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Abstract

It is proved that each contact type hypersurface & C R2™ diffeomorphic to a sphere carries
at least n closed characteristics. This generalizes a theorem by Ekeland and Lasry on
pinched convex hypersurfaces. The same result is proved for all hypersurfaces of R?"
carrying at least one closed characteristic, i.e. the existence of one implies the existence of
n solutions.



1. Introduction

Periodic solutions for Hamiltonian systems have been the object of research since Poincaré,
as they are the rare trajectories for which the usually difficult question of long time
behaviour and stability can be answered. Moreover, it is well known, that closed
geodesics are periodic solutions of fixed energy in the cotangent bundle of the underlying
Riemannnian manifold. Both in quasiclassical approximations of quantum mechanics and
quantisation of classical mechanics symplectic actions of periodic solutions are important
geometrical and physical invariants. The recent discovery of symplectic capacities [EH89],
[EH90] is a beautiful illustration of the actuality of the problem, in particular the question
whether periodic solutions exist on a given energy hypersurface. The periodic solutions of
given period and variable energy, including multiple coverings of such, play a central role
i Floer homology of compact symplectic manifolds, in a similar way as critical points of
functions for Morse homology. We call prime loops the underlying one fold covering of a
trajectory, see e.g. [KI78].

The aim of the paper is to prove the following theorem in the standard symplectic vector
space.

Theorem 1:  Let & be a closed hypersurface in (R2™,w) of class C* diffeomorphic to the
sphere S*" 1 which carries at least one closed characteristic with positive symplectic
area. Then there are at least n geometrically different prime closed characteristics.

Using Viterbo’s theorem for contact type hypersurfaces [V87], on gets:

Theorem 2:  Let © be a closed hypersurface in (R*™,w) of class C* diffeomnorphic to
the sphere S§2n=1 of restricted contact type. Then there are at least n geometrically
different prime closed characteristics.

It is worthwile to mention here that the case of hypersurfaces diffeomeorphic to spheres
is the case with probably the least number of closed characteristics, due to the idea
that hypersurfaces with nontrivial first homotopy group tend to have more solutions,
conjecturally at least one for each homotopy class. Moreover, it is well known that generic
ellipsoids (i.e. uncoupled nonresonant harmonic oscillators) have exactly n ‘modes’, as
prime periodic solutions are called by physicists. So the result is a statement about the
minimal number of closed characteristics on hypersurfaces diffeomorphic to §27~1,

As convex hypersurfaces are of contact type, theorem 1 implies a generalisation of a
theorem by Ekeland and Lasry [EL80], who had to assume a pinching condition for the
hypersurface & = OK: B(r) C K C B(R), for R < \/2r, sec also [BLMR]. The first result
in this direction was proved by Weinstein W73} and Moser [M76] near equilibra, which
has been generalised by Bartsch [B94] just these days.

The question whether periodic solutions exist on given energy levels bears several difficul-
ties, see e.g. the monograph [E90], chapter V, where for instance theorem 2 is conjectured
for the convex case. One difficulty is due to the fact that the usual variational methods
have to be formulated in a space of parametrised loops with a given fixed period, but
solutions with fixed energy and fixed period generally do not exist. An other difficulty
of the usual approach is that all prime and iterated loops (coverings of the underlying
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prime loop) are arbitraily close to each other. So one needs a device to separate the prime
solutions from the others.

Since Rabinowitz’ break through with variational methods in the subject [R78], one often
considers a homogenous Hamiltonian having energy levels homothetical to the hypersurface
Y. Then a critical point of the Hamiltonian action functional is a solution which is
homothetical to a solution on E. This approach has the disadvantage that a multiplicity
of solutions on different levels can be homothetical and therefore it is difficult to count the
actual number of solutions on .

Ekeland and Lasry used convex homogenous Hamilton functions and the dual Hamiltonian
action functional, which has the advantage that it is bounded from below and that there is
a level of the functional below which all points belong to non iterated loops. In this sublevel
set, where the S1- action is free, it is possible to find an equivariant homeomorphism of
the sphere $2"~!, which means that its Borel homology is the one of CP", so that one has
at least n critical points, see [E90], section V.2., and [B93] for more about the topological
methods. One can also show, that after the homothecy, they belong to different prime
closed orbits on ¥ if the above pinching condition holds. The beautiful dual approach is
restricted to convex hypersurfaces, a notion which is not invariant by symplectic maps.

Our approach uses the following ideas. Instead of a space of loops in the euclidean space, we
consider the loops space H2(S1, L) of the hypersurface. Therefore, one does not need any
growth conditions of Hamitonian functions, more precisely, Hamiltonians are not needed
at all; see also [K90] and [KK91] for a similar approach to symplectic capacities. We study
the characteristic equation which is invariant by the group Diff(S!) of reparametrisations
and a H?- gradient flow leaving the hypersurface invariant. This is equivalent to study
a functional with constraints, where the Lagrange multiplier A of a critical point z is the
euclidean norm |z(t)| of the velocitiy of z.

Moreover, we consider ‘comparing homeomorphisms’ between $2"~! and £, which transport
the fibres of the Hopf fibration §?"~! — CP" to £. To construct a flow invariant set of
loops, the deformations of these homeomorphisms by the flow are considered. The notion
of é-regular k-maximal descending cylinders is introduced as a kind of connecting orbits, in
order to rule out homeomorphisms which would collapse within infinite time. Like this, we
can imitate the well known Courant-Minmax-principle, with which one finds eigenvalues
of linear operators by ‘fishing’ with subspaces of consecutive dimensions.

Let us fix some notations. Consider the standard symplectic vector space (R*", J, .}, where
J: : T:R?® — T.R?" is the standard integrable almost complex structure, J2 = ~Id, J, ~
J, and ”.” denotes the scalar product. We use the usual identification C* — (R*", J).
Then w(v,w) = %J v.w defines the standard exact symplectic form, whose integral 6
evaluated over loops in R?" is the symplectic action functional

A:HYS'R™ 5 R, 2o Az) = %/(—J:&.m)mh dt = %(ax,m)m

F4

measuring the symplectic area of any disc bounded by the trajectory Imz.

Here is a the operator ‘conjugate to time’



B ((0,1) = B'(0,1)) = 12, 2 —J 5 = i

The kernel of w|s at any point is one dimensional, since w is nondegenerate. The following
differential inclusion is called ‘characteristic equation’of X

A(t) € kerw|y, ()

and its solutions are the ‘characteristics’of T.

Of course, equation (C) does not fix the parametrisation nor the orientation of the
trajectories, which is the main difference to a geometrically equivalent Hamiltonian system.
Two parametrisations v and ¥ are called geometrically different if their images Im~y and
Im#% are different, i.e. if there is no reparametrisation s such that y =Jos or ¥ = yos.
Specialising now to closed characteristics parametrised by the unit interval, we denote
2
R :={s:[0,1] N [0,1] | s(0) = 0,s(1) = 1} D Diff(S!) the set of H?- reparametrisations
of closed curves. Let us emphasize that we do not assume s to be monotone, but that we
do assume that they are functions, not merely relations. This means that R is no group.

It is well known, that the symplectic action A is invariant by R, whereas the Hamiltonian
action A(z) — [ G(x(t))dt is only S!'- invariant.

Consider the Hopf circles C = {c¢ : R/Z — S2"71 | ce(t) = ¥™JtE, € € $27 1} solving the
initial value problem ¢é¢(t) = 2rJee(t), ce(0) = €. Fis any point & € §2"~1.

Lemma 1: Assume T is of class C5,0 > 0. Then given any embedded loop ~ of class C°,

parametrised with pertod 1, there exists a homeomorphism h : §2"~1 5 T of class
Ct such that h(ce,) = 7.

The proof is standard, see e.g. [H76].

We assumed from now on that the number of prime closed characteristics with positive
symplectic action is N < 0o; we have to show N > n. Recall that Viterbo’s theorem means
that N > 1 for contact type £. Now apply Lemma 1 to these N curves v;,1 = 1,..., N,
which we assume to be parametrised by arc length, say. The difference quotient of the
corresponding diffeomorphism, { = 2, is bounded from below and. above by a constant
d; > 0 and 317 < oo respectively. Set § := %ming 8; > 0 to be fixed in the sequel.

Let us define Hs = {h € C}(S*""1, Z) | ;|6 ~€'| > |h(€) - h(€)] > d{6 —¢'| VEE €
§2"=1} and Ls = {y € C}(§L, ) | |7(t) = v(t)igen =6 | ¢* — ¢ |c, where ¢ = €2™. Tt is
evident that h(ce) € L for all £ and h € Hs.

Assume that the critical actions are arranged in increasing order 0 < oy < ay < ... <
an £ B :=maxgegm-1 A(hn(ce)) + 1 and repeated according to multiplicity.

Idea: Define n minmax-values o4 of A similar to infey, supgegen-1 A{h(ce)). Using an
extended gradient like flow on a class of continuous maps h : §2"~! = T with mapping
degree 1, we show that each o} equals to one of the prime critical values a¢; = A(y;) of
Alx, Equality of the values o is showed to be impossible if there are only finitely many
solutions, therefore they belong to geometrically different loops.
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Before we can give the precise definition of oy, see §4, we need to construct a gradient like
flow on the loop space of the surface (§2) and to show that it yields a deformation lemma
(§3). The proof of theorem 1 is completed in §5. |

2. The gradient flow

Let the hypersurface & = {G(z) = 1} be given by a function G : R?" = R, G € C?, such
that {G(z) < 1} is compact. Then N(z) = ]%%%I is the outward normal of ¥ at the point
. .

Note that H?(J,R?") is continuously and compactly embedded in C'(I,R?") for any
interval I, so that z € H? is a parametrisation of a differentiable trajectory Iinz. Therefore
it makes sense to consider the space of H?-parametrised loops of &, H2(S!,T), which is
a Hilbert manifold with tangent space T H*(S',Z) = H(z*TE), see e.g. [KI78] for an
analogous situation. For given z € H?*(S', %), ax and N(z) are elements of L*(z*TR?*"
and H?(z*TR?*") respectively.

The restriction of 4 to & has the L2-gradient —L with
L(z) = —az + (az.N(z))N(z),
which is an element of L?(2*TS) C L*(z*TR?"). Its zeros, the solutions of the equation
ax = (az.N(z))N(z) (%)

are parametrisations of the characteristics of the hypersurface £¥. We remark that all
reparametrisations of a characteristic solve (*).

In order to find a regularisation of L(z), consider the extension Ty : H? — (H%)*.2 = H~?
of 2+ (&)*2 and the operator T = Id + Ty. The latter relates the H%- to the L?- scalar
product by

(u,v)Hz = (Tu,v)m = <U;'U>L2 + <iivi}>L2'

Fourier expansion with respect to the basis by ; of L? given by br,i(t) = exp (2nJkt) ¢; =

ce; (kt) =: cgf)(t), k € Z, for an orthonormal basis ¢;, 1 = 1,...,2n in R?" yields the
equivalent formula for the scalar product in H?:

(u,v)H2 = Z(l + (27k)*) (ur.vr),

keZ

where uy,vi € R?" are the Fourier coefficients of v and v.

Remark : T = Id+ Tp is invertible, whereas Tp is only right invertible, because the
spectrum o(Tp) = {(2rk)* | k € No} contains 0 but not —1. Nonetheless, observe
that we will only use that T is invertible from the right.

The inverse of T is given by

1
. PAY 2 S -
K:(H*) > H* Ky= kzez T oni k) exp(2nJkt) yx
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which satisfies

-2 1 2
1Kyl = m@dw < ly
kez - T \*

(u,v>L2 = (Ku, v)H,.
The looked for minus- gradient vector field of A is given by
X(z) = KL(z) € H*(z*TR*™),

2
L2

as X satisfies

DAJg(x)(v) = —(L(2),v) 2 = —(KL(2),v) ;s

= —(.’\((:1:),-0)1”2 = —(TX(:::),U)L2 = -—(fZ‘Is;'L(a:),v)L2 .

The vector field X(z) along = 1s indeed tangent to the hypersurface, i.e. it can be
understood as an HZ?-section §' — z*TE. To see this, observe that for all sections
£ € L*(z*TT) which are L?-orthogonal to N(2), the regularised section K¢ € H?(z*TR?")
is H?-orthogonal to AN(z):

(KE,AN(z)) 1y = (TKE AN (), = (£, AN(z)) ,, = 0.

for all scaling functions A € C?(S?,R) considered as test functions in H%(S!,R). This is
equivalent to

(N (2(t).KE()) gan =0 V.

In order to show that L and X are differentiable vector fields in their respective spaces,
we need an estimate of |D, N(z)|pen:

As we suppose G € C%, one can consider the ‘shape operator’of T at the point z:

GH‘ v — Gi (
(e ek

Sy : ToE = T,S, v DN = G.G"),

whose operator norm is equal to the biggest absolute value |Amax(z)| of the principal
curvatures of Z.

With & := maxzex [Amax(2)] one gets a uniform estimate |D,N(z)||Szv| < [|Sz]| [v] =
|)\max(3:)| |U| <K IUl

The L2- gradient vector field L : H? — H' — L? is formally differentiated by
DL(z)(v) = —av + (av.N(:c))Rzn N(z)+ (am.DvN(ﬂ;))mz" N{z)
+ (aw.N(a:))Rzn Dy N(z).

This expression is a bounded linear map in v € H' and a fortiori in v € H*:

IDL(z)()ll g2 < 20100l 12 + 26 (8] 2 vl L2 < 20l gz (1 + s (122 ).
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So L is differentiable as map H? — L2, from where it follows by the boundedness of I,
that I'L is differentiable as map H? — H?2.

Consider moreover a smooth monotone function p : R — [0,1], p(a) = 0 for a < $ay, pla) =

1 for a > 3a;. Then poA: H* - RisC', from where V(z) := W%\’(m) € H*(2*TT).

Now one can apply the local uniqueness and existence theorem for first order ordinary
differential equations to get a local flow line ¢*(z),s € | — e(z),e(z)[ , e(z) > 0 of the
regularised and normed minus- gradient flow equation of Alg:

oA
() = V) = 55, @)

But the flow exists globally, for all s € R, because ||V ()| ;2 is bounded by 2:

: . i + :
Assume there is a time st for which ¢*" (2) is not defined, but defined for all s < s¥.
Then for any sequence s, < st,8, = s, one gets

<o (@)

7 ds' <2|sp — $ml,

H=2

o' (@)~ " @lge < [

i.e. p*"(z) is a Cauchy sequence whence has a limit point in H? which we denote by t,o*‘+ (x).
By further application of the local existence theorem, the flow line can be extended to an
open interval around st and whence to R, and similarly to negative s.

Consider the images of the Hopf circles C = {c¢ : R/Z — S?"~1 | ce(t) = €277, £ € §2771}
by a smooth map h : §?"~! — .

The map R x $2"~! — £ given by £ = ¢*(h{c¢))(0) is a continous homotopy belonging
to h, as the following maps are all differentiable:

€~ ce = h(ce) = @ (h(ce)) = @ (hlce)) — ° (h(ce))(0),

where the second last map is the Sobolev inclusion ¢ : H2(S!, L) < C!.
We denote ¢ (h(ce)) by ®°(h)(ce), and call ®*(h) the sphere flow of h.

Remark : In order to get a flow which is equivariant by parameter transformations
from R (not only monotone ones) one can study the vector field

. L{@)()
L= = oy aor

where o, : [0,1] = {0,1} is the sign function, defined to be 1 if z(t) vanishes or
is directed in positive direction with respect to a given orientation of Imz and —1
if 2(t) points in negative direction. Then it is easy to see that for any s € R,
L(z 0s)(t) = L(x)(s(t)) a.e., i.e. L(z) invariant by R. Moreover, L is bounded by
2, differentiable as map L : H' — L? and satisfies L(z)(t) = 0 <= « solves ().
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3. Deformation Lemmma

In order to prove that minmax-values are critical, one usually assumes that they are not
and shows by a gradient-like deformation that this leads to a contradiction.

Lemma 2:  Assume « € [+, B] is not critical. Then there 1s €o, such that for any h € Hs
and for any sq > 0, there 1s A(h,sp) > 0 such that Ve < eg Vs E [s0,s0 + 1] we get:
Ve with A(p*(h(ce))) € [o — 2¢,a + 2¢] one has ‘X *(h{ce)) > A(h, sp).

Mgz 2
Proof:

Define the set U, := U, (cx) = { € [s0,50 4 1] x §27~1 l A(p*(h(ce))) €
[0 — 2¢,c0 + 26]}, which is compad Assumc that there is an h which allows a sequence
($n,€n) € Ue such that

X (@ (hlce,))) || y2 = 0 and A(p®"(h(ce,))) = o

Because of the compactness of U, (h), there is a limit point (s., £,). The corresponding loop
©®* (h(ce.)) € H? satisfies, thanks to the continuity of X (¢®(h(ce))) and A(¢®(h(ce))) in
the variables (s,£) € R x §2"~1:

X (¢ (h(ce.))) = 0 and A(p* (h(ce,))) = a.

KL(z) KL(z)

This means

X(z) = p(z) = =0 = L{z)=0
kgl kgl ’
i.e. « is critical, which is a contradiction. ad
Observe that £¢ is independent of 7.
Remark : A lemma like this is usually proved using the Palais-Smale condition.

It is worthwile to observe that the only compactness we use here is the trivial
compactness of [sg, so + 1] x §2*~L,

Deformation Lemma:  Assume o € [, B] is not critical. Consider €y and any
0 <& <egp as in Lemma 2. Then for any h € Hs Vsg > 0 VE € S2~! the following
implication holds

A(p®(Rh(ce))) <a+e = A(p™ T (h(ce))) Sa—c¢.
Proof:

With lemma 2, Vh € 'Ha, Vsp > 0, there 1s A(h,s0) > 0, such that for the pairs
(5,€) € [s0,50 + 1] x 5?*~! satisfying A( [@ — 2¢, ¢ + 2¢] one has the lower

e)) €
bound HX(‘PS(h(CE)))”Hn > A(h,sg). We have A(cp (h(z))) < A(p*(h(z))) Vs 2> so,

more precisely

A(p*(h(ce))) — Alp

!
1
a

(h(ce)) / (KWL (e* (h(ce))), di )>H2
::_/3 I\L(np (h(ce)) H”

> A%(s — s0)
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for all ¢ satisfying A((,osl(h(cs))) > a—2¢ V¥s' < s. For all other £, A(p*(h(ce))) < o — 2e.

If we now choose ¢’ small enough such that A(k,sg) > Ve’ > 0 and s = sp + 1, then we
get in both cases A(p® 0t (h(ce))) < A(p®(h(ce))) — A? < a — ¢, from where the claim
follows. a

4. Construction of o

Consider the filtration by standard spheres in C* 2 R?* k = 1,...,n, with origin in &,
namely
boeS'cSPc...csml

For each h € C($?"7},T) with mapping degree 1, this induces a filtration on T for which
we choose non unique maximal points ux(h) € H*(S!, D):

Alpr(h) = max  A(h(ce)).
We have showed in section 2 that there exists a regularised extended minus- gradient flow
®* on §?"~ 1. families of loops, which is induced from the regularised flow ¢® on loops and
which diminishes the symplectic action A(y) = f7 6 of each circle which is an image of a
Hopf circle (unless it is critical for the restriction Aly).

Now think of a flow line {®°(h)(S?"~!) | s € R4} starting from h € H; as a deformation
of circle fibrations on £; For each k, we have again a maximal point for any s, which we
denote by p(h):

Alpi(h) = max  A(@*(R)(ec),

which is attained at some £° satisfying p°(h) = ®*(h)(ce: ).

Definition 1:  Given h € H;, every piccewise continous family uj(h),s € R satisfying
(i) A(pg(h)) = maxgegen-1 A(P*(h)(ce)) (k-mazimality)
(11) M < oo such that Vs > M, pu; € L (8-regularity)
i3 called a é-regular k-maximal descending cylinder for h.

We observe that p°, s > 0 1s comparable to ‘half’a connecting orbit as used in Floer theory,
but far simpler to find since one does not have to solve any non linear partial differential
equation. It is called ‘descending’cylinder as its action descends although it does not follow
the steepest descent: In general ¢°(u%) # u®. Moreover * does not have the flow property
on the cylinders p® as @1 (p*) # 1+l

Definition 2:  Let I, C Hs be the set of initial homeomorphisms which realize one of
the closed characteristics v; (i.e. 3¢ € S*1i € {1,...,N} such that h(c¢) = i),
from which A(ul(h)) 2 a1 >0Vs >0,
and which are provided with a §-regular k-mazimal descending cylinder pi(h).

Let o be defined the following values

=, ALR) 2 >0
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Remark : In contrast to an earlier version of this paper, we do not need ask that ()
is invertible for s > M.

Lemma 4:  For any u,y € C',80 > 0, there is an € > 0 small enough such that one gets:
|ﬂ - Aflcl <E€
19(2) = ¥(t')|gan = bold’ — ¢" | V¥

In other words, one gets v € Las =% p € Ls for n C'— close enough to ~.

} = |u(t) — put")| > %lqt - qt" Vi, .

Proof:
Let us recall that we use the parametrisation of the circle S* by ¢! := 2™,

(a) large times:

Solg" = | < |¥(t) — 4] < |(t) — w(t)] + |pe(t) — ()] + |1e(t’) — 4(2)]
< 26 + |u(t) — u(t')|

13 6 L3
|u(t) — ()] = dolg' —¢"| —2e > Eolq‘ —q"],

where the last inequality holds if 2e < %“lq’ —q" |, ie. if |g' = q"| > 38

(b) small times:

One obtains |7(t)| > 2még, moreover |u(t)l > |7(t)| — € > 2mép — . As the difference
quotient approximates fi(t), using the estimate 2w |t —t'| > |¢' — q'll > 4it —t'| for
|t —t'| < 3, we get, for € small enough, that lq' — q”‘ < 42 implies

et) = ()] _ |ite) = (e 1~ ¥
l¢" = ¢" |t = t']|q" ~ q"|

> (1) ~¢)

v

Il

Oy
o

|
Hq|m
v
ro | S

Lemma 5: I, #0.

Proof:

Consider h := hy such that vy = hn(cg,) and A(yn) = an. The interval }ay, B, for
B := maxgegen—1 A(h.(q)) + 1, say, does not contain any prime critical values but at most
a finite number of multiples of such. With lemma 2, the flow ®* diminishes the action of
all non critical loops by a positive amount.

Now assume that p*(h), defined by A(p®(h)) = maxgegen-1 A(p?®(h(ce))), is stopped by

one of the iterate closed characteristics, 'yfj), say. It means that H,u“(h) —’yfj) “ , 0,8 —
oo. Since every critical point z of A has Morse index oo, i.e. the dimension of directions at
@ with negative slope is infinite, it is possible to choose a small perturbation /2 of h with
yn = h(cg,) and max A(h(cg)) £ B, with the property that the flow avoids 753).

Applying this argument at most a finite number of times, we end with the situation that

1°(h) is not stopped at any iterate but at the fixed point of ©*: ©*(h(ce,)) = h(ce) = TN
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2
This means p*(h) By yn, from which there exists M(e) < o0, such that ||[yy — p*(h)|lo <
€ Vs> M(e). As a consequence of Lemuma 4, 1°(h) € Ls Vs > M, 1.e. p*(h) is §- regular
and therefore h = hy € Z,. ad

In order to normalize the situation, we look for a holomorphic rotation R* such that
ces = Icey, the maximal action is attained at the parameter &.

With the standard identification C* — (R?",J) one gets GL(n,C) = {R € GL(2n,R) |
RJ = JR}. Then

0(2n) N GL(n,C) = {R € GL(2n,R) | RJ = JR,RTR = Id} = U(n).

Using RJ = JR and the uniqueness of the initial value problem

d .

ERC( = Rée = 2nRJce = 2nJ Ree and Ree(0) = RE

we get Rce = cre.

Now one can consider a path of holomorphic rotations R* € U(n) with R*¢y = £°, R°*J&, =
JE€°. Then puj = ®*(h)o R’c, is the searched for normalisation to £y of one of the maximal
points.

Lemma 6: I, C Ir—y up to R € U(k). Therefore 04—y < o for allk =2,...,n.

Proof:

Pick h € I; and one of its é-regular k-maximal descending cylinders puj(h). There is
a piecewise continous curve £° = R'ce,, R® € U(k) with pi(h) = ®°(h)(ces). €° hasa
convergent subsequence £’ whose limit point is denoted by £* = R*{y = R. Then
choose ho R as initial homeomorphism and, because R € U(k), one gets the same maximal
curve as for h: pj(ho R) = pj(h). It satisfies

i (h) — @°(h o R)(cg)ll yy= — 0

But this means, using & € S*~3 C §2"~! and the continuity of A on H%(S!, %), that
the maximum of A on S%¥=3 approaches A(u(h)) for s big enough. Thercfore, there is
13 _, (h) realising the maximum of 4 on $%*=* for s big enough, which approaches 1] (k)
for a subsequence:

”/-"‘i.(h) - #i'_l(h)”HQ - 0.

By lemma 4, ui(h) is é- regular and ||pi,_](h.) —@’(hoR)(c50)|] — 0. Therefore h €
Ti. a

5. Proof of Theorem 1

By construction of oy, for any ¢ > 0 there are h € I and sg > 0 such that
A(p*(h(ce))) < ox +¢ VE€ S,

From this, we prove by contradiction that oy is critical and that ak‘ # opgq for all
k =1...n, which yields that there are n geometrically different closed characteristics.
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(a) Assume first that oy for one k is not critical, then by lemma 2 there exists €y, such
that we can apply the deformation lemma to o = o and ¢ < go:

A(p*(h(ce))) <a—e YE€ S*1 Vs> 541,
which is the contradiction to o = mingeg maxgegze—1 A(p*(h{ce))) we aimed for.

(b) Assume now that oy = og41. We pick h € x4, and sp > 0 such that A((,os"(h(cE))) <

or+e V&€ € ST One can assume that all loops ¢*0 (h(ce)) are parametrised proportional
to arc length. ‘

Consider £ € §* 1 such that p;°(h) = p*°(h(ce, ). By definition one has

or < A(p°(h)) < A(pi_‘_’*_l(h)) <o +e,

from where
or £ A(tp"’(h(cs))) <op+e VEeD:= §2k+1 \52;.-—1’

in particular for an S!- invariant round 3-sphere such that SN D = {cg, () | t € S'}.

The existence of such a sphere is easily seen in coordinates, after a suitable rotation
ReU(k+1).
Distinguish two cases:

(1) All loops p*(h(ce)), € € D = S?+1\ §2%=1  converge to a unique point, i.e. to the
point to which uj ., converges:

@*(h(ce)) = phyy + 7 € Ls, s = 00, VEED.

Therefore, one has for any p > 0 an 35 > 0 such that

h(€) == ¢*(h(ce)) € Bp(3) = {z € H* | |z = Al 5= < p}

Then for an & small enough, by lemma 4, B,(¥) C Ls, which means that h sends $°
equivariantly in the set Ls with free S'-action. Any S!- invariant functional has at least
two critical points in a set with free S!- action containing the image of a 3- sphere of an
S51- equivariant map. Therefore A has two critical points in clos(B,(7)), for all p, which
contradicts the finiteness of the number N of prime closed characteristics through the fact
that they have to be isolated.

(2) In the other case, there must be a family of geometrically different critical loops to
which ¢*m(h{c¢)), £ € D converge, so we have again a contradiction to the finiteness of
N. O
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