```
The Cohen-Macaulay type of points in
    generic position
    by
    Ngô Viêt Trung and Giuseppe Valla
```

Ngô Viêt Trung Institute of Mathematics Box 631, Bò Hô Hanoi

Vietnam

Giuseppe Valla
Dipartimento di Matematica
Universita di Genova
Via L.B. Alberti 4
16132 Genova
Italy

§ 1. Introduction

Let $X=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of s distinct points in \mathbb{P}_{k}^{n}, k an algebraically closed field, and let I be the defining ideal of X in the polynomial ring $R=k\left[x_{0}, \ldots, x_{n}\right]$:

We denote by A the homogeneous coordinate ring of x, $A=R / I=\underset{t=0}{\underset{\oplus}{\infty} A_{t}}$. We say, following Geramita and Orecchia $\left[G-O_{1}\right]$, that the points P_{1}, \ldots, P_{s} are in generic position if the Hilbert function $H_{A}(t):=\operatorname{dim}_{k} A_{t}$ satisfies

$$
H_{A}(t)=\min \left\{s,\binom{n+t}{n}\right\} \quad \text { for all } t \geq 0 .
$$

It is well-known that A is a Cohen-Macaulay one-dimensional graded k-algebra whose Cohen-Macaulay type $\tau(A)$ is defined as the k-dimension of the socle of an artinian reduction of A.

Let d be the least integer such that $s \leqq\binom{ d+n}{n}$ and let $L \in R_{1}$ be a non zero divisor on A. If $B=\underset{i=0}{\infty} B_{i}$ denote the graded artinian ring $B:=A / L A$, then the socle of B is the k-vector space $(I, L): R_{1} /(I, L)$ which we denote by $s(B)$. Since $H_{B}(t)=0$ for all $t>d$, we have $\partial(B)=\operatorname{dim}_{k} s(B)_{d}+\operatorname{dim}_{k} s(B)_{d-1}$. But $s(B)_{d}=B_{d}$, hence we need to compute $\operatorname{dim}_{k} s(B)_{d-1}$.

Since $s(B)_{d-1}$ is the kernel of the linear transformation

$$
\varphi: \mathrm{B}_{\mathrm{d}-1} \longrightarrow \operatorname{Hom}_{\mathrm{k}}\left(\mathrm{~B}_{1}, \mathrm{~B}_{\mathrm{d}}\right)
$$

which is induced by the multiplication of B, it is clear that

$$
\operatorname{dim}_{k} s(B)_{d-1} \geq \operatorname{dim}_{k} B_{d-1}-\left(\operatorname{dim}_{k} B_{1} \cdot \operatorname{dim}_{k} B_{d}\right)
$$

The Cohen-Macaulay type conjecture made by L.G. Roberts in [R] is that for a general set of points in generic position in \mathbb{P}^{n}, we have

$$
\operatorname{dim}_{k} s(B)_{d-1}=\max \left\{0, \operatorname{dim}_{k} B_{d-1}-n \cdot \operatorname{dim}_{k} B_{d}\right\}
$$

This conjecture was verified in \mathbb{P}^{2} in $[G-M]$, and, when $n>2$, for special values of s in $[R]$, $[G-G-R]$ and $\left[G-O_{2}\right]$.

In this paper we verify the conjecture in its wide generality. Our point of view is to consider the field K which is obtained by adjoining to k new indeterminates $\left\{u_{i j}\right\}, i=1, \ldots, s$ and $j=0, \ldots, n$. Then we prove that the points P_{1}, \ldots, P_{s} with homogeneous coordinates $P_{i}:=\left(u_{i o}, \ldots . u_{i n}\right)$ are in generic position in \mathbb{P}_{k}^{n} and verify the Cohen-Macaulay type conjecture.

Since this is equivalent to the fact that a certain matrix, whose entries are monomials in the $u_{i j}$'s, is of maximal tank, our result proves, by specialisation, that almost every set of s points in \mathbb{P}_{k}^{n} which are in generic position verify the Cohen-Macaulay type conjecture.

§ 2. Main result

Let k be an algebraically closed field and let $\left\{u_{i j}\right\}$ $i=1, \ldots, s j=0, \ldots, n$, be a set of indeterminates over k. Let K be the field obtained by adjoining these indeterminates to k.

Let $X=\left\{P_{1}, \ldots, P_{s}\right\}$ be the set of the $K-r a t i o n a l$ points in $\mathbb{P}_{\mathrm{K}}^{\mathrm{n}}$ whose coordinates are given by $\mathrm{P}_{\mathrm{i}}:=\left(\mathrm{u}_{\mathrm{io}}, \ldots, \mathrm{u}_{\mathrm{in}}\right)$. If we denote by R the polynomial ring $K\left[x_{0}, \ldots, x_{n}\right]$ and by I the defining ideal of X in R, then $A:=R / I$ is the homogeneous coordinate ring of X. The ring A is a K-graded algebra whose Hilbert function $H_{A}(t)$ is defined as $H_{A}(t):=\operatorname{dim}_{K} A_{t}=\operatorname{dim}_{K}\left(R_{t} / I_{t}\right)$.

In the following we consider a total order $<$ on the set of monomials of R which is sensitive to the degree. This induces in a canonical way an order on the monomials in $k\left[u_{i o}, \ldots, u_{i n}\right]$ for every $i=1, \ldots, s: u_{i o}^{b_{0}} \ldots u_{i n}{ }_{n}$ corresponds to $x_{0} \ldots x_{n}$. Further, if α is a monomial in $k\left[u_{i j}\right]$, it is clear that $\alpha=v_{1} \ldots v_{s}$ where v_{i} is a monomial in $u_{i o}, \ldots, u_{i n}$. Hence we get an induced order on the monomials of $k\left[u_{i j}\right]$ by letting $\alpha=v_{1} \ldots v_{s}>\beta=W_{1} \ldots W_{s}$ if for some $i=1, \ldots, s-1$ we have $v_{1}=W_{1}, \ldots, v_{i}=W_{i}$ and $v_{i+1}>W_{i+1}$.

If F is an homogeneous polynomial of degree t in R, we can write $F=\sum_{i} \alpha_{i} M_{i}$ where $\alpha_{i} \in K$ and $M_{1}>M_{2}>\ldots>M_{r}$ are the monomials of degree t in R. Hence $F \in I$ if and only if $\sum_{i} \alpha_{i} M_{i}\left(P_{j}\right)=0$ for all $j=1, \ldots, s$. Thus, if we let $a_{i j}:=M_{j}\left(P_{i}\right)$ and $\rho:=\operatorname{rank}\left(a_{i j}\right)$, it is clear that

$$
\operatorname{dim}_{K} I_{t}=\binom{n+t}{n}-\rho \text { for all } t \geq 0
$$

The size of the matrix $\left(a_{i j}\right)$ is $s \times\binom{ n+t}{n}$ and we claim that it has maximal rank, namely

$$
\rho=\min \left\{s,\binom{n+t}{n}\right\}
$$

The claim can be proved in the following way. If for example we assume $s \leqq\binom{ n+t}{n}$ and consider the $s \times s$ minor of $\left(a_{i j}\right)$ involving the first s columns, then its determinant D is not zero since $D=\sum_{\sigma}(-1)^{\sigma} a_{1, \sigma(1)} \cdots a_{s, \sigma(s)}$ and it is clear that, accordingly to the order we have defined, $a_{11} a_{22} \cdots a_{s s}>a_{1, \sigma(1)} \cdots a_{s, \sigma(s)}$ for every $\sigma \neq i d$. The same if $s .\binom{n+t}{n}$.

In this way we get a complete description of the Hilbert function of A, namel Y^{\prime}

$$
H_{A}(t)=\min \left\{s,\binom{n+t}{n}\right\} \text { for all } t \geq 0 .
$$

It turns out that the points $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}$ are in generic position, and this gives a very easy proof that almost every set of s points in $\mathbb{P}_{k}^{n}(k$ infinite) is in generic position (see $\left.\left[\mathrm{G}-\mathrm{O}_{1}\right]\right)$.

Let now d be the least integer such that $s \leq\binom{ d+n}{n}$, then d is also the least integer such that $H_{A}(d)=s$.

Hence, if $B=\underset{i=0}{\oplus} B_{i}$ denotes the graded artinian ring $B:=A / X_{0} A=R /\left(I, X_{0}\right)$, the socle $s(B)=\left(I / X_{0}\right): R_{1} /\left(I, X_{0}\right)$ is concentrated in degree d and $d-1$. Also we get $\operatorname{dim}_{K} B_{d}=\operatorname{dim}_{K} s(B)_{d}=s-\binom{n+d-1}{n} \quad$ and $\quad \operatorname{dim}_{K} B_{d-1}=\binom{n+d-2}{n-1}$. We let $q:=\binom{n+d-2}{n-1}, p:=\binom{n+d-1}{n}$ and $S:=K\left[x_{1}, \ldots, x_{n}\right]$.

Theorem. Under the above assumptions and notations we have:

$$
\operatorname{dim}_{K} s(B)_{d-1}=\max \{0, q+n p-n s\}
$$

Proof. We consider in $R=K\left[X_{0}, \ldots, X_{n}\right]$ the order defined on monomials of the same degree by

$$
x_{0}^{a_{0}} \ldots x_{n}^{a_{n}}>x_{0}^{b_{0}} \ldots x_{n}^{b_{n}}
$$

if the first non zero entry of the vector $\left(a_{0}-b_{0}, \ldots, a_{n}-b_{n}\right)$ is negative. For example we have the following chain of monomials in degree say m :
$x_{n}^{m}>x_{n}^{m-1} x_{n-1}>x_{n}^{m-2} x_{n-1}^{2}>\ldots>x_{n-1}^{m}>x_{n}^{m-1} x_{n \div 2}>x_{n}^{m-2} x_{n-1} x_{n-2}>\ldots$
$\ldots>x_{n} x_{0}^{m-1}>\ldots>x_{1} x_{0}^{m-1}>x_{0}^{m}$.

This order induces a total order also on the monomials of S; hence we let $M_{1}>M_{2}>\ldots>M_{q}$ be the monomials of degree $d-1$ in S.

Now it is clear that $s(B)_{d-1}=\left[\left(I, X_{0}\right): R_{1} /\left(X_{0}\right)\right]_{d-1}$, hence $s(B)_{d-1} \cong\left[\left(I, X_{0}\right) \quad: \quad S_{1}\right]_{d-1}$ as K-vector spaces. Let $N_{1}>N_{2}>\ldots>N_{p}$ be the monomials of degree d in R containing X_{0} -

$$
\text { If } \begin{aligned}
F & \in S_{d-1} \text { and } F S_{1} \in\left(I, X_{0}\right) \text {, we can write } \\
F & =\sum_{i=1}^{q} \alpha_{i} M_{i}, \alpha_{i} \in K
\end{aligned}
$$

and we can find elements $\beta_{r i} \in K, i=1, \ldots, p, r=1, \ldots, n$ such that

$$
X_{r} F+\sum_{i=1}^{p} \beta_{r i} N_{i} \in I, \text { for all } r=1, \ldots, n \text {. }
$$

If we let $a_{i j}:=M_{i}\left(P_{j}\right)$ and $b_{i j}:=N_{i}\left(P_{j}\right)$, we get a system of homogeneous equations

$$
x_{r} F\left(P_{j}\right): u_{j r} \sum_{i=1}^{q} \alpha_{i} a_{i j}+\sum_{i=1}^{p} \beta_{r i} b_{i j}=0
$$

$r=1, \ldots, n$ and $j=1, \ldots, s$.
The matrix associated to the above system is an $n s \times(q+u p)$ matrix which we write in the following way.

$\begin{gathered} X_{1} F\left(P_{1}\right) \\ \vdots \\ x_{1} F\left(P_{1}\right) \end{gathered}$	$\alpha_{1} \ldots \ldots \ldots \ldots \alpha_{q}$	$\beta_{\mathrm{n} 1} \ldots \beta_{\mathrm{np}}$		$\beta_{11} \ldots \ldots \beta_{1 p}$	
	$\begin{aligned} & a_{11}{ }^{u_{1 n}} \cdots a_{q 1}{ }^{u_{1 n}} \\ & \vdots \\ & \vdots \\ & a_{11} u_{11} \cdots a_{q 1} u_{11} \end{aligned}$	$b_{11} \cdots b_{p 1}$			$\underbrace{}_{b_{11} \cdots b_{p 1}}$
$\begin{gathered} X_{\mathrm{n}} \mathrm{~F}\left(\mathrm{P}_{2}\right) \\ \vdots \\ \vdots \\ \mathrm{X}_{1} \mathrm{~F}\left(\mathrm{P}_{2}\right) \end{gathered}$	$\begin{aligned} & a_{12}{ }^{u_{2 n}} \cdots a_{q 2}{ }^{u_{2 n}} \\ & \vdots \\ & \vdots \\ & a_{12} u_{21} \cdots a_{q 2}{ }^{u_{21}} \end{aligned}$	$\mathrm{b}_{12} \cdots \mathrm{~b}_{\mathrm{p} 2}$		……..	$\begin{aligned} & b_{12} \cdots b_{p 2} \\ & \end{aligned}$
\vdots	$\vdots \cdots$	$\vdots \vdots$	$\begin{array}{ll}* & \\ \vdots\end{array}$		
$\begin{gathered} x_{m} F\left(P_{s}\right) \\ \vdots \\ x_{1} F\left(P_{s}\right) \end{gathered}$	$\begin{aligned} & a_{1 s}{ }^{u_{s n}} \cdots a_{q s}{ }^{u}{ }_{s n} \\ & \vdots \\ & \vdots \end{aligned}$	$\mathrm{b}_{1 \mathrm{~s}} \cdots \mathrm{~b}_{\mathrm{ps}}$			$\begin{gathered} \mathrm{b}_{1_{\mathrm{s}}} \cdots \mathrm{~b}_{\mathrm{ps}} \end{gathered}$

Claim. This matrix has maximal rank given by the minor involving all the last $n p$ columns (note that $n s>n p$; in fact, $s>p$ by the minimality of d).

First we prove that the claim gives the conclusion. In fact if we consider our matrix as the matrix associated to a morphism of K-vector spaces

$$
\varphi: \mathrm{K}^{\mathrm{q}+\mathrm{np}} \longrightarrow \mathrm{~K}^{\mathrm{ns}}
$$

the claim implies $\operatorname{dim} \operatorname{Ker} \varphi=\min (0, q+n p-n s)$ and also that the canonical projection $\pi: K^{q+n p} \longrightarrow K^{q}$ is injective on
 $=\min (0, q+n p-n s)$, as wanted.

Proof of the claim.

Case ns $\leq q+n p$.

If we let $t=s-p$, we get $t>0$ and q nt. We prove that the following $n s \times n s$ matrix M, which is obtained by deleting the columns corresponding to $\alpha_{n t+1}, \ldots, \alpha_{q}$, has nonzero determinant.

$\alpha_{1} \ldots \ldots \ldots \ldots{ }_{n t} \beta_{n 1} \ldots \beta_{n p}$					$\beta_{11} \ldots \ldots \beta_{1 p}$
$\begin{gathered} x_{n} F\left(P_{1}\right) \\ \vdots \\ x_{1} F\left(P_{1}\right) \end{gathered}$	$\begin{aligned} & a_{11} u_{1 n} \cdots a_{n t 1} u_{1 n} \\ & \vdots \\ & \vdots \\ & a_{11} u_{11} \cdots a_{n t 1} u_{11} \end{aligned}$	$b_{11} \cdots b_{p 1}$		$b_{11} \cdots b_{p 1}$
$\begin{gathered} X_{n} F\left(P_{2}\right) \\ \vdots \\ x_{1} F\left(P_{2}\right) \end{gathered}$	$\begin{aligned} & a_{12} u_{2 n} \cdots a_{n t 2} u_{2 n} \\ & \vdots \\ & \vdots \\ & a_{12} u_{21} \cdots a_{n t 2} u_{21} \end{aligned}$	$b_{12} \cdots b_{p 2}$			$b_{12} \cdots b_{p 2}$
\vdots	$\vdots \quad \vdots$	$\vdots \vdots$	$\vdots \vdots$:
$\begin{gathered} X_{n} F\left(P_{s}\right) \\ \vdots \\ X_{1} F\left(P_{S}\right) \end{gathered}$	$\begin{aligned} & a_{1 s} u_{s n} \cdots a_{n t s}{ }^{u}{ }_{s n} \\ & \vdots \\ & \vdots \\ & a_{s} s_{s 1} \cdots a_{n t s} u_{s 1} \end{aligned}$	$\mathrm{b}_{1 \mathrm{~s}} \cdots \mathrm{~b}_{\mathrm{ps}}$			$\begin{gathered} \mathrm{b}_{1 \mathrm{~s}} \ldots \mathrm{~b}_{\mathrm{ps}} \end{gathered}$

We recall that if $M=\left(m_{i j}\right)$ is a square matrix of size say v, an M-product is an element $(-1)^{\sigma_{m}} m_{1 \sigma(1)} \cdots m_{v \sigma(v)}$ where σ is a permutation of $\{1,2, \ldots, v\}$. Thus $\operatorname{det} M$ is the sum of the M-products.

Now let $D=\operatorname{det} M$; since every entry of the row corresponding to $X_{i} F\left(P_{j}\right)$ is a monomial of degree d in $u_{j o}, \ldots, u_{j n}$, every M-product is a monomial $j=v_{1} \ldots V_{s}$ where, for every $\gamma=1, \ldots, s, v_{j}$ is a monomial for degree nd in $u_{j 0}, \ldots, u_{j n}$.

We prove that $D \neq 0$ by checking that there exists a M-product which is greater, in the given order on the monomials of $k\left[u_{i j}\right]$, than any other M-product which does not cancel out in the presentation of D.

We denote by M_{α} the submatrix of M corresponding to the first nt columns and by M_{β} that corresponding to the last np •

We have two important remarks.

1. Every M-product which, inside M_{α}, involves two rows corresponding to the same point, can be deleted.

This is clear since for every $1 \leq j \leq s$ and every $1 \leqq k<i \leq n$,

$$
\left(\begin{array}{ccc}
a_{1 j} u_{j i} & \cdots \cdots & a_{n t j}{ }_{j j i} \\
\vdots & & \vdots \\
a_{1 j} u_{j k} & \cdots \cdots & a_{n t j}{ }_{j k}
\end{array}\right)
$$

is a matrix of rank one. Hence such an M-product cancels out in the presentation of D.
2. If γ is a M-product which, inside M_{α} and for some $1 \leq i \leq n$, involves less than t rows corresponding to the variable X_{i}, then $\gamma=0$.

For example, if γ, inside M_{α}, involves v rows corresponding to X_{1}, with $v<t$, then, inside $M_{B, \alpha}$ involves $s-v$ rows corresponding to X_{1}. Since $s-v>s-t=p$, this implies $\gamma=0$.

Thus if γ is a M-product which is not 0 , then γ, inside M_{α}, involves exactly the rows corresponding to each variable X_{n}, \ldots, X_{1}.

According to the above rules, we consider the M-product γ which is obtained using the following correspondence

where v is the least integer $\geq(i / t)$.
In other words, we associate to the columns $\alpha_{1}, \ldots, \alpha_{t}$ the rows $X_{n} F\left(P_{1}\right), \ldots, X_{n} F\left(P_{t}\right)$, to the columns $\alpha_{t+1}, \ldots, \alpha_{2 t}$ the rows $X_{n-1} F\left(P_{t+1}\right), \ldots, X_{n-1} F\left(P_{2 t}\right)$, and so on up to the columns ${ }^{\alpha}(n-1) t+1, \cdots, \alpha_{n t}$ to which we associate the rows $X_{1} F(P(n-1) t+1)$,
$X_{1} F\left(P_{(n-1) t+1}\right), \ldots, X_{1} F\left(P_{n t}\right)$. As for the remaining $n-1$ rows corresponding to each point $P_{1}, \ldots, P_{n t}$, we choose in M_{B}, starting from the top, the first admissible nonzero entry on the left. At this point we are left with the rows corresponding to the last s-nt point and with the last $p-(n-1) t=s-n t$ columns in each:vertical section of M_{B}. Hence we can choose, for $X_{n} F\left(P_{n t+1}\right), \ldots, X_{1} F\left(P_{n t+1}\right)$, the columns ${ }^{\beta_{n,}(n-1) t+1}, \ldots, \beta_{1,(n-1) t+1}$, for $X_{n} F\left(P_{n t}+2\right), \ldots, x_{1} F\left(P_{n t+2}\right)$, the columns $\beta_{n,(n-1) t+2}, \cdots, \beta_{1,(n-1) t+2}$ and so on up to $X_{n} F\left(P_{n t+s-n t}\right), \ldots, X_{1} F\left(P_{n t+1-n t}\right)$ for which we choose the columns $\beta_{n,(n-1) t+s-n t}=\beta_{n p}, \ldots, \beta_{1,(n-1) t+s . n t}=\beta_{1 p}$. It is not difficult to see that we have $\gamma=V_{1} \ldots V_{S}$ where

$$
\left\{\begin{array}{ll}
v_{i}=a_{i i} u_{i, n-v+1} b_{i-t}^{v-1} b_{i i}^{n-v} & \text { if } 1 \leq i \leq n t \\
v_{i}=b_{i-t, i}^{n} & \text { if } n t+1 \leq i \leq s
\end{array} .\right.
$$

Since in each horizontal section of M we have

$$
\begin{aligned}
& X_{n} F\left(P_{i}\right) \\
& \begin{array}{cccc}
a_{1 i} u_{i n}> & \ldots \ldots & a_{n E i} u_{i n}>b_{1 i}>b_{2 i} \\
v & v & v & v \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array} \\
& X_{1} F\left(P_{i}\right) \\
& a_{1 i} u_{i 1}>\ldots .>a_{n t i} u_{i 1} \\
& 0
\end{aligned}
$$

it is clear that the monomial γ is greater than any other M-product which does not cancel out.

Case ns > q+np .
First we remark that it is sufficient to prove the result for the smallest s such that $\binom{n+d-1}{n}<s \leq\binom{ n+d}{n}$ and $n s \geq q+n p$. For such s we let as before $t=s-p$ and $m=n t-q \geq 0$, then $m<n$ (otherwise, $n t-g \geq n$ implies $\mathrm{ns}-\mathrm{np}-\mathrm{q} \geq \mathrm{n}$, hence $\mathrm{n}(\mathrm{s}-1) \geq \mathrm{q}+\mathrm{np}$, a contradiction).

We prove that if we delete the rows corresponding to $X_{1} F\left(P_{1}\right), \ldots, X_{m} F\left(P_{1}\right)$, we get a square matrix N whose determinant is nonzero.

As before we denote by N_{α} and N_{β} respectively the " α-part" and " β-part" of N.

It is clear that the first rule does not change, while the second one should be red in the following way.

Each N-product which is not zero, involves, inside N_{α}, exactly t rows corresponding to each variable X_{n}, \ldots, x_{m+1} and $t-1$ rows corresponding to each variable X_{m}, \ldots, x_{1}.

Note that $t(n-m)+m(t-1)=q$.

According to this remark, we consider the N-product γ which is determined in the following way.

We associate to the columns $\alpha_{1}, \ldots, \alpha_{t}$ the rows \because. $X_{n} F\left(P_{1}\right), \ldots, X_{n} F\left(P_{t}\right)$, to the columns $\alpha_{t+1}, \ldots, \alpha_{2 t}$ the rows $X_{n-1} F\left(P_{t+1}\right), \ldots, X_{n-1} F\left(P_{2 t}\right)$ and so as up to the columns $\alpha_{(n-m-1) t+1} \cdots, \alpha_{(n-m) t}$ to which we associate the rows $X_{m+1} F\left(P_{(n-m-1) t+1}\right), \ldots, X_{m+1} F\left(P_{(n-m) t}\right)$. Then we are left in N_{α} with $q-(n-m) t=m(t-1)$ columns. Hence we associate to the columns $\alpha_{(n-m) t+1} \cdots, \alpha_{(n-m) t+t-1}$ the rows
$X_{m-1} F\left(P_{(n-m) t+t}\right), \ldots, X_{m-1} F\left(P_{(n-m) t+2 t-2}\right)$ and so on up to
the columns $\alpha_{t(n-m)+(m-1) t-(m-1)+1} \cdots, \alpha_{t(n-m)+m t-m}=\alpha_{q}$ to which we associate the rows $X_{1} F\left(P_{t(n+m)}+(m-1) t-(m-1)+1\right), \ldots, X_{1} F\left(P_{q}\right)$.

As for the remaining $n-m-1$ rows corresponding to P_{1} and the remaining $n-1$ rows corresponding to each point P_{2}, \ldots, P_{q}, we choose in N_{β}, starting from the top, the first admissible nonzero entry on the left.

In this way we involved each variable $X_{n}, \ldots, X_{m+1} t$ times in N_{α}, hence $q-t$ times in N_{β}; as for X_{m}, \ldots, X_{1} they have been involved $t-1$ times in N_{α}, hence $q-(t-1)-1=q-t$ times in N_{β} (note that the rows corresponding to the point P_{1} do not involve X_{m}, \ldots, X_{1}).

Thus we are left with the rows corresponding to the last $s-q$ points and with the last $p-(q-t)=s-q$ columns in each vertical section of N_{β}. Hence we can choose for $X_{n} F\left(P_{q+1}\right), \ldots, X_{1} F\left(P_{q+1}\right)$, the columns $\beta_{n, q-t+1}, \ldots, \beta_{1, q-t+1}$, for $X_{n} F\left(P_{q+2}\right), \ldots, x_{1} F\left(P_{q+2}\right)$, the columns $\beta_{n, q-t+2}, \ldots, \beta_{1, q-t+2}$ and so on $u p$ to $X_{n} F\left(P_{q+s-q}\right), \ldots, X_{1} F\left(P_{q+s-q}\right)$ for which we choose the columns $\beta_{n, q-t+s-q}=\beta_{n, p} \cdots, \beta_{1, q-t+s-q}=\beta_{1, p}$.

As before it is clear that the monomial γ is bigger than any other N-product which does not cancel out. This includes the proof of the theorem.

Remark In order to further clarify the argument of the proof, we give in the Appendix a picture of the matrices M and N corresponding to the case $n=3, s=23$ and $n=3, s=24$ (see Figures (1) and (2) of the Appendix). Of course we consider
only the top part of the matrices, where our choice of the factors of γ is much more subtle.

Note that in the Figures the dots correspond to the nonzero entries of the matrices, while the entries labelled with an X are the factors of γ.

Fig. 1

	123456789	123456	123456	$123456 \ldots 20$
31	x.	\ldots		
21			x....................	
11			x.
32	.x.......		
22			.x...................	
12	.	.		.x...................
33	. .x......		
23x..................	
13			
34	x...................		
24	. . .x.....		
14x. .
35x...................		
25x....		. . .	
15x.
36x..................		
26x...		
16x.
37x................		
27x.	
17x.			
38			
28x...............	
18 x
39 x.		
29				
19 x			

$$
\mathrm{n}=3, \mathrm{~s}=23, \mathrm{~d}=4, \mathrm{q}=10, \mathrm{p}=20, \mathrm{t}=3 .
$$

Fig. 2

	12345678910	12345620	123456	123456
31	x.........
32	.x........		
22	,	x.	
12			x....................
33	. .x.......		
23	,		.x.	
13	,			.x.
34	...x......		
24x.	
14 $\mathrm{x} . .$.
35	x....................		
25x....		.	
15 $\mathrm{x} .$.
36x.		
26x....		\cdots	
16	\cdots			.x.
37x.		
27x...		
17x.
38x.................		
28x.	
18x..		
39x................		
29x.	
19x.			
310	-:........x.............		
210		x.	
110 x		

§ 3. The case $\mathrm{d}=2$

It is clear that the proof of the theorem does not identify in some concrete geometric or algebraic way the non-empty Zariski open set $U_{n, s} \subseteq\left(\mathbb{P}_{k}^{n}\right)^{s}$ where the Cohen-Macaulay type takes its minimal value. Hence it could be of some interest the following result.

We recall that a set of points $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}\right\}$ in \mathbb{P}_{k}^{n} is said to be in "general position" if no subset of $n+1$ points lies on an hyperplane. For example, it is well known that, if V is a reduced irreducible nondegenerate variety in \mathbb{P}_{k}^{m} of dimension d and degree s and \bar{L} is a generic linear subspace of dimension $n=m-d$ in \mathbb{P}_{k}^{m}, then the section $V \cap L$ consists of s points in general position in $L \simeq \mathbb{P}_{k}^{n}$.

Proposition Let $\left\{P_{1}, \ldots, P_{s}\right\}$ in \mathbb{P}_{k}^{n} be a set of points in generic and general position. If $n+1<s \leq\binom{ n+2}{2}$, then $\tau(A)=s-n-1$.

Proof We have $H_{A}(0)=1, H_{A}(1)=n+1, H_{A}(2)=s$, hence if L is a linear form which is a non zero divisior modula I, we have with $B=A / L A=R /(I, L), H_{B}(0)=1, H_{B}(1)=n$, $H_{B}(2)=s-n-1$. Thus, we must show that the socle of B is concentrated in degree 2 .

We may choose homogeneous coordinates in \mathbb{P}^{n} so that

$$
P_{0}:=(1,0, \ldots, 0) P_{1}:=(0,1,0, \ldots, 0), \ldots, P_{n}:=(0,0, \ldots, 1) .
$$

Let $F \in R_{1}$ and $\mathrm{FR}_{1} \subseteq(I, L)$, then we can write for $i=0, \ldots, n$,

$$
X_{i} F=G_{i}+H_{i} L,
$$

where $G_{i} \in I, H_{i} \in R_{1}$. This gives us a system of homogeneous equations

$$
\delta_{i j} F\left(P_{j}\right)=L\left(P_{j}\right) H_{i}\left(P_{j}\right), i=0, \ldots, n \quad j=0, \ldots, n .
$$

Now it is clear that $H_{i}=\sum_{j=0}^{n} H_{i}\left(P_{j}\right) X_{j}=\alpha_{i} X_{i}$ if we let $\alpha_{i}:=F\left(P_{i}\right) / L\left(P_{i}\right)$ for all i.

It follows that

$$
x_{i}\left(F-\alpha_{i} L\right) \in I \text { for } i=0, \ldots, n
$$

Since the points are in general position and $s>n+1$, we can find a new point, say Q, such that $Q:=\left(\beta_{0}, \ldots, \beta_{n}\right)$ with $\beta_{i} \neq 0$ for all i. Hence $F(Q)=\alpha_{i} L(Q)$ for all $i=0, \ldots, n$. This implies $\alpha_{i} L(Q)=\alpha_{j} L(Q)$, hence $\alpha_{i}=\alpha_{j}$ for all i and j. Thus $F-\alpha_{0} L \in I: R_{1}=I$, and $F \in(I, L)$ as wanted.

We remark that in the above proposition we cannot delete any of the assumptions.

For example, if $P_{0}=(1,0,0), P_{1}=(0,1,0), P_{2}=(0,0,1)$
and $P_{3}=(1,1,0)$, then the Hilbert function of A is
$H_{A}(0)=1, H_{A}(1)=3, H_{A}(2)=4$ hence the points are in generic position in \mathbb{P}^{2}. But if $\partial(A)=1$ then this set of points should be the complete intersection of two conics, a contradiction to the fact that P_{0}, P_{1} and P_{3} are on the same line.

On the other hand, if we take 6 points on an irreducible conic in \mathbb{P}^{2}, then this set of points is in general position. Since they are the complete intersection of the given conic with a cubic, we have $\partial(A)=1$ while $s-n-1=3$.

Finally, in [G-M] an example is given of 12 points in \mathbb{P}^{2} which are in generic and uniform position but which do not verify the expected value for the type (see [G-M], ex. 4.1).

Acknowledgement The authors would like to thank the Max-PlanckInstitut für Mathematik at Bonn for hospitality and financial support during the preparation of this paper.

References
[G-G-R] A.V. Geramita, D. Gregory, and L. Roberts, Monomial ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), 33-62.
[$\mathrm{G}-\mathrm{O}_{1}$] A.V. Geramita and F. Orecchia, On the Cohen-Macaulay type of s lines in \mathbb{A}^{n+1}, J. Algebra 70 (1981), 116-140.
$\left[\mathrm{G}-\mathrm{O}_{2}\right]$ A.V. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra 78 (1982), 36-57.
[G-M] A.V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in \mathbb{P}^{n}, J. Algebra $90 \underline{2}$ (1984), 528-555.
[R] L. Roberts, A conjecture on Cohen-Macaulay type, C.R. Math. Rep. Acad. Sci. Canada 3 (1981), 43-48.

