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Abstract

We introduce a filtration of hyperbolic groups according to their possible actions on real
trees. Using this filtration and results from the theory of (small) group actions on real trees
we study the structure of hyperbolic groups and their automorphism group.

In [Gr] M. Gromov has introduced hyperbolic groups and show how geometrie notions,
tools and results, mostly from the theory of negatively curved manifolds, can be adapted
to obtain deep and broad algebraic results on the structure of hyperbolic groups and their
subgroups. Gromov's paper and arecent work of the second author on the isomorphism
problem [SeI] stress the need for understanding the structure of automorphisms of hyperbolic
groups and more globally the structure of the automorphism group of a hyperbolic group.

The work of the first author on group actions on real trees [Ri] seems to have more and

more applications since it was introduced. In this paper we adapt results from this work to
the study of hyperbolic groups and their automorphisms. Dur approach is an elaboration of
the Bestvina-Paulin method ([Be], [PaD and we believe that besides the results we obtain our
arguments should be applicable for future problems. The results we get serve as key points
in our generalization of the solution to the isomorphism problem [Ri-Se].

We start by introducing a natural filtration of hyperbolie groups in tenns of their
possible actions on real trees. This filtration, although very simple, turns to be essential in
understanding automorphisms and may serve as possible induction steps for future problems.
In section 2 and 3 we bring an immediate application of the Bestvina-Paulin method for the

Hopf and co-Hopf property for certain hyperbolic groups.

The automorphism group of a surface group is generated by Dehn twists aud inner

automorphisms. In general, we call an automorphism generated by the above interna! (the
notion was suggested to us by Benjamin Weiss). In section 4 we start developing our
machinary in order to show that for torsion-free hyperbolic groups, the group of internal
automorphisms is of finite index. We do that by constructing a real tr~ equipped with an
isometric group action in case the index of the internal subgroup is infinite aod then show in
sections 5 and 6 such areal tfee cannot be obtained by our construction. Having a complete
"proof scheme", we show how to get Gromov's theorem on freely indecomposable subgroups

in section 7, and in the following section we prove the automorphism group of a hyperbolic
group is finitely generated.

Further structural results on hyperbolic groups, their small splittings and automorphism

group appear in a continuation paper by the second author [Se3]. Application of the
techniques presented in this paper to (acylindrical) accessibility of finitely generated and
finitely presented groups appear in [Se2]. In [Se4] we use a modification of our approach to

study automorphisms of a free group.



1. Rigidity Tower

Actions of groups on real trees suggest a natural filtration for groups which turns to be

essential in studying the structure of hyperbolic groups and their automorphism groups. The

filtration seems to be a key point in the solution of the isomorphism problem ([Sel], [Ri-Se]),
and some of the algebraic properties we discuss in this paper are proven only for certain
levels in our filtration. We believe some of the techniques presented in this paper should
serve as a tool for "climbing up" in our rigidity categories also for other algebraic properties

of hyperbolic groups and their subgroups.

O. Kazhdan T "groups

Kazhdan's groups are known to have no non-trivial action on areal tree [Ha-Va].

Moreover, every measurable cocycle of such groups into the automorphism group of a

simplicial tree is cohomologous to a cocycle with values in the isotropy group of a point
of the tree [Ad-Sp].

Although we are not making use of the special properties of Kazhdan groups, they seem
to be distinguished among our next category:

1. Strictly rigid groups

A group is called strictly rigid if it admits no non-trivial action on areal tree. In
addition to Kazhdan's T -groups, fundamental groups of non-Haken 3-manifolds [Mo-Sh]

and of Kähler hyperbolic manifolds [Gr-Sc] fonn examples for such groups. Clearly, like

Kazhdan's T -property, strictly rigid is a property preserved under taking quotients. The

algebraic structure of these (even hyperbolic) groups is unfortunately not yet completely

clear, although they are described in [Ri] using R. -trees of groups. Note that in particular

strictly rigid groups do not admit a non-trivial Bass-Serre splitting.

2. Rigid groups

A small action of a group on areal tree is an action that satisfies the ACC condition
[Ri] and edge stabilizers do not contain a free group (in the case of hyperbolic group they

are, therefore, virtually cyclic). In [Ri] small actions of groups on real trees are studied in

details and the existence of a small action for a group is shown to be equivalent to some
algebraic properties of the group. Rigid groups are known to have no Bass-SeITe splitting
with virtually cyclic edge stabilizers [Ri], they have finite outer automorphisln group [Pa] and
solvable isomorphism problem [Sel]. Natural examples are fundamental groups of cIosed
negatively curved manifolds.

Rigid hyperbolic groups have finite automorphism group. To study the strucrure of
individual automorphisms and the automorphism group for general hyperbolic group, we

need to introduce tbe following category.

3. Weakly rigid groups

A weakly rigid group is a group for which every small action on areal tree (in the
above sense) is discrete.

4. Freely indecomposable groups

Groups which do not split as a non·trivial free product. From our discussion, using

extensively the results of [Ri], we show that a freely indecomposable hyperbolic group is
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weakly rigid if and only if it does not eontain "quadratieally hanging" free subgroups (see

5.1 below).

To eonclude, we would like to note that subclasses. of weaker rigidity eategories are

sometime easier to handle than stronger ones. For example, the isomorphism problem for

free products of rigid hyperbolie groups was shown to be solvable in [SeI], where weakly

rigid hyperbolie ones require more [Ri-Se].

2. The Hopf Property

A gro!Jp is ealled Hopf if every homomorphism of the group onto itself is an isomorphism.

A simple application of the Paulin-Bestvina method ([pa], [Be]) give us the follwing:

Theorem 2.1 Strictly rigid hyperbolic grollps are Hopf.

Proof: Let r = (GIR.) = (gI, ... 1 gtll'l," . ,Ts ) be a strictly rigid 0 -hyperbolic group, let
'l1 : r -t r be an onto homomorphism with kernel, and let X be the Cayley graph of r

with respect to its set of generators G. The epimorphisms 'l1 nl
: r -t rare non-conjugate.

For each n~ we pick /0 E r für whieh:

Sinee the { 'l1 m }:=1 are non-eonjugate there exists a subsequence (still denoted 'l1 m ) for

whieh Mm -t 00 . Let {(..(\711, id)}:=1 be the pointed metric spaces obtained from the Cayley
graph ..tYm by dividing the metrie on ..tY by Pm' (Xm1 id) is endowed with a left isometrie

aetion of r via ,o'l1m,o1 . At this stage we ean apply the follüwing.

Theorem 2.2 ([Pa], 2.3) Let {..tYm}~=l be a seqllence of om -hyperbolic spaces with 000 =
litn8m < 00 . Let G be a countable group isometricaUy acting on ..t\m . SlIppose there exists

a base point 'Um in ..t\m such that for every finite subset P of G, the closed eonvex lulll of the

images of Um under P is eompaet and these eonvex hu/ls are tota/ly bounded metric spaees.

Then there is a sllbsequence cOllverging in the Gromov topology to a 50000 -hyperbolic spaee

..tYoo endowed with an isometrie action of G.

Our spaces {( ..tYm, 'ld.)}:=1 satisfy the assumptions of the theorem (see [Pa]) aod they are
..1... hyperbolic, so ..tYoo is areal tree endowed with an isometrie aetion of r , a eontradiction
I-lm
to r being strictly rigid.

o
Corollary 2.3 Let lvI be an irreducible 3-manifold with a Gromov hyperbolie fundamental

grollp. Then 1[1(1\1) is Hopf.

Proof: If M is Haken or 1[1(1\1) is elementary, 1r1(.i\1) is residually finite and therefore

Hopf. Otherwise the eorollary follows from Morgan-Shalen [Mo·Shl], and the previous

theorem.

D

Question: Is every (torsion-free) hyperbolie group Hopf?
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3. The co-Hopf property

A group is called co-Hopf if every monomorphism of the group into itself is an

isomorphism. A simple application of the simplicial volume [Or3] shows that the fundamental
group of a elosed negatively curved manifold is co-Hopf. Onerealizing this observation we

have:

3.1 Let r be a rigid hyperbolic group. Then r is co-Hopf.

Proof: Let I{J be a monomorphism of r into itself which is not an isomorphism. Clearly

we have:

Since a rigid group admits only finitely many monomorphisms into a hyperbolic group up

to conjugation ([SeI], 5.1), we have integers k and l and gEr such that for a11 , E f

we have:

Therefore, conjugating c.pk(,) by 9 is equivalent to map it via c.pl 1 so we have:

g<pk+l(, )g-l == <pI (<pk+lCf')) ==

c.pl(g<pk(,)g-l) == tpl(g)<pk+l(,)(/(g-l)

which implies <pI (g) == 9 since f is not elementary. But this shows 9 E <pn(f) for a11
integers n, so it aets on <pk(f) as inner automorphism, and we have:

a eontradiction.

o
Remark: It seems very plausible that every (torsion-free) freely indecomposable hyperbolic

group is co-Hopf. Dur description of automorphisms of hyperbolic groups might help
attaeking this problem.

4. Internat Automorphisms

Ta eertain extent the "'structure" of a group is refiected in its automorphism group and

vice versa. A rigid hyperbolic group has a finite outer automorphism group. The outer
automorphism group of a closed surface on the other hand is finitely presented ([Ha-Tb],
[Mc], [Wa]) and generated by Dehn twists ([Li]). The notion of a Dehn twist can be made

purely algebraic as an automorphism obtained naturally from an amalgamated produet or an
HNN extension over a cyelie group. Tbe subgroup of the automorphism group generated
by inner automorphisms and Dehn twists will be ca11ed (as suggested to us by Benjamin
Weiss) the subgroup of internal automorphisms. Dur goal in the next following sections is
to show the group of internal automorphisms is of finite index in the automorphism group of

a torsion-free hyperbolic group, and in parallel to get that the automorphism group of such
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groups is finitely generated. Dur approach is a variation of the Bestvina-Paulin method ([Be],

[pa]) whieh is an elaborate application of the Gromov topology on metric spaees, joined with

results from the work of the first author on (smali) actions of groups on real trees [Ri]. This

approach is adapted in [Ri-Se] in order to generalize the solution to the isomorphism problem

given in [SeI], and to study acylindrical splittings of f.g. groups in [Se2].

Let f = (GIR) = (gI,"', gtl1'l," . ,T.'i) be a torsion-free freely indecomposable 8­

hyperbolic group, let )( be the Cayley graph of f with respect to the generating set G and

let Ir be the group of internal automorphisms of r . For .:aeh automorphism 'lt E Aut(r)
we pick a "shortest representative" in the left eoset \I! Ir, \I! , that satisfy:

ln~ IW(gj)1 = luin IU~ Iw 0 4'(gj)1
l:5J:5 t r.pE1r 1:5J:5 t

Clearly, in a given left eoset wIr there are only finitely maily shortest representatives. Now

assume [Aut(f): Ir} = 00 and let {'1J m }:=l be shortest representatives for distinet left

cosets of Ir. Let:

Since '!Im is determined by the image of the generators {gj} ~'=1 ' and the wm do belong

to distinct Ir left cosets, we have Pm ---+ 00.
rn-co

Let (J\m, id.) denotes the pointed metrie spaee obtained from the pointed metric spaee

(J\, id.) by dividing the metric on )( by Il'm . The spaee (.Ym, id.) is equipped with a r
action via the automorphism Wm .

Proposition 4.1 There exists a sllbseqllellCe (still denoted (J\m, ÜI.) ) that converges in the

Gromov topology on metrie spaees to areal tree (J/, vo) .

Proof: {(J\m, id. )}:=1 satisfy the assumptions of theorem 2.2 (see [Pa)) so there exis15 a

eonverging subsequenee. Any limit of a subsequence of the above spaces is 0 -hyperbolic

(since J\m is -.L hyperbolic and Pm ---+ 00 ), so it is areal tree equipped with ar-action.
Jfm

o
Proposition 4.2

(i) StabiJizers 0/ segments 0/ }/ are eyclic.

(ii) Stabilizers 0/ tripods (convex hull 0/3 points which are not on a segment) are trivial.

Proof: (i) is identical with proposition 2.4 of [Pa]. Ta prove (ü) let {A, E, C} be a tripod in

},~ and let IV be the three valence vertex in the tripod {A, E, C} . Let I E f fix our tripod

and let Am, Ern, Gm E J\m be tripies of points converging to A, B, C in correspondance.

Let:
l = lllÜl {dy(A, IV), dy(B,IV), dy(C, N)}

From the convergenee of the metrie spaces {(.Ym , id.)}:=1 to (),~, YO) we have for
large enough 1n
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Let !'lm be three valence vertex of a (geodesic) approximating tree with vertices
A nn Bml Gm . By the inequality above for nl large we have:

Therefore, there exist 81 #- 82 for which 'lJm(,SI )(lVm) = 'lJ m(,S2)(lVm) which clearly

implies ,82-81 = 1 , but our group r was assumed torsion·free so , = 1 .

o
Proposition 4.3 Let [Yl , Y2] C [Y3, Y4] be segments o[ }~ and assume stab([Y31 Y4]) =I 1 .
Then:

stab(('Yll Y2]) = stab( [Y3, Y4])

Proof: By proposition 4.2 the stabilizer of [Y3, Y4] is cyclic. Let ,1 E stab({Y3l Y4]) and
,2 E stab([Yb Y2]) \ stab([Y31 Y4]) . Clearly 1'1 commutes with ,2 . On the other hand

(assurne w.l.a.g. Y3 ~ fix( ,z) ):

But if ,I,2(Y3) = ,Z(Y3) then 11 fixes the tripod {Y2, Y3, 12(Y3)} which contradicts
proposition 4.2.

o
The combination of propositions 4.1 and 4.2 shows the action of r on the real tree Y·

satisfies the ACC condition of [Ri] so it enables analyzing the action using the classification
of small actions on real trees obtained in that paper. In [Ri] the real tree }~ is divided into

distinct components, where on each component a subgroup of r acts according to one of

the following dynamics:

(i) Indiscrete action of the free group (e.g. Levitt type).

(ii) InteIVal exchange transformation.

(iü) Axial components.

(iv) Discrete action.

Our aim is to show that for each of these components either r splits as a non·trivial free
product, or we obtain a contradiction to \lf m heing shortest representatives in their cosets by
constructing automorphisms <pm E Ir (for large enough rn ) such that:

Remark A similar (aIthough technically somewhat different) discussion appears in [Se2] for

the study of acylindrical splittings of groups.

Indiscrete actions of the free group

Since stabilizers of tripods are trivial by proposition 4.3 and since the stabilizer of a
segment is the stabilizer of the whole component in the above case by [Ri], the stabilizers of

segments are trivial. Therefore, our group r splits as a free product r = A *Fn where F n

is a free group on n generators. r was assumed freely indecomposable, so 11" contains 00

components with an indiscrete action of the free group.
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Axial components

If an axial component is not isometrie to a realline, then by the above argument stabilizers
of segments are trivial. Therefore, by [Ri] our group r has the form r = A *Z F2 in this
case (since we assumed r is torsion-free and r contains no Z2 ), so we treat it as a special
case of an interval exchange transformation discussed in the following section.

The subgroup corresponds to an axial component whieh is isometrie to a real line is
solvable and it has Z2 as a quotient. But the only solvable subgroups of torsion-free

hyperbolic groups are cyclic, so real line axial components do not oecur in }T.

In the next section we treat the IET components and show how to shorten a11 generators

supported in part on these components, so we are left with the discrete ease and the standard

Bass-SeITe theory. This last case is studied in seetion 6. The whole procedure described in

this and the following two seetions will serve us in getting other results about the structure
of hyperbolic groups and their automorphism groups in the preceeding sections and in [Se3].

5. The lET components

Having our limit real tree (),~, YO) 1 our aim is to find an automorphism c.p E Ir such
that a11 generators Yj supported in part on JET eomponents will get shorter in 1'''", i.e.:

Achieving such a shortening automorphism we are left with the diserete case whieh is handled

in the next section. Combining the two seetions we get a sequenee of automorphisms c.pm E Ir
such that for large enough n/- :

which clearly contradiets our choice of the automorphisms 'l! In and, therefore, we obtain a
contradietion to our initial assumption: [Aut(r): Ir] = 00 .

Aecording to the work of the first author on group actions on real trees [Ri], the

fundamental group S of an IET eomponent T with trivial edge stabilizers is Fuehsian,

and covered by a eorresponding JET action of the free group:

Pu x Tl ~ Tl
(v, J-l) 1 1 fl
SxT ~ T

where there exists a homomarphism v : Pu ~ S such that:

ft(f(tt}) = v(j)(J-l(tt})

In this section we da not need to assurne our hyperbolic group rand in particular the
fundamental group of the lET eomponent S are torsion-free, and in fact in [Se] we use the

argument and results of this seetion in the eontext of f.g. groups with no 2-torsion. In our

present situation of torsion-free groups we have the following notion whieh plays a eentral

role in the study of dynamies of individual automorphisms and the algebraic strueture of the
automorphism group (see [Se3]).
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Definition 5.1 Let r be a freely indecomposable, torsion-free hyperbolic group. A quadrat­
ically hanging /ree group Q of r is a finitely generated free group Q ~ F71 such that r
admits a graph 0/ groups,'

l~

Q . ',~""

where j U) ::; n1. and Q admits one of the following two presentations (the 'll.j 's are

conjugate of the Si 's):

(i)

(il) Q = /81, ... ,8 111> VI,···, vgl TI Si TI vJ = 1\
\ i=l j=l /

In seetion 9 we show that a freely indecomposable torsion~free hyperbolic group is weakly

rigid if and only if it does not contain quadratically hanging free groups. For much stronger

results on the role of quadratically hanging free groups in the structure of the automorphism

group of a torsion~free hyperbolic group see [Se3].

Dur aim is to shorten generators supported in part on !ET components. To do that
we find· automorphisms of the fundamental group S of an IET component T such that
the intersections between the segment [YO, gj (YO)] and the disjoint union of shifts of the

corresponding IET components T are strictIy shorter (if positive) for [YO, 'PT(9j )(VO)] . The
length of the intersection between [YO, gj(YO)} and the discrete part and other IET components
remains unchanged. By setting 'P = 'PTl o· .. 0'PTq where Tl l ... ,Tq denote all the (conjugacy
classes ot) IET components in )'" we achieve our goal.

Let T be a fixed IET component with fundamental group S. Suppose [YO,9j(YO)] is

supported in part on at least one of the conjugates of T and let:

fT = {r E r I I,T,-l n [YO, gj(YO)] I > o}
cT = nüll I,T,-l n [YO, gj(yo)lI,ErT

and S be given by one of the standard presentations (for simplicity we assume 00 reflec­
tions):
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or:

(

'" 9 ), -11 1 -hm . . 2
S1,"'Sm,U1,"',vg ls 1 ,"',Sm ,IIS,IIUj

;:::::1 j;==l

Now, let PT be the set of all possible permutations Cf on 2'111, + 9 or 'In + 9 symbols (in

correspondence) such that there exists an JET transformation (see [Ke] or [Ri] for definition)

with permutation a that gives areal tree T with S as fundamental group and SI,"', sm

as non~conjugate stabilizers of vertices of T. With each such real tree T we get a natural

presentation for the group S where the generators are the elements of S which correspond to

the generators of the pseudogroup defined by the lET transformation. Clearly, this presentation

depends only on the permutation a E PT , so let XT be the maximal length of a generator

in our standard presentations under all Cf E PT :

XT = 111~ 111a:x (Isil, laj I, Ibj I)
aE~ T I,J

or:

XT = 111a
p
x n1~'x (Isi I, IVj j)

aE T ',J
Let A be the graph of groups corresponds to the action of r on the real tree }I according

to the first author's Bass-Serre theory for real trees [Ri]:

,..r

Let Xl' = Fix(u r ) n T , and suppose (w.l.o.g.) Yo E T or xro is the closest point on

T to YD. By taking appropriate conjugates we may assume:

cl ialll { l;df=l < l~O

and if YD E T then: dY(YD, xI) < 190 since the JET component T is minimal and orbits
are dense ([Ri], [Ke]).

Each generator gj can be represented as a word in the vertex stabilizers i.e.:

k(j)

Yj = II h{w{ I1
i:::::1

p

where h1 E U Hm ; wf E S and ft are generators of loops in the above grpah of groups
m=l

(some of the h{, ur{, I1 may be the identity). Let:

L = lllax llla.x 17.111
1:5j:5t l:5i:5k(j)
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where Iwl I is the word length of w1 in the standard presentation for S,

Since the action of S on T is minimal (orbits are dense), in any subinterval we can

represent the action of S as a pseudogroup, from which the action of S on T can be

reconstructed [Ri]. By taking the interval to be of size lOOLxT around :Uo if YD E T or

around x ro , where :c1,o is the dosest point to 'Ua on T, we get an automorphism !.pT of

S that satisfies:

I

Therefore, we have strictly reduced the intersection between {'UDl rpT(gj )Cl}O)] and the conju-

gates of the IET component T in comparison with [YO, gj('YO)] , Since all the automorphism

group of S is internal (i.e. generated by Dehn twists aod inner automorphisms [ZVCD, and

the intersection of Ya with the other JET components aod with the discrete parts remains

unchanged we get the following.

Theorem 5.2 Let T be an JET component 0/ fhe limit real free 1', There exisfs an internal

automorphism !.pT 0/ r such that for generators gj E G where [YDl9j('YO)] is sllpported in

part on conjugates of T we have:

By composing automorphisms {!.pT;} [=1 for a11 distinet JET eomponents we gel:

Corollary 5.3 There exists an internal automorphism rp of r such that for all generators

gj E G with [va, gj(Yo)] sllpported in part Oll JET componellts we Izave:

6. The discrete case

Showing how to make a11 generators supported in part on JET eomponents shorter, we

are left with a discrete action of r on (Y>yo) , the standard Bass-Serre theory. In this ease

we do not find an automorphism '!.p E Ir that makes the action on l' Hshorter", but we do

find automorphisms !.pm E Ir that makes Wm0!.pm "shorter" for large enough n1.. This again

contradicts the way the automorphisms 'lJ m were chosen, aod we obtain a contradiction to

our basic assumption on the infinity of the index of the group of internal automorphisms Ir
m Aut(f) , The whole argument described in this section is very similar to the one given

in [Se2] for the discrete case.

Sinee r is assumed freely indecomposable, stabilizers of edges ean not be trivial, so

by proposition 4.1 they are infinite cyclic. The treatment in this case is divided into several

cases aceording to YO being in the interior of an edge of }' and in the first case we divide

our argument to a splitting and non-splitting edge in the cOITesponding (Bass-SeITe) graph

of groups.

Csse lA Yo E e and e E l'Ir is a splitting edge.

Let C be the cyclic subgroup of r that fixes the edge e . By the eonstruction of the

tree Y· we get r = A *c B where C is strictly induded in both A and B (in fact C is
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of infinite index in hoth). Given the above splitting, for each generator gj E G we have

the following presentation:

1 1 U' Tl'

Y· = a,b,··· (l"Jb,J
) 'J J J} aj E A

(6.1)

(where aJ aod bji may be the identity element).

Let z E C be a generator of the cyclic subgroup C, aod let c be the minimum between the

shortest edge of l' and the distances between Ya aod the vertices of e. By the convergence

of the metric spaces (..,ym, id.) to (1'~, "Va) in the Gromov topology on metric spaces, we have

the following inequalities for large enough 1n :

dXm (W m (Z8), id.) < cl

IdXm (Wm(zSa~z-S),id.) - dy(a~(Yo),Yo)1 < cl

Idxm (W m (zSb;z-.'l) , id.) - rly (b~(yo), :ua) I < cl

Icl ...· (w (zSI(/l z- S1) W (Z
S2(/2 Z - S2))

~\.m 111 }1 ,m }2

- cll" (zSI (/1 z-.'l\ (yo), Z'~2(/2 Z-S2 (YO)) I < cl
}1 }2

Id v (\lJ ( zS
I bi.l Z-s1) \lJ ( Z

S
2 bi.2 Z -S2) )

.Am ,n )1 ,Ul )2

- dl" ( ZS
I b~~ Z-

S
l (YO), zS2b~~z-·'l:l (YO)) I < Cl

Id. (W (Z
Slo.i.l ...-SI) \lJ ( zS2bi.2Z -82 ))

..'\: m m ) 1 " ,m }2

- dy ( z
S

1 (/1 z-·Q1 (Yo) ZS2 bi.i Z- S
2 (Yo)) I < Cl

}1 '}2

where cl = 206-t16 400; 0 ~ Isi< 208· t26

Lemma 6.1 Let 'tUm E [id" \lJ m(aJ)]; w;n E [ül., \l1 m (b} )] satisfy:

rlx", (wm , id.) =dXm (w: ll , ül.) =; .
Then for 'ln large enough (so that inequalities (6.1) hold) and for some so, 1 < So <
200t26

dx(wm , wm(zSO)(wnJ) > 100

clx (W~l' tlJm(zSO) (w:n )) > 108 .

Proof: \lJ m ( ZS) ( W m ) is 28 -elose to a geodesie segment [i rl., Wm ( a]) ] Therefore, a
simple pigeon-hole argument proves the lemma.

o

id.,
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Proposition 6.2 ASSlime (w.l.o.g.) that for fhe So of the previolls lemma:

dx(id., Wm(z~"O)('Wm))< dxUd.,wm ) - 88

dx (ül., W111 (ZSO) (w:n )) > fix (id., w:u ) + 88

Then Jor all 1 ::; j ::; t; 1::; i ::; nj we have:

dx(id., wm(zSoa~z-So)) < dx(id., Wm(a~)) - 88

dx(id., Wm(z-~ob~zSo)) < dx{id., Wm(b~)) - 88

Proof: By inequalities (6.1):

dx(ül., Wm(ZSoa~z-So)) ::; dx(id., wm(z·'lO)(wm))

+ dx (wm(z,SO )(wm), WJIl (zso a;.) (wm)) +

+ dx (W m(zSoa~)(wm), wm (Z80a)Z-S o))
< dx(id.,wm ) + dx{wm , wm(a))wm)+
+ dx (Wm ( Cl~ ) (wm ), WlH ( 0.) )) - 168

< clx (id., Wm ( a~ )) - 88

A similar argument proves the inequality for the bj 'so

D

Theorem 6.3 Let t.p be the r -alltomorphism defined by:

Then:

Va E A

Vb E B

t.p( 0,) = zSo az-so

t.p( b) = z-so bz sO

1l1a.X dx(id., 'lJ m 0 ",(gj)) < 111ax dx(id., wm(gj))
l~j~t . l~j~t

Proof: Clearly both maxima are obtained for gj g C . From the inequalities (6.1) and
proposition 6.2 we have:

dx (icl., wm 0 ",(a} ... b;)) < dx Ud., wm (a} ... b))) - 2i· (46)

and the theorem follows (cf. [Se2] eh. 2).

o
Theorem 6.3 eontradiets our ehoiee of the automorphism Wm . Therefore, our pointed limit
tree (1", Yo) does not fall into ease tA.

esse IB Yo E e and e E y/r is a non-splitting edge.

Let C be the eyclie subgroup that fixes the edge e, and let r = A*c . Let z be a generator
of C, and let f Erbe a (Bass-Serre) element eorresponding to a simple loop eontaining

the edge e . For eaeh generator {gj}~=1 we have:

1 k~ nj J..~~j
qj = aj f J ••• CLj f J

where a} or fk? may be the identity element.

12



Let n = Il}JX (kj) alld let [ be the minimum between the shortest edge of Y and the

distances between YO and the vertices of e. By the convergence of the metric spaces ()(m, i cl. )
to (}1", vo) in the Gromov topology on metric spaces, we have the following inequalities for
large enough 1n :

«6.2)

dXm (\lJm(ZS), ül.) < cl

Idx", (\lJ 11l (o,)),id.) - dy(a)(va),ya) I < cl

ldxm ( \lJ m ((j zS)k), id.) - dy (fJ.~(yo), ya) I < cl

IdXm ( \lJ m ( a} (f zs)k) ... o,)(jZS )k}) , id.)-

cly (al jk) ... a~fJ.·~(Yo), vo) I < Cl

]dxm ( \lJ m (a):) ,\l! m (a)~) )- dy ( a)~ (Yo), a)~ (ya)) I < Cl

IdXm(\l!1Il(a~),qJm((jzS/~))-dy(aj(yo),jk(Yo))1 <cl

where cl = 606.t;6.l00; -'11. ~ k ~ '11; Isl < 208 . t25
.

Lemma 6.4 Let W m E [hf., \lJ m(f)]; w:n E [id., \lJ m ( a})] satisfy:

dXm ('lOm , id.) = dXm (W:'11 id.) = ~

Then jor 'ln [arge enough (so that inequalities (6.2) hold) and jor some

208t25 :

dx(wm , \l!m(zSO)(wm )) > 208

dx (lO~l' 'lJm(zSO) (W~l)) > 206

Proof: identical to the proof of lemma 6.1.

Proposition 6.5 Assume (w./.o.g.) that Jor the So oj the previous lemma:

dx(id., \l!m(zSO)(wm )) < dx(id., w m ) - 186

clx (ül., \l!m(zSO) (W~l)) > dx (id., w:n ) + 188 .

Then [or all 1 :::; j :::; t; 1:::; i :::; Tl,j we have:

(i) clX (\lJ m (ZSO ) J \l! m (j z3so) (\l! m (zso ))) < IW 111(j) I - 208

so; 1 < So ~

o

Proof: By inequalities (6.2):

dx(\l!m(zSO), Wm (j z3so )) ~ dx(Wm(zSO),w lII )+

+ dx (wm, \l! m(j) (w:n) ) + clx ( Wm(f) (w:H ) , Wm (I z3so))

::; Iwml + dx('IJm(zSO)(wm ), 'lU m )+

+ dx (lOnt , \l! m(j) (w:n )) + I'IJ m (z-3s o) (lO:n ) I

~ Iwml + clx (w m , \l!m(f) (W:'l))+
I

+ Iwml- 308 :::; j\l!m(f)l- 206

13



To prove CH) we have:

dX('1' m (Z8 0
), '1'm(a;z-"o)) ~ dX(w~p '1' m(Z8 0

))

+ dx (w~ 1 '1' 111 ( a)) (W: n )) + clx ( '1' m ( a;) (1O:Il ) , W111 ( aj Z'~O) )

::; 211O:n l + dx (W:nl 'lJ m (a~) (W~~)) - 288 ~

~ IWm(a~)I- 208

Theorem 6.6 Let r.p be the r -automorphism defined by:

VaEA r.p(a)=a

r.p(f) = f z3so

Thell:

n1~ dx(wm(z'''O), 'lJ m 0 r.p(gj)(\lJm(ZSO))) < 111~ clx(id., tIJm(Yj))
l~)~t l~J~t

Proof: Assume r = roa;. is a subword of the reduced form for gj and:

clx('lJm(zSO), 'lJ m 0 r.p(ro)(\lJm(zSO))) ~ dx(ül., wm(ro))

clx(tIJm(zSO), tIJ m 0 r.p(r)(wm(zSO))) < dx(icl" wm(r)) .

First suppose nj > 0 . Then:

dx (Wm(ZSO), wm 0 r.p(TjTl}) ('1'm(ZSO))} ::;

dx(w 1ll ( ZS O), wm 0 r.p(T)(Wm ))+

+ dx ( w"', W'" (J z3.,.) "j (Wm(ZSO)))

< clx(icl., Wm(T)(Wm )) + clx (w m1 Wm(f)u})

- 128 < clx (id" \l1 m (T jU;')) - 88 .

Now, suppose nj < 0 . Then:

dx (Wm(ZSO), 'lJ m 0 r.p (roa;'fn~) ('lJm(ZSO)))

~ dx (Wm ( Z S
O

), 'l! 7/1 0 CP (TO a~ ) (Wm ( Z S
O

) ) ) +
+ dx ( wm(z"'O), '1' m 0 <P (ajf'l}) (Wm(ZSO)))­

- clx (w m (ZSO ), wlJI (0.;.) (w m (z~'lO))) + 48

dx (Y!m(ZSO), wm 0 Ip(a)jH}) (tIJ7/I( Z
SO)))­

- clx (wm(zSO), wm(a))(wm(ZSO)))

::; dx (Ül. 1 Wm ( a~ f II~)) - clx Cid., Wm ( a~ )) - 158

Therefore:
clx (Wm ( zSo ), Y! m 0 r.p ( TO aj j n} ) (Wm ( zSo )))

< clx (üI., Wm (T fn})) +clx (id., tIJ m (aj jn}))_
- dx(ül., wm(aj)) -108< dX(id., wm(7fn;.)) - 58

14
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We are left with T = Toin~ as a subword of the reduced form for 9j and we assume:

dx('!Im(zSO), '!Im 0 cp(TO)('!Im(ZSO))) ::; dxUd., '!Im(TO))

dx(\lJm(zSO), \lJm 0 cp(T)(\lJm(ZSO))) < dxUd., \lJm(T))

First suppose nj < 0 . Then:

dx ( \lJ m(ZSO), Wm 0 cp ( 7a~+1)(\lJ m( ZSO))) ~

dx ( \lJ m (ZSO), Wm 0cp(7) (W:n ) ) +

dX(W~l' Wm ( a.~+1)(Wm(ZSO)))

::; dx (id., 'lJm(T) (W:n )) + dx (W: Il , Wm ( a~+l)) - 308

::; dx (id., '!I TrI. (7a~+I) ) - 208

Now suppose 17. ' . > 0 . Then:
J

dX ( \lJ m ( ZSo ), 'lJ m 0 cP ( Ta f Il~ a~.+I ) (\lJ,Il ( ZS°)))

~ dx ( llJm(zSO), 'lJ m 0 cp(Tofn~)('lJm(ZSO)))

+ dx('lJm(zSO), Wm 0 cp(fn~a~+1)('lJm(ZSO)))

- dx (\lJm(Z'~O), Wm 0 cp(fn~)(\lJm(ZSO))) + 48

ds (Wm(ZBO), Wm 0 cp(fn~a~+1) (\lJTll(ZSO)))

- dx ( \Ii m( ZSO), Wm 0 cP (fll~) (\lJ m( ZSO)))

~ cIx (i.d., wm(fll;a~+1)) - cis (id., \!im (fll~)) - 158

Therefore:
dx ( Wm( ZSO), 'lJ m0cP (Tofn~ a~+l) (wm( ZSO)))

< dx (id., 'lJ m (7a;+1) ) + dx (id., \lJ m (fn~ a~+l) )
- dx (id., '!Im(i u

;)) - 108 < dx (ül., Wm(Ta~+1))

Clearly, a finite induction argument finishes the proof of the theorem.

o
Theorem 6.6 contradicts our choice of the automorphisms \lJ m for large enough 111., so

joint with theorem 6.3 we conclude that YO does not belong to the interior of an edge of
the limit (discrete) tree 1,T, and is, therefore, avertex of ),T. Since 'YO is avertex of ),T we
have no distinguished edge which we should try to make "shorter", but rather make all the

edges adjacent to the vertex YO shorter, and by that complete a contradiction to the whole
construction of the tree Y.

Let Ya be the vertex corresponding to the orbit of Yo in )'~/r , let Cl,'" 1 ep be the
edges adjacent to Yo in )'~/r , let Cl,"', Cp be their stabilizers and Zq E Cq be their
generators. As we did in the case Yo lies in the interior of an edge, we split our treatment
into two cases.

15



Case 2A eq is a splitting edge in y/r .
This case is naturally parallel to case lA and our approach is, therefore, very similar.

The group r splits as r = A *cq B where stab(yo) < A and Cq is of infinite index in

both A and B. For each j let:

1 1 H' n"g . = (t.b .... (l.·Jb· J
J ) J J J

, (where a} or bjli may be the identity element). By the convergence of the pointed metric

spaces (.1\111' id.) to (Y, Yo) in the Gromov topology we may assunle that the inequalities

(6.1) hold for rn large enough, where c in these inequalities is the length of the shortest
edge of y ...

Lemma 6.7 Let 'Wm E [id., \lJ 1Il (bj ) ] ; IWm I = ~Pm . Then for rn large (such that

inequalities (6.1) hold):

for some So 1 ~ Isol ~ 206t25 .

Proof: identical to the proof of lemma 6.1.

D

Proposition 6.8 Let so; 1 ~ Isoi:::; 206t28 satisfy the conclusion 0/ lemma 6.7, and suppose

(w.l.o.g.):

dx(id.,'Wm ) > dx(ül., \lJm(Z~o)('Wm))

Let <pq be a r -automorphism defined by:

Then:

Va E A

Vb E B

rpq( a) = a

(b) - sOb _-so
<pq - Zq 4 q

Proof:
dx(icl., \lJm(z~ob~z;;So)) ~ dx(id., \lJm(Z~o)('Wm))

+ dx(wm , \lJm(b~)(wm)) + dx(wm , \lJm(Z(7 So ))

< dx(id.,wm ) + dx(wrnl \lJm(bj)(wm )) + dx(id.,wm) - 306

< dx(id., \lJm(bj.)) - 200

o
Theorem 6.9 Let {gj}~=1 be (he generators 0/ r : and let r be given by (he splitting above

r = A *c B . Then:
'I

(i)

(U)

16



Proof: (i) is immediate since I.pq(gj) = gj if gj E A . The proof of (H) is identical with

the proof of theorem 6.3.

D

esse 2B eq is a non-splitting edge in YOjr .

This last case is naturally similar to case IB. In particular r splits as r = A*Cq ,and

each gj admits a presentation:

where a) E A and a} or f1.-; j may be the identity element. By the convergence of the pointed

metric spaces ("'\ml id.) to ()'., YO) in the Gromov topology we may assume inequalities (6.2)

hold for 'In large enough, where c in these inequalities is the length of the shortest edge of 1''".

Lemma 6.10 Let W m E [id" wm(f)]; Iwml = ~P.m . Then for '111, large (such that
ineqllalities (6.1) hold):

for some so; 1 ~ Isol ~ 208t28

Proof: identical to the proof of lemma 6.4.

Proposition 6.11 Let so; 1::; Isol ::; 208t28 satisfy the concilision 0/ lemma 6.10 Qnd

suppose (w.l.o.g.):

Let r.pq be a r -automorphism given by:

Va E A

Then:

I.pq( a) = a

I.pq(f) = f z~so

Proof:

dx(id" w11l 0 r.pq(f)) < dx{id., wm(f)) - 208

dx{icl. , \IJm(fz~'~o)) ::; dx{id., Wm(Z~So)(wm))

+ dx (w TI! (f z~$o) , \IJ 111 (z~·'lo) (wm ))

< dx(id., '/Um) + dx(W m (f)l 'W m ) - 308

< dx(id., wm(f)) - 208

D

Theorem 6.12 Let {gj}~=1 be the generators 0/ r , and let r be given by fhe splitting above

r = A *c . Then:
'l

0)

(ii)

17



Proof: similar to the proof of theorem 6.6.

o
Theorem 6.13 Let rp = rpl 0 ... 0 rpp . Then jor 'ln large enough:

Proof: Clearly for 111 large the maximum is obtained for same 9j rt stab(yo) . Such 9j has

to become "shorter" by at least one of the !.pr} by theorems 6.9 and 6.12. Since all the rpq
do not increase the length of the 9j the theorem follows.

o
Contradicting all the possibilities appear in [Ri] for the dynamics of components of the

real tree }.r, we get a contradiction to its existence. Sinee the construetion was based on Ir
heing infinite index in Aut(f) , for r torsion·free freely indecomposable hyperbolie group,

we get the main result of the last three seetions:

Theorem 6.14 Let r be a torsion-jree hyperbolic group. Then Ir , fhe grollp oj internat

automorphisms oj f is oj fmite index in Aut(f) .

Proof: Sinee the automorphism group of a free group is generated by Dehn twists and inner

automorphisms the theorem folIows.

o
Tbe argument presented in the last three seetions is going to be used in the preceeding

sections to obtain additional structure results for hyperbolie groups, their s~bgroups and their

automorphism groups.

7. Freely indecomposable subgroups

In this seetion we prove the following theorem, whieh is originally due to Gromov
I

([Gr] , 5.3 C ) :

Theorem 7.1 Let f be a hyperbolic group and let f 1 be afg., torsion-jree,jreely indecom­

posable (non-eyclie) slibgrollp. Then r eontains at most fmitely many conjugaey elasses oj

subgrollps isomorphie to r 1 .

Proof: Let r1 = (GI) and suppose there are infinitely many eonjugacy classes of subgroups

isomorphie to fl in r . For eaeh such different embedding we choose a monomorphism

rp : r 1 ----? r such that:

Let {~m}::::1 he a sequence of these shortest imbeddings and let:

Then by the infinity assumption Ilm ----? 00 and by the limiting argument described in section

4 we obtain areal tree }'~ equipped with a (smalI) left f 1 action, which is the Gromov limit

18



of a subsequence of the metric spaces <Pm(fd (with metric inherited from f ). Now, f l

being freely indecomposable and the shortening arguments described in sections 5 and 6 give
a contradiction to the construction of our real tree Y. Therefore, we have a contradiction to

the infinity of the sequence of shortest embeddings <Pm .

o
Remark: Note that in our statement of theorem 7.1 only the subgroup f l is assumed torsion­

free, and we assurne f l is f.g. and not f.p..

8. Finite generation of the automorphism group

The general scheme presented in sections 4, 5, 6 enable us to get the following:

Theorem 8.1 Let f be a torsion1ree hyperbolic group. Then Aut(f) is jinitely generated.

Proof: First note that Inn(f) clearly is f.g. and it is enough to prove the theorem for f

freely indecomposable. Suppose Aut(f) is not f.g. for r torsion-free, freely indecomposable

hyperbolic group.

On the set of conjugacy classes of small splittings of r , we may define a natural height
function. A splitting f = A *c B (and in correspondence an HNN extension) is of height at

most v if A = (al, ... ,ar); B = (bI, ... l bs) and laii:::; v; Jbil:::; v and the generator
of C is also of length not exceeding v . The height of a conjugacy das of a small splitting,

therefore, is the minimum possible height under the action of Illn(f) . Clearly, given a height
Va , there are only finitely many conjugacy classes of small splittings with such height. Let

DT,~ denote the subgroup of Aut(f) generated by Illll(f) and Dehn twists obtained from
splittings of height at most 1n.

Now let 'Pm be one of the "shortest" automorphisms of f which are not in DTT~ , i.e.:

At tbis stage we are able to use the argument presented in seetion 4 onee again and get an

action of f on areal tree }T. But by the arguments presented in seetions 5 and 6 there

exist finite (fixed) Dehn twists so that the group generated by them makes 'Pm (after taking
a subsequence) shorter for a11 1n > rnl . On the other hand for some 111.2 this finite set

belongs to DT'~2 a contradiction.

o
Remark: This rather simple argument is in fact a key point in our generalized approach to
the isomorphism problem [Ri-Se]. On finite presentability see [Se3].

9. Weakly rigid hyperbolic groups

Weakly rigid hyperbolic groups are of main importance for the understanding of the

automorphism group of a hyperbolic group and in connection with the isomorpbism problem
[Ri-Se]. The main observation for their significance is the following:

Theorem 9.1 A torsion-free freely indecomposable hyperbolic grollp f is weakly rigid if and

only if f does not contain quadratically hanging [ree grollps (see definition 5.1).
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Proof: If r as above is not weakly rigid then by the discussion appears in section 4 r

admits a small action on areal tree 1", where l' contains JET components. The stabilizer

of a segment includes in such an JET component is the stabilizer of the whole component

by [Ri]. If a stabilizer of such a segment is cyclic, then r contains a subgroup H having

the short exact sequence:

l~Z~H~lV~l

where lV is free or a surface group. The normalizer of a cyclic group in r is cyclic so we

get a contradiction. On the other hand if r contains a quadratically hanging subgroup then

acting on r with a pseudo-Anosoy automorphism of the quadratically hanging subgroup and

take a Gromoy limit we get areal tree with a small action of rand an lET component (the

whole limiting tree Y· has lET dynamlcs in this case).

o
Mueh stronger results on the strueture of weakly rigid hyperbolie groups and their automor­

phism group appear in [Se3].
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