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Biholomorphic automorphisms of Siegel
domains in C*

Vladimir V. Ezov* Gerd Schmalz**

1 Results

Let z=(27),5=1,...,n,wu=u+iv = (w) = (v +1v),j=1,...,k be
coordinates in C* x CF, k < n;

(z,2) =" ({z,2)",...,(z, 2)")

a R*-valued hermitian form and Q the Siegel domain of second kind,
associated with the form (z, z}, i.e.

Q={(z,w) e C"** :v — (2,2) € V},

where V is the cone Reonv{(z,z) : z € C"} (Rconv stands for convex
hull in R¥).
The quadric @ = {(z,w) € C*** : v — (z,z) = 0}, which is the Shilov

boundary of (2, is presumed to be nondegenerate, 1.e.

i){z,b)? = 0 for all z implies b= 0
it){z, z)? are linearly independent j = 1,...,k.

The last condition means that the cone V has nonempty interior.

*supported by Max-Planck-Institut Bonn
**supported by Deutsche Forschungsgemeinschaft



Let f: 2 — § be a proper holomorphic map. It was shown in [3, 5, 2]
that f extends to a holomorphic automorphism of its Shilov boundary @ and
this map occurs to be birational in C™** with the degree uniformly bounded
within the same (n, k), and, conversely, any local C-R diffeomorphism & :
@ — @ extends to a holomorphic automorphism of §2. This result might
be considered as a generalization of the Poincaré-Alexander theorem [4, 1]
about the extension of a local CR diffeomorphism of a hyperquadric in C*t+!.

Since @) is a homogeneous manifold (AutQ) acts transitively via the trans-
formations z — p + z, w — ¢+ w + 2i(z, p) with (p,q) € Q) then AutQ =
@ % AutoQ), where Auto( is the isotropy group of a fixed point, say the origin.

Due to the mentioned extension theorem, we may consider AutyQ as a
group of germs of biholomorphic (in our case, birational) transformations
2 :(Q,0) — (Q,0).

Auto@ is a finite dimensional Lie group iff @ is nondegenerate (see [6, 2]).

Our goal is to find the explicit description for Aute@ and hence for Aut{2.

In this paper we consider the case n = 2,k = 2. This case covers the
nonequivalent domains related to the quadrics:

Qr:vt = 2P+
v? = 7% 4 2% (1)
Q—l :‘Ul — |21|2 |z2|2
v: o= 17?4 %3 (2)
Qo: o' = |Z |2
v = 217?425 (3)

All other possible nondegenerate quadrics are isomorphic to one of these
types by means of the action of the group G*? = GL(2,C) x GL(2,R):

(07/’)((21 Z)) = p(c_lz’ C_lz)'

These 3 cases are called hyperbolic, elliptic and parabolic, a.ccordmg to
the distribution of the roots of the polynomial invariant

P(t) = det(A" + tA?),

where (z,z)" = 7, Ajz72* for ¢ = 1,2. We denote the corresponding
Siegel domains by Q_;, 0, Q.



In suitable coordinates the hyperbolic quadric takes the form v' = |2!|?,
v? = |2%|2, thus it is the direct product of two spheres S°. Due to a theorem
of Beloshapka [6] Aut, = Q, x Auto(@1) = @1 X Aute(S?) x Aute(S?),
and, hence, each element ® € Aut(f;) can be represented as a composition

® = &, 0 d,, where

e M (27 + aiwd)

®, : 2 — . ———
LR T i — (r7 + i|a?|?)w?
: N2y
1 —2ia727 — (v + t]ad|?)w?
G,:2 — p+tz

w = ¢+w+2i{z,p), Img=(p,p)

for j = 1,2, where M > 0,¢’,7/ € R,d’ € C.
For the formulation of the main result, concerning the domains {1_, and
(o it is convenient to introduce the following notation:

Let 7: C* — gl(2, C) be the lifting of the form:

2! 2! 622
() (2 ),

6=0,-1.
Let a = (a',a?) € C* r = (r!,r?) € R,

A = id = 2ir(z)r(a) = (7(r) +i1-(a)m)‘r(w) =
[ (B0 Beap
= id -2 ((z,a)2 (z,a)! )
3 ( (w,r —i{a,a))! {w,r —i(a,a))? )

(w,r - i<a,a))2 (w,r - i(ara))l

§=0,-1.
We prove the following



Theorem 1 Fach element ®; € Aut(§;5) , where § = 0,—1 admits a repre-
sentation of the form ®; = ®} 0 ®20 d}:

o f 2+ (w,a)?
(b}:z - A1(22+E ,&%2)
1
w — A'l(zz)
2! z!
o (2) = o(2)

u)l wl
u}g =P w2
where C € GL(2,C),p € GL(2,R) of the form

(A -B A
C—(B A)’ p=CC

with A, B € C in the elliptic case and

wf A0 DU
= o'® —
C=e (c ,L)’ ”‘(2Re4A /\,u.)

where ¢, A\, p € R and ( € C in the parabolic case.

PY:z > p+z
w — ¢+ w+2i{z,p),

with (P, Q) € QtS'

Remark. Without using the matrix notation the transformations take in
the parabolic case the form



2! + {w,a)!
1 — 2i(z,a)! — (w,r — i{a,a))!
2 22 + {w, a)?
1 = 2i(z,a)! — {w,r —i{a,a))
(2! + (w,@)')(2i(z,a)? + {w,r — i{a, a))?)

(1- 21’(2,1(1)1 — {w,r —i{a,a)))?

w' - e
1 = 2i(z,a)! — (w,r — i{a,a))?
w? - W’

1 —2i(z,a)! ~ (w,r — i{a, a))’
w'(2i(z,a)’ + (w,r —i{a,a))?)
(1 - 2(z,a)! — (w,r — i{a,a))!)?

. H
2z - e"“’\(eC 69“)2

2 el 0
vomee (Qe”ReC 1)’

P}z = p4z

w o g+ wt 2ifz,p),

where (p7 Q) € Qﬂa 7.1,,,.2, /\3 ¢1 e R, ali az,C € C.

In the elliptic case it is convenient to use coordinates, where ¢J_; has the
form v! = Im 2'3%,v? = Re z'7%2. Then the corresponding transformations
are

gl 2! —al(w' - iwz)
1 —a?2z' + a'a?(w! — iw?)
2 22 4 a?(w! + 1w?)
22 - - A -
1 —alz? — ala?(w! + iw?)
1 1 w! — 1w? +
w - - — ;
21 —a%z! + ala(w! — 1w?)
1 w! + 1w?

+§1 —a'z? — @ala?(w! + 1w?)
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1 1

9 1 w' —w
w? b ——— — -
21— a%z! + ala?(w! — 1w?)
1 w! + 1w?

T 21— alz? — ala}(w' + 1w?)

0
\1,2:ZH (lr(w—tw 1 z
—F{w +1
_1_ w! —iju? 1 wljitw’
21 —r(lw -lw 2 1-7(w +|
_g_ jitw
21 r(w —lw 2 I—F(w +1

putib
I M €
¢l,:z — ( _“_w )

. cos28 —sin260
w e sin28 cos 260 Ws

@ iz - ptz
w o~ g+ w+ 2z, p),
where (p,q) € Q_1,a',a%,r € C,\, p1,0,6 € R. O, = P20 UL
This theorem leads to the notion of biholomorphically invariant 2 di-
mensional ”chains”, analogous to the Chern-Moser chains on a hypersurface
which are in the case of hyperquadrics the intersections with complex lines.

A k dimensional surface I' on @ C C™** is called a chain if there exists
® € Aut@Q such that

®(T) =Ty = {(z,w) € C"** : v =0,z = 0}.
The k-plane Ty is called standard chain.

Corollary 1 Chains passing throught the origin are 2 dimensional real-an-
alytic surfaces of the form

z = A Ya,u)

w = A 'y
where A is as in Theorem 1, and u = (u',u?) with u!,u? € R.

The explicit formulas for the automorphisms provide an obvious extension
of the automorphisms.



Corollary 2 Any local CR diffeomorphism of a nondegenerate quadric in
C* eztends to a birational map of C* which degree does not exceed 2.

This Corollary provides the general theorem of Henkin and Tumanov
[3, 5] with precise estimate of the degree.

In Section 5 we give a linear representation of the automorphism groups
in C8.

This paper has been completed while the first author stayed at Max-
Planck-Institut fiir Mathematik in Bonn.

The conversation with V.Beloshapka inspired us to work on this problem
and we are deeply grateful to him.

We also would like to thank I.Lieb for useful discussions and the conditions
we have had to complete our work.

2 Motivations from the case of a hypersphere
ScC?

We show that the projective transformations which compose the isotropy
group of a hypershere can be obtained by "gradual normalization” of the
equation of S.

In the next section we will see that the considerations concerning the
hypersphere can be applied to the codimension 2 case by means of some
matrix substitution. Using this result we can define some 2 dimensional
submanifolds at the outlined quadrics Q being analogous to the Chern Moser
chains at the oulined quadrics and obtain the transformations ®}.

Let z,w = u + iv - coordinates in C?. We consider S = § C C? given by
v =|z|%

The isotropy group Ip(.S) consists of projective transformations and its
Lie algebra Z(S) is composed with vector fields:

(n+19)z + aw + 2:a2* + rwz)-a— + (2pw + 2iazw + rwz)i,
0z ow
where y,¢,7 € R,a € C.
Let @ € Ip(S5). Without loss of generality we may assume that the tangent
map to ® restricted to T;C S is identical, since any automorphism is a composi-
tion of such a & and a linear transformation of the form z — ez, w — A\w.

7



We will represent ® as composition of several maps which are not auto-
morphisms of S.

S contains a straight line ! : v = 0,z = 0. We denote by 79 : z =
p(t),w = ¢(t) - a ®-"characteristic” curve on S, the so called "chain”, that
is mapped to { by .

We take some ”natural” parameter on 4 and look for the first map ¥,
being defined in some neighbourhood of the origin in C? in the form

Uiz -z 4 p(w) 4 2T (2, w),
w — g(w) + 2ig(z,w),
T = 0(z%),9 = O(2),

choosing T and ¢ to eliminate as many as possible terms in the new
equation of S, using all given functional freedom in T and g, and leaving one
parameter a = gﬂo free.

Then we find ¥,, having the form

z M) R(w)z
w = h(w), (4)
h(u),0(u) € R,A'(0) =1,

where we use all the freedom in 8 and k to eliminate some other terms

. . . 2 . . .
in the equation , leaving = '('j_w%lo free. It is convenient to represent ¥, in

the form @, o ¥,, where ®, is some automorphism of S and for ¥, = 0.

We set @, := ¥, 0¥,

Thus, we have found a unique ® = &, 0 ®, with the prescribed set of pa-
rameters (a,7), that "kills” a number of ”observable” terms of the equation.
Since there exists an automorphism @ € Io(S) w1th the same parameters
(a,7), it follows that & = ®.

We emphasize that we "kill” only some terms of the power series, which
are easy to observe, until we "eat up” all the possible functional freedom in
the transformation and do not pay attention to the other terms.

The precise computation gives us the following:

Consider S : v = |z|? and apply the transformation



z = z+p(w)+ 2T(z,w),
w = q(w) + 2ig(z,w).

We choose T, ¢, p, ¢ such that in the new equation

v=|z[>+3 Fu(z%u)

k.

(F are polynomials in (z, 2) of degree (k,!) with coefficients analytic in
u.) the terms Fyg, Fyo, Fia, Fa2,k = 2,3, ... vanish.
We choose the parameter on v : z = p(u), w = g(u) so that

dg dp _

The vanishing of Fio,k = 1,2,... implies for T and g:

g = zp(w),
@ = UTp(w),k=23,..

where ¢, and T} are polynomials in z of degree k& with coefficients being
analytic functions of w, such that

g = g:yk, (6)

T = fj T,
k=2

We introduce the operator D acting as follows

D(F(z,w)) = ivg——i(u)

v=|z|?

We will denote the derivative §2(u) by w’

The vanishing of Fy,k =2,3,... implies then:

9



Dgi = 2iTyz —i|z|*zp (7)
Dgi = 2Tz + 2i(—i|z|)Tip + 2:(:|2)))T/p, k= 2,3, ...

On the other hand, deriving (6), we obtain

Dg, = zi|z|*2p' (8)
Dgi = 2i(i|z])Ted + 2i(2)T'5, k= 2,3, ...

It follows immediately,
Te = (202255 (w))* ",k =2,3,.. .,

and, hence, ¥7' takes the form

1 — 25 (w)z )
%ip(w)z
1 — 2i7(w)z

2 - p(w) +
w - g(w)+

Now we are going to compute the term Fj,:

1 ”(i|2|2)2 1 H( i|z|2)2 A
_ 7 Z )2 —i F4 )2 . .
+P”P( |2| ) +Pﬁ"( |2| ) + 7P (—ilz")(ill")

= 6/*p'l*

Using the vanishing of Fy3 we determine the function p. Therefore, we
have to compute Fa3:

_ . _(~1]z|?)®
Fpy = —g;(—sz)—g;'g—%l-

: 232
p"E@ + 4T, Ty — 2i2T'(—1|2]?)
= =2|'(p"z — 2z)p'*p)

+p'ZiFn +

10



Hence, p satisfies the equation

" = 2ilp/ Py,
with p(0) = 0, and, therefore,
o210

P~ %R

where > 0 and 8 € R.
From condition (5) and ¢(0) = 0, we obtain

(62£H2u _ 1)1

1
1= 5 R2

Now we will try to eliminate the term F3; by means of some transforma-
tion of the form

(e2iR’u _ 1)_

= Uw)z (10)

-

w o= w,

where |U(u)| = 1.

The vanishing condition of F33 gives the equation
WU —U'U = -6
Solving this equation we obtain
U= e—BiRQu.
After the transformation (10) the term Fi; takes the following form:
2
F33 = ""—R4|2|6.
3
By means of a transformation

" = Jh(w)z (11)

w' = h(w),

N
1

11



we shall eliminate F33. Therefore h has to satisfy the equation

LAY
R _ g% — 2R =0

Using the substitution &' = - one finds a particular solution

1
! —
W= cos?( R*u)
It follows that
_ tan(R%u)
=
Hence,
z
= —— 12
¢ cos( R*w) (12)
. tan( R*w)
w = -—RT—'—

Since we have chosen only a particular solution for eliminating Fi; we
look now for transformations of the form (11) preserving Fjs.
Then h = ho(w) has to satisfy the homogenious equation

§ (hn)‘z B

IH_ A 0. 13
Ve =0 (13)

Using the substitution A’ = % once more, we find

1

! —
o= ey

We have required that £'(0) = 1. Therefore

1
’ —
ho = (1 —ru)?
and,
1
ho =
0 1l —ru

12



The parameter = 2r and the "homogenious reparametrization” takes
the form

z
= 14
z 1 —rw (14)
. w
w = .
1 —rw

Now we can write down the explicit maps ¢, and ®;:

(<I> )_1_2 zZ4+ a
1 : = . = —
1 — t]a|*® — 2iaz
w
w = - — pr
1 — t]a|?w — 2iaz
with a = Re?.
z
d,: 2" =
1—7w
w
w = .
1 —-rw

The chain in the parameter obtained by transformation (12} is then

a

£ T TP
o

YT T iaPu

It is seen to be the intersection of the quadric with the complex plane
Z = auw.

13



3 Reduction to the hypersphere case

Let A be the algebra of complex 2 x 2 matrices. For any real § there are
commutative subalgebras A consisting of matrices of the form:

( ¢ s )
¢ ¢

Since § is real, the following conjugation is correctly defined:

¢t 8¢ ¢t 8¢’
¢ ¢ )\
Notice that any of these algebras with real structure is equivalent to one
of the following: A_;, Ao, A,.

Now we consider the equation defining the hypersphere in the algebras
A_q, Ao, A;. We obtain

( W ) ) ( 212+ 8277 8(z2 + 272") ) (15)

U'J ’Ul 2122 +z221 |zl|2 +6|z‘2|‘2

These equations define @, Qo, @1 for § = 1,0, —1 respectively.
Substituting in the automorphisms ¢, and ®; of the hypersphere ¢ =
z,w,a,r by

fl 6{2
& e
we obtain automorphism’groups of real dimension 6.
Now we can write down the equations of the chains being analogous to
the Moser Chern chains. These chains are the 2 dimensional surfaces which

can be mapped by an automorphism to the plane v = 0,z = 0.
They have the form

z = (1-iaau)'au

w = (1-iaau) u.

14



It follows that they are the intersections of the quadric with special com-
plex 2-planes

z = aw,

where a € A;s, the "matrix lines”.

In the next section we will compute the groups of linear automorphisms.
Adding these groups we get automorphism groups of dimension 10 in the el-
liptic and 11 in the parabolic case. It follows then from a result of Beloshapka
(see [6]) that these are the complete automorphism groups.

Another way to verify that the transformations obtained above are all
automorphisms ¢ with

0%

= =id
9 lrcq

is the following:
We show that any holomorphic map

Fiz — z+pw)+2i) Ti(z,w),

k=2

w o g(w)+ 2 gz, w),

k=1

with the property that the equation of the image of Q) via F does not
contain terms of degree (1,0), (k,0),(k,1) for £ > 1,... has the the form:

(=]
F:z2 = ) Au(w)"

n=0

w' = f:Bn(w)z“,

n=0

where z,w, 2%, w* are matrices of the given form and A,(w), B,(w) can
be represented as

15



A, = iAn,mw"‘
n;ﬂ

B, = ZBn.mw"‘.
n=0

Then all considerations from the hypersphere case can be formally applied
to the quadrics @}, with one exception concerning the "reparametrization”
map @3 in the parabolic case. We will return to this question at the end of
the following section.

We need the following

Lemma 1 Let G : C?* — C? be a holomorphic map defined in some neigh-
bourhood of the origin with the property:

oGh 0G*

7 - G (16)
oG _ 0

dw?r ~  dw!
then

G' §G* \ _ f’: a, 6b, w! fw? \"
G* G' )T =\ by an w?  w!
Proof. We prove that

o Gl 5G2 (wl)k(wz)l B
Z (Ow!)*(dw?)! ( G & ) ki -

k+I=m
anG! ang?
1 A(w? );- 6a(wl)n wl 611)2 "
n! On G anG! w2 wl )

a(wh)r  Bwh)n

It can be verified, by induction, that

16



(v W ) = el + Vo) - (= VB ( § ¢ )
Fy (! + VB + o = Va1 )

It follows immediately from (16) that

Gt oGt
(Gw')r(0uw?)t ﬁ(aw‘)"
anGQ anGZ

(Ow Y (Ow?)! - (Gwt)r’

if [ is even, and

onGh 1+1 O"G?
([Gw (Bt V8 (Dw!)"
6nG2 6nG1

if / is odd. These identities prove the lemma. O

Now we deduce that F' has the desired form.

From the condition that the terms (0, k) in the new equation of @ vanish
we derive

alz,w) = zp(w)
gi(z,w) = Ti(z,w)p(w) for k > 1.
Here gi, T and p are matrix-valued functions of the form
&8¢t
& ¢
with € = gi, T, p.

17



The vanishing of terms (1, k) gives
Ti(z,w)z = 2T, Dp(w) for k > 2.
It follows from the holomorphy of F that

dap' _ ap?
dul ~ Bu?
)
dur  oul

In fact, (17) is equivalent to
Te(z,w)z = 2T P22 + UT_R(2'2* + 2°

where
ap! 852
o _ & 63k
P=1o o |
fu? dul
and,
9. _ 5250 5(2& 2:&)
R = 8 Bul u? dul
2 gl ER 6.6-2 .
Bu T 8u Su

The holomorphy of 7). implies that

a

oz
for i =1,2.
We get

R(z 72 4+ 2%z )(2)_1 =0

2122 6 22 2 Zl 2 62122
R( |z2]2 z|1§]2 ) =R( L1zlz [z2|2 )=0

and, hence, R = 0.
Then (17) takes the form

Ti(z,w) = 2T py ' (w)z.

(17)

z')

It follows from Lemma 1 that p can be represented as a power series of
matrices. This implies immediately that F has the desired form.

18



4 The linear automorphisms

We look for linear transformations of the form:

z = (Cz

w = pw

with C € GL{2,C) and p € GL(2,R) preserving the forms Re w! =
|21 + 6|2%|* and Re w? = 2'2% + 2231,

The elements X € ¢l(2,C), s € gi(2,R) of the corresponding Lie algebra
satisfy the following conditions:

In+2x1 = Si12
Tiz+ T2 = b5
T+ T = T+ Z1 = Sgg
Zn+zu = sn
0Ty + bzgy = sy
Typ +0zy = 6Zy + T12 = 512

If § =0 it follows

;g A+p O
X =1i¢id +(f+i’7 )\—#)'

If § # 0 it follows

L A 8(E+1m)
X_1¢1d+(§+iu \ )

Applying the exponential map we obtain the form of the matrices C:

; et 0
C=CA+¢( C e-u).
if 6§ =0. Here A\, 1, 4,6, € R,( € C.

19



If § # 0:
A 6B
-(5 %)
where A, B € C such that A? - §B? # 0.

The corresponding matrices p have the form:
in the parabolic case, § =0

2
_ 2) [4 0
p=¢ (2e”ReC 1)’

and in the case § # 0

_ ( |AP+8|B|* §(AB + bA)
~\ AB+BA |A*+6B)?

Notice, that a 4 dimensional group of linear (C, p) transformations can be

obtained from the linear group in the hypersphere case substituting numbers
by matrices of given form. In the hyperbolic and elliptic cases this is the whole
linear group, but in the parabolic case an additional parameter appears.
Therefore, we have to show that this parameter does not give any additional

freedom in the "reparametrization” map 3.

Let ® be an automorphism of the form

2! = Mw)e!
2?2 - E(w)2' + p(w)2?
w' —  hY(w)
w? - A} (w)
with
W) 2o

9t = 2A(w)é(w) Ly = Mw)p(w)

It follows that h! satisfies the one dimensional equation (13), and

w! 1

AMw) =

hl_.

- b
1 —ru? 1 —rw!

20



for some r € R. Therefore, we may suppose, without loss of generality,
that A = 1 and A! = w!. After applying & in the equation of Qo appears
the term o |z*{?Im (2'2%) + 22%Re (2'2%)Im (2'2%). Hence, 4 must be a
constant.

5 Linear representation of AutQ in C°

Let A? be the As module of triples (@9, 0;,0;) with ©; € A;. By A; we
denote the ring of invertible elements of As and by A3 the factor space under
the natural action of A}. A2 is a compact manifold which can be considered
as a compactification of C* = A? by the embedding

(z,w) — (id , z,w).

Now, any automorphism of @, Qo, Q-1 can be represented as a linear
transformation of C® in the following way:

Let @1, Qo, @-1 be given in the form (15). Then the automorphisms can
be written as a composition of

z - (z4aw)(id — 2@z - (r+ ia&)w)_l

w — w(id - 2az - (r +iaa@)w)™,

where a,r € Ag, with r =7, and a linear (C, p) transformation.

The first map induces the following linear transformation in .A}:

@0 — 60 - 21:&01 — (1" + ia&)@z
@1 — 01 + 1192
@g — (")2.

Hence,

0! o) . { 0] . [ ©!
(@g) (eg)—%(l,(e%)—(r+zaa)(9§)

21



o} o} !
(e%) ~ (@% T\ e
0; 0)

(@3) ~ (@)

Together with the linear transformation we obtain

ol el [ e} . f el
(92) — (eg)—ha(e%)-—-(r-kma)(eé)
0 0] 2

(o) ~ c(&h)+es(o

o\ _ (o

o3 Ples )
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