# ACTIONS OF THE DERIVED GROUP OF A MAXIMAL UNIPOTENT SUBGROUP ON $G$-VARIETIES 

DMITRI I. PANYUSHEV

## INTRODUCTION

The ground field $\mathbb{k}$ is algebraically closed and of characteristic zero. Let $G$ be a semisimple simply-connected algebraic group over $\mathfrak{k}$ and $U$ a maximal unipotent subgroup of $G$. One of the fundamental invariant-theoretic facts, which goes back to Hadžiev [9], is that $\mathbb{k}[G / U]$ is a finitely generated $\mathbb{k}$-algebra and regarded as $G$-module it contains every finite-dimensional simple $G$-module exactly once. From this, one readily deduces that the algebra of $U$-invariants, $\mathbb{k}[G / U]^{U}$, is polynomial. More precisely, choose a maximal torus $T \subset \operatorname{Norm}_{G}(U)$. Let $r$ be the rank of $G, \varpi_{1}, \ldots, \varpi_{r}$ the fundamental weights of $T$ corresponding to $U$, and $\alpha_{1}, \ldots, \alpha_{r}$ the respective simple roots. Set $\mathfrak{X}_{+}=\sum_{i=1}^{r} \mathbb{N} \varpi_{i}$, and let $\mathrm{R}(\lambda)$ denote the simple $G$-module with highest weight $\lambda \in \mathfrak{X}_{+}$. Then

$$
\mathbb{k}[G / U] \simeq \bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathrm{R}(\lambda)
$$

Let $f_{i}$ be a non-zero element of one-dimensional space $\mathbb{R}\left(\varpi_{i}\right)^{U} \subset \mathbb{k}[G / U]^{U}$. Then $\mathbb{k}[G / U]^{U}$ is freely generated by $f_{1}, \ldots, f_{r}$.

For an affine $G$-variety $X$, the algebra of $U$-invariants, $\mathbb{k}[X]^{U}$, is multigraded (by $T$ weights). If $X=V$ is a $G$-module, then there is an integral formula for the corresponding Poincaré series [4, Theorem 1]. Using that formula, M. Brion discovered useful "symmetries" of the Poincaré series and applied them (in case $G$ is simple) to obtaining the classification of simple $G$-modules with polynomial algebras $\mathbb{k}[V]^{U}$ [4, Ch. III]. Afterwards, I proved that similar "symmetries" of Poincaré series occur for conical factorial $G$-varieties with only rational singularities [16], [17, Ch.5]. Since there is no integral formula for Poincaré series in general, another technique was employed. Namely, I used the transfer principle for $U$, "symmetries" of the Poincaré series of $\mathbb{k}[G / U]$, and results of F. Knop relating the canonical module of an algebra and a subalgebra of invariants [13].

Our objective is to extend these results to the derived group $U^{\prime}=(U, U)$. In Section 1, we prove that $\mathrm{R}(\lambda)^{U^{\prime}}$ is a cyclic $U / U^{\prime}$-module for any $\lambda \in \mathfrak{X}_{+}$and $\operatorname{dim} \mathrm{R}(\lambda)^{U^{\prime}}=$ $\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)$, where $\alpha_{i}^{\vee}=2 \alpha_{i} /\left(\alpha_{i}, \alpha_{i}\right)$, see Theorem 1.6. From these properties, we deduce that $\mathbb{k}[G / U]^{U^{\prime}}$ is a polynomial algebra of Krull dimension $2 r$. More precisely, we have $\operatorname{dim} \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}=2$ for each $i$, and if $\left(f_{i}, \tilde{f}_{i}\right)$ is a basis in $\mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$, then $\left\{f_{i}, \tilde{f}_{i} \mid i=1, \ldots, r\right\}$
freely generate $\mathbb{k}[G / U]^{U^{\prime}}$ (see Theorem 1.8). This fact seems to have remained unnoticed before. As a by-product, we show that the subgroup $T U^{\prime} \subset G$ is epimorphic (i.e., $\mathbb{k}[G]^{T U^{\prime}}=\mathbb{k}$ ) if and only if $G \neq S L_{2}, S L_{3}$.

Section 2 is devoted to general properties of $U^{\prime}$-actions on affine $G$-varieties. We show that $\mathbb{k}\left[G / U^{\prime}\right]$ is generated by fundamental $G$-modules sitting in it, and using this fact we explicitly construct an equivariant affine embedding of $G / U^{\prime}$ with the boundary of codimension $\geqslant 2$ (Theorem 2.2). Since $\mathbb{k}\left[G / U^{\prime}\right]$ is finitely generated, $\mathbb{k}[X]^{U^{\prime}}$ is finitely generated for any affine $G$-variety $X$ [8]. Furthermore, $\operatorname{Spec}\left(\mathbb{k}[X]^{U^{\prime}}\right)$ inherits some other good properties of $X$ (factoriality, rationality of singularities) (Theorem 2.3). We also give an algorithm for constructing a finite generating system of $\mathbb{k}[X]^{U^{\prime}}$, if generators of $\mathbb{k}[X]^{U}$ are already known (Theorem 2.4). This appears to be very helpful in classifying simple $G$-modules with polynomial algebras of $U^{\prime}$-invariants (for $G$ simple).

In Section 3, we study the Poincaré series of multigraded algebras $\mathbb{k}[X]^{U^{\prime}}$, where $X$ is factorial affine $G$-variety with only rational singularities (e.g. $X$ can be a $G$-module). Assuming that $G \neq S L_{2}, S L_{3}$, we obtain analogues of our results for Poincaré series of $\mathbb{k}[X]^{U}$. One of the practical outcomes concerns the case in which $V$ is a $G$-module and $\mathbb{k}[V]^{U^{\prime}}$ is polynomial. If $d_{1}, \ldots, d_{m}$ (resp. $\mu_{1}, \ldots, \mu_{m}$ ) are the degrees (resp. $T$-weights) of basic $U^{\prime}$-invariants, then $\sum_{i} d_{i} \leqslant \operatorname{dim} V$ and $\sum_{i} \mu_{i} \leqslant 2 \rho-\sum_{j=1}^{r} \alpha_{j}$, where $\rho=\sum_{j=1}^{r} \varpi_{j}$. The second inequality requires some explanations, though. Unlike the case of $U$-invariants, there is no natural free monoid containing the $T$-weights of all $U^{\prime}$-invariants. But for $G \neq S L_{2}, S L_{3}$, these $T$-weights generate a convex cone. Therefore, such a free monoid does exist, and the above inequality for $\sum_{i} \mu_{i}$ is understood as componentwise inequality with respect to any such monoid and its basis. Moreover, $\sum_{i} d_{i}=\operatorname{dim} V$ if and only if $\sum_{i} \mu_{i}=2 \rho-\sum_{j=1}^{r} \alpha_{j}$. Again, these relations are to be useful for our classification of polynomial algebras $\mathbb{k}[V]^{U^{\prime}}$, which is obtained in Section 5 . Note that $2 \rho-\sum_{j=1}^{r} \alpha_{j}$ is the sum of all positive non-simple roots, i.e., the roots of $U^{\prime}$.

Section 4 is a kind of combinatorial digression. Let $\mathcal{C}$ be the cone generated by all $T$ weights occurring in $\mathbb{k}[G / U]^{U^{\prime}}$. Our description of generators shows that $\mathcal{C}$ is actually generated by $\varpi_{i}, \varpi_{i}-\alpha_{i}(i=1, \ldots, r)$. We prove that the dual cone of $\mathcal{C}$ is generated by the non-simple positive roots (Theorem 4.2). We also obtain a partition of $\mathcal{C}$ in simplicial cones, which is parametrised by the disjoint subsets on the Dynkin diagram of $G$.

My motivation to consider $U^{\prime}$-invariants arose from attempts to understand the structure of centralisers of certain nilpotent elements in simple Lie algebras. For applications to centralisers one needs Theorem 1.6 in case of $S L_{3}$, and this was the result initially proved. This application will be the subject of a subsequent article.

Notation. If an algebraic group $Q$ acts on an irreducible affine variety $X$, then

- $Q_{x}=\{q \in Q \mid q \cdot x=x\}$ is the stabiliser of $x \in X$;
- $\mathbb{k}[X]^{Q}$ is the algebra of $Q$-invariant polynomial functions on $X$. If $\mathbb{k}[X]^{Q}$ is finitely generated, then $X / / Q:=\operatorname{Spec}\left(\mathbb{k}[X]^{Q}\right)$, and the quotient morphism $\pi_{X, Q}: X \rightarrow X / / Q$ is the mapping associated with the embedding $\mathbb{k}[X]^{Q} \hookrightarrow \mathbb{k}[X]$.
- $\mathbb{k}(X)^{Q}$ is the field of $Q$-invariant rational functions;

Throughout, $G$ is a semisimple simply-connected algebraic group and $r=\mathrm{rk} G$.
$-\Delta$ is the root system of $(G, T), \Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ are the simple roots corresponding to $U$, and $\varpi_{1}, \ldots, \varpi_{r}$ are the corresponding fundamental weights.

- The character group of $T$ is denoted by $\mathfrak{X}$. All roots and weights are regarded as elements of the $r$-dimensional vector space $\mathfrak{X} \otimes \mathbb{Q}=: \mathfrak{X}_{\mathbb{Q}}$. For any $\lambda \in \mathfrak{X}_{+}, \lambda^{*}$ is the highest weight of the dual $G$-module. The $\mu$-weight space of $\mathrm{R}(\lambda)$ is denoted by $\mathrm{R}(\lambda)_{\mu}$.

Acknowledgements. This work was done during my stay at the Max-Planck-Institut für Mathematik (Bonn). I am grateful to this institution for the warm hospitality and support.

## 1. The algebra of $U^{\prime}$-Invariants on $G / U$

For any $\lambda \in \mathfrak{X}_{+}$, we wish to study the subspace $\mathrm{R}(\lambda)^{U^{\prime}}$. First of all, we notice that $B \subset$ $\operatorname{Norm}_{G}\left(U^{\prime}\right)$ (actually, they are equal if $G$ has no simple factors $S L_{2}$ ) and therefore $\mathrm{R}(\lambda)^{U^{\prime}}$ is a $B / U^{\prime}$-module. In particular, $T$ normalises $U^{\prime}$ and hence $\mathrm{R}(\lambda)^{U^{\prime}}$ is a direct sum of its own weight spaces. Let $\mathcal{P}(\lambda)$ be the set of weights of $R(\lambda)$. It is a poset with respect to the root order. This means that $\mu$ covers $\nu$ if $\mu-\nu \in \Pi$. Then $\lambda$ is the unique maximal element of $\mathcal{P}(\lambda)$. Let $e_{i} \in \mathfrak{g}=$ Lie $(G)$ be a root vector corresponding to $\alpha_{i} \in \Pi$.

Given a nonzero $x \in \mathrm{R}(\lambda)^{U^{\prime}}$, consider

$$
M_{x}=\left\{\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r} \mid e_{1}^{n_{1}} \ldots e_{r}^{n_{r}}(x) \neq 0\right\}
$$

We also write $\boldsymbol{n}=\left(n_{1}, \ldots, n_{r}\right)$ and $\boldsymbol{e}^{\boldsymbol{n}}=e_{1}^{n_{1}} \ldots e_{r}^{n_{r}}$. Notice that $\boldsymbol{e}^{\boldsymbol{n}}(x)$ does not depend on the ordering of $e_{i}^{\prime}$ s since $\left[e_{i}, e_{j}\right] \in \operatorname{Lie}\left(U^{\prime}\right)$ for all $i, j$ and $\mathrm{R}(\lambda)^{U^{\prime}}$ is an $U / U^{\prime}$-module. We regard $M_{x}$ as poset with respect to the componentwise inequalities, i.e., $\boldsymbol{n} \succcurlyeq \boldsymbol{n}^{\prime}$ if and only if $n_{i} \geqslant n_{i}^{\prime}$ for all $i$. Clearly, $M_{x}$ is finite and $(0, \ldots, 0)$ is the unique minimal element of it.

Lemma 1.1. Let $x \in \mathrm{R}(\lambda)^{U^{\prime}}$ be a weight vector. The poset $M_{x}$ contains a unique maximal element, say $\boldsymbol{m}=\left(m_{1}, \ldots, m_{r}\right)$. Furthermore, $\boldsymbol{e}^{\boldsymbol{m}}(x)$ is a highest vector of $\mathrm{R}(\lambda)$.

Proof. If $\boldsymbol{n} \in M_{x}$ is maximal, then $e_{i}\left(\boldsymbol{e}^{\boldsymbol{n}}(x)\right)=0$ for each $i$. Hence $\boldsymbol{e}^{\boldsymbol{n}}(x)$ is a highest vector of $R(\lambda)$. Next,

$$
\text { the weight of } \boldsymbol{e}^{\boldsymbol{n}}(x)=(\text { the weight of } x)+\sum_{i=1}^{r} n_{i} \alpha_{i} .
$$

Hence all nonzero vectors of the form $e^{n}(x)$ are linearly independent. This yields the uniqueness of a maximal element.

Corollary 1.2. $M_{x}$ is a multi-dimensional array, i.e., $M_{x}=\left\{\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leqslant n_{i} \leqslant m_{i} \forall i\right\}$.
Let $I_{\lambda}$ denote the set of $T$-weights in $\mathrm{R}(\lambda)^{U^{\prime}}$. It is a subset of $\mathcal{P}(\lambda)$.
Proposition 1.3. For any $\lambda \in \mathfrak{X}_{+}, \mathrm{R}(\lambda)^{U^{\prime}}$ is a multiplicity free $T$-module. More precisely,

$$
\mathrm{R}(\lambda)^{U^{\prime}}=\bigoplus_{\mu \in I_{\lambda}} \mathrm{R}(\lambda)_{\mu}^{U^{\prime}}
$$

where $\operatorname{dim} \mathrm{R}(\lambda)_{\mu}^{U^{\prime}}=1$ for each $\mu$ and $I_{\lambda} \subset\left\{\lambda-\sum_{i} a_{i} \alpha_{i} \mid 0 \leqslant a_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)\right\}$.
Proof. If $x \in \mathrm{R}(\lambda)_{\mu}^{U^{\prime}}$ and $\left(m_{1}, \ldots, m_{r}\right)$ is the maximal element of $M_{x}$, then $\mu+\sum_{i} m_{i} \alpha_{i}=\lambda$ and $\mu+\sum_{i} n_{i} \alpha_{i} \in \mathcal{P}(\lambda)$ for any $\left(n_{1}, \ldots, n_{r}\right) \in M_{x}$. In particular, $\lambda-m_{i} \alpha_{i} \in \mathcal{P}(\lambda)$. Whence $m_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)$ and $I_{\lambda} \subset\left\{\lambda-\sum_{i} a_{i} \alpha_{i} \mid 0 \leqslant a_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)\right\}$.

Assume that $x, y \in \mathrm{R}(\lambda)_{\mu}^{U^{\prime}}$ are linearly independent. It follows from Lemma 1.1 that $M_{x}=M_{y}$. Since $\boldsymbol{e}^{\boldsymbol{m}}(x), \boldsymbol{e}^{\boldsymbol{m}}(y) \in \mathrm{R}(\lambda)_{\lambda}$, we have $\boldsymbol{e}^{\boldsymbol{m}}(x-c y)=0$ for some $c \in \mathbb{k}^{\times}$. This means that $M_{x-c y} \neq M_{x}$, a contradiction! Thus, each $\mathrm{R}(\lambda)_{\mu}^{U^{\prime}}$ is one-dimensional.

Lemma 1.4. $I_{\lambda}$ is a connected subset in the Hasse diagram of $\mathcal{P}(\lambda)$ that contains $\lambda$.
Proof. Indeed, suppose $0 \neq v \in \mathrm{R}(\lambda)_{\mu}^{U^{\prime}}$. If $e_{\alpha_{i}} \cdot v=0$ for all $i$, then $v$ is a $U$-invariant and hence $\mu=\lambda$. Otherwise, we have $e_{\alpha_{i}} \cdot v \neq 0$ for some $i$ and therefore $\mu+\alpha_{i}$ is also a weight of $\mathrm{R}(\lambda)^{U^{\prime}}$. Then we argue by induction.

Proposition 1.5. For any fundamental weight $\varpi_{i}$, we have $\mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}=\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}} \oplus \mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}$. In particular, $I_{\varpi_{i}}=\left\{\varpi_{i}, \varpi_{i}-\alpha_{i}\right\}$ and $\operatorname{dim} \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}=2$.

Proof. Note that $\varpi_{i}-\alpha_{i} \in \mathcal{P}\left(\varpi_{i}\right)$ and $\operatorname{dim} \mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}=1$, while $\varpi_{i}-2 \alpha_{i} \notin \mathcal{P}\left(\varpi_{i}\right)$. We obviously have $\mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}} \supset \mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}} \oplus \mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}$. Any weight of $\mathrm{R}\left(\varpi_{i}\right)$ covered by $\varpi_{i}-$ $\alpha_{i}$ is of the form $\varpi_{i}-\alpha_{i}-\alpha_{j}$, where $\alpha_{j}$ is a simple root adjacent to $\alpha_{i}$ in the Dynkin diagram of $G$. Since $\varpi_{i}-\alpha_{j} \notin \mathcal{P}\left(\varpi_{i}\right)$, Kostant's weight multiplicity formula shows that $\operatorname{dim} \mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}-\alpha_{j}}=1$. Since $\alpha_{i}+\alpha_{j}$ is a root of $U^{\prime}$, we have $\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}-\alpha_{j}} \not \subset \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$ and it follows from Lemma 1.4 that there cannot be anything else in $\mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$.

Set $\tilde{X}=\operatorname{Spec}\left(\mathbb{k}[G]^{U}\right)$. It is an affine $G$-variety containing $G / U$ as a dense open subset. Recall that $\tilde{X}$ has the following explicit model, see [25]. Let $v_{-\omega_{i}}$ be a lowest weight vector in $\mathrm{R}\left(\varpi_{i}\right)^{*}$. Then the stabiliser of $\left(v_{-\varpi_{1}}, \ldots, v_{-\varpi_{r}}\right) \in \mathrm{R}\left(\varpi_{1}\right)^{*} \oplus \ldots \oplus \mathrm{R}\left(\varpi_{r}\right)^{*}$ is the maximal unipotent subgroup that is opposite to $U$ and

$$
\tilde{X} \simeq \overline{G \cdot\left(v_{-\varpi_{1}}, \ldots, v_{-\varpi_{r}}\right)} \subset \mathrm{R}\left(\varpi_{1}\right)^{*} \oplus \ldots \oplus \mathrm{R}\left(\varpi_{r}\right)^{*} .
$$

Let $p_{i}: \tilde{X} \rightarrow \mathrm{R}\left(\varpi_{i}\right)^{*}$ be the projection to the $i$-th component. Then the pull-back of the linear functions on $\mathrm{R}\left(\varpi_{i}\right)^{*}$ yields the unique copy of the $G$-module $\mathrm{R}\left(\varpi_{i}\right)$ in $\mathbb{k}[\tilde{X}]$. The additive decomposition $\mathbb{k}[\tilde{X}]=\bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathrm{R}(\lambda)$ is a polygrading; i.e., if $f_{i} \in \mathbb{R}\left(\lambda_{i}\right) \subset \mathbb{k}[\tilde{X}]$, $i=1,2$, then $f_{1} f_{2} \in \mathrm{R}\left(\lambda_{1}+\lambda_{2}\right)$.

Definition 1. Let $Q$ be an algebraic group with Lie algebra $\mathfrak{q}$. A $Q$-module $V$ is said to be cyclic if there is $v \in V$ such that $\mathcal{U}(\mathfrak{q}) \cdot v=V$, where $\mathcal{U}(\mathfrak{q})$ is the enveloping algebra of $\mathfrak{q}$. Such $v$ is called a cyclic vector.

Theorem 1.6. For any $\lambda \in \mathfrak{X}_{+}$, we have
(i) $I_{\lambda}=\left\{\lambda-\sum_{i=1}^{r} a_{i} \alpha_{i} \mid 0 \leqslant a_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)\right\}$;
(ii) $\mathrm{R}(\lambda)^{U^{\prime}}$ is a cyclic $U / U^{\prime}$-module of dimension $\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)$. Up to a scalar multiple, there is a unique cyclic vector that is a $T$-eigenvector.

Proof. In view of Lemma 1.1 and Proposition 1.3, it suffices to prove that $\mathrm{R}(\lambda)^{U^{\prime}}$ contains a vector of weight $\lambda-\sum_{i=1}^{r}\left(\lambda, \alpha_{i}^{\vee}\right) \alpha_{i}$. This vector have to be cyclic, because applying the $e_{i}$ 's to it we obtain weight vectors with all weights from $\left\{\lambda-\sum_{i=1}^{r} a_{i} \alpha_{i} \mid 0 \leqslant a_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)\right\}$, hence the whole of $\mathrm{R}(\lambda)^{U^{\prime}}$.

Let $\tilde{f}_{i}$ be a nonzero vector in one-dimensional space $\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}$. Using the unique copy of $\mathrm{R}\left(\varpi_{i}\right)$ inside $\mathbb{k}[\tilde{X}]$, we regard $\tilde{f}_{i}$ as $U^{\prime}$-invariant polynomial function on $\tilde{X}$. Take the product (monomial) $F:=\prod_{i=1}^{r} \tilde{f}_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)} \in \mathbb{k}[\tilde{X}]$. Since $\mathbb{k}[\tilde{X}]$ is a domain, $F \neq 0$. The multiplicative structure of $\mathbb{k}[\tilde{X}]$ shows that $F \in \mathbb{R}(\lambda)^{U^{\prime}}$ and the weight of $F$ equals $\sum_{i=1}^{r}\left(\lambda, \alpha_{i}^{\vee}\right)\left(\varpi_{i}-\alpha_{i}\right)=\lambda-\sum_{i=1}^{r}\left(\lambda, \alpha_{i}^{\vee}\right) \alpha_{i}$.

Remark 1.7. For the group $T U^{\prime} \subset B$, we have $\operatorname{dim} T U^{\prime}=\operatorname{dim} U$. It is well known that $T U^{\prime}$ is a spherical subgroup of $G$ (e.g. apply [5, Prop.1.1]). The sphericity also follows from the fact $\mathrm{R}(\lambda)^{U^{\prime}}$ is a multiplicity free $T$-module (Proposition 1.3). That $\mathrm{R}(\lambda)^{U^{\prime}}$ is a multiplicity free $T$-module follows also from [10, Corollary 8]. However, we obtain the explicit description of the corresponding weights and the $U / U^{\prime}$-module structure of $\mathrm{R}(\lambda)^{U^{\prime}}$.

Theorem 1.8. Let $f_{i}$ (resp. $\tilde{f}_{i}$ ) be a nonzero vector in one-dimensional space $\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}}$ (resp. $\left.\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}\right)$. Then the algebra of $U^{\prime}$-invariants, $\mathbb{k}[G / U]^{U^{\prime}}$, is freely generated by $f_{1}, \tilde{f}_{1}, \ldots, f_{r}, \tilde{f}_{r}$.

Proof. It follows from (the proof of) Theorem 1.6 that the monomials $\prod_{i=1}^{r} f_{i}^{c_{i}} \tilde{f}_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)-c_{i}}$, $0 \leqslant c_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)$, form a basis for $\operatorname{dim} \mathbb{R}(\lambda)^{U^{\prime}}$ for each $\lambda \in \mathfrak{X}_{+}$. Hence $\mathbb{k}[G / U]^{U^{\prime}}$ is generated by $f_{1}, \tilde{f}_{1}, \ldots, f_{r}, \tilde{f}_{r}$. Since $U^{\prime}$ is unipotent and $\operatorname{dim}(G / U)-\operatorname{dim} U^{\prime}=2 r$, the Krull dimension of $\mathbb{k}[G / U]^{U^{\prime}}$ is at least $2 r$. Hence there is no relations between the above generators.

Recall that a closed subgroup $H \subset G$ is said to be epimorphic if $\mathbb{k}[G / H]=\mathbb{k}$ or, equivalently, $\mathrm{R}(\lambda)^{H}=\{0\}$ unless $\lambda=0$, see e.g. [8, $\left.\S 23 \mathrm{~B}\right]$.

Proposition 1.9. Suppose $G$ is simple. The subgroup $T U^{\prime}$ is epimorphic if and only if $G \neq S L_{2}$ or $S L_{3}$.

Proof. The case of $S L_{2}$ is obvious, so we assume that $r \geqslant 2$. In view of Theorem 1.8, we have to check that neither of the monomials $\prod_{i=1}^{r}\left(f_{i}^{c_{i}} \tilde{f}_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)-c_{i}}\right), 0 \leqslant c_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)$, has zero weight if $G \neq S L_{3}$. The weight in question equals

$$
\mu:=\sum_{i=1}^{r}\left(\lambda, \alpha_{i}^{\vee}\right) \varpi_{i}-\sum_{i=1}^{r} c_{i} \alpha_{i} .
$$

Set $\rho^{\vee}=\frac{1}{2} \sum_{\gamma \in \Delta^{+}} \gamma^{\vee}$. Then $\left(\mu, \rho^{\vee}\right)=\sum_{i=1}^{r}\left(\lambda, \alpha_{i}^{\vee}\right)\left(\varpi_{i}, \rho^{\vee}\right)-\sum_{i=1}^{r} c_{i}$. Notice that

$$
2\left(\varpi_{i}, \rho^{\vee}\right)=\sum_{\gamma \in \Delta^{+}}\left(\varpi_{i}, \gamma^{\vee}\right) \geqslant \#\left\{\gamma \in \Delta^{+} \mid\left(\gamma, \varpi_{i}\right)>0\right\} .
$$

That is, $2\left(\varpi_{i}, \rho^{\vee}\right)$ is at least the dimension of the nilpotent radical of the maximal parabolic subalgebra corresponding to $\varpi_{i}$. This readily implies that $\left(\varpi_{i}, \rho^{\vee}\right)>1$ for all $i$ whenever $\mathfrak{g} \neq \mathfrak{s l}_{3}$. Whence $\left(\mu, \rho^{\vee}\right)$ is positive.

For $S L_{3}$, the monomial $\left(\tilde{f}_{1} \tilde{f}_{2}\right)^{a}$ has zero weight. That is, $\mathrm{R}\left(a\left(\varpi_{1}+\varpi_{2}\right)\right)^{T U^{\prime}} \neq\{0\}$.
Remark 1.10. If $G=S L_{3}$, then $T U^{\prime}$ is a Borel subgroup of a reductive subgroup $G L_{2} \subset S L_{3}$. Proposition 1.9 can also be deduced from a result of Pommerening [18, Korollar 3.6].

Example 1.11. Let $U_{n}$ be a maximal unipotent subgroup of $G=S L_{n}$ and let $U_{n-1}$ be a maximal unipotent subgroup of a standardly embedded group $S L_{n-1} \subset S L_{n}$. It is well known that $\mathbb{k}\left[S L_{n} / U_{n}\right]^{U_{n-1}}$ is a polynomial algebra of Krull dimension $2(n-1)$ and its generators have a simple description, see e.g. [1, Sect.3]. The reason is that $S L_{n} / U_{n}$ is a spherical $S L_{n-1}$-variety and the branching rule $S L_{n} \downarrow S L_{n-1}$ is rather simple. That is, $\mathbb{k}\left[S L_{n} / U_{n}\right]^{U_{n-1}}$ and $\mathbb{k}\left[S L_{n} / U_{n}\right]^{U_{n}^{\prime}}$ are polynomial rings of the same dimension, and also $\operatorname{dim} U_{n-1}=\operatorname{dim} U_{n}^{\prime}$. However, the subgroups $U_{n}^{\prime}, U_{n-1} \subset S L_{n}$ are essentially different unless $n=2$, 3 .

## 2. SOME PROPERTIES OF ALGEBRAS OF $U^{\prime}$-INVARIANTS

The main result of Section 1 says that $\mathbb{k}[G / U]^{U^{\prime}}$ is a polynomial algebra of Krull dimension $2 r$. This can also be understood in the other way around, since $\mathbb{k}[G / U]^{U^{\prime}}$ and $\mathbb{k}\left[G / U^{\prime}\right]^{U}$ are canonically isomorphic. Indeed, for any closed subgroup $H \subset G$, we regard $\mathbb{k}[G / H]$ as subalgebra of $\mathbb{k}[G]$ :

$$
\mathbb{k}[G / H]=\{f \in \mathbb{k}[G] \mid f(g h)=f(g) \text { for any } g \in G, h \in H\}
$$

Any subgroup of $G$ acts on $G / H$ by left translations. Therefore

$$
\begin{aligned}
& \mathbb{k}[G / U]^{U^{\prime}} \simeq\left\{f \in \mathbb{k}[G] \mid f\left(u_{1} g u_{2}\right)=f(g) \text { for any } g \in G, u_{1} \in U^{\prime}, u_{2} \in U\right\}, \\
& \mathbb{k}\left[G / U^{\prime}\right]^{U} \simeq\left\{f \in \mathbb{k}[G] \mid f\left(u_{2} g u_{1}\right)=f(g) \text { for any } g \in G, u_{1} \in U^{\prime}, u_{2} \in U\right\}
\end{aligned}
$$

The involutory mapping $(f \in \mathbb{k}[G]) \mapsto \hat{f}$, where $\hat{f}(g)=f\left(g^{-1}\right)$, takes $\mathbb{k}[G / U]^{U^{\prime}}$ to $\mathbb{k}\left[G / U^{\prime}\right]^{U}$, and vice versa.

One can deduce some properties of $\mathbb{k}\left[G / U^{\prime}\right]$ using the known structure of $\mathbb{k}\left[G / U^{\prime}\right]^{U}$. Set $\mathcal{A}=\mathbb{k}\left[G / U^{\prime}\right]$. It is a rational $G$-algebra, which can be decomposed as $G$-module:

$$
\mathcal{A}=\bigoplus_{\lambda \in \mathfrak{X}_{+}} m_{\lambda, \mathcal{A}} \mathrm{R}(\lambda)
$$

By Frobenius reciprocity, the multiplicity $m_{\lambda, \mathcal{A}}$ is equal to $\operatorname{dim} R\left(\lambda^{*}\right)^{U^{\prime}}$. Therefore, it is finite. In our situation,

$$
\operatorname{dim} \mathrm{R}\left(\lambda^{*}\right)^{U^{\prime}}=\operatorname{dim} \mathrm{R}(\lambda)^{U^{\prime}}=\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)
$$

In particular, $m_{\varpi_{i}, \mathcal{A}}=2$ for any $i$. One can also argue as follows.
The group $G \times G$ acts on $G$ by left and right translations and the decomposition of $\mathbb{k}[G]$ as $G \times G$-module is of the form:

$$
\mathbb{k}[G]=\bigoplus_{\lambda \in \mathcal{X}_{+}} \mathrm{R}\left(\lambda^{*}\right) \otimes \mathrm{R}(\lambda),
$$

where the first (resp. second) copy of $G$ in $G \times G$ acts on the first (resp. second) factor of tensor product in each summand [14, Ch. 2, $\S 3$, Theorem 3]. Then

$$
\begin{gather*}
\mathcal{A}=\mathbb{k}\left[G / U^{\prime}\right]=\bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathrm{R}\left(\lambda^{*}\right) \otimes \mathrm{R}(\lambda)^{U^{\prime}}, \\
\mathcal{A}^{U}=\bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathrm{R}\left(\lambda^{*}\right)^{U} \otimes \mathrm{R}(\lambda)^{U^{\prime}} .
\end{gather*}
$$

In this context, Theorem 1.8 asserts that any basis of the $2 r$-dimensional vector space $\bigoplus_{i=1}^{r} \mathrm{R}\left(\varpi_{i}^{*}\right)^{U} \otimes \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$ freely generates the polynomial algebra $\mathcal{A}^{U}$. It is known that $\mathbb{k}\left[G / U^{\prime}\right]$ is finitely generated (see [7, Theorem 7]). Below, we obtain a more precise assertion.

Lemma 2.1. $\mathcal{A}$ is generated by the copies of fundamental $G$-modules, i.e., by the subspace $\bigoplus_{i=1}^{r} \mathrm{R}\left(\varpi_{i}^{*}\right) \otimes \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$.

Proof. We know that $\mathcal{A}^{U}=\mathbb{k}\left[G / U^{\prime}\right]^{U}$ is a polynomial algebra, generated by $2 r$ functions. Using Equations (2•1) and (2•2), one sees that the generators of $\mathcal{A}^{U}$ are just the highest vectors of all fundamental $G$-module sitting in $\mathcal{A}$. It follows that the subalgebra of $\mathcal{A}$ generated by all fundamental $G$-modules is $G$-stable and contains the highest vectors of all simple $G$-modules inside $\mathcal{A}$. Hence it is equal to $\mathcal{A}$.

For a quasi-affine $G / H$, it is known that $\mathbb{k}[G / H]$ is finitely generated if and only if there is a $G$-equivariant embedding $i: G / H \rightarrow V$, where $V$ is a finite-dimensional $G$-module, such that the boundary of $i(G / H)$ is of codimension $\geqslant 2[8, \S 4]$. As $U^{\prime}$ is unipotent, $G / U^{\prime}$ is quasi-affine. Hence such an embedding of $G / U^{\prime}$ exists and, making use of Lemma 2.1, we explicitly construct it.

Recall that $f_{i}$ and $\tilde{f}_{i}$ are nonzero weight vectors in $\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}}$ and $\mathrm{R}\left(\varpi_{i}\right)_{\varpi_{i}-\alpha_{i}}$, respectively.
Theorem 2.2. Let $p=\left(f_{1}, \tilde{f}_{1}, \ldots, f_{r}, \tilde{f}_{r}\right) \in 2 \mathrm{R}\left(\varpi_{1}\right) \oplus \ldots \oplus 2 \mathrm{R}\left(\varpi_{r}\right)$. Then
(i) $G_{p}=U^{\prime}$;
(ii) $\mathbb{k}[\overline{G \cdot p}]=\mathbb{k}\left[G / U^{\prime}\right]$ and $\overline{G \cdot p} \simeq \operatorname{Spec}(\mathcal{A})$ is normal;
(iii) $\operatorname{codim}(\overline{G \cdot p} \backslash G \cdot p) \geqslant 2$.

Proof. Part (i) is obvious. Then $G \cdot p \simeq G / U^{\prime}$ and hence $\mathcal{B}:=\mathbb{k}[\overline{G \cdot p}]$ is a subalgebra of $\mathcal{A}$. By the very construction, $m_{\varpi_{i}, \mathcal{B}} \geqslant 2$. (Consider different non-trivial projections $\overline{G \cdot p} \rightarrow \mathrm{R}\left(\varpi_{i}\right)$ for all $i$.) Since $m_{\varpi_{i}, \mathcal{B}} \leqslant m_{\varpi_{\varpi_{i}}, \mathcal{A}}=2$ and $\mathcal{A}$ is generated by the fundamental $G$-modules, we must have $\mathcal{B}=\mathcal{A}$. This yields the rest.

Let $X$ be an algebraic variety equipped with a regular action of $G$. Then $X$ is said to be a $G$-variety. The "transfer principle" ([3, Ch. 1], [20, §3], [8, § 9]) asserts that

$$
\mathfrak{k}[X]^{H} \simeq(\mathbb{k}[X] \otimes \mathbb{k}[G / H])^{G}
$$

for any affine $G$-variety $X$ and any subgroup $H \subset G$. In particular, if $\mathbb{k}[G / H]$ is finitely generated, then so is $\mathbb{k}[X]^{H}$. In view of Lemma 2.1, this applies to $H=U^{\prime}$, hence $\mathbb{k}[X]^{U^{\prime}}$ is always finitely-generated. Moreover, the polynomiality of $\mathbb{k}\left[G / U^{\prime}\right]^{U}$ implies that $\mathbb{k}[X]^{U^{\prime}}$ inherits a number of other good properties from $\mathbb{k}[X]$. Recall that $\operatorname{Spec}\left(\mathbb{k}[X]^{U^{\prime}}\right)$ is denoted by $X / / U^{\prime}$; hence $\mathbb{k}\left[X / / U^{\prime}\right]$ and $\mathbb{k}[X]^{U^{\prime}}$ are the same objects.

We often use below the notion of a variety with rational singularities. Let us provide some relevant information for the affine case.
a) If $\phi: \tilde{X} \rightarrow X$ is a resolution of singularities, then $X$ is said to have rational singularities if $H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)=\mathbb{k}[X]$ and $H^{i}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)=0$ for $i \geqslant 1$. In particular, $X$ is necessarily normal.
b) If $X$ has only rational singularities and $G$ is a reductive group acting on $X$, then $X / / G$ has only rational singularities (Boutot [2]).
c) If $X$ has only rational singularities, then $X$ is Cohen-Macaulay (Kempf [12]). It follows that if $X$ is factorial and has rational singularities, then $X$ is Gorenstein.

Theorem 2.3. Let $X$ be an irreducible affine $G$-variety. If $X$ has only rational singularities, then so has $X / / U^{\prime}$. Furthermore, if $X$ is factorial, then $X / / U^{\prime}$ is factorial, too.

Proof. This is a straightforward consequence of known technique. Since $\mathbb{k}\left[G / U^{\prime}\right]^{U}$ is a polynomial algebra, $G / / U^{\prime}$ has rational singularities by Kraft's theorem [3, Theorem 1.6], [20]. By the transfer principle for $H=U^{\prime}$, we have $X / / U^{\prime} \simeq\left(X \times\left(G / / U^{\prime}\right)\right) / / G$. Applying Boutot's theorem [2] to the right-hand side, we conclude that $X / / U^{\prime}$ has rational singularities. The second assertion stems from the fact that $U^{\prime}$ has no non-trivial rational characters.

We have $\mathbb{k}[X]^{U} \subset \mathbb{k}[X]^{U^{\prime}}$, and both algebras are finitely generated. Assuming that generators of $\mathbb{k}[X]^{U}$ are known, we obtain a finite set of generators for $\mathbb{k}[X]^{U^{\prime}}$, as follows.

Theorem 2.4. Suppose that $f_{1}, \ldots, f_{m}$ is a set of T-homogeneous generators of $\mathbb{k}[X]^{U}$ and the weight of $f_{i}$ is $\lambda_{i}$. (That is, there is a G-submodule $\mathbb{V}_{i} \subset \mathbb{k}[X]$ such that $\mathbb{V}_{i} \simeq \mathbb{R}\left(\lambda_{i}\right)$ and $f \in$ $\left(\mathbb{V}_{i}\right)^{U}$.) Then the union of bases of the spaces $\left(\mathbb{V}_{i}\right)^{U^{\prime}}, i=1, \ldots, m$, generate $\mathbb{k}[X]^{U^{\prime}}$. In particular, $\mathbb{k}[X]^{U^{\prime}}$ is generated by at most $\sum_{i=1}^{m} \prod_{j=1}^{r}\left(\left(\lambda_{i}, \alpha_{j}^{\vee}\right)+1\right)$ functions.

Proof. Let $\mathcal{B}$ be the algebra generated by the spaces $\left(\mathbb{V}_{i}\right)^{U^{\prime}}$. Clearly, $\mathcal{B}$ is $B / U^{\prime}$-stable and contains $\mathbb{k}[X]^{U}$. Hence it meets every simple $G$-submodule of $\mathbb{k}[X]$. Therefore, it is sufficient to prove that $\mathcal{B}$ contains $U / U^{\prime}$-cyclic vectors of all simple $G$-submodules.

We argue by induction on the root order ' $\preccurlyeq$ ' on the set of dominant weights. Let $c_{i} \in\left(\mathbb{V}_{i}\right)^{U^{\prime}}$ be the unique $U / U^{\prime}$-cyclic weight vector. By definition, $c_{i} \in \mathcal{B}$. We normalise $f_{i}$ and $c_{i}$ such that $E\left(\lambda_{i}\right)\left(c_{i}\right)=f_{i}$, where the operator $E(\lambda), \lambda \in \mathfrak{X}_{+}$, is defined by $E(\lambda):=\prod_{i=1}^{r} e_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)}$. Assume that for any simple $G$-module $\mathbb{W}$ of type $\mathrm{R}(\mu)$ occurring in $\mathbb{k}[X]$, with $\mu \prec \lambda$, the cyclic vector of $\mathbb{W}$ belong to $\mathcal{B}$. Consider an arbitrary simple submodule $\mathbb{V} \subset \mathbb{k}[X]$ of type $\mathbb{R}(\lambda)$. Take a polynomial $P$ in $m$ variables such that $f=P\left(f_{1}, \ldots, f_{m}\right)$ is a highest vector of $\mathbb{V}$. Without loss of generality, we may assume that every monomial of $P$ is of weight $\lambda$. We claim that $P\left(c_{1}, \ldots, c_{m}\right) \neq 0$. Indeed, it is easily seen that $E(\lambda) P\left(c_{1}, \ldots, c_{m}\right)=P\left(E\left(\lambda_{1}\right)\left(c_{1}\right), \ldots, E\left(\lambda_{m}\right)\left(c_{m}\right)\right)=f$. The last equality does not guarantee us that $P\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{V}$. However, this means that the projection of this element to $\mathbb{V}$ is well-defined and it must be a $U / U^{\prime}$-cyclic vector of $\mathbb{V}$, say $c$. More precisely, $P\left(c_{1}, \ldots, c_{m}\right)=c+\tilde{c}$, where $\tilde{c}$ belong to a sum of simple submodules of types $\mathrm{R}\left(\nu_{i}\right)$ with $\nu_{i} \prec \lambda$. If $P$ is a monomial, then this follows from the uniqueness of the Cartan component in tensor products. In our case, the Cartan component of the tensor product associated with every monomial of $P$ is $\mathrm{R}(\lambda)$, which easily yields the general assertion. By definition, $P\left(c_{1}, \ldots, c_{m}\right) \in \mathcal{B}$, and by the induction assumption, $\tilde{c} \in \mathcal{B}$. Thus, $c \in \mathcal{B}$.

This theorem provides a good upper bound on the number of generators of $\mathbb{k}[X]^{U^{\prime}}$. However, it is not always the case that a minimal generating system of $\mathbb{k}[X]^{U}$ is a part of a minimal generating system of $\mathbb{k}[X]^{U^{\prime}}$. (See examples in Section 5.)

Since $U^{\prime}$ has no rational characters, $\operatorname{dim} X / / U^{\prime}=\operatorname{trdeg} \mathbb{k}(X)^{U^{\prime}}=\operatorname{dim} X-\operatorname{dim} U^{\prime}+$ $\min _{x \in X} \operatorname{dim}\left(U^{\prime}\right)_{x}$. To compute the last quantity, we use the existence of a generic stabiliser for $U$-actions on irreducible $G$-varieties [6, Thm. 1.6].

Lemma 2.5. Let $U_{\star}$ be a generic stabiliser for $(U: X)$. Then $\min _{x \in X} \operatorname{dim}\left(U^{\prime}\right)_{x}=\operatorname{dim}\left(U_{\star} \cap U^{\prime}\right)$.
Proof. Let $\Psi \subset X$ be a dense open subset of generic points, i.e., $U_{x}$ is $U$-conjugate to $U_{\star}$ for any $x \in \Psi$. Since $U^{\prime}$ is a normal subgroup, $U_{x} \cap U^{\prime}$ is also $U$-conjugate to $U_{\star} \cap U^{\prime}$. Thus, all $U^{\prime}$-orbits in $\Psi$ are of dimension $\operatorname{dim} U^{\prime}-\operatorname{dim}\left(U_{\star} \cap U^{\prime}\right)$.

Remark 2.6. 1) If $X$ is (quasi)affine, then one can choose $U_{\star}$ in a canonical way. Let $\mathcal{M}(X)$ be the monoid of highest weight of all simple $G$-modules occurring in $\mathbb{k}[X]$. Then $U_{\star}$ is the product of all root unipotent subgroup $U^{\mu}\left(\mu \in \Delta^{+}\right)$such that $(\mu, \mathcal{M}(X))=0$ [17, Ch. 1, §3]. Equivalently, $U_{\star}$ is generated by the simple root unipotent subgroups $U^{\alpha_{i}}$ such that $\left(\alpha_{i}, \mathcal{M}(X)\right)=0$. It follows that $U_{\star} \cap U^{\prime}=\left(U_{\star}, U_{\star}\right)$. This also means that if $\mathcal{M}(X)$ is known, then $\min _{x \in X} \operatorname{dim}\left(U^{\prime}\right)_{x}$ can effectively be computed.
2) The group $U_{\star}$ is a maximal unipotent subgroup of a generic stabiliser for the diagonal $G$-action on $X \times X^{*}$ [17, Theorem 1.2.2]. Here $X^{*}$ is the so-called dual $G$-variety. It coincides with the dual $G$-module, if $X$ is a $G$-module. Using tables of generic stabilisers for representations of $G$, one can again compute $U_{\star}$ and $\left(U_{\star}, U_{\star}\right)$.

## 3. Poincaré series of multigraded algebras of $U^{\prime}$-Invariants

Let $X$ be an irreducible affine $G$-variety. (Eventually, we impose other constraints on $X$.) Since $T$ normalises $U^{\prime}$, it acts on $X / / U^{\prime}$ and the algebra $\mathbb{k}[X]^{U^{\prime}}$ acquires a multigrading (by $T$-weights). Our objective is to describe some properties of the corresponding Poincaré series. Before we stick to considering $U^{\prime}$-invariants, let us give a brief outline of notation and results to be used below.

Let $\mathcal{R}$ be a finitely generated $\mathbb{N}^{m}$-graded $\mathbb{k}$-algebra such that $\mathbb{k}[\mathcal{R}]_{0}=0$. Set $X=\operatorname{Spec}(\mathcal{R})$.

- The Poincare series of $\mathcal{R}$ is (the Taylor expansion of) a rational function in $t_{1}, \ldots, t_{m}$ :

$$
\mathcal{F}(\mathcal{R} ; \underline{t})=P(\underline{t}) / Q(\underline{t})
$$

for some polynomials $P, Q$.

- If $\mathcal{R}$ is Cohen-Macaulay, then $\Omega_{\mathcal{R}}$ (or $\Omega_{X}$ ) stands for the canonical module of $\mathcal{R} ; \Omega_{\mathcal{R}}$ is naturally $\mathbb{Z}^{m}$-graded such that the Poincare series of $\Omega_{\mathcal{R}}$ is

$$
\mathcal{F}\left(\Omega_{\mathcal{R}} ; \underline{t}\right)=(-1)^{\operatorname{dim} X} \mathcal{F}\left(\mathcal{R} ; \underline{t}^{-1}\right)
$$

- If $\mathcal{R}$ is Gorenstein, then the rational function $\mathcal{F}(\mathcal{R} ; \underline{t})$ satisfies the equality

$$
\mathcal{F}\left(\mathcal{R} ; \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} X} \underline{q}^{q(X)} \mathcal{F}(\mathcal{R} ; \underline{t}),
$$

for some $q(X)=\left(q_{1}(X), \ldots, q_{m}(X)\right) \in \mathbb{Z}^{m}$, and the degree of a homegeneous generator $\omega_{\mathcal{R}}$ of $\Omega_{\mathcal{R}}$ is $\operatorname{deg}\left(\omega_{\mathcal{R}}\right)=q(X)$ [22, Theorem 6.1], [23, 1.12].

- If $X$ has only rational singularities, then $q_{i}(X) \geqslant 0$ and $q(X) \neq(0, \ldots, 0)$ [3, Proposition 4.3]
- Let $G$ be a semisimple group acting on $X$ (of course, it is assumed that $G$ preserves the $\mathbb{N}^{m}$-grading of $\mathcal{R}$ ). Then there is a relationship betweem $\Omega_{\mathcal{R}}$ and $\Omega_{\mathcal{R}^{G}}$ [13] and hence between $q(X)$ and $q(X / / G)$, see below.

We begin with the case of $X=G$, where $G$ is regarded as $G$-variety with respect to right translations. That is, we are going to study the graded structure of $\mathcal{A}=\mathbb{k}\left[G / U^{\prime}\right]$. Since $G$ is simply-connected, it is a factorial variety. Therefore, $\operatorname{Spec}(\mathcal{A})=G / / U^{\prime}$ is factorial (and has only rational singularities). In particular, $G / / U^{\prime}$ is Cohen-Macaulay (=CM). There is the direct sum decomposition

$$
\mathcal{A}=\bigoplus_{\gamma \in \mathfrak{X}} \mathcal{A}_{\gamma}
$$

where $\mathcal{A}_{\gamma}=\{f \in \mathcal{A} \mid f(g t)=\gamma(t) f(g)$ for any $g \in G, t \in T\}$. The weights $\gamma$ such that $\mathcal{A}_{\gamma} \neq 0$ form a finitely generated monoid, which is denoted by $\Gamma$. Since $\mathrm{R}(\lambda)^{U^{\prime}}$ is a multiplicity free $T$-module, it follows from Eq. (2-1) that, for any $\lambda \in \mathfrak{X}_{+}$, different copies of $\mathrm{R}\left(\lambda^{*}\right)$ lie in the different weight spaces $\mathcal{A}_{\gamma}$. More precisely, the corresponding set of weights is $I_{\lambda}$ (see Section 1). In particular, two copies of $\mathrm{R}\left(\varpi_{i}^{*}\right)$ belong to $\mathcal{A}_{\varpi_{i}}$ and $\mathcal{A}_{\varpi_{i}-\alpha_{i}}$. Therefore, $\Gamma$ is generated by the weights $\varpi_{i}, \varpi_{i}-\alpha_{i}, i=1, \ldots, r$. Note that the group generated by $\Gamma$ coincides with $\mathfrak{X}$, since $\Gamma$ contains all fundamental weights.

Lemma 3.1. If $G$ has no simple factors $S L_{2}$ or $S L_{3}$, then $\Gamma \backslash\{0\}$ lies in an open half-space of $\mathfrak{X}_{\mathbb{Q}}$, $\mathcal{A}_{0}=\mathbb{k}$, and $\operatorname{dim} \mathcal{A}_{\gamma}<\infty$ for all $\gamma \in \Gamma$.

Proof. It is shown in the proof of Proposition 1.9 that $\left(\rho^{\vee}, \varpi_{i}-\alpha_{i}\right)>0$ for all $i$. Hence the half-space determined by $\rho^{\vee}$ will do. We have $\mathcal{A}_{0}=\mathbb{k}\left[G / T U^{\prime}\right]=\mathbb{k}$, since $T U^{\prime}$ is epimorphic. This also implies the last claim, because $\mathcal{A}$ is finitely generated.

The algebra $\mathcal{A}$ is $\Gamma$-graded, and we are going to study the corresponding Poincaré series. Unfortunately, $\Gamma$ is not always a free monoid. Therefore we want to embed $\Gamma$ into a free monoid $\mathbb{N}^{r}$. This is always possible, if $\Gamma$ generates a convex cone in $\mathfrak{X}_{\mathbb{Q}}$, see e.g. [15, Corollary 7.23]. For this reason, we assume below that $G$ has no simple factors $S L_{2}$ or $S L_{3}$, and choose an embedding $\Gamma \hookrightarrow \mathbb{N}^{r}$. In other words, we find $v_{1}, \ldots, v_{r} \in \mathfrak{X}$ such that $\mathfrak{X}=\bigoplus_{i=1}^{r} \mathbb{Z} v_{1}$ and $\Gamma \subset \bigoplus_{i=1}^{r} \mathbb{N} v_{1}$. Furthermore, one can achieve that $\left(v_{i}, \rho^{\vee}\right)>0$ for all $i$. Then $\left(v_{1}, \ldots, v_{r}\right)$ is said to be a $\Gamma$-adapted basis for $\mathfrak{X}$. Thus, every $\gamma \in \Gamma$ gains a unique expression of the form $\gamma=\sum_{i} k_{i}(\gamma) v_{i}, k_{i}(\gamma) \in \mathbb{N}$.

Now, we define the multigraded Poincaré series of $\mathcal{A}$ as the power series

$$
\mathcal{F}\left(\mathcal{A} ; t_{1}, \ldots, t_{r}\right)=\mathcal{F}(\mathcal{A} ; \underline{t})=\sum_{\gamma \in \Gamma}\left(\operatorname{dim} \mathcal{A}_{\gamma}\right) \underline{t}^{\gamma},
$$

where $\underline{t}^{\gamma}=t_{1}^{k_{1}(\gamma)} \ldots t_{r}^{k_{r}(\gamma)}$. As is well-known, $\mathcal{F}(\mathcal{A} ; \underline{t})$ is a rational function. Since $\mathcal{A}$ is a factorial CM domain, it is Gorenstein. Therefore, there exists $\underline{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{Z}^{r}$ such that

$$
\mathcal{F}\left(\mathcal{A} ; \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} G / U^{\prime}} \underline{\underline{t}}^{\underline{a}} \mathcal{F}(\mathcal{A} ; \underline{t})
$$

where $\underline{t}^{-1}=\left(t_{1}^{-1}, \ldots, t_{r}^{-1}\right)[22, \S 6]$. Moreover, since $G / / U^{\prime}$ has only rational singularities, all $a_{i}$ are actually non-negative, and $\underline{a} \neq(0, \ldots, 0)$ [3, Proposition 4.3].

Set $b(\mathcal{A}):=\sum_{i=1}^{r} a_{i} v_{i} \in \mathfrak{X}$. A priori, this element might depend on the choice of an embedding $\Gamma \hookrightarrow \mathbb{N}^{r}$. Fortunately, it doesn't. Roughly speaking, this can be explained via properties of the canonical module $\Omega_{\mathcal{A}}$, which is a free $\mathcal{A}$-module of rank one. However, even if we accurately accomplish this program, then we still do not find the very element $b(\mathcal{A}) \in \mathfrak{X}$. Therefore, we choose another path. Our plan consists of the following steps:
(1) $\mathcal{A}^{U}$ is a polynomial algebra and its Poincaré series can be written down explicitly;
(2) Using the formula for this Poincare series, we determine $b\left(\mathcal{A}^{U}\right) \in \mathfrak{X}$;
(3) Using results of $[17,5.4]$, we prove that $b(\mathcal{A})=b\left(\mathcal{A}^{U}\right)$.

The algebra $\mathcal{A}^{U}$ is acted upon by $T \times T$. Two copies of $T$ acts on $\mathcal{A}^{U} \subset \mathbb{k}[G]$ via left and right translations. For the presentation of Eq. (2-2), the first (resp. second) copy of $T$ acts on the first (resp. second) factor in tensor products. Then

$$
\mathcal{A}^{U}=\bigoplus_{\lambda \in \mathfrak{X}_{+}, \gamma \in \Gamma} \mathcal{A}_{\lambda, \gamma}^{U},
$$

where $\mathcal{A}_{\lambda, \gamma}^{U}=\left\{f \in \mathcal{A}^{U} \subset \mathbb{k}[G] \mid f\left(t g t^{\prime}\right)=\lambda(t)^{-1} \gamma\left(t^{\prime}\right) f(g)\right.$ for all $\left.t, t^{\prime} \in T\right\}$, and we set

$$
\mathcal{F}\left(\mathcal{A}^{U} ; \underline{s}, \underline{t}\right)=\sum_{\lambda, \gamma}\left(\operatorname{dim} \mathcal{A}_{\lambda, \gamma}^{U}\right) \underline{s}^{\lambda} \underline{t}^{\gamma} .
$$

Here $\underline{s}=\left(s_{1}, \ldots, s_{r}\right)$ and $\underline{s}^{\lambda}=s_{1}^{n_{1}} \ldots s_{r}^{n_{r}}$ if $\lambda=\sum_{i} n_{i} \varpi_{i}$.
Proposition 3.2. We have

$$
\mathcal{F}\left(\mathcal{A}^{U} ; \underline{s}, \underline{t}\right)=\prod_{i=1}^{r} \frac{1}{\left(1-s_{i^{*}} \underline{\omega}^{\varpi_{i}}\right)\left(1-s_{i^{*}} \underline{\underline{t}}^{\varpi_{i}-\alpha_{i}}\right)},
$$

where $i^{*}$ is defined by $\left(\varpi_{i}\right)^{*}=\varpi_{i^{*}}$.
Proof. This follows from the fact that $\mathcal{A}^{U}$ is freely generated by the space $R=$ $\bigoplus_{i=1}^{r} \mathrm{R}\left(\varpi_{i}^{*}\right)^{U} \otimes \mathrm{R}\left(\varpi_{i}\right)^{U^{\prime}}$, and the $(T \times T)$ - weights of a bi-homogeneous basis of $R$ are $\left(\varpi_{i}^{*}, \varpi_{i}\right),\left(\varpi_{i}^{*}, \varpi_{i}-\alpha_{i}\right), i=1, \ldots, r$.

Of course, $\underline{t}^{\varpi_{i}}$ should be understood as $t_{1}^{k_{1}\left(\varpi_{1}\right)} \ldots t_{r}^{k_{r}\left(\varpi_{r}\right)}$, and likewise for $\varpi_{i}-\alpha_{i}$. Since $\sum_{i}\left(\varpi_{i}+\varpi_{i}-\alpha_{i}\right)=2 \rho-|\Pi|=\left|\Delta^{+} \backslash \Pi\right|$, we readily obtain

Corollary 3.3. $\mathcal{F}\left(\mathcal{A}^{U} ; \underline{s}^{-1}, \underline{t}^{-1}\right)=\left(s_{1} \ldots s_{r}\right)^{2} \underline{t}^{2 \rho-|\Pi|} \mathcal{F}\left(\mathcal{A}^{U} ; \underline{s}, \underline{t}\right)$.
One can disregard (for a while) the $\mathfrak{X}_{+}$-grading of $\mathcal{A}^{U}$ and consider only the $\Gamma$-grading induced from $\mathcal{A}$. This amount to letting $s_{i}=1$ for all $i$. Then we obtain $b\left(\mathcal{A}^{U}\right)=2 \rho-|\Pi|$, and, surely, this does not depend on the choice of $\Gamma \hookrightarrow \mathbb{N}^{r}$. Thus, we have completed steps (1) and (2) of the above plan.

Now, we recall a relationship between the multigraded Poincaré series of algebras $\mathbb{k}[X]$ and $\mathbb{k}[X]^{U}$. For $G$-modules, these results are due to M. Brion [3, Ch. IV], [4, Theorem 2].

A general version is found in [16], [17, Ch. 5]. We will consider two types of conditions imposed on $G$-varieties $X$ :

$$
\left\{\begin{array}{l}
X \text { is an irreducible factorial } G \text {-variety with only rational singularities and }  \tag{1}\\
\mathbb{k}[X]^{G}=\mathbb{k} .
\end{array}\right.
$$

$\left(\mathfrak{C}_{2}\right) \quad\left\{\begin{array}{l}X \text { is an irreducible factorial } G \text {-variety with only rational singularities; } \mathbb{k}[X] \text { is } \\ \mathbb{N}^{m} \text {-graded, } \mathbb{k}[X]=\bigoplus_{n \in \mathbb{N}^{m}} \mathbb{k}[X]_{n}, \text { and } \mathbb{k}[X]_{0}=\mathbb{k} .\end{array}\right.$
In particular, $X$ is Gorenstein in both cases. Suppose $X$ satisfies ( $\mathfrak{C}_{2}$ ). The Poincaré series of the Gorenstein algebra $\mathbb{k}[X]$ satisfies an equality of the form

$$
\mathcal{F}\left(\mathbb{k}[X] ; \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} X} \underline{t}^{q(X)} \mathcal{F}(\mathbb{k}[X] ; \underline{t}),
$$

where $\underline{t}=\left(t_{1}, \ldots, t_{m}\right)$ and $q(X)=\left(q_{1}(X), \ldots, q_{m}(X)\right)$. The affine variety $X / / U$ inherits all good properties of $X$, i.e., it is irreducible, factorial, etc. Furthermore, $\mathbb{k}[X]^{U}$ is naturally $\mathfrak{X}_{+} \times \mathbb{N}^{m}$-graded, and one defines the Poincaré series

$$
\mathcal{F}\left(\mathbb{k}[X]^{U} ; \underline{s}, \underline{t}\right)=\sum_{\lambda \in \mathcal{X}_{+}, n \in \mathbb{N}^{m}}\left(\operatorname{dim} \mathbb{k}[X]_{\lambda, n}^{U}\right) \underline{s}^{\lambda} \underline{t}^{n} .
$$

Since $X / / U$ is again Gorenstein, this series satisfies an equality of the form

$$
\mathcal{F}\left(\mathbb{k}[X]^{U} ; \underline{s}^{-1}, \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} X / / U} \underline{s}_{\underline{b}}^{\underline{\underline{b}}} \underline{t}^{q(X / U)} \mathcal{F}\left(\mathbb{k}[X]^{U} ; \underline{s}, \underline{t}\right)
$$

for some $\underline{b}=\underline{b}(X / / U)=\left(b_{1}, \ldots, b_{r}\right)$ and $q(X / / U)=\left(q_{1}(X / / U), \ldots, q_{m}(X / / U)\right)$.
Theorem 3.4 (see [17, Theorem 5.4.26]). Suppose that $X$ satisfies condition $\left(\mathfrak{C}_{2}\right)$. Then
(1) $0 \leqslant b_{i} \leqslant 2$;
(2) $0 \leqslant q_{i}(X / / U) \leqslant q_{i}(X)$ for all $i$;
(3) the following conditions are equivalent:

- $\underline{b}=(2, \ldots, 2)$;
- For $D=\left\{z \in X \mid \operatorname{dim} U_{z}>0\right\}$, we have $\operatorname{codim}_{X} D \geqslant 2$;
- $q(X / / U)=q(X)$;

Let us apply this theorem to the $G$-variety $\operatorname{Spec}(\mathcal{A})=G / / U^{\prime}$. The algebra $\mathcal{A}$ is $\Gamma$-graded and hence suitably $\mathbb{N}^{r}$-graded, as explained before. Note that $\operatorname{Spec}(\mathcal{A})$ satisfies both conditions $\left(\mathfrak{C}_{1}\right)$ and $\left(\mathfrak{C}_{2}\right)$. At the moment, we consider $X=\operatorname{Spec}(\mathcal{A})$ as variety satisfying condition ( $\mathfrak{C}_{2}$ ), with $m=r$. Comparing Eq. (3.1) and (3.2), we see that $\underline{a}=q(X)$. Proposition 3.2 and Corollary 3.3 show that here $\underline{b}(X / / U)=(2, \ldots, 2)$ and $q(X / / U)$ corresponds to $b\left(\mathcal{A}^{U}\right)=2 \rho-|\Pi|$. Now, Theorem 3.4(3) guarantee us that $q(X)=q(X / / U)$, i.e.,

$$
b(\mathcal{A})=b\left(\mathcal{A}^{U}\right)=2 \rho-|\Pi| .
$$

This completes our computation of $b(\mathcal{A})$. Note that we computed $b(\mathcal{A})$ without knowing an explicit formula of the Poincaré series $\mathcal{F}(\mathcal{A} ; \underline{t})$.

Our next goal is to obtain analogues of results of $[17,5.4]$, where $U$ is replaced with $U^{\prime}$, i.e., results on Poincaré series of algebras $\mathbb{k}[X]^{U^{\prime}}$.

Suppose $X$ satisfies $\left(\mathfrak{C}_{1}\right)$. The algebra $\mathbb{k}[X]^{U^{\prime}}$ is $\Gamma$-graded, and we consider the Poincaré series

$$
\mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{t}\right)=\sum_{\gamma \in \Gamma} \operatorname{dim} \mathbb{k}[X]_{\gamma}^{U^{\prime}} \underline{t}^{\gamma}
$$

where $\mathbb{k}[X]_{\gamma}^{U^{\prime}}=\left\{f \in \mathbb{k}[X]^{U^{\prime}} \mid f(t . z)=\gamma(t)^{-1} f(z)\right\}$ and, as above, $\underline{t}^{\gamma}$ is determined via the choice of a $\Gamma$-adapted basis $\left(v_{1}, \ldots, v_{r}\right)$ for $\mathfrak{X}$. The assumption $\mathbb{k}[X]^{G}=\mathbb{k}$ and the convexity of the cone generated by $\Gamma$ guarantee us that $\mathbb{k}[X]_{0}^{U^{\prime}}=\mathbb{k}$ and all spaces $\mathbb{k}[X]_{\gamma}^{U^{\prime}}$ are finitedimensional. Since $X / / U^{\prime}$ is again factorial, with only rational singularities (Theorem 2.3), it is Gorenstein and hence

$$
\mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} X / / U^{\prime}} \underline{t}^{a} \mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{t}\right)
$$

for some $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}^{r}$. Using the basis $\left(v_{1}, \ldots, v_{r}\right)$, we set $b\left(X / / U^{\prime}\right)=\sum_{i=1}^{r} a_{i} v_{i} \in$ $\mathfrak{X}$.

Theorem 3.5. Suppose that $X$ satisfies $\left(\mathfrak{C}_{1}\right)$. Then
(1) $0 \leqslant b\left(X / / U^{\prime}\right) \leqslant b(\mathcal{A})=2 \rho-|\Pi|$
(componentwise, with respect to any $\Gamma$-adapted basis $v_{1}, \ldots, v_{r}$ );
(2) the following conditions are equivalent:
a) $b\left(X / / U^{\prime}\right)=2 \rho-|\Pi|$;
b) For $D=\left\{x \in X \mid \operatorname{dim}\left(U^{\prime}\right)_{x}>0\right\}$, we have $\operatorname{codim}_{X} D \geqslant 2$;

Proof. Using our results on $\mathcal{A}$ and $\mathcal{A}^{U}$ obtained above, one can easily adapt the proof of [17, Theorem 5.4.21]. For the reader's convenience, we recall the argument.
(1) We have $0 \leqslant b\left(X / / U^{\prime}\right)$, since $X / / U^{\prime}$ has rational singularities.

Set $Z=X \times\left(G / / U^{\prime}\right)$. It is a factorial $G$-variety with only rational singularities and $\mathbb{k}[Z]=\mathbb{k}[X] \otimes \mathcal{A}$. Define the $\Gamma$-grading of $\mathbb{k}[Z]$ by $\mathbb{k}[Z]_{\beta}=\mathbb{k}[X] \otimes \mathcal{A}_{\beta}, \beta \in \Gamma$. By the transfer principle, $\mathbb{k}[Z]^{G} \simeq \mathbb{k}[X]^{U^{\prime}}$ and the $\Gamma$-grading of $\mathbb{k}[X]^{U^{\prime}}$ corresponds under this isomorphism to the $\Gamma$-grading of $\mathbb{k}[Z]^{G}$ as subalgebra of $\mathbb{k}[Z]$.

In this situation (a semisimple group $G$ acting on a factorial variety $Z$ with only rational singularities), one can apply results of Knop to the quotient morphism $\pi_{G}: Z \rightarrow Z / / G$. Set $m=\max _{z \in Z} \operatorname{dim} G . z$. Recall that $\Omega_{X}$ is the canonical module of $\mathbb{k}[X]$. By Theorems 1,2 in [13], there is an injective $G$-equivariant homomorphism of degree 0 of graded $\mathbb{k}[Z]$ modules

$$
\bar{\gamma}: \Omega_{Z} \rightarrow \wedge^{m} \mathfrak{g}^{*} \otimes \pi_{G}^{*}\left(\Omega_{Z / / G}\right)
$$

Here $\Omega_{Z}=\Omega_{X} \otimes \Omega_{G / / U^{\prime}}$ and grading of $\Omega_{Z}$ comes from the grading of $\Omega_{G / / U^{\prime}}$. The injectivity of $\bar{\gamma}$ implies that

$$
b\left(X / / U^{\prime}\right)=\left\{\begin{array}{l}
\text { degree of a homogeneous } \\
\text { generator of } \Omega_{X / U^{\prime}} \simeq \Omega_{Z / / G}
\end{array}\right\} \leqslant\left\{\begin{array}{l}
\text { degree of a homogeneous } \\
\text { generator of } \Omega_{G / U^{\prime}}
\end{array}\right\}=b(\mathcal{A})
$$

This yields the rest of part (1).
(2) To prove the equivalence of $a$ ) and b), we replace each of them with an equivalent condition stated in terms of $Z$ :
$\left.\mathrm{a}^{\prime}\right) \operatorname{deg}\left(\omega_{Z / / G}\right)=\operatorname{deg}\left(\omega_{Z}\right)$;
$\left.\mathrm{b}^{\prime}\right) \operatorname{codim}_{Z} \tilde{D} \geqslant 2$, where $\tilde{D}=\left\{z \in Z \mid \operatorname{dim} G_{z}>0\right\}$.
The argument in part (1) shows that a) and $a^{\prime}$ ) are equivalent. The equivalence of $b$ ) and $\mathrm{b}^{\prime}$ ) follows from the fact that $G / U^{\prime}$ is dense in $G / / U^{\prime}$ and the complement is of codimension $\geqslant 2$, see Theorem 2.2.

The injectivity and $G$-equivariance of $\bar{\gamma}$ means that there is $c \in\left(\wedge^{m} \mathfrak{g}^{*} \otimes \mathbb{k}[Z]\right)^{G}$ such that $\bar{\gamma}\left(\omega_{Z}\right)=c \cdot \omega_{Z / / G}$. We can regard $c$ as $G$-equivariant morphism $c^{\prime}: Z \rightarrow \wedge^{m} \mathfrak{g}^{*}$. It is shown in [13] that if $\operatorname{dim} G \cdot z=m$ and $z \in Z_{\text {reg }}$, then $c^{\prime}(z)$ is nonzero and it yields (normalised) Plücker coordinates of the $m$-dimensional space $\mathfrak{g}_{z}^{\perp} \subset \mathfrak{g}^{*}$.

Assume a'), i.e., $\operatorname{deg}\left(\omega_{Z / / G}\right)=\operatorname{deg}\left(\omega_{Z}\right)$. Then $\operatorname{deg} c=0$, i.e.,

$$
c \in\left(\wedge^{m} \mathfrak{g}^{*} \otimes \mathbb{k}[Z]_{0}\right)^{G}=\left(\wedge^{m} \mathfrak{g}^{*} \otimes \mathbb{k}[X]\right)^{G}
$$

This means that $c^{\prime}$ can be pushed through the projection to $X$ :

$$
Z=X \times\left(G / / U^{\prime}\right) \rightarrow X \rightarrow \wedge^{m} \mathfrak{g}^{*}
$$

Let $z=(x, v) \in X \times\left(G / / U^{\prime}\right)$ be a generic point, i.e., $x \in X_{r e g}, v \in G / U^{\prime}$, and $\operatorname{dim} G . z=m$. Since $c^{\prime}(z)$ depends only on $x$, we see that $\mathfrak{g}_{z}$ does not depend on $v$. But this is only possible if $\operatorname{dim} \mathfrak{g}_{z}=0$, that is, $m=\operatorname{dim} G$. This already proves that $\operatorname{codim}_{Z} \tilde{D} \geqslant 1$. If $\operatorname{codim}_{Z} \tilde{D}=1$, then formulae (6), (7), (12) in [13] show that $\tilde{D}=\left\{z \in Z \mid c^{\prime}(z)=0\right\}$. However, $\wedge^{m} \mathfrak{g}^{*}$ is the trivial 1-dimensional $G$-module, hence $c \in \mathbb{k}[X]^{G}=\mathbb{k}$. That is, $c^{\prime}$ is a constant (nonzero) mapping. This contradiction shows that $\operatorname{codim}_{Z} \tilde{D} \geqslant 2$.

Conversely, if $\mathbf{b}^{\prime}$ ) holds, then $\tilde{D}$ is a proper subvariety of $Z$, i.e., $m=\operatorname{dim} G$ and $c \in$ $\left(\wedge^{\operatorname{dim} G} \mathfrak{g}^{*} \otimes \mathbb{k}[Z]\right)^{G}=\mathbb{k}[Z]^{G}$. Furthermore, since $\operatorname{codim}_{Z} \tilde{D} \geqslant 2$, $c$ has no zeros on $Z$ (because $Z$ is normal and $c^{\prime}(z)=c(z) \neq 0$ for any $z \in Z_{\text {reg }} \backslash \tilde{D}$.) It follows that $c$ is constant, $\operatorname{deg} c=0$ and hence $\operatorname{deg}\left(\omega_{Z / / G}\right)=\operatorname{deg}\left(\omega_{Z}\right)$.

If $X$ satisfies $\left(\mathfrak{C}_{2}\right)$, then the algebra $\mathbb{k}[X]^{U^{\prime}}$ is naturally $\Gamma \times \mathbb{N}^{m}$-graded, and we consider the Poincaré series

$$
\mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{s}, \underline{t}\right)=\sum_{n \in \mathbb{N}^{m}, \gamma \in \Gamma} \operatorname{dim} \mathbb{k}[X]_{n, \gamma}^{U^{\prime}} \underline{s}^{n} \underline{t}^{\gamma},
$$

where $\mathbb{k}[X]_{n, \gamma}^{U^{\prime}}=\left\{f \in \mathbb{k}[X]_{n}^{U^{\prime}} \mid f(t . z)=\gamma(t)^{-1} f(z)\right\}$ and $\underline{t}^{\gamma}$ is as above. Since $X / / U^{\prime}$ is again Gorenstein, we have

$$
\mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{s}^{-1}, \underline{t}^{-1}\right)=(-1)^{\operatorname{dim} X / / U^{\prime}} \underline{t}^{a} \underline{s}^{q\left(X / / U^{\prime}\right)} \mathcal{F}\left(\mathbb{k}[X]^{U^{\prime}} ; \underline{s}, \underline{t}\right)
$$

for some $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}^{r}$ and $q\left(X / / U^{\prime}\right) \in \mathbb{N}^{m}$. Using the basis $\left(v_{1}, \ldots, v_{r}\right)$, we set $b\left(X / / U^{\prime}\right)=\sum_{i=1}^{r} a_{i} v_{i} \in \mathfrak{X}$. The following is a $U^{\prime}$-analogue of Theorem 3.4.

Theorem 3.6. Suppose that $X$ satisfies $\left(\mathfrak{C}_{2}\right)$. Then
(1) $0 \leqslant b\left(X / / U^{\prime}\right) \leqslant b(\mathcal{A})=2 \rho-|\Pi|$
(componentwise, with respect to any $\Gamma$-adapted basis $v_{1}, \ldots, v_{r}$ );
(2) $0 \leqslant q_{i}\left(X / / U^{\prime}\right) \leqslant q_{i}(X)$ for all $i$;
(3) the following conditions are equivalent:
(i) $b\left(X / / U^{\prime}\right)=2 \rho-|\Pi|$;
(ii) For $D=\left\{x \in X \mid \operatorname{dim}\left(U^{\prime}\right)_{x}>0\right\}$, we have $\operatorname{codim}_{X} D \geqslant 2$;
(iii) $q\left(X / / U^{\prime}\right)=q(X)$.

We leave it to the reader to adapt the proof of Theorem 5.4.26 in [17] to the $U^{\prime}$-setting.
These results may (and will) be applied to describing $G$-varieties $X$ with polynomial algebras $\mathbb{k}[X]^{U^{\prime}}$. Suppose for simplicity that $\mathbb{k}[X]$ is $\mathbb{N}$-graded (i.e., $m=1$ ). If $f_{1}, \ldots, f_{s}$ are algebraically independent homogeneous generators of $\mathbb{k}[X]^{U^{\prime}}$, then $\sum \operatorname{deg} f_{i}=q\left(X / / U^{\prime}\right) \leqslant$ $q(X)$. In particular, if $X$ is a $G$-module with the usual $\mathbb{N}$-grading of $\mathbb{k}[X]$, then $\sum \operatorname{deg} f_{i} \leqslant$ $\operatorname{dim} X$. Similarly, if $\omega_{i}$ is the $T$-weight of $f_{i}$, then $\sum_{i=1}^{s} \omega_{i} \leqslant 2 \rho-|\Pi|$. The idea to use an a priori information on the Poincaré series for classifying group actions with polynomial algebras of invariants is not new. It goes back to T.A. Springer [21]. Since then it was applied many times to various group actions.

## 4. SOME COMBINATORICS RELATED TO $U^{\prime}$-INVARIANTS

In previous sections, we have encountered some interesting objects in $\mathfrak{X}$ related to the study of $U^{\prime}$-invariants. These are $b(\mathcal{A})=2 \rho-|\Pi|$, the set of $T$-weights in $\mathrm{R}(\lambda)^{U^{\prime}}$ (denoted $I_{\lambda}$ ), and the monoid $\Gamma$ generated by $\varpi_{i}, \varpi_{i}-\alpha_{i}$ for all $i \in\{1, \ldots, r\}=:[r]$.

## Proposition 4.1.

(i) If $G$ has no simple ideals $S L_{2}$, then $2 \rho-|\Pi|$ is a strictly dominant weight;
(ii) For any $\lambda \in \mathfrak{X}_{+}$, the weight $\left|I_{\lambda}\right|$ is dominant. Furthermore, $\left(\left|I_{\lambda}\right|, \alpha_{i}\right)>0$ if and only if there is $j$ such that $\left(\lambda, \alpha_{j}^{\vee}\right)>0$ and $\left(\alpha_{i}, \alpha_{j}\right)>0$.

Proof. (i) is obvious.
(ii) Recall that $I_{\lambda}=\left\{\lambda-\sum_{i=1}^{r} c_{i} \alpha_{i} \mid 0 \leqslant c_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right), i=1, \ldots, r\right\}$. Choose $i \in[r]$ and slice $I_{\lambda}$ into the layers, where all coordinates $c_{j}$ with $j \neq i$ are fixed, i.e., consider

$$
I_{\lambda}\left(c_{1}, \ldots, \widehat{c}_{i}, \ldots, c_{r}\right)=\left\{\lambda-\sum_{j: j \neq i} c_{j} \alpha_{j}-c_{i} \alpha_{i} \mid 0 \leqslant c_{i} \leqslant\left(\lambda, \alpha_{i}^{\vee}\right)\right\} .
$$

Then one easily verifies that $\left(\left|I_{\lambda}\left(c_{1}, \ldots, \widehat{c_{i}}, \ldots, c_{r}\right)\right|, \alpha_{i}^{\vee}\right)=\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)\left(-\sum_{j \neq i} c_{j} \alpha_{j}, \alpha_{i}^{\vee}\right) \geqslant$ 0 . Hence $\left(\left|I_{\lambda}\right|, \alpha_{i}^{\vee}\right) \geqslant 0$, and the condition of positivity is also inferred.

Let $\mathcal{C}$ be the cone in $\mathfrak{X}_{\mathbb{Q}}$ generated $\Gamma$, i.e., by all weights $\varpi_{i}, \varpi_{i}-\alpha_{i}$. Consider the dual cone $\check{\mathcal{C}}:=\left\{\eta \in \mathfrak{X}_{\mathbb{Q}} \mid\left(\eta, \varpi_{i}\right) \geqslant 0 \&\left(\eta, \varpi_{i}-\alpha_{i}\right) \geqslant 0\right.$ for all $\left.i\right\}$.

Theorem 4.2. The cone $\check{\mathcal{C}}$ is generated by the non-simple positive roots.
Proof. 1) Let $\mathcal{K}$ denote the cone in $\mathfrak{X}_{\mathbb{Q}}$ generated by $\Delta^{+} \backslash \Pi$. It is easily seen that $\mathcal{K} \subset \check{\mathcal{C}}$. Indeed, let $\delta \in \Delta^{+} \backslash \Pi$. Then $\left(\varpi_{i}, \delta\right) \geqslant 0$. If $s_{i} \in W$ is the reflection corresponding to $\alpha_{i} \in \Pi$, then $s_{i}\left(\varpi_{i}\right)=\varpi_{i}-\alpha_{i}$ and $s_{i}(\delta) \in \Delta^{+}$. Hence $\left(\varpi_{i}-\alpha_{i}, \delta\right)=\left(\varpi_{i}, s_{i}(\delta)\right) \geqslant 0$.
2) Conversely, we prove that $\check{\mathcal{K}} \subset \mathcal{C}$. We construct a partition of $\check{\mathcal{K}}$ into finitely many simplicial cones, and show that each cone belong in $\mathcal{C}$.

Suppose that $\mu \in \mathfrak{X}$ and $(\mu, \delta) \geqslant 0$ for all $\delta \in \Delta^{+} \backslash \Pi$. Set $J=J_{(\mu)}=\left\{j \in[r] \mid\left(\mu, \alpha_{j}\right)<0\right\}$. We identify the elements of $[r]$ with the corresponding nodes of the Dynkin diagram of $G$. The obvious but crucial observation is that the nodes in $J$ are disjoint on the Dynkin diagram. (Such subsets $J$ are said to be disjoint.)

Claim. The $r$ vectors $\varpi_{i}(i \notin J), \varpi_{j}-\alpha_{j}(j \in J)$ form a basis for $\mathfrak{X}_{\mathbb{Q}}$.
Proof. Since $J$ is disjoint, $\prod_{j \in J} s_{j} \in W$ takes these $r$ vectors to $\varpi_{1}, \ldots, \varpi_{r}$.
Thus, we can uniquely write

$$
\mu=\sum_{i \notin J} b_{i} \varpi_{i}+\sum_{j \in J} a_{j}\left(\varpi_{j}-\alpha_{j}\right), \quad b_{i}, a_{j} \in \mathbb{Q} .
$$

By the assumption, $\left(\mu, \alpha_{i}\right) \geqslant 0$ if and only if $i \notin J$. For $j \in J$, we have $\left(\mu, \alpha_{j}^{\vee}\right)=-a_{j}<0$, i.e., $a_{j}>0$. It is therefore suffices to prove that all $b_{i}$ are nonnegative. Choose any $i \notin J$. Let $J[i]$ denote the set of all nodes in $J$ that are adjacent to $i$. Set $w_{i}=\prod_{j \in J[i]} s_{j} \in W$. (If $J[i]=\varnothing$, then $w=1$.) Then $w_{i}\left(\alpha_{i}\right)$ is either $\alpha_{i}$ or a non-simple positive root. In both cases, we know that $\left(\mu, w_{i}\left(\alpha_{i}\right)\right) \geqslant 0$. On the other hand, this scalar product is equal to $\left(w_{i}(\mu), \alpha_{i}\right)=b_{i}\left(\varpi_{i}, \alpha_{i}\right)$. Thus, each $b_{i}$ is nonnegative and $\mu \in \mathcal{C}$.

Remark 4.3. The argument in the second part of proof shows that $\mathcal{C}$ is the union of simplicial cones parametrised by the disjoint subset of the Dynkin diagram. For any such set $J \subset[r]$, let $\mathcal{C}_{J}$ denote the simplicial cone generated by $\varpi_{i}(i \notin J)$, $\varpi_{j}-\alpha_{j}(j \in J)$. Then

$$
\mathcal{C}=\bigcup_{J \text { disjoint }} \mathcal{C}_{J} .
$$

Here $\mathcal{C}_{\varnothing}$ is the dominant Weyl chamber and $\mathcal{C}_{J}=\left(\prod_{j \in J} s_{j}\right) \mathcal{C}_{\varnothing}$. Furthermore, if $\mathcal{C}_{J}^{o}=$ $\left\{\sum_{i \notin J} b_{i} \varpi_{i}+\sum_{j \in J} a_{j}\left(\varpi_{j}-\alpha_{j}\right) \mid a_{j}>0, b_{i} \geqslant 0\right\}$, then

$$
\mathcal{C}=\bigsqcup_{J \text { disjoint }} \mathcal{C}_{J}^{o}
$$

Remark 4.4. It is a natural problem to determine the edges (one-dimensional faces) of the cone $\check{\mathcal{C}}$. We can prove that, for $\mathbf{A}_{r}$ and $\mathbf{C}_{r}$, the edges are precisely the roots of height 2 and 3. However, this is no longer true in the other cases, because a root of height 4 is needed.

## 5. Irreducible representations of simple Lie algebras With polynomial ALGEBRAS OF $U^{\prime}$-INVARIANTS

In this section, we obtain the list of all irreducible representations of simple Lie algebras with polynomial algebras of $U^{\prime}$-invariants. If $G=S L_{2}$, then $U^{\prime}$ is trivial and so is the classification problem. Therefore we assume that $\mathrm{rk} G \geqslant 2$.

Theorem 5.1. Let $G$ be a connected simple algebraic group with $\mathrm{rk} G \geqslant 2$ and $\mathrm{R}(\lambda)$ a simple $G$-module. The following conditions are equivalent:
(i) $\mathbb{k}[\mathrm{R}(\lambda)]^{U^{\prime}}$ is generated by homogeneous algebraically independent polynomials;
(ii) Up to the symmetry of the Dynkin diagram of $G$, the weight $\lambda$ occurs in Table 1.

For each item in the table, the degrees and weights of homogeneous algebraically independent generators are indicated. We use the numbering of simple roots as in [24].

Table 1: The simple $G$-modules with polynomial algebras of $U^{\prime}$-invariants

| $G$ | $\lambda$ | Degrees and weights of homogeneous generators of $\mathbb{k}[\mathrm{R}(\lambda)]^{U^{\prime}}$ |
| :--- | :---: | :---: |
| $\mathbf{A}_{r}(r \geqslant 2)$ | $\varpi_{r}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right)$ |
| $\mathbf{A}_{2 r-1}$ | $\varpi_{2}^{*}$ | $\left(1, \varpi_{2}\right),\left(2, \varpi_{4}\right), \ldots,\left(r-1, \varpi_{2 r-2}\right),(r, \underline{0})$, |
| $(r \geqslant 2)$ |  | $\left(1, \varpi_{2}-\alpha_{2}\right),\left(2, \varpi_{4}-\alpha_{4}\right), \ldots,\left(r-1, \varpi_{2 r-2}-\alpha_{2 r-2}\right)$ |
| $\mathbf{A}_{2 r}$ | $\varpi_{2}^{*}$ | $\left(1, \varpi_{2}\right),\left(2, \varpi_{4}\right), \ldots\left(r-1, \varpi_{2 r-2}\right),\left(r, \varpi_{2 r}\right)$, |
| $(r \geqslant 2)$ |  | $\left(1, \varpi_{2}-\alpha_{2}\right),\left(2, \varpi_{4}-\alpha_{4}\right), \ldots,\left(r, \varpi_{2 r}-\alpha_{2 r}\right)$ |
| $\mathbf{B}_{r}$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),(2, \underline{0})$ |
| $\mathbf{B}_{3}$ | $\varpi_{3}$ | $\left(1, \varpi_{3}\right),\left(1, \varpi_{3}-\alpha_{3}\right),(2, \underline{0})$ |
| $\mathbf{B}_{4}$ | $\varpi_{4}$ | $\left(1, \varpi_{4}\right),\left(1, \varpi_{4}-\alpha_{4}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right),(2, \underline{0})$ |
| $\mathbf{B}_{5}$ | $\varpi_{5}$ | $\left(1, \varpi_{5}\right),\left(1, \varpi_{5}-\alpha_{5}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right),\left(2, \varpi_{2}\right),\left(2, \varpi_{2}-\alpha_{2}\right)$, |
|  |  | $\left(3, \varpi_{5}\right),\left(3, \varpi_{5}-\alpha_{5}\right),\left(4, \varpi_{3}-\alpha_{3}\right),\left(4, \varpi_{4}\right),\left(4, \varpi_{4}-\alpha_{4}\right),(4, \underline{0})$ |
| $\mathbf{C}_{r}$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right)$ |
| $\mathbf{D}_{r}(r \geqslant 4)$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),(2, \underline{0})$ |
| $\mathbf{D}_{5}$ | $\varpi_{5}$ | $\left(1, \varpi_{4}\right),\left(1, \varpi_{4}-\alpha_{4}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right)$ |


| $G$ | $\lambda$ | Degrees and weights of homogeneous generators of $\mathbb{K}[\mathrm{R}(\lambda)]]^{U^{\prime}}$ |
| :--- | :---: | :---: |
| $\mathbf{D}_{6}$ | $\varpi_{6}$ | $\left(1, \varpi_{6}\right),\left(1, \varpi_{6}-\alpha_{6}\right),\left(2, \varpi_{2}\right),\left(2, \varpi_{2}-\alpha_{2}\right)$, |
|  |  | $\left(3, \varpi_{6}\right),\left(3, \varpi_{6}-\alpha_{6}\right),\left(4, \varpi_{4}-\alpha_{4}\right),(4, \underline{0})$ |
| $\mathbf{E}_{6}$ | $\varpi_{1}$ | $\left(1, \varpi_{5}\right),\left(1, \varpi_{5}-\alpha_{5}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right),(3, \underline{0})$ |
| $\mathbf{E}_{7}$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),\left(2, \varpi_{6}\right),\left(2, \varpi_{6}-\alpha_{6}\right)$, |
|  |  | $\left(3, \varpi_{1}\right),\left(3, \varpi_{1}-\alpha_{1}\right),\left(4, \varpi_{2}-\alpha_{2}\right),(4, \underline{0})$ |
| $\mathbf{F}_{4}$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right),\left(3, \varpi_{2}-\alpha_{2}\right),(2, \underline{0}),(3, \underline{0})$ |
| $\mathbf{G}_{2}$ | $\varpi_{1}$ | $\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),(2, \underline{0})$ |

Before starting the proof, we develop some more tools. Let $V$ be a simple $G$-module. A posteriori, it appears to be true that if $\mathrm{rk} G>1$ and $\mathbb{k}[V]^{U^{\prime}}$ is polynomial, then so is $\mathbb{k}[V]^{U}$. Therefore our list is contained in Brion's list of representations with polynomial algebras $\mathbb{k}[V]^{U}[4$, p. 13]. However, we could not find a conceptual proof. The following is a reasonable substitute:

Proposition 5.2. Suppose that $\mathbb{k}[V]^{U^{\prime}}$ is polynomial and $G \neq S L_{3}$. Then $\mathbb{k}[V]^{G}$ is polynomial.
Proof. As in Section 3, consider the $\Gamma$-grading $\mathbb{k}[V]^{U^{\prime}}=\bigoplus_{\gamma \in \Gamma} \mathbb{k}[V]_{\gamma}^{U^{\prime}}$.
If $G \neq S L_{3}$, then $T U^{\prime}$ is epimorphic and hence $\mathbb{k}[V]_{0}^{U^{\prime}}=\mathbb{k}[V]^{G}$. Furthermore, since $\Gamma$ generates a convex cone, $\bigoplus_{\gamma \neq 0} \mathbb{k}[V]_{\gamma}^{U^{\prime}}$ is a complementary ideal to $\mathbb{k}[V]^{G}$. In this situation, a minimal system of homogeneous generators for $\mathbb{k}[V]^{G}$ is a part of a minimal system of homogeneous generators for $\mathbb{k}[V]^{U^{\prime}}$.

Remark 5.3. For $G=S L_{3}$, it is not hard to verify that the only representations with polynomial algebras of $U^{\prime}$-invariants are $\mathrm{R}\left(\varpi_{1}\right)$ and $\mathrm{R}\left(\varpi_{2}\right)$. The reason is that $U^{\prime}$ is the maximal unipotent subgroup of $S L_{2} \subset S L_{3}$. Therefore, by classical Roberts' theorem, we have $\mathbb{k}[V]^{U^{\prime}} \simeq \mathbb{k}\left[V \oplus \mathbb{R}_{1}\right]^{S L_{2}}$, where $V$ is regarded as $S L_{2}$-module and $\mathrm{R}_{1}$ is the tautological $S L_{2}$-module. All $S L_{2}$-modules with polynomial algebras of invariants are known [19, Theorem 4], and the restriction of the simple $S L_{3}$-modules to $S L_{2}$ are easily computed.

Let $U_{\star}^{\prime}$ denote a $U^{\prime}$-stabiliser of minimal dimension for points in $R(\lambda)$. Recall that Lemma 2.5 and Remark 2.6 provide effective tools for computing $U_{\star}^{\prime}$ and $\operatorname{dim} U_{\star}^{\prime}$. If a ring of invariants $\mathfrak{A}$ is polynomial, then elements of a minimal generating system of $\mathfrak{A}$ are said to be basic invariants.

Proposition 5.4. Suppose that $\mathbb{k}[R(\lambda)]^{U^{\prime}}$ is polynomial and $G \neq S L_{3}$. Then

$$
\operatorname{dim} R(\lambda) \leqslant 2 \operatorname{dim}\left(U^{\prime} / U_{\star}^{\prime}\right)+\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right) .
$$

In particular, $\operatorname{dim} \mathrm{R}(\lambda) \leqslant 2 \operatorname{dim} U^{\prime}+\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)$.

Proof. We consider $\mathbb{k}[R(\lambda)]$ with the usual $\mathbb{N}$-grading by the total degree of polynomial. Then $\mathbb{k}[R(\lambda)]^{U^{\prime}}$ is $\Gamma \times \mathbb{N}$-graded, and it has a minimal generating system that consists of (multi)homogeneous polynomials. Let $f_{1}, \ldots, f_{s}$ be such a system. By Theorem 3.6(ii), we have

$$
\sum \operatorname{deg}\left(f_{i}\right)=q\left(\mathrm{R}(\lambda) / / U^{\prime}\right) \leqslant q(\mathrm{R}(\lambda))=\operatorname{dim} \mathrm{R}(\lambda)
$$

On the other hand, $s=\operatorname{dim} \mathrm{R}(\lambda)-\operatorname{dim}\left(U^{\prime} / U_{\star}^{\prime}\right)$ and the number of basic invariants of degee 1 equals $a(\lambda):=\prod_{i=1}^{r}\left(\left(\lambda, \alpha_{i}^{\vee}\right)+1\right)$. All other basic invariants are of degree $\geqslant 2$, and we obtain

$$
a(\lambda)+2\left(\operatorname{dim} \mathrm{R}(\lambda)-\operatorname{dim}\left(U^{\prime} / U_{\star}^{\prime}\right)-a(\lambda)\right)=a(\lambda)+2(s-a(\lambda)) \leqslant q\left(\mathrm{R}(\lambda) / / U^{\prime}\right) \leqslant \operatorname{dim} \mathrm{R}(\lambda)
$$

Hence $\operatorname{dim} \mathrm{R}(\lambda) \leqslant 2 \operatorname{dim}\left(U^{\prime} / U_{\star}^{\prime}\right)+a(\lambda)$.

## Proof of Theorem 5.1.

(i) $\Rightarrow$ (ii). The list of irreducible representations of simple Lie algebras with polynomial algebras $\mathbb{k}[V]^{G}$ is obtained in [11]. By Proposition 5.2, it suffices to prove that the representations in [11, Theorem 1] that do not appear in Table 1 cannot have a polynomial algebra of $U^{\prime}$-invariants. The list of representation in question is the following:
I) $\left(\mathbf{A}_{r}, \varpi_{3}\right), r=6,7,8 ;\left(\mathbf{A}_{7}, \varpi_{4}\right) ;\left(\mathbf{A}_{2}, 3 \varpi_{1}\right) ;\left(\mathbf{B}_{r}, 2 \varpi_{1}\right), r \geqslant 2 ;\left(\mathbf{D}_{r}, 2 \varpi_{1}\right), r \geqslant 4 ;\left(\mathbf{B}_{6}, \varpi_{6}\right) ;$ $\left(\mathbf{D}_{8}, \varpi_{8}\right) ;\left(\mathbf{C}_{r}, \varpi_{2}\right), r \geqslant 4 ;\left(\mathbf{C}_{4}, \varpi_{4}\right)$; the adjoint representations.
II) $\left(\mathbf{A}_{5}, \varpi_{3}\right) ;\left(\mathbf{C}_{3}, \varpi_{2}\right) ;\left(\mathbf{C}_{3}, \varpi_{3}\right) ;\left(\mathbf{D}_{7}, \varpi_{7}\right) ;\left(\mathbf{A}_{r}, 2 \varpi_{r}\right)$.

- For list I), a direct application of Proposition 5.4 yields the conclusion. For instance, consider $\mathrm{R}\left(\varpi_{3}\right)$ for $\mathbf{A}_{r}$ and $r=6,7,8$. Here $a\left(\varpi_{3}\right)=2$ and the second inequality in Proposition 5.4 becomes

$$
(r+1) r(r-1) / 6 \leqslant r(r-1)+2
$$

which is wrong for $r=6,7,8$. The same argument applies to all representations in I), except $\left(\mathbf{A}_{2}, 3 \varpi_{1}\right)$. (The $S L_{3}$-case is explained in Remark 5.3.)

- For list II), the inequality of Proposition 5.4 is true, and more accurate estimates are needed.
Consider the case $\left(\mathbf{A}_{5}, \varpi_{3}\right)$. Here $\operatorname{dim} \mathrm{R}\left(\varpi_{3}\right)=20$, $\operatorname{dim} U^{\prime}=10$ and $U_{\star}^{\prime}=\{1\}$. Hence $\operatorname{dim} \mathrm{R}\left(\varpi_{3}\right) / / U^{\prime}=10$. Assume that $\mathrm{R}\left(\varpi_{3}\right) / / U^{\prime} \simeq \mathbb{A}^{10}$. The number of basic invariants of degree 1 equals $a\left(\varpi_{3}\right)=2$. It is known that $\mathbb{k}\left[R\left(\varpi_{3}\right)\right]^{G}$ is generated by a polynomial of degree 4. This is our third basic invariant. Since we must have $\sum_{i=1}^{10} \operatorname{deg} f_{i} \leqslant \operatorname{dim} \mathrm{R}\left(\varpi_{3}\right)=$ 20, the only possibility is that the other 7 basic invariants are of degree 2. However, $\mathcal{S}^{2}\left(\mathrm{R}\left(\varpi_{3}\right)\right)=\mathrm{R}\left(2 \varpi_{3}\right) \oplus \mathrm{R}\left(\varpi_{1}+\varpi_{5}\right)$, which shows that the number of basic invariants of degree 2 is at most $\operatorname{dim} R\left(\varpi_{1}+\varpi_{5}\right)^{U^{\prime}}=4$. This contradiction shows that $\mathbb{k}\left[R\left(\varpi_{3}\right)\right]^{U^{\prime}}$ cannot be polynomial. Such an argument also works for $\left(\mathbf{C}_{3}, \varpi_{2}\right),\left(\mathbf{C}_{3}, \varpi_{3}\right)$, and $\left(\mathbf{D}_{7}, \varpi_{7}\right)$.

For $\left(\mathbf{A}_{r}, 2 \varpi_{r}\right), r \geqslant 2$, we argue as follows. Here the algebra of $U$-invariants is polynomial, and the degrees and weights of basic $U$-invariants are $\left(1,2 \varpi_{1}\right),\left(2,2 \varpi_{2}\right), \ldots,\left(r, 2 \varpi_{r}\right)$,
$(r+1,0)$ [4]. Using Theorem 2.4, we conclude that $\mathbb{k}\left[R\left(2 \varpi_{r}\right)\right]^{U^{\prime}}$ can be generated by $3 r+1$ polynomials whose degrees are $1,1,1 ; 2,2,2 ; \ldots ; r, r, r ; r+1$. This set of polynomials can be reduced somehow to a minimal generating system. Here $\operatorname{dim} \mathrm{R}\left(2 \varpi_{r}\right) / / U^{\prime}=$ $\operatorname{dim} \mathrm{R}\left(2 \varpi_{r}\right)-\operatorname{dim} U^{\prime}=2 r+1$. Assume that $\mathrm{R}\left(2 \varpi_{r}\right) / / / U^{\prime} \simeq \mathbb{A}^{2 r+1}$. Then we can remove $r$ polynomials from the above (non-minimal) generating system such that the sum of degrees of the remaining polynomials is at most $\operatorname{dim} \mathrm{R}\left(2 \varpi_{r}\right)=(r+1)(r+2) / 2$. This means that the sum of degrees of the $r$ removed polynomials must be at least $r(r+1)$. Clearly, this is impossible.
(ii) $\Rightarrow$ (i). All representations in Table 1 have a polynomial algebra of $U$-invariants whose structure is well-understood. Therefore, using Theorem 2.4 we obtain an upper bound on the number of generators of $\mathbb{k}[R(\lambda)]^{U^{\prime}}$. On the other hand, we can easily compute $\operatorname{dim} R(\lambda) / / U^{\prime}$. In many cases, these two numbers coincide, which immediately proves that $\mathbb{k}[R(\lambda)]^{U^{\prime}}$ is polynomial. In the remaining cases, we use a simple procedure that allows us to reduce the non-minimal generating system provided by Theorem 2.4. This appears to be sufficient for our purposes.

- For $G=\mathbf{D}_{5}$, the algebra $\mathbb{k}\left[R\left(\varpi_{5}\right)\right]^{U}$ has two generators whose degrees and weights are $\left(1, \varpi_{4}\right)$ and $\left(2, \varpi_{1}\right)$. By Theorem $2.4, \mathbb{k}\left[R\left(\varpi_{5}\right)\right]^{U^{\prime}}$ can be generated by polynomials of degrees and weights $\left(1, \varpi_{4}\right),\left(1, \varpi_{4}-\alpha_{4}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right)$. On the other hand, the monoid $\mathcal{M}\left(\mathrm{R}\left(\varpi_{5}\right)\right)$ is generated by $\varpi_{1}, \varpi_{4}$. Therefore a generic stabiliser $U_{\star}$ is generated by the root unipotent subgroups $U^{\alpha_{2}}, U^{\alpha_{3}}$, and $U^{\alpha_{5}}$ (see Remark 2.6). Hence $\operatorname{dim} U_{\star}=6$ and $\operatorname{dim} U_{\star}^{\prime}=3$. Thus $\operatorname{dim} \mathrm{R}\left(\varpi_{5}\right) / / U^{\prime}=16-15+3=4$ and the above four polynomials freely generate $\mathbb{k}\left[R\left(\varpi_{5}\right)\right]^{U^{\prime}}$.

The same method works for $\left(\mathbf{A}_{r}, \varpi_{r}\right) ;\left(\mathbf{A}_{r}, \varpi_{r-1}\right) ;\left(\mathbf{B}_{r}, \varpi_{1}\right) ;\left(\mathbf{C}_{r}, \varpi_{1}\right) ;\left(\mathbf{D}_{r}, \varpi_{1}\right) ;\left(\mathbf{B}_{r}, \varpi_{r}\right)$, $r=3,4 ;\left(\mathbf{E}_{6}, \varpi_{1}\right)$.

There still remain four cases, where this method yields the number of generators that is one more than $\operatorname{dim} \mathrm{R}(\lambda) / / U^{\prime}$. Therefore, we have to prove that one of the functions provided by Theorem 2.4 can safely be removed. The idea is the following. Suppose that $\mathbb{k}[R(\lambda)]^{U}$ contains two basic invariants of the same fundamental weight $\varpi_{i}$, say $p_{1} \sim\left(d_{1}, \varpi_{i}\right), p_{2} \sim\left(d_{2}, \varpi_{i}\right)$. Consider the corresponding $U^{\prime}$-invariant functions $p_{1}, q_{1}, p_{2}, q_{2}$, where $q_{j} \sim\left(d_{j}, \varpi_{i}-\alpha_{i}\right), j=1,2$. Assuming that $p_{j}, q_{j}$ are normalised such that $e_{i} \cdot q_{j}=p_{j}$, the polynomial $p_{1} q_{2}-p_{2} q_{1} \in \mathbb{k}[\mathrm{R}(\lambda)]$ appears to be $U$-invariant, of degree $d_{1}+d_{2}$ and weight $2 \varpi_{i}-\alpha_{i}$. If we know somehow that there is a unique $U$-invariant of such degree and weight, then this $U$-invariant is not required for the minimal generating system of $\mathbb{k}[R(\lambda)]^{U^{\prime}}$. For instance, consider the case $\left(\mathbf{F}_{4}, \varpi_{1}\right)$. According to Brion [4], the free generators of $\mathbb{k}\left[\mathrm{R}\left(\varpi_{1}\right)\right]^{U\left(\mathbf{F}_{4}\right)}$ are $\left(1, \varpi_{1}\right),\left(2, \varpi_{1}\right),\left(3, \varpi_{2}\right),(2, \underline{0}),(3, \underline{0})$. Theorem 2.4 provides a generating system for $\mathbb{k}\left[R\left(\varpi_{1}\right)\right]^{U^{\prime}\left(\mathbf{F}_{4}\right)}$ that consists of eight polynomials, namely:

$$
\left(1, \varpi_{1}\right),\left(1, \varpi_{1}-\alpha_{1}\right),\left(2, \varpi_{1}\right),\left(2, \varpi_{1}-\alpha_{1}\right),\left(3, \varpi_{2}\right),\left(3, \varpi_{2}-\alpha_{2}\right),(2, \underline{0}),(3, \underline{0}) .
$$

Here the weight $\varpi_{1}$ occurs twice and $2 \varpi_{1}-\alpha_{1}=\varpi_{2}$. Therefore the polynomial $\left(3, \varpi_{2}\right)$ can be removed form this set. Since $\operatorname{dim} \mathrm{R}\left(\varpi_{1}\right)=26$, $\operatorname{dim} U^{\prime}=20$, and $\operatorname{dim} U_{\star}^{\prime}=1$, we have $\operatorname{dim} R\left(\varpi_{1}\right) / / U^{\prime}=7$. The other three cases, where it works, are $\left(\mathbf{B}_{5}, \varpi_{5}\right),\left(\mathbf{D}_{6}, \varpi_{6}\right),\left(\mathbf{E}_{7}, \varpi_{1}\right)$.

This completes the proof of Theorem 5.1.
Remark 5.5. For a $G$-module $V$, let $\operatorname{ed}\left(\mathbb{k}[V]^{U^{\prime}}\right)$ denote the embedding dimension of $\mathbb{k}[V]^{U^{\prime}}$, i.e., the minimal number of generators. Since $\mathbb{k}[V]^{U^{\prime}}$ is Gorenstein, ed $\left(\mathbb{k}[V]^{U^{\prime}}\right)-\operatorname{dim} V / / U^{\prime}=$ $\operatorname{hd}\left(\mathbb{k}[V]^{U^{\prime}}\right)$ is the homological dimension of $\mathbb{k}[V]^{U^{\prime}}$ (see [19]). The same argument as in the proof of $(\mathrm{ii}) \Rightarrow$ (i) shows that for $\left(\mathbf{C}_{3}, \varpi_{2}\right),\left(\mathbf{C}_{3}, \varpi_{3}\right)$, and $\left(\mathbf{A}_{5}, \varpi_{3}\right)$, we have $h d\left(\mathbb{k}[V]^{U^{\prime}}\right) \leqslant 2$. Hence these Gorenstein algebras of $U^{\prime}$-invariants are complete intersections. We can also prove that $\mathbb{k}\left[\mathrm{R}\left(2 \varpi_{r}\right)\right]^{U^{\prime}\left(\mathbf{A}_{r}\right)}$ is a complete intersection, of homological dimension $r-1$. This means that a postreriori the following is true: If $G$ is simple, $V$ is irreducible, and $\mathbb{k}[V]^{U}$ is polynomial, then $\mathbb{k}[V]^{U^{\prime}}$ is a complete intersection. It would be interesting to realise whether it is true in a more general situation.

Remark 5.6. There is a unique item in Table 1, where the sum of degrees of the basic invariants equals $\operatorname{dim} R(\lambda)$ or, equivalently, the sum of weights equals $2 \rho-|\Pi|$. This is $\left(\mathbf{B}_{5}, \varpi_{5}\right)$. By Theorem 3.6(iii), this is also the only case, where the set of points in $\mathrm{R}(\lambda)$ with non-trivial $U^{\prime}$-stabiliser does not contain a divisor.

## REFERENCES

[1] D. AKhiezer and D. PANYUSHEV. Multiplicities in the branching rules and the complexity of homogeneous spaces, Moscow Math. J. 2(2002), 17-33.
[2] J.-F. Boutot. Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88, no. 1 (1987), 65-68.
[3] M. Brion. Sur la théorie des invariants, Publ. Math. Univ. Pierre et Marie Curie, no. 45 (1981), pp. 1-92.
[4] M. Brion. Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple. Ann. Inst. Fourier 33(1983), 1-27.
[5] M. Brion. Classification des espaces homogènes sphériques. Compositio Math. 63, no. 2 (1987), 189-208.
[6] M. Brion, D. Luna and Th. Vust. Espaces homogènes sphériques, Invent. Math. 84(1986), no. 3, 617632.
[7] F. Grosshans. Hilbert's fourteenth problem for nonreductive groups. Math. Z. 193 (1986), no. 1, 95103.
[8] F. Grosshans. "Algebraic homogeneous spaces and Invariant Theory", Lect. Notes Math. 1673, Berlin: Springer, 1997.
[9] Д. ХАджИЕв. Некоторые вопросы теории векторных инвариантов, Матем. Сборник т.72, № 3 (1967), 420-435 (Russian). English translation: Dž. HADžIEV. Some questions in the theory of vector invariants, Math. USSR-Sbornik, 1(1967), 383-396.
[10] J. Horvath. Weight spaces of invariants of certain unipotent group actions, J. Algebra 126 (1989), 293299.
[11] V.G. Kac, V.L. Popov and E.B. Vinberg. Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, C. R. Acad. Sci. Paris, Sér. A-B, 283, no. 12 (1976), A875-A878.
[12] G. Kempf. Cohomology and convexity, in "Toroidal Embeddings", Lect. Notes Math. 339 (1973), 4252.
[13] F. KNOP. Über die Glattheit von Quotientenabbildungen, Manuscripta Math. 56(1986), no. 4, 419-427.
[14] H. KRaft. "Geometrische Methoden in der Invariantentheorie", Aspekte der Mathematik D1, Braunschweig: Vieweg \& Sohn, 1984.
[15] E. Miller and B. Sturmfels. "Combinatorial commutative algebra", Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005. xiv+417 pp.
[16] D. Panyushev. A restriction theorem and the Poincare series for $U$-invariants, Math. Annalen 301(1995), 655-675.
[17] D. PANYUSHEV. Complexity and rank of actions in invariant theory, J. Math. Sci. (New York) 95(1999), 1925-1985.
[18] K. Pommerening. Observable radizielle Untergruppen von halbeinfachen algebraischen Gruppen, Math. Z. 165(1979), 243-250.
[19] V.L. Popov. Homological dimension of algebras of invariants, J. Reine Angew. Math., Bd. 341 (1983), 157-173.
[20] В.Л. Попов. Стягивания действий редуктивных алгебраических групп, Матем. Сборник т. 130 (1986), 310-334 (Russian). English translation: V.L. PopOV. Contractions of actions of reductive algebraic groups, Math. USSR-Sbornik 58 (1987), 311-335.
[21] T.A. Springer. On the invariant theory of $S U_{2}$, Indag. Math. 42(1980), no. 3, 339-345.
[22] R.P. Stanley. Hilbert functions of graded algebras, Adv. Math., 28(1978), 57-83.
[23] R.P. StanLEy. Combinatorics and commutative algebra, 2nd ed., (Progress in Math. vol.41). Basel: Birkhäuser, 1996.
[24] Э.В. ВинБерг, В.В. ГорБацевИч, А.Л. ОНИщИк. "Групnы и алгебры Ли - 3", Современные проблемы математики. Фундаментальные направления, т. 41. Москва: ВИНИТИ 1990 (Russian). English translation: V.V. Gorbatsevich, A.L. Onishchik and E.B. Vinberg. "Lie Groups and Lie Algebras" III (Encyclopaedia Math. Sci., vol. 41) Berlin Heidelberg New York: Springer 1994.
[25] Э.Б. ВинБерг, В.Л. Попов. Об одном классе аффинных квазиоднородных многообразий, Изв. АН СССР. Сер. Матем., 36(1972), 749-764 (Russian). English translation: E.B. Vinberg and V.L. POPOV. On a class of quasihomogeneous affine varieties, Math. USSR Izv., 6(1972), 743-758.

Independent University of Moscow, Bol'shoi Vlasevskil per. 11, 119002 Moscow, Russia Institute for Information Transmission Problems, B. Karetnyi per. 19, Moscow 127994
E-mail address: panyush@mccme.ru
URL: http://www.mccme.ru/~panyush

