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Perturbations of spectral measures
for Feller operators

Michael Demuth

Abstract. In stochastic spectral analysis of selfadjoint Feller operators quanti-
tative error estimates are given for the corresponding spectral measures. Both
regular and singular perturbations are considered.

1. The background idea of stochastic spectral analysis

Many spectral properties of selfadjoint operators can be studied indirectly by the spec-
tral behaviour of their semigroups. For Schddinger operators of the form Hy + V, Hy
selfadjoint realization of —A, V a Kato—class potential, in L?(R"™) a summary of these
results can be found by Simon (1982) or by Demuth (1991). The spectral consequ-
ences are mainly based on the explicit representation of the integral kernels for the
semigroups or resolvents. That means for instance the resolvent (Ho+ V +21)~' is an
integral operator for appropriate regular values, the kernel of which is given by

[(Ho+V +21)7 (,9) = [ dh e g {em o vietonse} | (1)

z,y € R™. E¥*{.} denotes the conditional Wiener measure. w(.) are the trajectories
of the Wiener process.

For Kato~class potentials the kernel of e~*"0+V) can be estimated by the free kernel
(where V = 0) i.e. by the Wiener density function

pw(t,,y) = (4rt) ™2 e~l=vl /4t (2)

Therefore the proofs of spectral properties of Hy+V using the Feynman-Kac-represen-
tation in (1) are mainly based on several characteristic features of the Wiener density
function pw. This density function has many “nice” properties. For instance it is
symmetric with respect to any coordinate z; € R, 1 = 1,...,n. It is decreasing if
any |z;] — oo, even with the same rate of convergence. It is uniformly bounded by
lz —yl™.



But for many spectral theoretical aspects it is not necessary to have or to use
the whole variety of these py—properties. Therefore the first main task in Stochastic
Spectral Analysis was to select a set of sufficient (and almost necessary) assumptions
on a transition density function p, which are rich enough to provide spectral results
and which are poor enough to include an interesting class: of operators Ko + V, where

K, is not canonical to the Laplacian.
That was done by Demuth, van Casteren (1989 and 1992). We have established the
following basic assumptions on stochastic spectral analysis, shortly denoted as BASSA.

BASSA:

1. Ezistence
Let (E,£) be a second countable locally compact Hausdorff space E with the
Borel field £. Assume a continuous function

p mapping (0,00) X E X E — [0, c0)
with the properties

[Pty <lforallt>0z€BACE,

and
[Sp(t, z,u)p(s,u,y)du = p(s + t,z,y) .

2. Continuity
Let Co(E) be the set of continuous functions vanishing at infinity. For any
f € Cx and any z € E we assume ‘

lim [ f(u)p(t, =,v)dy = £(=)

3. Symmetry
Forallt > 0, z,y € E we assume

p(t,z,y) = p(t,y,z) .

4. Feller property
For any f € C(E) we assume

z— [ fW)p(t. =,v)dy € Cuo(E)



2. Free Feller operators

Definition:
Assuming BASSA the function p corresponds to a semigroup. Its generator is denoted
with K, i.e. '

(7 f)(@) = [ flwlp(tsz,v)dy .

Because e~*X° satisfies the Feller property Kj is called the free Feller operator. (This
corresponds to the name “free Schrddinger operator” for the Laplacian). o

Remarks concerning the assumptions.

The density function is one central link between operator theory and stochastic analy-
sis. The existence and the Feller property ensure that the underlying process (R.; Q, F,
Pp;w(.)) is a strong Markov process with the Feller property. Together with the conti-
nuity assumption it implies that the process has rigth continuous path with left—hand
limits. The symmetry condition is equivalent to the selfadjointness.of K. o

Examples:
The most crucial condition in BASSA is the Feller property. This property has its
own interest and is studied seperately in the literature. Let me mention here only two
examples.

Davies (1991) studied locally finite Riemannian manifolds where Ko is formally
given by

Kof=-%V(°"Vf)-

Here o = o(z) are strictly positive measurable functions on E such that ¢ € L{5.(E)
and 07! € LE(E). K, is defined correctly via closable Dirichlet forms. e~*X° is then
a positivity preserving strongly continuous semigroup on L, 1 < p < co. It is an
integral operator with a kernel pp. The Feller property is proved if

Aim po(tz,y) =0

for all y € E, t > 0. This is shown by pointwise estimates for pp(t,z,y). It is
remarkable that the conditions for o are very general, in particular it is not necessary
to have any differentiability of o.

The next example is given by Jacob (1992) in the present proceedings. In a series of

articles he considered pseudo~differential operators defined as extension of an operator
a(z, D):

(a(z, D)u)(z) := (2x)"/2 ./B.- e=a(z, £)a(¢)d¢
u € C§°(R™) for special classes of a(z, D), in particular for a(z, £) of the form

oz 8) = S )",  0<r<1

i=1



with b; € C*(R™), b; independent of z;. Then the corresonding extension generates
a Feller semigroup. Further examples by Jacob include the relativistic Hamiltonian,
where a(z,€) = (|¢[* + m?)/3 — m. o

3. Feller operators

Definition: Kato-Feller-potentials
Assume a density function satisfying BASSA. Let V be a real-valued function on E,
V =V, —V_ . V is called a Kato-Feller—potential if

tig sup [ ds [ p(s,2,y)[V-(3) + xa(s)Va (Wl = 0 , ®

where B is a compact subset of E. m

These Kato—Feller—class is optimal for
Bim (Ko +3) V-l = 0, ®)

which determines the relative form bound of V_ with respect to K,. Then the right-
hand side of the generalized Feynman-Kac-formula

B {emdo vt ey} (5)

(here E. is the exspectation with respect to the Feller measure Pr) yields a strongly
continuous semigroup on L?, its generator is the selfadjoint operator Ko+V. e~t(¥o*V)
is again an integral operator. The kernel can be estimated by

(e Ko )Y (z,y) < ¢ e p/(t, z,y) sup p/¥(¢,2,y) (6)
. z,yEE

(see van Casteren (1989)). If p(t, z, y) is uniformly bounded in z and y the last estimate
implies the Feller property for the semigroup e~*Xe+V) oo,

Definition: Feller operator
The generator of a Feller semigroup is denoted as Feller operator. a

Therefore Ky+V is a Feller operator with a regular perturbation. This denotation
corresponds to the name for generators of Schrédinger semigroups.

Singular perturbations can also be included. Let T be a subset of E, || > 0. With
S we denote the penetration time

S:=inf{r>0: jo' 1r(w(s))ds > 0} . (7)
Then we define the absorption sernigroup
E. {e- L vt g, 4)), S > t}
= (U)f)(=) . (8)



Let £ = E\T, then U(t) T L*(X) is again a Feller semigroup, its generator is denoted
with (Ko+V)g. It is a selfadjoint operator in L*(Z).

4. Spectral measures

The spectral measure plays a fundamental role in characterizing the different parts
of the spectrum for selfadjoint operators. For the selfadjoint Feller operators Ko-+V,
Ko+ W, considered here, we denote the spectral measures with Ex, 1 v(.), Bx,iw(.), re-
spectively. Instead of considering the potential dependence of matrix elements of these
spectral measures in weighted L?-spaces, we study the operator norm of sandwiched
spectral measures.

Because we have assumed Kato—Feller-potentials a natural norm is the Kato—Feller—
norm, which is defined by

Vil = sup ["ds [ p(e,2,0)IV@)ldy . ©)

The objective of the following theorem is to control exphmtly the changes of the spec-
tral measure in terms of ||V — W||kr.

Theorem 1: Assume BASSA and two Kato-Feller-potentials V and W. Let ¢ be
a multiplication operator with a nonvanishing continuous function ¢ : E — Ry with
¢! £ 1. Let A = (ey, ;) be an interval on R such that a; and a; are no eigenvalues
of Ko+V or Ko+W, respectly. Assume that

thég le™ (Ko = A xie) Y| =:1da < 0 . (10)
. a={0,1]

Moreover, suppose a pointwise estimate

o p(t2,9)e"(w)dy < 1 + ™)) (11)

with some m € N.
Let us denote positive constants cy and Ay by

E. {e-f:vwc'n«} <oy eV (12)

Take the Kato-Feller-norms ||[V?||kF, [W¢?||kF small enough, i.e. take for instance

111 1 1
12 by &&* M 1+3da

“V‘P2HKF <z (13)

with by > max{m, a;,2A4v}. (||W¢?||kF correspondingly small).
Then the difference of the spectral measures can be estimated by

o™ (Broiv(D) = Exoiw (AN ™| £ AV, W, A)[[(V - W) ||krF - (14)



The constant ¢(V, W, A) depending on V, W, A and on the geometry of E can be esti-
mated explicitly. If the condition in (13) is satisfied one has

(V,W,8) < 204 & &l iy a5’
(1+3a077" (da + 1))(1 + 3ag7' (da + 1)) , (15)
with a9 > max{m, a;,2A4v,2Aw} and with
~ 12by /il (1 + 3da) IV lkr -

O
Remark: Note that V and W are not assumed to be bounded. The condition on
W @?||kF, corresponding to (13), could be neglected. It would follow from the condi-
tion for ||V ¢?||xr and an analogous result for {(Ko+V —A£:0)" ! —(Ko+W—-A+:0)"1 . O

Proof of Theorem I: The spectral measure of a selfadjoint operator H on a boun-
ded open interval A = (@, a;) where neither a; or a; is an eigenvalue of H is given
by

Ex(A) = s - lim (2mi)™" / PH = A —ie) = (H = X +ie)"1d) . (16)
«— ay

We set Ry() tig):= (Ko +V — A Fig)~!. Then

o™ (Bxoiv(D) = Expiw(A))e ™|

< lim (2x)™? / " dA {lle" {Rv() +i€) — Rw() + ie)]e 7}

— ay

le™ (Rv(X —ie) — Rw(X —ie)le ™[I} - (17)
The first term in.(17) is estimated by:

e [Rv(A + ic) — Rw (A +i€)lp ]
< (1+A+ic—a| lo7 Ry(A +1ie)e™|)
(1+ X +1ie —a| |lo™ ' Rw (X +ie)e~ )
lp{Rv(—a) — Rw(—a)lell , (18)

where a is any regular value for Ko+V and Ko+W. The rest of the proof is splitted
into several lemmata. The objective is to estimate the terms in (18) uniformly in A
and e.

Lemma 2: Take the assumptions of Theorem 1. Then
lelRv(—a) — Rw(-a)loll < 4 &' il chw - IV -~ W)e?llxr - (19)
if a > max{m, 2A4v,2A4w}. a

Proof of Lemma 1: Demuth, van Casteren (1991) have shown that

lle {Bv(—a) = Rw(=a)l ¢l < [[Ro(~a) [V = W| Rav(~a) &*|I21?
| Ro(—a) |V — W| Raw(—a) ¢*||3% .



The first factor squared is smaller than

sup [ a2 e B, {IV(w(3)) = W) [Bav(~a) (W)} -
But

(Rav(=a)p?)(2) [ f d\ e~ E, { p V(w(-))ds}] v
X

1 m! \?
c:{,'z 1/2(a V)-x/: (_+ ) :,oz(z)

IA

< 24" i a7 6¥(a),

ifa>m,a>2A4.
Therefore

(R (=a) = Rw(-a))ell < 2 & o? ciff el a7 | Ro(=a)lV = Wip?leo
< 2P AT S e (V- W)er
k=0

which proves Lemma 2. g.e.d.

Corollary 3: Setting W = 0 Lemma 2 provides

lelRv(—a) — Ro(=a)]ll < 4 &' cif & V| kr (20)
if a > max{m, 244} a

In the next lemma we estimate the perturbed sandwiched resolvent near the real axis.
It is a consequence of Lemma 2.

Lemma 4: Take the assumptions of Theorem 1. Then
1
le™ Rv(X +ie)p™"|| < 75" (da + 3 (21)
with

w o= 1-12by c? (1 +3da)||Ve?|kr
by > max{m,a;,244v},

where A = ((11,(12) and da is given in (10). 4v is greater than zero because of the
assumption in (13). 0

Proof of Lemma 4: Using again (18) and Corollary 3 we obtain

e Rv(A +ie)p™"|| < da + (1 +3byda) & & i |Ve?|lkr b7
(1 +3by|le ' Ry(A + &)™ !|) -



lV@?®||xF is chosen small enough. Then (21) follows obviously. q.e.d.

Rest of the proof of Theorem I:
From the Lemmata 2 and 4 follows

lo™ [Ry(A +i€) — Rw(: +i€)le™"||
1
< (L4 +ie — aohri(da + 3))

] _ 1
(1 + |X + iz — aolyi' (da + 5))
4 g Mt ey oMV — W) kr

with ap > max{m, as,2A4v,2A4w}, which implies (14) with the constant in (15).
q.e.d.

The next and last objective in this article is to analyse perturbations of the spectral
measures for infinitely high potentials. As mentioned in (8)

E, {e‘ o Vel £(y(1)), S > t}

establishes a strongly continuous semigroup in L*(Z), £ = E \ T, the generator of
which is (Kq+V)g. For the singularity region I' we assume that the regular points of
[’ and the regular points of the interior of ' form the same set.

On the other hand e=¥o+¥)n i5 the limit of a family of semigroups e~*(Xo+V+6U)
as 8 — co. Here U is an additional positive potential with support I'. (Ko+V)g and
Ko+V + BU are selfadjoint operators in L?*(Z) and L*(E), respectively. Their spectral
measures are denoted with Eg(.) and Eg(.), respectively. Because these are operators in
different Hilbert spaces we introduce an embedding operator by (J f)(z) := xr(z)f(x).

Theorem 5: Assume BASSA and a Kato—Feller-potential V. Let ¢ be a multipli-
cation operator with a continuous function satisfying |¢~!| < 1,

Lt 200wy < co (1 +1™) ¢¥(a), (22)
m € N, and for arbitrary large R let
sup ¢(a) [B:{S < MW <e (23)
>R

where ¢ i3 chosen arbitrarily small.
Let A = (&, a;) and assume
sup [l T ((Ko)z = A £ie) o Y| =1dag < . (24)
32(50?”
For the Kato-Feller-potential we assume, according to Theorem 1 (see (13)),

1 1 1

— 25
12 ¢b/? A by 1+3das (25)

IVeillkr <



with by > max{m,a;,2A4v}. And we set

wri=1—-12by &/* ! (1 +3dag)|Ve|kr . (26)

Then we have the following assertions:
a) If we denote

p(B) = /:o d\ e sup 0*(z) [E, {e"s.’? V(wa)de & o )\}]1/2 , (27)

then p(8) tends to zero as f — oo.
b) The difference of the spectral measures can be estimated quantitatively if g is
sufficiently large:

o~ [Es(A) — J*Ex(A)T]e~ |l
< *7HA|wE 1+ 3a(daz +2))°
lol(KoV + BT + o)™ — I*((Kot Vs + a0) e (28)

< (@m)7YA]wE {1+ 3ao(das +2))
(& +a'* & (1 +m™) - a(B) (29)
with ag > max{4, az, Aav, Agv} . o

Remark: The estimation of p(8) is a difficult problem. One first quantitative esti-
mate of p(f) in the case Ko = —A is given Demuth, Jeske, Kirsch (1992). The rate of
convergence depends on the size of the boundary éT. o

Proof of Theorem 5: As above we set
Ryz(—a):=((KotV)z +a)7" .

For a > 1, a > a; one has to estimate the product

1+ 3a ¢~ J* Ryz() £ ie) T (30)
- [1+3a [l¢~ Rvasu(A £ ie)p™| (31)
- |lp(Bv4su(=a) - J* Rvz(~a)Del| (32)

uniformly in A and .
The factor in (30) corresponds to Lemma 4 with da » indead of da. The only point
is that

llpJ*(Bv.e(=b) — Ro,e(—b))J el < llp(Rv(—b) — Ro(—b))el|

if5>1 and b > a;.

The second factor (31) can be estimated using the fact that [~ Rvigu(ALie)e™|
converges to ||~ J*Ry,x(A £iz)Jp~!| as 8 — oo. This convergence will be considered
in Lemma 6. Hence for sufficiently large 8

le™" Rvsu(A L ie)p™ || < 1+ [lp™ I Rre(A £ig)Jp 7| .



The main intersting factor is (32). It will be considered separately.

Lemma 6: Under the assumptions of Theorem 5 it holds

e (Rvisu(—ao) — J*Re(—a0)J )|

1
< Yaprdalt aammy)
oa A 1/2
/0 d) P agp ‘P’(-"‘-‘) [Ew {e—ﬁL U(w(‘))d‘,s < A}] , (33)
ap > max{4, az, Aav, A4y}, and it tends to zero as 8 — oco. O

Proof: o(Rvipu(—a) — J*Rg(—a)J)yp is an integral operator with a symmetric kernel.
Therefore its norm is smaller than

sup '/:p d) e *¢(2)E, {e" ICOLRIN Ulwledde (w(2)), § < A}
%‘[Jm d) e sup ©*(z) [E, {e"’ﬂ V(W(l))dc}]
. [E, {e-nnf: V(s g ,\}]" 2

+ %‘/ow d\ e~ sup [E, {e".ﬂ: V("'('))ﬁh}]lf‘|I . [Ez{lpa(w(l))}] 1/4

) [Es {e-zﬂj: Ulw(ede o o ,\}]1/2 )

1/2

IA

For |z| > R it is assumed that
fm d) e~ sup @*(z)[E.{S < A}])*/?
0 l=|2R
is arbitrarily small independently of 3. For |z| < R notice that
1/2
#(@) [E. e R0, 5 < 2] /

is monotoneously decreasing in 8 for any fixed z, continuous in z, and z is in a compact
set. Hence the Theorem of Dini provides the convergence of the integral in (33). The
constant factor in (33) follows in a similar way as for regular perturbations mentioned
above. q.e.d.
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