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Abstract. We study the question of the validity in a quasi-abelian category
of some diagram lemma proved by Kuz′minov and Shvedov in 1994 for abelian
groups and used by them as a tool for calculating the reduced Lp-cohomology
of Riemannian manifolds.
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Introduction

In [7, Lemma 1], Kuz′minov and Shvedov proved the following assertion as a tool
for constructing addition sequences for the reduced Lp-cohomology of a Riemannian
manifold:

Suppose that in the commutative diagram

A01

α01−−−−→ A02

β01

y β02

y

A11

α11−−−−→ A12

α12−−−−→ A13

α13−−−−→ A14

β11

y β12

y β13

y

A21

α21−−−−→ A22

α22−−−−→ A23

β21

y β22

y

A31

α31−−−−→ A32

β31

y β32

y

A41

α41−−−−→ A42

(∗)

of abelian groups and homomorphisms the rows and columns are semi-exact, the
second row is exact at the term A13, the first column is exact at A11 and A21, the
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second column is exact, β13 and α31 are isomorphisms, α01 is an epimorphism, and
Ker(α13β

−1

13
α22) = Ker(β31α

−1

31
β22). Put

H1 = Kerα12/ Imα11, H2 = Kerα22/ Imα21, H3 = Kerβ31/ Imβ21.

Then the homomorphisms β12 and α−1

31
β22 induce homomorphisms H1 → H2

and H2 → H3. The resulting sequence 0 → H1 → H2 → H3 → 0 is exact.
The proof in [7] obviously extends to modules over an arbitrary ring and, thus,

by Mitchells’s Embedding Theorem [8], the assertion also holds in any abelian
category.

There appears the question of the validity of the above lemma in more general
additive categories, for example, in the category of topological abelian groups or
in various categories of topological vector spaces (Banach, normed, locally convex
spaces). A natural framework for this is provided by some class of categories now
known under the name of quasi-abelian [12, 13].

In a quasi-abelian category, (*) also induces a semi-exact homology sequence but
its exactness relies on the strictness of some morphisms in (*). We find sufficient
conditions for the exactness of (*) at particular terms.

In the quasi-abelian categories of topological algebra and functional analysis,
strict morphisms admit clear explicit descriptions. For example, in the category
Ban of Banach spaces and bounded linear operators, a morphism is strict if and
only if it has closed range; a number of important examples can be found in [12].

1. Quasi-Abelian Categories

We consider additive categories satisfying the following axiom.
Axiom 1. Each morphism has kernel and cokernel.
We denote by kerα (cokerα) an arbitrary kernel (cokernel) of α and by Kerα

(Cokerα) the corresponding object; the equality a = ker b (a = coker b) means that
a is a kernel of b (a is a cokernel of b).

In a category meeting Axiom 1, every morphism α admits a canonical factor-
ization α = (imα)α(coimα), where imα = ker cokerα, coimα = cokerkerα. A
morphism α is called strict if α is an isomorphism. Below we often use the abbre-
viation α̃ for α coimα.

We use the following notations:
Oc is the class of all strict morphisms;
M is the class of all monomorphisms;
Mc is the class of all strict monomorphisms (= kernels);
P is the class of all epimorphisms;
Pc is the class of all strict epimorphisms (= cokernels).
We write α |β if α = kerβ and β = cokerα.

Lemma 1. [1, 6, 10] The following assertions hold in an additive category meeting
Axiom 1:

(1) kerα ∈ Mc and cokerα ∈ Pc for every α;
(2) α ∈ Mc ⇐⇒ α = imα, α ∈ Pc ⇐⇒ α = coimα;
(3) a morphism α is strict if and only if it is representable in the form α = α1α0

with α0 ∈ Pc, α1 ∈ Mc; in every such representation, α0 = coimα and α1 = imα;
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(4) if a commutative square

C
α

−−−−→ D

g

y f

y

A
β

−−−−→ B

(1)

is a pullback then f ∈ M =⇒ g ∈ M , f ∈ Mc =⇒ g ∈ Mc, if the square is pushout
then g ∈ P =⇒ f ∈ P , g ∈ Pc =⇒ f ∈ Pc.

An additive category meeting Axiom 1 is abelian if and only if α is an isomor-
phism for every α.

Axiom 2. For every morphism α, α is a monomorphism and an epimorphism.
Additive categories with kernels and cokernels satisfying Axioms 1 and 2 are

called P -semi-abelian or simply semi-abelian (in the sense of Palamodov) [9, 11].

Lemma 2. [4] The following hold in a P-semi-abelian category:
(1) gf ∈ Mc =⇒ f ∈Mc, gf ∈ Pc =⇒ g ∈ Pc;
(2) if f, g ∈ Mc and fg is defined then fg ∈ Mc; if f, g ∈ Pc and fg is defined

then fg ∈ Pc;
(3) if fg ∈ Oc, f ∈ M then g ∈ Oc; if fg ∈ Oc, g ∈ P then f ∈ Oc.

An additive category satisfying Axiom 1 is called quasi-abelian [2, 12, 13] (semi-
abelian in the sense of Răıkov [10], or almost abelian [11]) (Jurchescu called such
categories preabelian in [3]; Yoneda [14] did not assume the existence of kernels and
cokernels) if it meets the following

Axiom 3. If square (1) is a pullback then f ∈ Pc =⇒ g ∈ Pc. If (1) is a pushout
then g ∈ Mc =⇒ f ∈Mc.

As is well known [6, 10, 11, 12], every quasi-abelian category is P-semi-abelian.

A sequence . . .
a
→ B

b
→ . . . in a quasi-abelian category (or even in a P-semi-

abelian category) is said to be exact at the term B if im a = ker b (or, equivalently,
cokera = coim b). Below we call a sequence semi-exact if the composition of its two
consecutive morphisms is zero.

By the homology of a sequence A
ϕ
→ B

ψ
→ C at the term B in a quasi-abelian

category such that ψϕ = 0 we mean the cokernel of the natural morphism r :
Imϕ → Kerψ or, equivalently, the kernel of the natural morphism q : Cokerϕ →
Coimψ (see [5]).

For a commutative square (1), denote by ĝ : Kerα → Kerβ the morphism

defined by the condition g(kerα) = (kerβ)ĝ and by f̂ : Cokerα → Cokerβ, the

morphism defined by the condition f̂(cokerα) = (cokerβ)f .

2. The Main Theorem

The main result of the article is formulated as follows:
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Theorem 1. Suppose that in the commutative diagram

A01

α01−−−−→ A02

β01

y β02

y

A11

α11−−−−→ A12

α12−−−−→ A13

α13−−−−→ A14

β11

y β12

y β13

y

A21

α21−−−−→ A22

α22−−−−→ A23

β21

y β22

y

A31

α31−−−−→ A32

β31

y β32

y

A41

α41−−−−→ A42

(2)

in a quasi-abelian category the rows and columns are semi-exact, the second row is
exact at the term A13, the first column is exact at A11 and A21, the second column is
exact, β13 and α31 are isomorphisms, α01 is an epimorphism, and ker(α13β

−1

13
α22) =

ker(β31α
−1

31
β22). Denote by H1 the homology of the second row at the term A12, by

H2, the homology of the third row at the term A22, and by H3, the homology of the
first column at the term A31.

Then the morphisms β12 and α−1

31
β22 induce homomorphisms ϕ : H1 → H2 and

ψ : H2 → H3 such that ψϕ = 0, that is, the sequence

0 → H1

ϕ
→ H2

ψ
→ H3 → 0 (3)

is semi-exact.
Moreover, the following sufficient conditions for (3) to be exact at particular

terms hold:
(a) if in (2) α21, β11, β02 are strict and α01 ∈ Pc then (3) is exact at H1, i.e.,

ϕ ∈M ;
(b) if in (2) β12 and β21 are strict then (3) is exact at H2;
(c) if in (2) α22, α13, β32, and the composition β31α

−1

31
β22 are strict then (3) is

exact at H3, that is, ψ ∈ P .

Proof. The commutative square

A12

α12−−−−→ A13

β12

y β13

y

A22

α22−−−−→ A23

gives rise to a unique morphism β̂12 : Kerα12 → Kerα22 such that β12 kerα12 =

(kerα22)β̂12 (see the end of Section 1). Similarly, β12 induces a morphism β′

12 :
Cokerα11 → Cokerα21 of the cokernels of the rows of the square

A11

α11−−−−→ A12

β11

y β12

y

A21

α21−−−−→ A22
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and, hence, since im = cokerker, we have a morphism β̌12 : Imα11 → Imα21

making the diagram

Imα11

imα11−−−−→ A12

cokerα11−−−−−−→ Cokerα11

β̌12

y β12

y β′

12

y

Imα21

imα21−−−−→ A22

cokerα21−−−−−−→ Cokerα21

commute. Denote by ε1 : Imα11 → Kerα12 and ε2 : Imα21 → Kerα22 are the
natural morphisms such that imα11 = (kerα12)ε1 and imα21 = (kerα22)ε2 (by

Lemma 2(1), ε1 and ε2 are both strict monomorphisms). Then β̂12ε1 = ε2β̌12,
H1 = coker ε1, H2 = coker ε2, and we have a natural morphism ϕ : H1 → H2

making the diagram

Imα11

ε1−−−−→ Kerα12

coker ε1−−−−−→ H1

β̌12

y β̂12

y ϕ

y

Imα21

ε2−−−−→ Kerα22

coker ε2−−−−−→ H2

commute.
Now, since, obviously, α13β

−1

13
α22 kerα22 = 0 and, by hypothesis,

ker(α13β
−1

13
α22) = ker(β31α

−1

31
β22),

we have kerα22 = ker(β31α
−1

31
β22)h for some morphism h. This implies that

β31α
−1

31
β22 kerα22 = 0,

and thus there is a unique morphism µ : Kerα22 → Kerβ31 with the property

α−1

31
β22 kerα22 = (kerβ31)µ.

Moreover, since

(cokerβ21)α
−1

31
β22α21 = (cokerβ21)β21 = 0,

we have a morphism π : Cokerα21 → Cokerβ21 such that π cokerα21 = (cokerβ21)α31β22

and, thus, a morphism τ : Imα21 → Imβ21 making the diagram

Imα21

imα21−−−−→ A22

cokerα21−−−−−−→ Cokerα21

τ

y α−1

31
β22

y π

y

Imβ21

imα21−−−−→ A31

cokerβ21

−−−−−−→ Cokerβ21

commute.
Denote by ε3 the morphism Imβ21 → Kerβ31 such that imβ21 = (kerβ31)ε3.

Then

(kerβ31)µε2 = α−1

31
β22(kerα22)ε2 = α−1

31
β22 imα21 = (imβ21)τ = (kerβ31)ε3τ.

Since kerβ31 is a monomorphism, this yields the relation µε2 = ε3τ and thus there
exists a unique morphism ψ : H2 → H3 making the diagram

Imα21

ε2−−−−→ Kerα22

coker ε2−−−−−→ H2

τ

y µ

y ψ

y

Imβ21

ε3−−−−→ Kerβ31

coker ε3−−−−−→ H3
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commute.
We now prove that ψϕ = 0.
We have the commutative diagram

Imα11

ε1−−−−→ Kerα12

coker ε1−−−−−→ H1

β̌12

y β̂12

y ϕ

y

Imα21

ε2−−−−→ Kerα22

coker ε2−−−−−→ H2

τ

y µ

y ψ

y

Imβ21

ε3−−−−→ Kerβ31

coker ε3−−−−−→ H3.

(4)

Note that

(kerβ31)µβ̂12 = α−1

31
β22(kerα22)β̂12 = α−1

31
β22β12 kerα12 = 0.

Since kerβ31 ∈M , this gives µβ̂12 = 0. Thus,

ψϕ coker ε1 = ψ(coker ε2)β̂12 = (coker ε3)µβ̂12 = 0.

Now, coker ε1 ∈ P , and, hence, ψϕ = 0.
Thus, we have constructed the semi-exact sequence (3).

Now we consecutively prove assertions (a), (b), and (c).
(a) Suppose that α21, β11, β02 ∈ Oc and α01 ∈ Pc. We need to prove that ϕ is a

monomorphism. To this end, take a morphism x : X → H1 such that ϕx = 0 and
show that x = 0.

Consider the pullback

T
t2−−−−→ X

t1

y x

y

Kerα12

coker ε1−−−−−→ H1.

Since (coker ε2)β̂12t1 = ϕ(coker ε1)t1 = ϕxt2 = 0, ε1 = ker coker ε1, there exists a

morphism u : T → Imα1 such that β̂12t1 = ε2u. Consider the pullback

V
v2−−−−→ T

v1

y u

y

A21

α̃21−−−−→ Imα21.

We have

α31β21v1 = β22α21v1 = β22 imα21uv2

= β22(kerα22)ε2uv2 = β22(kerα22)β̂12t1uv2 = β22β12(kerα12)t1uv2.

Since α31 is an isomorphism, this implies that β21v1 = 0. From the exactness
of the first column at the term A21 it follows that then v1 = (im β11)w for some
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unique morphism w. We can write the following commutative diagram:

C
w′

−−−−→ A11

α11−−−−→ A12

κ

y β̃11

y β̃12

y

V
w

−−−−→ Imβ11

σ
−−−−→ Imβ12

imβ11

y imβ12

y

A21

α21−−−−→ A22,

where the left upper square is a pullback and σ : Imβ11 → Imβ12 is the natural
morphism of the images induced by α21.

We infer:

β12α11w
′ = α21β11w

′ = α21(imβ11)wκ = (imα21)α̃21v1κ

= (imα21)uv2κ = (kerα22)ε2uv2κ = (kerα22)β̂12t1v2κ.

Consequently,
β12((kerα12)t1v2κ − α11w

′) = 0.

The exactness of the second column at the term A12 yields

(kerα12)t1v2κ − α11w
′ = (imβ02)γ (5)

for some morphism γ : C → A12. Consider the commutative diagram

A01

α01−−−−→ A02

β̃01

y β̃02

y

Imβ01

α̌11−−−−→ Imβ02

imβ01

y imβ02

y

A11

α11−−−−→ A12.

Here α̌11 : Imβ01 → Imβ02 is the natural morphism of the images induced by α11.
Consider the pullback

P
p2

−−−−→ C

p1

y γ

y

A02

β̃02

−−−−→ B02

and then the pullback

R
r2−−−−→ P

r1

y p1

y

A01

α01−−−−→ A02.
We obtain from (5):

(kerα12)t1v2κp2r2 − α11w
′p2r2 = (imβ02)γp2r2 = (imβ02)β̃02p1r2

= β02p1r2 = β02α01r1 = α11β01r1.

Therefore,

(kerα12)t1v2κp2r2 = α11(w
′p2r2 + β01r1) = (kerα12)ε1α̃11(w

′p2r2 + β01r1),
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which, since kerα12 ∈M , gives the relation

t1v2κp2r2 = ε1α̃11(w
′p2r2 + β01r1).

By Axiom 3, from the relations α̃21 ∈ Pc, β̃11 ∈ Pc, β̃02 ∈ Pc, α01 ∈ Pc, it follows
that v2 ∈ Pc, κ ∈ Pc, p2 ∈ Pc, r2 ∈ Pc respectively. Hence, by Lemma 2(2),
v2κp2r2 ∈ Pc. Put a = t1v2κp2r2, b = α̃11(w

′p2r2 + β01r1). We have im a =
im t1 = ε1 im b. Thus, t1 = ε1(im b)t̃1. Therefore,

xt2 = (coker ε1)t1 = (coker ε1)ε1(im b)t̃1 = 0.

Since t2 ∈ P , this implies that x = 0.
(b) Suppose that β12 and β21 are strict in (2). Let x : X → H2 be a morphism

with ψx = 0. Demonstrate that x = (imϕ)x′ for some unique x′. We may assume
without loss of generality that x = imx ∈Mc.

Consider the pullback

G
g2

−−−−→ X

g1

y x

y

Kerα12

ϕ
−−−−→ H2.

We infer from (4) that

0 = ψxg2 = ψ(coker ε2)g1 = (coker ε3)µg1 = 0.

Since ε3 = ker coker ε3, this implies that µg1 = ε3g for some g. Consider now the
pullback

B
b2−−−−→ G

b1

y g

y

A21

β̃21

−−−−→ Imβ21.

Recalling that (kerβ31)µ = α−1

31
β22 kerα22, we infer

β21b1 = (im β21)β̃21b1 = (im β21)gb2

= (kerβ31)ε3gb2 = (kerβ31)µg1b2 = α−1

31
β22(kerα22)g1b2.

Consequently,
β22(kerα22)g1b2 = α31β21b1 = β22α21b1.

But then
β22((kerα22)g1b2 − α21b1) = 0.

Hence, by the exactness of the second column at the term A22, there exists a unique
morphism θ : Θ → Imβ12 such that (kerα22)g1b2 − α21b1 = (im β12)θ. Consider
the pullback

Θ′
θ1−−−−→ Θ

θ′

y θ

y

A12

β̃12

−−−−→ Imβ12.
We infer:

β12θ
′ = (im β12)β̃12θ

′ = (imβ12)θθ1

= (kerα22)g2b2θ1 − (imα21)α̃21b1θ1 = (kerα22)(g1b2θ1 − ε2α̃21b1θ1).
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Therefore,
β13α12θ

′ = α22β12θ
′ = 0.

Since β13 is an isomorphism, this means that α12θ
′ = 0. Hence, there is a unique

morphism θ3 : Θ′ → Kerα12 with θ′ = (kerα12)θ3. Consequently,

β12θ
′ = β12(kerα12)θ3 = (kerα22)β̂12θ3.

Thus, we have the equality

(kerα22)(g1b2θ1 − ε2α̃21b1θ1) = (kerα22)β̂12θ3.

Since kerα22 is a monomorphism, this yields

g1b2θ1 − ε2α̃21b1θ1 = β̂12θ3 (6)

Apply coker ε2 to both sides of (6). We infer:

(coker ε2)g1b2θ1 = (coker ε2)β̂12θ3,

xg2b2θ1 = ϕ(coker ε1)θ3.

By Axiom 3, we have the implications: coker ε2 ∈ Pc =⇒ g2 ∈ Pc; β21 ∈ Pc =⇒
b2 ∈ Pc; β12 ∈ Pc =⇒ θ1 ∈ Pc. By Lemma 2(2), the morphism c = g2b2θ1 ∈ Pc.
Put xc = d, (coker ε1)θ3 = l, ϕ̃(coker ε1)θ3 = l′. Then we have two canonical
decompositions of d:

d = xc = (imϕ)(im l′)l′ coim l′.

Hence,
x = (imϕ) im l′. (7)

Since imϕ is a monomorphism, im l′ is defined by (7) uniquely.
Item (b) is proved.
(c) Pass to the dual category (obviously also quasi-abelian) and consider the

dual assertion:

Lemma 3. Suppose that in the commutative diagram

C42

γ41
−−−−→ C41

δ32

y δ31

y

C32

γ31
−−−−→ C31

δ22

y δ21

y

C23

γ22
−−−−→ C22

γ21
−−−−→ C21

δ13

y δ12

y δ11

y

C14

γ13
−−−−→ C13

γ12
−−−−→ C12

γ11
−−−−→ C11

δ02

y δ01

y

C02

γ01
−−−−→ C01

(8)

in a quasi-abelian category the rows and columns are semi-exact, the penultimate
row is exact at the term C13, the last column is exact at C11 and C21, the penul-
timate column is exact, δ13 and γ31 are isomorphisms, γ01 is a monomorphism,
and coker(γ22δ

−1

13
γ13) = coker(δ22γ

−1

31
δ31). Denote by Ĥ3 the homology of the last

column at the term C31 and by Ĥ2, the homology of the third row at the term C22.
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Then the morphism δ22γ
−1

31
induces a homomorphism ψ̂ : Ĥ3 → Ĥ2. If γ22, γ13,

δ32, and δ22γ
−1

31
δ31 are strict in (8) then ψ̂ is a monomorphism.

Proof. The commutative square

C31

δ22γ
−1

31−−−−→ C22

δ21

y γ21

y

C21

id
−−−−→ C21.

induces a natural morphism λ : Ker δ21 → Ker γ21 such that (ker γ21)λ = δ22γ
−1

31
ker δ21

and a natural morphism of the cokernels ω : Coker δ21 → Cokerγ21 such that
cokerγ21 = ω coker δ21 giving a natural morphism of the images λ′ : Im δ21 → Im γ21

such that (im δ21 = (im γ21)λ
′. Consequently, the morphism δ22γ

−1

31
defines a unique

morphism of the homologies ψ̂ : Ĥ3 → Ĥ2 — the morphism of the cokernels of the
rows of the square

Im δ21
ε̂3−−−−→ Ker δ21

λ′

y λ

y

Im γ21

ε̂2−−−−→ Ker γ21.

Here ε̂3 : Im δ21 → Ker δ21 and ε̂2 : Im γ21 → Ker γ21 are the natural inclusions.

Let x : X → Ĥ3 be a morphism such that ψ̂x = 0. Prove that x = 0. Consider
the pullback

Y
y1

−−−−→ X

y2

y x

y

Ker δ21
coker ε3−−−−−→ Ĥ3.

Since (coker ε̂2)λy2 = ψ̂(coker ε̂3)y2 = ψ̂xy1 = 0 and ε2 = ker coker ε2, there is a
morphism y : Y → Im γ21 with λy2 = ε̂2y. Next, consider the pullback

V ′
v′
2−−−−→ Y

v′
1

y y

y

C23

γ̃22
−−−−→ Im γ22.

We have:

γ12δ13v
′

1 = δ12γ22v
′

1 = δ12(im γ22)γ̃22v
′

1 = δ12(im γ22)yv
′

2

= δ12(ker γ21)ε̂2yv
′

2 = δ12(ker γ21)λy2v
′

2 = δ12δ22γ
−1

31
(ker δ21)y2v

′

2 = 0.

The exactness of the penultimate row of (8) at the term C13 implies that δ13v
′

1 =
(im γ13)w

′ for a suitable (unique) morphism w′ : V ′ → Im γ13, i.e., v′1 = δ−1

13
(im γ13)w

′.
Consider the pullback

W ′
w′

1−−−−→ V ′

w′

2

y w′

y

C14

γ̃13
−−−−→ Im γ13.
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Put f = γ22δ
−1

13
γ13, f0 = δ22γ

−1

31
δ31. By hypothesis, im f = im f0. We infer

γ22v
′

1w
′

1 = γ22δ
−1

13
γ13w

′

2 = fw′

2 = (im f)f̃w′

2 = (im f0)f̃w
′

2.

Consider now the pullback

Z
f ′

0−−−−→ W ′

w′′

2

y f̃w′

2

y

C41

f̃0
−−−−→ Im f0.

We have

δ22γ
−1

31
δ31w

′′

2 = (im f0)f̃w
′

2f
′

0 = γ22δ
−1

13
γ13w

′

2f
′

0.

Furthermore,

δ22γ
−1

31
(ker δ21)y2v

′

2 = (ker γ21)λy2v
′

2 = (ker γ21)ε̂2yv
′

2 = (im γ22)γ̃22v
′

1 = γ22v
′

1.

Consequently,

δ22γ
−1

31
(ker δ21)y2v

′

2w
′

1f
′

0 = γ22v
′

1w
′

1f
′

0 = γ22δ
−1

13
(im γ13)w

′w′

1f
′

0

= γ22δ
−1

13
(im γ13)γ̃13w

′

2f
′

0 = γ22δ
−1

13
γ13w

′

2f
′

0

= (im f)f̃w′

2f
′

0 = (im f)f̃0w
′′

2 = f0w
′′

2 = δ22γ
−1

31
δ31w

′′

2 .

Thus,

δ22γ
−1

31
(ker δ21)y2v

′

2w
′

1f
′

0 = δ22γ
−1

31
δ31w

′′

2 ,

that is,

δ22γ
−1

31
(δ31w

′′

2 − (ker δ21)y2v
′

2w
′

1f
′

0) = 0.

By the exactness of the penultimate column at the term C32, we infer that

γ−1

31
(δ31w

′′

2 − (ker δ21)y2v
′

2w
′

1f
′

0) = (im δ32)ζ

for some unique morphism ζ : Z ′ → Im δ32. Consider the pullback

K
k2−−−−→ C42

k1

y δ̃32

y

Z
ζ

−−−−→ Im δ32.

Hence,

δ31w
′′

2k1 − (ker δ21)y2v
′

2w
′

1f
′

0k1 = γ31δ32k2 = δ31γ41k2,

or

(ker δ21)y2v
′

2w
′

1f
′

0k1 = δ31(w
′

2k1 − γ41k2) = (ker δ21)ε̂3δ̃31(w
′

2k1 − γ41k2),

Since ker δ21 is a monomorphism, this yields

y2v
′

2w
′

1f
′

0k1 = ε̂3δ̃31(w
′

2k1 − γ41k2).

By Axiom 3, we have the implications: γ22 ∈ Oc =⇒ v′2 ∈ Pc; γ13 ∈ Oc =⇒ w′

1 ∈
Pc; δ22γ

−1

31
δ31 ∈ Oc =⇒ f ′

0 ∈ Pc; δ32 ∈ Oc =⇒ k1 ∈ Pc. Thus, by Lemma 2(2),
y2v

′

2w
′

1f
′

0k1 ∈ Pc.

Put a = ε̂3δ̃31(w
′

2k1 − γ41k2), a
′ = δ̃31(w

′

2k1 − γ41k2). Since ε̂3 ∈ Mc, then
a = ε̂3(im a)a(coima) and im a = ε̂3 im a′ = im y2. Hence, y2 = ε̂2y

′

2 for a suitable
morphism y2. Therefore,

xy1 = (coker ε̂3)y2 = (coker ε̂3)ε̂3y
′

2 = 0.
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Since y2 ∈ P , we have x = 0, q.e.d.
Lemma 3 is proved, and so is the dual assertion to it, (c) of Theorem 1. �

Theorem 1 is proved. �

Remark. Assume that all assumptions of Theorem 1 hold. Then (3) is exact
at all terms. By analyzing (4), we easily see that:

(i) if (coker ε2)β̂12 is strict then so is ϕ and, thus, ϕ = kerψ;
(ii) if (coker ε3)µ is strict then so is ψ and, hence, ψ = cokerϕ.
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egorie, Suprafeţe Riemanniene, Ed. Academiei, Bucureşti (1966), 73–241.
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