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THE MODIFIED DIAGONAL CYCLE ON THE TRIPLE PRODUCT OF A POINTED CURVE

Benedict H. Gross
Chad Schoen

Let k& be a field, and let X be a smooth, projective, geometrically connected curve

over k. Let Y = X3 be the triple product of X over k, and let
Ay = {(z,2,2) 1z € X}

denote the image of X in ¥ under the diagonal embedding.
More generally, if e i1s a k-rational point of X, define the following subvarieties of

codimension 2 in Y

Ay = {(z,z,e) 2 € X}

Az = {(z,6,2) : & € X}
Aoz = {(e,z,z) : z € X}
Ay ={(z,e,¢) 1z € X}
As = {(e,x,e) : z € X}
Ay = {(e,e,z) : x € X}.

In this paper, we will study the codimension 2 cycle A, on Y, which is defined by
(0.1) Aeg = Aoz — A1 — Az — Aoz + Ay + Ay + Ag.

We call A, the modified diagonal cycle, and show it is homologous to zero on Y. We
also show that the class of A, in the Chow group C H%(Y') depends only on the class of e
in CHY(X) = Pic(X), and the class of A, in the Griffiths group Gr?(Y) is independent
of the choice of e.

The plan of this paper is as follows. In §1 we review the equivalence relations on
cycles and operations on Chow groups. In §2 and §3 we study a natural projector P, on
the Chow ring of the product variety ¥ = X" over k; this depends on the choice of a
k-rational point ¢ on X, and we define A, as the image under P, of the diagonal cycle.

In §4 we study A, on Y = X" when X is a rational, elliptic, or hyperelliptic curve, and
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m §5 consider the associated 1-cycle in the Jacobian J of X. For several reasons, the case
n = 3 is the most interesting one.

The remainder of this paper is concerned with the case where & is either a number
field, or the function field of an algebraic curve S. If k is a number field, we let S = SpecA
where A is the ring of integers of £. We assume that the curve X over k has a regular, semi-
stable model X over S in which each fibral component is non-singular. In §6 we construct
a regular model ) over S with general fibre Y = X 3 via an explicit desingularization of
the triple product X* over S. In §7 we show that the modified diagonal cycle A, on Y can
be extended to a codimension 2 cycle on Y which is numerically equivalent to zero in the
normalization of each fibre ).

In §8 we use these results to show that the Beilinson-Bloch height pairing (A, T« (A¢))
1s well defined, where 7 is a self-correspondence of Y over k, and depends only on the action
of 7. on the regular 3-forms of Y. Some conjectures on this pairing, when X is a Shimura
curve, were presented in [G-K, §13].

Acknowledgement: The first author would like to thank J. Harris and the second
author would like to thank M. Schlessinger for helpful discussions. The second author is
grateful for support from the NSF (DMS-90-14954) and from the Max-Plank-Institut fiir
Mathematik in Bonn.

Notational convention: Given a ficld k, we denote by k a separable closure of k.



1. Chow groups.

Let Y be a smooth, projective, geometrically connected variety over k. We review the
various equivalence relations of cycles on YV [Fu; 1.3, 10.3, 19.3].

Forr > 0, let Z"(Y) be the free abelian group generated by the irreducible subvarieties

of codimension 7 on ¥ over k. Let
(1.1) Z"(Y)rat CZ"(Y)aig C Z7(Y hom C Z7(Y)

be the subgroups of cycles which are rationally equivalent to zero, algebraically equivalent
to zero, and homologically equivalent to zero respectively.

We recall that, informally speaking, a cycle is rationally equivalent to zero if it 1s of
the form ['g — 'y, where T’y is a family of effective codimension r cycles on Y parametrized
by t € P!. Similarly, a cycle is algebraically equivalent to zero if it is of the form I'y — Ty,
where [’y is a family of effective codimension r cycles on Y parametrized by points on an
irreducible curve over k. If £ = C, a cycle is homologous to zero if it is in the kernel of the

cycle class map to integral cohomology.
cle 1 Z7(Y) — H¥(Y,Z(r)).

In general, the homologically trivial cycles are those in the kernel of the f-adic cycle class
mappings [Mi, VI1.9]

z7Yy— ] HY(Y @F2Zr)).
ts£char(k)

If we take the quotients of the groups in (1.1) by the subgroup Z"(Y );a, we get the

associated filtration of the Chow group:

(1.2) 0C CH"(Y)aig C CH"(Y )pom C CHT(Y).
The quotient

(1.3) Gr7(Y) = CH'(Y Jhom/CH™(Y )urg

is called the Griffiths group of codimension r cycles. We also define CH(Y) = CH"(Y)
and Gr,(Y) = Gr"(Y), where s +r = dim(Y').
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If f:Y — Y'is a proper morphism, it induces a push-forward map f. : CHy(Y) —
CH,Y') [Fu, 14]. If g : Y’ = Y is a flat morphism, it induces a pull-back map
g* : CH"(Y) - CH"(Y') [Fu, 1.7). Both f. and ¢* preserve the filtrations (1.2) of
the respective Chow groups [Fu, 10.3].

The mtersection product

CH (YYRCH*(Y)— CH™(Y)
(1.4)
a®pfr— (a-p)
defined in [Fu, 16.1.1] gives CH*(Y') = @ 5,CH"(Y) the structure of a commutative,
associative ring, with unit the class of ¥ in CH®(Y) = Z. The pull-back ¢* : CH*(Y) —

CH*(Y") is a ring homomorphism.



2. A projector on product varieties.

Let X be a smooth, projective, geometrically connected curve over k. Let n > 0 be
an integer, and let ¥ = X" be the n-fold product of X over k. Then Y is smooth and
projective of dimension n; by convention X? is the point Spec k.

Let e be a k-rational point of X. Our aim is to define a cycle P, in Z*(Y x V'), which
acts as a projector on the Chow ring of Y. For any subset T of {1,2,..-,n}, let T be the
complementary set {1,2,--,n} — T. Write pp : X® — XC2r4TD) for the usual projection,
and let ¢r : XCard(T) 5 X" he the inclusion which uses the point e to fill in the missing

coordinates. For example, if T = {1,2} we have
{pT($1,$2,"',$n) :(-'l"l,l'g)
gr(zy,z2) = (21,29,6,€, -, €).

Let Pr be the graph of the morphism gropy : Y — Y, viewed as a cycle of codimension

nonY XY, and define
(21) P, = Z(_l)Cnrd T-'PT
T
in Z*"(Y xY). The sum is taken over the 2" distinct subsets T' of {1,2,---,n}. For

example, when n = 3, we find
(2.2) Po= Pz —Pia -~ Pi3—Poa+ P+ P+ Py — Py

The Chow group CH*(Y xY) is an associative ring under the operation of composition
aof of correspondences. Any class o« € CH"™(Y xY) gives an endomorphism of the graded
abelian group CH*(Y'), by the formula o, = (pra2).(a - pry), and the map CH™*(Y xY) —
End(CH*(Y)) is a ring homomorhism [Fu, 16.1.2].

PRoprOSITION 2.3. We have P,o P, = P, in CH™(Y x Y'), hence (P,), is a projector on
the graded Chow group CH*(Y) = CH*(X").

Proor: If § and T are subsets of {1,---,n}, we have Ps o Pr = gsopsoqgropr =

gsnt © psnT = Psnr. Hence Pgo P, = Z(—I)C“d T". Pgnp. This sum is zero, except in
T

the case when § = {1,2,.--,n}. Hence P, o P, = P,.



We now compute the action of (P). on the homology of ¥ = X, using the Kiinneth
decomposition H.(Y) = H.(X)®".

PROPOSITION 2.4. Leth = h1®hy®- - ®h, be a homology classon Y, where hy € Hy, (X).

Then
h ifddy--d, #0

(Pe)xh={ .
0 ifdidy---d, =0.

Proor: We sketch the argument when & = C and H, is singular homology. In this
case, we may represent the classes h; by oriented, compact manifolds M; in X(C) with
dim (M;) = d;. If pp maps the product M; x -+ x M,, to a manifold of smaller dimension,

then (Pr).h = 0. Otherwise, (Pr).h = h.
Let S be the subset of {1,---,n} consisting of those indices where d; = dim M; = 0.
The above argument gives

0 if7'NS" isnon-empty

Pr).h =
(Pr)sh {h T C 8.

Thus (Pe).h = Z (—1)Card T". h. This sum is zero unless S is the empty set, i.e.,
T™T'C$s
dydy -+ -dn #0.

COROLLARY 2.5. (P,). annihilates the homology groups Ho(Y'), H1(Y), Ho(Y), ..., H,—1(Y)
and maps H,(Y) onto the Kiinneth summand H,(X)®".

By Poincaré duality, we may identify H;(Y) with H**~i{(Y").

COROLLARY 2.6. (P.), annihilates the cohomology groups H**(Y), H*"~1(Y), -, H**(Y),

and maps H"(Y') onto the Kiinneth summand H'(X)®".



3. The modified diagonal cycle.
Let A(X) denote the image of X in Y = X" under the diagonal embedding. If T is
a non-empty subset of {1,2--- ,n}, Ar = (Pr).(A(X)) is a l-cycle on Y. The modified
diagonal cycle is defined by
Ae= > (=1 T Ay,
T
non-empty

When n = 3, this agrees with the definition {0.1), using (2.2).
PRrROPOSITION 3.1. For all n > 3, the cycle A, is homologous to zeroon ¥ = X7,

PRrROOF: The class of A, in CH (YY) = CH" 1(Y) is equal to (P.).(A(X)), as (Py)«

annihilates 1-cycles. But the cycle class mapping
cl: CH" YY) — H™ (Y, Zy(n — 1))

commutes with the action of (Pe).. Thus

cl(Ae) = cl((Fe).(A(X)))

= (Pe).cl(A(X)).

Since (P,), anihilates H2"~2 once n > 3 by (3.1), this class is zero.
NOTE 3.2: When n = 2 the cycle A, = A3 — Ay — Ay has cohomology class in H!(X)®2,
by (2.6). When n > 4, an argument similar to the proof of Proposition 3.1 shows that,
when & = C, A, has trivial Abel-Jacobi class in the intermediate Jacobian associated to
the cohomology group H*"3(Y).
NoTE 3.3: If y = (z1,...,%,) is a k-rational point of Y, the 0-cycle (P,).(y) is homolog-
ically equivalent to zero on Y once n > 1, and has trivial class in the Albanese variety of

Y oncen > 2.

Finally, we investigate the dependence of the class A, in CH,(Y) = CH" }(Y) on
the choice of a point e of X. First, note that there is a canonical cycle P of codimension

non X xY xY = X2+ guch that

(3.4) P =P, on Y xY.

ex Y xY



Indeed, let Pp(zx) be the map gropr : ¥ — Y, defined using a variable point z for e.
Then the T*"-component of P is the subvariety = x (graph of Pr(z)) of X x Y2,

Write pro : X x Y2 5 YV (respectively prig @ X X Y? 5 X x Y’) for projection on
the second (respectively first and third) factors. From P and the diagonal A(X) in Y, we

construct a class

A = (pria).(P - pr3(A(X)))

of dimension 2 on X X Y, with the property
A =A, onY.
exY

The class A in turn determines a homomorphism
(3.5) A,:CH'(X) = Pi¢(X) — CH™'(Y)

defined by A, = (pry)«(A - pry). We have A,(e) = A.. Since A, is compatible with
algebraic equivalence, it maps the subgroup CH'(X)ajg = Pic®(X) to CH" (Y )aig. We

have therefore shown

PROPOSITION 3.6. Let d = ¥mf(e)e be a divisor on X. The class of the cycle Ay =
Em(e)A. in CH\(Y) depends only on the class of d in Pic(X). The class of Ay in the
Griffiths group Gri(Y) = CH{(Y )hom/CH (Y )aig depends only on the integer degd =
2 mle).

By the Proposition, once n > 3 there is always a canonical cyclic subgroup in the
Griffiths group Gri(Y) = Gr*~}(X") generated by the class of Ay for d a k-rational
divisor class of minimal degree. An interesting geometric question is to determine the

locus of curves X where this cyclic group has finite order.



4. Rational, elliptic, and hyperelliptic curves.
We retain our previous notation: X is a curve with a k-rational point e, ¥ = X", and

A, 1s the modified diagonal 1-cycle on Y.

PROPOSITION 4.1. Assume that n > 2. If X has genus zero, the cycle A, is rationally

equivalent to zeroon Y.

PROOF: For n > 3 we have seen that A, is homologous to zero. When H!'(X) = 0, this
is also true for n = 2 by (3.2). Since X has a k-rational point, X = P! and ¥ = (P!)".
Writing X = eU A' and taking products gives rise to a “cellular decomposition” of Y in
the sense of [Fu, 1.9.1]. It follows that C H*(Y") is generated by the classes of the product
subvarieties Vi x ... x V,,, where each V; is either e or P!. There are .2" such subvaricties.
By the Kiinneth formula, their cohomology classes form a basis for H2*(Y @ k,Z(e)).

(Here £ is a prime distinct from the characteristic of k£.) Thus the cycle class map
CH*(Y) — H*(Y @ k,Z(s))
is injective. The proposition follows.

Before considering the case when X is elliptic or hyperelliptic, we remark that A, is

closely related to a cycle T, on the n*' symmetric product S*X. Let
(4.2) f: X" — S"X

be the covering map, which is Galois with group the symmetric group £, on n letters, and

define a l-cycle on S"X by

(4.3) Ie = fu(Ae).

We then have the formula

(4.4) FAT) = F(fud) = nl- A,

in Z*"1(Y).



PROPOSITION 4.5. Assume that n > 3. If X has genus one, then I, is rationally equivalent

to zero on S"X. If X has genus two, then ', is algebraically equivalent to zero on S™X.

PROOF: Write J = Pic®(X) and view S"X as the space of effective degree n divisors on

X. When n > 2g — 1 the morphism
T 9" X — J, (D) = Ox(D — ne)

is a P*~9-bundle [Fu, 4.3.3]. Wehave CH*(S"X) = CH*(J)[£]/P(¢), where § € CH'(S"X)

is represented by the image of
h:S" X — S"X, h(D)=D+e

and P is a monic polynomial of degree n — g + 1 [Fu, 3.3(b)). Since CH*(J) = Z and
CH'(J) = Pic(J)(k), we find:

CH"™'(§"'X) = " Pic(J)(k) g=1
(4.6) CH" Y (S"X) = ¢ Z® " Pic(J) (k) g=1

CH™ Y (S"X) =" ?Pic(J) (k)@ " *CHYJ) g¢g=2.

Since dim J < 2, homological and algebraic equivalence coincide in CH*(J). Hence
they coincide in CH®*(5"X). Since I'. is homologically trivial by Proposition 3.1, it is

algebraically equivalent to zero on S"X.

To treat the case g = 1 define
W ={(z1,...,zn) E X" :&; = e for somei }

and consider the commutative diagram

%4 i, X"
1 fl W f
STX ﬁ) S"X
wlv Tn—1 wl- Tn
X = X

The class €772 € CH, (8"~ X) is represented by the section of 7,_; which maps a point

z to the divisor & + (n — 2)e. Thus (4.6) implies that
(ﬂ'n_l), N CHH_I(SH_IJY)hom — CH] (X)ho:n

and h* . Can.--l(Snx)hom - CHn—J(sn—lx)hom
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are isomorphisms. Intersection theory [Fu, 6.2(a)] gives

(771:—1)* o h*(rc) = (7711—1)* oh* Of*(Ae) = (Trn—l)t Q (_ﬂW)t o i*(Ae)-

But i*(A,) = 0 since the restriction of A, to each irreducible component of W is zero.

COROLLARY 4.7. If n > 3 and g = 1, then n!A, =0 in CH((Y).
Ifn > 3 and g = 2, then nlA, =0 in Gr(Y).

We can make these results slightly more precise when n = 3, using an explicit con-

struction, which also applies to hyperelliptic curves .

PROPOSITION 4.8. Assume that the curve X has an involution o over k which fixes the

point ¢, and that the quotient curve has genus zero. Then T, =0 in CH?(S3X).

PrOOF: Let u : (X,e) — (P',00) be the associated covering of degree 2, with Galois
group {1,0). We define three functions on three surfaces in S*X, such that the sum of

their divisors is equal to the cycle T,.

If we view points of S¥*X as effective divisors of degree k on X, the three surfaces are

the images of the maps:

Tyl S*X — S$°X
Ty +xy +— Tyt arte

e X? — S$3X
(z1,22) +— 1 42,

rg X x P! —  S§3X .
(z,t)  — a+u*(t).

The respective functions are given by

filzr +22) = (ulz) = ulzg))™? on §%X
fa(zr,z2) = u(wy) — uzg) on X?
f3(z,t) = (u(z) —t)7! on X x P

Let D; = (r;)«(div(fi)) be the associated 1-cycles on S3X.
We find that
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Dy =4{z+2e} —2{z+z° + e} — {2z + ¢}
Dy ={3z}+ {22+ 27} — 2{2x + e} — 2{x + 2¢}
D3y ={z+2e}+2{z+2" +e} — {22+ 27}
Hence Dy + Dy + D3 = {3z} — 3{2x + e} + 3{x + 2¢} = I'.. Since the D; are rationally

equivalent to zero in CH?(S*X), so is T,.

COROLLARY 4.9. If the curve X is hyperelliptic, then 62, = 0 in Gr?(X?), for all points

eon X.

Following [Ce] and [Co-vG], one can give examples of non-hyperelliptic curves X of

genus 3 where A, has infinite order in the Griffiths group Gr? of ¥ = X3,



5. One-cycles on the Jacobian.
In this section, X is a curve of genus g > 1. Let J = Pic®(X) be the Jacobian of X,
and let
1 X = J

(5.1) z — Ox(z—e¢)

be the standard inclusion. Let [m] : J — J be the isogeny “multiplication by m”.
The map ¢ of (5.1) induces a map

" S'X — T

2
(52) Ti+2T2 4+ 4+, — Ox(ei+z2+-+2,—n-¢€)

and it is reasonable to study the class ("), in CH,(J). The following is obvious from

the definitions.

PROPOSITION 5.3. Let i(X) = 1.X be the one-cycle on J given by the image of (5.1).
Then for n > 1, the direct image (1" o f)«Ae = (i1").I'e of the modified diagonal cycle in
CH,(J) is equivalent to the sum

n—I1

Z(—l)k (:) [ — k].i(X).

k=0

This sum Is homologically trivial if n > 3, and, when k = C, it is Abel-Jacobi trivial once

n > 4.

NOTE 5.4: The one cycle Sc(m)[m],i(X) is homologically trivial if and only if Ec(m)m? =
0; if k = C and Tc(m)m?® = 0, it also has trivial class in the intermediate Jacobian. The

subgroup spanned by these cycles in the Griffiths group Gr,(J) has been studied in {Co-
VG].
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6. Good models for triple products of curves.

Let U be a smooth, proper, geometrically connected variety over the fraction field &k
of a discrete valuation ring R with residue field ky. Let 7 € R be a uniformizing parameter
and ko a separable closure of ky. One conjectures that there exists a regular scheme
U, proper and flat over Spec R, with general fiber U/. This is known to hold when the
dimension of U is 1. We show in this section that if i does exist and if its special fiber is
sufficiently nice, then there is an explicit proceedure for constructing regular models over
Spec R for powers of U. One application of this result will be the construction of a regular
model for the triple product of a curve.

Let n — 1 denote the dimension of U over k. For any local ring O, we write O for a

strict hensehization.
DEFINITION 6.1: A scheme U over R is said to be a good model for U provided
(1) U is proper and flat over Spec R with generic fiber U.

(2) The special fibre Uy = U Xspec r Spec ko is geometrically connected and every irve-

ducible component is a non-singular variety.

(3) For each closed point wg € U there is an integer r satisfying 1 < r < n and an

isomorphism of R-algebras
(R['Ll 3etey mn](fr,;z:l,...,r,.)/(a"l---mr - 77)) T @H,ucy

In particular i is a regular scheme [Mi,3.17].

EXAMPLE 6.2: Let X be a smooth, projective, geometrically connected curve of genus
g > 1 over a number field k. Let 04 denote the integers of k. The theory of semi-stable
reduction (cf. [Si, VII 5.4] and [Des]) shows that there is a finite extension k' of k with
the property that the base change X/k’ has a regular semi-stable model X' over oj.
The notions of good model and regular semi-stable model are closely related. The main

differences are:

(1) The irreducible components of the special fiber are allowed to have ordinary double

point singularities in a semi-stable model but not in a good model.
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(2) An irreducible component of the special fiber which has genus 0 must meet the re-
maining components in at least two points in a semi-stable model. There is no similar
requirement for good models.

Given a good model one obtains a model which is both good and semi-stable by
contracting genus 0 curves which meet the other fiber components at only one point. Given
a regular semi-stable model one eliminates ordinary double points in fiber components by
adjoining a square root of the uniformising parameter to the base and blowing up. If all
components of the special fiber are defined over the residue field, then this gives a model
which is both good and semi-stable. In particular, X has a such model over the integers

in some finite extension field & of k.

Let U; and U, be two smooth proper geometrically connected varieties over &£ with
good models U; and U; over R. The fiber product Wy := Uy Xspec r Uz fails to be
regular precisely at the points (u1,us) where each u; is a singular point of the closed fiber
(Ui)o = Ui Xspec B Spec ko. Thus W, is not a good model for Uy x Uz unless Uy or Us is
smooth over Spec R.

In order to describe a proceedure for desingularizing Wy to obtain a good model, we
begin by fixing an (arbitrary) ordering of the components of the special fiber, Wi Xspecr
Spec kg. The total number of components will be denoted by j. For 0 < 57 < j define
inductively v; : W;11 — W; to be the blow up centered at the strict transform of the j-th

component of the special fiber. Define
o; : W; = W, O; =%j—10...07.

When 7 = j+ 1 we write simply

o: W - W
PROPOSITION 6.3. W is a good model for Uy x Us.

Proor: Define n; = dim.(U;) + 1. Given integers ¢, 7, s, satisfying

(6.4) 1<g<r<n and 1< s < ng,
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AT T )

define the ring

Agrs = R1, o nygng /(X1 g = Ty T1oor = Ty g1 Ty ts)s
(6.5)

and the ideal m= (7, 21,...,Tn,4+nqy) C Ag rs-

Fix a closed point w € W;. We claim that there are integers ¢, r, s, satisfying (6.4) and an

isomorphism of R-algebras
(6.6) Ow;j w0 ™ (Agrs)m ™

A neighborhood of w € W, is isomorphic in the étale topology to a neighborhood of the

origin in Spec of

R[Il, ...,(II,”]/(.’C]...(BP - TT) ®I'? R[$n1+1, -"a$111+n2]/($111+1°--:Bnl+s — ‘JT).

Thus (6.6) holds when j = 1. (Take » = ¢.) Assume now that (6.6) holds for j and deduce
that it holds for jy 4- 1. To simplify the notation we write A for A, . ,. The components of

the special fiber of W; which contain w correspond to the components of

(6.7) Spec A/m ~ Spec f_‘uo[ml,...,:1:,,1.*.,,,2]/(:::1....'1:,,,.1:1...:1:,. — Ty 41-Tryts)
These are defined by the ideals
(iyTn,+1)4, 1<1<r1<1<s and z;id, r<i1<q.

In order to analyze the local effect of blowing up components of the special fiber of W; we
may work with the strict henselization and thus with A. Blowing up a component defined
by a principal ideal will have no effect. Note that (2;, 2, +1)Am is a principal ideal if either
r=1lors=1 Ifr >1ands > 1, then the blow up along the ideal (z;,z,,4+1)Am is
covered by two charts given by the spectra of the following subrings of the total ring of
fractions of Agy:

(6.8.A)

=15, N . R AN ! . = .
STIR[X 1y s By ooy Ty g ) (T @ g 41 = Ty T @y = T ee Ty el Tag s )

where ¢} = @;/%n, 41 and

(6.8.B) STIR[T1, ey Tyt oo Tiytng )/ (F10Tg — Ty 1o FieBr — Tyl cen Ty g Ty o)
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where ), ., = @n,41/2i and § = A —m. The closed points of (6.8.A) are in bijective

correspondence with the elements of kg. The corresponding maximal ideals have the form

LI ’ . r
Ng = (namla vy Ti—14 Ty — (L,$,+],...,(Ln1+n2), a € R.

In case ¢ € 7R we may take @ = 0 and the henselization is isomorphic to (Agir r9=1)m -
If @ is a unit in R, then 2 is a unit in the local ring at n,. A change of variables in (6.8.A)
such as 2| = zyz} then gives that the henselization is isomorphic to (A4 ,—1,s—1)m ~. The
situation with (6.8.B) is similar. It follows by induction that (6.6) holds for all 7.

We now show that W satisfies (6.1) (3). It suffices to show that when 7 = j+ 1 then
either r = 1 or s = 1 in (6.6). If this were not the case then (zy,Zn,+1)Am would be a non-
principal ideal which defines a component of the closed fiber of SpecAy — SpecR. This
component would correspond either to the strict transform of a component C; of the closed
fiber of W or to a new component which was introduced in the process of blowing up. We
may rule out the second possiblity since the local description of the blow-ups shows that
these do not introduce new components in the closed fiber. Now the strict transform of
C; in W; is the center for the blow-up «v; : W;1, — W;. The inverse image of C; in Wj,
is defined by a locally principal sheaf of ideals. The same holds for the strict transform in
every Wj» with 5/ > j 4+ 1. This contradicts (z1,zn,+1)Am being non-principal.

Finally we check that the components of the special fiber of W; are non-singular
varieties. From the explicit description of Spec A/m (6.7), this holds locally in the
étale topology. It remains to check that there are no singular irreducible components
of Wj Xspec r Spec ko which become unions of non-singular varieties when the base field is
extended from ko to ko. In fact this pathology will not occur, because of the tautological
bijection between components of W; Xspec rRSpec kg and components of Wy Xspec RSpec ko

and the non-singularity of the latter.

REMARK 6.9: The resolution of singularities described above is not canonical, since it
depends on a choice of ordering of the components of the special fiber. Experience shows
that resolutions which are canonical (eg. [Schj, [De3,5.5]) introduce components with

multiplicity greater than one in the special fiber. Thus they do not yield good models.
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COROLLARY 6.10. Let Uy,...,U; be smooth, proper, geometrically connected k-varieties

with good models U, ...,U; over R. Then U, x ... x U; has a good model over R.
PRrOOF: Use the previous proposition and induction on /.

Now let X be a curve over k with a good model X over R. The corollary gives us one
construction of a good model for X* over R. A slightly different proceedure, which turns
out to be more convenient in certain circumstances, is given in the next proposition.

Write Xo = X Xspecr Spec ko for the special fiber of X and %3 for the 3-fold fiber

product of X over Spec R.

PROPOSITION 6.11. Fix an ordering of the components of the special fiber X§ C X3,
Blow up X* along the ideal sheaf of the first component. Then blow up the resulting
scheme along the ideal sheaf of the strict transform of the second component. Continue,
proceeding one component at a time in increasing order. When the strict transform of the

last component has been blow up, the result is a good model for X3.

PROOF: The argument is similar to the proof of (6.3) and will only be sketched. For 2 a

closed point of X,

Ox = (R{z1, 29}/ Tl_ 2; — 1),

1

where j = 1 or 2, depending on whether Xy is regular or not at @. Thus the strictly local

ring at a non-regular point of X* has the form

(612A) (R[.’E],372,.’133,.’!:4,.’125]/(:1311112 — T, T1T2 — .1:3.7:4)) -
or
(6.12.B) (R[x1, w2, T3, T4, T5,76)/(T172 — 7,102 — X324, T3 22 — Tg)) .

The former situation has been treated in the proof of (6.3). The main step remaining is to
analyze the blow up of the spectrum of the second ring along the component of the closed

fiber defined by the ideal (2, z3,25). This is left to the reader.
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Write Y for the good model of X3 constructed in (6.11) and write Yp for the special
fiber. Some facts about the structure of Yy will be helpful in our construction of the local
height pairing for the modified diagonal cycle on X3, Write {C, }ac, for the components
of Xo and let Sp be the set of singular points of Xg. Recall that the good model Y
depends on a choice of ordering of the set A3 which indexes the components of X3. For

a = (a,a’,a"”) € A} let V, denote the component of Yo which maps to the component

Zy:=Cy x Cor x Cyr of X3.

The following result will be useful in the construction of the height pairing.

LEMMA 6.13. The scheme Yy over kg depends only on Xy. It is independent of the choice

of discrete valuation ring R and good model X with special fiber Xj.

Proor: (Sketch.) Y is a global normal crossing divisor on Y whose components are
in bijective correspondence to those of X3. We will describe how the components of Y;
are obtained from those of X. Once this is done, it is not difficult to describe how the
components intersect.

The main point is to show that the effect of each blow-up in the resolution ) — X° on
the components of the special fiber may be described explicitly in terms of the special fiber
itself without reference to the ambient scheme. Consider first o, : X% - 8 , the blow-up of
X° along the ideal sheaf of a component Z, of X§. It is straightforward to check that the
strict transform of Zy, b # a in %% is isomorphic to Zy blown up along ZyNZ,. With more
effort we can describe the component ZAg of the special fiber of A3 corresponding to Z,.
Let Z; denote the closed subscheme of X3 consisting of all components except Z,. Write .J
for the ideal sheaf of the (reduced) singular locus of the divisor Z; N Z, on Z,. One checks
using the explicit coordinates (6.12) that the inverse image ideal sheaf [Ha,I1.7.12.2] of .J
on Zg is an invertible sheaf of ideals. It is then not difficult to deduce from the universal
property of blow-ups and the explicit geometry of the map ZQ — Z, that Zg is isomorphic
to the blow-up of Z, along J. Thus all the components of the special fiber of % may be
explicitly described in terms of X3. The same holds for how the components meet. Later

blow-ups in the resolution process (6.11) are similar.

We give an explicit description of the components V, of Yg, leaving the details of the
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verification to the reader: The natural map
(6.14) Vo= Za

is a birational morphism which is biregular except possibly above points ¢ = (¢, ¢o,¢3)
with at least two of the ¢;’s contained in Sy. Let b be the minimal element in the ordered
set A3 such that the component Zy contains ¢. The nature of the fiber over ¢ depends upon
the dimension of Z, N Z; at ¢. If this dimension is 2, then (6.14) is locally an isomorphism.
If the dimension is 1, then the fiber is isomorphic to P1. If Z, = Z,, then the fiber is either
P! or P2 blown up at 3 non-colinear points, depending on whether exactly two or all three
of the ¢;’s are contained in Sp. Finally, the dimension of Z, N Zy at ¢ can be 0 only when
all ¢;’s lie in S, in which case the fiber of (6.14) is again isomorphic to P? blown up at 3

non-colinear points.

EXAMPLE 6.15: Suppose that Xy consists of only two components C, and C,/. Then a
good model Y can be constructed from %2 in two steps. First blow up the component
Z(s,4,a) then blow up the strict transform of Z(,s 4 41y Of course the recipe (6.11) calls
for us to continue to blow up the remaining six components of the special fiber. However

these are now all Cartier divisors, so the last six blow ups have no effect.

We end this section with a lemma which gives information needed later about the
desingularization process in (6.3). We recall the notations of (6.3) and write pr; : W; —

U;,1 € {1,2}, for the projection on the i’th factor.
LEMMA 6.16. pr;oo;: W; — U, is proper and flat.

PROOF: The properness is clear. For the flatness it is useful to know that W; is Cohen-
Macaulay. It suffices to check that each A, ., Cohen-Macaulay. This is the case because
Ag rs 1s the quotient of a regular ring by an ideal generated by a regular sequence (6.5).
Since U; 1s regular and W; is Cohen-Macaulay, flatness of pr; o o; will follow if all
fibers have the same dimension [Al-K1,V.3.5]. To verify this we begin with a closed point
(w1,u2) € Uy Xspecr Ua. Suppose r components of (U;)o pass through uy and s compo-

nents of (U)o pass through up. Locally in the étale topology Uy X specr Us is given by
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Spec(Arrs) (6.5) and each blow up by (6.8). Choose w € a]-_]((ul,ug)) so that at any
stage in the sequence of blow ups o; : W; — Uy Xspecr Uz, the image of w in any chart
of the form (6.8.A) (respectively (6.8.B)) is the maximal ideal (7, &1,..., 2%, ..., Ty, 4n,) (ve-
spectively (7,%1,...,%,41s.sTny4ny)). We divide those components of the special fiber
of Uy Xspecr Uz which are centers of non-trivial blow-ups dominated by Oy, , into two
classes depending upon whether the image of w lies in a chart of type (6.8.A) or (6.8.B).
Write s — s’ (respectively r — ') for the number of components in the first (respectively
second) class. After reindexing the z;’s if necessary, the corresponding ideals in 4, ;. ; have

explicit descriptions:

(6.17.A) {(ziy@n,4+1) 18" +1 <1 <s; iisafunction of l and 1 <: <7},
respectively
(6.17.B) {(zi,zn,+1) i7"+ 1 <i<r; lis afunction of t and 1 <1 < s}.

Define B; = {l € {s'+1,...,s} : (z:,zn41) appears in (6.17.A)}. By applying (6.8.A) s— s’
times and (6.8.B) » — ' times, we find that the map pr; o ¢; corresponds to the map of

R-algebras:

Rlzy,zn, /(212 — 1) =
R[:’L‘l, ...,.1:,,1+,,2]/(:‘C1...$,-18n1+3f+1...$n,+3 — T, T1...Tp = .’Enl+]....’b‘nl+3l),

T; = z; whenr <1 <ny; T — T H Tp,+1, Wwhenl <7<
e

Here [];cq, @n,+1 = 1 if PBi is empty. The fiber over the maximal ideal (7,21, ..., 25, ) is

Spec of

kO[xlu---:$111+112]/(33.I(Hf€‘131mn]+l)v vmf‘(HIE‘p.—mn1+l)s Trtly v 3Tny,
T ZpTny4e'+1---Tny+sy 1.0y —.’D,,,1+1...:L‘n1+sf),
which clearly has dimension n; — 1, independent of what partition P of {s' + 1,...,s}

occurs and what the values of r, v/, s, or s’ may be. Since any component of the fiber

(pr1 0 0;)7"(u1) includes a point w as above, all fibers have dimension n, — 1.
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7. Extending the modified diagonal cycle to the regular model.

We retain the notation of the previous section: X is a smooth, projective, geometri-
cally connected curve over the discretely valued field k, and X is a good, semi-stable model
(assumed to exist) for X over the valuation ring R. Recall that 4y indexes the components
of Xo and that an ordering of A3 has been fixed. Let ¥ — X* be the good model of X3
over R constructed in (6.11) and let Yp be the special fibre of Y over the residue field kq.

Let Vi be the normalization of Yy over kg and write
(7.1) . AV —Yo— )Y
for the composition of the natural maps over R.

We assume that X has a section e over R. Write e for its generic point on X and eg
for its specialization to Xg. Then eg 1s not a singular point, so the component Cy of Xg
containing eg is uniquely defined. Let A, be the modified diagonal cycle on X* constructed
in §3, and extend A, to a cycle A, of codimension 2 on Y by sumiming with appropriate
signs the closures of the irreducible components Ajg3, Ajj, A; of Ae in Y.

When Xj is not smooth, this naive extension of A, is not sufficient to construct a
local height pairing. We must find an extension which pulls back to a numerically trivial

cycle on Vp. In this section, we will prove that such a modification of A, exists in many

cases, such as when k is a global field.

PROPOSITION 7.2. Assume that the residue field kg is finitely generated over the prime
field. Then there is a rational divisor z € Z'(V,)®Q such that \*(A,—).(z)) is numerically
equivalent to zero in Z*(V,) @ Q.

REMARK 7.3: The class A, — \(z) in Z2())@Q also extends A, on the general fibre. The
construction of the divisor z in Proposition 7.2 is indirect, through cohomology, via the

truth of the Tate conjectures for V4. It would be useful to have a more explicit construction.
To begin the proof of 7.2, we describe the cycle

ée: = Z(_l)ITH.IQTa
T
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where the sum is over non-empty subsets T' C {1,2,3}. The closure of ecach Ar C X? in
X® may be identified with the image of a closed immersion d7 : ¥ — ¥3. For example,
when T = {1,2}, ér is the diagonal on the first two factors of X* and projection onto the
section e on the third factor. '

Define St to be the set of all s € 55 such that
(1) 87(s) is a singular point of X* and

2} If a is the minimal element in the ordered set A2 for which s € Z,, then Z, N ép(X
0 a .3

is zero dimensional at s.

LEMMA 7.4. Let op : X1 - X be the blow-up of X along Sp. Then ér o op lifts to a

closed immersion

§r: X3 Ap C .

PRrOOF: If §7(z) € X% is a regular point, then the resolution Y — X% does not change
d7(X) in a neighborhood of §(z). If §r(z) € X* is not regular, then z € Sg. We have an
explicit description of the strict henselization of X and hence of X¥* (6.12). Using these
coordinates we check that the inverse image ideal sheaf 67.'Iz, [Ha,I1.7.12.2] is the ideal
sheaf of the reduced scheme Z, Né7(X). Thusif Z, Nér(X) is locally one dimensional at «,
then 67:'1 z, 1s locally an invertible sheaf and the blow-up of the ambient space along the
strict transform of Z, does not modify 7(X) near ér(z). On the other hand, if Z,Nér (%)
is zero dimensional at z, then blowing up the ambient space along the strict transform of
Z, causes d7(X) to be blown-up at é7(z). In either case, the fiber over ér(z) in the strict
transform of d1(X) is disjoint from the singular locus of the ambient scheme once the strict
transform of Z, has been blown up. Thus later blow-ups in the resolution Y — X* do not

cause further modifications of the strict transform of é7(X) above ér(z).

We may now write

(7.5) N(A) =Y Y ()T (%) - Ve

acAy T

Each exceptional P! in the special fiber of X7 has multiplicity two, since it meets the

other fiber components in two points. Such a P! is contained in exactly two Vo's and
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thus appears twice in (7.5), each time with multiplicity (—=1)IT*!. The non-exceptional
components of the special fiber of X7 are contained in a unique V, as indicated in the

following table. (Abbreviations: s.t.=strict transform, d.=diagonal).

T a multiplicity non-exceptional component in V,
{1,2,3} (a,a,a) 1 s.t. of small d. in C3
{1,2} (a,a,0) -1 s.t. of d. in C? x e
{1} (a,0,0) 1 s.t. of Cq x €} in Z,

When T' = {1, 3} or {2, 3} the situation is analogous to the case T = {1,2}. Similarly

when T = {2} or {3} the situation is analogous to the case T = {1}.

LEMMA 7.6. 1) The cycle A*(4,) in Z*(Vy) depends only on Xg and eg, not on R, X or e.
2) For z € Z'(Vy), the class \*\,z in CH*(V) depends only on X, not on R or X.

PROOF: 1) We have seen in (6.13) that ¥ depends only on Xg and is independent of R
and X. It is clear that the components of A*(A,) listed in the table depend only on Xj

and ep. It follows from (7.4) that the other components of A*(A,) depend only on Xy, ep,
and the choice of ordering on A3.
2) We have A*A,z = ¢;(L) - z, where L is the invertible sheaf on V5 whose restriction

to each component Vj is the normal sheaf Ny, sy. Since (Yo - Vo) = 0, we have (V, - V,) =

— Z(Vﬁ - V). Hence Ny, /y ~ Ovi(—Z(VQ- V.)). This line bundle is independent of R
b#a b#a

and X, as the intersections (V3 - V) in YV depend only on Xp.

LEMMA 7.7. The Galois group Gal(ko/ko) acts semi-simply on the €-adic cohomology

groups of Vo ko, and the Tate conjecture is true for Vo: the subspace H* (V; [k, Qg(i))Ga](ID/kO)

is the Q¢-span of the classes of algebraic cycles of codimension 1 on Vy /kq.

PROOF: It suffices to check this for each component V, of V4. In each case, the cohomology
is generated by the classes of algebraic cycles and H'! of curves. Hence the Galois group

acts semi-simply [Ta2].



The Tate conjecture for divisors is birationally invariant, and is true for the products
of curves [Tal; Ta2, Thm. 5.2). Hence it is true for divisors on the components V, of Vj.

It is then true for 1-cycles on these components, by the hard Lefshetz theorem.

We let N'(V;) be the Q-vector space in H* (Vg /ko, Q¢(i)) spanned by the classes of

algebraic cycles of codimension ¢ on Vp/ky. By Lemma 7.7 we have
(7.8) N'(Vo) Q@ Qr = Hz‘(Vo/Eo,Qg(i))Ga‘l(E"/kO).

The following cohomological argument, due to Beilinson [Be2, 1.1.2], gives a proof of

Propostition 7.2 in the equicharacteristic case.

LEMMA 7.9. Assume that R is the henselization of the local ring of a ko-rational point on a
smooth curve over ko. Let R be the strict hensclization of R, so Gal(R/R) = Gal(ko/ko) =
G. Assume that A is any cycle in Z*(Y )jom, and let A be its closure in Y/R. Then there
is a divisor z € ZY (Vo) ® Q such that

AMA-A(2))=0 in N?(V).

PRroOF: Let L be the fraction field of R and let L be a separable closure of L. Put

G = Gal(L/L) we then have the exact sequence in étale cohomology
0— H*(Y/L,Qe(2))g — H*(Y/L,Qe(2)) — H*(Y/L,Qe(2))¥ — 0.
We also have an exact sequence in étale cohomology with supports:

Hy,(Y/R,Qu(2)) — H*(Y/R,Qe(2)) — H*(Y/L,Qe(2)) — HY, (V/R, Qe(2)).

Deligne has defined a weight filtration W, on these groups, and has shown [De2; 1.8,

3.6.3] that ~
WoH*Y/T,Qe(2))g =0

WoHY, (V/R,Qe(2)) =0.

Hence, there is an exact sequence

WoHy, (V/R,Qe(2)) — WoH"(V/R,Q¢(2)) — WoH"(Y/L,Qe(2))° — 0.
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fumyemy

The class of A lies in WoH*(Y/R,Q¢(2)), and maps to zero in WoH*(Y/L,Q¢(2))¥,
as A is homologically trivial over L. Hence cf(A) is in the image of an element of

WoH ;‘,O(y/ R,Q¢(2)). But we have an isomorphism of weighted vector spaces
Hy, (V/R,Qq(2)) ~ Hy(Yo/ko, Qr(—2)).

Since Yp is a normal crossing divisor, the map
H*(Vo ko, Qe(1)) ~ Hy(Vo/ko,Qe(—2)) — Ha(Yo/ko, Qe(—2))

is surjective. Hence there is a class £ in H?(Vy/ko, Q¢(1)) such that A, (£) = cf(A) in
WoH4(V/ R, Qe(2)).

We may further assume that £ is fixed by G = Gal(ko/ko), as cf(A) is fixed and G
acts semi-simply on H?(Vo/ko,Q¢(1)) by Lemma 7.7. The same lemma then shows that ¢
lies in the subspace N (V) @ Q.

But A A, (€) = A\*cl(A) lies in the rational vector space N?(V;). Hence, we may
modify ¢ by an element of ker A*A, to obtain a class z € N'(V5) with A*(A — A (2)) =0

in N?(V,). This completes the proof.

To prove Proposition 7.2 in the case when R has mixed characteristic, we use Lemma

7.6 which shows that the class of A*(4,) and A* A, (z) depends only on the special fibre g,

not on the choice of R or Y. We construct an equicharacteristic deformation with the same
special fibre, using Lemma 7.11 below, and use Lemma 7.9 (with A = A.) to complete the
proof.

In fact, we have the following result, which is slightly stronger than Proposition 7.2.

Let R denote the strict henselization of R.
LEMMA 7.10. The cohomology class of the cycle A, — A (z) is zero in HY(Y/R,Q(2)).
PROOF: The image of this class under the isomorphism [Mi, V1.2.7]

it HY(Y/R,Qe(2)= H* (Yo/ko, Qe(2))

is G = Gal(ko/ko)-invariant. It is therefore contained in WoH?* (Y5 /ko, Qe(2)), and lies in

the subspace W_, if and only if it is zero. Since the pullback map
k* 1 Grg H*(Yo/ko,Qe(2)) — H*(Vo/ko, Qe(2))
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is injective, and A*(c€(A,) — A (z)) = 0, the lemma follows.

LEMMA 7.11. There is a finite, separable extension Lo of ko, and a good, semi-stable
model X over the henselization R of Lo[t] at the maximal ideal (t), whose closed fibre

X X g Lo is 1somorphic to Xg X, Lo.

ProOF: This follows from the moduli theory of stable curves, due to Deligne and Mumford
[De-Mu]. When g = 1 it is well known from Kodaira’s theory of singular fibres for elliptic

surfaces, so we will assume that g > 2.

We first contract the maximal chains of genus zero components in Xo which meet
other components in exactly 2 points to singular points in the stable curve Xg. Label the
singular points of X, which arise in this way z;,1 < i < r. Let n; be the number of curves
contracted above the point x;.

Let H denote the Hilbert scheme of genus g, tricanonically embedded, stable curves

®3

over kg. Choosing a basis for H 0(;'0,@' - ) allows us to identify X, with the fibre over
Q

h € H of the universal family of stable curves over H.

~

)&ro — Z

I

h — H

But H is smooth of dimension d = 5{y — 1) over ky. Moreover, we may choose an isomor-
phism over kg

6}]‘}, ™~ EO[[tl Yoo atd]]

so that

62;1-‘.' = EO[[tla s utd,‘lt,v]]/(uv — t,)

as O H n-algebras [De-Mu, 1.6], at each singular point z;,1 <7 <r.
Let R be the henselization of ko[t] at the maximal ideal (¢), and choose a local ho-
momorphism of ko-algebras ¢ : Oy — R such that the induced map é on completions

satisfies ord(¢(¢;)) = n,; for 1 <7 < r,

Using ¢, we define the fibre product over R

X = Spec R xy Z.
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Since

5?.:1.- ~ kol[t, u, U]]/(uv — ")

we may recover a good, semi-stable model X by [n;/2] successive blow-ups at each point
x; [De-Mu, pg. 85]. Clearly X can be defined over the henselization R of Lo[t], where Lg
is a finite extension of &y contained in ko. We have X x5 Lo ~ Xp X ko Lo, as the blow ups

at z; give rise to the chain of genus 0 curves which were contracted to obtain X from Xj.

The final result of this section extends Proposition 7.2. Let 7 € Z3(Y x Y) @ Q be a

self-correspondence. We show that Proposition 7.2 remains valid when 7, A, is substituted

for A..

PROPOSITION 7.12. Suppose given © € Z%())®Q such that \*@ =0. Let 8 € Z*(Y)Q@Q
denote the restriction of © to the generic fiber. Then there is a cycle class 7,0 € CH*(Y)®
Q satisfying \*7,0 = 0 whose restriction to the generic fiber is 7.6 € CH*(Y) ® Q.

PROOF: The proof involves extending the correspondence 7 from ¥ x ¥ to a good model
which we call W. W is constructed from Y Xspec YV as in (6.3). Write f; for the

composition

W?nypccRyﬁya

where pr;, i € {1,2} is projection on the :’th factor. Recall that f; is proper and flat (6.16).
Write 7 € Z3(W) ® Q for the closure of 7 € Z3(Y x Y) ® Q. Define

O = fu(z f1(©) € CH()) R Q,

where the intersection product takes place in CH* (W) @ Q [Gi-So,88].
To compute A (7,0) we use the following commutative diagram
Vo a2l Wo A Wo & Vo
LA Lo e LA,
y Fow = w R Yy
where ¢ : Wy — W is the normalization of the special fiber and the right hand square
is Cartesian. Thus f; is flat and the restrictions of A, ¢ and @ to connected components

of their domains are regular embeddings. Furthermore, v i1s the normalization of Wy and
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g1 1s a morphism between non-singular projective varieties. We are thus in a position to

apply intersection theory (cf. [Fu, p. 395]) to obtain:

A2,.0) =2 fou (T £1O)

= 2',,(,5'(1 -f19) [Fu, 1.7]
=fy. v (T - f1O) [Fu, 2.3(b)]

=fau(0’T 9" f1O)  [Gi-So,8.3]
=fi.v(p T grA*9) [Fu; 6.5,6.6(c)]

=0, since A*O = 0.



8. The height pairing.

We now assume X 1s defined over a number field &, and that S is the spectrum of the
ring of integers of k. We assume that X has a model X over S which is good in the sense
of (6.1) at each finite place of k (cf. Example 6.2). We may then construct a regular model
Y for Y = X? over S, following the desingularization procedure (6.11). By Proposition
7.2, the modified diagonal cycle A, on Y has an extension to a rational class on ) which
is numerically trivial in each fibral component.

Bloch [B{] and Beilinson [Bel, Be2] have conditionally constructed, for any 3-fold ¥

over k, a symmetric height pairing
(81) ( s ) . c'-EII(Y')hom ® C'HI(Y')hom — R

which promises to be an interesting tool in the investigation of cycle classes. The definition
of the pairing {a,b) is made under the hypotheses that Y has a regular model Y over S,
and that at least one of the cycles a,b has a rational extension to ) which is numerically
trivial in every fibral component.

By (7.12) and the remarks above, the pairing

(8.2) (Te(Ae), Te(A))

is well-defined, for any self-correspondences r,7' € CH*(Y x Y') of Y. In [Gr-Ku, §13] we
conjectured the value of this pairing, for X' a Shimura curve over @, in terms of the first

derivative of triple product L-functions. The following result is useful.

PROPOSITION 8.3. Let T = CH'(X x X) be the ring of correspondences on X, and assuine
that the correspondence v’ € T® C CH*(Y xY) of Y annihilates the module H°(Y,(3,).
Then for any 7 € T®, (1, (A,), 7(A,)) = 0.

ProOF: We have HO(Y,03,) = H°(X, Q4 )®® by the Kiinneth decomposition. If I C T is
the ideal which annihilates H°(X, Q) ), then the ideal of 7®® annihilating H°(Y,Q3,) is

the sun

IRTRT+TRIQT+TRTQI.
It therefore suffices to treat the case 7/ =¢ x 1 x 1 with ¢t € I.
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Since char(k) = 0, ¢ annihilates H°(X, Q%) if and only if it induces the zero endo-
morphism of the Jacobian J of X. This implies that £ is rationally equivalent to a sum of
correspondences of the form X x d or d x X, where d is a point of X [Fu; 16.1.2].

Ift=X xd, then 7/ =¢ x 1 x 1 is the graph of the morphism
f:Y—Y
(:CI:Q:Z):B:}) -— (d, $2a$3)-

Hence 7/(A¢) = fi(A.). But
fe(Di23) = fu(Ag3) = {(d,z,2)}

f:(AH) = f*(AZ) = {(d,:z:,e)}
f-(Ala) = .f*(Aii) = {(da ev:c)}
f(A) =0,

Therefore 7/(A:) = 0 in CH?*(Y )homw, so we clearly have {1,(A,), 7/ (A,)) = 0.
The case when ¢ = d x X is more interesting. Then 7, is the transpose of f,, so

T/(A.) = f*(A.) in the sense of intersection theory. But
(A1) = {(z,d,d)}
fH{Ar) = {(z,d;e)}
(D) = {(z,e,d)}
Fr(an) ={(x,ee)}

fT(Ag3) = f*(A2) = f7(A3) = 0.

Therefore

Ti(Ac) = {(xwda d)} - {(ﬂ:ada e)} — {(=, e,d)} + {(:ﬂs €, e)}

where a is the zero cycle

(8.4) a=(d,d) - (de)— (e,d) + (ec)
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on the surface X2,

Here it is not at all obvious that 7/(A.) is zero in CH(Y'), or that a is zero in
CH%*(X?). But a does have degree zero, and trivial class in the Albanese variety of X?,
so has trivial height pairing against any class in Pic®(X?) by the Néron-Tate theory [Né].

But this implies that

(To(Ae), Te(De)) = (Tu(Ae), s (3))y
= ((p23),,T*(Ac),ﬂ)x'z
=0

which completes the proof.

NOTE 8.5: The conjectures of Beilinson and Bloch predict that the class of the zero cycle
a defined in (8.4) has finite order in CHy(X?) when k is a number field and d and e are

rational points on X over k. This need not be true when k£ = C [Mu].

NoOTE 8.6: Let X = Xo(N) be the modular curve over Q and let e be the cusp ico of
X. Let T be the commutative ring generated by the Hecke correspondences T, of X,
for all m prime to N. If F = f % g« h is a triple product of newforms of weight 2 for
To(N), write (H°(Y,23%) ® R)F for the F-isotypic component of the (T%® @ R)-module
HO(X, QL )®* @ R. This has dimension one over R. Let ¢ be any R-linear combination of
Hecke correspondences T,y,, @ Ty ® T, of Y which projects to this eigencomponent, and
put Ap =tp(A.). Then by Proposition 8.3 the pairing (Ap, Ar) is well-defined. Indeed,
if t% is another projector, the difference tp — ¢} annihilates H°(Y,®) ® R. The precise
value of (Ap, Ap) is conjectured in [Gr-Ku,§13] when N is square-free: it should be zero
unless a,(f) * ap(g) * ¢,(h) = —1 for all primes p dividing N, in which case it should be

given by a simple (non-zero) multiple of the central critical derivative L'(F, 2).
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