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Integral Formulas for Affine Surfaces
and
Rigidity Theorems of Cohn-Vossen Type

Katsumi Nomizu and Barbara Opozda

In this note we establish some integral formulas for surfaces in affine space which are
analogous to those for surfaces in Euclidean space. As applications we provide proofs for
the classical theorems of Blaschke that characterize ellipsoids among the ovaloids. Then
we proceed to prove some results on the rigidity of compact affine surfaces provided
with equiaffine transversal fields.

Emphasis in the note is more on exposition than on new, original results. The
rigidity theorem of Cohn-Vossen type (Theorem 4) we establish is in weaker form than
what is given in [S], but our approach, based on the integral formulas, is elementary and
easily approachable. It is comparable to Herglotz’s proof of the original Cohn-Vossen
theorem for surfaces in Euclidean space (see [C]).

In Section 1 we recall the basic facts about affine surfaces and derive integral
formulas. In Section 2, we prove two characterization theorems (Theorems 1, 2), due to
Blaschke, for ellipsoids. There are perhaps several different proofs which are scattered
in [B] and in some references contained in [B]. In Section 3 we prepare a few lemmas
that are used in Section 4 in order to prove several congruence results, Theorems 3, 4
and 5. As mentioned already, Theorem 4 is our affine version of the rigidity theorem of
Cohn-Vossen; the case of Blaschke surfaces (Corollary to Theorem 4) was first presented
at a seminar at KU, Louvain, in June 1990.

1. Integral formulas

Let M? be a connected, orientable, differentiable 2-manifold. Let f : M? — R3 be
an immersion into the affine 3-space equipped with a globally defined transversal vector
field ¢ along f. For all tangent vector fields X, Y we can write

) Dxf.(Y) = fu(VxY) + h(X,Y)¢,

where D denotes the usual flat connection in R3. This formula defines a torsion-free
affine connection V, said to be induced by (f,£) and a bilinear symmetric tensor h,
called the fundamental form for (f,£). The rank of h does not depend on the choice of
transversal vector field. If the rank is n, we say that f is nondegenerate.

We restrict our attention to transversal vector fields ¢ with the property that Dx¢
is tangential to f.(M?); they are called equiaffine transversal vector fields. If we set

(2) 8(X,Y) = det (£.X, £.Y,£),
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for all tangent vectors X,Y to M2, 8 is a volume element on M? which is V-parallel.
We may also write

(3) Dx¢ = - f.(5X),

thus defining a (1,1)-tensor field .S, called the shape operator for (f, £).

Remark 1. For the fundamental equations of Gauss, Codazzi and Ricci, see [N-P]. The
Ricci tensor for V is given by Ric (Y, Z) = h{(trSI — S)Y,Z). For surfaces, if Ric is
nondegenerate, then S is nonsingular and % is nondegenerate. The converse also holds.

The classical Blaschke theory goes like this. Assume f : M? — R?® is nondegenerate.
Then we can find a unique equiaffine transversal vector field £ (up to sign), called the
afine normal, such that the form 6 defined by (2) coincides with the volume element
of the nondegenerate metric h. When we choose an affine normal £, the corresponding
structures V, h and S are called, respectively, the Blaschke connection on M?, the
affine fundamental form (or affine metric) and the affine shape operator. Or we may
simply refer to f : M? — R? as a Blaschke immersion or a Blaschke surface. We call
K = detS and H = trS/2 the affine Gaussian curvature and the affine mean curvature,
respectively.

Suppose that M? is compact and f : M? — R® is a nondegenerate imbedding with
an equiaffine transversal vector field € (not necessarily an affine normal). It is known
that f(M?) is a convex surface which is the boundary of a convex body. By changing ¢
to —§, if necessary, we may assume that h is positive-definite and € is inward. We call
M? an ovaloid (in the sense of affine differential geometry).

It goes without saying that all the definitions go over to the case of an immersion
M?™ — R**1 But we are concerned with the case n = 2 in this paper.

Now assume that f and f are two immersions: M? — Iia, where M 2 is compact.
Assume that we have equiaffine transversal vector fields ¢, ¢ for f, f such that V =
V,0 = 8. We shall derive a mixed integral formula. We define a 1-form a by
(4) o(X) = 6(2,5X),

where S is the shape operator for f and Z denotes the tangential component of the
position vector f(z):

(5) f(m) = pbz + ful:.
Obviously, we can define a similar form, say, & by interchanging the roles of f and f:
(4) &(X) = 6(2, 5X),
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where S is the shape operator for f and
(5) f(z) = pE+ fu2,.
We compute da. From oY) = 6(Z, SY) we obtain
(6) Xa(Y)=(Vx8)Z,SY)+8(VxZ,SY)+6(Z,(VxSY)+8(Z,5(VxY)).
Here we have Vx8 = 0. In order to take care of VxZ, we consider the conormal map
v : M? — Ry: for each z € M?, v, is the covector in the dual space R3 such that

v:(€z) = 1 and v.(fuX) = 0 for all X € T,(M?). Then in (5), we have p = v(f(z)).
We define the affine distance function p : M? — R by p(z) = v(f(z)),z € M?. Thus

(5) f(@) = p&s + fuZ:.
Differentiating this equation relative to X we get
(7) VxZ=pSX+X and KX, 2)=-Xp.
We can rewrite (6) as follows:
Xa(Y)=p8(SX,8Y) +6(X,5Y)+ 6(Z,(VxS)Y)+6(Z,5(VxY)).

Taking Xa(Y) — Ya(X) — a[X,Y]) and using the Codazzi equation (VyS)(X) =
(VxS)Y) we obtain

(8) (da)(X,Y) = p[f(SX,5Y) + 6(SX,SY) + 6(X,SY) + 6(5X,Y)).
Let {X1,X,} be a basis in Tp(M?) such that §(X;,X;) = 1 and write
2 2
SX_,':ZS;-X,' and §Xj=z,§;X,'.
] i=1

=1

From (8) we compute

(da)(X1,X2) = p[S15% — 515, + 5153 — §5153) + trS
=-2< 85,8 > +1tr5,

where < , > denotes the inner product of signature (—,—,+,-+) in the space of all
endomorphisms of T;(M?) defined by

< A, B >=[tr(AB) — trA - trB]/2.
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We also have
—2 < A, B >=detA + detB — det(A — B).

It finally follows that
(9) do = [p(detS + detS — det(S — §)) + tr5)6.

Next we define a 1-form g by 8(X) = 6(Z,X), where X is any tangent vector and
Z is as in (5). It is quite simple to get

(10) dB = (2 + ptrS)6.

From (9) we get
1) f [2pdetS + p(detS — detS)) — pdet(S — S) + tr3]0 = 0.
Mz
In particular, taking f = f we get

(IT) [2pdetS + trS]8 = 0.
M?

From (I) and (II) we obtain
(IIT) / (trS — trS + p(detS — detS)]8 = / pdet(S — S))6.
M3 M?
From (10) we get

(Iv) fw(z + ptrS)8 = 0.

2. Characterizations of ellipsoids

We shall now prove two characterization theorems for ellipsoids among the ovaloids
with Blaschke structures.

Theorem 1. If the affine Gaussian curvature K of an ovaloid f : M%* — R? is constant,
then K is positive and f(M?) is an ellipsoid.

Theorem 2. If the affine mean curvature H of an ovaloid f : M? — R? is constant,
then f(M?) is an ellipsoid.

Remark 2. The original result by Blaschke for Theorem 1 assumes that K is a positive
constant, see [B, p.248]. Theorem 2 is stated in [B, p.201] and proved in the reference
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cited there. To prove Theorems 1 and 2, it is sufficient to show that, for an ovaloid
f: M? - R?® with an equiaffine transversal vector field, the assumption that detS =
constant or trS = constant implies S = pI, where p is a nonzero constant. Then if f is
further a Blaschke imbedding, it follows that f(M?) is an ellipsoid by another theorem
of Blaschke [B, p.212].

Proof of Theorem 1. We may assume that A is positive-definite. By Lemma 3.1 in
[O-V], it follows that detS is a positive constant. We may assume K = 1, without loss
of generality. Let k, ky be two eigenvalues of S so that kyk; = 1. Hence

H = (ky+k2)/2=(k1+1/k1)/2 > 1, and the equality holds if and only if &k = k.
Now since M? is convex, we may choose a point, say, o in the interior of the convex
body bounded by f(M?) so that the position vector from o to f(z) for each point z of
M? is transversal to f(M?). Then the affine distance p from o is negative-valued on
M?. From (IV) and (II) we obtain '

f —p9= Hg?_/ 0:/ —pHa
M? M2 M2 M?2

/ p(1— H)8 < 0.
Mz

But p < 0 and 1 — H £ 0. Hence the integral above is > 0. It follows that the integral
must be 0 and hence H = 1. We get ky = ks.

Proof of Theorem 2. We may assume 1 = H = (k; + k2)/2. Then

and hence

K= klkg = k1(2 - kl) = 2kl - (k1)2 < 11

and the equality holds if and only if k; = 1. By (IV) and (II) we get

]—pB—_-/ 0:/ —pK#,
M2 M2 M2

which implies f,,, p(1 — K)6 = 0. Since p < 0 as before and 1 — K > 0, it follows that
K =1 and hence k; = k, = 1, as desired..

3. Lemmas

The following lemma is essentially in [SL].

Lemma 1. Let f : (M?,V) — R?® be a Blaschke surface. Then the affine Gaussian
curvature K = detS is equal to edet R(X1,X,), where ¢ = 1 depending on whether h
is definite or not, and {X1, X2} is a unimodular basis (i.e. (X1, X,) = 1), detR(X;, X3)
being independent of the choice of such {X1,X,}.
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Proof. We include a proof for the sake of completeness. Let k& be the fundamental form
for f and let {X;,X,} be an orthonormal basis in T;(M?) relative to h : h(X1,X1) =
1, h(X1,X2) = 0,h(X32,X;) = €, where ¢ = £1. From the Gauss equation we have
R(X],Xg)xl = —SXZ = —S%X1—S§X2 and R(Xl,Xz)Xg = ESXI - E(S%Xl +S%X-2),
by computing det R(X1,X3) we find it to be edetS = eX. Now observe furthermore
that R(X1,X2) is independent of the choice of X1, X2 such that 6(X,,X;) = 1. Thus
K is determined by (V, ) and the signature of A.

Lemma 2. Let f: M" — R"*! be a hypersurface with a transversal vector field . If
o, € R—{0},f = af, & = BE, and if V, b, S, and 8 are the induced connection, the
fundamental form, the shape operator and the volume element corresponding to (f, E),
then we have

V=v, R:%h, 5‘=§S, § = a™po.
In particular, if « = 8, then

V=V, h=h §=8, §=a""6.
Lemma 3. Let g, g be positive-definite scalar products on a 2-dimensional vector space
V and A, A be endomorphisms, both positive-definite (or both negative-definite) and
symmetric relative to g and g, respectively. Assume that g,3, A, A are related by
(11) oY, 2)AX — g(X, 2)AY = §(Y, 2)AX - 5(X, 2)AY

for every X,Y,Z € V. If detA = detA or trA = trA, then det(A — A) < 0, and the
equality holds if and only if A = A.

Proof. Fix an orientation on V. Let {e;, ez} be a positively oriented g-orthonormal
basis of V diagonalizing A and {€;,€;} a positively oriented g-orthogonal basis diago-
nalizing A. Then

Aep = Ajey, Aey = Agey; Agy = pey, A& =18

for some p1, pa, pt1, 2. We may assume that A; > A; and gy > po.
Let €, = aey + bey, €, = ce; + de,. Also consider the matrices

_ a c _ Hi1 0 _ /\1 0
=5 a) 2= (% 0) o= (8 4)
By a straightforward computation we obtain
(12) det(A — A) = det(C — LBL™") = (A — pu1)(Ag — pr2) + (B/D)(11 — p2) (M1 = A2),
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where [ = detL > 0 and 8 = bc.
From (11) we can compute
Azez = g(e1, e1)Aey = g(er, e1)Aeg — Gler, e3) Ae
= (1/8){g(de, — be,,de, — be;)A(—ce; + agy)
—g(de; — bey, —ce; + agy) A(de; — bey)}
= (1/[2)[((10#2 + ba,ul)e] + (bzyl + de.z)eQ].

Hence

(13) depg 4 bapy =0

and

(14) Az = (/)02 u1 + d* ua).

Assume that ¢ # 0. Then by (13) we have du; = —bay, /c. By substituting this formula
into (14) and using the equality ! = ad — bc we get

(15) Ay = —(b/lc)ps.

Since A and A are both positive-definite or both negative-definite, we have by (15)
bfc < 0,ie. B =bec<0. Of course, if ¢ =0, then 8§ = 0. Hence we conclude 8 < 0.
Since detA = detA or trd = trd, we have (A — t;)(A2 — p2) < 0. Of course, we have
(1/D(p1 — p2)(A1 — A2) 2 0. Using formula (12) we see that det(A — 4) < 0.
Now suppose we have the equality in this formula. Then
(A1 —p1)(A2 —p2) =0, ie Ar=p or Ay = pa,

and

(B/D(r1 — p2)(M — Az) = 0.
Since /\1A2 = pijg or /\1 + /\2 = {1 + fi2, We get
(16) /\1 = 1 and /\2 = l2.

If 8 <0, then gy = pg or Ay = Ay. By (16) we have u; = p2 = Ay = A, which clearly
implies the equality A = A. If 8 = 0, then by (13) and by the fact that I # 0 we get

b=c=0. Then LBL™' = (‘LSI P? ) and by (16) we get A = A.
2

Lemma 4. Let g,§ be positive-definite scalar products on a 2-dimensional vector space
V and A, A isomorphisms of V symmetric relative to g and g, respectively. Assume that
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9,5, A, A are related by (11). If detA = detA and trA = trA = 0, then det(A — A) > 0;
the equality holds if and only if A = A.

Proof. Using the same notation as in the proof of Lemma 3, we have

A 0
ro-(3 2)

and by (12)
(17) det(A — 4) = 4(B/1)A\%.

Using (15) we get 8 > 0, i.e. det(4 — A) > 0.
Now suppose det(A — A) = 0. By (17) we get 8 = 0. Then by (13) and by the fact
| = da—bc#0, we obtain b = ¢ = 0. Hence LBL™! = A0 and, consequently,

0 -\
A=A,

4. Congruence theorems
We shall first prove the following local congruence theorem.

Theorem 3. Let f,f : M* — R® be Blaschke surfaces with definite afline metrics
h,h. Assume that the Blaschke connections induced by f and f are equal and have
nondegenerate Ricci tensors.

() If the affine shape operators S and S are both positive-definite (or both negative-
definite), then det(S — §) < 0; the equality holds if and only if f and f are affinely
congruent.

(ii) If f and f are affine minimal, then det(S — S) > 0; the equality holds if and
only if f and f are affinely congruent.

Proof. First remark that § and S are nonsingular, because the Ricci tensor is non-
degenerate, and that detS = detS by virtue of Lemma 1. To prove (i), we note that
the Gauss equation implies an equation of the form (11), where ¢ = h,§ = h, 4 = S,
and A = S. By Lemma 3, we get det(S — S) < 0. If the equality holds, then again
by Lemma 3 we conclude that S = 5. By the Gauss equation, we get h = k. It now
follows that f and f are affinely congruent. Similarly, Lemma 4 proves (ii).

We are now in a position to prove the following main theorem.

Theorem 4. Let M? be a connected, compact, orientable 2-manifold and let f, f :
M? — R® be two nondegenerate imbeddings with equiaffine transversal vector fields
€,€. Assume that det S for f is nowhere 0. If the induced connections coincide and if
det S = det S at every point, then f and f are affinely congruent.
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Proof. The fundamental forms A, & for f, f are definite. We can assume that they are
positive-definite; namely, if, for instance, A is negative-definite, then we can replace f by
—f. We may also assume that the induced volume elements # and 8 coincide, because
V0 = V8 = 0 implies that 8 = ¢ with some constant ¢ and it is sufficient, by virtue of
Lemma 2, to multiply f and ¢ by ¢!/3.

As before, we choose a point o in the interior of the body bounded by f(M) so that
the affine distance function p for (f,£) from o is negative. There is a point where the
form B(X,Y) = h(SX,Y) is positive-definite (see [0-V], Lemma 3.1). At that point S
is positive-definite. By assumption, detS is never 0 and hence S is positive-definite on
M. Because of the same reason, the shape operator S is positive-definite on M. Now
we can apply Lemma 3 and get pdet(S—S) > 0 on M. From the integral formula (III):

/ (t5 — t5)8 = / pdet(S — )8,

/ trS6 — / trS8 > 0.

By interchanging S and S we obtain the reversed inequality, and consequently det(S —
S) =0 on M?. By Lemma 3 we have S = 5. The rest of the proof is similar to that of
Theoem 3.

we obtain

The following is the rigidity theorem for Blalschke imbeddings.

Corollary. Let f : M? — R® be an ovaloid such that the affine Gaussian curvature
K vanishes nowhere. If a Blaschke imbedding f : M?* — R® has the same induced
connection as that of f, then f is affinely congruent to f.

Proof. This follows from Theorem 4 and Lemma 1.

Remark 3. In Theorem 4 and its Corollary, we can replace the assumption that detS
is nowhere 0 by the assumption that the Ricci tensor is nondegenerate. See Remark 1.

We shall now prove

Theorem 5. Let M? be a connected, compact orientable 2-manifold and let f, f :
M? be a nondegenerate imbedding and a nondegenerate immersion, respectively, with
equiaffine transversal vector fields £,£. Assume that they have the same induced con-
nection V with nondegenerate Ricci tensor. If trS = trS§ and detS < detS, then f and
f are affinely congurent.

Proof. Since the forms B(X,Y) = h(SX,Y) for (f,£) and B(X,Y) = h(5X,Y) for
(f E) are positive-definite on M? and the forms k and h are definite, we see that S and
S are definite. Since trS = trS, it follows that S and S are both positive-definite or
both negative-definite. It also means that h and k are both positive-definite or both
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negative-definite. We may assume that they are both positive-definite. By choosing
a point o in the interior of the body bounded by f(M?) we obtain a negative-valued
distance function p for (f,£) relative to 0. By Lemma 3, we have det(S — S) < 0. Hence
we get

/ pdet(S —8) > 0.
M2
On the other hand, since p is negative and detS — detS > 0, we have
/ p(detS — detS) < 0.
M3

Using the integral formula (III) we obtain
/ pdet(§—S)=0,
M?

and, consequently, det(S§ — S) = 0 on M?. By Lemma 3, we get S = §. Then we get
h = h as before.
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