Mentioned results of Hirose mean

that the cyclic actions of orders 4g + 1, 4g, 3g + 3, 3g on closed orientable surfaces of

genus g, where g ≥ 12 and additionally in the last case g ̸≡ 2 (mod 3), are rigid. All of

these phenomena, which show that rigidity of cyclic actions is essentially coarser than

week rigidity indeed, are well illustrated in Tables 4 and 5; the rider will easily deduce

rigidity of signatures in the last column using definitions.

4.2. Cyclic actions with fixed-points free self-homeomorphisms. The signature

(m1,m2,m3) is said to be (g,N)-admissible if there exists a self-homeomorphism φ of

order N acting on a closed orientable surface X of genus g so that X/φ is the sphere

ramified over three points with ramification indices m1,m2,m3. An interesting case we

have for (g,N) = (11, 30) in Table 5 since these g,N are the smallest values for which

exists an action with fixed-point free acting self-homeomorphism.

There are much more cyclic action containing fixed point acting self-homeomorphisms

(the next to (g,N) = (11, 30) are rigid actions for (g,N) = (16, 42), (25, 60) with sig-

natures (21, 14, 6) and (20, 15, 12)). But particularly interesting is N = 210 which

allow such actions of ZN on surfaces of three consecutive genera g = 95, 96, 97. The

corresponding ramification data are (70, 42, 15), (70, 30, 21), (42, 35, 30) all of which are

rigid since A = 1 for all of them. In addition there are nor other (95, 210)-admissible

signatures and so 210 is the rigid order for g = 95. For g = 96, we have one more

(96, 210)-admissible signatures (210, 42, 15) which gives rigid action. In fact, let G be a
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cyclic group of order 210. Let us represent elements of G as 4-tuples that is elements

of the direct product G = ⟨a2⟩ × ⟨a3⟩ × ⟨a5⟩ × ⟨a7⟩, where ai has order i. Now for

a fixed element x of order 210, say x = (a2, a3, a5, a7) we have exactly one element

y of order 42 such that xy has order 15, namely y = (a2, a3, 1, a
−1
7 ). So we see that

N = 210 is the weakly rigid order for g = 96. Finally we have three more (97, 210)-

admissible signatures (210, 30, 21), (210, 70, 15), (210, 105, 14) whose Maclachlan decom-

position are respectively (3, 1, 7, 10), (5, 1, 3, 14), (7, 1, 2, 15). The first case defines rigid

action as for x = (a2, a3, a5, a7) again we have exactly one element y = (a2, a3, a
−1
5 , 1)

of order 30 such that xy has order 21. The last two cases are not rigid. In the case

(210, 70, 15) for x = (a2, a3, a5, a7) we have exactly three elements y of order 70 such

that xy has order 15, namely y = (a2, 1, a
k
5, a

−1
7 ), k = 1, 2, 3. In the case (210, 105, 14)

for x = (a2, a3, a5, a7) we have exactly five elements y of order 105 such that xy has

order 14, namely y = (1, a−1
3 , a−1

5 , ak7), k = 1, 2, 3, 4, 5. So for g = 97, N = 210 is

not weakly rigid order. So, all three phenomena: rigidity, weak rigidity and not weak

rigidity can occur for cyclic action allowing fixed point free self-homeomorphisms for

the same order on surfaces of three consecutive genera.

4.3. Infinite series of non-rigidity examples.

Example 1. Let p be an odd prime and let Zpn be an action on a surface X defined by

admissible triple (m1,m2,m3), and assume that (m1 ≥ m2 ≥ m3). Then m1 = m2 = pn

and m3 = pm for some m ≤ n.

Let us first assume m = n. Then

(a, a, a−2) and (a, a2, a−3)

are non-equivalent under the action of Z∗
pn o S3. These two triples correspond to the

algebraic curves

C1 := yp
n

= x(x− 1) and C2 := yp
n

= x(x− 1)2.

Now let m < n. Then for arbitrary q < p, (a, aqp
n−1, aqp

n
) is defining triple. These

triples for q = 1 and q satisfying congruence

(pn−m − 1)(qpn−m = 1) ̸≡ 1 (mod pn)

are not equivalent under the action of Z∗
pnoZ2. These triples correspond to the algebraic

curves

C1 := yp
n

= x(x− 1)qp
n−1

Example 2. Let p, q be distinct odd primes with p < q and let Zpq be an action on

a surface X defined by the admissible triple (m1,m2,m3). Then for (m1,m2,m3) =

(p, q, pq) the action is rigid while for (m1,m2,m3) = (pq, pq, pq) we have two generating

triples of elements from Zpq

(a, a, a−2) and (a, a2, a−3)
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Genus Order Signature Rigidity of order Rigidity of signature

2 10 (10, 5, 2) rigid

8 (8, 8, 2) rigid

6 (6, 6, 3) rigid

5 (5, 5, 5) rigid

3 14 (14, 7, 2) rigid

12 (12, 4, 3) weakly-rigid

(12, 12, 2)

9 (9, 9, 3) rigid

8 (8, 8, 4) rigid

7 (7, 7, 7) non-rigid

4 18 (18, 9, 2) rigid

16 (16, 16, 2) rigid

15 (15, 5, 3) rigid

12 (12, 6, 4) weakly-rigid

(12, 12, 3)

10 (10, 10, 5) non-rigid

9 (9, 9, 9) rigid

5 22 (22, 11, 2) rigid

20 (20, 20, 2) rigid

15 (15, 15, 3) rigid

12 (12, 12, 6) rigid

11 (11, 11, 11) non-rigid

6 26 (26, 13, 2) rigid

24 (24, 24, 2) rigid

21 (21, 7, 3) rigid

20 (20, 5, 4) rigid

18 (18, 18, 3) rigid

16 (16, 16, 4) rigid

15 (15, 15, 5) non-rigid

14 (14, 14, 7) non-rigid

13 (13, 13, 13) non-rigid

7 30 (30, 15, 2) rigid

28 (28, 28, 2) rigid

24 (24, 8, 3) rigid

21 (21, 21, 3) rigid

20 (20, 10, 4) rigid

18 (18, 9, 6) non-rigid

16 (16, 16, 8) non-rigid

15 (15, 15, 15) rigid

Table 4. Rigidity of triangular cyclic actions on surfaces of low genera
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Genus Order Signature Rigidity of order Rigidity of signature

8 34 (34, 17, 2) rigid

32 (32, 32, 2) rigid

24 (24, 24, 3) rigid

20 (20, 20, 5) non-rigid

18 (18, 18, 9) non-rigid

17 (17, 17, 17) non-rigid

9 38 (38, 19, 2) rigid

36 (36, 36, 2) rigid

30 (30, 10, 3) rigid

28 (28, 7, 4) rigid

27 (27, 27, 3) rigid

24 (24, 8, 6) non-rigid rigid

(24, 24, 4)

21 (21, 21, 7) non-rigid

20 (20, 20, 10) non-rigid

19 (19, 19, 19) non-rigid

10 42 (42, 21, 2) rigid

40 (40, 40, 2) rigid

33 (33, 11, 3) rigid

30 (30, 6, 5) weakly-rigid

(30, 30, 3)

28 (28, 14, 4) rigid

25 (25, 25, 5) non-rigid

24 (24, 24, 6) non-rigid rigid

(24, 12, 8)

22 (22, 22, 11) non-rigid

21 (21, 21, 21) non-rigid

11 46 (46, 23, 2) rigid

44 (44, 44, 2) rigid

33 (33, 33, 3) rigid

30 (15, 10, 6) rigid

24 (24, 24, 12) non-rigid

23 (23, 23, 23) non-rigid

Table 5. Rigidity of triangular cyclic actions on surfaces of low genera

which define non-equivalent actions for p ≥ 5. By direct calculus we obtain non-rigidity

for p = 3 except for q = 5 (q = 7). These two triples correspond to the algebraic curves

C1 := ypq = x(x− 1) and C2 := ypq = x(x− 1)2.
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4.4. Conformal rigidity of weakly rigid actions. Observe that for A = 1, 2 no non-

finitely maximal signature from Greenberg [3] and Singerman [13] lists is admissible.

This means that the corresponding cyclic group ZN of self-homeomorphisms of the

corresponding topological surface Xg can not be finitely extended. In particular this

means that there is just one conformal structure on X for which ZN is the full group

of conformal automorphisms. So the topological rigidity implies conformal rigidity. In

the case A = 1, explicit projective equations were obtained in [4].

4.5. Real forms. Observe that all our surfaces are also symmetric, due to the result of

Singerman [14], since the map a 7→ a−1, b 7→ b−1 induces an automorphism of any abelian

group generated by a, b and also the map a 7→ b−1, b 7→ a−1 induce an automorphism if

a and b have the same order. In our case our surfaces have two or one conjugacy classes

of symmetries according to N being even or odd respectively.

4.6. Open problems.

(1) The preceding subsections allow us to deduce that X, with the unique conformal

structure making ZN the full group of its conformal automorphisms, is a symmetric

Riemann surface, with one or two conjugacy classes of symmetries to which correspond

one or two real forms for its defining equations according to N being odd or even. We

do not consider the problem of finding these forms for equations given in [4] for A = 1,

since a sequel concerning the general case of arbitrary A is planned.

(2) Consider the numbers R(g) and WR(g) of all rigid and weakly rigid actions on

a closed orientable surface of genus g ≥ 2. This problem consist in finding a most

precise upper bounds for them and investigate asymptotic behaviour of the ratios

A(g)/R(g), A(g)/WR(g) and R(g)/A(g),WR(g)/A(g), where A(g) denotes the number

of all quasi-platonic actions.
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