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Abstract

It is proved that each contact type hypersurface ~ C IR. 2 n diffeoillorphic to a sphcre carries
at least n closeel characteristics. This generalizes a theorelll by Ekeland anel Lasry on
pinched convex hypersurfaces. Thc saille result is proved for all hypersurfaces of 1R 2n

carrying at least one closed characteristic, i.e. the existence of one ilnplies thc existence of
n solutions.
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1. Introduction

Periodic solutions for Halniltonian systenls have been the object of research since Poincare,
as they are the rare trajectories for which the usually difficult question of lang tilue
pebaviour and stability can be answered. Ivloreover, it is wen known, that closccl
geodesics are perioclic solutions of fixed energy in the cotangent bundle of the unclerlying
Rieinannnian nlanifold. Both in quasiclassical approxiluations of quantlUI1 luechanics anel
quantisation of classicallnechanics synlplectic actions of periodic solutions are ilnportant
geolnetrical and physical invariants. Thc recent discovcry of symplectic capacities [EHS9] 1

[ERgo] is a beautiful illustration of the actuality of the problelu, in particular thc question
whether periodic solutions exist on a given energy hypersurface. Tbe perioclic solutions of
given period and variable energy, induding nnlltiple coverings of such, playa central role
in Floer honl0logy of conlpact sYlnplectic Inanifolds, in a sinülar way as critical points of
functiolls for Morse hOlnology. VVe call prim.c loops the underlying one fold covering of a.

trajectorYl see e.g. [1(178].

The ailn of the paper is to prove the following theoreln in the standard synlplectic vector
space.

Theorenl 1: Let E be a clos ed hypers'lLrface in (IR. 2 n, w) of dass C2 diJJeomorphic to the
sphere S2n-l) which cames at least one closed characteristic with positive syrnplectic
area. Then there are at least n geom,etrically diJJerent prime closed charactcristics.

Using \Titerbo's theorenl for contact type hypersurfaces [VS7], on gets:

Theorenl 2: Let E be a closcd hypcrsurf(LCC in (IR. 2n,w) of class C2 diJJcornorphic to
the sphere S2n-1 of restricted contact type. The1l there are at least n geornctrically
diJJerent prime closed characteristics.

It is wortlnvile to Inention here that the case of hypersurfaces diffeolneorphic to spheres
is the case with probably the least nunlber of closed characteristics, due to the idca
that hypersurfaces with nontrivia.l first hOlnotopy group tenel to have nl0re solutions,
conjecturally at least one for each hOlnotopy dass. Nloreover, it is weH kno\vn that generic
ellipsoids (i.e. uncoupled nonresonant harnl0nic oscillators) havc exactly n 'nlodes', as
prinle periodic solutions are called by physicists. So the result is a statenlent about the
minimal nlunber of closed characteristics on hypersurfaces diffeolnorphic to S2n-l.

As convex hypersurfaces are of contact type, theorenl 1 illlplies a generalisation of a
theorem by Ekeland anel Lasry [EL80], \vho had to aSSUlne a pillching condition for the
hypersurface ~ = 81(; B(1') c 1( c B{R.), for R < V2r, sec also [BLMR]. The first result
in this direction was proved by Weinstein [\~T73l anel Mosel' [M76] near equilibra, which
has been generalised by Bartsch [B94] .lust these days.

The question whether perioelic solutions exist on given energy levels bears several difficul­
ties, see e.g. the nl0nograph [EgO], chapter Vl wbere for instance theorem 2 is conjecturccl
for the convex case. Oue difficulty is due to the fact that the usua.l variational lllcthocls
have to be fonnulated in aspace of parmnetrised loops with a given fixed period, but
solutions with fixed energy anel fixed period generally da not exist. An other difficulty
of the usual approach is that a11 prhne and iterated loops {coverings of the underlying
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prime loop) are arbitraily elose to each other. So one neeels a device to separate the prin1e
solutions from the others.

Since R,abinowitz' break through with va1'iationalluethods in the subject [R78], one oftcn
considers a hOll1ogenous Haluiltonian having el1ergy levels h01110thetical to the hypersurface
"E. Then a c1'itical point of the Hänültonian action functional is a solution which is
hOlllothetical to a solution on :So This approach has the disaelvantage that a ll1Ultiplicity
of solutions on different levels can be hon10thetical and therefo1'e it is difficult to count the
achlai n11111be1' of solutions on "E.

Ekeland anel Lasry used convex hOluogenous Haluilton functions anel the dual Haluiltonian
action functional, which has the advantage that it is bounded frorn bclow and that thc1'e is
a level of the functional below which a11 points belong to non iterated loops. In this sublevel
set, where the SI_ action is free, it is possible to find an cquivariant hon1con10rphisrn of
the sphere S211-1, which 111eans that its Bore! hOlnology is the oue of cpn, so that one has
at least 'Tl critical points, see [E90], section V.2., anel [B93] for n101'e about t he topological
rl1ethods. One can also show, that after thc horllothecy, they belong to different prirl1e
eloseel orbits on L: if the abovc pinching conelition holels. The beautiful dual approach is
restricted to C011vex hypersulfaces, a notion which is not invariant by syrnplectic rnaps.

Dur approach uses thc following ideas. Insteael of aspace of loops in the euelidean space, we
consider the loops space H 2 (SI, E) of the hypersurface. Therefo1'e, 011e cloes not neecl any
growth conditions of Han1itonian functions, lnore precisely, Han1iltonians are not necdecl
at a11; see also [1(90] anel [1(91] for a siInilar approach to syu1plectic capacities. \~Te stucly
the characteristic equation which is invariant by the group Diff(Sl) of reparall1etrisations
and a H 2 _ gradient flow leaving the hypersurface invariant. This is equivalent to stucly
a fUl1ctional with constraints, where the Lagrange n1ultiplier .x of a critical point x is thc
euelielean nonn lx(t)l of the velocitiy of X.

NIoreover, we consider 'con1paring horneornorphislns' between S2n-l al1d E, \vhich transport
the fihres of the Hopf fibration S211-1 --+ CPll to "E. To construct a flow invariant set of
loops, the defonnations of these hOlneomorphisn1s by the flow are consielerecl. The notion
of o-regular k-rnaxirual descending cylinders is introducecl as a kind of connecting orbits, in
order to rule out hOlneomorphisrns which wOllld collapse within infinite tilne. Like this, we
can ill1itate the ...veU known Courant-TvIinlnax-principle, with which one fincls eigenvalues
of linear opcrators by 'fishing' with subspaces of consecutive clilllcnsions.

Let us fix SOlne notations. Consider thc standard synlplectic vector space (}R2n, J, .), where
Jz : Tz IR. 2n --+ Tz IR 2n is thc standard integrable ahnost coruplex structure, J; = - I d, .1z ~
J l aJlel " ." denotes the scalar product. VVc llSC the usual idcntification (:" --+ (IR. 271, J).

Then w(v, w) = ~Jv.w elefil1es thc standard exact sYlnplectic fonu, whose integral B
evaluated over loops in }R2n is the syn1plectic action functional

x ~ A(x) = ~ J(-Jx.x )TPi.2n dt = ~(ax, x) L2
~ 2

lueasuring the symplectic area of any disc bounded by the trajcctory 1111;[;.

Here is a the operator 'conjugatc to tin1e'
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J
dx

J'x t-+ - - == - x.
dt

The kernel of wb: at any point is one dilnensional, since w is nondegenerate. The following
differential inclusion is called 'characteristic equation 'of 2:

"y( t) E ker w l~, (Gf)

and its solutions are the 'characteristics'of ~.

Of course, equation (C) does not fix the paranletrisation nor thc orientation of the
trajectories, which is the Inain difference to a geolnetrically equivalcnt Harniltonian SysteIll.
Two pararnetrisations , and i are called geolnetrically different if their inlages lIu, and
llni are different, Le. if thcre is no reparalnetrisation .5 such that , == 70S 01' 7 = lOS.

Specialising now to dosed characteristics paralnetriscd by the unit interval, we denote

'R. := {s : [0, 1] ~ [0,1] I 5(0) = 0, s(1) = I} :> Diff(SI) the set of H 2 _ reparanletrisations
of closed curves. Let us enlphasize that we do not aSSlllne s to be 1110notone, but that \ve
do aSSlune that they are functions, not Inerely relations. This ll1eaIlS that 'R. is no group.
It is weIl known, that the sYluplectic action A is invariant by 'R., whereas the Hanliltonian
action A(x) - JG( x( t) )dt is only SI_ invariant.

Consicler the Hopf circles C = {ce; IR/Z -+ S2n-l I ce(t) = e2trJtC~ E S2n-l} sohring the
initial value problem ce(t) = 21rJce(i), ce(O) =~. Fis any point eo E S2n-l.

Lenuua 1: ASS7tm,e ~ is of claBs Cf, e2: O. Then given any ernbedded loop , of dass Cf:
param,etrised 'with ]Jeriod 1} therc exists a horneomorphism h : S211-1 -+ ~ of class
Cl such that h( c~o) == /.

The proof is standard, see e.g. [H76].

Vle assulned froln now on that the nUlnber of pri111e dosed characteristics with positive
synlplectic action is N < 00; we have to show f\l :2 n. R.ecall that Viterbo's theorelll 111eans
that N :2 1 for contact type ~. Now· apply Lenlma 1 to these t..,T curves ,i, i = 1, ... ,IV,
which we assunle to be pal'ametl'ised by a't:c length, say. The difference quotient of the
corresponcling diffeolnorphislu, e = 2, is bounded froln below anel. ahove by a constant
Oi > 0 and 1; < 00 l'espectively. Set J := t lnini Oi > 0 to be fixed in the sequel.

Let us define 1iö = {h E C2(S271-1,~) I i l~ - el 2: lh(~) - h(e)1 :2 0 j~ - el V~, e E

S2n-l} alld L ö = {, E C2(SI, E) I l,(t) - ,(t')llR2n :2 J I cl - qt' \C, where q = e2tri . It is
evident that 11.( ce) E Lö for a11 ~ and 11. E Hö .

Assunlc that the critical actions are arranged in increasing order 0 < ([1 ::; (l2 ::; ... ::;

aN .::; B ;= maXeES2n-l A(hN(C~)) + 1 and repeated accol'ding to nlultiplicity.

ldea.: Define 11. Iuinlnax-values U k of A silnilal' to infhE1lJ sUPeES2k - 1 A (h (ce) ). Using an
extended gradient like flow on a dass of continuous n1aps h : S2n-l -+ ~ with Inapping
degree 1, we show that each Uk equals to one of the prillle critical values (Li = A(,d of
AI~, Equality of the values uk is showed to be ilnpossible if there are only finitely nlany
solutions, therefore they belong to geo1l1ctrically different loops.
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Before we can give thc precise definition of ak, see §4, we need to construct a gradient like
flow on the loop space of the surface (§2) and to show that it yields adefonnation lenlma
(§3). The proof of theorelTI 1 is conlpleted in §5.

2. The gradient flow

Let the hyperslu'face ~ = {G (z) = I} be givcn by a function G : IR 211 -+ IR, G E C2
, such

that {G(z) < I} is cOlnpact. Then N(z) = Ig:~~~1 is the outward nonnal of ~ at the point
z. .

Note that H 2 (I, lR 2n ) is continuously anel cOlllpactly enlbedclecl in Cl (1, IR 21l) for any
interval I, so that x E H2 is a parametrisation of a differentiable trajectory IInx. Therefore
it lllakes sense to consider tbe space of H 2 -pai'alnetriseclloops of ~, H 2 (Sl, ~), \vhich is
a Hilbert nlanifold with tangent space TxH2(Sl,~) = HZ(x*T~), see e.g. (1(178] for an
allalogous situation. For givcn x E HZ(Sl, ~), (11: anel N(x) are elelnents of LZ(x*TIR 2

11

anel HZ (x *TIR Zn) respectively.

The restrietion of A to ~ has the LZ-gradient -L with

L(1;) = ~ax + (ax.N(x))N(x),

which is an elelnent of L2(x*T~) C LZ(x*TIR. zn ). Its zeros, the solutions of the equation

a1: = (ax.1V(x)) lV(X)

are paralnetrisations of the characteristics of the hypersulface~. We relllark that a11
reparalnetrisations of a characteristi c solve (*).

In order to find a regularisation of L(x), consider t.he extension Ta : HZ -+ (HZ)*L2 = H- 2

of x H (:t)4 x anel the operator T = I d + Ta. Thc latter relates the HZ - to the L2- scalar
product by

Fourier expansion with respect to the basis bk,i of LZ given by bk,i(t) = cxp (2Jr.Jkt) Ei =

Cej (kt) =: C~~) (t), k E Z, for an orthononnal basis ei, i = 1, ... , 2n in lR 2n yielcls the
equivalent formula for the scalar procluct in H 2 :

(U,V)H2 = 2::(1 + (2Jrk)4) ('llk.Vk),

kEZ

where 1lk, Vk E lR 2n are the Fourier coefficients of 7.l anel v.

Renlark: T = I d + Ta is illvertible, whercas Ta is only right invertible, because the
spectrunl a(Ta) = {(2Jrk)4 I k E No} cOlltains 0 but not -1. Nonetheless, observe
that we will only use that T is invertible fronl the right.

The inverse of T is given by

Ky = 2:: / k)4 exp(21rJkt) Yk
1 + 21r"

kEZ
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whieh satisfies

The looked for luinus- gradient veetor field of A is given by

~\'"(x) = J(L(x) E H 2(x*TIR 21l
),

as ~\'" satisfies

DAb;(x)(v) = -(L(x),v)/.,'J = -(J(L(x),v)/1'J

= -(.X"(X),V)//2 = -(T..Y(x),v)L2 = -(TI(L(J:),v)L2 .

The veetor field .X"(x) along x is incleed tangent to the hypersurface, i.e. it ean be
understoad as an H 2-section SI --+ x*T'B. Ta see this, observe that for a11 seetions
~ E L2(x*T~) whieh aJ:e L 2-orthogonal to lV(.'r), the regularised section I(~ E H2(x*TIR2n)
is H2 -orthogonal to /\N (x):

for a11 sealing funetions /\ E C2 (SI 1 IR) eonsidered as test funetions in H2 (51 , IR). This is
equivalent to

(lV(x(t')).I(~(i))lR:ln = 0 Vi.

In order to show that L and ~\'" are clifferentiable veetor fields in their respeetive spaees,
we need an estiInate of ID v N(x)iIR21l:

As we suppose G E C'2 , one ean consider the 'shape operator'of ~ at the point x:

G" G'
T- :T (" ")v I-t Dvl\ - -IGIv - --3 G.G v ,, IG'I

whose operator nonn is equal to the biggest absolute value 1/\max(x)1 of the principal
curvatures of E.

With fi, := nla.xxEI; I/\max(x)l one gets a unifonn estünate IDvN(x)1 ISxvl ::; IISxlllvl
IAmax(X) Ilvl ~ n: lvi. 0

The L 2
_ gradient veetor field L : H2 --+ H 1 Y L 2 is fonnally clifferentiated by

DL(x)(v) = -av + (av.1V(x) )jR2n lV(X) + (ax.DvN(x) )TR2 n lV(X)

+ (ax.1V(x) )TR.2 n DvN(;c).

This expression is a bounded linear 111ap in v E H 1 anel a fortiori in v E H 2 :

IIDL(x)(v)IIL2 ::; 211 vllL2 + 2n: II xll L21l v llL2 ~ 211 v llH2 (1 + fi, Ilxll/.,2)'
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So L is differentiable as nlap H 2 -t L 2 , frOII1 wherc it follows by the boundedness of I{,
that !{L is differel1tiahle as Inap H2 -t H2.

COl1sider l11oreover a S11100th nl011otone function p : IR -t [0, 1], p(a) = °for (l ~ ~(l1' p(0) =
1 I: > 3 Tl A· H 2 TIl>' Cl f· 1· V( )"- p(A(x» V(.) H 2( '*T")101' a _ :tal' len po. -t m..lS ,Ionl w leIe x.- IIX(x)II

H
2 ~~\. X E X.:....J •

Now one can apply thc local ul1iqueness anel existencc theorenl for first oreler ordinary
differential equations to get a loeal flow line <pB (x), 8 E ] - e(x), e(x) [ , e(x) > 0 of the
regularised and 110nlleel 111inus- gradient flow equation of AlE:

!!.- 8 • _ / 8 • _ p(A(ep"(x))) T 8,-

l <p (;t) - 1 (<p (x)) - 11 8 ( .) 11 ~X (tp (.e))
(8 ep x 1-/2

tp°(x) = :1:. .

But the flow exists globa11y, for 3011 s E IR, bee30use IIV(x)111-/2 is bouncled by 2:

Assun1c therc is a tüne s+ for whieh ep"+ (x) is not defined, but defil1ed for a11 s < ..,+.
Then for any sequence Sn < s+, 8 11 -t s, one gets

i.e. ep"" (x) is a Cauchy sequence whcncc has a lilnit point in H 2 which we denote by tp8+ (:c).
By further application of the 10c3ol cxistence theorelll, the fiow line can be extended to an
open interval around s+ and whenee to IR+ anel sin1ilarly to negative s.

Consider the iIna.ges of the Hopf circles C = {ce : IR /Z -t 5 211
-

1 I Ce (t) . e21r Jt ~,~ E 5 211 -1 }

by a slnooth 111ap h : 5 2n - 1 -t 2;.

The Inap IR x 52 n - I -+ l: giyen by ~ H ep S ( h(ce) ) (0) isa continous hor11otopy belonging
to h, as thc following maps are a11 diffcrentiable:

wherc the seconel last In30p is the Soholev inclusion t : H 2 (SI, "E) r-.r Cl.

vVe elenote c.p8(h(ce)) by <I>"(h)(ce), anel call <I>8(h) the sphere fiow of h.

Relllark: In order to get a flow which is equivariant by paraJneter transfonnations
fronl R (not on1y nlonotone ones) one can study the vector field

- L(x)(t)
L(x)(t) = a;t;(t) Ix(t))'

where a x : [0,1] -+ {O, I} is the sign function, clefined to be 1 if .i(t) vanishes OI

is directed in positive elirectiol1 with respect to a givel1 orientation of In1:l: anel -1
if x(t) points in negative direction. Then it is easy to see that for any s E R:
L(x 0 s)(t) = L(x)(s(t)) a.e., i.e. L(x) invariant by R. Moreover, L is bounded by
2, differentiable as 111ap L : H 1 -t L 2 ancl satisfies L(x )( t) = 0 ~ x soh'es (*).
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3. Defornlation Lenlllla

In order to prove that lllinlnax-values are critical, one usually assulnes that they are not
and shows by a gradient-like defonnation that this leads to a eontraeliction.

Le11l11la 2: A SS'ltrne 0' E [T' B] is no t critical. Th en there is 60) such that for any h E H6
and for a71Y $0 2:: 0, there is 6(h, $0) > 0 such th(Lt V6 ::; 60 V$ E [$0, So + 1] wc gct:
V~ with A(<pS(h(ce))) E [0' - 26,0: + 26] aue has II·Y (tpS(h( ce))) 11/"12 2:: 6.(11., so).

Proof:

Define "the set u~ := U~,h,so(O:) = {(s,~) E [So,80 + 1] X s2n-1 I A(<p8(h(ce))) E
[0: - 26,0' + 2.::)} , which is cOlllpact. Assunlc that there is an h which allows a sequence
(Sn, ~n) E U~ such that

1!.x (<p S n ( h (ce n ) ) ) 11 H 2 -t 0 ancl A (tp S n ( h (ce n ) )) ---+ 0'.

Beeause of the COlnpactness of U~ (h ), there is a EIUi t point (s *, ~*). The corrcsponding loop
<ps. (11.( Ce. )) E H 2 satisfies, thanks to the eontinuity of .Y (<ps (11.( ce))) anel A (<p8 (h(ce))) in
the variables (s,~) E IR. X S2n -1 :

This IlleaJ1S
,. ]\-L(x) ](L(x)

.\ (X) = {J ( .7; ) 11 x 11 = 11 x 11 = 0 =} L (x) = 0,

l.e. 0' is critical, whieh is a contradietion.

Observe that '::0 is independent of h.

o

Relllark: A lemnla like this is usually proved using the Palais-Srnale conditioll.
It is worthwile to observe that the only cOlllpactncss we use here is the trivial
cOlllpactness of [so, So + 1] X S2n-l.

Deforl11ation Lenlllla: Assum,e 0' E [T, B] is not critical. Consider.::o and any
o< .:: < '::0 as in Lem,m.a 2. Then for (Lny 11. E Ho VSo 2:: 0 V~ E S211-1 the following
implication hold~~

A(<psO(h(ce))) :::; Q' + E ===} A(tp~o+l(h(ce))) :::; 0' -.:: .

Proof:

"Vith lClnlna 2, Vh E H6, VSo 2:: 0, there is 6. (11., $0) > 0, such that for thc pairs
(5,~) E [so, So + 1] X S2n-l satisfying A (<p8 0 (h( ce))) E [0' - 2E, Q + 2.::) one has the lower

bound IIX(tpS(h(ce)))IIH2 2:: ~(h,so). V'le have A(<p8(h(x))) :::; A(tpsO(h(x))) V.s 2:: So,
more precisely

A( 'P'O(h( ce))) - A('PJ(h(cd)) = [0 (KL('P" (h(ce))), d::' (1'.' (h(cd))) Ipds'

= - [0 11 1; L(1'.' (h(ce))) 11:12 ds'

2:: 6.2(8 - 80)
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for 8011 ~ satisfying A('PS' (h(ce))) 2:: a - 2e \ls' :::; s. For all other (, A(<pS(h(ce))) :::; 0' - 2c.

If we now choose c' slna11 enough such that 6.(11.,80) 2:: R > 0 and 8 = So + 1, then we
get in both cases A('P SO+1(11.( ce))) :::; A (<pSO (h(ce))) - 6.2 :::; 0 - c', fronl where the claüll
fo11ov./s. D

4. Construction of ak

Consider the filtration by standard sphcres in Ck
f"V IR 2k, k = 1, ... ,11., with origin in ~o,

naluely
~o E 5 1 C 53 C . . . C 5 211

-1 .

For each h E C(S2n-l, ~) with 111apping degree 1, this inchlces a filtration on ~ for which
we choose non unique Inaxinlal points Pk(h) E H 2 (Sl, ~):

A(I-lk(h)) = l11ax A(h(ce)).
eEs2k - 1

Wc have showed in section 2 that there cxists a regularisecl extended Ininus- gradient flow
<JlS on s2n-l_ fal11ilies of loops, which is illduced fro111 the regularised flow 'Ps on loops and
which ditninishes the sYlnplectic action A(,) = J--y (} of each circle which is an üllage of a
Hopf circle (unless it is critical for thc restrietion Ab:).

Now think of a ftow line {<I> S ( h) (S2 n - I) I 8 E IR+} starting from h E 1-{& as a clefonnation
of circle fibrations on ~; For each k, wc have again a Inaxilnal point for any s, which we
denote by Il%(h):

which is attained at S0111e ~s satisfying fJS(h) = q.S(h)(ce.).

Definition 1: Gitlen 11. E 1-{&, etlery piccewise continous farnily J-li.(h), 8 E IR. satisfying
(i) A(Pk(h)) = luaXeES2,.-1 A(epS(h){ce)) (k-maxi1nality)
(ii) :li\1 < 00 such that 'V8 2:: 111, pt E L& (o-rcg1tlarity)
is called a o-regular k-lllaxinlal descending cylinder far h.

VVe observe that J-l,s,.8 2:: 0 is cOlnparable to 'half'a connecting orbit as usecl in Floer thcory,
hut far siInpler to find since Olle eioes not have to solve any non linear partial differential
equation. It is ca11ed 'clescencling'cylincler as its action descends although it does not follow
the steepest descent: In general 'PS(ltO) =J pS. 1vIoreover 'Ps cloes not have the fiow pl'operty
on the cylinders J1S as <p 1 (It S) =J It s+1 .

Definition 2: Let I k C 1-{& be the set of initial h01neornorphism,s which realize one 01
the closed characteristics ,i (i. e. 3~ E S2k-I, i E {I, ... ,N} s'uch that 11.( ce) = /i) I

Irom which A(llk (11.)) 2: al > 0 'Vs 2:: 0,
and which are provided with a o-regular k-rnaxim.al descending cylinder Ili.(h).
Let ak bc defined the lollowing val1tes

ak = inf i~f sup A(<pS(h)(ce)) 2: (LI > O.
sER h Ell~ eEs2k - 1
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Relllark: In contrast to an earlier version of this paper, we do not lleecl ask that <1>''/(11.)
is invertible for s 2:: A1.

LenUlla 4: For any f-l" E Cl, 00 > 0, there is an e > 0 small enough S'lLch that one gets:

IIL -,IcI< e } 00 I==> IL(t) - L(t') I> -I t - r. I I Vt t'
I

( t) - (t') 1 > 0 I I - l ' I Vt t' I l - 2 q 1 1 ,.I , R~n - 0 q q c '

In other words, one gets , E L28 ==> f-l E L8 for I" Cl - dose enough to ,.

Proof:

Let us reca11 that we use thc panunetrisatioll of thc circle SI by qt := e2rrit .

(a) large till1es:

OOlql -(/'1::; I,(t) -,(t')l::; I,(t) -fl(t)1 + Ill(t) -IL(t')1 + Ip(i') -,(i')1

::; 2e + If-l(i) -IL(t')1

I{!(t) - {!(t')1 ~ oolq' - q" 1- 2" ~ 0; Iq' -l j,

where the last inequality holds if 2e < ~Iqt - q1'\, i.e. if lqt _ qtll > ~~ .

(b) sIllall tünes:
One obtains 1-y(i)1 2:: 2iToo, 1110reOVer lit(t)! ~ 1..y(i)l- E ~ 2rroo - c. As thc clifference
quotient approxiInates it(i ), using the estiluatc 2rr It - t' j ~ Iql - (/' I 2: 4 It - t'l for

It - t'l ::; t, we get, for e sIllall enough, that Iql - q1' I ::; ~~ ilnplies

Ip(t) - p(t')1
Iql - q1/1

_lfl(t)-ll(t')lli-t'l > (I'(t)l-E)~> 27I'00-2e =oo-~> 00.
It - t/ll qt - qfll - J.L 2iT - 2rr iT - 2

o

LenUlla 5: In::f=. 0.

Proof:

Consider h := hN such that ,N = hN(ceo) and A("'YN) = aN· The interval ]aN, B), for
B := n1axeES2n-l A(h(ce)) + 1, say, eIoes not contain any pri111e critical values but at luost
a finite ntuuber of 111ultiples of such. \~Tith lenlIua 2, the fiow <I>s cliIl1inishes the action of
a11 non cri tical loops by a posi tive al110unt.

Now aSSUlne that IlS(h), clefined by A(llS(h)) = Il1aXeES21l-1 A('P 8 (h(ce))), is stoppcd by

one of the iterate closed characteristics, ,}j), say. It llleans that Il ll8(h) -,~j) II1:p -t 0, S -+
00. Since every critical point x of A has Morse index 00, i.c. thc dill1ension of directioIlS at
x with negative slope is infinite, it is possible to choose a sl11a11 perturbation h. of h with

, N = h(ceo) anel lllax A(h,(ce)) ::; B, wi th the property that the flow avoicls l';j) .
Applying this argU111ent at 1l10St a finite ntlll1ber of ti111eS, we end with the situation that
pS (h) is not stopped at any iterate but at the fixeeI point of <p~: <ps (h( ceo)) = h( ceo) = 'N ..
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This 11leans p8(h) ~ IN, fronl which there exists lvf(e) < 00, such that IIIN - J.L8(h)llc l <
E Vs 2: lvf(E). As a consequence of Lenll11a 4, p8(h) E L~ Vs 2: Ai, i.e. /18(h) is 0- regular
anel therefore h = hNEIn. 0

In order to nOrIllalize the situation, we look for a hololllorphic rotation R8 such that.
ce" = R8 ceo' thc 111axiIllai action is aUained at the panulleter ~o.

vVith the standard identification Cn --f (IR.2 u, J) Olle gcts GL(n, C) ~ {R. E GL(2n, IR) I
RJ = .IR}. Then

0(211.) n GL(n,C) ~ {R E CiL(2n, lR) I R.J = JR.,RTR = Id} ~ U(n).

Using RJ = J R. anel the uniqueness of thc initial value problelll

~ Re~ = Rc~ = 2rrRJe~ = 2rrJ Re~ allel Red0) = R~

\ve get Rc~ = CR~.

Now one can consieler a path of hololllorphic rotations R.8 E U(n) with R8~O = ~8, R8 J~o =
J ~s. Then fl k = ep 8 ( h) 0 R8 ceo is the searched for nornuuisation to ~o of one of the 111axilllal
points.

Lenuua 6: I k C I k - 1 7tIJ to R E U(k). Thcrefore CTk-l ~ CTk for all k = 2, ... ,11,.

Proof:

Pick h E Ik and one of its &-regular k:-lllaxinlal descending cyEnders flf(h). Therc is
a piecewisc continous curve ~8 = RSceo,R.s E U(k) with flk(h) = <I>,q(h)(ce~). ~s has a
convergent subseqllence ~ 8 i W hose lilni t point is clenotcd by ~ * = R* ~o = R~o . Then
choose h 0 R. as initial hOlllC01110rphisnl anel, bceause R E U (k ), one gets t he sanle 111axin1al
eurve as for 17.: flj.(h 0 R.) = flf(h). It. satisfies

llflk(h) - <I>
8 (11. 0 R)(ceo)II H 2 --f 0

But this 111e8US, using ~o E 5 2k - 3 C 5 211
- 1 anel the continuity of A on H 2 (5 1

, ~), that
the 11laxinluIll of A on 52J.:-3 approaehes A(flk(h)) for s big enough. Thercfore, therc is
p k-1 (h) reali sing the 111axilllulll of A on 52 k -

3 for s big enough, whieh approaehes fl k(h)
for a subsequence:

Ilp~;(h) - 1l~;-1 (h)1I H 2 --f O.

By lenulla4, Ili.(h) lS &- regular anel Ilflk_l(h)-<I>"(hoR)(c~o)ll-+ O. Therefore h E
LJ.:-l' 0

5. Proof of Theorenl 1

By construction of CTk, for any e > 0 therc are h E I k anel So 2: 0 such that

A()O"O(h(ce))) < CTk + e "V~ E 5 2k
-

1
.

Frolll this, we prove by contraelictiol1 that {J'k is critical anel that {J'k i= {J'k+l for a11
k = 1 .. . 11" which yielels that there are 11. geoll1ctrically different closed characteristies.
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(a) Asslune first that O'k for OllC k is not critical, then by lenllna 2 there exists EO, such
that we can apply the clefonnatioll lenuua to 0' = O'k anel E ::; EO:

which is the contracliction to O'k = nÜ1l8ElRll1aXeES2k-l A(ep8(h(ce))) we aünecl for.

(b) Assluue now that 0'". = O'k+l. Wc pick h E Ik+1 and So 2: 0 such that A(<p8°(h(c,d)) <
O'k +E, 'V~ E S2k+ 1. Onc can aSStllUe that allloops ep.'lO (11.( ce)) are paraluetrised proportional
to are length.

COllsider ~k E S2k-l such that p;O(h) = <pso(h(c~/< )). By definition one has

froln where

in partieular for an SI_ invariant round 3-sphere such that 53 n jj = {ce/< (t) 1 t E 51}.
The existence of such a sphere is easily seen in coordinates, after a suitable rotation
REU(k+1).

Distinguish two cases:
(1) Allloops <pS(h(c~)), ~ E D = 52k+l \ S2k-l, converge to a unique point, i.e. to thc
point to which J1k+l converges:

Therefore, one has for any p > 0 an So 2: 0 such that

Then for an E, SIllall enough, by lc1111ua 4, B p ( ~ ) C La, whieh IIleans that h. sencls S:l
equivariantly in the set La with free SI-action. Any 3 1_ invariant functional has at least
two critical points in a set with free 5 1

_ action containing thc itnage of a 3- sphere of an
3 1_ equivariant luap. Therefore A has two eritical points in clos(B,)('9)), for a11 p, which
contradicts the finiteness of the ntllllber 1\' of prilue closed characteristics through the fact
that they have tp be isolated.

(2) In the other case, there lUllst be a fanlily of geolnetrieally different eritieal loops to
\vhich <pSm(h(c~)), ~ E D converge, so \Vc have again a contradiction to thc fillitelless of
N. 0
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