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Perturbations of spectral "measures
for FeIler operators

Michael Demuth

Abstract. In stochastic spectral analysis of selfa.djoint FeIler operators quanti­
tative error estimates are given for the corresponding spectral measures. Both
regular and singular perturbations are considered.

1. The background idea of stochastic spectral analysis

Many spectral properties of selfadjoint operators can be studied indirect1y by the spec­
tral behaviour of their semigroups. For Schödinger operators of the form Ho +V, Ho
selfadjoint realization of -1:1, V a Kato--class potential, in L2 (Rn) a summary of these
results can be found by Simon (1982) or by Demuth (1991). The spectral consequ­
ences are mainly based on the explicit representation of the integral kernels for the
semigroups or resolvents. That means for instance the resolvent (Ho + V + zl)-l ia an
integral operator for appropriate regular values, the kerneI of which is gjven by

(1)

x, y ERn. E:'..\{.} denotes the conditional Wiener measure. w(.) are the trajectories
of the Wiener process.

For Kato-class potentials the kernel of e-t(Ho+V) can be estimated by the free kerne!
(where V =0) i.e. by the Wiener density function

(2)

Therefore the proofs cf speetral properties of Ho+V using the Feynman-Kac-represen­
tation in (1) are mainly based on several charaeteristic features of the Wiener density
function Pw. This density funetion has many "niee" properlies. For instanee it is
symmetrie with respeet to any coordinate Xi E R, i = 1, ... , n. It is decreasing if
any lXii -. 00, even with the same rate cf convergence. It is uniformly bounded by
Ix - yl-n.



But for many spectral theoretical aspects it ia not necessary to have or to use
the whole variety of these Pw-properties. Therefore the first main task in Stochastic
Spectral Analysis was to select a set of sufficient (and almost necessary) assumptions
on a transition density function p, which are rich enough to provide spectral results
and which are poor enough to include an interesting class.' of operators Ko+V, where
Ko is not canonical to the Laplacian.

That was done by Demuth, van Casteren (1989 and 1992). We have established the
following basic &Ssumptions on stochastic spectral analysis, shortly denoted aB BASSA.

BASSA:

1. Eristence
Let (E, &) be a second countable locally compact Hausdorff space E with the
Borel field &. Assume a continuous function

p mapping (O, 00) x E x E -. [0, (0)

with the properties

hp(t,:I:,y)dy < 1 for all t > 0,:1: E E,A CE,

and kp(t,:I:, u)p(s, u, y)du = p(s + t,:I:, y) .

2. Continuity
Let Coo(E) be the set cf cantinuous functions vanishing at infinity. Far any
f E Coo and any x E E we assume .

!im ( f{y )p(t, x, y)dy = f{x) .
t-O}E

3. Symmetry
For all t > 0, z, Y E E we aBsume

p(t,x,y)=p{t,y,z) .

4. Feller property
For any f E Coo{E) we &Ssume

x --+ 1f{y )p{t, x, y)dy E Coo(E) .
. E .

o



2. Free FeIler operators

Definition:
Assuming BASSA the function p corresponds to a semigroup. Its generator is denoted
with K o, i.e. '

(e-IK°J)(x) = kf(y)p(t,x,y)dY .

Because e-tKo satisfies the Feller property Ko is called the free Feller operator. (This
corresponds to the name "free Schrödinger operator" for thc Laplacian). 0

Remarks concerning the assumptions.
The density funetion ia one centrallink between operator theory and atochastic analy­
sis. The existence and the Feller property ensure that the underlying procesa (R.;.j n,:F,
PF ; w(.)) ia a strong Markov process with the Feller property. Together with the conti­
nuity assumption it implies that thc process has rigth continuous path with left-hand
limits. The symmetry condition is equivalent to the selfadjointncss.of K o. 0

Examples:
The most crucial condition in BASSA is the Feller property. This property has its
own interest and ia studied seperately in the literature. Let me mention here oo1y two
examples.

Davies (1991) studied locally finite Riemannian mannolds where Ko is formally
given by

Kol = -~ '1 (0'2 \l f) .
q

Bere q = O'(:z:) are strictly positive measurable functions on E such that q E L~(E)
and 0"-1 E Li::(E). Ko is defined correct1y via closable Dirichlet forms. e-tKo ia then
a positivity preserving strongly continuous semigroup on V, 1 < P < 00. It is an
integral operator with a kernel PD. The Feller property is proved if

lim PD(t, z, y) = 0
Icl-ao

for all y E E, t > O. This is shown by pointwise eatimates for PD.(t, x,y). It ia
remarkable that the conditions for 0" are very general, in particular it is not necessary
to have any differentiability of 0'.

The next example is given by Jacob (1992) in the present proceedings. In a series of
articles he considered pseudo-differential operators defined as extension of an operator
a(z, D):

(a(z,D)u)(:z:):= (211")-n/2 ( e'Z(a(:z:,e)u(e)deJaft

u E Cö(Rn) for special classes of a(z, D), in particular for a(x, e) of the form

n

a(z, e) =L b;(z) lej 1
2r

,

;=1



with bj E COO(Rft), bj independent cf Xj. Then the corresonding extension generates
a Feller semigroup. Further examples by Jacob include the relativistic Hamiltonian,
where a(x, e) = (lel2 +m 2)1/2 - m. 0

3. FeIler operators

Dsfin i tion: Kato-Feller-potentials
Assume a density funetion satisfying BASSA. Let V be a real-valued function on E,
V = V+ - V_ . V is cal1ed a Kato-Feller-potential if

lim HUp [d3 I p(3, X, Y)[V_ (y) + XB(Y )V+(y)]dy = 0 , .(3)
-r-O ~ 0 JE

where B is a compact subset of E. 0

These KatcrFeller-class is optimal for

(4)

which determines the relative form bound of V_ with respect to K o. Then the right­
hand side of the generalized Feynman-Kac-formula

E.. {e- Ja' V(w(.»c16 f(w(t))} (5)

(here Ez ia the exspectation with respect to the FeIler measure PF) yields a stronsly
continuous semigroup on L2, ita generator is the selfadjoint operator K o+V. e-t(Ko+V)
ia again an integral operator. The kernel can be estimated by

(e-t(Ko+V»)(x,y) < c ed pl/2(t,x,y) sup pl/2(t,x,y) (6)
- z~EE

(see van Casteren (1989)). Hp(t, x, y) is uniformly bounded in x and y the last estimate
implies the Feller property for the semigroup e-t(Ko+V) J too.

Definition: FeUer operator
The generator of a Feller semigroup is denoted as FeIler operator. 0

Therefore K o+V ia a Feller operator with a regular perturbation. This denotation
corresponds to the name for generators of Schrödinger semigroups.

Singular perturbations can also be inc1uded. Let r be a subset of E, Irl > O. With
S we denote the penetration time

S :=inf{T > 0: [lr(w(s))da > O}.

Then we define the absorption semigroup

E", {e- !.'V(.,(.))c16 f(w(t)), S > t}

=: (U(t)f)(x).

(7)

(8)



Let E = E \ r, then U(t) i L2(E) ia agam a Feller semigroup, its generator is denoted
with (Ko+V)E. 1t ia a aeUadjoint operator in L2(E).

4. Spectral measures

The speetral measure plays a fundamental role in characterizing the different parts
of the apectrum for selfadjoint operators. For the selfadjoint Feller operators K o+V,
Ko+W, considered here, we denote the spectral measures with EKo+V (')' EKo+W (')' re­
spectively. Instead of considering the potential dependence of matrix elements of these
spectral measures in weighted L 2-spaces, we study the operator norm of sandwiched
spectral measures.

Because we have &8sumed Kato-Feller-potentials a natural norm is the Kato-Feller­
norm, which ia defined by

IIV!lKF := sup fl ds f p(-', x, y )IV(y) Idy .
~EEJo JE

(9)

The objective of the following theorem is to control explicitly the changes of the spec­
tral measure in terms of lIV -"WIIKF'

Theorem 1: Assume BASSA and two Kato-Feller-potentials V and W. Let cp be
a multiplication operator with a nonvaniahing continuous function cp : E ~ ~ with
ep-I < 1. Let !l = (al, (2) be an interval on~ such that 01 and Q:J are no eigenvalues
of Ko+V or Ko+W, respectly. Assume that

(10)

Moreover, suppose a pointwise estimate

(11)

(12)

with some m E N.
Let us denote positive constants ev and Av by

E~ {e- 1.' V(w(.»""} < ev eAv.\ •

Take the Kato-Fel1er-norms IIVcp2I1KF' IIWcp211KF small enough, i.e. take for instance

2 1 1 1 1 1
IIVcp IIKF < 12 bv 1/2 1/4 1 + 3d

Co c4v l:t.

with bv > max{m, Q2, 2A.v}. (IIWcp'IIKF correspondingly small).
Then the difference of the spectral measures can be estimated by

(13)



The constant c{V, W, ß) depending on ~ W, ß and on the geometry of E can be esti­
mated explicitly. H the condition in (13) ia satiafied one has

C(V: W A) < 21 AI 1/2 1/4 1/4 -1, , u _ u Co c4v c4w ao
(1 + 3ao'"Yvl(d~ +1))(1 + 34Q,.wl(d~ + 1)) r (15)

with ao > max{m, 0:2r 2Atv, 2Atw} and with

'YV = 1 - 12bv~/2c~{:(1 +3d~)IIVep2I1KF .

o
Remark: Note that V and W are not assumed to be bounded. The condition on
lIWep2 J1KF, corresponding to (13), could be neglected. It would follow from the condi­
tion for lIVep211KF and an analogous result for (Ko+V -A±iO)-l_(Ko+W-.\±iO)-l . Q

Fra%/ Theorem 1: The spectral measure of a selfadjoint operator H 00 a boun­
ded open interval 6. = (al, (2) where oeither 01 or a2 ia an eigenvalue of H ia given
by

EH (6.) = "' - !im (21ri) -1 l Q2

[(H - ,\ - it:)-1 - (H - ,\ + it:) -1 ] d'\ ..-0 Ql

We set Rv ('\ ± it:) := (Ko +V - ,\ 1= ie)-I. Then

lIep-l(EKo+v(tl) - EKo .f.w(6.))ep-1
11

:5 lim (21r)-11
Q2

dA {lIep-l[Rv ('x + ie) - Rw('\ + ie)]ep-11l
.~o Ql

+ lIep-l[Rv('\ - ie) - Rw('\ - it:)]ep-l!1} .

The first term in ..(17) ia estimated by:

lIep-l[Rv('\ + it:) - Rw(A + ie))ep-1
11

< (1 + 1,\ + it: - aillep-l Rv('\ + ie)ep-11l)
(1 + jA + ie - al lIep-l Rw(A + it:)ep-1 11)
lIep[Rv(-a) - Rw( -a)]epll ,

(16)

(17)

(18)

where a ia any regular value for Ko+V and Ko+W. The rest of the proof ia splitted
into several lemmata. The objective is to estimate the terms in (18) uniformly in ,\
and t:.

Lemma 2: Take the assumptions of Theorem 1. Then

lIep[Rv(-a) - Rw ( -a)]epll < 4 t!a/2 c~{: c~{; . ·II(V - W)c,0 2 I1KF . (19)

if a > max{m,2Atv,2Atw}. 0

Frao! 0/ Lemma 1: Demuth, van Casteren (1991) have shown that

lIep [Rv( -a) - Rw{-a)] epll ~ lIRo(-a) IV - WI R2v( -a) cp211~2

. IlRo(-al IV - WI R2W( -al ep211~2 .



The first factor squared ia smaller than

s~p{O d>. e-.uE", {1V(w(>,)) - W(w)(>'))1 [R2V(-a)'i](w(>'))} .

Hut

(R2V(- a)'f'2)(:z:) < [fa"" d>. e-0.\E", {e -4 .fo' v(w(.))do} f/2

U"" d>. e-.uE..{rp4(W(>.))}r'l

< c~V rJo /2(a _ Atv )-1/2 (~+ m! ) 1/2 'f'2(:z:)
a am +1

< 2 1/2 1/2 -1 2()Co c4v a e,o z ,

if a > m, a > 2A.v.
Therefore

lIe,o(Rv( -a) - Rw( -a))e,oll < 2 c!o/2 C;~4 c~{:. a-1I1Ra(-a)!V - Wle,021100
00

< 2 dQ/2 C~~4 c~(: a-1 L e-uk II(V - W)cp 2 I1KF
k=Q

which proves Lemma 2.

Corollary 3: Setting W =,0 Lemma 2 provides

IIcp[Rv(-a) - Ra( -a)]e,oll < 4 ~/2 c~~4 a-1 IlVcp211KF

· if a > max{m, 2A.v}.

q.e.d.

(20)

o

In the next lemma we estimate the perturbed sandwiched resolvent near the real axis.
It ia a consequence of Lemma 2.

Lemma 4: Take the assumptions of Theorem 1. Then

with

(21)

1'V := 1 - 12 bv c!o/2 c~~(l + 3d6)IIVcp2!1KF

bv > max{m, Q2,2A.tv} ,

where ß = (al, a2) and dt., is given in (10). 1'V is greater than zero because of the
assumption in (13). 0

Proo/ 0/ Lemma 4: Using again (18) and Corollary 3 we obtain

IIcp-l RV(A + ie)~-ll1 < 'dt., +(1 + 3bvdt.,) 4 tfo/2 c~{: lIVe,02 11KF byl

. (1 + 3bvll~-1 RV(A + ie)~-ll1) .



11 V rp2 IIKF is chosen small enough. Then (21) follows obviously.

Re3t 0/ the pro%/ Theorem 1:
From the Lemmata 2 and 4 follows

q.e.d.

(22)

(23)

IIrp-1[Rv (.\ + ie) - RW(A + i.e)]rp-1
11

< (1 + IA + ie - aoh'v1(dll + ~))

(1 + I~ + ie - aoh'w1(dll + ~))

4 1/2 1/4 1/4 -111 (V· W) 211Co C.V C4W ao - rp KF

with ao > max{m, Q2, 2~v, 2Atw}, which implies (14) with the constant in (15).
q.e.d.

The next and last objective in this article ia to analyse perturbations of the spectral
measures for infinitely high potentials. AB mentioned in (8)

E", {e- J: V(w(.»do f(w(t)) , S > t}
establishes a strongly continuous semigroup in L2(E), E = E \ r, the generator of
which ia (Ko+V)I:. For the singularity region r we assume that the regular points of
r and the regular points of the interior of r fann the same set.

On the ether hand e-t(Ko+V)J:1 is the limit of a family ef semigroups e-t(Ko+V+ßU)

as ß -+ 00. Here U ia an additional positive potential with support r. (Ko+Vh: and
Ko+V +ßU are selfadjoint operators in L2(~) and L2 (E). respectively. Their spectral
measures are denoted with Er,(.) and EfJ(.), respectively. Because these are operators in
different Hilben spaces we introduce an embedding operator by (J/)(x) := xr(x)/(x).

Theorem 5: Assume BASSA a.nd a Kato-Feller-potential V. Let rp be a multipli­
cation operator with a continuous function satisfying Irp-1 1< 1,

kp{t, :c, y )tpS(y )dy < Co (1 + tm
) tpS(:c) ,

m E N, and for arbitrary large RIet

sup cp2(X) [E~{S < A}]1/2 < e
I~I~R

where t: ia chosen arbitrarily small.
Let ß = (Qt, Q2) and asaume

aup I!cp-1 J·«Ko)r; - A ± i~)-l Jep-1
11 =: d~,E < 00 . (24)

>'E4
.E(O,l)

For the Kato-Fe1ler-potential we &saume, according to Theorem 1 (see (13)),

2 1 1 1
IIVep IIKF < 12 1/2 1/4 b 1 + 3d (25)

Co C4V V a.E



with bv > max{m,a3,2A.v}. And we set

l",E := 1 - 12 bv <10/3 C~~4 (1 + 3da ,1:)!IVep3!1KF . (26)

Then we have the following assertions:
a) If we denote

p(ß) := 1000

d'\ e-~ s~p <p2(:c) [E" {e-/l J.' U("('))cU, S < ,\}(2 , (27)

then p(ß) tends to zero as ß --. 00.

b) The diHerence of the spectral measures can be estimated quantitatively if ß is
sufficiently large:

lIep-l[EtJ (ß) - .rEE(ß)J]ep-11l

< 1['-11601 '"Yv,~ [1 +3ao(da ,E + 2)]2

IIfP[(Ko+V + ßU + 40)-1 - J-(Ko+V)E + ao)-l J]c,oll (28)

< (21r )-II6oI1'v,~ [1 +3ao(da,E + 2)]2

(~~ +da/4 C~~4 (1 +mm) . p(ß) (29)

with ao > max{4, a2, A2V , Atv} . 0

Remark: The estimation of p(ß) is a difficu1t problem. One first quantitative esti­
mate of p(ß) in the case Ko = -/1 ia given Demuth, Jeske, Kirsch (1992). The rate of
convergence depends on the size of the boundary cIT. 0

Proof of Theorem 5: As above we set

• ) 1Rv,E(-a) := «(KO+V)E + a - .

For a > 1, a > Q2 one has to estimate the product

[1 +3a ·11'1'-1 J- Rv,E(.:\ ± it:)Jep-1 I1l

· [1 +3a IIfP-1RV+ßu(.:\ ± if')ep-1 I1l
. IIrp(Rv+tJu(-a) - r RV,E( -a)J)fPlI

(30)
(31)
(32)

uniformly in .:\ and t:.

The factor in (30) corresponds to Lemma 4 with da,E indead of da. The only point
is that

lIepJ-(Rv,E(-b) - ~,E( -b)) Je,o 11 < 1Ilf'(Rv(-b) - ~(-b))c,oll

if b > 1 and b > Q2.

Tbe second factor (31) can be estimated using the fact that IlfP-1RV+tJu(A±ie)lf'-lll
converges to 11 rp-1 J-Rv,E (A ± it:)J ep -111 as ß --. 00. This convergence will be considered
in Lemma 6. Hence for sufliciently large ß

11'1'-1 RV+tJU(A ± ie)ep-1
11 < 1+ IIrp-l J- RV,E(.:\ ± if')Jrp-1

11 .



The main intersting factor ia (32). It will be considered separately.

Lemma 6: Under thc" assumptions of Theorem 5 it holds

IIfP (Rv+ßu( -40) - J.RE( -4o)J)fPll

< ~(~~ + ~/4 c~~ (1 +m"'»

l'" d>' e-;\ 8~P '1'2(:1:) [E.. {e-111.' U(w(.»cü. S< >.}(2 I

a.o > max{4, Q2, A2V , A.v}, and it tends to zero as ß -. 00.

(33)

o

I ,

Proof: fP(Rv+ßu(-a) - J.RE ( -a)J)fP is an integral operator with a symmetrie kerne!.
Therefore its norm is smaller than

s~pLoo
d>' e-.u'P(x )Ez { e- J: V(w(.»cüe-111.' U(w(.»)cU'P(wP», s < >.}

~ ~Loo d>' e-.us~P'P2(:I:) [Ez{e-2J: V (W(,»cü}f/
2

.[E.. {e- 211 J: U(w(.))do, S< >. }f/2
+ ~Loo

tl>. e-.u 8~P [Ez {e-4 1.' V(w(.»do}f'4 . [Ez {'P8(w(>.mf/
4

.[E.. {e-~1.·U(w(·»)cU.S < >.}f'2 .

For lxi > R it is ~sumed that

/00 dA e-'\ aup ep2(x)[ElC {S < A}P/2
Jo IlCl~R

is arbitraruy small independently of ß. For lxi < R notiee that

ia monotoneously decreasing in ß for any fixed. x, continuous in x, and :z: ia in a compact
set. Henee the Theorem of Dini provides the eonvergenee of the integral in (33). The
constant factor in (33) follows in a similar way as for regular perturbations mentioned
above. q.e.d.



References

Davies, E.B. (1991), Beat kemel bounds, conservation of probability and the FeDer
property, Preprint, King's College, London.

Demuth, M. (1991), On topics in spectral and stochastic analysis for Schrödinger op­
erators, in "Recent Developments in Quantum Mechanics".
Eds. A. Boutel de Monvel et. al., Kluwer, 223-242.

Demuth, M.; Jeske, F.; Kirsch, W. (1992), Quantitative estimates of the rate of large
coupling convergence for Schrödinger operators (to be published).

Demuth, M.; VB.D. Casteren, J. (1989), On speetral theory for selIadjoint FeUer genera·
tors, Rev. Math. Phys. 1, 325-414.

Demuth, M.; van Casteren, J. (1991), Perturbations for generalized Schrödinger ope.
rators in stochastic speetral analysis, Preprint Univ. Antwerp, No. 91-52.

Demuth, M.; van Casteren, J. (1992), On spectral theory for selfadjoint Feiler genera­
tors 11 (to be published).

Simon, B. (1982), Schrödinger semigroups, Bull. Amer. Math. Soc. 1,447-526.

van Casteren, J. (1989), A pointwise inequality for generalized Schrödinger semigroups,
in "Partial Differential Operators", Teubner Texte zur Mathematik llZ, 298-312.

Author's addrcss:

Michael Demuth
Max-Planck-Arbeitsgruppe
FB Mathematik, Universität Potsdam
Am Neuen Palais 10
0-1571 Potsdam.


