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Asymptotic trace formula for the Hecke operators

Junehyuk Jung Naser T. Sardari
(With an appendix by Simon Marshall)

Abstract
Given integersm, n and k, we give an explicit formula with an optimal error term

(with square root cancellation) for the Petersson trace formula involving them-th and
n-th Fourier coefficients of an orthonormal basis of Sk(N)∗ (the weight k newforms
with fixed square-free level N ) provided that |4π

√
mn − k| = o(k

1
3 ). Moreover,

we establish an explicit formula with a power saving error term for the trace of the
Hecke operator T ∗n on Sk(N)∗ averaged over k in a short interval. By bounding the
second moment of the trace of Tn over a larger interval, we show that the trace of Tn
is unusually large in the range |4π

√
n−k| = o(n

1
6 ). As an application, for any fixed

prime p with gcd(p,N) = 1, we show that there exists a sequence {kn} of weights
such that the error term of Weyl’s law for Tp is unusually large and violates the
prediction of arithmetic quantum chaos. In particular, this generalizes the result of
Gamburd, Jakobson and Sarnak [GJS99, Theorem 1.4] with an improved exponent.

Acknowledgments. J.J. thanks S.M. and Department of Mathematics of UW-Madison for invitation and sup-
port. J.J. also thanks Sug Woo Shin, Peter Jaehyun Cho, and Matthew Young for many helpful comments.
S.M. was supported by NSF grant DMS-1501230. N.T.S. was supported by NSF grant DMS-1902185 and
is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. N.T.S.
thanks his Ph.D. advisor Peter Sarnak for several insightful and inspiring conversations regarding the error
term of the Weyl law while he was a graduate student at Princeton University.

1 Introduction

1.1 Background

We begin by explaining Weyl’s law, and bounds on its error term, in some arithmetic ex-
amples which reduce to deep problems in Number Theory. Let X ⊂ Rd be a bounded
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domain with smooth boundary. Let T be a positive real number, and let N(T ) be the
number of Dirichlet Laplacian eigenvalues of X less than T 2 (counted with multiplic-
ity). It was conjectured independently by Sommerfeld and Lorentz, based on the work of
Rayleigh on the theory of sound, and proved by Weyl [Wey11] shortly after, that

N(T ) = cdvol(X)T d(1 + o(1)) as λ→∞,

where cd is a constant depending only on d and vol(X) is the volume of X in Rd. More
generally, let (Md, g) be a compact smooth Riemannian manifold of dimension d with
Laplace-Beltrami operator ∆. Then Hörmander [Hör68] proved that

N(T ) = cdvol(M)T d +RM(T ),

where RM(T ) = O(T d−1). In fact, this general estimate is sharp for the round sphere
M = Sd. However, given a manifold M the question of finding the optimal bound for the
error term RM(T ) is a very difficult problem.

We now restrict to the case d = 2, and discuss the relation between the size of RM(T ),
and the geodesic flow on the unit cotangent bundle S∗M , predicted by the correspondence
principle. The two extreme behaviors that the geodesic flow can have are being chaotic
or completely integrable, and in these two cases the correspondence principle predicts
the distribution of eigenvalues to be modeled by a large random matrix, and a Poisson
process, respectively [Ber85, Ber86].

In particular, we expect that for a generic 2 dimensional flat torus, or a compact arith-
metic hyperbolic surface [Sar95, Figure 1.3 and Section 3]3, the set of eigenvalues inside
the universal interval

[
T 2,
(
T + 1

L

)2
]

where log T � L = o(T ) is modeled by Poisson
process; see the very interesting work of Rudnick [Rud05] and Sarnak’s letter [Sar02] ex-
plaining the critical window log(T ) � L = o(T ) using Kuznetsov’s trace formula. This
suggests that these surfaces satisfy RM(T ) = O(T

1
2

+ε). In fact, Petridis and Toth proved
that the average order of the error term in Weyl’s law for a random torus chosen in a com-
pact part of the moduli space of two dimensional tori is R(T ) = Oε(T

1
2

+ε); see [PT02].
Moreover, for compact arithmetic surfaces it was proved by Selberg [Hej76, p.315] that
R(T ) = Ω(T

1
2/ log T ).

For the rational torus T = R2/Z2, boundingRT(T ) is equivalent to the classical Gauss
circle problem. It was conjectured by Hardy that RT(T ) = Oε(T

1
2

+ε), and it is known
by Hardy and Landau [HL24] that RT(T ) = Ω(T

1
2 log

1
4 T ). Note that the eigenvalue

distribution here is known not to be Poisson [Sar97].
As mentioned above, for generic compact hyperbolic surfaces, we expect the set of

eigenvalues inside the interval [T 2, (T + 1)2] to follow the eigenvalue distribution of a

3The geodesic flow in this case is chaotic, but Sarnak explains that one expects to see Poisson behavior
due to the high multiplicity of the geodesic length spectrum.
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large symmetric matrix, which has a rigid structure. As a result, it is conjectured that
these surfaces satisfy RM(T ) = O(T ε).

Proving an optimal upper bound on RM(T ) is extremely difficult, and we don’t have
any explicit example of M other than the sphere where the optimal bound is known! The
best known upper bound for hyperbolic manifolds is RM(T ) = O(T d−1/ log(T )), due to
Bérard [Bér77]. As pointed out by Sarnak [Sar02, Page 2], even improving the constant
and showing that R(T ) = o(T/ log(T )) for the cuspidal spectrum of SL2(Z)\H (after
removing the contribution of the Eisenstein series) is very difficult; see Remark 1.2.1.

In this paper, we give bounds on the error term of Weyl’s law for the Hecke eigenval-
ues of the family of classical holomorphic modular forms with a fixed level. We briefly
describe this family, its Weyl’s law, and known bounds and predictions on its error term.
Next, we explain our results and compare them with the previous results and predictions.

Let Γ0(N) :=

{[
a b
c d

]
: a, b, c, d ∈ Z, N |c

}
be the Hecke congruence subgroup of

level N. Let Sk(N) be the space of even weight k ∈ Z modular forms of level N . It is the
space of the holomorphic functions f such that

f

(
az + b

cz + d

)
= (cz + d)kf(z) (1.1)

for every
[
a b
c d

]
∈ Γ0(N), and f converges to zero as it approaches each cusp (we

have finitely many cusps for Γ0(N) that are associated to the orbits of Γ0(N) acting
by Möbius transformations on P1(Q) ); see [Sar90]. It is well-known that Sk(N) is a
finite dimensional vector space over C, and is equipped with the Petersson inner product
〈f, g〉 :=

∫
Γ0(N)\H f(z)ḡ(z)ykdxdy/y2 which makes it into a Hilbert space. Assume that

p is a fixed prime number where p - N . Then one can define a self-adjoint Hecke operator
Tp on Sk

(
N
)
:

Tp(f)(z) := p−
k−1
2

∞∑
n=1

anpe(nz) + p
k−1
2

∞∑
n=1

ane(pnz), (1.2)

where f(z) =
∑∞

n=1 ane(nz) is the Fourier expansion of f at the cusp∞. In particular, if
f is an eigenfunction of Tp with eigenvalues λp(f) then ap = a1λp(f)p

k−1
2 . By Deligne’s

result [Del74] the Ramanujan-Petersson conjecture holds for f and we have |λp(f)| ≤ 2.
Under Langlands’ philosophy, the Hecke operator Tp is the p-adic analogue of the Laplace
operator

(
the eigenvalues of Tp determine the Satake parameters of the associated local

representation πp of GL2(Qp) just as the Laplace eigenvalue of the Maass form deter-
mines the associated local representation π∞ of GL2(R)

)
. Let Bk,N be a basis for the

eigenfunctions of Tp acting on Sk(N). Let µk,N := 1
dim(Sk(N))

∑
f∈Bk,N δλp(f) be the spec-

tral probability measure associated to Tp acting on Sk(N) which is supported in [−2, 2].
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Using the Eichler-Selberg trace formula, Serre [Ser97] proved that µk,N converges weakly
to µp as k +N →∞, where µp is the Plancherel measure of GL2(Qp) given by

µp(x) :=
p+ 1

π

(1− x2

4
)
1
2

(p
1
2 + p−

1
2 )2 − x2

dx.

Moreover, let νk,N := 1
dim(Sk(N))

∑h
f∈Bk,N δλp(f), where the superscript h means the ex-

pression in the sum is multiplied by the harmonic weights Γ(k−1)
(4π)k−1〈f,f〉 . It follows from the

Petersson trace formula (see Section 2) that νk,N converges weakly to the semi-circle law

µ∞(x) :=
1

π

√
1− x2

4
dx,

as k + N → ∞. These are the analogues of Weyl’s law for this family of classical mod-
ular forms. In fact, Weyl’s law is formulated and expected to hold in great generality for
other families of automorphic forms; see [SST16, Conjecture 1]. In [GJS99], Gamburd,
Jakobson and Sarnak studied the spectrum of the elements in the group ring of SU(2). In
particular, they proved the analogue of Selberg’s lower bound and Bérard’s upper bound
on the error term of Weyl’s law in that context. By the Jacquet-Langlands correspondence
one can interpret their results in our context as follows. Given two probability measures
µ1 and µ2 on R, we denote the discrepancy between them by D(µ1, µ2), where

D(µ1, µ2) := sup{|µ1(I)− µ2(I)| : I = [a, b] ⊂ R}.

Then [GJS99, Theorem 1.3] is equivalent to D(µk,2, µp) = O(1/ log(k)), which is the
analogue of Bérard’s upper bound. Moreover, [GJS99, Theorem 1.4] is equivalent to the
existence of a sequence of integers kn →∞ such that

D(µkn,2, µp)�
1

k
1
2
n log2 kn

, (1.3)

which is the analogue of Selberg’s lower bound. This is a corollary of their lower bound on
the variance of the trace of the Hecke operators by varying the weight k; see Theorem 1.5.

1.2 Main results
1.2.1 Large discrepancy for µ∗k,N

Let Sk(N)∗ be the space of newforms of weight k and fixed level N . Let T ∗p be the
restriction of Tp from Sk(N) to its subspace Sk(N)∗. We denote by µ∗k,N and ν∗k,N the cor-
responding measures associated to T ∗p . The main theorem of this paper is a generalization
of (1.3) to µ∗k,N with any squarefree level N and an improved exponent of k in the lower
bound:
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Main Theorem 1.1. LetN > 1 be a fixed square-free integer. Then there exists an infinite
sequence of weights {kn} with kn →∞ such that

D(µ∗kn,N , µp)�
1

k
1
3
n log2 kn

.

Remark. As mentioned in the introduction the best known upper bound for D(µ∗k,N , µp)

is
D(µ∗k,N , µp) = O

(
log(k)−1

)
, (1.4)

see [MS09]. The standard method for giving an upper bound on the discrepancy of a
sequence of points is the Erdös-Turán inequality [ET48]. Even to improve the implied
constant in (1.4) using the Erdös-Turán inequality, one needs to obtain a nontrivial upper
bound on the trace of the Hecke operator Tn for n � kA, where A > 0 is an arbitrarily
large constant. But the error term in the Selberg trace formula is large in this range and
makes the problem very difficult by this approach.

Theorem 1.1 follows from an explicit asymptotic formula for the weighted average
of the trace of the Hecke operator in a short interval. More precisely, let ψ be a positive
smooth function supported in [−1, 1], and satisfying

∫ 1

−1
ψ(t)dt = 1. Let Tr Tn(N, k)∗

be the trace of the Hecke operator T ∗n on Sk(N)∗. Let K be a number satisfying K =

4π
√
n+ o(n

1
6 ).

Theorem 1.2. Let 1
6
< δ < 1

3
be any real number. We have

1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
Tr Tn(N, k)∗ = JK(4π

√
n)
µ(N)K

12
ζ−1(2)

σ(n)

n
(1 +O(K−ε)),

where JK is the J-Bessel function, µ is the Möbius function, σ is the sum of the divisors
of n and ε is some small fixed constant depending on δ. Moreover, the implicit constant in
O depends only on the fixed variables N and ε.

Remark. By the asymptotic of the J-Bessel function in the transition range, we have
|JK(4π

√
n)| � K−

1
3 ; see [DLMF, 10.19.8]. Hence, we have |Tr Tn(N, k)∗| � k

2
3 for

some k ∈ [K −Kδ, K + Kδ]. This lower bound violates the naive expected square root
cancelation for the eigenvalues of the Hecke operator Tn(N, l)∗.

We give a brief description of the proof. We give the proof of the above theorem in
Section 3. The proof is based on the Petersson trace formula and the proof of Theorem 1.7
that we give in Section 2. The main term of the above formula comes from the J-Bessel
function in the transition range. Next, we simplify the error term by using bounds on the
J-Bessel function outside the transition range. For the remaining error terms, we average
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over weights and apply the Poisson summation formula and obtain a sum of Klooster-
man sums twisted by oscillatory integrals. The Theorem follows from Weil’s bound for
Kloosterman sums, and bounds on the oscillatory integrals that we prove by the station-
ary phase method in Section 3.1. There are some similarities between our method and the
circle method, specially the version developed by Heath-Brown [HB96].

1.2.2 Variance of the trace

If we consider the variance of the trace of the Hecke operator over k ∼
√
n, the largeness

of the trace in Theorem 1.2 is no longer present. To be precise, we have the following
results:

Theorem 1.3. Let N > 1 be a squarefree integer. For any n, we have

∑
k∈2Z

3π
√
n<k<5π

√
n

∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣∣∣
2

�N n(log n)2(log log n)4.

In particular, almost all k in the range [3π
√
n, 5π

√
n] satisfy∑

f∈B∗k,N

λn(f) = Oε

(
k

1
2

+ε
)
.

We also prove a lower bound for the variance of the trace of the Hecke operator:

Theorem 1.4. LetN > 1 be a squarefree integer and let n = pm where p is an odd prime.
There exists a sufficiently large fixed constant A > 0 such that for any K > A

√
n, we

have

1∑
k∈2Z φ

(
k−1
K

) ∑
k>0,k∈2Z

φ

(
k − 1

K

) ∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣∣∣
2

�N n
1
2 , (1.5)

where δ√n = 1 if n is a square, and 0 otherwise.

This immediately implies the following weaker version of Theorem 1.1.

Corollary 1.5. Let N > 1 be a fixed square-free integer and let p be an odd prime. Then
we have

D(µ∗k,N , µp) = Ω

(
1

k
1
2 log2 k

)
.

Remark. Note that this generalizes [GJS99] to any square-free level N > 1.
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Theorem 1.3 and 1.4 are consequences of the following asymptotic formula, which we
derive from the Eichler–Selberg trace formula for T ≥

√
n (Lemma 4.6):

∑
k>0,k∈2Z

φ

(
k − 1

T

) ∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣∣∣
2

= 2
∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2 − φ
(

1

T

)
σ1(n)2

n
+O

(
n

1
2

+ε
)
. (1.6)

Here D(t, n) is a weighted sum of class numbers:

D(t, n) =
i

2
√

4n− t2
∑
f

hw

(
t2 − 4n

f 2

)
µ̃(t, f, n,N),

with weights |µ̃(t, f, n,N)| = ON(1) (for the precise definition, see Lemma 4.2).
The upper bound (Theorem 1.3) then follows by applying a standard upper bound for

the class numbers of imaginary quadratic fields.
Note that inputting the sharp lower bound for the class numbers of imaginary quadratic

fields,

hw(−d)�ε d
1
2
−ε,

to (1.6) is not sufficient to prove the lower bound in Theorem 1.4. Therefore we relate the
problem of estimating the sparse sum of sums of class numbers∑

t2<4n

|D(t, n)|2

to the problem of counting integral lattice points on 3-spheres, under certain congruence
conditions on the coordinates. This can be done by following the circle method developed
by Kloosterman [Klo27], and we have∑

t2<4n

|D(t, n)|2 �N

√
n,

under the assumption that n is odd (Theorem 4.7). Now if n = pm with a fixed odd prime
p, and if T > A

√
n for some large A, we see that

2
∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2

is larger than φ
(

1
T

) σ1(n)2

n
= O(n), from which Theorem 1.4 follows. These steps are

carried out in Section 4.
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1.2.3 Large discrepancy for the measure with harmonic weights

Next, we give our results on the error term of the Weyl law associated to the measures
ν∗k,N as k →∞.

Theorem 1.6. There exists an infinite sequence of weights {kn} with kn →∞ such that

D(ν∗kn,N , µ∞)� 1

k
1
3
n log2 kn

. (1.7)

Remark. The above exceptional sequence of weights is very explicit and is given by
kn = b4πpnc. Based on arithmetic quantum chaos, numerical evidence [GJS99, Figure 5
and Figure 6], and the random model described in the introduction for the eigenvalues of
the Hecke operator, it is expected that

D(µ∗k,N , µp) = Oε,N

(
k

1
2

+ε
)

and D(ν∗k,N , µ∞) = Oε,N

(
k

1
2

+ε
)
, (1.8)

for a density 1 set of k. In this context, the exponent 1
3

in Theorem 1.6 (and Theorem 1.1)
shows that one can not achieve (1.8) for every weight k.

Theorem 1.6 is an immediate consequence of an explicit asymptotic formula for the
Petersson trace formula. More precisely, let

∆∗k,N(m,n) :=
∑h

f∈B∗k,N
λm(f)λn(f).

Theorem 1.7. Assume that |4π
√
mn− k| = O(k

1
3 ) and gcd(mn,N) = 1. Then

∆∗k,N(m,n) =
ϕ(N)

N
δ(m,n) + Jk−1(4π

√
mn)

µ(N)

N

∏
p|N

(1− 1/p2) +O(k−
1
2 ).

where δ(m,n) = 1 if m = n and δ(m,n) = 0 otherwise, Jk−1 is the J-Bessel function
and the implicit constant in O depends only on the fixed variables N and ε.

Remark. Since |4π
√
mn − k| = O(k

1
3 ), by the asymptotic of the J-Bessel function in

the transition range [DLMF, 10.19.8], we have |Jk−1(4π
√
mn)| � 1/k

1
3 . It follows that

Jk−1(4π
√
mn)µ(N)

N

∏
p|N(1− 1/p2) is the main term, and

|∆∗k,N(m,n)− δ(m,n)| � 1/k
1
3 .

The above lower bound violates the naive expected square root cancelation in the sum of
the normalized Fourier coefficients of the newforms in this range. More generally, one
can generalize Theorem 1.7 if |4π

√
mn − αk| = O(k

1
3 ) for any fixed integer α. In the

appendix by Simon Marshall, the existence of this asymptotic trace formula is explained
via the geometric side of the Petersson trace formula.
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We prove Theorem 1.7 in Section 2 by applying the Petersson trace formula and parti-
tioning the geometric side of this formula into three parts according to the various behav-
ior of the J-Bessel function in different ranges. This partition is explained in the appendix
according to the incidence of the associated pairs of horocycles. The main term comes
from the J-Bessel function in the transition range where the associated horocycles are
tangent to each other, and the error term stays in the ranges where the J-Bessel function
decays rapidly.

Theorem 1.2 follows form Theorem 1.7 and averaging over m and k parameters. In
fact, we expect that a stronger version of of Theorem 1.2 to be true, namely:

Tr Tn(N, k)∗ = Jk(4π
√
n)
µ(N)k

12
ζ−1(2)

σ(n)

n
(1 +O(k−ε)),

where k = 4π
√
n + o(n

1
6 ). However, removing the harmonic weights in Kuznetsov’s

formula by only averaging over m in our context is equivalent to a very strong unproven
bound on L-functions, namely:

Hypothesis 1.8. Let n = O(k2) and N be a fixed square free integer. Then

∑h

f∈B∗k,N
λn(f)L(

1

2
+ it, sym2f) = O(k−

1
6
−ε), (1.9)

where t = O(log(k)A) for some A > 0.

We are overcoming this problem by taking average over k on a very short interval.
Hence unlike standard averaging techniques, it is only good for estimating lower bound.

1.3 Notations

We let Sk(N) and its subspace S∗k(N) denote the space of holomorphic cusp forms and the
subspace of newforms of weight k on Γ0(N)\H. If gcd(n,N) = 1, we let Tn = Tn(N, k)

be the n-th Hecke operator acting on Sk(N). For a joint eigenfunction f ∈ Sk(N) of
Tn, let λn(f) be the eigenvalues of Tn, n ≥ 1. We normalize Tn so that |λn(f)| ≤ 2 is
the Ramanujan bound. We use the divisor function parameterized by t: σt(n) =

∑
d|n d

t.
We write Bk,N and B∗k,N for an orthonormal basis of Sk(N) and Sk(N)∗ respectively.

If f ∈ Sk(N), we write
(

Γ(k−1)
(4nπ)k−1

) 1
2 f
|f |2 =

∑
n ρf (n)nk−

1
2 e(nz) for the L2-normalized

Fourier coefficients of f. The sum
∑h

f∈Bk,N means the expression in the sum is multiplied

by the harmonic weights Γ(k−1)
(4π)k−1〈f,f〉 . We write ν(N) = [Sl2(Z) : Γ0(N)], and when N is

square free we have ν(N) = N
∏

p|N(1 + 1/p).
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2 Petersson trace formula

In this section, we give a proof of Theorem 1.7. First, we explain the Petersson trace for-
mula. Recall thatBk,N is any orthonormal basis of Sk(N). Let f

|f |2 =
( Γ(k−1)

(4π)k−1

)− 1
2
∑

n ρn(f)nk−
1
2 e(nz).

Then Petersson proved [Pet32]; (see also [ILS00, Proposition 2.1])

∆k,N(m,n) :=
∑

f∈Bk,N
ρm(f)ρn(f) = δ(m,n)+2πi−k

∑
N |c

S(m,n; c)

c
Jk−1(

4π
√
mn

c
),

(2.1)
where Jk−1 is the J-Bessel function and S(m,n; c) is the Kloosterman sum. We have the
well-known Weil’s bound

S(m,n; c) ≤ τ(c)
√

gcd(m,n, c)
√
c. (2.2)

Each new from f of level M gives rise to τ(M) old forms in Sk(N); see [AL70]. By
choosing a special orthonormal basis of Hecke eigenfunctions, it is possible to write the
Petersson formula only for the new forms of level N ; see [ILS00, Proposition 2.9]

∆∗k,N(m,n) :=
∑h

f∈B∗k,N
λ̄m(f)λn(f) =

∑
LM=N

µ(L)

L

∑
l|L∞

l−1∆k,M(ml2, n). (2.3)

We assume that gcd(mn,N) = 1 and

|4π
√
mn− k| = O(k

1
3 ). (2.4)

2.1 Proof of Theorem 1.7.

Proof. We apply the identity (2.3) and obtain

∆∗k,N(m,n) =
∑

LM=N

µ(L)

L

∑
l|L∞

l−1∆k,M(ml2, n).

First, we analyze the contribution of δ(ml2, n) by applying the Petersson formula (2.1).
Since, l|N∞ and gcd(N,mn) = 1, then the only possibility for ml2 = n is that l = 1 and
m = n. By summing over l, we obtain

∑
LM=N

µ(L)

L

∑
l|L∞

l−1δ(ml2, n) =
∑

LM=N

µ(L)

L
δ(m,n) =

ϕ(N)

N
δ(m,n).

Therefore,

∆∗k,N(m,n) :=
ϕ(N)

N
δ(m,n) + S1 + S2,
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where

S1 :=
∑

LM=N

µ(L)

L

∑
l|L∞

l−1
∑

M |c and c=l

S(ml2, n; c)

c
Jk−1(

4πl
√
mn

c
),

S2 :=
∑

LM=N

µ(L)

L

∑
l|L∞

l−1
∑

M |c and c 6=l

S(ml2, n; c)

c
Jk−1(

4πl
√
mn

c
).

In what follows, we assume that l = c and give an explicit formula for S1. Since M |c, l|L
and gcd(L,M) = 1 then M = 1 and we have

S1 = Jk−1(4π
√
mn)

µ(N)

N

∑
l|N∞

l−1S(ml2, n; l)

l
. (2.5)

By using the Ramanujan identity S(0, n; l) = µ(l), we obtain

S1 = Jk−1(4π
√
mn)

µ(N)

N

∏
p|N

(1− 1/p2). (2.6)

Note that we have the following asymptotic for the J Bessel function in the transition
range where a = O(1); see [DLMF, 10.19.8]

Jν(ν + aν
1
3 ) =

2
1
3

ν
1
3

Ai(−2
1
3a) +O(

1

ν
). (2.7)

By the inequality (2.7) and the assumption (2.4), we have |S1| � 1

k
1
3
, where the constant

involved in� only depends on N which is fixed. Next, we give an upper bound on S2.

Let δ > 0 be some positive real number and S2,δ be the same sum as S2 but subjected to
kδ < l,

S2,δ :=
∑

LM=N

µ(L)

L

∑
kδ<l|L∞

l−1
∑

M |c and c 6=l

S(ml2, n; c)

c
Jk−1(

4πl
√
mn

c
).

Since, N is fixed and S1 is supported on l|N∞ and µ(l) 6= 0, it follows from (2.3) that for
sufficiently large k ;.e.g., kδ > N

S2,δ =
∑

LM=N

µ(L)

L

∑
kδ<l|L∞

l−1
(
∆k,M(ml2, n)− δ(ml2, n)

)
.

By [ILS00, Corollary 2.2], we have

∆k,M(ml2, n)− δ(ml2, n) = O(
(mn)

1
4

+εl
1
2

+ε

k5/6
).

where the implied constant in O only depends on the fix number N and ε. Therefore,

S2,δ �
∑

kδ<l|N∞
l−1 (mn)

1
4

+εl
1
2

+ε

k5/6
.
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By (2.4), we have

S2,δ � k−
1
3

+ε
∑

kδ<l|N∞
l−

1
2

+ε = O(k−
1
3
−δ/2+2ε). (2.8)

Finally, we give an upper bound on S(δ) := S2 − S2,δ. We split S(δ) into three ranges:

1. 2l < c

2. l < c < 2l < 2kδ

3. c < l < kδ

and we write Si(δ) for the sum S(δ) subjected to the i-th condition listed above. We give
an upper bound on S1(δ) by using the following upper bound for Jv when the order ν is
large; see [DLMF, 10.14.7]

1 ≤ Jν(νx)

xνJν(ν)
≤ eν(1−x), (2.9)

where ν ≥ 0 and 0 < x ≤ 1. By (2.9), (2.7) and Weil’s bound (2.2) on Kloosterman’s
sum, we have

|S1(δ)| ≤

∣∣∣∣∣∣
∑

LM=N

µ(L)

L

∑
l|L∞,l<kδ

l−1
∑

M |c,2l<c

S(ml2, n; c)

c
Jk−1(

4πl
√
mn

c
)

∣∣∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
2l<c

∣∣∣∣S(ml2, n; c)

c
Jk−1(

4πl
√
mn

c
)

∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
2l<c

∣∣∣∣ek(1−l/c+log(l/c))

k
1
3

∣∣∣∣
�

∑
l|N∞,l<kδ

ek(1− 1
2
−log(2))

k
1
3

� e−(0.19)k.

(2.10)

Next, we give an upper bound on S2(δ) and S3(δ). From [DLMF, (10.20.4)] of NIST
functions and the following upper bound on the Airy function for real nonpositive x; see
[DLMF, (9.8.1) and (9.8.20)]

Ai(x)� |x|−
1
4 ,

we have for 1 > z ≥ 1
2
,

Jν(νz)� 1

(1− z2)
1
4ν

1
2

, (2.11)
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and for z ≥ 1,

Jν(νz)� 1

(z2 − 1)
1
4ν

1
2

. (2.12)

Assume that l < c < 2l < 2kδ. By the inequality (2.11), (2.4) and Weil’s bound (2.2)

|S2(δ)| =

∣∣∣∣∣∣
∑

LM=N

µ(L)

L

∑
l|L∞,l<kδ

l−1
∑

M |c,c<2l

S(ml2, n; c)

c
Jk−1

(
4πl
√
mn

c

)∣∣∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
l<c<2l

√
gcd(m,n, c)c−

1
2

+ε

∣∣∣∣Jk−1

(
4πl
√
mn

c

)∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
l<c<2l

√
gcd(m,n, c)c−

1
2

+εk−
1
2

1(
1− l2

c2

) 1
4

� k−
1
2

∑
l|N∞,l<kδ

l−5/4+ε
∑
l<c<2l

√
gcd(m,n, c)

(c− l) 1
4

� k−
1
2

∑
l|N∞,l<kδ

l−
1
2

+ε � k−
1
2 .

(2.13)

where the implied constant only depends on the fixed number N. Finally, assume that
c < l < kδ then by (2.12) and Weil’s bound (2.2)

|S3(δ)| =

∣∣∣∣∣∣
∑

LM=N

µ(L)

L

∑
l|L∞,l<kδ

l−1
∑

M |c,c<l

S(ml2, n; c)

c
Jk−1

(
4πl
√
mn

c

)∣∣∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
c<l

√
gcd(m,n, c)c−

1
2

+ε

∣∣∣∣Jk−1

(
4πl
√
mn

c

)∣∣∣∣
�

∑
l|N∞,l<kδ

l−1
∑
c<l

√
gcd(m,n, c)c−

1
2

+εk−
1
2

1(
l2

c2
− 1
) 1

4

� k−
1
2

∑
l|N∞,l<kδ

l−5/4
∑
c<l

√
gcd(m,n, c)c−

1
2

+ε c
1
2

(l − c) 1
4

� k−
1
2

∑
l|N∞,l<kδ

l−
1
2

+ε � k−
1
2 .

(2.14)

Let δ = 1
3

+ ε and apply (2.8), (2.8), (2.10), (2.13) and (2.14), to obtain

∆∗k,N(m,n) :=
ϕ(N)

N
δ(m,n) + Jk−1(4π

√
mn)

µ(N)

N

∏
p|N

(
1− 1

p2

)
+O

(
k
− 1

2
n

)
.

This concludes the proof of Theorem 1.7.
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2.2 Proof of Theorem 1.6.

Proof. Recall that ν∗k,N :=
∑h

f∈Bk,N δλp(f). Since |λp(f)| ≤ 2, we can write λp(f) =

2 cos(θp(f)) for a unique 0 ≤ θp(f) ≤ π. Let Un(cos θ) = sin(n+1)θ
sin θ

for n ≥ 0 be the n−th
Chebyshev polynomial of the second kind. It is well-known that λpn(f) = Un(λp(f)/2).

In order to give a lower bound on the discrepancy of ν∗kn,N and µ∞ for kn := b4π
√
pnc,

we compute the difference between the expected value of Un(x) with respect to these
measures. It is well-known that Un(x) are orthogonal set of polynomials with respect to
µ∞. Hence, ∫ 2

−2

Un(x)dµ∞(x) = 0

On the other hand, by Theorem 1.7, since |kn − 4π
√
pn| < 1 we have∫ 2

−2

Un(x)dν∗k,N = ∆∗kn,N(1, pn) = Jkn−1(4π
√
pn)

µ(N)

N

∏
p|N

(1− 1/p2) +O(k
− 1

2
n ).

As pointed out in Remark 1.2, since |kn − 4π
√
pn| < 1 then by the known lower bound

in the transition range of the J-Bessel function, we have∫ 2

−2

Un(x)dν∗k,N �N k
− 1

3
n .

By integration by parts and upper bound |U ′n(x)| � n2, it follows that

D(ν∗kn,N , µ∞)� 1

n2
k
− 1

3
n . (2.15)

Since kn = b4π
√
pnc, it follows that

D(ν∗kn,N , µ∞)� 1

k
1
3
n log2 kn

.

This concludes the proof of our theorem.

3 Removing the weights

In this section we give the proof of Theorem 1.2 and then Theorem 1.1 follows imme-
diately from it. We give a brief outline of the proof of Theorem 1.2. Our proof is built
on the proof of Theorem 1.7 and we assume that the reader is familiar with that proof.
Note that the trace of the Hecke operator T ∗n (N, k) is obtained by removing the arithmetic
weights 1

Z(1,f)
from the Petersson trace formula (2.3) at m = 1. The usual trick for re-

moving these weights is to average the Petersson trace formula (2.3) smoothly over m2

where gcd(m,N) = 1. Unfortunately, the error associated to the S2(δ) and S3(δ) sums
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defined in (2.8) are larger than the main term after averaging over m2. In order to bound
the error term associated to these terms, we sum the trace formula as k varies inside a
short interval of size ∼ kδ for some 1/6 < δ < 1

3
(δ < 1/6 is not large enough to bound

the error term and δ > 1
3

makes the main term smaller than the error term!) and then
apply the Poisson summation formula on the k sum and obtain some oscillatory integrals.
We give bounds on these oscillatory integral in Lemma 3.1. Finally, Theorem 1.2 follows
form Weil’s bound on the Klossterman’s and Lemma 3.1.

3.1 Averaging over the weight

In Lemma 3.1, we prove a lower bound on the average of the J-Bessel function in the
transition range and also a non-trivial upper bound on this outside the transition range.
We use this lemma in the proof of Theorem 1.2 where we bound the average of S2(δ) and
S3(δ) over k.

Recall that ψ is a positive smooth function supported in [−1, 1] and
∫ 1

−1
ψ(t)dt = 1.

Let K > 0 be a positive real number.

Lemma 3.1. Let 0 < δ < 1
3

and x > 0. If x−K
Kδ > max( x

K3δ , K
ε), then∑

l≡1 mod 2

ψ(
l −K
Kδ

)Jl(x)�A,ψ K
−A (3.1)

otherwise
1

Kδ

∑
l≡1 mod 2

ψ(
l −K
Kδ

)Jl(x)�ψ K
− 1

3 (3.2)

for any A > 0 where �A,ψ means the implicit constant is independent of x and K and
only depends on the smooth weight function ψ and the exponent A. Moreover, if x =

K + o(K
1
3 ) then

1

Kδ

∑
l≡1 mod 2

ψ(
l −K
Kδ

)Jl(x) = JK(x)(1 +O(K−ε))�ψ K
− 1

3 . (3.3)

Proof. It is well-known that

Jl(x) =

∫ 1
2

− 1
2

e−2πilte−ix sin 2πtdt.

By the Poisson summation formula, it follows that∑
l≡1 mod 2

g(l)Jl(x) =

∫ ∞
−∞

ψ̂(u)e−2πiuK1−δ(
e−ix sin(2πu/Kδ) − eix sin(2πu/Kδ)

)
du.

By writing the Taylor expansion of the sin function at zero, we obtain

−2πiuK1−δ ± ix sin(2πu/Kδ) = 2πi
±x−K
Kδ

u∓ ix(2πu)3

6K3δ
± c(u),
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where |c′(u)| ≤ xk4ε

K5δ for u ∈ [−Kε, Kε]. Assume that x−K
Kδ > max( x

K3δ , K
ε) then it

follows that
d

du

(
− 2πiuK1−δ ± ix sin(2πu/Kδ)

)
� ±x−K

K
1
3

,

where u ∈ [−Kε, Kε]. Therefore, by the stationary phase theorem∫ Kε

−Kε

ψ̂(u)e−2πiuK1−δ(
e−ix sin(2πu/Kδ) − eix sin(2πu/Kδ)

)
du�A,ψ |K|−A,

for any A > 0. We note that for |u| > Kε the Fourier transform of ψ decays faster than
any polynomial and we have ∫

|u|>Kε

|ψ̂(u)| �A,ψ |K|−A,

This completes the proof of (3.1). The inequality (3.2) follows, from the well-known
upper bound JK(x) � K−

1
3 and the fact that ψ is supported in [−1, 1]. Finally, (3.3)

follows from the asymptotic of the J-Bessel function in the transition range (2.7). This
concludes the proof of our lemma.

Finally, we give the proof of Theorem 1.2. Recall that T ∗n (N, k) :=
∑

f∈B∗k,N
λn(f)

and K := 4π
√
n + o(n

1
6 ). First, we cite some identities from [ILS00] that we use in the

proof. Let f be a newform of Sk(N) of level M , then by [ILS00, Lemma 2.5], we have

ρm(f)ρn(f) =
12λm(f)λn(f)M

(k − 1)ν(N)Z(1, f)ϕ(M)
, (3.4)

where Z(s, f) :=
∑

n λf (n
2)n−s. Note that Z(s, f) is related to L(s, sym2(f)) by; see

[ILS00, (3.14)]

L(s, sym2(f)) = ζ(2s)ζN(2s)−1Z(s, f),

where ζN(2s) =
∏

p|N(1−p−2s)−1. Let ZN(s, f) :=
∑

gcd(m,N)=1

λm2 (f)

ms
, then by [ILS00,

(3.16)]

ZN(s, f) = L(s, sym2(f))ζ(2s)−1ζN(2s)ζN(s+ 1)−1. (3.5)

By the celebrated result of Shimura [Shi75]L(s, sym2(f)) is an entire function, soZN(s, f)

is holomorphic for <(s) > 1
2

and has meromorphic continuation to the complex plane.
Let w(x) = exp(−x). Note that the Mellin transform of w is the Gamma function

ŵ(s) :=

∫ ∞
0

xs−1w(x)dx = Γ(s).
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3.2 Proof of Theorem 1.2

Proof. Assume that k ∈ [K −Kδ, K +Kδ] where δ < 1
3
. By the Petersson formula (2.3)

∑
f∈B∗k,N

ρm2(f)ρf (n) =
∑

LM=N

µ(L)

L

∑
l|L∞

l−1∆k,M(m2l2, n). (3.6)

Let T := kα for some 0 < α < 1 that we choose at the end of the proof. We average the
LHS of the above by the smooth function w(x/T )/x and use (3.4) to obtain∑
gcd(m,N)=1

w(m/T )/m
∑

f∈B∗k,N

ρm2(f)ρf (n) =
∑

f∈B∗k,N

∑
gcd(m,N)=1

w(m/T )
12λn(f)λf (m

2)ζN(2)

m(k − 1)NZ(1, f)
.

=
12

(k − 1)N

∑
f∈B∗k,N

λn(f)
ζN(2)

Z(1, f)

∑
gcd(m,N)=1

w(m/T )
λf (m

2)

m
.

(3.7)

By the inverse of the Mellin transform, we have w(x/T ) = 1
2πi

∫ 2+i∞
2−i∞ Γ(s)T sx−sds and

this implies ∑
gcd(m,N)=1

w(m/T )
λfi(m

2)

m
=

1

2πi

∫ 2+i∞

2−i∞
ZN(s+ 1, f)T sΓ(s)ds.

We change the contour integral to the <(s) = −1
2

and pick up the pole of Γ(s) at s = 0

with residue ZN(1, f) = Z(1,f)
ζN (2)

, hence

∑
gcd(m,N)=1

w(m/T )
λf (m

2)

m
=
Z(1, f)

ζN(2)
+

1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

ZN(s+ 1, f)T sΓ(s)ds. (3.8)

By (3.5),

1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

ZN(s+ 1, f)T sΓ(s)ds

=
1

2πi

∫ ∞
−∞

L(
1

2
+it, sym2(f))ζ(1+2it)−1ζN(1+2it)ζN(

3

2
+it)−1T−

1
2

+itΓ(−1

2
+it)dt.

First, we assume that |t| > log(k)2. By Stirling’s formula; see [DLMF, 5.11.9]

Γ(−1

2
+ it) = O((1 + |t|)−1e−π|t|/2).

By using the above bound, the convexity bound on L(1
2

+ it, sym2f), the well-known
bound ζ(1+2it)−1 = O(log(t)7), the fact that ζN(2s)ζN(s+1)−1 is bounded on<(s) = 1

2

and |T− 1
2

+it| ≤ T−
1
2 ≤ k−α/2, it follows that∫ log(k)2

−∞
+

∫ ∞
log(k)2

L(
1

2
+it, sym2(f))ζ(1+2it)−1ζN(1+2it)ζN(

3

2
+it)−1T−

1
2

+itΓ(−1

2
+it)dt = O(k−A),
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for any A > 0 where the implicit constant in O depends on A. By the above, (3.7) and
(3.8), we obtain∑

gcd(m,N)=1

w(m/T )/m
∑

f∈B∗k,N

ρm2(f)ρn(f) =
12

(k − 1)N
T ∗n (N, k) +O(k−A)

+

∫ log(k)2

− log(k)2

(∑h

f∈B∗k,N
λn(f)L

(
1

2
+ it, sym2f

)) ζN(1 + 2it)

ζ(1 + 2it)ζN
(

3
2

+ it
)T− 1

2
+itΓ

(
−1

2
+ it

)
dt

(3.9)

By the Ramanujan bound on the holomorphic cusp forms |λn(f)| � nε. Hence,∑h

f∈B∗k,N
λn(f)L(

1

2
+ it, sym2f)� nε

∑h

f∈B∗k,N
|L(

1

2
+ it, sym2f)| � nε.

Therefore,∫ log(k)2

− log(k)2

(∑h

f∈B∗k,N
λn(f)L(

1

2
+it, sym2f)

)
ζ(1+2it)−1ζN(1+2it)ζN(

3

2
+it)−1T−

1
2

+itΓ(−1

2
+it)dt

= O(T−
1
2kε).

By the above and (3.9), we have

∑
gcd(m,N)=1

w(m/T )/m
∑

f∈B∗k,N

ρm2(f)ρf (n) =
12

(k − 1)N
T ∗n (N, k) +O(T−

1
2kε). (3.10)

Finally, we average the RHS of (3.6) with similar weights w(m/T )/m. Our method is
very similar to our argument in the proof of Theorem 1.7. Let

S :=
∑

gcd(m,N)=1

w(m/T )/m
∑

LM=N

µ(L)

L

∑
l|L∞,

l−1∆k,M(m2l2, n).

We analyze the contribution of δ(m2l2, n) by applying the Petersson formula (2.1). Since,
l|N∞ and gcd(N,mn) = 1, then the only possibility for m2l2 = n is that l = 1 and
m2 = n. Therefore,∑

gcd(m,N)=1

w(m/T )/m
∑

LM=N

µ(L)

L

∑
l|L∞

l−1δ(m2l2, n)

= w(
√
n/T )/

√
n
∑

LM=N

µ(L)

L
δ(
√
n) =

ϕ(N)w(
√
n
T

)

N
√
n

δ(
√
n).

where δ(
√
n) = 1 if n is a perfect square and δ(

√
n) = 0 otherwise. Note that by our

choice of w if T � n
1
2
−ε, then

ϕ(N)w(
√
n
T

)

N
√
n

δ(
√
n) = O(k−A), (3.11)
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for any A > 0. Let

ST :=
∑

gcd(m,N)=1,T 1+ε<m

w(m/T )/m
∑

LM=N

µ(L)

L

∑
l|L∞,

l−1
(
∆k,M(m2l2, n)− δ(m2l2, n)

)
.

By [ILS00, Corollary 2.2], we have

∆k,M(m2l2, n)− δ(m2l2, n) = O(
n

1
4

+ε(ml)
1
2

+ε

k5/6
).

where the implied constant in O only depends on the fix number N and ε. It follows from
the above and the choice of w and T that ST = O(k−A). Hence,

S = S1 + S2 +O(k−A), (3.12)

where

S1 :=
∑

LM=N

µ(L)

L

∑
l|L∞

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/ml
∑

c|M,c=ml

S(m2l2, n; c)

c
Jk−1(

4πml
√
n

c
),

S2 :=
∑

LM=N

µ(L)

L

∑
l|L∞

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/ml
∑

c|M,c6=ml

S(m2l2, n; c)

c
Jk−1(

4πml
√
n

c
).

In what follows, we give an asymptotic formula for S1 which is the sum over the diagonal
terms ml = c where gcd(m,N) = 1 and l|L∞. Similarly, ml = c happens when M = 1

and L = N and we have

S(m2l2, n; c) = S(0, n; c) =
∑

d| gcd(c,n)

µ(
c

d
)d.

Hence,

S1 = Jk−1(4π
√
n)
µ(N)

N

∑
l|N∞

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/(ml)2
∑

d| gcd(ml,n)

µ(
ml

d
)d

= Jk−1(4π
√
n)
µ(N)

N

(∑
l|N∞

µ(l)

l2

)( ∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/m2
∑

d| gcd(m,n)

µ(
m

d
)d
)

= Jk−1(4π
√
n)
µ(N)

N
ζN(2)−1

(∑
d|n

1/d
∑

gcd(h,N)=1,h<T 1+ε/d

w(hd/T )µ(h)/h2
)

= Jk−1(4π
√
n)
µ(N)

N
ζ−1(2)σ(n)/n(1 +O(T−1)).

(3.13)

Next, we give an upper bound on S2. Let β > 0 be some positive real number and S2,β be
the same sum as S2 but subjected to Kβ < l,

S2,β :=
∑

LM=N

µ(L)

L

∑
Kβ<l|L∞

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/ml
∑

c|M,c6=ml

S(m2l2, n; c)

c
Jk−1(

4πml
√
n

c
).
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Since, N is fixed and S1 is supported on l|N∞ and µ(l) 6= 0, it follows from (2.3) that for
sufficiently large k ;.e.g., Kβ > N

S2,β =
∑

gcd(m,N)=1,m<T 1+ε

w(m/T )/m
∑

LM=N

µ(L)

L

∑
Kβ<l|L∞

l−1
(
∆k,M(m2l2, n)−δ(ml2, n)

)
.

By [ILS00, Corollary 2.2], we have

∆k,M(m2l2, n)− δ(m2l2, n) = O(
n

1
4

+ε(ml)
1
2

+ε

k5/6
).

where the implied constant in O only depends on the fix number N and ε. Therefore,

S2,β �
∑

gcd(m,N)=1,m<T 1+ε

w(m/T )/m
∑

Kβ<l|N∞
l−1n

1
4

+ε(ml)
1
2

+ε

k5/6
.

By (2.4), we have

S2,β � k−
1
3

+ε
∑

m<T 1+ε

∑
Kβ<l|N∞

(ml)−
1
2

+ε = O(T
1
2k−

1
3
−β/2+ε). (3.14)

Finally, we give an upper bound on S(β) := S2 − S2,β. We split S(β) into two ranges:

1. 2ml < c,

2. c < 2ml and c 6= ml

and we write Si(β) for the sum S(β) subjected to the i-th condition listed above. First,
we give an upper bound on S1(β). Assume that 2ml < c then by (2.9), (2.7) and Weil’s
bound (2.2) on Kloosterman’s sum, we have

|S1(β)| =
∣∣ ∑
LM=N

µ(L)

L

∑
l|L∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/(ml)
∑

M |c,2ml<c

S(m2l2, n; c)

c
Jk−1(

4πml
√
n

c
)
∣∣

�
∑

l|N∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )/(ml)
∑

2ml<c

|S(m2l2, n; c)

c
||Jk−1(

4πml
√
n

c
)|

�
∑

h<KβM1+ε

h−1
∑
2h<c

|e
k(1−h/c+log(h/c))

k
1
3

| � e−(0.19)k.

(3.15)

By inequalities (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), we have

T ∗n (N, k) = Jk−1(4π
√
n)
µ(N)k

12
ζ−1(2)σ(n)/n+ S2(β) +O(T−

1
2kε + T

1
2k−

1
3
−β/2+ε).
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We average the above identity by 1
Kδ

∑
k>0,k∈2Z ψ

(
k−K
Kδ

)
and apply inequality (3.3) in

Lemma 3.1

1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
T ∗n (N, k) = JK(4π

√
n)
µ(N)K

12
ζ−1(2)

σ(n)

n
(1 +K−ε)

+
1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
S2(β) +O(T−

1
2kε + T

1
2k−

1
3
−β/2+ε). (3.16)

Next, we give an upper bound on the average of S2(β).

∣∣∣ 1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
S2(β)

∣∣∣ =
∣∣∣ ∑
LM=N

µ(L)

L

∑
l|L∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

w(m/T )

ml

×
∑

M |c,c<2ml

S(m2l2, n; c)

c

1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
Jk−1(

4πml
√
n

c
)
∣∣∣ (3.17)

For the summation S2(β), we have c < 2ml < 2T 1+εKβ. Let x := 4πml
√
n

c
. First, we

check the condition of inequality (3.1) in Lemma 3.1, that is if x−K
Kδ > max( x

K3δ , K
ε). We

assumed that |K−4π
√
n| < n

1
6 , δ < 1

3
and c < 2ml, hence x

K3δ > Kε. So, it is enough to
check if x−K

Kδ > x
K3δ . In particular, if |ml

c
− 1| > K−2δ then we can apply inequality (3.1).

Hence we consider two cases:

1. c < 2ml and |ml
c
− 1| > K−2δ

2. c < 2ml and |ml
c
− 1| < K−2δ

We denote the above sums by S2,1 and S2,2 respectively where S2(β) = S2,1 + S2,2. By
Lemma inequality (3.1), identity (3.17) and Weil’s bound (2.2) on Kloosterman’s sum,
we have

∣∣∣ 1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
S2,1

∣∣∣� ∑
l|N∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

1

ml

∑
c<2ml

∣∣S(m2l2, n; c)

c

∣∣K−A
� K−A

∑
l|N∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

1

ml

∑
c<2ml

√
gcd(m,n, c)c−

1
2

+ε

= O(T
1
2

+εK−A).

(3.18)
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Finally, we bound the S2,2 sum. We apply inequality (3.2) and Weil’s bound (2.2) on
Kloosterman’s sum:∣∣∣ 1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
S2,2

∣∣∣� ∑
l|N∞,l<Kβ

∑
gcd(m,N)=1,m<T 1+ε

1

ml

∑
|ml
c
−1|<K−2δ

∣∣S(m2l2, n; c)

c

∣∣K− 1
3

� K−
1
3

∑
l|N∞,l<Kβ

∑
m<T 1+ε

1

ml

√
gcd(m,n)

∑
|ml
c
−1|<K−2δ

c−
1
2

+ε

� K−
1
3

∑
l|N∞,l<Kβ

∑
m<T 1+ε

1

ml

√
gcd(m,n)

(ml)
1
2

+ε

K2δ

� K−
1
3

∑
l|N∞,l<Kβ

∑
m<T 1+ε

√
gcd(m,n)

(ml)−
1
2

+ε

K2δ

= O(T
1
2

+εK−
1
3
−2δ).

(3.19)

Therefore, by inequalities (3.16), (3.18), (3.19), we have

1

Kδ

∑
k>0,k∈2Z

ψ

(
k −K
Kδ

)
T ∗n (N, k)

= JK(4π
√
n)
µ(N)Kσ(n)

12ζ(2)n
(1 +K−ε) +O(T−

1
2kε + T

1
2k−

1
3
−β

2
+ε + T

1
2

+εK−
1
3
−2δ)

By choosing β large enough, T ∼ K
2
3

+ε and 1
6
< δ < 1

3
we conclude our theorem.

3.3 Proof of Theorem 1.1

Proof. The method of the proof is similar to the proof of Theorem 1.6. Let Un(x) be the
n−th Chebyshev polynomial of the second kind. It is well known that∫ 2

−2

Un(x)dµp(x) =

{ 1
pn/2

if n is a even
0 otherwise.

By Theorem 1.2, there exists kn ∈ [b4π
√
pnc − pn/6, b4π

√
pnc+ pn/6] such that∫ 2

−2

Un(x)dµp(x)−
∫ 2

−2

Un(x)dµ∗kn,N � k
− 1

3
n

By the above inequality and a similar argument as in Theorem 1.6, we have

D(µ∗kn,N , µp)�
1

k
1
3
n log2 kn

.

This concludes the proof of our theorem.
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4 Selberg’s trace formula

The main purpose of this section is to prove Theorem 1.3 and Theorem 1.4. We first recall
Eichler–Selberg trace formula. We use the version from [MS09] (see also [Ser97]).

Theorem 4.1 (Eichler–Selberg trace formula, Theorem 10 [MS09]). For every positive
integer n ≥ 1, the trace Tr of Tn = Tn(N, k) acting on Sk(N) is given by

Tr Tn = A1(n, k,N) + A2(n, k,N) + A3(n, k,N) + A4(n, k),

where Ai(n, k)’s are as follows:

A1(n, k,N) =

{
k−1
12
ψ(N) 1√

n
if n is a square

0 otherwise
where ψ(N) = N

∏
p|N

(
1 +

1

p

)
.

A2(n, k,N) = −1

2
n−

k−1
2

∑
t∈Z, t2<4n

ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∑
f

hw

(
t2 − 4n

f 2

)
µ(t, f, n,N),

where ρt,n and ρ̄t,n are zeros of x2−tx+n, and the inner sum runs over all positive divisors
of t2 − 4n such that (t2 − 4n)/f 2 ∈ Z is congruent to 0 or 1 (mod 4). µ(t, f, n,N) is
given by

µ(t, f, n,N) =
ψ(N)

ψ(N/Nf )
M(t, n,NNf )

where Nf = gcd(N, f) and M(t, n,K) denotes the number of solutions of the congru-
ence x2 − tx+ n ≡ 0 (mod K).

A3(n, k,N) = −n−
k−1
2

∑
d|n, 0<d≤

√
n

dk−1
∑

c|N,gcd(c,Nc )| gcd(N,nd−d)

ϕ

(
gcd

(
c,
N

c

))
.

Here, ϕ is Euler’s totient function, and in the first summation, if there is a contribution
from the term d =

√
n, it should be multiplied by 1

2
.

A4(n, k) =

{
n−

1
2

∑
t|n t if k = 2,

0 otherwise.

To relate the trace of Tn acting on Sk(N) and the trace of its restriction T ∗n to Sk(N)∗,
one may use Atkin–Lehner decomposition for squarefree integers N to derive (see for
instance, [Ham98])

Tr Tn(N, k) =
∑
d|N

σ0(N/d)Tr T ∗n (d, k),

and by Möbius inversion, this implies that

Tr T ∗n (N, k) =
∑
d|N

σ0(N/d)µ(N/d)Tr Tn(d, k). (4.1)

Therefore we have:
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Lemma 4.2. Assume that N is a squarefree integer. For every positive integer n ≥ 1, the
trace Tr of Tn = Tn(N, k) restricted to Sk(N)∗, which we denote by T ∗n = T ∗n (N, k) is
given by

Tr T ∗n = B1(n, k,N) +B2(n, k,N) +B3(n, k,N) +B4(n, k,N),

where Bi(n, k)’s are as follows:

B1(n, k,N) =

{
k−1
12
ϕ(N) 1√

n
if n is a square

0 otherwise

B2(n, k,N) = −1

2
n−

k−1
2

∑
t∈Z, t2<4n

ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∑
f

hw

(
t2 − 4n

f 2

)
µ̃(t, f, n,N).

where ρt,n and ρ̄t,n are zeros of x2−tx+n, and the inner sum runs over all positive divisors
of t2 − 4n such that (t2 − 4n)/f 2 ∈ Z is congruent to 0 or 1 (mod 4). µ̃(t, f, n,N) is
given by

µ̃(t, f, n,N) =
∑
d|N

σ0(N/d)µ(N/d)µ(t, f, n, d).

B3(n, k,N) =

{
−n− k−1

2

∑
d|n, 0<d≤

√
n d

k−1 if N = 1

0 otherwise

In the first summation, if there is a contribution from the term d =
√
n, it should be

multiplied by 1
2
.

B4(n, k,N) =

{
µ(N)n−

1
2

∑
t|n t if k = 2,

0 otherwise.

Proof. From Theorem 4.1 and (4.1), we have

Tr T ∗n = B1(n, k,N) +B2(n, k,N) +B3(n, k,N) +B4(n, k,N),

where
Bi(n, k,N) =

∑
d|N

σ0(N/d)µ(N/d)Ai(n, k, d).

Note that whenN is squarefree, gcd
(
c, N

c

)
= 1, so the inner sum ofA3(n, k,N) becomes

σ0(N).
To prove the lemma, it is sufficient to compute for i = 1, 3, 4

Bi(n, k, p) = Ai(n, k, p)− 2Ai(n, k, 1)

by multiplicity of Dirichlet convolution, and the assumption that N is squarefree:

ψ(p)− 2ψ(1) = p− 1 = ϕ(p),
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when i = 1,
σ0(p)− 2σ0(1) = 2− 2 = 0,

when i = 3, and
1− 2 = −1 = µ(p),

when i = 4.

4.1 Analytic setup

Let φ be a positive even rapidly decaying function whose Fourier transform φ̂ is supported
in [−1/100, 1/100]. In this section, we study the second moment of B2:

∑
k>0,k∈2Z

φ

(
k − 1

T

)
|B2(n, k,N)|2 =

1

2

∑
k∈2Z

φ

(
k − 1

T

)
|B2(n, k,N)|2 , (4.2)

where we used B2(n, k,N) = −B2(n, 2− k,N).
We first collect some preliminary estimates.

Lemma 4.3. We have
|Sk(N)∗| = k − 1

12
ϕ(N) +ON(1), (4.3)

and
B2(n, k,N)�N σ1(n). (4.4)

Proof. (4.3) follows from Theorem 13 of [MS09], and (4.1).
To prove (4.4), note that∣∣∣∣∣n− k−1

2
ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∣∣∣∣∣ ≤ 2

|ρt,n − ρ̄t,n|
=

2√
4n− t2

≤ 2.

Therefore

|B2(n, k,N)| ≤ 2
∑
t2<4n

∑
f

hw

(
t2 − 4n

f 2

)
µ̃(t, f, n,N)�N σ1(n),

where we combined Lemma 16 [MS09] and a trivial upper bound µ̃(t, f, n,N) �N 1 in
the last estimate.

For t ∈ Z such that t2 < 4n, define 0 < θt,n < π by

√
neiθt,n =

1

2
(t+ i

√
4n− t2).

We record some trivial estimates regarding θt,n’s
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Lemma 4.4. For integer t such that t2 < n, we have

π − 1

2
√
n
θt,n ≥

1

2
√
n

and

θt,n − θt+1,n ≥
1

2
√
n
.

Proof. We have

sin θt,n =

√
4n− t2
2
√
n
≥ 1

2
√
n
.

Also,

ei(θt,n−θt+1,n) =
1

4n
(t+ i

√
4n− t2)(t+ 1− i

√
4n− (t+ 1)2)

so

sin(θt,n − θt+1,n) =
1

4n
((t+ 1)

√
4n− t2 − t

√
4n− (t+ 1)2)

=
1

4n

(t+ 1)2(4n− t2)− t2(4n− (t+ 1)2)

(t+ 1)
√

4n− t2 + t
√

4n− (t+ 1)2

=
2t+ 1

(t+ 1)
√

4n− t2 + t
√

4n− (t+ 1)2

≥ 1√
4n
.

We introduce D(t, n) as follows:

B2(n, k,N) =
∑

t∈Z, t2<4n

(
ei(k−1)θt,n − e−i(k−1)θt,n

)
D(t, n).

Then expanding (4.2) and using D(t, n) = −D(−t, n), we get

∑
k∈2Z

φ

(
k − 1

T

)
|B2(n, k,N)|2

=4
∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2

+
∑
t1 6=t2

∑
k∈2Z

φ

(
k − 1

T

)
e±i(k−1)(θt1,n−θt2,n)D(t1, n)D(t2, n)

−
∑
t1 6=−t2

∑
k∈2Z

φ

(
k − 1

T

)
e±i(k−1)(θt1,n+θt2,n)D(t1, n)D(t2, n)

=D +OD,
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where the diagonal part D comes from θt1,n + θt2,n = π and from θt1,n = θt2,n. Note
from Lemma 4.4 that, unless it is an integer multiple of π, θt1,n ± θt2,n are contained in[

1
2
√
n
, π − 1

2
√
n

]
modulo π. Therefore we have

OD � sup
θ∈

[
1

2
√
n
,π− 1

2
√
n

]
∣∣∣∣∣∑
k∈2Z

φ

(
k − 1

T

)
ei(k−1)θ

∣∣∣∣∣∑
t1,t2

|D(t1, n)D(t2, n)|

�N sup
θ∈

[
1

2
√
n
,π− 1

2
√
n

]
∣∣∣∣∣∑
k∈2Z

φ

(
k − 1

T

)
ei(k−1)θ

∣∣∣∣∣σ1(n)2.

Lemma 4.5. Let T ≥
√
n. Then for any θ that satisfies θ ∈

[
1

2
√
n
, π − 1

2
√
n

]
, we have

∑
k∈2Z

φ

(
k − 1

T

)
ei(k−1)θ = 0,

and as a result∑
k∈2Z

φ

(
k − 1

T

)
|B2(n, k,N)|2 = 4

∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2.

Proof. From Poisson summation formula we have∑
k∈2Z

φ

(
k − 1

T

)
ei(k−1)θ =

∑
n∈Z

φ

(
2n− 1

T

)
ei(2n−1)θ =

∑
m∈Z

Φ(m), (4.5)

where

Φ(y) =

∫ ∞
−∞

φ

(
2x− 1

T

)
ei(2x−1)θe−2πixydx

=
1

2
e−πiy

∫ ∞
−∞

φ
( x
T

)
eix(θ−πy)dx

=
T

2
e−πiy

∫ ∞
−∞

φ (x) eixT (θ−πy)dx

=
T

2
e−πiyφ̂

(
T (πy − θ)

2π

)
.

In the last expression, for any m ∈ Z, we have∣∣∣∣T (πm− θ)
2π

∣∣∣∣ ≥ 1

4π
,

and since φ̂ is assumed to be supported in [−1/100, 1/100], the right hand side of (4.5)
vanishes.

We are ready to prove:
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Lemma 4.6. Let φ be a positive even rapidly decaying function whose Fourier transform
φ̂ is supported in [−1/100, 1/100]. Let T ≥

√
n. Then we have

∑
k>0,k∈2Z

φ

(
k − 1

T

) ∣∣∣∣Tr T ∗n −
k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣2
= 2

∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2 − φ
(

1

T

)
σ1(n)2

n
+O

(
n

1
2

+ε
)
, (4.6)

where δ√n = 1 if n is square, and 0 otherwise.

Proof. The summand agrees with B2(n, k,N) unless k = 2, so from the computation
given above, we have

∑
k>0,k∈2Z

φ

(
k − 1

T

) ∣∣∣∣Tr T ∗n −
k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣2

= 2
∑
k∈2Z

φ

(
k − 1

T

) ∑
t2<4n

|D(t, n)|2+φ

(
1

T

)(∣∣∣∣Tr T ∗n −
1

12
ϕ(N)

δ√n√
n

∣∣∣∣2 − |B2(n, 2, N)|2
)
.

By Lemma 4.2, for N > 1 we have

B2(n, 2, N) = Tr T ∗n −
1

12
ϕ(N)

δ√n√
n
− µ(N)

σ1(n)√
n

By the Ramanujan bound on the weight 2 modular forms, we have

Tr T ∗n �ε,N nε.

Hence, ∣∣∣∣Tr T ∗n −
1

12
ϕ(N)

δ√n√
n

∣∣∣∣2 − |B2(n, 2, N)|2 = −σ1(n)2

n
+O

(
n

1
2

+ε
)
.

This concludes our lemma.

4.2 Arithmetic sum

In this section, we estimate the arithmetic part of (4.6):∑
t2<4n

|D(t, n)|2.

Theorem 4.7. Assume for simplicity that n is odd. Then we have

√
n�N

∑
t2<4n

|D(t, n)|2 �N

√
n(log n)2(log log n)4.
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Recall that

D(t, n) =
i

2
√

4n− t2
∑
f

hw

(
t2 − 4n

f 2

)
µ̃(t, f, n,N),

where the inner sum runs over all positive divisors of t2 − 4n such that (t2 − 4n)/f 2 ∈ Z
is congruent to 0 or 1 (mod 4). µ̃(t, f, n,N) is given by

µ̃(t, f, n,N) =
∑
d|N

σ0(N/d)µ(N/d)µ(t, f, n, d),

and µ(t, f, n,N) is given by

µ(t, f, n,N) =
ψ(N)

ψ(N/Nf )
M(t, n,NNf ),

where Nf = gcd(N, f) and M(t, n,K) denotes the number of solutions of the congru-
ence x2 − tx+ n ≡ 0 (mod K).

Denote by H(n) =
∑

f2|n hw(−n/f 2) the Hurwitz class number. For the upper bound
of the arithmetic sum, we write∑

t2<4n

D(t, n)2 �N

∑
t2<4n

1

4n− t2
H2
(
t2 − 4n

)
, (4.7)

using the estimate µ(t, f, n,N)�N 1.
For the lower bound, we first prove the following:

Lemma 4.8. Assume that n is odd. Fix an odd integer 0 < n0 < 2N such that
(
n2
0−4n

p

)
=

−1 for all odd primes p|N . Then µ̃(t, f, n,N) = σ0(N)µ(N) for any t ≡ n0 (mod 2N).

Proof. For such t, we have µ(t, f, n, d) = 0 unless d = 1 or 2. So for an odd N ,

µ̃(t, f, n,N) = σ0(N)µ(N).

When N is even, we have

µ̃(t, f, n,N) = σ0(N)µ(N)+σ0(N/2)µ(N/2)µ(t, f, n, 2) = σ0(N/2)µ(N/2)(µ(t, f, n, 2)−2),

where
µ(t, f, n, 2) = M(t, n, 2),

because gcd(N, f)| gcd(N, t2 − 4n) = 1. Then M(t, n, 2) = 0 since both n and t are
assumed to be odd, and therefore

µ̃(t, f, n,N) = σ0(N/2)µ(N/2)× (−2) = σ0(N)µ(N).
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Using this lemma, we bound the arithmetic sum from the below under the assumption
that n is odd as follows:

∑
t2<4n

D(t, n)2 ≥
∑
t2<4n

t≡n0 (mod 2N)

D(t, n)2 =
∑
t2<4n

t≡n0 (mod 2N)

σ0(N)2

4n− t2
H2
(
t2 − 4n

)
≥

∑
t2<4n

t≡n0 (mod 2N)

1

4n− t2
H2
(
t2 − 4n

)
. (4.8)

We now handle the right hand sides of (4.7) and (4.8) separately.

4.2.1 Upper bound

We first recall from [Coh75], that for n = Df 2 < 0,

H(n) =
h(D)

w(D)

∑
d|f

µ(d)χD(d)σ1

(
f

d

)
. (4.9)

where 2w(D) is the number of units in Q(
√
−D). Note that

∑
d|f

µ(d)χD(d)σ1

(
f

d

)

is multiplicative in f , and

∑
d|pk

µ(d)χD(d)σ1

(
pk

d

)
= σ1

(
pk
)
−χD(p)σ1

(
pk−1

)
≤ σ1

(
pk
)
+σ1

(
pk−1

)
<

(
1 +

1

p

)
σ1

(
pk
)
.

Therefore ∑
d|f

µ(d)χD(d)σ1

(
f

d

)
< σ1(f)

∏
p|f

(
1 +

1

p

)
� f(log log f)2

where we used Grönwall’s theorem in the last inequality. Using a standard upper bound
h(D)�

√
D logD yields:

H(n)�
√
Df logD(log log f)2 �

√
n log n(log log n)2.

Now we apply this to (4.7) to conclude that∑
t2<4n

D(t, n)2 �N

√
n(log n)2(log log n)4.
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4.2.2 Lower bound

From Cauchy-Schwarz inequality,

∑
t2<4n

t≡n0 (mod 2N)

1

4n− t2
H2
(
t2 − 4n

) ∑
t2<4n

t≡n0 (mod 2N)

(4n−t2) ≥

 ∑
t2<4n

t≡n0 (mod 2N)

H
(
t2 − 4n

)
2

,

we have

∑
t2<4n, t≡n0 (mod 2N)

1

4n− t2
H2
(
t2 − 4n

)
� n−

3
2

 ∑
t2<4n, t≡n0 (mod 2N)

H
(
t2 − 4n

)2

.

Let r3(n) be the number of ways of representing n as a sum of three squares. Then Gauss’
formula (see for instance, [KO99]) asserts that

r3(n) = 12H(−4n) (n ≡ 1, 2 (mod 4))

= 24H(−n) (n ≡ 3 (mod 8))

= r(n/4) (n ≡ 0 (mod 4))

= 0. (n ≡ 7 (mod 8))

Observe from (4.9) that if 4 - m, then

H(4km) = H(m)
(
σ1(2k)− χD(2)σ1(2k−1)

)
and so

2kH(m) ≤ H(4km) ≤ (2k+1 + 2k − 2)H(m).

Combining all these, we conclude that

r3(n) ≤ 48H(−n).

Therefore we have

48
∑

t2<4n, t≡n0 (mod 2N)

H
(
t2 − 4n

)
≥

∑
t2<4n, t≡n0 (mod 2N)

r3(4n− t2),

and observe that the last sum is equal to the number of elements in the following set:

A2N(n) := {4n = t2 + x2 + y2 + z2 : x, y, z, t ∈ Z, t ≡ n0 (mod 2N)}. (4.10)

Note that we assume that n is odd and N is fixed. Then by the result of Kloosterman
[Klo27] who developed a version of the classical circle method with no minor arcs for
quadratic forms in four variables we have

AN(n)� n,
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where the implicit constant in � only depends on the fixed number N ; see also the
work of the second author [Sar15, Theorem 11] for the optimal strong approximation
for quadratic forms in four and more variables which implies the above lower bound with
an explicit dependence on N .

This completes the proof of the lower bound in Theorem 4.7.

4.3 Completion of proofs

In this section, we prove Theorem 1.3, 1.4, and Corollary 1.5.

Proof of Theorem 1.3. This is simple consequence of combining Lemma 4.6 and Theo-
rem 4.7.

Proof of Theorem 1.4. From Lemma 4.6 and Theorem 4.7, we see that LHS of (1.5) is

> cN
√
n− σ1(n)2

An
√
n
,

for some constant cN > 0 depending only on N . If n = pm, then σ1(n) = pm+1−1
p−1

<

2pm = 2n, which implies that

cN
√
n− σ1(n)2

An
√
n
>

(
cN −

4

A

)√
n.

Proof of Corollary 1.5. We first note that from (61), [GJS99] that for n = pm,∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− |B∗k,N |
δ√n√
n

∣∣∣∣∣∣ ≤ 2m2|B∗k,N |D(µ∗k,N , µp).

By (4.3), we have by 2x2 + 2y2 ≥ (x+ y)2,

2

∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− |B∗k,N |
δ√n√
n

∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣
∑

f∈B∗k,N

λn(f)− k − 1

12
ϕ(N)

δ√n√
n

∣∣∣∣∣∣
2

+O(n−1).

Now from Theorem 1.4, we have

1∑
k∈2Z φ

(
k−1
K

) ∑
k>0,k∈2Z

φ

(
k − 1

K

)
m4|B∗k,N |2D(µ∗k,N , µp)

2 �N n
1
2 , (4.11)

where K = A
√
n for some fixed sufficiently large A. Assume for contradiction that

D(µ∗k,N , µp) = o

(
1

k
1
2 log2 k

)
. (4.12)
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Then from (4.11), we have

n
1
2 � 1∑

k∈2Z φ
(
k−1
K

) ∑
k>0,k∈2Z

φ

(
k − 1

K

)
m4|B∗k,N |2D(µ∗k,N , µp)

2

= o

(
1

K

∑
k>0,k∈2Z

φ

(
k − 1

K

)
m4 k

log4 k

)
.

However,
1

K

∑
k>0,k∈2Z

φ

(
k − 1

K

)
m4 k

log4 k
� m4 K

log4K
�
√
n

contradicting the assumption (4.12).

5 Appendix: By Simon Marshall

The purpose of this appendix is to illustrate the geometric origin of the transition behavior
of the J-Bessel function, by recalling the derivation of the Petersson trace formula as a
relative trace formula following [KL06]. Let G = PSL(2,R), and Γ = PSL(2,Z). Let
k ≥ 2 be even, and define f ∈ C∞(G) by

f(g) =
k − 1

4π

(2i)k

(−b+ c+ (a+ d)i)k
, g =

(
a b
c d

)
.

This is the L2-normalized matrix coefficient of the lowest weight vector in the weight k
discrete series, see e.g. [KL06, Section 3.1]. We form the function

KΓ(x, y) =
∑
γ∈Γ

f(x−1γy)

on (Γ\G)2. The Petersson trace formula can be proved by integrating KΓ(x, y) against
characters over two horocycles on Γ\G, and comparing the geometric and spectral ex-
pansions of KΓ. More precisely, if m,n ≥ 1 and we define

σn =

(
k/4πn

1

)
,

and likewise for σm, then the integral we wish to expand is∫ 1

0

∫ 1

0

KΓ

((
1 x

1

)
σn,

(
1 y

1

)
σm

)
e(−nx+my)dxdy.

Note that the heights we have chosen for our horocycles are optimal for picking up the n
and mth Fourier coefficients on the spectral side.
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We shall analyze the geometric side of this integral, which is∫ 1

0

∫ 1

0

∑
γ∈Γ

f

(
σ−1
n

(
1 −x

1

)
γ

(
1 y

1

)
σm

)
e(−nx+my)dxdy.

We break the sum over γ into double cosets NηN , which gives

∑
η∈N\Γ/N

∫ 1

0

∫ 1

0

∑
γ∈NηN

f

(
σ−1
n

(
1 −x

1

)
γ

(
1 y

1

)
σm

)
e(−nx+my)dxdy.

The contribution from the identity coset is∫ 1

0

∫ 1

0

∑
γ∈N

f

(
σ−1
n

(
1 −x

1

)
γ

(
1 y

1

)
σm

)
e(−nx+my)dxdy.

This vanishes unless m = n, in which case it is

4πn

k

∫ ∞
−∞

f

((
1 x

1

))
dx,

i.e. the integral of f over the horocycle of height 1. If η 6= 1, there is no repetition among
the elements n1γn2, and so we may unfold the two integrals to obtain

Iη =

∫ ∞
−∞

∫ ∞
−∞

f

(
σ−1
n

(
1 −x

1

)
η

(
1 y

1

)
σm

)
e(−nx+my)dxdy. (5.1)

This integral has a simple geometric meaning, as the integral of the kernel K(x, y) =

f(x−1y) against characters over the two horocycles Nσn and ηNσm. If we write η =(
a b
c d

)
with c > 0, then c corresponds to the index of summation on the geometric

side of the Petersson formula. Moreover, the ranges c < 4π
√
mn/k, c = 4π

√
mn/k, and

c > 4π
√
mn/k correspond to the oscillation, transition, and decay range of the J-Bessel

function in the following way. We shall use the fact that the kernelK concentrates near the
diagonal in H2 × H2. If c < 4π

√
mn/k, then the two horocycles intersect transversally.

The integrand is roughly supported on two balls of radius k−
1
2 and has magnitude k, and

we have Iη ∼ 1 as expected. If c > 4π
√
mn/k then the horocycles do not intersect, and

Iη �N k−N . The case c = 4π
√
mn/k is where the horocycles are tangent, and so the

integral is roughly supported on a ball of radius k−
1
4 . One might expect Iη ∼ k

1
2 from

this, but in fact it is of size k
1
6 . As we shall see below, the point is that the phase in (5.1)

has a cubic degeneracy, and this (rather than the support) determines the size of Iη.
We now explicate the relation between Iη and the geometric side of the Petersson for-

mula, and analyze the phase of the integral in the transition range. Writing η =

(
a b
c d

)
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with c > 0, the double coset NηN is determined by c and the residue class of a mod c.
Moreover, we have(

a b
c d

)
=

(
1 a/c

1

)(
−1/c

c

)(
1 d/c

1

)
.

Changing variable in x and y by a translation, we have

Iη = e(−(na+md)/c)

∫ ∞
−∞

∫ ∞
−∞

f

(
σ−1
n

(
1 −x

1

)(
−1/c

c

)(
1 y

1

)
σm

)
e(−nx+my)dxdy.

Conjugating the matrices σn and σm though to the middle and changing variable gives

Iη = e(−(na+md)/c)
k2

(4π)2mn

∫ ∞
−∞

∫ ∞
−∞

f

((
1 −x

1

)(
−4πn/kc

kc/4πm

)(
1 y

1

))
e(k(−x+ y)/4π)dxdy.

If we define

A(t, k) =

∫ ∞
−∞

∫ ∞
−∞

f

((
1 −x

1

)(
−1/t

t

)(
1 y

1

))
e(k(−x+ y)/4π)dxdy,

then the contribution from all η with a given value of c is

k2

(4π)2mn
S(m,n, c)A(kc/4π

√
mn, k).

In [KL06, Prop. 3.6], Knightly and Li calculate

A(t, k) =
e−kik4πkk−1

2t(k − 2)!
Jk−1(k/t) ∼ k

1
2

t
Jk−1(k/t),

which gives the required appearance of Jk−1 on the geometric side.
One again sees the geometric meaning of A(t, k). It is an integral of K(x, y) against

characters over a horocycle of height 1, and a horocycle corresponding to the point 0 ∈
∂H2 and whose highest point is at i/t2. One therefore expects a transition of A(t, k) at
t = 1, and this corresponds to c = 4π

√
mn/k as claimed above. We now write A(1, k)

as an oscillatory integral (with non-imaginary phase function), and examine its critical
point. Using our formula for f gives

f

((
1 −x

1

)(
−1

1

)(
1 y

1

))
= f

((
−x −1− xy
1 y

))
=
k − 1

4π
ik(1 + xy/2 + i(y − x)/2)−k

=
k − 1

4π
ik exp(−k log(1 + xy/2 + i(y − x)/2)).
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Computing the Taylor expansion of log(1 + xy/2 + i(y − x)/2) gives

log(1 + xy/2 + i(y − x)/2) = xy/2 + i(y − x)/2− 1

2

(
−(y − x)2/4 + ixy(y − x)/2

)
− i(y − x)

3
2 4 +O(x4 + y4)

= (x+ y)2/8 + i
(

(y − x)/2− xy(y − x)/4− (y − x)
3
2 4
)

+O(x4 + y4).

Substituting this into A(1, k) gives

A(1, k) =
k − 1

4π
ik
∫ ∞
−∞

∫ ∞
−∞

exp(−k(x+y)2/8+ik
(
xy(y − x)/4 + (y − x)3/24

)
+kO(x4+y4))dxdy.

The leading term −k(x + y)2/8 in the phase truncates the integral to the line x + y = 0

at scale k−
1
2 , and along this line the leading term in the phase is imaginary with a cubic

degeneracy. This is why one has A(1, k) ∼ k
1
6 compared to A(t, k) ∼ 1 for t < 1.
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Ann. Henri Poincaré, 6(5):863–883, 2005.

[Sar90] Peter Sarnak. Some Applications of Modular Forms. Cambridge Tracts in Math-
ematics. Cambridge University Press, 1990.

[Sar95] Peter Sarnak. Arithmetic quantum chaos. In The Schur lectures (1992) (Tel
Aviv), volume 8 of Israel Math. Conf. Proc., pages 183–236. Bar-Ilan Univ.,
Ramat Gan, 1995.

[Sar97] Peter Sarnak. Values at integers of binary quadratic forms. In Harmonic anal-
ysis and number theory (Montreal, PQ, 1996), volume 21 of CMS Conf. Proc.,
pages 181–203. Amer. Math. Soc., Providence, RI, 1997.

[Sar02] Peter Sarnak. Letter to Z. Rudnick on multiplicities of eigenvalues for the mod-
ular surface, October 2002. https://publications.ias.edu/sarnak/paper/500.

[Sar15] N. T Sardari. Optimal strong approximation for quadratic forms. ArXiv e-prints,
October 2015.
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