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1ntroduction.
This paper is a continuation of (LRl]. One of our main purposes here is to introduce

a noncolllluutativc D-ealculus (Le. ealculus anel differential operators on noneomrnutative
'spaces') rieh enough to .obtain a quantized version of Bernstein-Beilinson loealization
construetion and to initiate D-ll1oclule theory relateel to systems of q-differential equations.

In (LRl] we studied D-calculus over noneommutative associative algebras (anel in
abelian eategories) without any additional structure. The D-calculus on assoeiative alge­
bras, interesting on its own right, involves IUOSt of geometrie ideas and (prototypes of)
facts needed here. It requires, however, two more steps to obtain an adequate version
of differential operators on 'quantized spaces'. The reason is that 'quantized spaces' live
in certain, naturally relatcd to thcn1, lnonoidal categories. A choice of a quasi-synllnetry
(=braiding) ß in any lnonoidal category C- determines calculus and differential operators
on 'spaces' in this lnonoidal category. Thus, a quantized enveloping algebra Uq(g) is an
algebra in the Il1onoidal catcgory of zr-brradeel k-modules, where r is the rank of the Lie
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algebra g, and k is a base ring 01' field (say Q(q), 01' Z[t, t-l]). And there is a natural
choice of a braiding in gtzrk - mod detenllined by the Cartan matrix of the Lie algebra g.

In the Section 1.1 of [LRl] we have presented, using the ring-theoretical language
some of the Illain facts of the work, of this part too. (We suggest the reader to take a
look at this Section.) Now we shall do sonlething complelllentary: in order to explain thc
mentioned above 'two steps', we will sketch here the main 'geometrical' ideas.

Recall in a few words our approach to D-calculus in [LR1]. First we identify 'spaces'
with categories (of quasi-coherent sheaves). For instance, the affine scheIne correspond­
ing to an algebra R is identified with thc category R - mod of left R-Illodules. Then we
single out topologizing coreflective subcategories for the role of subschenIes in the nonCOlll­
mutative setting and develop some nations of algebraic (or rather differential) geolnetry
such as intersection of subschenles, formal neighborhoods of a subscherne etc.. We define
what is the product of two 'spaces'. If they are (presentcd by) resp. categories A and ß,
then the product, A x ß, is the category Sjom(A, ß) of 'continuous' functors from A to B
('continuous' Ineans having left adjoint). The bridge between these notions and differential
operators is the diagonal. Once the diagonal is chosen, we obtain the notion of differential
operators by applying X2general 'calculus' to the diagonal: differential operators of order
~ n are elCInents of the n plus first neighborhood of thc diagonal.

On the other hand, different choices of a diagonal lead to different notions of differential
operators.

In [LRl] the diagonal ofAx A is defined as the nliniInal subschenlc ~ of this 'space'
containing thc identieal functor. It is the IllOSt natural choice, if no additional structure is
involved.

Given a dass 3 of continuous funetors from A to A, we take as a new diagonal thc
minimal subseherne, ~s, ofAx A = <enD(A) containing all objects (funetors) of 3.

0.1. Example. Let A be the eategory of quasi-coherent sheaves on aschenIe X = (X,O).
Take as 3' a set of invertible sheaves such that every invertible sheaf on X is isomoprhic
to a sheaf frOlTI 3'. And let 3 denote thc set of auta-equivalences {L 00 I L E 3'}. Thc
differential operators corresponding to thc diagonal ~s are twisted differential operators
in the conventional sense. _

Clearly any subschCIne ofAx A is ~::: for an appropriate choice of 3. And there are
canonical choices.

0.2. Example. Let C- be a ITIonoidal category, and let R be an algebra in e (these and
other not ions of categorical algebra we necd are recalled in Seetion 1.0). Any choice of a
quasi-synllTIetry (otherwise called braiding) ß deternünes an embedding of the category e­
into the category of eontinuous endofunctors of the eategory R - mod of left R-modulcs.
This elnbedding assigns to any object X of e- the funetor X 0ß : R - mod ---+ R - nl.od of
tensoring by X (the braiding ß appeares in the definition of the action of R on X (9 M).
We denote by ~ß the diagonal ßs, whcre S is thc image of the category e- under thc
embedding e- ---+ Q:nV(91- moV), X r-+ X®. _

The diagonal ~ß is one of the principal eharaeters of this work. And our first step
towards a 'right' notion of differential operators is the replacing the 'minbnal' diagonal ~
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by the diagonal t::.'ß and recovering (following the pattern [LRl]) the corresponding to this
choice ß-differential calculus.

The second (and the last) step is the taking into consideration certain natural group
actions which are explained below.

There are two groups attached to any monoidal category:
- The Picard group Pic(C-) of isomorphy cIasses of invertible objects ofthe monoidal

category C-. Recall that an object P of C- is invertible if the functor P&; : C- --+ C- is an
auto-equivalence.

- The fundamental group, 7T1 (C-), of the monoidal catcgory C- which is by definition
thc group of automorphisnls of the identical monoidal functor (cf. 8.3). Note that our
111onoidal category C- is naturally rcalized as a subcategory of thc monoidal category of
representations of 7T1 (C-).

Suppose a symnletry of the tllonoidal category C- is fixed. Then every braiding of
C- determines a group hOmOt110rphisl1l frol11 Pic(C-) to the fundanlental group 7T1 (C-).
This homomorphism allows to rcgard C- as a monoidal subcategory of the category of
represcntations of Pic(C-). In partieulaI', for any algebra R in C-, the category R - mod is
naturally embedded into the category R#Pic(C-) - mod (thc crossed products in monoidal
catcgorics are defined in Section 5). We take this embedding and considcr thc diagonal
in the category R#Pic(C-) - mod. In practical terms, this choice of the diagonal means
that thc action of of each eletuent of Pic(C-) becomes a differential operator. Note that,
in the classical (Le. comnlutative) situation, the only invertible differential operators are
lllultiplications by invertible elelnents of the algebra R.

Although the main exanlplcs of this work 'live' in categorics of zr-graded modules, it
is appropriate to develop generalities in a natural for the differential calculus setting, i.e.
in lnonoidal categories.

In Section l, after a short recollection of some necessary facts on lnonoidal categories
and S0111e basics of linear algebra (Iuodule theory) in a conveniellt for us form, we outline
a differential calculus and introcluce differential operators in abclian Inonoiclal categories
following the pattern of [LRl].

In Section 2 we extend to the algebras and modules in Inonoidal catcgories localization
theorenls of [LRl].

In Section 3, we describe thc algebra of differential operators on a 'sYlumetric affine
space' which is the algebra of differential operators of a skew polynonüal algebra R de­
teflnined by a matrix q = (qij I 1 ::; i, j ::; r) with invertible entrees. Recall that R is a
k-algebra generated by elements Xi, l:::; i ::; r, subject to the relations

for all i,j. 'Symlnetric' means that the nlatrix q dcfincs a sYlnlnetry in thc monoidal
catcgory of zr_graded modules; 01', cquivalently, qijqji = 1 for all i,j. The algebra R
is regarded as a 'commutative' algebra in the symmetrie monoidal category of zr-graded
lllodules. We call the algebra of differential operators on syllllllctric affine space defined
by the Inatrix q the algebra 0/ q-differential operators.
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Wc show that if k is a ficlel of charactcristic zero, the algebra of q-differential op­
erators is generated by R (i.e. by operators of ruultiplication by eleruents of R) and by
q-dcrivations.

In Section 4 we define (thc algebra of fUllctions on) an 'affine spacc' in the case when
the rnatrix q dctennines only a quasi-symnlctry. In other words, wc do not require the
relations qijqji = 1. This notion involves natllrally that of a Weyl algebra 01 a ring (in
particular, of an 'affine space') which is, in general, a proper subalgcbra of tbe algebra of
differential operators on this ring. We study the simplest, but already curious, exarnple ­
the quantum line - the Weyl algebra coincides with the algebra of q-differential operators.

In Section 5, we define Hopf algebras in a quasi-sYllllnetric category and discuss sOlne
of relevant examples.

In Section 6, we study Hopf actions anel crossed products in monoidal categories. A
special case of this construction is the 'affine base space' for any (quantized) envcloping
algebra of a reductive or Kac-Moody Lic algebra.

In Section 7, we construct, in an arbitrary monoidal category, a Weyl algebra asso­
ciated with abilinear form and a quasi-syrnrnetry ß. Thc Weyl algebras of Section 3 are
special cases of this construction.

The Weyl algebras happen to be ß-Hopf algebras. Our goal is to 'extencl' thenl
naturally to a-Hopf algebras for a given syrnrnetry a. This is done in the next two sections.

Section 8 contains facts about relations between quasi-symrnctries and thc Picard
group (- the group of isomorphy classes of invertible objects) of our rnonoidal category.

In Scction 9 we obtain a farnily of Hopf algebras with a quasi-synunctry playing thc role
of a parameter. Thc quantized enveloping algcbras by Drinfeld and .1irnbo are particular
cases of this construction.

Note that alrcady at this early stage the generality of our approach pays back: one
of thc special cases of the construction are quantized enveloping algebras of Lie super­
algebra').

In Section 10 we introducc 'differential calculus with actions' (which incorporates
thc graded and, therefore, nongraded D-ca1culus) on affine, quasi-affine, and projective
noncollllnutative spaces. After defining thc base affine space and thc flag variety of a
quantized enveloping algebra, wc conclude with a short presentation of a quantized version
of the Beilinson-Bcrnstein localization construction. Thc latter realizes the quantized
enveloping algebra Uq (g) of a sernisilnple Lie algebra 9 as an algebra of differential operators
on the base affine space of g. As in the classical case, this realization provides canonical
algebra homomorphisrns from Uq(g) to the algebras of twisted differential operators on the
flag variety of Uq(g). In the classical case, we recover thc conventional Bcilinson-Bcrnstein
localization construction.

Here we outline only sorne of its general properties. A rnore detailcd stlldy is in [LR3].
In 'Complerncntary facts', we explain what are twisted differential operators corre­

sponding to integer and to arbitrary weights, and give a ring-theoretic construction of
Hopf algebras corresponding to skew derivations.

Refering to the first part of this work, [LR.l], we shall write I.reference in (LRl] .

.. '
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Part I. Differential calculus in the graded case.
1.0. Preliminaries on monoidal categories. Considcr categories with multiplication,
i.e. pairs (C, '81) 1 W here C is a catcgory and '81 is a functor froIn C x C to C. We definc a
lllorphislll frolll (C, '81) to (C' 1 '81') as a pair (F, f), where F is a functor C -----+ C' and / is
a functor lllorphisnl f = {fx,Y : FX '81 FY -----+ F(X '81 Y)}. The composition is defincd
naturally.

1.0.1. Strict monoidal categories. Astriet monoidal eategory is a category with
multiplication (C, '81) such that,

(i) For any objects X, Y, Z of C, (X '81 Y) '81 Z = X '81 (Y ® Z).
(ii) There is an object 1 of C such that, for any X E ObC, 1'81 X = X = X ® 1.

Note that the object 1 of the condition (ii) is defined uniquely and is called the identical
objeet of C.

1.0.1.1. Example. Let A be auy category equivalent to a small category. Then thc pair
(EndA, 0) 1 where 0 denotes the COlllposition of endofunctors , is a strict mouoidal category
with 1 = [dA.•

1.0.2. Strict morphisms. A lllorphism (F, f) between categories with multiplication is
called striet if f is identical. In 0 ther words, a strict morphism fronl (C, ®) to (C', '81') is
any functor F : C -----+ C' such that, for any X, Y E C, F(X ® Y) = F(X) 0 F(Y).

1.0.2.1. Lemma. The following conditions on a eategory with multiplieation (C,0) are
equivalent:

(a) (C, ®) is a sinct monoidal eategory.
(b) The canonical functors

..c : C -----+ EndC, X f-+ ...Y0 , and 91: C -----+ EndC, X f-+ ®X, (1)

are stnct and the image of euch 0/ them eontains the identical functor.

Proof is left to areader.•

1.0.3. Monoidal categories. Consider now categories with multiplication (C, 0) to­
gether with a nlorphislTI ce, a) to (Ende, 0) such that a is an isomorphisIll. Here ..c is the
functor of 'tensoring fronl the left' (cf. (1)). In other words, we are considering tripies
(C, 0, a), where a = {ax,Y,Z : X ® (Y ® Z) -----+ (X 0 Y) ® Z) is a functorial isoIllorphisrn.
Morphisms froln (C, 0, a) to (C', ®', a' ) are those morphisms (F, f) : (C, 0) -----+ (C', 0') for
which the following diagram COlnnlute for all X, Y, Z E ObC:

F(X) 0 (F(Y) 0 F(Z))

a' 1
(F(X) 0 F(Y)) ® F(Z)

id®!
~ F(X)®F(Y®Z)

!®id
~ F(X0Y)0F(Z)

!
-----t F(X 0 (Y ® Z))

1Fa
!

-----t F( (X ® Y) ® Z)

(1)

Giyen a tripIe (C, ®, a), we call a an assoeiativity constraint if CC, a) is a morphisrn
froIn (C, 0, a) to (EndC, 0, id)... .
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One cau see that being an associativity constraint is equivalent to' thc commutativitY'
of the so callcd 'pentagon diagram' which is nothing else, but the diagrain (1) for (..c, (L)
with the left vertical arrow olnitted, since it is identical in this case.

1.0.3.1. Identity objects. An identity object 6f a tripie (C, 0, a) is an object 1 of C
together with functor iS01110rphisms

A : 10 -----7 idc, AX : 10X -----7 X, and p : 01 -----7 idc, PX : X 0 1 -----7 X, (2)

such that the diagranl

a
-----7

(3)

is commutative for all X, Y.

1.0.3.1.1. Note. The existence of an idcntity object iInplies among other things that thc
functor

.c, a) : (C, 0, a) -----7 (Ende, 0, id), X f-t X0

is faithful. •

1.0.3.2. Monoidal categories. A monoidal category is a data (C, 0, U, 1, A, p), where a
is an associativity constraint and (1, A, p) is an identity object.

A monoidal functor F- from a Illonoidal catcgory ß- = (8,0, a, 1) to a monoidal
category C- = (C, 0, a', 1') is a tripie (F, f; 4J), where (F, f) is a Inorphis111 (8,0, a) -----7

(C, ®', a') and 4J is an iS01110rphism F(l) -----7 I' such that thc followiIlg diagrams comnnltc
for all X, Y, Z E Obß.

F(l) 0 F(X)

4J 0 id 1
F(l') 0 F(X)

!
----t F(l 0 X)

1FA
>..'

-------+ F (X)

F(X) ® F(l)

id 0 t/J 1
F(X) 0 I'

id0!
---+ F(X 01)

1Fp
p'

------+ F (X)

(4)

1.0.4. Examples of monoidal categories.

1.0.4.1. Astandart example is k - r11od- = (k - mod, 0k, a, k) for a C0l1l111utative ring
k with the usual associativity constraint.•

1.0.4.2. The category of graded modules gtrk -r11od- = (gtrk - m,od-, 0, k), whcrc
r is a C0l1l111utative (scmi)group, k a cOl1unlltative r-graded ring, and 0 is a graded tensor
product ovcr k. The siInplcst nontrivial case is r = 7l/271 = {O, I}, and k is a field. Thcn
the category gtrk - rnod- is called thc (tensor) category 01 super vector spaces. In this
work, wc are interested 1110stly in the case r = zr - thc ffee abelian group of a finite rank
- and k is a ring between Z[t, t- I ] and .Q(t). •
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1.0.4.3. The category of representations of abialgebra. Recall that abialgebra
over a commutative ring k is a tripie (6, H, m), where (H, m) is a k-algebra, (6, H) is a k­
coalgebra such that the comultiplication 8 : H ---+ H ®k Hand thc coidentity E : H --+ k
are k-algebra Il1orphisIl1S. The comultiplication tS deternlines a tensor product of (H, rn)­
Il1odules: (V, ~)H ® (V' 1 e) = (V ®k V', ~ 0 e), where thc action ~ 0 e is thc COIllposition
~ ®k~' 0 HaH,v V' 0 tSv ®k V' .•

1.0.4.4. Strict monoidal categories and categories of endofunctors. Any strict
Il1onoidal category, in particular any category of endofunctors (cf. ExaInple 1.0.1.1) is a
monoidal category. •

1.0.4.5. The category of continous endofunctors. We denote by <EnDA the full
subcategory of the catcgory EndA of ExaInple 1.0.1.1 generated by all endofunctors having
a right adjoint. Clearly <cnDA is a monoidal subcategory of End- A .•

1.0.4.6. Remark. For any nlonoidal category C- = (C, ®, a, 1), we have a canonical
monoidal functor (~, a-t, p) : C- ---+ End- (C), where the functor ~ fronl C to EndC
assigning to cach object X of C the functor ®X of tensoring by X, and to any f E RomA
the functor morphism ®f. Thanks to the existence of the identical object, ~ is a faithful
functor.

If, for any X E ObC, the functor ®X has a right adjoint, the nlonoidal functor
~- : C- ---+ End-C takes values in the subcategory <EnD -C of ExaInple 1.0.4.5.

Note that the monoidal categories of ExaInples 1.0.4.1-1.0.4.3 havc this property.
Hencc they can be canonically CInbedded into <EnD-C for respectivc categories C.•

1.0.4.7. Remark on the subcategory of right exact endofunctors. Denote by
End'A the fnll subcatcgory of EndA generated by right exact functors. Clearly End'A
is a monoidal subcategory of End- Aj and <EnDA c End'A. And if ®X is a right cxact
functor for any X E ObC, the canonical monoidal functor ~- (cf. Remark 1.0.4.6) takes
values in the subcategory End'A.

In order to SiIllplify the exposition, we usually require that the functor ®X should
have a left adjointj Le. the functor ~- realizes C- as a nlonoidal subcategory of <cnD - A.
An attentive reader can see that in many constructions of this work it suffices to assuIne
that the functofs ®X are right cxact for all X E ObC.•

1.0.5. Remark. Monoiclal categories arc a natural fraIllcwork for important constructions
and theories of Inathenlatics and, in the recent tirne, of theoretical physics. Thc price to
pay is clealing with nontrivial associativity constraints which lead even in relatively simple
cases to rather complicated diagrams. This problem does not exist in the strict 11lonoidal
categories. This is the reason why we have introduced monoidal catcgories the way WB did:
as categories with multiplication together with a faithful canonical 11lonoidal functor into
a strict category (of endofunctors). We shall use this realization through the wholc work.

•
1.0.6. Algebras and modules in monoidal categories. Most of general Inodule
theory can be naturally extendcd to rnonoidal categorics. Below we sketch notions and
eleIllentary facts used in the main body of the work.
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Fix aillonoidal category C-. An algebra in C- is a pair (R, Ji), whcre R is an object
of C anel JL is a morphisIll R, ® R ---+ R such that

(i) Jl 0 idR ® Jl = Ji 0 JL ® idR 0 a;
(ii) there exists a lllorphism 1] : 1 ---+ R such that JloidR®TJ = PR and JLof/®idR = AR.

One can check that the identity morphism TJ is uniquely defined.
AIgcbras form a category: morphislllS from (R, JL) to (R', Ji') are morphislllS f fron1

R to R' such that Jl' 0 f '8l f = f 0 J-l.

1.0.6.1. Examples. An algebra in the category k - 7nod- (cf. Exalllple 1.0.4.1) is a
k-algebra in the conventional sense.

An algebra in the category End- A of cndofunctors (cf. Example 1.0.1.1) is a lllonad
(cf. 1.4.3).•

Fix an algebra R = (R, JL) in C- with the identity element 1]. A left R-module is a
pair (M, m), where M E ObC anel rn is a luorphism R ® M ---+ M such that

(i) 771. 0 J-l ® idM 0 CL = mo idR ® m;
(ii) 771- 0 7] ® idM = AM.
An R-llloclule morphism (M, m) ---+ (M', m') is a lllorphism f : M ---+ M' cOlnpati­

ble with thc actions: f 0 m = m' 0 idR ti9f. Thus defined catcgory of Ieft R-lllodules will bc
denoted by R - mod. Thc category luocl-R of right R-luodules is defincd situilarly.

Let n = (R, Ji) anel R' = (R', /L') be algebras in thc monoidal category C-. A tripie
(m, M, 771.'), W here (m, M) is a left R-fiodnIe anel (M, 711.') is a right R'-nloelule, is calleel
an (R, R')-bitnodule, if thc left anel right actions (m anel m') commute; i.e. moidR ®m' =
m ' 0 rn ® idn 0 a. We lcave to areader thc definition of biIuodule ulorphislllS anel thcir
composition.

The category of (R, R')-bimoelules will be denoted by (R, R') - bio If R = R', wc
shall writc simply R - bio

For any left R-IllOdulc M = (m, M) and a right R-lllodule N = (N, v), their tensor
product over R, N ®R M is defined as thc coequalizer of the pair v ® idM 0 a, idN ® rn
of 1l10rphisllIS from N ® (R ® M) to N®M.

From now on we assnme that the bifunctor ® is right exact with respect to each
argtuuent. This assulllption does not hold for the category End- A of endofunctors (cf.
Exalllpie 1.0.1.1). But it does hold for its fuIl luonoidal subcategory generated by right
exact functors (cf. Renlark 1.0.4.7).

Note that in the relnaining examples of Subsection 1.0.4 the tensor products preservc
coliIllits of all ('slnall') diagrains.

If N is an (R', R)-biInodule and M is a left R-module, then N ®R M has (thanks
to the right exactness of ®) a natural structure of a left R'-module. Thus N ®'R is a
functor froln R-mod to R' - mod. And thc map N H N®'R is extended to a functor
from (R', R) - bi to thc category of (right cxact) functors from R - mod to R ' - mod. In
particular, we have a faithful functor :F from R - bi to the category End(R - mod) taking
values in the subcategory End'A of right exact functors.

Note that R - bi has a natural structure of a 1110noidal category with the tensor
product ®'R and the identity object R. And the functor :F is naturally extended to a
lnonoidal functor froln R - b( to End'- (R - mod).
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1.1. Subschemes of monoidal categories. Fix a Inonoidal category C- = (C, 0, a, 1).
We assulne that C is an abelian category with the property (sup). Fix an associative
algebra R in C-. Let R - rnod be the category of left R-ll10dulcs. And let R - bi dcnote
the category of R-bimodules. One can check that the categories R - mod and R - bi are
abelian anel have too the property (sup).

We call a subcategory 'Ir of C a subscheme 0/ the monoidal category C- if it is a
subscheule (i.e. a coreflective topologizing subcategory) of C and a monoidal subcategory
of C-. Thc latter implies, in particular, that the identity object 1 in C- belongs to T.

A subscheme 'Ir shall be called (Zariski) closed if 'Ir is Zariski closed in C.

1.1.0. Example. Let X = (X,O) be ascheIne. Thcn category of quasi-cohercnt shcaves
on a (closcd) subscheme of X is a (closed) subschellle of the monoidal category of quasi­
coherent sheaves on X .•

1.1.1. Lemma. (a) The intersection 0/ any set of subschemes 0/ a monoidal category C­
is a subscheme.

(b) The intersection of any set of Zaliski closed subschemes of C- is a Zariski closed
subscheme.

Proo/. Clearly, thc intersection of any set of monoidal subcategories of C- is a lnonoielal
subcategory of C-. Thc assertion follows now from Lcmnla 1.2.7.1. •

In particular, the intersection of all subscheInes of C- is (thc smallest ) subschemc of
C-. We denote it by ~c, or siInply by ~, if this does not cause any confusion, and call it
the diagonal of C- .

1.1.2. Example. IfC- = End-A (cf. Exanlple 1.0.1.1) for some abelian category A, then
~c coincides with the miniulal subscheIne ~ of EndA containing I dA - the diagonal in the
sense of Section 1.4. In fact, it follows from Lelnma 1.4.1 that ~ is a Inonoidal subcategory
of End-A.•

1.1.3. Example. Let C- be the monoidal category of R-bimodules for some associative
ring R : C- = R - b( = (R - bi, ®R, a, R). Then ~c coincides with the subcategory [KJj]
defincd by the kernel K Jj of thc multiplication J-L : R 0 R -----t R (cf. Lemma 1.5.2).•

1.1.4. Proposition. Let l' be a subscheme of a monoidal catego1f) B- = (B, 8, a, 1).
(a) S7Lppo~e that 8 is light exact witk re.spect to each argurneut; i. e. the ffLuctors X 8

and 8X are right exact for any X E ObB. Then 'Ir(n) 8 y(m) ~ 'Ir(nm).

(b) 1f 8 respects cou.ntable direct colimits, then 'Ir-objects 0/ B generate a monoidal
subcategory, hence a subscheme, 0/ B-.

Proo/. (a) Note first that 'Ir 8 'Ir(m) ~ 'Ir(m). This is by assulnption when 1n = 1. Let
X E ObT, Y E Ob'Ir(m), and m ~ 2. Then we have an exact sequence

o--+ M -----t Y -----t L -----t 0

with M E ObT, L E Ob1r(m-l). Sincc 8 is right exact, thc sequence

X8M -----t X8Y -----t X8L~ 0

9
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is exact .. By. thc induction hypothesis, X 0) L E ObT(m-l). And X 0)·M· E ObT. Therefore
thc product X 0) Y belongs 1r(m).

Let now X E ObT(n) , Y E Ob1r(m), and n 2: 2. Then thcrc cxists an exact sequence

o -----1 M -----1 X -----1 L ---+ 0

with M E ObT, L E Obl'(n-l). Since 0) is right exact, the sequence

M0)Y --t X0)Y -----1 L0)Y --t 0

(3)

is exact. According to 1), M 0) Y E Obl'(m). By the induction hypothesis, L 0) Y belongs
to 1r(mn-m). Therefore X 0) Y E Ob1r(mn).

(b) Thus, thc bifunctor 0) is cOlnpatiblc with the canonical 1r-filtration. If 8 rcspccts
countable directcd colinlits (of subobjccts), thc product of T-objccts is a 1r-objcct.•

1.1.5. Differential operators. Let M = (M, m) and M' = (M', m /) be R-modulcs.
Suppose that there exists an inner h01l1, ~nV(M, M'); i.e.

C(7 ® M, M') ~ C(7, <EnD(M, M')).

Note that ~nD(M,M') is an R-biInodule.
In fact, thc lcft action of R on <EnV(M, M') is the image of idM, under the cOlnposition

of canonical Inaps:

C(M',M') --t C(R0M/,M') ---+ C(R0(SJom(M,M' )&;M),M')

1
C(R 0 Jjom(M, M'), SJom(M, M'))

Here the first Inap is induced froIn thc action R &; M' -t M' of R, the sccond one
by the canonical Inorphism <EnD(M, M') (9 M -t M'. The fight hand side isoIllorphisIll
is induced froIn the associativity iSOI110rphisIll

(R 0 <EnV(M, M')) (9 M --t R (9 (<EnV(M, M') ® M)

and the bijection

C((R 0 (~nV(M, M')) 0 M, M') --t C(R 0 ~nV(M, M'), ll:nD(M, M')).

Similarly, the right action of R on ~nD(M,M') is the inlagc of idMI under thc COIll­
position

C(M' , MI) ---+ C(SJom(M, M') 0 M, MI) ---+ C(SJom(M, M') 0 (R 0 M), AI' )

1
C(SJom(M, M') 0 R, SJom(M, M'))

We leave the routine checking that this is really abimodule structure to areader.
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Fix a subscheIne T of the monoidal category (R - bi, ®R, R) of R-biInodulcs.
We call the 'Ir-part of the R-biInodulc Sjom(M, M') the object of'Ir-differential operators

from M to M'. We dcnote it by Dif fT(M, M').
Note that, being a subschenIe (hcnce a monoidal subcategory) of R - bi, ®R, R),

'Ir contains the biInodule R.. Let M = M' = (M, m). And suppose that <Enll(M, M)
exists. Note that the action m : R ® M ------t M provides a canonical morphism frolll
R to <Enll(M, M) which is, as one can check, an algebra morphism. This implies that
Diji'rr(M, M) is a D-algebra.

Suppose that <En()(R, R) exists. Then, regarding R as a lcft R-nlodule, we havc thc
object (a T-algebra) 0/ T-difJerential operators on R. We shall write Dy(R) instead of
Dij fT(R, R).

1.1.6. The subscheme .6. -. Denote by .6. - the IniIünlal subscheIne of R - bi containing
the biInodule R. We call objects of the category .6. - differential birnodules, 01' simply D­
bimodules. For any R-bimodule M, the .6. --torsion of M shall be called the differential
part 0/ M.

Suppose that, for all X E ObC, the functors X ® and ®X rcspect colinlits. Then
one can show that .6. - is a monoidal subcategory of R - b(; Le. ß - is a subschemc (the
diagonal) of R - b( .

The subcategory .6. - seClns to bc thc rnost natural choice, when no additional structure
is givcn. There is another, l110re natural possibility, if the Inonoidal category C- is quasi­
symmetrie.

1.2. Quasi-symmetrie categories. Ta siInplify the calculations, we shall realize the
monoidal category C- = (C, ®, a, 1) as a subcategory of the Inonoidal category of cnda­
functors End- (C) = (Ende, 0) assigning to each object X of C thc functor ®X of tensoring
by X, and to any arrow f the functor morphisIn ®j (cf. Examples 1.0.1.1 and 1.0.4.5 and
Remark 1.0.4.6). This way algebras in C- becolne Inonads, 1 can be assulned to be eqllal
to Idc; and the associativity and isomorphisms 18X ~ X ~ X 8 1 can be chosen to be
identical.

To underline the fact that C- is a monoidal subcategory of the category of cndofunc­
tors, we shall write 0 instead of 09.

8uppose our lnonoidal category C- is quasi-symmetrie; Le. there is a functor isonlor­
phism ß = {ßx,Y : X 8 Y ------t Y 0 X I X, Y E Obe} froln 8 to 8 0 a, where a is the
functor C x C ------t C X C, (X, Y) t-+ (Y, X), which satisfies the following requirernents:

ßX0Y,Z = ßx,zY 0 Xßy,Z, ßX,Y0Z = Yßx,z 0 ßx,YZ (1)

ßX,l = idx = ßl,X. (2)

The isoIllorphism ß with the properties (1) and (2) is callcd q71asi-symmet'TiJ 01' brlLid-
'lng.

Note that the two equalities (1) are equivalent to each othcr if ß is a symrnctry; Le.
if ßx,Y 0 ßy,X = idY0X for all X, Y E ObC.

1.2.1. Example. Let r be an abclian group. And let C- be thc monoidal category of r­
graded k-modules (cf. Exalnple 1.0.4.2). Then any bicharacter (- a group hOlnomorphisln)
X : r x r ------t k* determines a quasi-sYlnlnctry and vice versa.
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If r = zr '" then,any bicharacter X' is determined by its values on thc canonical gener­
ators, Le. by a luatrix (qij 11 :::; i, j :::; r) with qij E k* for all iJ .•

The quasi-synlIuetry ß provides a functor ß frolu Alge· to AlgC- which assigns to
any algebra n = (R, J-L) the ß-opposite algebra nß := (R, J.l 0 ßR,R), and acts identically on
algebra n1orphisms. The algebra n is called ß-commutative if nß = n.

Another structure determined by ß is the tensoring of algcbras: the product of algebras
n = (R, J-L) and S = (S, v) is given by

(3)

and 1 8ß 9 = 18 9 for any pair I, 9 of algebra morphislllS.
Finally, thcre is a canonical category isoluorphisn1 fron1 (n, S) - bi to the category

R 8ß Sß - mocl sending any (R, S)-bimodule (u, M, v) into (u 8ß v, M), where u 0ß v is
u 8 v ° RßS,MS : R 8 S 0) M ---+ M.

In particular, we shall identify R - bi with thc category R 8ß Rß - mod.
Note that the multiplication J-L : R 0) R ---+ R is an R-bimodule Iuorphismj hcncc an

n 8ß Rß-nl0dule morphisIll from R 0ß Rß to R. In particular, the kernel :r~ of J.l is a left
ideal in n 0ß Rß.

1.3. The ß-diagonal baß. We assun1e that, for any X E übe, the functor Xcv rcspccts
colimits.

Call an R-bimodule M = (m, M, v) ß-artinian, if thcre is a 1l1orphisIll 1 : X ---+ M
in C such that

a) the con1position of fR : X 0 R ---+ M 0 Rand the action v is an epirnorphism;
b) voIR=rnoßM,RoIR(=rnoRfoßx,R)'
We call thc morphisll1 f in this definition a generating rnorphism of M.
Let ArtßR denote the full subcategory of R - bi generated by ß-artinian birnodulcs.

1.3.1. Proposition. The subcateg01'Y ArtßR of ß-artinian birnodules is closed with respect
to colimits (taken in R - bi) and ®R..

Proof. 1) Let M = (m, M, v) bc a ß-artinian bimodule with a generating lllorphisIll
f : X ---+M. And let rp bc a biluodule epin10rphislll froIIl M to sorne MI = (m' 1 M', v').
Then thc composition rp ° f : X ---+ MI is a generating lllorphism for M'.

In fact, v' ° (rp 0 f)R = rp 0 (v ° IR); and the right hand sidc is the COIllposition of
two epinlorphislUS. Hence v' 0 (rp ° I)R is an epinlorphislu. As to the second propcrty of
a generating morphism, we have:

vlo (rpo I)R = rpo vo 1R = <porno ßM,R ° fR = m' oR<po ßM,R 01R = m' oR(rpo f) °ßx,R..

For any farnily {Mi} of ß-artinian birIlodules with generating Inorphisms fi' thc direct
sun1 ffiM i is a ß-artinian biInodule with a generating morphisIll tB/i'

Altogcther, this shows that the subcategory Artß is closed with respect to any colinüts
in R - bio

2) Let now M = (m, M, v) and M' = (m', M', v') be ß-artinian binlodules with
generating rllorphislllS resp. f: X ---+ M and I I

: X' ---+ M'. Then the corllposition of
f 8 f' and the canonical epiInorphisIIl M 0 MI ---+ M 0'R MI is a generating Illorphisnl.
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Note that, ·for any X' E Obe, X 0 R = (X 11, 0 ß" R,X0R, X f-L) is a ß-artinian ·birnodule.
In fact, we can take as f thc natural Illorphislll X ---+ X 0 R. Then f R, = idx0R .

And the obvious equality X /.l 0 ß" R,X0R 0 ßX0R,R = X JL is exactly the second property
wc need to check. Here ß"Y,X := ßy,~ for aU X, Y E ObC.

The conditions b) and a) in the definition of a ß-artinian bimodulc above mean cxactly
that v 0 f R is a bimodule epirnorphisll1.

One can check that (X 0 R) 0n (X' 0 R) ~ (X 0 X') 0 R; heuce the birnodule
(X 0 R) 0n (X' 0 R) is ß-artinian. The ephnorphisIns

v 0 fR : X 0 R ---+ M and v' 0 f' R : X' 0 R ---+ M'

induce a birnodule cpimorphism fronl (X 8R) 0n (X' 8R) ~ (X 0X') 0R to M 8n M'.
According to 1), this implies that M 8n M' is a ß-artinian bimodule. -

In general, the subcategory ArtßR of ß-artinian binlodules does not contain with each
object all its subobjccts. In other words, it is not topologizing.

We denote by !1ß the minimal coreflective topologizing Inonoidal subcategory (i.e. a
subscherne) of R - b1: containing the subcatcgory ArtßR of ß-artinian bimodules. We caU
!1 ß the ß-diagonal 01 R - bio

1.3.2. Remarks. (a) It follows from the proof ofProposition 1.3.1 that !1ß is the 11linhnal
subscheine of R - bi containing all R-birnodules X 0 R, X E Obe.

(b) It follows from Lenlma 1.5.10.4.1 anel Proposition 1.3.1 that Obßß consists of
subobjects of ß-artinian bimodules. _

1.3.3. The ß-commutative case. Suppose that R = (R, JL) is a ß-commutative algebra
in C-; Le. 11, 0 ßR,R = JL.

1.3.3.1. Proposition. Let R be ß-commutative. Then!1 ß = ArtßR and it is a Zariski
closed subscheme ofR- bio The category R-mod 01 Zejt R-modules is naturally isomorphie
to ßß.

Proof. (a) It follows froIn ß-comnllltativity of R that, for any R-modnle (M, m), the
tripie (711., M, mo ßM,R) is an R-birnodulej and the Inap I ß which assigns to each (M,111.)
the R-bimodule (m, M, rn 0 ßM,R) and acts 'identically' on Illorphisnls, is an exact and
fully faithful functor from R - mod to R - bio Clearly Lß takes values in the subcategory
ArtßR.

Moreover, I ß respects and reflects both limits and coliuuts which implies in particular,
that thc image of I ß is a topologizing subcategory.

Note that all biInodules of tbe fonn X 8R, X E ObC, are images of the corresponding
R-Inodules X 0 R := (X l1, 0 ß~R,X0R, X 0 R). Since cvery ß-artinian bimodulc is an
epiIuorphic image of a biInodule of the forIll X 0 R (cf. tbc second part of the arguInent
of Proposition 1.3.1), it follows that the iInage of the functor Iß coincides with thc sub­
catcgory ATtßR of ß-artinian binl0dulcs. By Proposition 1.3.1, the subcategory ArtßR
is coreftective for any R. Since it is topologizing, we have the equality A7·tßR = !1ß. It
reIllains to show that the subcategory ßß is reflcctive.

(b) Since R is ß-comInutative, R 0 Rß is ß-colllmutative. In particular, Jjj is a two­
sided ideal, and R 0 Rß / J~ ~. R. The image of R - mod in R - bi consists exactly of

13



bimodulcs annihilated by Jw So that thc COIllposition of thc tensoring by R over R 0 Rß
with the 'forgetting' functor R. <::) RP - mod = R - bi~ R - mod is a right acljoint to the
functor Lß.

Another way to speIl it:
For any birnodule M = (m, M, v), the coequalizer M' of v, m 0 ßM,R : M 0 R --t M

has a unique R-biInodule structurc such that the canonical epimorphism M ~ M' is a
bimodule 11lorphisIll. One can check that thc binlodule M' = (m', M, v') belangs to D..ß.
The lnap M f---7 M' detennincs a functor which takes values in D..ß anel is left adjoint to
the inclusion functor Jß : D..ß ~ R. - bi; Le. the subcategory D..ß is reflective.•

1.3.3.2. Corollary. Let R be ß-commutative. Then the defining ideal 01 D..ß is the
tensoring by JJL over n <::) Rß. The conormal bundle is the tensoring by the bimodule
O'R := J~j(J~) 01 'differential l-forms' over R 0 Rß.

1.3.3.3. Note. In the classical case, when C- is (Z - mod, 0), or, lllore generally, C
is (k - mod, ®k, k) for some COIlllllutative ring k, any algebra R in C- is a generator
of thc catcgory R - mod. This ilnplies, in the case when R is comnlutative, that the
lllinimal subscheme D.. containing the biInodule R coincides with thc iIllage of the functor
Iß. Usually, this is not the casc. Take as an exaIllple the catcgory of Zj2Z-graded spaces
over a field k, and R = R{) = k.•

1.4. Differential and ß-differential actions. We begin with introducing differential
actions on objects of an arbitrary abelian catcgory.

1.4.1. Differential actions. Fix a ll10noidal subcategory C- of <EnDA and a monoidal
subcategory 11" of C-. Let M, N be objects of A, X E ObC; ancllet f be any 1l1orphisIll (an
'action') X (M) ~ N. We call thc morphisrn f a T-morphism if there exists an object
X' of 'TI" and rnorphislllS </> : X ~ X', f' : X' (M) --t N such tllat f is the conlposition
of </>(M) and f': f = f' 0 </>(M).

1.4.2. Example. Every Illorphislll f : M ~ N of A is regarded as a ulorphisln
1(M)~ N. Since 1=IdA E ObD.., any Inorphism of the category A is a D.. --illorphisln.•

Fix objects M and N of thc category A. Let Q)1f(M, N) denote the category objects
ofwhich are pairs (X, f), wherc X E ObT, f is a lllorphislll X(M) ~ N; IllorprnsIlls frolll
(X, f) to (X', f') are morphislllS rP : X -----+ X' such that f = f' 0 rP(M).

Denote thc final object of the category Q)'J:(M, N) (if any) by f)T(M, N). For any thrce
objects, L, M, N, we have a natural 'COlllposition' functor

(1)

which assigns to a pair of objects (X, f), (Y, g) of resp. Q)rr(M, N) and Q)y(L, M) the
object (X<::) Y, f 0 Xg) and sends a pair of morphislllS, (rP, 'Ij;), into </> 0 'Ij;.

Thus, with any abelian category A and a lllonaidal coreflective subcategory 1r of ~nilA,
we associate the bicategory 01 1r-actions TA.

The COlllposition functor CN,M,L (cf. (1)) induces a composition map

CN,M,L :' S)T(M, N) 0 S)y(L, M) ~ f)T(L, N)
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whenever the objects S)y(M, N), S)T(L, M), and S)1(L, N) exist.
In particular, if S)T(M, N) exists for any M, NEObA, the composition Inorphisms

{CNlM,L ) L, M, N E ObA} determine a structure of a 1r-category on A. We denote this
1r-category by S)TA.

Let 1r = §oo for some subscheIne § of C-. In this case we caU the bicategory QS']['A
the bicategory 0 f § - differential actions and the category SJTA tlt e category 01 § -differential
operators on A. Anel we shall write 1'iffsA instead of 01'A and Dif fsA instead of S)TA.

If S = ~, then S shaU be omitted; i.e. we shall write 1'iffA and Dif fA anel caU them
resp. the bicategory 01 differential actions and the category of differential operators on A.

1.4.3. ß-Differential bimodules and operators. If S is thc ß-diagonal of C- for some
quasi-sYlnmetry ß, we replace '§-differential' by 'ß-differential'. In particular, we wi 11 talk
about ß-diffe,ential actions anel operators. The bicategory of ß-elifferential actions anel the
corresponeling (~ß-)category will be elenoteel respectively by i1iff:A anel by Diff: A.

1.4.4. Strongly ß-Differential bimodules and operators. Now let § bc the subcat­
egory Artß'R of ß-artinian 'R-bimodules. In this case, we call the S-elifferential bimodules
anel actions strongly ß-differential. The bicategory of strongly ß-differential actiolls and the
corresponding (.6.? - )category will be denoted respcctively by 1'iffffJlA and by Dif ffIi A.

1.4.4.1. Lemma. Fix two 'R-modules - 9J1 = (rn, M) and 91 = (v, N). Assume that
there exist.'J an inner horn, Sjom(M, N). Then there exists the inner R-rnodule horn,

S)om(9J1, 91) = SJom'R. (9J1, 91) and the object Diff: Jl um, 91) 0/ strongly ß-differential oper­
ators f,om 9J1 tn 91.

Proof. The fact foUows from the assumption that C is a category with the property
(sup) anel from Proposition 1.3.1. •

1.4.4.2. Upper ß-central series and strongly ß-differential bimodules. Thanks
to Proposition 1.3.1, we can define, for any 'R-biInodule M in C-, the upper ß-central
series of M as the filtration {3ß,nM I n 2: -I}, where 3ßl- 1M = 0, and 3ß

l
nM is the

Artß'R(nttorsion of M. We define 3ß,ooM bcing the supremu1l1 of 3ß
l
nM for all n. Sirrce

ArtßR ~ D,,-ß, thc subcategory Artß'R(n) is containeel in .6.~n) for all n. Therefore, for any
M E ObR - bi, 3ß,ooM is a subobjcct of tbe ß-differential part of M. We shall call3ß,ooM
the strongly ß-differential part of M. The reader cau check that the facts of Section 1.5.10
can be ad~pted for quasi-symIllctric categories.

1.4.4.3. Strongly differential operators of zero order. Thc subbimodule 3ß
l
oM of

M cau be defincel the same way as in the cIassical case. Namely, thanks to the property
(sup), we can define the center 3ß

l
oM of thc bin10dule M = (rn, M, v) as the supreU1U111

of subobjects u : X ---+ M such that thc eliagram

u0idROßX,R
X8R ----+ R0M

1t 0) idR 1 1m
v

M0R ----+ M

is COIllmutative. Now, since the functor R0 is compatible with colilnits, 3ß,oM is the iInage
R . 3ß,oM of R 0 3ß,oM -+ M.
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Let now L = (u, L) alld N = (v, N) be R-nlodulcs such that there exists thc inner hOln
.from L to N: Sjom(L, N). Thcn 3ß,onom(L, N) coincides with the inner hOln Sjomn(L, N).
Therefore 3ß,nSjom(L, N) is generated by the object of R-modulc Inorphilns from L to N
anel thc left action of R.

In particular, if .c = N = R, then the object differential operators on R of order zero
is generated by lcft and right multiplications by R.

The next term of thc canonical filtration of the bilnodule S)om(L, N), the object of
strongly ß-eIifferential operators of oreIer ::; 1 is gcncratcd by operators of order zero and
by ß-derivations.

1.5. ß-derivations. Fix a quasi-synllnetry ß in the Inonoidal category C- and an asso­
ciative algebra R = (R, /L) in C-. Let M = (m, M, v) bc an R-biInoelule. Here m and v
denote resp. left and right action of n.Aß-derivation of R in thc biInodule M is a pair
(X, d), where X is an object of C and d is a morphism X<::) R ---+ M such that

d 0 XJ1. = v 0 dR + moRd 0 ßx,RR

1.5.1. Lemma. For any R-bimodule (m, M, v) in C- J the I ß-bracket'

adß = v - m 0 ßM,R : M <::) R ---+ M

is aß-derivation.

Proof. We have to show that

adß 0 RJ-L = v 0 adßR + m 0 Raclß 0 ßM,RR.

The left part of this equality is

(11 - rn 0 ßM,n) 0 Ril = voMJ-L - 111. 0 J1.M 0 ßM,R0R

Expancling the fight part of (1), we obtain:

v 0 ((v - mo ßM,R)R + mo R(IJ - rn 0 ßM,R) 0 ßM,RR) =

(3)

(1)

(2)

vovR- (vomR- moRv) OßM,RR-1noR1n o RßM,R OßM,RR = vovR - mORrrtoßM,R0R

since RßM,R 0 ßM,RR = ßM,R0R and M is a binlodule; Le. v 0 mR = rn 0 Rv. Finally,
thc fact that v and mare resp. right and left R-module structures inlplies thc equalities
v 0 vR = v 0 MJl and mo Rm = 'lT1, 0 J-LM. This establishes (1) .•

1.5.2. Corollary. FOT any associative algebra R = (R, Il) in C , the I ß-braeket '

adß = IL - Jl 0 ßR,R : R (0 R ---+ R

is a ß -derivation.
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The derivation adß of LeIllIlla 1.5.1 (and Corollary 1.5.2) is called theinner ß­
derivation of thc 'R-bimodule M (resp. of the algebra 'R).

A nlorphislll froln aß-derivation (X, d) to aß-derivation (X', d') is any arrow f :
X ---+ X' such that d = d' ofR. The cOlnposition is defined in a stanelart way. Denote thus
elefineel category of derivations in M by -Der'R,ß(M). And let Der'R,ß(M) denote a final
object of the category - Der'R,ß(M) (ir any).

For any left 'R-llloelule M = (m, M) and any object X of C, X 0) M will denote the
module (X7noßA n,xM, X0)M), where ßA X,R = ßX~R' For any pair N, M of'R-binlodules,

let - SjomR.-b-i(N, M) denote the category objects of which are pairs (X, f), where f is an
'R-bimodule morphisln X 0) N ---+ M.

Finally, let ~J, be the kernel of thc lnultiplication IL : R 0) R ---+ R.

1.5.3. Proposition. The eategory 01 derivations -Der'R,ß(M) is isomorphie to the eate­
gory ~ .f)omR.-bi (JIJ.' M).

In particular, the category -DerR,ß (M) has a final oby'eet, Dern,ß (M), iff there exists
a final oby'ect SjomR.-b-i (JIJ.' M) 0/ the categollj -.f)om'R-bi (JIJ.' M).

Proof. (i) Note that if d : R ---+ M is a derivation, then X d : X 0) R ---+ X 0) M is a
ß-derivation in X 0) M := (Xm 0 ßA x,n, X 0) M, Xv), where ßA X,R = ßX~R'

In fact,

Xd 0 Xp, = X(m 0 Rd + v 0 dR) = (Xm 0 ßA x,nM) 0 R(Xd) 0 ßx,RR + Xv 0 XdR.

(ii) Ir d : XR ---+ M is a ß-clerivation in M = (111" M, v) anel 'P : M ---+ M' is a
bimodule morphism, then 'P 0 d is aß-derivation in M'.

(iii) The lllorphislll R71 - TJR : R ---+ R 0) R (where TJ is thc unity of (R, J-L)) is a
derivation in (J-LR, R 0) R, Rp,) which takes values in JIJ. := K er(J-L). Therefore it induces a
canonical derivation \7 : R ---+ ~J,'

(iv) Consider the functor, F, which assigns to any object (a 'R-bimodule rnorphisDl)
'P : X 0):J1J. ---+ M of the category - .f)omR.-bi (JJ.L' M) the ß-dcrivation 'P 0 X\7 and rnaps
arrows identically.

We claim that F is an isomorphisITl of -SjomR.-bi (3jJ.' M) outo -Dern,ß(M).
Let d : XR ---+ M be aß-derivation in M = (111" M, v). Set

FA d = (-771, 0 Rd 0 ßx ,R) 0 X LIJ. (4)

where LjJ. is the clllbedding JIJ. -----+ R 0) R. The 11lorphislll FA d is a biDlodule lllorphislll
froln X 0 3IJ. to M.

Indeed, one can check that FA d is a Illorphislll of left R-Iuodules. Since d is a ß­
derivation, FA d = v 0 dR 0 X LjJ, which implies that FA d is also a morphisru of right
'R-modllles.

Thc map FA extends to a functor FA :- Der'R.,ß(M) ---+ - .f)om'R.-bi(:JjJ., M) mapping
arrows identically.

We have: F"('P 0 X\7) = 'P for any bimodulc morphisDl 'P : X 0) J11- ---+ M. And
F(FAd)=d.•
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1.5.4. Corollary.. !f, for any two objects, X, Y of C, there exists an inner Horn,
Sjom(X, Y~, from X .to Y, then Dern,ß(M) exists for any Tl-bimodule M.

Proof. Recall that Sjom(X, Y) is an object of C representing the functor C(? ® X, Y);
i.e. C(? ® X, Y) ~ C(?,Sjom(X, Y)).

One can ·show that the existence of Sjom(J~,M) implics the existence of the inner
homSjomn-bi(J~,M),M = (m,M,v). -

1.6. Note on D-calculus for ß-commutative algebras. If Tl is a ß-colnmutative
algebra, one can ilnitate the classical approach (outlined in Section LI) to dcfinc differen­
tial bilnodules and algebras, and recover analogs of structurcs (like de Rharn and Koszul
cOlllplexes etc.) used in the conventional situation.•

1.7. Digression: the subcategory L), -. T he lnininlal subscheille L), - of Tl - bi containing
thc bilnodule R is, usually, a srnall part of thc ß-diagonal L),ß. If Tl is ß-COllllllutativc,
the subcategory b..ß is reflective ('Zariski closed'). It is not clear (actually, doubtful) if
the subcategory b.. - is also reflcctive whenever Tl is ß-COllllllutative. We can prove the
reflectiveness of b.. - only nuder certain additional assnillptions:

1.7.1. Lemma. Suppose tha t 1 is a projective 0 bject 0f the categollJ C. A ssurrw that
either C has small direct sums, 01' 1 is an object of finite typ~ And let R = (R, f-L) be a
ß-commutative algebra in C- such that, for any nonzero ideal J of R, C(l, J) i= O. Then
b.. - is a refiective subcategory of Tl - bio

Proof b) Undcr thc conditions on R, the 'diagonal' subcatcgory b.. - is gellerated
by all Tl-bilnodules M such that, for any nonzcro subobjcct N of M, the1'e exists a
nonzero bimodule lliorphism from Tl to N. 01', equivalently, Obb.. - consists of all bilnodules
M = (m, M, v) such that, for any nonzc1'O subobject X of M, there exists a nonzero
lnorphislll frOlll 1 to X.

Denote by Cl the fnIl subcategory of C generated by all objccts X of C such that
C(l, X) = O.

It follows fronl the projectivity of 1 that the subcategory Obel is topologizing.
In fact, any nonzero morphism f from 1 to a subquoticnt Y of an object X Cän be

lifted to a nonzero lllorphism frolll 1 to X. So that if X E Obel , thcn Y is an object of Cl
as weH. Clcarly Cl is closcd under ffi.

Snppose that Y is the supremum of an increasing chain {YaJ of subobjects of an
object X. Suppose that all Ya are objects of Cl.

If 1 is of finite type, then C(1, Y) ~ colimC(l, Ya ) = O.
If there exists a direct surn EI1Ya , then C(l, ffiYa ) ~ C(l, Ya ) = 0; Le. ffiYa is an object

of Cl. the nlonomorphislllS Ya ---+ X incluce an epimorphislll EBYa -t Y = sup{Ya }.

Therefore, thanks to the lifting property, the existencc of a nonzero arrow frolll 1 to Y
would hnply that froln 1 to EBYo .

By Zorn's Lelnlna, each object X of C has the biggest subobject, XI, from Cl. In
othcr words, the subcategory Cl is corcfiective.

Denote by C' the full subcategory of the category C generated by all X E ObC such
that, for any subobjcct Y of X, C(l, Y) i= O.
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We claiul that, for any X E ObC, the object X' = xIXl belongs to C'. Suppose
that Y' is a subobject of X' such that C(1, Y') = O. And let Y be the preimage of Y' in
X. The composition of any Inorphislll f : 1 --t Y with thc projection Y --t Y' is zero
by assumption; i.e. all lllorphisms frolll 1 to Y factor through the subobject Xl of Y.
Hence C(1, Y) = O. Due to the maxitllality of Xl, this nIeans that the canonicallnorphism
Xl ---+ Y is an isolnorphism; Le. Y' = O.

(b) Let M = (m, M, v) be an R-billloduie. One can sec that MI is a subbimodllle of
M; and the quotient bhnodule belongs to ß. Thc functor assigning to each billlodule M
this quotient is right adjoint to the elnbedding of ß - into R - bio •

1.7.2. Note. It follows from the projcctivity of 1 in C that R is a projcctive R-lllodule.
In fact, any R-modulc morphislll f : R --t M = (M, m) is uniquely determined by

thc composition of fand the unity e : 1 --t R. If 9 : (N, v) --t (M, rn) is an R-lnodule
ephnorphisln, then, by hypothesis, there exists an arrow u : 1 ---+ N such that 9 0 u = f 0 e.

Clearly the map f' = voRu : R ---+ N is an R-lllodule morphism which lifts f: 9 0 f' = f .
•
1.7.3. Example. If C- is the monoidal category of r-graded k-rnodulcs (cf. Exanlple
1.0.4.2), the condition of Lemma 1.7.1 holds.•

2. ß-Differential monads and localizations.
Now we will discuss the compatibility of ß-differential 1110nads with localizations. We

begin with a general observation.

2.1. P roposition. (a) Let S be a corefiective subcategory 0 f cenDA. A nd let F : A ---+ A
be (Ln S-object (i.e. F E Ob§OC). Suppose that F is an exact junctor. Then, for any Serre
subcategory T stable v..nder alt functors from §, the functor F induces an endofunctor FT

in the quotient category AlT.
If the localization A ---+ AlT has a light adjoint, then F'Jf E (EnDAT , i.e. FT has a

rigId adjoint.
(b) Let IF = (F,I"") be an S-monad such that the functor F is exact.
Then, for any Serre subcategory T stable under all functors from S, the monad lF

induces a monad IFT in the quotient category AlT and a canonical exact and faithful functor
'l''Jf : IF - mod/~-l(T) --t 1FT - mod.

If the subcategory T is Jlocalizable' (i. e. the locnlization A ---+ AlT has a light adjoint)J
then the functor 'l'T is an equivalence of categories.

Proof. Thc fact follows froln Propositions 1.6.1. •

We shall analyze thc stability conditions of Proposition 2.1 in thc case when A is the
category R - 7nod for SOllle associative algebra R in a monoidal category C- = (C, 0,1)
and S is the subcategory ArtßR of ß-artinian R-bitnodules (cf. the end of Section 1.3.1
and 1.3.3).

2.2. Lemma. Let X be a set of generators ofC. And let T be a full corefiective subcategory
ofn - mod containing with each object all its quotients (in R - mod) and stable under the
functors

X0 : R - 7nod ---+ R - rnod, (m, M) H (X 0 m, 0 ß~R,xM, X 0 M)
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for all X Ex. Then l' is Artß-stable.

Proof. For any Y E ObC, there is a natural functor isornorphisrn: (Y 0 R)0n ~ Y0 .

Therefore [1r is x-stable] {=} [1r is stable under the functors (X 0R)0n for all X EX]. But
then, being a coreflective subcategory of R - 1nod, T is stable under coliInits of functors
(X 0 R)0n, X E x. Since X is a set of generators on C, any ß-artinian R-bimodule
is a colirnit of bimodulcs {X °R, X EX}. Thereforc, 1r is stable under M0n for any
M E Ob~ß' •

2.3. Example. Let f be an abelian group, k a COlllIllutative ring. And let R be a f­
graded associative k-algebra. In other words, R is an algebra in the nlonoidal category C­
of f -gradcd k-modules. Suppose that ß is the standart symnletry.

For any f-graded R-module M = EB,ErM, and n.ny v E f, denote by M(v) the
translation of M by v : M(v), := M(v +,) for all , E f. It follows fronl Lernma 2.2 that
a Serre subcategory 1r of R - 1nod is ~ß-stable iff it is stable with respect to translations;
Le. if M E ObT, then M (lJ) E Ob1r for all v E f .•

We have the following analog of Proposition 1.6.3.1:

2.4. Proposition. Let X be a set of generators ofC.
ra) Let M be a strongly differential R-bimodule. 11 M is flat as a right R-module,

then, for any Berre subcategory 1r 01 R - 11~od stable under the functors X 0, X E ObC, the
functor M0R induces a lunctor My : R - mod/1r --+ R - mod/1r.

(b) Let R --t A be an algebra morphism such that A is a strongly differential R­
bimodule flat as a light R-module. Then, for any Berre subcategory 1r of the category
R - rnod, stable under the functors X0, X E X, the algebra A induces a monad, AT, on
R - mod/1r.

Proof. The fact follows frorn Proposition 2.1 and Lernrlla 2.2.•

Therc is also a dircct generalization of Proposition 1.6.3.2:

2.5. Proposition. Let R ---7 R' be an algebra morphisrn such that the functor Q = R'0n
is an exaet loealization. Then

(a) Any strongly differential R-birnodule M whieh is fiat as a right R-module deter­
mines a strongly differential R ' -bimodnle M' = R' 0 R M 0 R R'. And M' is isomorphie to
R' 0R M as (R', R)-bimodules.

(b) 11 M E ObArt~~1., i.e. if M is a strongly differential R-module of the order ~ n,

then the R' -module M' has the order ~ n: M' E ObArt~~hl.
(c) Let R --+ A be an algebra morphism such that A is a strongly differential R­

bimodule flat as a right R-module. Then R' 0R A has a unique algebra structure such that
the canonical maps A --+ R' 0R A +-- R' are algebra morphisms. And R' 0R A is a
strongly differential R' -bimodule.

Proof. 1) Let M be an R-bimodule. By LemrllaI.6.2.3, thc functor M0n is compatiblc
with the localization Q : R - mod ---7 R - rnod/S Hf thc canonical nlorphisrll

(1)
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is an isomorphisIll. In thc case when R - modlS= R' - mod for ,some algebra R', hence
Q can be taken eqllal to R'0 R, thc isolllorphness of (1) Illeans that thc canonical R', R­
biInodllle IlIorphisill

R' 0n M ~ R' 0n M0R R' (2)

is an isomorphisIll.
(a) Let M be a strongly differential R-bimodule. By Proposition 2.4, the functor

M0n induccs a fllnctor MT, where 1r is the kernel of the localization Q. Since Q = R'0R
for some k-algebra morphisIll R ~ R', the canonical morphism (2) is an isoIllorphism.
This proves the assertion (a).

(b) The assertion (b) follows frorn the fact that the functor R'0n, being a localization,
is exact and, for any R'-Illodule L, thc natural R'-module IllorphisIll R' 0R L~ L is an
isoIllorphism. In particulaI', we havc: R'0R R' ~ R' ~ R'0nR. Therefore if M E ObArtR,
i.e. M is a colinlit of a diagram of functors X 0 R, X E X, then R'0R M is a colimit of the
corresponding diagram of biIllodllles X 0 R'. The rest of the proof is astandart induction
arglunent which goes through thanks to the exactness of of the localization R'0R. Details
are left to areader.

(c) The fact follows from (a) and the assertion (b) of Proposition 2.4.•

2.6. The ß-commutative case. Propositions 2.4 and 2.5 provide thc following assertion.

2.6.1. Proposition. Let X be a set oJ generators ofC. Let Tl be a ß-commutative algebra.
And let M be a differential Tl-bimodule which is fiat as a right R-module. Then

(a) For any Serre subeategory T oJ the category A := 'R - mod, stable with respeet
to the Junctors X0, X E X the functor M0n induces a (unique up to isomorphism)
differential Junctor MT : AlT~ AlT.

(b) 1J the quotient category AlT is equivalent to Tl' - mod Jor some R-algeb7'a R',
then MT is isomorphie to the Junctor Tl' 0n M 0n.

Froo/. The fact follows frOlll Propositions 2.4 and 2.5 and the coincidence, for a ß­
COllunutative ring R, ofthe subcategory Artß,"R of artinian R-biInodules and the ß-diagonal
lJ.ßTl (cf. Proposition 1.3.3.1).•

2.7. Localization of differential actions in derived categories of categories of
modules. Let R be an algebra in thc monoidal category C-. Let A = R - rnod - the
category of left R-modulcs; and let B = R - bi - the category of R-binlodules. Thc natural
action

B x A ~ A, (M, N) I-t M 8n N

is an action of the monoidal category of R-biInodules, B- = (B, 0R, R), on A. This action
induces an action

<P : 1)- (B) x 1)- (A) ~ 1)- (A)

of thc nl0noidal derived category ;:D- (B) - of the bounded from above cOlnplexes ovcr B on
;:D- (A).

Fix a Serre subcategory S of A. And let Bs denote the full subcategory of B gencrated
by all R-bimodules M such that the functor M8n preserves S. Denote by ::D-S the full
subcategory of 1)- (A) generated by all COIlIplcxcs X of R-modules such that Hn(x) E ObS
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for all n .. ·The category ~-S is·"a thick-subcategory of ~- (A)·. By astandart· argument
(using spectral sequence) one cau show that the action of the snbcategory 1)- ßs of 1)- (8)
preserves ~-§; Lc. the restrietion to ~-Bs x 1)-S of thc funetor 0~. : 1)- (8) x 1)- (A) ----+
1)-(A) takes values in 1)-S.

One of conscquences of this fact is the following generalization of Proposition 1.6.4.1:

2.7.1. Proposition. For any Serre subcategory S 01 A = R - 1nod, the action 011)- ßs
on 1)- (A) induces an action of1)-ßs on the quotient triangulated category

2.7.2. Proposition. Let x be a set of generators of the categ0111 C. And let § be any Serre
subcategory of A = R - 1nod. stable with respect to the functors X 0 for alt X E x Then
there is a natural action 01 the category Art~n 01 strongly ß-diiJerential R-bi1nodules on
1)- (A)/1)-S.

Proo/. Thanks to the stability of S with respect to the endofunetors X 0 : A --+ A,
the subeategory Artß:n is contained in the subeategory Bs.•

2.7.3. Proposition. Let IF = (F, J-L) be an algebra in 1)- Bs (i.e. IF is an algebra in
the monoidal category 1)- (ßf such that F E Ob1)- Bs). Then IF determines a monad
IFs = (Fs, J-Ls) on 1)- (A)/1)-S.

A localization Q 1)- (A) ----+ 1)- (A)/1)-§ induces an equivalence 01 triangulated
categories

\lJ : IF - mod/J- 1 (D-11') --+ IFs - mod,

where ~ is a lorgetting lunctor IF - rnod ----+ 1)- (A).

Proo/. The assertion ean be provcd by the argunlent used for a sinülar statclllent in
Proposition 1.6.2.2.•

Denotc by .61)- (B) the full subcategory of :1)- (B) generatcd by all cOlnplexcs X of
R-bimodules such that Hn(x) is a strongly differential bimodulc for all n.

2.7.4. Corollary. Let X be a set 01 generators 01 the category C. Let IF = (F,JL) be an
algebra in B = R - bi such that F is a strongly differential R-bimodule. Then, for any
SeTTe subcategory 1r 01 A = R - mod stahle with respect to the endolunctors X0, X E x,
IF induces a unique up to isomorphism monad IFT = (FT , 11,'[) on the triangulated categollj
I>- (A)/I>-11'.

A localization Q : 1)- (A) --+ 1)- (A)/1)-11' induces an equivalence 0/ triangulated
categories

\l1 : IF - rnod/J- 1 (11') ----+ 1Fy - mod,

where J is a lorgetting functor JF - 1nod ---t 1)- (A).

2.8. Localization of differential operators. The (not necessarily strongly) ß-differential
binlodules are eOlnpatible with loealizations given by R'0n for an algebra Inorphisrn
R ----+ R' slieh that R'· is a flat left R-1110dule as weIl.
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· Fix. a ..Jalllily....X_of ,generators.,of rthe .catcgory C.· ·We assurne .,that R~ "satisfies·the
following property of x-stability:

2.8.0. Lemma. Let R -r R' be an algebra morphism such that R' is a flat left R­
module. And let X be a family of generators of the category C. The following conditions
are equivalent:

(a) 1f L E ObR - 1nod is such that R' 0 L = 0, then R' 0 (X 0 L) = 0 for alt X E x.
(b) 1f L E ObR - mod is such that R' 0L = 0, then R' 0 (X 8L) = 0 for' alt X E ObC.

Proof. This follows frolu the fact that thc functor R'8R is compatible with colimits.
The detaiL" are left to the reader. •

2.8.0.1. Example. Let r be an abelian group, k a cOlllmutative ring. Let f : R -r R' be
a morphislll of r -graeleel associative k-algebras. In othcr words, f is amorphisIll of algebras
in the lllonoiclal category C- of r -graeleel k-llloelules. For any graded R-module L anel any
, E r, denote by L(,) the r-graded R-Iuodule with the components LC"j) v = L(,+v) for all
vEr. The equivalent conditions ofLeluma 2.8.0 mcan that R'0nL = 0 {::} R'0RL(,) = 0
for all , Er<=> R'('"Y) 0R L = 0 for all , E r .•

2.8.1. Proposition. Let R ---+ R' be an algebra morphism such that the functor Q =
R'0R is an exact localization and R' is flat as a left R-module toD. And let R' satisfies the
equivalent conditions of Lemma 2.8. O. Then

(a) For any R-birnodule M which belongs to b..ß, the ftJ.nctor M0n is compatible with
the localization Q = R'8n. Or, equivalently, the canonical (R', R)-bimodule morphism
R' 0n M ---+ R' 0R M 0R R' is an isomorphism.

(b) 1f M E Obb..~:1, i. c. if M is aß-differential R-bimodule of n-th order, thcn the

R'-bimodule M' has the same order: M' E Ob6.~~11'
(c) Let r.p : R ---+ A be a differential algebm (i. e. r.p is an algebra rnorphism turning A

into aß-differential R-bimod711e). Then R' 0n A has a uniquc algebra str7J.ct71re such that
the canonical arrows A ---+ R' 0R A +--- R' are algebra morphisms. And R' 0R A is a
differential R' -bimod711e.

Proof. (a) Considcr the fnU subcategory B of R - bi gencrated by all modules M such
that the canonical (R', R)-bimodule Illorphislll

R' 8R M ---+ R' 0R M 8R R' (1)

is an isoluorphism. It follows from thc exactncss of thc functors R'8R and GnR' that :=: is
a Serrc subcatcgory of the catcgory R - bio Since S contains thc R-biInodule R, it contains
the Scrre subcategory 6.ß,R' According to thc part 1) of thc proof of Proposition 2.5, the
functor M0n is compatiblc with thc localization R'GR if and only if the nlorphisIll (1) is
an isoIllorphisn1. This proves the assertion (a).

The assertions (b) and (c) are proved by the same argument as thc corresponding
assertions of Proposition 1.6.3.2.•

2.8.2. Proposition. Let R -r R' be an algebra morphism such that the fnnctor

Q.= R'Gn : R -1nod ---+ R' - rnod
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is an exact localization.
(a) Let M' be an aninian R' -bi1nodnle. And let M := A7·tß,R.Q~(M') (i. e. M is the

ß-artinian part 01 the R-birnodule obtained f,om M' by restrietion of scalars). Then the
canonical moryhisrn <p : R' 0n M ----t M' is an iso'lnorphism of R'-bimodules.

(b) Let M' E D..ß,R' And let M := D..RQ"(M') (i.e. M is the D..ß,n-part of the R­
bimodule obtained from M' by restrietion of scalars). Then the canonical morphisrn <p :

R' 0R M ----t M' is an isomorphism of R-bimodules.

Proof. Thc proof is an adaptation of the arglullcnt of Proposition 1.6.5.2.
(a) Let M' be any artinian R'-bhnodnIe; i.e. there exists an R'-bimodnIe epimorphism

X 0 R' ----t M' for some X E ObC. We can include this epinlorphism into a commntative
diagram with exact rows:

o ----t K'

ro ----t K

----t X 0 R'

r
----t X 0 R

----t M'

r
----t M

----t 0

----t 0

(1)

Here the upper row is regarded a..f.5 a sequence of R-bhnodulc morphisnls; K is thc
pullback of thc corresponding morphislllS. Thus M is an artinian R-binlodule, and in the
COIU1l1utative diagram

o

o

K'

r
R' 0n K

----t X 0 R' ----t

r
----t R' 0 R X 0 R ----t

M'

r
R'0n M

o

o
(2)

the central vertical arrow is, obviously, an isomorphism. Since R'8R is an exact local­
ization, the canonical ephnorphism R' 0n L ----t L is an isomorphism for any R'-module
L; and R'0R sends universal squares into universal squares. Therefore the left vertical
arrow is an isoIllorphism too. This implics, since both rows of (2) are exact, that the right
vertical arrow is an isomorphism.

(b) Let llOW K' be any R'-bimodulc from the diagonal6.ß,R1 • According to Proposition
1.5.11.4.1, K is a sublnodulc of an artinian R'-bitnodulc M'. By (i), there exists an artinian
R-bitllodule M and an R-binlodulc 111onoll1orphislll M ----t M' such that the canonical
R'-bitnodule nlorphism R' 0R M ----t M' is an isonlorphisln. Let K be a puH-back of
thc R.-bimodulc rnorphislllS K' ----t M' f-- M. Then K is an R-subbirnodule of M,
bence K E ObD..ß,R; and thc canonical (R' 1 R)-birnodule morphism R' 0n K --+ K' is an
isornorphislu (cf. the argulnent in (a)) .•

2.8.2.1.. Corollary. Let R ~ R' is as in Proposition 2.8.2. Then, for any R' -birnodule
M', the canonical morphisrns

are isornoryhis7ns.

Proof. In fact, tbe canonical R'-nlodule morphislll R' 0 Artß,RQ" (M') ----t M' is a
monolllorphisIll (since Q = R'0R is a localization) anel, by Proposition 6.3.2, its irnagc is
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contained in· Artß,RIMI. Now' it, follows from the assertion (a) ,of Proposition 2.8.2 that
R,' 0R Artß,RQ" (M') -----7 Artß,R' (M') is an isomorphisln.

SiInilar argulnent (using the assertion (b) of Proposition 2.8.2) shows that R' 0
/j,ß,RQ" (M') -----7 /j,ß,R' (M') is an isomorphisnl. -

2.8.2.2. Note. If f : R -----7 R' is any IllorphisIll of ß-Col1lIllutative algebra", then, for
any ß-artinian (or ß-differential) R'-binlodule M', thc R-binlodule M = f#M' obtained
by restrietion of scalars is ß-artinian (resp. ß-differcntial) too. More generally, for any

R'-bimodule M' and for any nonnegative n, f#(/j,~~h,M) ~ /j,~~~(f#M) and, therefore,

f # (M~i f f) ~ f # (M) di f f· This follows frolll the observation that, as a set, /j,~~11 M is the
biggest subbiInodule of M annihilated by K R" where K RI is thc kernel of the multiplication
R' 0) R'ß -f R', and f 0) f(KR ) ~ KR,.

Clearly, in the case of a ß-commutative R, Proposition 2.8.2 is a consequence of this
fact. _

2.8.3. Proposition. Let R -----7 R' be an algebra morphism such that the functor

Q = R'0R : R - mod -----7 R' - mod

is an exact localization. A ssume that R' is /lat as a lejt R-rnodule.
Let M be an R-bimodule, M' := R' 0 R M 0 R R'. /f the natural mOljJhism M --+ M'

is injective, then, for any n 2:: 0,

(a) The morphism R' 0R /j,~~1M -----7 Ll~~~.IM' is an isomorphism. In particular,
R' 0R. Mdif f -----7 M~if f is an R-bimodule isomorphism.

(b) The morphism R' 0R Art~~1M -----7 Art~~hIM' is an isomorphism. In particular,
the map R' 8R Art~R(M)-f Art~n'(M') is an R'-bimodule isornorphism.

Proo/. (i) By Proposition 2.8.2, R'8nLlß,R(Q"(M')) -----7 Llß,n,M' is an isomorphism.
Let M be thc image of the canonical nlorphislll M -----7 R' 8 R M 0)R H' = M'. Clearly
Llß,n(M) = M n Llß,n(Q"(M')). Thc functor 11 : L ~ H' 0n L 0R R', being exact,
respects pull-backs. In particular, it respects intersections. Note tlIat

R' 0R M 0R R' n R' 0R ~ß,R.(Q"(M'))= R' 0R ~ß,R(Q"(M'))

It follows that in the commutative diagram

R,' 0n Llß,R(M) 0R R'

r
both vertical arrows and the upper horizontal arrow are isomorphisnls. Therefore the
nlorphism 4> : H' 0R ~ß,RM -----7 ~ß,RI M' is an isonlorphisrn.

(ii) Consider the commutative diagram

o-----7 H' 0n Llß,nM ----+ M' ----+ R' 0n (MI Llß,RM) 0R R' -----7 0

1 1id 1 (1)
o-t Llß,nIM' ~ M' ---t M' I Llß,R,M' -----7 0
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The both rows in (1) are cxact. The lcft vertical arrow.,is an -.isomorphisIll by (i).
Therefore the right vcrtical arrow, R' 0R (M/ßß1RM) 0R R' ---+ M'/ßß,RIM', is an
iSüI11ürphislll. Besidcs, thc injcctivity of the Il1orphisI11 M ---+ M' iI11plies that thc 11101'­
phis111 AtI/ .6..ß,RM ---+ M' / /j,ß,n' M' is injcctive. Now it follows by an induction arglullent

that R' 0R ß~~1M ---+ ß~~1,M' is an isümürphism für all n. The latter inlplies that
R' 0R Mdif f ---+ M~if f is an R-biznodule isomorphism.

The similar argUl11ent proves the assertion (b) .•

2.8.4. ·Localization of differential operators and coherent modules. An übjcct
X of the n10noidal catcgory C- = (cale, 0,1) is called finite if the functor S)om(X, -) ;
C ---+ C is isoIllorphic to the functor X' 0 - for SOlne object X'. Note that the object
X' is isolnorphic to thc dual objcct to X'; X' ~ S)om(X, 1); in particularly, it is defincd
uniquely up to isolnorphisIl1. We eall an R-Illodule L finite if L ~ R 0 X for sorne finite
object X of C-.

Wc call an R-module L coherent if there exists an exact sequence F1 ---+ Fo ---+ L of
R-modules with Fo and F1 finite.
2.8.4.0. Note. In order tü fonl1ulate the next proposition, we need a couple of observa­
tions.

1) Fix left R-ll1odules Land N. If N is a R 0 Sß-module für somc ring S, then
Hom(L,N), Diffn(L,N) Difft~(L,N), Dijf(L,N), and DijfS(L,N) have a natural
structure üf a R 0 Rß 0) Sß-Il1odule.

2) Suppose now that N is an artinian R-biznodule. Then, for any algebra IllorphislI1
R --+ R', the (R', R)-billlodule R' 0R.N is an artinian R'-biInodule and R'0nN ~ N0nR'.
In particular, Horn(L, N), Dif fn(L, N), Diff~(L, N), Dij j(L, N), and Dif f!i(L, N)
have a natural structure of a R 0 Rß 0 R'ß-Inodule.•

2.8.4.1. Proposition. Suppose that finite objects of C- form a class of generators of C.
Let R ---+ H' be an algebra morphism such that the functor

Q = R'0R : R - mod ---+ R' - mod

is an exact localization and R' is a flat left R-module. Let L be a coherent R-module (i. e.
there exists an exact sequence F1 ---+ Fo ---+ L ---+ 0, where F i are free modules 0/ finite
type). Then, for any artinian R-rnodule N, the natural R-bimodule morphism

Sjom(L, N) ---+ S)om(R' 0n L, R' 0R N)

induces, for all n ~ 0, isomorphisms

R ' 0R Diff~(L, N) 0n R'--+Diff~(R' 0R L, R' 0R N).

In particular, we have an R' -bimodule isomorphism

R ' 0R Dif fr,(L, N) 8R R'--+Di/ f!i(R' 0R L, R' 8R N).

(1)

(2)

Here Dif f!J (res]). Dijf~) denotes strongly differential operators (resp. strongly differen­
tial operators of order no greater than n).
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Proof. Set for conveniellce L' := R' 0n Land N' := R' 0n N.
For any R,'-binl0dllle X, we have a canonical isolnorphisIll

(3)

1) Assllnle that L = R 0 P for a finite object P. Then the right hand side of (1) is
Sjomnl(X 0 V, N').

(i) Supposc in addition that X = R' 0 V for SOlne finite V. Then the right hand side
of (3) is isolllorphic to SjomR' (R' 0 V 0 P, N') ~ (V 0 P) 0 N'. Here the second N' is
regarded as a right R'-module. Recall that, since N is artinian, N' ~ N 0n. R' (cf. Note
2.8.4.0). We have a canonical isomorphisIll

SjomR0RtJ (R (0 V, 5)om(L, N')) -t (V 0 pr 0 N' = (V 0 P)* 0 N 0n R'

constructed in a similar way, and the diagram

SjomR0RtJ (R 0 V, Sjom(L, N'))

1> 1
SjomR/0R'ß (R' 0 V, Sjom(L' ,N'))

---+ (V 0 P)* 0 N' = (V 0 P)* 0 N 0R R'

1id

---+ (V 0 P)* (-) N' = (V 0 P)* 0 N 0R R'

(4)

is COllllnlltativc. Here thc right vertical arrow 4> is a natural ruap. Since the hori:lontal
arrows in (4) are isomorphislns, 4> is an isolll0rphisrn. Thc rnap 4> assigns to each R­
birnodllie morphisln j : Xo := R (-) V -t jjom(L, N') a unique R'-bimodule morphisl11
j' : R' 0 V -t fJom(L', N') such that the diagrarn

R' 0n X o
idR,0R/

R' 0 5)om(L, N) 0R R'---+
id 1 1 (5)

R' 0V
f

Sjom(L' , N')-t

Here we identify R' 0R X O = R' 0R (71I,)R with R' 0 V.
This shows that, at least for a finite Inodule L, the map (1) induces an isoIllorphisIll

(2) for n = O.
(ii) Assume now that the isomorphism (2) is established for a positive n. Let f bc an

R'-birnodule rnorphism X -t fJom(L' , N') with X E ObArt1~~1) being an R'-bimodule
of finite type. There exists a short exact sequence

o-t X' ~ X ~ X" -t 0

such that X' E ObArt~~k and X" E ObArtß,R. Note that we can assume that X" is a
finite artinian R'-bimodule; i.e. X" = R 0 V for sorne finite V.

In fact, since X" is an artinian R'-birnodule of finite type, there exists a R'-biInodule
epirnorphislll'lj; : R(-) V -t X" for SOlllC finite m. Let Y denote thc pullback of the arrows

X ~ X" ? R0 V. Note that the 'projection' Y -t R0 V is an epinlorphism anel the
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kernei.of this projection is naturally isomorphic', to. X'. Thc othcr projection, Y-~' X, is
an epiInorphism too.

Thus wc assUll1e that X" = R 0 V.
Consider the diagram with thc exact row

o ---+ X' 0n L
./

1.

-------+ X0RL

f' 1
N'

---+ 0
(6)

Here /' denotes the morphisrn dual to j; i' := i 0R idL, e' := e 0n idL . Since L is a
finite R-module, L = R0P, X"0n L is a finite 111odule, X"0RL ~ R'0(V0P). Therefore
the exact seqllence in (6) splits: X 0R L ~ X' 0n LEBX" 0R L. The lllorphislll j' is the
product oflllorphislllS g' : X'0RL ---+ N' = N0n R' and h' : X"0RL ---+ N' = N0nR'.

According to (i), the R'-bimodule morphisl11 h: X" ---+ Sjom(L',N') dual to h' factors
through

R' 0n Dij fg(L, N) 0R R' ---+ SJom(L', N').

The 1110rphislll 9 : X' ---+ SJom(L', N') dual to g' factors through

R' 0R Dijj~(L,N) 0R R' ---+ SJom(L', N')

by the induction hypothesis. Therefore thc 1110rphism f factors through

R' 0n Dijft~+l (L, N) 0R R' ---+ SJom(L', N').

2) Assllllle now that L is an arbitrary finitely prescnted left R-module; Le. thcre
exists an exact sequence F1 ---+ Fa ---+ L ---+ 0, where Fa and F1 are finite R-ll1odulcs.
Therefore we have an exact sequence of R'-bimodule morphisms

o ---+ Sjom(L', N') ---+ SJom(F~, N') ---+ SJom(F{, N') (7)

wherc F: := R' 0R Fi , i = 0,1. Since thc taking Art~~~,-torsion is a lcft cxact functor for
all n (because it has a left adjoint), we obtain froln (7) an exact sequence

o ---+ Dijf~ (L', N') ---+ Dijj~ (F~, N') ---+ Dijj~ (F{, N') (8)

for any nonnegative integer n. Since R' is a Hat left and right R-module, we have the
commutativc diagrarrl with exact rows:

---+Dijf~(F~,N')

rPo r
n J 0nDifj~ (F~,NJ )0RR'

---+Dij f~ (L' ,N')

rP r
R'0RDifj~ (L,N)0 RR'

Dif f~ (F; ,N')

rPl r
---+ nJ0RDiff~(F:,NJ)0Rn'

(9)
The vertical arrows rPi 1 i = 0, 1, are isomorphisIllS. Thereforc rP is an isomorphisIll.

o--+-
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3) Since. the Junctors R'0n and 0 nR' cOlllnnIte with colimits, it follows that the
lllorphislll R' 0n Dif ft't (L, N) 0R R,' ----+Dij jB (R' 0R L, R' 0n N) is an isolllorphisln.•

2.8.4.2. Proposition. Let R ---+ R' be an algebra morphism such that the /unctor

R'0R : R - 1nod ---+ R' - 1nod

is an exact localization and R' is a fiat left R-module (say the ring R' is the localization 0/
R at a left Ore set). Then

(a) The action 0/ D S (R) on R extend.5 naturally to an action on H' giving a canonical
ring hornomorphism D fi (R) ---+ D ß (R') which induces an R' -bimodule isomorphism

(b) For any D S (R) -module M, the R' -module R' (0R M has a natural, in particnlar
compatible with D lJ (R) ---+ D lJ (R'), structure 0/ a D lJ (R')-module.

Proof. The assertion (a) follows from Proposition 2.8.4.1.
(b) The assertion (b) follows from (a).•

2.8.4.3. Remark. If thc ring R (hence R') in Proposition 2.8.4.2 is cOIDlnutative, any R­
lllodule has a canonical structure of an artinian bhnodule, and the canonical isolllorphislllS

R ' 0R Dijj~(L, N) 0R R'----+Di/j~(R' 0R L, R ' 0n N).

and
R' 0R Dif jfi(L, N) 0R R'----+Dij jlJ(R' 0n L, R ' 0n N).

can be rcplaced by left R'-module isomorphisms

R' 0R Dijj~(L, N)----+Dij /t~(R' 0R L, R ' 0n N).

and
R ' 0R DifJß(L, N)----+Dif ffi(R' 0R L, H' 0n N).

In particular, we have a left R'-module isomorphislll

(1)

(2)

(3)

The morphisl11S (1), (2) and (3) makc sense in the noncommutative casc. They are
even R-bimodule Illorphislns. But, in general they are not isolllorphislllS (cf. Note 2.8.4.0) .

•
3. Differential operators on a symmetrie affine space.

Let k be a cOlnmutative ring. A skew affine k-algebra is the k-algebra R generatcd by
indetenninates Xi, i E J, subject to the relations:

XiXj = qijXjXi for some {Jij E k*, i, j E J.
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Here qii = 1 and qijqji = 1 for an i, j E J.
Let C be the monoidal category of ZJ-graded k-modules with thc product being the

graded tensor product over k. Anel let ß be the symmetry detennined by the Inatrix
q = (qij ) (cf. Exanlple 1.2.1).

Note that the skew affine algebra R is a ß-commutative algebra in the monoidal
category C- = (C, ®, k), where ® = ®k. Our next objective is to describe the algebra
Dß(R) of ß-differential operators.

3.1. Lemma. The R-module D,ß 01 i-folms is a free module of the rank 1J I.

Proof. Thc claim is that D,ß ~ ffiiEJRdi , where di has the parity i for each i E J. The
isol11orphisnl is given by

(1)

for an i E J .•

3.2. Lemma. Suppose that J is finite. Then the R-module Derß(R) of ß-derivations is a
Iree R -module 01 the rank I J I. Explicitly, Derß(R) = ffiiE J R8i , where a i is a ß-derivation
of the parity -i uniquely defined by

(2)

for all j E J and r E R (in particular, 8i (Xj) = bij).

Praaf. By Proposition 1.4.1, Derß(R) ~ SjomR(D,ß, R); and

SjomR(S1 ß1 R) ~ II SjomR(Rdil R) :::: II RaL
iEJ iEJ

where a~ is a 1l10rphisl11 such that aHdj ) = Vij. One can see that the corresponding to
the lllorphisin a:ß-derivation ai satisfies (is uniquely defined by) the conditions (2) of the
lelllma.

If J is finite, the product niEJ Ra: equals to thc direct Sl1111 EB iEJ R8:.•

3.3. Proposition. Suppose that the base ring k is a fieId of zero characteristic und that
J i.s finite. Then the algebra Dß(R) 01 differential operators on R is generated by Derß(R}
andR.

Proof. Let Aß(R) denote the subalgebra of Dß(R) generated by R anel Derß(R).
(a) Note that the Aß(R)-nlodule R is silnple.
In fact, since k is a field of zero characteristic, for any nonzero elelnent (polynomial

in x) f, there exists a polynolnial D in {Bi I i E J} such that D I is a nonzero elmllent of
k. Thus, for any 9 E kq[x], we have: (1/D f)gD(f)=g.

(b) Denote by Mn the set of an lllonoinials of degree ::;n. Since R is a siInple Aß(R)­
module, for any B EEnd(R), there exists, by the Jacobson's density theorelll, a a E Dß(R)
such that thc restrictions of Band a to Mn coincide. Clearly, one can ~sunle that a is of
order ::;n. If B is a differential operator of order::; n, then the difference, D = B - a is a
differential operator of order ::;~n such that thc restriction'of D to Mn is zero.
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(c) If.D~..is a· differential operator- of order- ~ n such 'that the··restriction of D ·to~Mn is
zero, thcn D = O.

1) The fact is certainly true for n = 0, because the differential operators of degree 0
are multiplications by eleillents of R. And they are uniquely determined by their values at
the identity elenlCnt of R.

2) Let now D be aß-differential operator of order n ~ 1. Anel suppose that thc
restriction of D to Mm is zero, 711, 2:n. Let b E Mm+I' Then b = rc, where c E Mm and
l' = Xi for some L We have:

D(rc) = (D(rc) - rßr(D)(c)) + l'ßr(D)(c) = [D, r]ß(c) + rßr(D)(c) (1)

where ßr is the automorphism acting as follows: if r = Xi, thcn ßr(D i ) = TIjEi qjiDi for

any multi-index i. Note that D(c) = 0 for all cE Mm iff Di(c) = 0 for all i E zJ. Therefore,
if D(c) = 0 for all c E M m , then ßr(D)(c) = 0 for all c E Mm and any r = Xi, i E J.
In partieular, for any c E M m - ll [D, r]ß(c) := D(rc) - rßr(D)(c) = O. But the order of
the differential operator [D, r]ß is ~ n - 1. Since m 2: n, [D, r]ß(c) = 0 for all C E Mn-I.
By induction hypothesis, this illlplies that [D, r]ß = O. Therefore it follows frolll (1) that
D(rc) = rßr(D)(c) = 0 for all C E Mm and r E MI; Le. the restrietion of D to Mm+l is
zero. Hence D = O. _

3.4. Note. One of the consequences of the proof of Proposition 3.3 is that any ß­
differential operator of order ~ n is uniqucly detennined by its valucs on monolnials in x
of degree ~n. _

3.5. Generators and relations in Dß(R). The natural generators are Xi, aj , i,j E J.
Here by Xi we lIlean the endonlorphism of llluitiplication by Xi. We know the relations
between different Xi, i E J (cf. (1)). Thc relations between Xi anel ai , i,j E J, follow
from Lenlllla 3.2:

(3)

We shall provc (- thc assertion (a) of Proposition 4.2.1) that thc relations betwccn
Bi, i E J, look as folIows:

Thus, Dß (R) is generated by Xi, Bj , i, j E J, subject to the relations:

8iXi - qijxj 8i = Oij for all i, j E J.

BiBi = qji 8j 8i

(4)

(1)

(3)

(4)

3.6. Playing with relations. For any i E .J, set ei = 8iXi. It follows from thc relations
of 3.5 that ~i~j = ~j~i for all i, j E J. Denote by A the algebra k[(~i)] of polynomials in
ei, i E J. Define automorphisms ()i, i E J, of the algebra A by the formulas:

(1)
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Then .wc.can·.regard' the" algebra- Dß(~) ·.of· 'ß-diffcrcntial ~op'eratO:rs- as ·a'~"k-algebra " ,...
generated by A and elenlents Xi, Bi subjcct to thc relations:

8iXi = ~i, x i8i = O;l(~i)

Bir = Oi(r)8i , rXi = xiOi(r)

(2)

(3)

(4)

for all i, j E J and r E R.
The relations (2), (3), (4) define an iterated hyperbolic ring in the sense of [RJ, Ch.IV.

Fix an m E J; and set Jm := J - im}. Let Dß,m be a subalgebra of D ß generatcd by
{Xi, Bi I i E Jm } and ~m. Clearly Dß,m is the algebra of ß-differential operators on the
(q- )subspacc of R gcnerated by {Xi li E Jm }.

We extend 0 to an automorphism 8 of Dß,m by setting

Then ~m is a central element of Dß,m, and Dß(R) is a hyperbolic ring over Dß,m
determined by the autor11orphism 8 m and the ccntral elenlent ~m. This allows, in partic­
ular, to rcduce (using the rcsults of (R], Chapter IV) the study of Dß (R)-r11odules (r11ore
specifically, thc left spectrum and irreducible representations of Dß(R)) to the study of
Dß,m-modulcs.

3.7. Example: q-difference operators. Let, again, wc have a symruetric lllatrix
{qij I i, j E J} with entrees being invertible elcrnents of a ring k. Consider the k-algebra
n = k[x]q[t] generated by polynornial rings k[(xdJ and k[(ti)], wherc Xi and tj satisfy the
following relations:

(1)

Note that if qii = q E k· for all i E J and qji = 1 when i =I- j, the algebra R coincides
with the introduced by C. Sabbah algebra 0/ q-differences operators on the 'affine space (cf.
[Sa]).

Set Xiti = ~i' For any i, j E J, we have:

Let Adenote the k-algcbra generated by COllulluting elenlents ~i, i E J. There are 110

other relations between {~d; so that thc algebra A is iSOI110rphic to the algebra k[ {~i} J of
polynomials in {~i I i E J} with coefficicnts in k.

For each i E J, define the autoIllorphism ()i by the formula ()i(~j) = qij~j for all j E J.
Then the ring R is a k-algcbra generated by A, and elcnlents {Xi, ti I i E J} sat isfy ing the
relations:

Xiti = ~i, tiXi = ();l(€d,

xi a = Oi(a)Xi, ati = tiOi(a)

for all i E J and a EA. 1.e. R is a hyperbolic ring over A.
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Consider the k-algebra R- generated by the algebras k[x, X~lJ and k[t~t-:-lJ ofLaurent . ­
polynoInials resp. in x = {Xi} and t = {ti} with relations (1). This algebra is ealled (in
[SaJ) algebra 0/ q-differences operators on the torus. In tenns of the elements {~i}, the
relations are (2) and (3). But this tiIne the elements Xi and ti (henee ~i) are invertible for
all i E J. So that thc ring A of polynoInials in €i should be replaced by the algebra B of
Laurent polynolnials in ~i, and ti = xi I €i for all i E J. This shows that the algebra R - is
isomorphie to the algebra of skew Laurent polynoulials in x = {Xi} with coefficients in B.
'Skew' -Ineans the relation Xib = (Ji(b)3;i for all bEB and i E J.

3.7.1. A tensor-category viewpoint. Denote by C2 the eategory of ZJ x ZJ-graded
k-Inodllles with the graded tensor prodllct. Each object M of C can be regarded as a direct
sum M = Mo E9 MI of ZJ-graded k-modllles. In other words, if C denotes the category of
ZJ-graded k-Inodules, C2 is t.he category of Z2-graded objects of C.

We define the strlleture C; = (C2 , 0,1) of a monoidal category on C2 , taking as ® the
graded tensor product and thc lnodule k (with zero grading) as the identity object 1. Now
we define a symlnetry ß in C; setting

ß(Xi 0 tj) = qijtj ® Xi; ß(Xi ® Xj) = Xj 0 Xi, ß(ti ® tj) = tj ® ti (1)

for all i, j E J.
Note that the algebra n = k[xJq[tJ of q-differences on the affine space is a particular

case of a skew affine space.

4. Differential operators on quasi-symmetrie affine spaees.
Fix a COlnlllutativc ring k. Let q = (qij)i,jEJ be any Inatrix with entrees in k*. Let

C- = (C, 0,1) be the lllonoidal category of ZJ-graded k-nlodllies with the quasi-symlnetry
ß defined by q.

Denote by UJ, or siulply by U, t.he free algebra generated by indeterminates {Xi I i E
J} with the natural ZJ-grading - the parity of Xi is the i-th generator of ZJ.

4.1. Lemma. (a) There is a natural isomorphism Derß(U) ~Maps(J,U) 0/ 7l J -graded
k-modules

(b) De1'ß(U)-i = kai for each i E J, where the ß-derivation 8i is (uniquely) defined
by ai (xj) = Oij for all j E .J.

Proo/ is left to areader.•

4.2. The algebra Uq. The algebra Dß(U) of ß-differcntial operators on U (which contains
U as a subalgebra and Derß(U) as a k-sublnodule) is huge. Denote by llq the sllbalgebra
of Dß(U) generated by (nlll1tiplications by) Xi, i E J, (hence containing the image of U in
Dß(U)) and by the derivations 8i for all i E J (cf. Lemma 4.1).

On the other hand, consider the algebra 21q generated by indeterminates Xi, Yi, i E J,
sllbject to the relations

(1)

There is a canonical epiulorphislll c.p fronl 2lq to Uq sending Xi into Xi and Yi into ai .

Moreover, c.p is an epiInorphislll of ZJ-gracled algebras: we asSig}1 to each Yi, i E J, the
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parity -i. The relations (1) allow to express cvery eleulCnt f of 2!q as a surn I:iEJ fiyi.
Here J denotes thc set of multi~indeces; and fi E U for any i EJ. One can see that the
coefficients ft are uniquely defincd. By definition of tp, wc have: tp(f) = LiEJ !ißi .

Clearly tp( LiEJ fiyi) = LiEJ fi 8i = 0 iff fi = 0 for all i E J, since LiEJ fi 8i (xj) = fj
for any j E J. But, in general, thc injectivity of r.p might fail already at the next level as
the following assertion shows.

4.2.1. Proposition. (a) Suppose that qijqji = 1. Then 8i8j = qji8jEJi.
(b) /f 1 - qijqji is not a zero divisor, then the algebra llq has no quadratic relations

involving 8i and 8j .

Proof. (a) Thc group hOIllolllorphisnl ZJ --+ Z, (nd H LiEJ ni, provides ZJ-graded
modules with Z-grading. In particular, U becolnes a Z+-graded algebra. And we have a
Z+-filtration in U associated with the grading.

We shall provc thc assertion (a) by induction on this filtration.
1) The equalities 8i8j (xv) = 0 = qij8j8i (xv) which hold for all v E J provide thc first

induction step.
2) Fix an T E U. We have:

Hence

8j8i (xvr) = 8j (biv T + qivx j8i (r)) = biv 8j(r) + qiv(bjv8i (r) + qjv8joi(r)) (3)

a) If i "# v "# j l then it follows fronl (2) and (3) that respectively

So that if 8i8j (r) = Qji8j8i(r), then 8i8j (xvr) = Qji8j8i(xvr).
b) Suppose now that v = i. Then one obtaiIlS from (2) and (3) thc equalities

8i8j (Xi r ) = qji(Oj(r) + QiiOi8j(r))

8jEJi(Xir) = 8j (r) + QiiQji 8jOi(r)

If 8i8j (r) = qji8j8i(r), thcn if follows from (5) and (6) that

OiDj(Xir) = qji(Oj(r) + QiiQji8jOi(r)) = Qji8j8i(Xir).

c) Similarly, if v = j,

8j 8i (xjr) = qij(oi(r) + qjj 8j 8i (r))

The equality OiOj(r) = Qji8j8i(r), togcthcr with (7) inlplies that
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Sincc, by condition qjiqij = 1,

This providcs the second induction step.
(b) Let we have a relation LiEJ fi8i = O. As it was already observed, fi = 0 for an

i E J. This iInplies that

o= L /i8 i (Xi X j) = !ij8i8j(XiXj) + !ji8j 8i (Xi X j)
iEJ

anel

o= L fi 8i (xj x d = f ij8i8 j (xjxd + fji 8j 8i (xjxd·
iEJ

It fonows from (5)-(8) that

Thus (10) and (11) can be expressed as

which implies that

(10)

(11)

If qjiqij - 1 is not a zero divisor, these equalities mean that fij = 0 = fji .•

4.3. Serre relations and a q-affine algebra. For any k-sublnodule W of U, denote by
W- the k-submodule of W generated by all hOlnogenious elelnents of W. Note that if W
is stable with respect to a set X of homogenious clelnents of <EnD(Uq ), then such is W-.

Consider thc set :=: of all hOlnogenious two-sided ideals of U which are contained in
the augmentation ideal (=the graded complement to k = (U)o) and are stable under thc
derivations Bi for an i E J. Thc SUfi1 S+ of an ideals of :=: is an ideal of :=: which we call
the ideal of Serre relations 01' SiUlply the Serre ideal. Denote by U:, 01' simply U+, the
quotient algebra U/ S+. We call U+ the q-affine algebra generated by {Xi I i E J}.

4.3.1. Example. Supposc that the matrix q dcfincs a symuletry; Le. qijqji = 1 for an
i, j E J. And let the base ring k be a fielcl of zero characteristic. Then thc two-sided
ideal generated by {XiXj - qijXjXi I i,j E J} is 8j -stable for any j E J. This Ineans that
the algebra ilq acts on the skew polynomial algebra kq[x]. Anel according to thc proof of
Proposition 3.3, this action is irreducible.
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Since the ilq-111odule kq[xJ is si111ple, the natural epimorphisln kq[x] ---+ U+ is an
isolnorphism. In other words, the q-affine algebra U+ coincides in this case with the skew
polynoInial algebra kq [xJ. •

4.4. The quantum Weyl algebra. The ideal S+ is stable with respect to the action of
the algebra ilq; hence ilq acts on the algebra U+. We denote the image of ilq in End(U+)
by A q and call it the quantum Weyl algebra 01' the q- Weyl algebra.

It follows froIn the construction that the q-affine algebra U+ is a Si111ple lcft Aq ­

1110dule. Since the algebra Aq is generatcd by (multiplications by) elements of U+ and
derivations, it is a subalgebra of the algebra of ß-differential operators on U+ : A q ~

D%(U+).

4.5. Example: differential operators on the quantum line. The simplest possible
exarnple of a 'noncol1unutative space' is the 'quantum line'.

Let k be a ficld. The algebra of functions on a quantum line over k is the algebra
R = k[xJ of polynornials in one variable regarded as an algebra in the category gtzVeck of
Z-graded k-vector spaccs with the parity of x equal to 1. We define thc quasi-synunetry
ß by (the necessary requirenlents) ß(l,O) = 1 = ß(O, 1), and ß(l, 1) = q for SOIne q E k*.
Note that the algebra k[x] is far frorn being ß-commutative if q i= 1 - the Inaximal ß­
cornrnutative quotient algebra of k[x] is the algebra k[x]/(x2 ) of double numbers.

Thc algebra D# (R) = D~ (R) is generated by (multiplications by eleInents of) R anel
thc canonical ß-derivation B = Bq (having the parity -1). The latter happens to be the so
called q-derivation - an operator acting on polinomials by the formula;

a= Bq : f(x) r-t (f(qx) - f(x))/x(q - 1).

Thus D~ (R) is a k-algebra generated by x and 8 subject to the relation:

8x - qx8 = 1.

(1)

(2)

When q = 1, D~(R) is the first Weyl algebra, Le. Dt(R) is isoInorphic to thc algebra
of differential operators on thc one-diInensional affine space.

If the base ficld k is of zero characteristic, the Weyl algebras have a relllarkable
property - the Bernstein's TheoreIn (cf. [B]) which in the case of Al claiIns that any
nonzero Armodule is of infinite dimension over k. This property does not hold for Dt!(R)
if q t= 1. To see this, it is convenient to switch to a different, 'hyperbolic' (in the sense of
[R], Ch.2), description of the algebra Dr(R).

Let edenote an autolllorphisnl of the polynomial ring k[~J assigning to any f(~) E k[~J

the polynolnial f(q~ + 1). The algebra Df(R) can be describeel as a ring generated by
k[€], x, and 8 subject to the relations:

8x =~, x8 = e-l(~); 8f = e(f)8, Ix = x8(f). (3)

In other words, Df (R) is a hyperbolic algebra ([R], Chapter 11) with coefficients in
the polynonlial algebra k[(].
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Note that the element 17 := ~ - 1/(1 - q) has the property: B(1]) = q1]. This anel
thc relations (3) imply that 1] is a normal element; hence the left (and right) ideal/i in
D:(R) generated by 1] is two-sided. One can see that the quotient algebra, n:(R)/I.t,
is (isomorphie to) the cornnnltativc algebra of fllnctions of the hyperbola given by thc
cquation 8x = 1/(1 - q). In othcr words, Df (R)/ jt is isomorphie to the algebra of
Laurent polynomials k[x, X-I] in one variable. In particular, thc algebra Df(R) ha..~ a
paraInctrizcd by k* fainily of onc-diulensional represcntations. Note however that if M is
a fi nite dimensional (over k) D: (R)-nlodule, then it is annihilated by the element 1] (this
can be easily deduced froin thc dcscription of the left spectrum of Df(R), cf. [R], 11.4).
It follows from the latter fact that the (Ore) localization of Dr(R) at the multiplicativc

set (11) := {1]n In E Z+} possesses thc Bernstein's property: every (1])-lDr(R)-nlodule

is infinite-diulensional. Moreover, the algebra Dq(R) := (1])-1Dr (R) seenls to bc a 'right'
analog of the first Weyl algebra in all respects. For instance, Dq(R) is simple, anel its
Krull, homologieal, anel Gelfand-Kirillov's dimensions coincide and equal to 1.

We shall see in Section 9 of this work that the algebra Dq(R) is a special ca..'3C of a
very natural, canonical construction of a 'right' algebra of differential operators.

Part 11. Quasi-symmetries, Hüpf algebras,
and crüssed prüducts.

Fix a nlonoielal subcategory C- = (C, 0,1) of the category End- (A) of endofunctors
of an abelian category A.

5. Hüpf algebras in monoidal categüries.
Fix a quasi-symmetry ß in C-. A ß-bialgebra in C- is a tripie (8, H, jt), where (H, jt) is

an algebra and (8, H) is a coalgebra in C- such that thc cOlnultiplication 6 : H ---+ H 0 H
is an (unital) algebra ulOrphisrn from (H, jt) to (H,I.t) 0ß (H, jt) and the counity is an
algebra lliorphism tao.

One can check that, like in thc c1assieal case, one can switch thc algebra anel coalgcbra
structures in the latter rcquircIncnt. In other words, (6, H, jt) is abialgebra in C- iff it is
abialgebra in the dual lllonoidal category.

We denote by 1] the unity 1 -+ Hand by e the counity H -+ 1 of .fj = (6, H, jt).

5.1. Lemma. Let B = (6, B) be a coalgebra in C- with the counity c ,. and let R = (R, rn)
be an algebra in C- with the unity 11. Then the ma]J

* :C(B, R) ® C(B, R) --t C(B, R), 1*9 = mo f @ 9 0 6,

is an associative multiplication with the identity element 11 0 c.

Proof. In fact,

f *(1] 0 e) = m 0 f 0 (11 0 e) 0 6 = m 0 f R 0 (B1] 0 Be) 0 6 = m 0 f R 0 B1] = f.

And sitnilarly, (1] 0 e)*! = f for any ! E C(B, R).
We leave the verifying the associativity to the reader. _
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In particulaI', for. any ß-bialgebra' H =. (O, H, m)· with the' counitY·e· and uriitY-11, the
construction of Lenuna 5.1 defines the convolution algebra <!H = (rtH, *) of H.

An antipode in H is a morphism {) : H ---t H such that mo{)H 00 = moH{}o5 = l1oe.
Since {)H and H{} are notations for resp. {) 8 idH and idH 8 {), it follows froln the

definition of the antipode that it is the inverse element (of the convolution algebra) to thc
identity nlorphisnl idH. In particulaI' , thc antipode is unique.

Abialgebra in C- equipped with an antipode is called a ß-Hopf algebra.

Let A = (8, A, rn) and ß = (~, B, J-L) be ß-bialgebras in C-. Set A 8ß ß := (0', A 8
B, IL'), where Jl' := rn 8 J-L ° AßA,BB and 8' := AßA,BB 08 8 ~.

5.2. Lemma. The tripie A 0ß B = (8', A 0 B, /-L') is abialgebra with the unity 710 rl' and
the counity e 0 e'. Here 71 (resp. 71') is the unity of A (resp. B) and e (resp. e') is the
counity of A (resp. ß).

1/ {) and {)' are antipodes of resp. A and B, then {) 0 {)' is an antipode oj A 0ß B.

Froof is a straitforward checking left to thc reader. _

5.2. Example: free ß-Hopf algebras. Let ß be a quasi-syrnrnctry in a lnonoidal
subcategory C- = (C, 0,1) of ~n()A.

For any W E ObC, denotc by T(W) the free algebra of W, T(W) = ( 61n;:::o W 0n , rn).

5.2.1. Lemma. (a) The map W I---t T(W) extends to a junctor T from the category C
to the category AlgC- oj algebras in C- which is a Zejt adjoint to the jorgetting functor
AlgC- ---t C.

(b) For any V, W E ObC, there is a natural epimorphism 4> : T(V 61 W) --+ T(V) 0ß
T(W):" i. e. the pair Tß = (T, cP) is a rnonoidal junctor (in the sense of [MV frorn the
monoidal category (C, 61,0) to the monoidal category AIyßC- = (AI9ßC-, 0ßl 1) of algebras
in C-.

Proof is lcft to areader. -

5.2.2. Proposition. For any W E ObC, the composition 0' of the 'diagonal' morphism
W --+ W 8 1 EB 18W and the natural embedding W 0 1 EB 18W c T(W) 8ß T(W)
determines a coalgebra structure ~ : T(W) --+ T(W) 8ß T(W) which is compatible with
the multiplication m on T(W); i.e. (~, T(W), m) is abialgebra with the coidentity e
uniquely defined by the fact that its restrietion to W equals to zero.

The automorphism -id : W --+ W induces an automorphisrn {) of T(W) which
happens to be the antipode on the bialgebra T(W); i.e.

m °1JT(W) 0 ~ = m °T (W){) 0 ~ = 71 ° e (1)

where 1} is the unity ojT(W). Thus, H(W) := (e,~,T(W), m, 11; {)) is a ß-Hopf algebra.

Proof. The first assertion follows fronl the universal property of the functor W H

(T(W)) rn) (cf. Lenlllla 5.2.1).
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Thc cxistcnce ('and uniqueness) of ''l? follows fronl Lcmrna 5.2.1. Thanks to thc uni­
versal property. of thc functor T '(LeIllIlla G.2.1), it suffices to check thc equality

111, 0 'l9T(W) 0 6. 0 LW = m 0 T(W)'19 0 6. 0 LW = 1] 0 e 0 LW 1

where LW is .the embedding W ~ T(W). But 7] 0 e 0 LW = O. And it follows from thc
definition of {) that rn 0 'l9T(W) 0 6. 0 LW = °= m 0 T(W)'l9 0 6. 0 LW .•

5.3. Example: affine a-spaces. Suppose now that a is a symmetry in a monoidal
category C- = (C, 0,1).

For any W E ObC, denote by SO'(W) thc symmetrie algebra of W. Rccall that Sa(W)
is the quotient of the free algebra T(W) of W by the two-sided ideal generated by thc
image of iW0W - iW0W 0 aw,w.: W 0 W -r T(W). Here iW0W is the embedding
W0W -+T(W).

The algebra SO' (W) shall be called sanletimes the affine a-algebra.

5.3.1. Lemma. (a) The map W t-+ Sa(W) extends to a functor SO' /rom the categor1J C to
the categonj AnaC- 01 a-cornmutative algebras in C- which is a left adjoint to the lorgetting
funetor AnaC- -t C.

(b) For any V, W E Obe, SO'(V EB W) is naturally isomorphie to SO'(V) 00' Sa(W),
More explieitly, Sa is a monoidal /unctor from the syrnmetrie rnonoidal eategoilJ

(C, EB, 0, s) to the quasi-symmetrie monoidal eategory AlgaC- = (AlgO'C-, 00" 1, a) 01 a­
commutative algebras in C- .

Proo/ is left to areader. _

5.3.2. Corollary. For any W E ObC, the diagonal morphism W -+ WEIl W induees a
coalgebra structure 6. : Sa (W) -+ Sa (W) 00" SO' (W) whieh is compatible with the multi­
plication JL on SO' (W),o i. e. (6. , SO' (W), m) is abialgebra with the counity e : SO" (W) --+ 1
the restriction of which to W equals to zero.

The automorphisrn -id : W -t W induces an autornorphism {) 0/ Sa(W) which
happens to be an antipode on the bialgebra SO" (W),. i. e.

(1)

where 1] is the unity oJ SO"(W). Thus, (e, 6., SO"(W), m, 1J; 19) is a a-Hopl algebra.

5.3.3. Note. Let W, V be objects of C. One can check that the canonical isomorphisIll
Sa (W EB V) --+ Sa (W) 0 a SO" (V) is a Hopf algcbras isornorphism. _

5.4. Example: group algebras in a monoidal category. Let G be a group. Wc
asslulle that C has direct SUITIS of Carcl(G) objects. The group algebra l(G) of the group
G in C- is the pair (EBsEc1s,m), where l s = 1 for all s E G and the nnIltiplication
m is determined by the iclentical morphisI11S 18 0 1t -t 1st , S, t E G. There is a natural
cOlllultiplication 8 ; l(G) -t I(G)01(C) dcfincd by thc isolllorphisms 1 8 -t 1.'l01 s , S EG.
And thc set of identical isolllorphisms I s -+ 1 s-1, SEC, defincs an antipode.

5.4.1. Note. We da not use any synunetry to define the group algebra in a monoidal
category C-. This is due to tbc fact that in order to define a comultiplication and antipode

39



on an algebra (H, m), we need a sYlTImetry only on some (any) monoidal subcatcgory of
C- containing the object Hand morphism In. In the case of H = EB8EC18J we can take
the fu11 subcategory generated by direct sunlS of thc identity object 1. This subcategory
is Inonoidal and has a unique sYlTIlnetry determined by ITIorphislTIs A and Pi 01' ruthcr by
the compatibility condition: O"l

l
l = ,,\ 0 p-l .•

6. Crossed products and basic constructions.
6.1. ß-Hopf actions. Fix an abelian monoidal category C- = (C, 0,1) with a quasi­
symmetry ß. Let R = (R, m) be an algebra in C-. And let U = (6, U, J-L) bc abialgebra in
C-. We ca11 a U-nlodule structure r : U 8 R -----+ R a ß-Hopf action if the diagraIn

Um -r
U0R0R ---+ U0R ---+ R

oRR 1 r7n (1)
Uß'R

U0R0U0R
-r0-r

U0U0R0R ---+ ---+ R0R

is commutative.

6.1.1. Example: the adjoint action. Let R = (0, R, J-L) be a Hopf algebra in thc
monoidal category C-; and let {) denotc the antipode of R. The adjoint action, adß,R, on
R is the cOlnposition

fJR RßR,R R0R{}R,R jJ.ojJ.R

R0R---+R0R0R---+R0R0R ---+ R0R0R---+R (1)

One can check that the adjoint action is a ß-Hopf action.•

For any U-module (M, €M), definc an action <P : U 0R(M) --+ R(M) by the fonnula:

<P = <PM = 7 0 ~M 0 Uß(M) o6R(M).

In particular, we have a morphisnl rp : U 0 (R 0 U) -----+ R 0 U defined by

rp = 70 J-L 0 UßU 0 6R 0 U.

(2)

(3)

The action rp defines an action ffi-r := rnU 0 Rrp : (R 0 U) 0 (R 0 U) -----+ R 0 U.

6.2. Lemma. (a) The action ffi-r is an algebra structure on R 0 U.
(b) For any U-module M, the R-module structure on R(M) extends to a st11tcture 0/

an R#U-module 'l/JM : (R8U)(R(M)) --+ R(M), where R#U = (R0U,ffi-r)'

Proo]. (a) It suffices to show that the action (3) is associative and unitale. We begin
witb tbe latter property.

Let 7} : Id -----+ U be the unity of U. Since 00 7} = U7} 0 77 = 7}U 0 7},

rp o7}RU = r 0 J-L 0 UßU 0 oRU o77RU = 7 81t 0 UßU 0 (UTJ)RU 0 77RU =

"7 0 J-L 0 URTJU 0 U ßU 0 77'RU =
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TU 0 UR(/L 0 77U) 0 UßU o 7]RU = TU 0 UßU o 77'RU = (T 0 1]R)U = id'RU

since T 0 1]R = idn..
Sinlilarly, with thc associativity:

T8{LoUßUooRUoU(T8tlOUßUooRU) = T8{LoUßUOUU(T8j.l)o8URUUoU(UßUo8RU) =

TU 0 URp, 0 U(TU 0 UR{L) 0 UUßU 0 8URUU 0 U(UßU o8RU).

We leave thc fillishillg of this checking to areader.
(b) Define thc action 'l/JM by thc fonnula: m(M) 0 RcpM.

We leave to areader to verify that R#M := (R(M), WM) is an R#U-module.•

Followillg thc classical exalnple, we caIl thc algebra R#U = (R 0 U, m T ) the crossed
product ofR and U.

6.3. Note. The luap assignillg to any U-nl0dule M the R#U-luodule R#M of Lemma
6.2 is functorial. And thc corresponding functor , which we denote by R#, fr01U U -mod to
gtR#U - rnod is isoluorphic to thc tCllsoring R#U0u over U. This implies, in particular,
that R# is a left adjoint to the fUllctor ~o : R#U - 7nod -----t U - mod which forgets about
the action of R .•

6.4. Lemma. The functor R#U0'R is isomorphie to the functor U* from R - mod to
R#U - mod which assigns to any R-module M = (M, €M) the R#U-module (U(M), v).
The action 0/ U here is natural and the action 01 R is the composition

ßn,u oR(M) UTR(M) UE.M
R 0 U(M) ---+ U 0 R(M) ---+ U 0 U 0 R(M) ----t U 0 R(M) ----t U(M) (1)

Proo! is left to areader.•

6.5. Note. Thc fonllula (1) dcfines a. functor froill R-77Lod to R-rnod (- the composition
of U* and thc flluctor R#U - 1nod -----t R - rnod forgetting the action of U) which cau be
interpreted as an action of the bialgcbra U on thc category R - mod.

SiInilarly, the cOlnposition of thc functor R# : U - mod -----t R#U - mod with thc
functor R#U - mod -----t U - rnod forgctting the action of R is an action of the algebra R
on the category U - rnod.•

6.6. Example. Supposc that U is thc group algebra of a group G , U = l(G). So
that the action T is dctenuined by a b'TOUP I110rphislu G -----t Aut(R). Note that, since
l(G) = EBsEC1s (cf. 5.1.5), l(G)(M) is the direct SUlll EfJsECMs of copies of M and the
action of l(G) is detennined by thc idcntical 111orphis111S It(Ms ) -----t M ts , s, t E G. And
the action of R on M s is the COlllposition ~M 0 T(s)(M).

Thus, the action of U on R - mod (cf. Note 6.5) is the functor assigning to each R­
lnodule M = (M, ~M) thc G-graded R-lllodule EBsEcM s, where M s = (M, €M 0 T(s)(M))
for any s E G.•

6.7. The algebra R*U. Wc denote this way thc quotient of thc algebra R#U by the
annihilator of R in the canonical action (R#U) 0 R -----t R.
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for all t E G and b E R.
In particular, if the group G is COllullutative, the (left) action of R#G upon itself

respects thc grading. _

6.9. The Hopf algebra R+*U_. Let U and R be Hopf algebras, and let T : U0R -----1 R
be a Hopf algebra action compatible with thc coproduct. So that we havc a weil defined
Hopf action of U#R on R (cf. Lemlua 6.8.1).

Let R+ be the augluentation ideal of R; Le. R+ is the kernel of the coidentity
morphislll E : R --+ 1. Denote by L+ the largest U-stable ideal in R contained in R+. Set
R+ := R/L+. By construction, U acts on R+.

6.9.1. Lemma. The ideal L+ is a Hopj ideal; so that n+ is a Hopj algebra. The action
olU on n+ is compatible with the comultiplication on n+.

Froo/. The ideal L+ is a Hopf ideal, becallse n+ is a Hopf ideal, and the action of U
is compatible with the cOlnultiplication. The second assertion is a consequence of the first
one. _

Thus R+#U acts on R+. We denote by R+*U_ the quotient of thc Hopf algebra
R+#U by the annihilator of n+, U_ being the image of U in n+#u_.

We shall call the kernel K _ of thc canonical (Hopf algebra) epiulorphism from U to
U _ the (Hopf) ideal of Serre relations.

6.9.2. Remark: the form 'lj;. Consider the bilinear fonn Er := EOTOßn,U : R0U -----1 1,
where E is thc counity. The form Er is invariant with respect to thc action of R#U. So
that its kernei, L_, is a Hopf ideal in n#u. Let U_ and n+ denote thc iluages of resp. U
and n in the quotient Hopf algebra R#U / L_. Both U_ and R + are Hüpf algebras, and
the form Er induces a nondegenerate invariant fünn Wr on R+ 0 U _. _

6.10. Crossed products and differential actions. For thc notion of a differential
action see Section 1.4.

6.10.1. Lemma. Let a ß-Hopf action U 8 R -----1 R be ß-differential. Then the action of
R#U on R is ß -differential.

Proof. This follows froIll the fact that the action of n on R by the left lnultiplication
is differential, hence ß-differential. Anel, for any §, the COlnposition of S-differential actions
is a S-differential action. _

6.10.2. Example: ß-Hopf actions of free algebras are differential. Fix a quasi­
symnletry ß. Let W E ObC; and let Tß(W) be the free ß-Hopf algebra of W (cf. Exaulple
5.2). Any ß-Hopf action of Tß(W) on an algebra R in C- is ß-differential.

It follows from the definition of thc conlultiplication on Tß (W) and the defining a
ß-Hopf action diagraln (1) in 6.0 that thc restriction of any ß-Hopf action of Tß(W) to
W, d: W 0 R -----+ R, is aß-derivation. In particular, thc action d is ß-differential. Since
W generates the algebra Tß(W), the action of the wholc Tß(W) is ß-differential. _

7. The,generalized Weyl algebras.
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(1)

(U 0 R) 0 (U 0 R)

1707

6.8. Hopfalgebra structure. Suppose ,that; in addition, R has -a coalgebra structure,
.6. : R ---+ R 8 R,

6.8.1. Lemma. (a) The morphisrn 6. 8ß J := ß2,3 0 6. 88 : R 8 U ---+ (R 8 U) 0 (R 0 U)
is a coalgebra stnLcture on R#U if] the diagram

60{3t:l

----+

R R0R

is commutative,
(b) 1f the diagram (1) is commutative and (8', R, /-L) is a bialgebraJ then 8' 0ß 8 is a

bialgebra structure on R#U.
(c) The action 7 : U 8 R ---+ Rand the adjoint action adR. : R 0 R ---+ R define a

bialgebra action ofR#U on R.
(d) 1f, under the conditions (b), bolh U and Rare Hopf algebra,5, then R#U is a Hopf

algebra with a naturally defined antipode.

Proof is left to areader.•

6.8.2. Example. Let R = (8', R, /-L) be a Hopf k-algcbra with an antipode {). And let 4>
be a group morphism from G to AutK(R, Jl). Take as U the group (Hopf) algebra of G.
The group lllorphism from C to AutK(R, /-L) induces abialgebra action of U on (R, /-L)' In
this case, R#U = R#Cj and thc cOlumutativity of the diagram (1) of LClulua 6.8.1 Iueans
exactly that thc iluage of 4> is containcd in AutK(J', R, /-L)'

Suppose that 4> takes values in AutK(8', R, J-L).
The coalgebra structure (5' = (5' 0ß 8 on R#G sends every hOlllogcnious element XsT

of R#G, l' E R, sEC, into L:i,j xs1'i ® xs1'j, where L:i,j Ti ® Tj = 8'(1').

Let R have an antipode {). Then the antipode on R#G maps thc elenlcnt XsT into
{) ( T ) x 1/ s = X 1/s s{) ( l' ) .

Finally, thc adjoint action of an element xsr scnds any element Xtb of R#G into

i,j i,j t· .1,J

where L:i,j 1'i ® 1'j = (5'(1').

Here, as before, we denote by the same letter the automorphisnl sand its canonical
extension to an automorphisln of R#G sending, for all t E C, Xt into 3;lJt/s (cf. Lenlnla
6.8.1).

In particular, since 8' (1) = 1 ® 1, adx " (Xtb) = s(Xtb) for any t E G and b E R; i.e., for
any sEC, thc automorphisIll adx • : R#C~ R#C coincides with s.

If s belongs to the center of C (for exalnple, the group G is comnlutative), then
s(xd = Xt for all t E G; hence in this casc

adx"r(:Dtb) = Xt s ( L t-
1(rd bt9 (rj))

i,j

(2)
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Fix a quasi-symnlctry ß in thc monoidal category C- = (C, 0, 1). Lct V, W bc objects
of C; anel let E : W 0 V -t 1 be a morphisnl.

The morphisrn E detcnllincs (uniquely) aß-derivation 8f. = 8f.,ß : W0T(V) -----7 T(V).
Thc derivation 8f. induces aß-differential action llf. : T(W) 0 T(V) -t T(V).

7.1. Lemma. The action llf. is a ß-Hopf action which respects the coproduct in the ß-Hopf
algebra T(V).

Proo! is left to the reader.•

In particular, we can take the determined by the ß-Hopf action D= Df. crossed product
T(V)#ilT(W) = (8, T(V) 0 T(W), JL).

7.2. Note. One can see that the algebra structure of T(V)#öT(W) is clctennined by the
requirement that T(V) anel T(W) are subalgebras, and by the morphislll

ßw,v + E : W 0 V -t V 0 W EB 1. (1)

In particular, if E = 0, the ß-Hopf algebra T(V)#öT(W) coincides with thc product
T(V) 0ß T(W) of T(V) and T(W) (cf. Lemma 5.2).•

7.3. The 'affine space' and the Weyl algebra associated with a pairing. Given
a pairing E : W 0 V -t 1 in C, we can apply thc construction of Subscction 6.9 to the
ß-Hopf action df. = df.,ß' This way we obtain

1) The quotient T(V)+ = T(V)t of T(V) by thc largest dcstable ideal L+ contained
in the augmctation ideal T(V)+ := EBn >l vn (- thc ideal 0/ Serre relations). We shall call
T(V)t the affine algebra associated wilk E.

2) The ß-Hopf algebra Af.,ß = T(V)+:+:T(W)_. Wc shall call the algebra Af.,ß the Weyl
ß-Hopf algebra associated witk the pairing E (and ß).

7.4. Note. If E = 0, T(V)#öT(W) is isolnorphic to T(V) 0ß T(W) (cf. Note 7.2)
which inlplies that the affine space T(V)t and thc (ß, E)-Weyl algebra Af.,ß are isonl0rphic
to 1. So, the algebra Af.,ß is nleaningful only when the form E is nontrivial. We are
intcrested in the case when E is nondegenerate. Say, W is an object dual to V and E is the
evaluation morphism. Or V = EBo:Er Vo: is a graded object, and W = EBuEr Wo: is thc direct
SUlll of dual to Vo: objects, a E r. The pairing E is eletennined by evaluation lnorphisms
Eo: : Wo: 0 Va -t 1. •

7.5. The case of a symmetry. Suppose that ß is a symmetry. And let Sf.,ß denote
the algebra which is Sß(V) 0 Sß(W) as a (Sß(V), Sß(W))-bimodule with the rest of the
lnllitiplication detenllined by ßw,v + E : W 0 V -t V 0 W EB 1 and thc associativity.
One can show that thc canonical epimorphisnl T(V) 0ß T(W) -t Af.,ß factors through
an epitnorphism Sf.,ß -t Ae,ß'

7.6. A canonical pairing. Now we consider only the action of T(W) on T(V)+ which
wc denote for convenicncc by U+. Denote by S- the annihilator of this action (i.e. the
SllpremUlll of all graded ideals .:r in T(W) which act triviallyon U+). And set U- .­
T(W)jS-. Thus, we have a nondegenerate action <p+ : U~ 0 U+ -t U+.
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We define a pairing cp : U- 0 U+ ---+ 1 as the composition of cp+ and the coidentity
e : U+ ---+ 1.

7.6.1. Lemma. The pairing cp is nondegenerate.

Proof. 1) Clearly the restriction of cp to 1 = (U+)o is nondegenerate. Suppose that
thc rcstriction of cp to U+m :=0< ~m (U+)i is nondegenerate for 1 ::; m ::;n. Thc action of
W on U+ sends (U+)n+l into rJ+n. And, by the definition of U+ and the action cp+ 1 W
cannot act triviallyon (U+)n+l. By induction hypothesis, the composition of cp with
U- cp+ : U- 0 (W 0 (U+)n+l) ---+ U- 0 U+ n is nonzero. Since the iInage of this restriction
coincides with the image of the action of U- . W on (U+)n+l1 we have showed that cp is
nondegenerate with respect to U+.

2) The nondegeneracy with respcct to U- can be argued in a sinülar fashion. We
leave details to areader. •

7.7. Proposition. All ß-Hopf actions o/a ß- Weyl algebra are ß-differential.

Proof. This follows from the fact that ß-Hopf actions of any free ß-Hopf algebra are
differential (Example 6.10.2) and that a Weyl ß-Hopf algebra is the quotient of the crossed
procluct of free ß-Hopf algebras.•

7.8. The ß-Weyl algebra of an algebra with generators. It is convcnicnt to have a
nation of a ß-Weyl algebra on a widcr dass of algebras than just ß-affine algebras dcfincd
in 7.3.

Consider the category of pairs (R, v : V --+ R), where R is an algebra in C- and
v : V --+ R is a subobject such that thc adjoint algebra morphisnl v" : Tß(V) ---+ R is an
epimorphislll. The pairs (R,v : V -+ R) generate a category, AlggC- (here the second 9
nlcans 'generators') with obviously defined morphisms.

We shall write, when it is convenient, (R, V) instead of (R, v : V -+ R).
For any pair (R, v : V --+ R), consicler the subcategory TJetß(R, V) of thc category

'-Derß(R) generated by all ß-derivations d : X 0 R -+ R such that the cOlnposition of d
with X 0 v : X 0 V -+ X 0 R factors through the identity 'elelnent 1 1 --+ R of R; i.c. there
exists a COlllll1utative diagram:

d
----+ R

re

1

Since V -+ Rand e generate R, the ß-derivations d is uniquely dctenllincd by the
fonn €d. If the identity morphislll e is an Cpil110rphisln, €d is uniquely detcnnineel by d.

Dcnote by 2lß(R, V) the full monoidal subcategory of the monoidal catcgory TJß(R, V)
of differential endomorphisms of the algebra R generated by ::Derß(R) anel the left action
of R, R 0 R ---+ R. We denote a final object of 2lß (R, V), if any, by Aß(R, V) and call it
the ß - Weyl algebra 0 f (R, V). Thus the ß-WeyI algebra is a (proper in general) snbalgebra
of thc algebra Dß(R) of ß-differential operators on R (when thc latter exists).

In 'algebraic' situations both thc final objects of '1Jctß(R, V) and 2lß(R, V) exist and
are naturally related to each other.

45



In fact, snpp0se that there exists· a dual to V object W;, and ·let· E be the evalnation
form, E : W0V ---+ 1. Then (under the condition that 0 is compatible with colimits), there
exists a monomorphism W' ---+ W such that the composition E' of E and W'0 V ---+ W 0 V
detennines a final object - a ß-derivation W' 0 R ---+ R - of the category '1) etß(R, V) .

. This·ß~derivation~defincs.a ,ß-Hopf.. action Tß(W') 0R ---+ R. The latter determines the ...
action, ~,'of R#Tß(W') on R. The quotient of R#Tß(W') by the kernel of the action ~

is Aß(R, V).

7.8.1. Note. If thc monomorphism W' ---+ W above is an isomorphism, the ß-affine
algebra corresponding to the evaluation E is the quotient of R.•

7.8.2. Example. Suppose that R = Tß(V) and V has a dual object, W. Then Aß(R, V)
is the crossed product Tß(V)#Tß(W) .•

7.8.3. Note. In known examples of interest the subobject V is uniquely defined. For
instance, if R is a Z+-graded algebra, R = EB n 2:oRn with Ro = 1 and the irrelevant ideal
R+ := EBn>IRn is generated by Rb we take V = RI . In such cases (one of them is
discussed i~ detail in Section 7.9) we omit V in the notations and talk about the ß-Weyl
algebra of the algebra R.•

Note that the ß-Weyl algebra of a pair (R, V) is not, in general, a ß-Hopf algebra.

7.9. The ß-Weyl algebra of an affine quantum space. Let now R be the algebra of
q-polynomials, kq[x], in x = (Xi I i E J) with coefficients in a commutative ring k. Here
q = {qij I i, j E J} is a matrix such that qijqji = 1 for auy i, j E J. We shall regard R
as an algebra in the monoidal category C- of ZJ-graded k-vector spaces assuming that the
parity of the generator Xi is i. Let ß be a quasi-symmetry in C- determined by a rnatrix
b = {b ij I i, j E J} with entrees in k*. Fix an i E J.

7.9.1. Proposition. (i) The following conditions are equivalent:
(a) qijbij = 1 for any i, j E J such that i -j. j.
(b) For any i E J, there exists a (unique) ß-derivation 8i 0/ the algebra R such that

8i (x j) = Oij for all j E J.
(ii) Suppose that bii is either 1 or not a mot 01 one. And if bii = 1 for some i, then

char (k) = O. Th en the conditions (a) and (b) are equivalent t 0

(c) The algebra R = kq[x] is ß-affine.

Proof. (i) (b){=} (a). Suppose that there is aß-derivation Bi (uniquely) detennined by
the requirement: Bi(xj) = Oij. For any r E Rand any j E J, we have:

Or, if we regard Xj as the operator of multiplication by Xj,

8·x· - b· ·x·B· - 0"J) J)) J - ]J

for all j E J. In particular, we have:

(1)
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On the other hand, if i =I=- j, we have:

which irnplies that qijbij = 1 for all j ~i.

(a){;::} (b). It follows froln the above cOlnputations that if qijbij = 1 for all i anel )
such that i =I=- j, then, for any i E .1, there exists a ß-elerivation Bi uniquely defincd by thc
property: 8i (xj) = Oij for all j E J.

(ii) Suppose that the equivalcnt conditions (a), (b) hold. Then the ß-affine algebra,
6ß, generated by {Xi I i E J} is a quotient algebra of R = kq[xJ. Note, however, that
under the conditions (ii) o.f Proposition 7.9.1, the canonical epinlorphism from R to 6ß is
an isolnorphism. This follows fronl the fact that R is an irreducible 6ß-Inodule.

The argument is standart: it suffices to show that, for any nonzero polynomial f E R,
there exists a multi-index i such that 81(f) E k*.

In fact, set for convenicnce bi := bii . Then

8i(xi) = L b~.
O:S;m<n

If bi = 1, then 8i (xi) = n =I=- 0 by assumption.
If bi =I=- 1, then Br (xi) = (1 - bi)I (1 - bi ) =I=- 0 for any n =I=- 0, since bi is not a root of

oue. This implies that, for any multi-index n,8n (xn ) E k*.
We leave the finishing the argulnent to areader. _

7.9.2. Note. Proposition 7.9.1 is valid in the case when k is not a field, but a dornain.
In this case we need to Inodify slightly the conditiolls of the part (ii). The Inodified
requircrnents in (ii) are:

1f bii = 1 for some i then char(k) = O. 1/ bii =I=- 1, then 1 - bii is invertible and bii is
not a root 01 one.

For instance, k Inight be the localization of thc ring Z[t, t-I] of Laurent polynolllials
at the Inultiplicative set gencrated by {I - bii I bii ~ I} and by all entrees bij . -

7.9.3. The Weil algebra Aß(R). Fix the setting of Proposition 7.9.1: R = kq{x], ß is
detennined by a matrix (bij ) with invertible entrees such that bijqij = 1 for all i, j E J
such that i =I=- j.

7.9.3.1. Lemma. The ß- Weyl algebra Aß(R) of R is generated by Xi and Bi, i E J, (each
8i has the parity -i) satisftJing the relations:

(1)

for all i,j E J anel
(2)

for all i, j E J such that i ~ j.

Proof. The only thing to check here is that BiBj = bij Bj 8i for all i, j E J such that
i =I=- j. Hut since bijqij = 1 = qijqji, the fact follows fronl the first assertion of Proposition
7.9.1. _
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Set XiOi = ~i' Ir i i=- j, we have:

and

~jai = XjOjOi = bijxjOiOj = bij(bij)-lOiXjOj = Oi~j

In particular, ~i~j = ~j~i for all i,j E J.
Note that

(3)

(4)

(5)

(6)

Let Adenote thc k-algcbra generated by thc cleInents ~i, i E J. Therc are no other
relations between {~i}j so that the algebra A is iS01110rphic to thc algebra k[{~i}] of poly­
nOlnials in {~i I i E J} with coefficients in k.

For each i E J, define the automorphisIll Bi by the formula

(7)

(8)

(9)

(10)

Bi(~j) = ~j if j i=- i.

Then the ß-Weyl algebra Aß(R) is a k-algebra generated by A and by thc set of the
elements {Bi, Xi 1 i E J} satisfying the relations:

XiOi = ~i, OiXi = Bil(~d,

Oia = 8i (a)oi, aXi = xi(Ji(a)

for all i, j E J such that i =j:. j and all a E A.

7.9.4. Note. If qij = 1 for all i, j E J such that i i=- j, then the algebra Aß (R) is a
hyperbolic ring aver A in the sense of [R], IV.1.3. In the general case, Aß(R) is a PBW
algebra (cf. [R], Ch.V) over a commutative (polynolnial) ring.•

Fix an m E J, and suppose that bmm i=- 1. Set 17m = ~m -1/(1- bmm ). One can check
that Bm(1]m) = bmm77m. Clcarly Bj (1]m) = 77m if j #n1. It follows from the relations (8)-(10)
that 17m is a nornlal eleIllent: the left (and right) ideal generated by 17m is two-sided. One
can see that the quotient algebra Aß (R)/Aß(R)1]m looses one dilnension and the ilnages
of X m and Gm becollle invertible and commute with each other.

More generally, if I is a subset of J such that bii # 1 for all i EI, then thc left ideal
I generated by {1]i I i E I} is two-sided, and the quotient algebra Aß/I is given by

- the relations (8),
- the relations (9), (10) with J replaccd by J - land A replaced by thc algebra of

polynomials in {~i I i E J - I},
- the relations

(11)
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for all i EI.
In particular, if bii #- 1 for all i E J, we can take I = J, and the corresponding

quotient algebra, Aß/,r is described by thc relations (8) and (11). If qij = 1 for all i, j E J,
the algebra Aß/I is isolnorphic to thc ring of Laurent polynomials in Xi, i E J. But even
in the general case Aß/I has (falnilies of) one-dirnensional representations.

Similarly to what we did in thc one-dimensional case, consider the localization -Aß(R)
of the algebra Aß(R) at the multiplicative set SJ generated by thc elements {1]j I j E J}.
One can show that the algebra -Aß(R) has the properties analogous to those of the Weyl
algebra of the same rank.

8. Quasi-symmetries and the Picard group.
8.1. Quasi-symmetries in asymmetrie category. Suppose that the monoidal cate­
gory C- = (C, 0,1) has a (fixed) synullctry a. Thcn cvery quasi-sYlnlnctry ß in C- is the
composition a 0 A, where A is an autolllorphislll of thc functor 0 satisfying the following
conditions:

Clearly

AX0Y,Z = Xaz,Y 0 AX,ZY 0 Xay,z 0 XAy,Z

AX,Y0Z = ay,xZ 0 YAX,Z 0 ax,YZ 0 AX,YZ

(1)

(2)

ß" X,Y := ßy,~ = (Ay,X )-1 0 aX,Y.

8.2. The Pieard group. An object P of the monoidal category C- = (C, 0, 1) is called
invertible if the functor P0 froll1 C to C is an auto-equivalence. Denote by Pic(C-) the
subcategory of C objects of which are all invertible objects P of C- and morphislllS are
isomorphislns of C. Clearly Pic(C-) is a 111onoidal subcategory of C-.

The adjoint (i.e. quasi-inverse) to P0 functor is P'""0, where P" is a dual to P object;
and the adjllnction nlorphisln

€p : (P0)" 0 (P0) = (P" 0 P)0 -t Idc = 10

is detennined by thc evaluation lnap evp : P" 0 P -t l.
This shows that the scrnigroup Pic(C-) of thc isornorphy classcs of Pie(C-) is a group.

We shall caU Pic(C-) the Pica'T'd gr011.]1 o/C-. It is commutative, if C- has a quasi-symmetry.

8.2.1. Example. Let C- be the lnonoidal catcgory of G-gTaded lliodules over a COllllllll­
tative ring k (with a trivial grading, k = ko; cf. Exalliple 1.6.0.1.2), where G is a, not
necessarily COlTIlllutative, group. Thcn Pic(C-) is naturally isolnorphic to G. In this case,
Pic(C-) is cOlnlnutative Hf C· has a (quasi- )symmetry. _

8.3. Quasi-symmetries and the fundamental group of a monoidal eategory. The
fundamental group 1Tl (C-) of the lnonoidal category C- is the group of automorphisms of
the identical lnonoidal functor I d- = (Id, id) : C- -t C-. In other words, 1Tl (C-) consists
of all invertiblc elelnents 'Y of thc center of C cOlnpatible with the tensor product; i.e.
'Y(X 0 Y) = 'Y(X) 0,(Y) for all X, Y E ObC.

Note that C- can be viewed as a lllonoidal subcategory of thc category of representa­
tions of the group 1Tl (C-) in the lllonoidal category C-.
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Fix a quasi-sYIllmetry ß = (J 0 ·A. -For cach P EObPic(C), consider the action

(1)

Since AP,X is an isomorphisIll for any X E übe, XP = {Xp(X) I X E übC} is an
automorphisIll of the functor Idc. In other words, XP is an invertible elenlent of thc center
of C. And Ap,X = PXp(X). In particular,

(2)

One can check that the autoIllorphism XP depends only on thc isoIllorphy dass of P.
If follows from (2) in 5.5 that

ay,pZ 0 Y 0 PXp(Z) 0 O'p,yZ 0 PXp(Y)Z

PYXp(Z) 0 PXp(Y)Z = P(Xp(Y) 0 Xp(Z))

which iInplics the equality

(3)

Let now Q be another object of Pic(C). It follows from the relation (1) in 5.5 that

hence
(4)

Thc equality (4) means that thc Illap P l--+ XP induces a homolllorphisIll of the Picard
group Pic(C) of the category C- to thc group C(C)* of invertible elements of the center
C(C) of C. The equality (3) shows that this Illap is compatible with the 'tensor' productj i.e.
x? E 7fl(C-), Thus, we havc assigned to cvcry quasi-symmetry ß of C- a hOlllornorphism
X = Xß frolll Pic(C) to the fundarnental group 7fl(C-) of the Inonoidal catcgory C-.

8.4. Note. Let n = (R, jL) bc an algebra in C-. Then, for any w E 7fl (C-), thc rnorphism
w(R) : R ---t R is an algebra autoI11orphisln, since

jL 0 w(R 0 R) = w(R) 0 fL and w(R 0 R) = w(R) 0 w(R).

In particular, for any P EPic(C), the rnorphisill Xp(R) is an algebra autoIllorphism
n ---t n.•
8.5. Lemma. Suppose that ObPic(C) is an integral dass 01 objects in C. Then the map
ß t-+ Xß is bijective.
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Pro0f. 1'The';1l10rphism Xß:'defines .ß on· the~fuUsubcategory ..g;(C) l.the lfull '. subcategory
of C gcnerated byall direct sums of objects of Pic(C) (- skew free objects). Clearly F(C)
is a nl0noidal subcategory of C-, and the morphislll Xß detennines llniqucly the restrictiol1
of ß to F(C). It follows froln the fact that 0X is a right exact fllnctor for any X that it
transfers any integral family of arrows to an object Y to an integral family of morphisrns
to Y0X. This inlplies the injeetivity of thc map ß H Xß.

Fix an objeet M of C. And let F1 --+ Fo -r M --r 0 be an exaet sequence such that
F I and Fo are skew free objects. Then, for any object X of F(C), there exists a unique
nlorphisln AM,X : M 0 X -r M 0 X such that thc diagram

F1 0X

AF1,X 1
F1 0X

---t Fo0X

AFo,X 1
---t Fo0X

----t M0X

1AM,X
-----+ M 0) X

is conlmutative. The uniqueness follows froln tbe epimorphness of Fo 0 X --+ M 0 X.
The isomorphness of AFi ,X, i = 1,2, iInplies that AM,X is an isomorphism. We leave to a
reader tbe cheeking that A = {AM,X} is an automorphisln of 0 satisfying relations (1) and
(2) in 5.5.•

8.6. Example. Let C- be the category of ZJ-graded k-Inodules with the graded tensor
product ovcr k and the stanclart sYlnnlCtry a : v ® w H w ® v.

One can see that Pic(C-) is naturally isolnorphie to the group ZJ, anel the grollp C(C)*
of all invertible elements of the center C(C) of C is (isomorphie to) the IJ I-dimensional
torus (k*)J.

Note by passing that, in this ease, the ernbedding of Pic(C-) into the group Autk(C)
of k-linear allto-equivalenees of the eategory C is an isomorphism.

Let ß be the qllasi-symmetry defined by a matrix q = [qij ]i,jEJ with entrees in k*
(cf. Section F). Trus Ineans that ß = a 0 A, where A = Aq is an autonlorphislll of the
ZJ-graded tensor product uniquely defined by

AX,Y (Xi ® Yj) = qijXi ® Yj

for any graded k-Illodules X and Y anel any elenlents Xi E Xi, Yj E Yj, i, j E J.
We shall ielentify .J with the set of generators of Pic(C) = ZJ. The assoeiated with

A anel i E Pic(C) autolnorphism Xi acts on thc j-th COlnponcnt of any graded k-module
as the Inultiplieation by qij and is uniqucly dctermined by this propcrty. The uniqueness
follows froln the equality

Xi(X 0 Y) = Xi(X) <21 Xi(Y)

for all k-modules X and Y (cf. (3) in P).
The conditions of Lelnlna 8.5 are, evidcntly, satisfied. Trus iInplies, in particular,

that quasi-synl11letries in C are in one-to-oue eorrespondenee with Inatrices (qij )i,jEJ with
entries fronl k* .•

8.7. Skew derivations in monoidal categories. Let n = (R, Jl) be an algebra in C-.
And let M = (rn, M, v) be an R-biInodule. Let () be an autolllorphisITl of R. We call a
InorphisITI d : X 0 R --7 M is a (}-derivalion in M, if

d 0 X J1- = v 0 dR + 111, 0 Rd 0 ()X <21 R 0 a X ,RR = v 0 dR + 111, 0 ()MoRd 0 ax ,RR (1)
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We shall olnit () (or skcw) if e= id . Note that
(a) Any (}-derivation in M is a derivation in thc biInodule M 8 := (rn 0 BM, M, v).
(b) There is a natural isomorphism Re 0'R M -t Me. In particular, if thc biInodulc

M is RrfI for some automorphism <I> of the algebra R, we have a natural bimodule isomor­
phislll f6,rf1 : Re 0'R Rip -t Reoip. (This shows that thc map B r-+ Re0'R deterrnines a
group hon1omorphisll1 froll1 Aut(R) to thc group Aut(R - mod) of all isomorphy classes
of auto-equivalences of the category 'R - rnod of left 'R-nlodulcs.)

8.8. Picard group, quasi-symmetries, and skew derivations. Let ß = a 0 A bc a
quasi-synuuetry. Fix an object P of Pic(C) and consider ß-derivations of weight P in a
bimodule M = (m, M, lJ). Thc defining property of aß-derivation d : P 0 R -t M (cf.
C.2) can be rewritten as

Since Xp(R) is an automorphislu of the algebra R (cf. Note 8.4), the fornulla (2)
shows that d is a skcw derivation.

8.8.1. Derivations, quasi-symmetries, and the Picard group. Fix a symrnetric
rnonoidal category C- = (C,0, 1; a) and a quasi-symmetry ß. Let R = (R, m) be an
algebra in C- and 8 : W 0 R -t R aß-derivation of tbe algebra R = (R, m).

Note that, for any n10rphisln f : V -T W, the 1l1orphism 8f = 80 fR: V 0 R -t R
is aß-derivation of R.

Suppose that W is a skew-free object in C-; i.e. W = EBPEx P for SOlne subset X of
ObPicC. Then the ß-derivation 8 can be regarded as the set {8p : P 0 R -T R I P E X}
of ß-derivations. And, according to 8.8, each of thc derivations 8p , P EX, is a skew
a-derivation. More exactly, 8p is a Xp(R)-derivation, wherc XP is thc associated with
ß, a, and P elen1cnt of C- (cf. 8.3).

9. Bialgebras associated with skew derivations.
Fix a subset X ofPicC-. Lct, for any P E X, wc have aß-derivation 8p : P0R -t R

of a ring R = (R, m). By 8.8, 8p is a Xp(R)-derivation, wherc XP is an elen1ent of the
fundaluental group of C- associated with the quasi-symnlctry ß and (the equivalence dass
of) P. This Ineans that

(cf. 8.8).
Denote by G thc subgroup of PicC- gcnerated by the hnage of X in PicC-.
Let W := ffiPEX P. The ß-dcrivations 8p , P E X, define aß-derivation 8 : W 0R. -t

R. Thc n1orphisl11 adetennines, in turn, an action of the free algebra T = T(W) on R. And
we have actions of G on Rand T defined by resp. P r-+ Xp(R) and P H xp(T), P EG.

To these actions, there correspond the crossed products R = R#G and T = T #G.
We define thc coalgebra structurc 8 on T = EBsEGG = ffisEGT 0 18 by setting

·80 tp = tp 0 1 + IIPI 0 tp
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where i p is the -natural embedding' P ~ W j 1 iso the unity oL T; IP'I is the. image of P
in Pic(C-). The lllorphisnls 8 0 ip determine a unique comultiplication 8 : T -t T 8 T
cOl1lpatible with the Illultiplication JL on T, i.e. such that (8, T, /-L) is abialgebra.

9.1. Lemma. There is a unique anti-automorphism of T which maps W on itself identi­
cally and extends the antipode on l(G) (cf. Lemma 8.10.2).

Proof. Consider the a-opposite to T = T(W) algebra (T, f-J,a)' Here f-J,a := f-J,oaT,T, {L
denotes the Illultiplication in T. Thc eillbedding W -t T(W) extends to uniquely defined
algebra morphislllS resp. 'l9 fronl (T, {L) to (T, {La) and {)' from (T, J-La) to (T, J-L). It
follows from tbe universal property of the tensor algebra, that the morphislll {) is inverse
to ,17': 'l9 0 {}' = id, {}' 0 {) = id.

On the other hand, there is the antipode {)G of l(G) detenllined by the set of thc
identical morphisl1lS 1 8 ---+ 1 1/ s , s EG. These two anti-alltomorphisms detenllinc a uniquc
anti-autoillorphisill () of T. It follows fronl the definition of the coproduct 8 on T that () is
an antipode in the bialgebra T .•

9.2. Proposition. There is an associative action cf> : T0R -t R the composition of
which with the embedding W 8 R ---+ T8R coincides with 8, and each 1 8 , s E G, acts as
XS (R) is a Hopf action.

Proof. We nced to check that

(1)

(cf. T.1). It suffices to check (1) on 'generators'. The restriction of (1) to P, P E X, is:

rn 0 ßp 0 ßp 0 Paw,nR 0 8(R 8 R) = ßp 0 P1n. (2)

It follows froln the definition of 8 that the equality (2) expresses the fact that ßp is a
Xp(R)-derivation which is, really, thc case (cf. 8.9).

The restriction of (1) to l s , sEC, holds Hf 18 acts by an algebra autoillorphism.
Eut, 18 acts, for all sEC, as Xs(R), and X8(R) is an algebra automorphism (cf. Note
8.4).•

9.3. Proposition. Theß-derivationß' = 81(G) : W0R#C ---+ R#C andXs(R#G), s E
G J define an associative action cf> : T0R#G ---+ R#O which happens to be a Hopf action.

Proof. The argulllcnt is sinlilar to that of Proposition 9.2.•

9.3.1. Note. Thc action rjJ of Proposition 9.3 rcspects the natural grading on thc crossed
product R#G.•

9.4. Bialgebras and ß-derivations. Denote for convenience thc crossed product R#O
by B, B = (B, m'). Let B have a Hopf algebra structure; Le. a conlultiplication ß anel an
antipode {), which extend those on l(G) : ß(l s ) = 18 01 8 , and 19(1 8 ) = 11/ 8 for all s EG.
Suppose that the action Gf T.on B is cornpatible with the coalgebra structure ß. Since,
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for any SEC, Xs(B) is an automorphism of theHopf algebra B, the 'latter Ineans that
the derivation a :W 8 B --+ B should bc cOlllpatible with .6..; i.e. the diagram

W~

W 8 B ----+

al
B

W,6
----+ B0B

(1)

where a' = aB + Ba 0 ßw,BB, is cOlnmutative.
Then U' := T#B is a Hopf algebra and the actions of T on Band the adjoint action

of ß determine a Hopf algebra action of U' on ß. Denote by U" the quotient of U' by the
annihilator of ß. This is a Hopf algebra.

It follows froln the definition of the action of T = T #C on B = R#C that, for any
sEC, the actions of elements l s -t Band 18 -t T on B coincide.

Applying thc construction of 11.9 tü the Hüpf action of U" on B, we obtain abialgebra
B+*U". Recall that B+ is the quotient of B by the augmentation ideal B+ - the kernel of
the coidentity E : ß -t 1.

9.5. 'Quantum groups' associated with a quasi-symmetry. Fix a set X of invcrtiblc
objects ofC-. Wc assullle for conveniencc that, for any P, Q E X, either P ~ Q, 01' P = Q.
Let W· denote the coproduct Ef!PEX P"'. And let E be the canonical pairing W· 0 W --+ 1.

According to Lenlma 5.2, one can associate with this data aß-derivation

a : vl1* 8 T(W) --+ T(W). (1)

Since W· is a (skew) free object, the ß-derivation (1) is representcd by the set of
ß-derivations apA : p'" 8 T(W) --+ T(W), P E X, which are uniquely defined by thc
equalities

(2)

Here LQ denotes, for any Q EX, the cmbedding Q --+ T(W); cp is the evaluation
isolllorphism p'" 0 P --+ 1; and oP,Q is the Kronekel' symbol: it equals to zero if P -# Q
and to 1 if P=Q.

Let G bc the subgroup of PicC- generatcd by the image of X in PicC.-. Denote by
R 01' (R, m) the crossed product T(W)#G detennined by the Inorphisnl X = Xß fronl
G to Aut(R) (cf. 8.10). Moreover, according to Lemilla 9.1, R has a natural coalgebra
structure .6.. : R --+ R 0 R such that (.6.., R, m) is a Hopf algebra. By Proposition 9.3, thc
ß-dcrivation a induces a Hopf action of the Hopf algebra T := T(W*)#G on the algebra
R.

The action of T on Rand the adjoint action of n on itself inducc a Hopf action
of R#T on n. Let J+ be the largcst alnong R#T-stable ideals in n contained in thc
auglnentation ideal n+ (- the kernel of the coidentity R --+ 1). Then n#T acts on
n+ := n/J+.

9.5.1. Proposition. The quotient U 01 the algebra R#T by the annihilator 0/ R+ is a
ß-Hopl algebra.
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Proof. The assertion follows froln Lemlna 6.9.1. _

9.5.2. Remark. The Hopf algebra U cau be constrncted in two steps. First, we ta.ke the
largest all10ng T-invariant ideals J containecl in R+. Let T' be the quotient of T by the
annihilator of R' := n/J. Then T' and R' are Hopf algebras, and the action of T' on
R' is a Hopf action. This action together with the adjoint action of R' detcrrnine a Hopf
action of R'#T' on R'. The quotient of R'#T' by the annihilator of R' is isomorphie to
the Hopf algebra U. We leavc the checking of this fact to the reader. _

9.5.3. Remark. The construction of U depcnds on the choice of the set of X of objects
of Pic(C-). Howcver, in the examplcs we are interested in there are canonical choices. For
instance, if C- is the monoidal category of ZJ-gradecl k-modules, it is natural to take as X
the set of invcrtible Ill0dules Pi, i E J, corresponding to the generators of ZJ. The group
G coincides with Pic(C-) = 7l J . Dur construction a..'3signs to each quasi-sYlnmetry ß of
C- (given by a Inatrix (qij)i,jEJ with entrees froln k*) a Hopf algebra Uß provided with a
natural 7lJ -grading.

In particular, taking as k the field of rational functions in q, and setting qij = q<i 1j>,
where < i, j > denotes the ij-entree of a Cartan matrix, we obtain a quantized enveloping
algebra of Drinfeld and JiInbo. Taking k equal to the ring of Laurcnt polynomials in q
with integer coefficients, we obtain a 7l-fonn of thc corresponding quantized enveloping
algebra. _

10. Localization construction.
10.1. ß-Hopf actions on graded algebras. Fix a rnonoidal subcategory C- = (C,0, 1)
of End- (A) with a qllasi-syuunetry ß, and a cOlllmutative group r. Let R = (EBAErRA' m)
be an r-graded algebra in C-. Let U = (0, U, tt) be abialgebra in C-; and let T : U0R ---t n
be a ß-Hopf action respecting the grading.

For any U-IllOdulc (M, (M), definc an action cp : U 0 n(M) ---t R(M) by the fonnula:

cp = cpM = T 0 (M 0 Uß(M) 0 öR(M). (2)

In particular (when A = C), we have a rnorphisrn 1> : U 0 (R 0 U) ---t n 0 U defined
by

cj;=T0jloUßUoöR0U. (3)

Thc action 1> defines an action m T := mU 0 R1> : (R 0 U) 0 (R 0 U) ---t R 0 U.

10.1.1. Lemma. (a) The action m T is an r -graded algebra structnre on R 0 U.
(b) For any U-module M, the R-module structure on R(M) extends to a structure 01

ar-gradedR#U-module'lj;M: (R0U)(R(M)) ---tR(M), whereR#U= (R0U,mr ).

We call the algebra R#U = (R 0 U,l1lr ) the crossed product olR and U.

10.1.2. Note. Thc Inap assigning to any U-module M the R#U-modulc R#M (cf.
Lemlna 10.1.1) extends naturally to a functor R# : U - mod ---t grR#U - l1LOd which is
iSOl110rphic to the tensoring by R#U over U. This iInplies, in particular, that the functor
R# is a left adjoint to the functor 'Jo:gtR#U - 'f7lod ---t U - mod which assigns to any
graded R#U-module its zero component and forgets about the action of R o. _
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10.1.3. Lemma. Suppose that R o = 1, and the action of U on R o is trivial. Then the
functor R# is fully faithful.

Froo/. In fact, under the conditions, the adjunction morphism from I dU - mod to
~o 0 R# can be chosen to be identical. _

10.1.4. Lemma. The functor R#U8n is isomorphie to the functor U* from gtR - nl,od
to gtR#U - mod which assigns to any graded R-module M = (M, ~M) the graded R#U­
module (U(M), v), where action ofU is natural and the action ofR is the composition

ßR,U oR(M) UTR(M) U€M
R 8 U(M) ----+ U 8 R(M) ----+ U 0 U 0 R(M) --+ U 0 R(M) ---+ U(M) (1)

Proof is left to areader. _

10.1.5. Note. The fonnula (1) defines a functor fronl gtr'R. - mod to gtr'R. - mod (­
the composition of U* and the forgetting the action of U functor from gt'R.#U - mod to
gtr'R. - mod) which can be interpreted as an action of the bialgebra U on the category
gtr'R. - mod.

Similarly, the conlposition of the functor 'R.# : U - 1110d ----t gtrR#U - mod with the
functor gtr 'R.#U - rnod ----t U - 1nod forgctting the action of'R. and thc grading could bc
regarded as an action of thc algebra n on the catcgory U - mod. _

10.1.6. The algebra 'R.*U. We denote this way the quotient of the algebra R#U by thc
annihilator of n in the canonical action (R#U) 0'R. ---t n. Since this action rcspects thc
grading, thc epimorphism from n#u to 'R.*U induces a grading on 'R.*U.

10.1.7. Remark: the form 'l/J. Consider thc bilinear fonn t T := EOTOßR,U : n8U ---t 1,
where t is thc counity. Thc fonn t T is invariant (with rcspect to thc action of 'R.#U. So
that its kernel, L_, is a Hopf ideal in R#U. Let U_ and n+ denote the irnages of resp. U
and R in thc quotient Hopf algebra R#U/ L_. Both U _ and n+ are Hopf algebras, and
thc fornl ET induccs a nondcgenerate invariant fonn 'l/JT on n+ 0 U _. _

10.2. Projective spectrum and a quasi-affine space related to a graded algebra.
Fix a nlonoidal catcgory C- = (C, 8, 1) with a quasi-symInetry ß. Let r be a commutative
directly ordcred brrouP and n a r -gradcd algebra in C-. For any elmnent '"Y in r, set
R>, := ffia>,Ra. Denote by T+ the fuH subcategory of 'R - mod generated by all Inoclules
(M, m : R 0 M ----t M) such that M = sup{M, I '"Y Er}, whcre each subobject M, is
annihilated by 'R>,. One can see that T+ is a subscheIne of n - mod. Let T; be the
miniInal Serre subcategory containing T+.

Identifying (would be) spaces with categorics of quasi-cohcrcnt sheaves on them, wc
shall call the quotient category R - mod/T+- the quasi-affine space ofR, or 1 in1itating the
Grothendieck's ternünology, the affine cone ol'R.

Let :F bc a natural (cxact and faithful) functor fronl gtrn - rnod to 'R - rnod. Denote
by T+ the preimage of T+ with respect to:F. Anel let T+ be thc nlinimal Serre subcategory
of gtrn - rnod containing T+. We call thc quotient category gtr'R - mod/rr+ the projective
spectrum ofn and denote it by Proj(n).
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It follows fronl the definitions of the quasi-affine spaee and the projeetive spectrum of
R that the natural funetor gtrR - 1nod --+ R - mod induces a functor froIn Proj(R) to
R - mod/T; . The latter should be viewed aB an inverse image functor of the projection
from the quasi-affine space (the affine cone) of R onto the projective spectrum of R (cf.
[R], Chapter VII).

10.3. Some examples of quasi-affine and projective spaces. We begin with most
iInportant for this work exanlples, leaving the siInplest one - the projective space - to the
end.

10.3.1. Example: the base affine space and the flag variety of a reductive Lie
algebra. Let 9 be a reductive Lie algebra over C (or over any other algebraically closed
field of eharacteristic zero). Let U = U (g) be the envcloping algebra of 9 . Let P be the
gTOUp of integral weights of 9 (isonlorphic to zr, r = rank(g)), and let P+ denote the
senügroup of nonnegative integral weights. Let R the P-gradcd algebra (EBAEP+ RA' /.L),
where R>.. is the vector space of the (canonical) finite dimensional representation with the
highest weight A. The multiplication /.L is detennined by thc projections

Clearly the natural action of U on each RA is a respecting grading Hopf action of U
on R. Setting P>o := P+, we make P a elirectly ordered group: , > a Hf , - a is an
element of P+.

Note that the algebra R is cOInnlutative anel is known to be isomorphie to thc algebra
of regular functions on thc so called 'base affine space' Y of 9 (which is, actually, quasi­
affine). Reeall that Y = G/U, whcre G is the siInply connccted eonnccted algcbraic
group with the Lie algebra 9 , anel U is its nlaximal unipotent subgroup. The category
R - 1nod/T; is equivalent to the category of quasi-eoherent shcaves on the base affine
space.

And Proj(R) is cquivalent to thc category of quasi-coherent sheaves on the flag variety
of 9 . Recall that the flag variety of 9 is the hOInogenious space G/ B, wherc G is the simply
eonnectcd conneetcd algebraic group with the Lie algebra g , anel B is a Borel subgrqup
in G.•

10.3.2. The base affine space and the flag variety of a quantized enveloping
algebra. Thc eonstruction of Excunple 10.3.1 can bc reproduced word by word in the
case of thc quantizcd enveloping algebra U = Uq(g) of a simple Lie algebra over the field
of zero charactcristic, with q being generic (i.e. not a root of 1), 01' a fonnal paranleter.
This time, however, the algebra R is not comInutativc. Following the c1assical cXiunple,
we shall call the quasi-affine space of R the base affine space 0/ Uq(g) or siInply quantized
base affine space. Anel we call Proj(R) the quantized flag variety 0/ 9 .•

10.3.3. Note on the base affine space and the flag variety of a Kac-Moody
algebra. The saIne construction as in 10.3.1; only RA is an integral simple reprcscntation
with the highest weight A. Similarly to the finite dinlensional case, this also can be cxtenelcd
to thc case of a qllantized envcloping algebra of a Kac-Moody Lic algebra.•
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10.3.4. Projective, spaces .. Fix a,monoidal category C = (C, 0,1) with ..a;symmetry
a. Let So-(W) be a a-symmetric algebra of an object W of C (cf. Example 5.3). Being a

.quotient algebra of thc Z+-graded 'tensor' algebra T(W) == EBn~oW 0n by a homogenious
ideal, the algebra 8o-(W) is Z+-graded itself. Taking r == Z with the natural ordering, we
define the a-affine cone, <to- (W) :== So- (W) - rnod/T;, and a-projective space, Iru(W) :==
Proj(Su(W)) := gtz8u(W) - mod/'I+. Note that the Serre sllbcategory T; (hence 'I+)
achnits in this case thc following discription: T+- is the rninirnal Serre subcategory of
So-(W) - rnod containing all llloclules annihilated by W (cf. [R], VII.2),

For instance, we can take as C- the category of ZJ-graded k-rnodules for sorne COlll­
nurtative ring k with the symrlletry a clefined by a rnatrix q = (qi.j ) i d E J of invcrt ible
clcluents of k such that (since a is a syrnrnctry) qijqji == 1 for all i, j E J. Let W be the
canonical skew free object; Le. W is the direct surn of J generators of Pic(C-) (note that
Pic(C-) == ZJ). Then So-(W) is the skew polynornial algebra of Section 3. If the lnatrix
(qi.j) is identical, then the symrnetry a is standart, So- (W) coincides with thc polynolTlial
ring in J indeterminates over k, and Proj(So-(W)) is equivalent to the category of quasi­
coherent sheaves on the usual projective space. In thc generic case, when the matrix (qij)

is nontrivial, IPo-(W) = Proj(So-(W)) has properties very similar to those of its COlnlnllta­
tivc prototype. For instance IP0- (W) is canonically covcred with skew affine spaces (cf. [R],
Chapter I, Exalllpie 1.2.2.4).•

10.4. Differential calculus on non-affine 'schemes'. Dur next step is to dcfine a
differential calculus on noncomrnutative projective spaces. In particular, on thc quantized
Hag varicties. This lncans that we need to define thc diagonal. This is already done
in Part I for all 'noncolnmutative spaces' in the 'absolute, minilllal, case': the 'absolute'
(=lninilnal) diagonal of an abelian category A is the lninimal subscheme ofAx A :== (tnDA
(- the category of functors A ---+ A having a left acijoint) containing IdA. But we need to
define aß-diagonal, where ß is a fixed qllasi-symmetry of the base monoidal category C-.

10.4.1. Actions of (monoidal) categories and associated diagonals. We begin with
a slightly different interpretation of the ß-diagonal in R - mod, whcre R is any algebra in
C-. Note that the quasi-symlnetry ß defines an action of C- on R - mod: the action Fx
of X E ObC sends any R-module (M, m) into the llloclule (X 0 M, Xm 0 ßA R,X M), where
ßA R,X = ß'X~R and any Inodule rllorphism f into idx 0 f (cf. Proposition 1.6.4.3 anel the
prcceecling discussion). Suppose that, for any X E ObC, the functor X0 is continuousj i.c.
it has a left adjoint. Then all functors F x have left adjoint, and the ß-cliagonal coincides
with the lninirnal subscheme of (tni)(R - rnod) containing all functors Fx , X E ObC.

Let A be an abelian category with a given 'continuous' action F of C. Here 'continuous'
means that, for any X E Obe, thc corresponding functor Fx : A ---+ A has a lcft adjoint.
Wc call the rninimal subscheme of (tni)A containing all Fx , X E ObC, thc F-diagonal of
(tni)A.

10.4.2. The ß-diagonal and differential calculus on Proj. An object of the monoidal
category C- is fiat if the functor X 0 is exact. We say that the lnonoidal catcgory C- has
enough flat objects if, for any object Y of C, there exists an epirnorphisrn X ---+ Y with
X fiat.

Fix an abelian group r. Let n be an r -graded algebra in C . The category C acts
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on the category gtrR - mod of r-gradcd rnodules the same way as it acts on R-ulodules.
This action respects thc grading, stabilizes the subcategory 'I+.

10.4.2.1. Lemma. Suppose that C- has enough flat objects. Then the action of C on
gtrR - mod defines an action, :F, ofC on Proj(R).

Proof. Thc action of any flat object X on gtrR - mod detcrmines, by Proposition
1.6.1, an action, :Fx, of X on Proj(R). Let now Y be an arbitrary object of C. Since C­
has enough flat objects, there exists an exact sequence

X I ----+ X ----+ Y ----+ 0

with X' and X flat. Since thc tensoring is a right exact functor, it follows that the action
of Y on gtrR - mod determines an action :Fy uniquely (up to isomorphisrn) detennined
by the exactness of the sequence

The standart detailes of this arguruent are 1eft to areader.•

We call the :F-diagonal in <enD(Proj(R)) the ß-diagonal.
Having a notion of aß-diagonal on Proj(R), we obtain the rest of the differential

calculus on Proj(R) automatically. Thus we have ß-differential actions (cf. Sectioll 6.10).
In particular, for any two objects Land M of Proj(R), we have the object of ß-differential
operators, Dif fß(L, M). We denote by Dß('R) thc objcct of ß-differential operators frorn
n to R. Here, as usual, we take the canonical realization oE quotient categories; i.c. thc
localization

gtR - mod ----+ Proj(R)

rnaps objects identica11y. In particular the r-graded left R-rTIodule R is regarded as an
object of Proj(R).

10.4.3. Remark: other versions of diagonals. It is more convenient, whenever it is
possible, to deal with auto-equivalences. Then we don't need restrictions like in Lerl1rna
10.4.2.l.

Fix a grouppoid (!:S (i.e. a category a11 rnorphisms of which are invertible). And
consider pairs (A, <p), where A is an abelian category, <P is a functor (or, rl10re convenicntly,
a diagraul) frOUl lB to the grouppoid Allt(A) of auto-equivalenccs of A - an action of lB by
auto-equivalences. Then we have a notion of <p-diagonal which is the rninimal subscheme of
<cnDA containing a11 functors <p(X), X E OblB. As 'morphisrus' from a (A, <p) to (A', <P'),
we a110w only functors from A to A' compatible with the actions of (!:S. Thus, subschenlcs
(in particular Serre subcategories) of (A, <p) are <P-stable subschernes of A. If S is any
<p-stable Serre subcategory of A, then the quotient category, AIS, has the induced action
of lB ) hence a diagonal and the rest of differential ca1culus.

For instance, we might restriet the action of C- on gtrR - mod to thc action of the
subcategory Pic(C-) of invertible objects of C- on gtrR - mod. Sincc Pic(C-) acts by
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auto-equivalences, it defines an .action (by auto-equivalences) on any quotient category
gtrR - mod/S, provided that the Serre subcategory § is stahle with respect to all these
actions (which holels for § = T+). Note that in the (inlportant for this work) case when
C- is the monoielal category of graded llloclules, the diagonal obtained this way coincicles
with the ß-diagonal. •

10.5. Differential calculus in 'spaces' with operators and crossed products. Fix
a 111onoidal category C- = (C, 0,1) with a quasi-symlnetry ß. A ß-bialgebra H = (0, H,rn)
is ß-cocommutative if ßH,H 08 = 8. .

10.5.1. Example. Let G be a group. Then the group algebra l(G) of G in C- (cf.
Example 5.4) is ß-cocomlnutative ß-Hopf algebra for any ß.•

10.5.2. Lemma. Let H = (0, H, m) be a ß-cocommutative ß-Hopf algebra. Then the
category H-mod ofH-modules is a monoidal category with a quasi-syrnmetry ß' canonically
determined by ß.

Proof. Thc monoidal structure on H -mod is defined for any ß-bialgebra H. The quasi­
symmetry ß' assigns to any pair V = (V, m), W = (W, v) of H-Inodules thc isoInorphislll
ßv,W . We leavc to the reader the vcrifying that, thanks to the ß-cocomlllutativity of
H, ßv,w is really an H-module isoInorphislll. •

Thus, for any ß-cocommutative ß-Hopf algebra H, we obtain, replacing (C-, ß) with
the monoidal category H - mod- = (H -lnod, 0, 1) and the quasi-symmetry ß' of Letnnla
10.5.2, an H-equivariant differential calculus.

Fix a ß-COCOllllllutative ß-Hopf algebra H.

10.5.3. Lemma. For any algebra n in H - mod-, the category R - mod is isorno1]Jhic
to the category R#H - mod.

Proof. Let (M, rn : R#H0M -+ M) be an object of R#H - mod (here R#H
is regarded as an algebra in C-). Thc rcstriction m' of the action m to H0M is an H­
nlodule structure; and one can see that thc restriction m" of 1'n to R 0 M is an H-Inodule
111orphism. The Inap sending (M, m) into ((M, r71/) , m") is, obviously, functorial. It is thc
claimed isomorphisrn from R#H - mod to R - mod. The checking detailes is left to a
reader.•

Lemma 10.5.3 iInplics that the category tEntJ(R - mod) is equivalent to the category
R#H-bimodules. And, for any R#H-bitnodule M, thc ß'-differcntial part of M is the H­
subbimodule of M gcnerated by the ß-diffcrcntial part of M rcgarded as an R-biInodulc:
DßI (M) = HDß(M)H. In particular, for any R#H-module L, DiffßI (L, L) is generated
by Diffß(L, L) (where L is viewed as an R-Inodule) and by the bnage of H in End(L).

10.5.3.1. Example: equivariant differential calculus on affine spaces. Take as
R the skew polynoInial k-algebra of Section 5.3. defined by a Illatrix q :::: (qij)i,jEJ with
entrees in k such that qijqji = 1. The Inatrix q defines a sYIllluetry ß in thc Inonoidal
category C- of ZJ-graded k-Illodules. As usual, the standart sYlnrnetry a in C- is deter­
nüned by the identical 111atrix: The sYIllInetry ß (Lc. the matrix q) defines an action of thc
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group C = ZJ on objects of thc category C-. It follows from Leillilla 10.5.3 and Proposi­
tion 3.3 that the equivariant ß-differential operators on 'R are generated by ß-derivatives,
rnultiplications by elements of 'R, and by thc action of the group G.•

10.5.4. Differential calculus on projective spaces. Fix a eOlllnlutative group rand a
ß-cocomillutative ß-Hopf algebra H = (0, H, rn) in C-. Suppose now that 'R is a r-graded
algebra in thc monoidal eategory H -1nod-. Or, equivalently, we are given a ß-Hopf action
of H on R whieh respects r -grading. Thc gradcd analog of Lemrna 10.5.3 states that the
eategory gtrR - mod of r-graded R-Illodules (everything over H - 1nod-) is isomorphie
to thc category gtrR#H - mod (over C-). This isomorphism induces an equivalenee of
thc eategory Proj(R) (over H - rnod-) to Proj(R.#H) (over C-). Therefore we have
an (H, ß)-differential calculus on Proj(R). The eorresponding differential actions and
(objeets of) differential operators will bc called (H, ß)-differential. If H = 1(C) for sOlne
group C, wc nüght replace (H, ß) by (C, ß)·

10.6. The localization construction. Now we will apply the observations of 10.5 to
the case when H is the group algebra of a subgroup C of Pic(C-): H = 1(G). Note that
1(G) is a eocommutative ß-Hopf algebra for any quasi-symmetry ß (cf. Exalnple 10.5.1).
It is (ß- )colnmutative too, sinee the existence of a quasi-symmetry implies that the group
Pic(C-) is commutative. Any quasi-sYlnlnetry ß determines an action of C on all objects
of thc catcgory C-. More exactly, ß dcfines a rnonoidal fully faithful cxact functor ~ß from
C- to 1(G)-mod- which realizes C- as a subscheIne of 1(G)-mod- and sends algebras in C­
into algebras in 1(G)-mod-. Thc functor ~ß allows to transfer G-diffcrential calculus onto
affine (i.c. R - mod) and projective (Le. Proj(R.)) 'spaces' in C-. This way one can talk
about (G l ß)-differential actions and, for any two R-Inodules (or objects of Proj (R)), L
and M, about (G, ß)-differential operators froln L to M.

Let )[ bc a subset of ObPic(C·) such that if P, pt E X, then either P = pt, or
P ~ pt. Let W = Ef)PEXP; and let G denote the subgroup of Pic(C-) generated by the
inlage of X in Pic(C-). Finally, let U = Uß,w be thc ß-Hopf algebra corrcsponding to this
data (cf. 9.5). We call an action of U of an l(G)-nlodule M natural if thc action of the
subalgcbra 1(G) of U coincides with thc 1(G)-module structure on M, Lc. if the action
U 8 M --t M is a 1(G)-module morphisl11.

10.6.1. Proposition. Let R be an algebra in 1(G) - mod-. Any natural ß-Hopf action
of Uß,w on R is (C, ß) -differential.

Froof. By Proposition 7.7, any ß-Hopf action of the affine (ß-Hopf) subalgebras U;

and Uß of Uß,w are ß-differential. This iInplics that natural ß-Hopf actions of U;#G and

Uß#C are (G,ß)-differential (cf. Lenuna 10.5.3).•

10.6.2. Corollary. Let T be a ß-Hopf action ofUß,w on a 1(G)-algebra 'R. Then
(a) The crossed product R#Uß, W is a (G, ß) -differential R-algebra (i. e. it is a (C, ß)­

differential 'R-bimodule).
(b) Any action 0 f Uß, W on an 'R-rnodule L compatible with the action T is (G, ß)­

differential.

Fraof. (a) The assertion follows froln Propositions 10.6.1 and 6.10.4.
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(b) 'Compatible with the action T' lneans that the actions of Uß,w and R on L
detennine the. action"of R#Uß;W .,Which is -(G, ß)-differential, because R#Uß,w is a (C, ß)­
differential over R .•

10.6.3. Remark. If the quasi-sYlllllletry ß is trivial, Le. it coincides with the fixed
symnletry (j in C-, then the actions of G on objects of C is trivial which implies that
(C, ß)-differential actions on R-modules (or on objects of Proj(R)) are just ß-differential.

•
10.6.4. Note. Of course, in thc assertions above, oue can asslulle that R is a graded
algebra and the action of Uß,w respects the grading.•

Complimentary facts.
Cl. The category 0 and twisted differential operators. Fix a nlonoidal category
C- with a quasi-sYlllnletry ß. Let R be a r -graded algebra in C-. For any vEr and any
r-graded R-lllodule M, dcnote by M(v) thc graded R-module EB,ErM(V)" where M(v),
is M(v +,) for all , E f. In particular, we have left R-modules R(v), v E f.

Note that the left Illodules R(v) are, actually, R-bimodules, and the functor R(v)0n
from R - mod to R - mod is isolllorphic to the 'translation' functor M H M (v).

We caU thc 1'>v:= Diff(R(v),R(v)) the algebra ofv-differential operators, or twisted
differential opeTators. If R(v) is viewed as an objcct of Proj(R), then we say that 1'>v
is the algebra of differential operators on the projcctive spectrunl. If R(v) is regarded as
an object of the quasi-affine space of R (cf. 10.2), then wc eall1'>v the algebra of twisted
differential operators on that space.

Applying this to the algebras R = El1>'E'P+ R>. of 10.3.1 and 10.3.2, we obtain, for any
integer weight v, the algebras of differcntial operators on the corresponding base affine
spaces and flag varieties - in the c1assical and quantized cases.

In the c1assical casc, v-differential operators are defined for any, not necessarily in­
tegral, weight. To see how this ean be done for quantized cnveloping algebras, we shall
reproduce the construction of v-differential operators of a reductive Lie algebra over a field
of zero characteristic in a way which ean be easily 'quantized'.

Cl.l. The category (') and the functor cI>. Fix a finite dinlensional reductive Lie
algebra 9 over a field k of characteristic zero. As usual, we denote by h anel b resp. a
Cartan and a Borel Lie subalgebras of 9 and by 2(g) the center of thc enveloping algebra
U(g).

Recall that the eatcgory 0 = O(g) is the full subcatcgory of the category of U(g)­
rnodules generated by all U(g)-lllodules of finite type which are senüsimple as h-nlodules
and arc locally U(b)-finite. Clearly V is a topologizing subeategory of U(g)-nlod. And the
rnininlal subscheIne, -0, of U(g)-nlod containing 0 is obtained by dropping the eondition
of U(g)-finiteness.

For any A E h*, let 0>. denotc thc full subcategory of 0 generated by all lllodules on
which operators z - X>.(z)1 are locally nilpotent for all z E 2(g). Since X>. = X,XI iff A' and
A lie in the sanlC W-orbit (where W denotes, as usually, the Weyl group of g), it is lnore
appropriate to write Ow>. instead of 0>.. Then 0 is a direet surn of the subcategories OW,X
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in the sense that each module of .thc category 0 is uniquely. ,represented as a direct sunl
of its submodules from thc subcategorics Ow.:\.

For any /-L E l:J*, denote hy k~ thc one-dinlensional U(b)-rnodule, where l:J acts by tt
and the nilpotcnt Lie subalgebra n+ acts by zero. Recall that the Vcnna module M(A) is
the induced 1110dule M(>") := U(g) ®U(b) k.:\_p' Denote by L.(>") the irreducible quotient
of M(>") by the maximal submodule. Recall that, for any >.. E l:J*, the modules M(WA) :=
U(g) ®U(b) kw.:\_p, W E W, and L(w>..), W E W, fonn hases for the Grothendieck group of
0>. = Ow.:\.

For any ttEl:J* , let 1r~ : 0 -T O~ denote thc natural 'projection' functor assigning
to any object of 0 its O~-sumnland. Now define a fUllctor q. : 0 ---+ grR - mod by

(1)

Note that

for all tt E l)* and w E W.
If I). E P+, then L(tt + p) ~ R~, and q.(Rtt ) = EB.:\EP+ R':\+tt = R(/-L). In particular,

«P(l) = R as a left R-module. Here 1 is the trivial one-dimensional U(g)-lnodule, 1 =
L(p) = Ra.

Cl.2. Twisted differential operators. Fix fL E l:J*. CaU I>~ := I>iff(<<p(M(/-L), q.(M(fJ.))
the algebra of twisted differential (01' IL-differentiaQ operators on the affine base space.

Denote by ~ the composition of thc functor cI> : 0 ---+ grR - mod with the localization
funetor gtR - rnod ---+Proj(R). For any fJ. E l)*, we set I>~ := I>iff(J(M(fJ.)), ~(M(fJ.)).
and eaU I>~ the algebra of twisted differential (01' lL-dijjerentiaQ operators on thc Hag variety.

C1.3. Note. The construction above ean be repeated for the quantized enveloping algebra
of a seIllisinlple Lie algebra. This allows to define fJ.-differential quantized operators für
any, not necessarily integral, weight M. The detailes are left to areader.•

C2. Extension of ß-derivations. Let C- = (C, 8, 1) be a I110noidal category with a
fixed quasi-symrnetry ß. Let R = (R, m) be an algebra in C-; and let a:W 8 R -t R be
aß-derivation.

C2.1. Lemma. Let ß = (B, IL) and'R = (R, m) be algebras in C-. Then, for any ß­
derivation 8 : W 0 R ---+ R of 'R, the morphism aB : W 0 (R 8 B) ---+ R 8 B 1,S a
ß-derivation ofR 8ß ß.

Sitnilarly, for any ß-derivation 8' : W 8 B -T B of B, the rnorphism

R8' 0 ßR,WB: W 0 (R0 B) ---+ R 8 B

is aß-derivation 0/ n 8ß B.

Prooj. Let fa denüte the eorresponding to 8R.-bimodule rnorphisIll W 8 3m ---+ R
(cf. Proposition 1.6.4.1). Here ~n:=Ker(nl). Thc kernel Jm0ß~ of the TIlultiplication
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rn 0ß Jl coincides with Jm, 0 B 0 B + R 0 R 0 J/1<' The quotient of the bimodule JmoßJl
by R 0 R 0 JJl 'is' isomorphic to .:1mB, sincc B (:) B /.:1/1< :::::B. Let 'Pa denotc the cOlnposition
of the projection Jm0ßJl -----7 .:1mB and thc bimodulc morphism faB : JmB -----7 n 0ß B.
Thc corresponding to this morphisln derivation is exactly aB.

We leave the checking of onütted detailes and thc proof of the second assertion to a
reader. _

C2.2. Lemma. Let A = (A, m) and B = (B, J.l) be algebras in C-,. and let M =
(M, ~),N = (N, v) be modules resp. over A and B. Then

M (:)ßN:= (M (:) N,~ 0 v 0 AßB,MN)

is an A 0ß B-1nodulc.

Proof is a straightforward checking left to areader.•

The derivation a : W 0R -----7 R induces a left action Ta of thc free algebra T = T(W)
on n. By Lemma C2.2, the morphisrn

TB' 0 J.l 0 TßB RB : (T0B) (:) (R 0 B) -----7 R 0 B, (1)

is a left T0ßB-module structure on n 0ß ß.

C3. Skew derivations and Hüpf algebras. Here we sketch a ring-theoretical construc­
tion of Hopf algebras related to skew derivations and crossed prodllcts.

C3.1. Skew derivations and crossed products. Let k be a commutative ring, R a
k-algebra, G a subgroup of the group Autk(R) of autonlorphisms of R. This lncans that
we have a Hopf action of the group algebra k(G) of G on R. We shaH write R#G instead
of R#k(G) and call it the crossed pT'Oduct of G and R,. Recall that R#G is a free right
R-modllie with the basis {x g I9 E G} and the nlllitiplication given by

g(r)xg = xgr for aH r E R, and XgXh = Xgh for all 9, h E G.

In particlllar, R#C has a natural structure of a C-gyaded algebra.

e3.1.1. Lemma. The action of G on R extends to an action on R,#G by s(xd = Xst/s
for all s, t E G.

Proof. Clearly the action is weH defined on the itnage of the b'TOUP algebra of G in
R#G: for any s, t, u E C, we have s(XtXu) = s(xds(xu ).

It remains to check that, for any r E Rand s, t E C,

In fact, we have:

s(xds(r) := Xst/ss(r) = (sts-1)(s(r))xst/s = st(r)xst/s = st(r)s(xd·
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•
C3.l.2. Note. The extension of s E G to an autoIllorphislll of R#G respects the natural
G-grading of R#G only if s belongs to the center of G.•

C3.l.3. Lemma. Let h be an automorphism of the algebra R which commutes with aU
9 EG. Let d be an h-derivation 0/ R ,such that, for any 9 E G, there exists Ad,g E k*
satisfying the conditions:

(a) Ad,id = 1, Ad,sAd,t = Ad,st /or aU s, t E G.
(b) d 0 9 = Ad,gg 0 d for aU 9 E G.
Then there exists an extension h' E Autk(R#G) of hand the extension d' 0/ d to an

h' -derivation 0/ R#G such that d' (x g) = 0 for all 9 EG.

Proof. The extension h' of h is defined by h'(xs) = Ad,sXs' The conditions (a) ilnply
that h' is an automorphisIll.

Set for convenience Ad,s = As. For any s, t E G and u, b E R, we havc:

On thc other hand,

d'(xst(a))Xtb + h'(xst(a))d'(xtb) = Asxsdt(a)xtb + Asxsht(a)AtXtd(b) =

Asxstt-1dt(a)b + AstXstt-1ht(a)d(b) = AsAtXstd(a)b + AstXstt-1ht(a)d(b) =

AsAtXst(d(a)b + t-1ht(a)d(b)).

Sillce t 0 h = hot for an t E G, the right part of thc last equalities is the same as thc
right part of (1) .•

C3.2. The algebra U-. Fix a Inap q., : J -t Gwhich takes values in the center of G;
and let, for each i E J, di bc an q.,(i)-derivation of R. Suppose that, for any i E J, therc
exists {Ah,s ISEC, h = q.,(i)} C k* such that

(a) Ah,id = 1, Ah,sAh,t = Ah,st for all 8, t E G;
(b) di 0 9 = A4J(i),gg 0 di /or aU 9 E C.
Let U- be a free k-algebra generatcd by {Xi I i E J}. The group C acts on U- by

g(Xi) = A4J(i),gXi for an i E J anel 9 E C (2)

So that we can considcr thc crosscd product U-#G = ffisEGYsU-.

C 3.2.1. P roposition. (a) Under the conditions above, the map which assigns to any
Xi, i E J J the 4>(i) -derivation di and to each generator Ys, s E G, the automorphism s
defines an action of U-#G on R; i.e. an algebra morphism from U-#G to End(R).

(b) The map which assigns to any Xi, i E J, the lj>(i)'-derivation d~ of Lemma C2.1.1
and to each generat0 r ys, s E G, the automorphism s (cf. Lemma C2.1.1), defines a ring
morphism <I> from U-#G to End(R#G).

Proof. (a) Since U- is a free algebra, it remains only to check that 1> is compatible with
the relations between Xi and Ys for an i E Hand SEC, i.c. that 1>(Ys xd := sodi coincides
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with <P(g(Xi)YS) :->.Al/t(i),'s<P(XiYS) :,= A4J(i),sdios. W·hich js the case by: the assUlllptions of
the Proposition.

(b) The assertion (b) follows frorn Lemrna C3.1.3. _

Define a cornultiplication 0- on thc algebra V- := U- #G by

0- (xd = Xi ® 1 + Y4J(i) ® Xi, 0- (Ys) = Ys ® Ys (3)

for an i E J and s E G and by the requirement that (0- ,U-#G, Ji-- ) is abialgebra.
Denote by {)- thc anti-autornorphisrn of U- #G which is identical on thc generators

Xi, i E J, and sends V8 to Yl/s for an H E G.

C3.3. Lemma. The bialgebra (0-, U-#G, /l-) is a Hopf algebra with the antipode {)- .

Proof fonows fronl the fact that the comultiplication 0- and the antipode {j- are
extensions of those on the group C, and the algebra U- being free. _

C3.4. Proposition. (a) The action ofU-#C onR (cf. Proposition C2.1.2) is abialgebra
action; i.e. it induces abialgebra morphism from (0-, U-#G, J-L-) to the bialgebra <enD(R)
of endomorphisms of R.

(b) Similarly, the action 0/ U-#G on R#G is abialgebra action. 1/ the groUl) G is
commutative, the action 0/ U-#G r'cspects the G-grading on R#G.

Proof. (a) We need to check that J-L 0 ö-(z)(a ® b) = z(ab) for all z E U-#C and any
elenIents a, b of R. It suffices to check the fact for an generators of U- #G.

It is definitely true for all Y8l sEC, since the action of Ys is s, and s is an autolnor­
phism.

For any i E J 1 we have:

since di is an 4>(i)-derivation.
(b) A sinlilar argument (together with Note C3.1.2) works for the second assertion. _

C3.5. Example. Let R = (R, Jl,) bc a k-algebra. And let G be a subgroup of Autk(R, /l)'
Suppose we are given the data of C3.2; so that the algebra U- with the action of G on it
is defined (cf. C3.2). Take as U thc Hopf algebra U-#C and as T its natural bialgebra
action on R#C (cf. Lelnma C3.3 and Proposition C3.4).

Suppose that R#G = $sEGxsR has a Hopf algebra structure, i.e. a COIllultiplication
/j" and an antipode 1J, which extend those on k(G) : /j,,(x 8 ) = X s ® X Sl and 1J(xs ) = Xl/s

for an s EG. Suppose that the action of U-#G on R#G is cOlllpatible with thc coalgebra
structure /j,,'. The latter means that

(a) all eleIllCIllts of Gare autornorphisIllS of the Hüpf algebra R#Gj
(b) the derivations di , i E J, (cf. C3.2) are compatible with .6.; i.e., for any r E Rand

i E J, we have:

(1)
v

where LvTv0T~ = /j,,(r) (cf. Lenuna 6.8.1).
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Then V' := (V-#C)#(R#C) iso a.Hopf algebra and thc actions -of U-#G on R#G
and the adjoint action of R#G determine a Hopf algebra action of U' on R#G. Denote
by U" the quotient of V' by the annihilator of R#G. This is a Hopf algebra.

It follows froln Example 6.8.2 (and thc definition of thc action of V-#G on R#G)
that, for any sEC, thc images of elCIuents X s E R#G and Ys E U-#G in ~n()(R#C)

coincide.•

C3.6. The Hüpf algebra R +*U _. This is an iIuportant specialization of the construetion
of Section 6.9. We asSlllue that the conditions of C3.5 hold; i.c. R is a Hopf algebra, anel
the action of U- on R#G is compatible with thc comultiplication (cf. Lemma 6.8.1). Let
R+ be the augluentation ideal in R#G - the kernel of the coielentity € : R#G -----+ k.
Dcnote by L+ thc largcst among V- #C-stable ideals in R#G contained in R+. Set
R+ := R#G/L+. By Lcrnma 6.9.1, R+ is a Hopf algebra and thc action of U-#C on R+
is compatiblc with the comultiplication on R+.

Thus, n+#(U-#G) aets on n+. Thc quotient, R+ * U_, of R+#(V-#G) by thc
annihilator of R+ is a Hopf algebra. Here U_denotes the inlage of U-#G.

We shall caU thc kernel, K _, of the canonical (Hopf algebra) epinlorphism frorn U-#G
to V _ the (Bop/) ideal 0/ Serre relations.

Quantized cnveloping algebras are a special case of this construction.

References.

[AZ] M. Artin, J.J. Zhang, Noncomnnltativc projective schenlcs, preprint, 1994
[BB1] A. Beilinson, J. Bernstein, Localization de Q-modules, C.R. Acacl. Sei. Paris 292
(1981), 15-18.
[BB] A. Beilinson, J. Bernstein, A proof of Jantzen conjecturcs, Advanccs in So viet luath­
cmatics, v. 16, Part I (1993)
[BBD] A. Beilinson, .1. Bernstein, P. Dclignc, Faisceaux pervers, Asterisque no.100 (1982)
[BrK] J. Brylinski, M. Kashiwara, Kazhelan-Lustig conjecture and holonomic SYStClllS, Inv.
Math. 64 (1981), 387-410.
[BD] I. Bucur, A. Delcanu, lntrocluction to the theory of catcgories and functors, London
- New York - Sydncy John Wiley & Sons (1968)
[B] N. Bourbaki, Aigebre commutative, Hennann~ Paris, 1965.
[Be] A. Beilinson, Localization of representations of reductive Lie algebras, Proc. of Int.
Cong. Math. Warszawa (1983).
[BO] A. Bondal, V. Orlov, lntersections of quadrics and Koszul duality, in preparation.
{D] J. Dixmier, Aigebres Enveloppantcs, Gauthier-Villars, Paris-Bruxelles-Montreal, 1974.
[Dr1] V.G. Drinfcld, Hopf algebras and thc quantlull Yang-Baxter equations, Sov. Math.
Dokl. 32 (1985), 254-258.
[Dr2] V.G. Drinfeld, Quantum Groups, Proc. lnt. Cong. Math., Berkeley (1986),798-820.
[FRT] L. Faddeev, N. Reshetikhin, L. Takhtajan, Quantization of Lie Groups and Lie
Aigebras, preprint, LOMI -14-87; Algebra and Analysis, vol.1, no. 1 (1989).
[Gab] P.Gabriel, Des categories ab6lienncs, BuU. Soc. Math. France, 90 (1962), 323-449
[GK] I.M. Gelfand, A.A. Kirillov, Sur les corps lies aux algebres enveloppantes des algcbres
de Lie, Publ. lust. Hautes Etudes Sci., 31 (1966), 5-19.

67



[GI'] A. Grothendieck, EGA IV, Etude locale des·schemas et "des morphismes des schenias,
1.H.E.S. - Publications MatheIuatiques No. 32 (1967)
[GZ] P. Gabriel, M. ZiSl11an, Calculus of Fractions and hOlllOtOpy theory, Ergebnisse der
MatheIuatik, Vol. 35, Berlin - Heidclberg - Ncw York; Springer Verlag (1967)
[Ha] T. Hayashi, q-Analogues of Clifford and Weyl algebras. Spinor and oscillator repre­
sentations of quantum enveloping algebras, COIllmun. Math. Phys. 127, 129-144, (1990).
[HaI'] R. Harteshorne, Algcbraic Geornetry, Springer Verlag, Berlin-Heidelberg-New York,
1977
[H] T. Hodges, Ring-theoretical aspects of the Bernstein-Bcilinson theoreIl1, LNM v.1448
(1990) pp.155-163
[Jl] M. Jimbo, A q-Difference Analog of U(g) and the Yang-Baxter Equation, Lett. Math.
Phys. 10, (1985), 63-69.
[J2] M. Jimbo, A q-analog of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation,
Lett. Math. Phys. 11 (1986), 247~252.

[Jo] A. Joseph, Faithfully Hat eIubeddings for minimal primitive quotients of quantized
enveloping algcbras. In: A. Joseph and S. Shnider (eds), Quantum defonuations of algebras
and their rcpresentations, Israel Math. Conf. Proe. (1993), pp. 79-106
[Jol] A. Joseph, Quanttllu groups and their prinlitive ideals, Springer-Verlag, 1995
[LaR] V. Lakslunibai, N. Reshetikhin, Quanttllll Hag and Shubert Schemes, in: Defor­
11lation Theory and Quantum Groups with Applieations to Mathernatical Physics, M.
Gerstenhaber and J. 8tasheff (eds), ConteInporary Mathenlaties, 134, pp. 145-181,
[L] G. Lusztig, Introduetion to quanttllll groups, Progress in Mathematics 110, Birkhäser,
Boston 1993
[LRl] V.Lunts, A.L. Rosenberg, Differential ealculus in noncoInmutative algebraic gconle­
try I, preprint of MPI
[LR2] V. Lunts, A.L. Rosenberg, Loealization for quanttul1 groups, preprint
[LR3] V. Lunts, A.L. Rosenberg, D-nlodules on quantized spaees, in preparation.
[MR] J.C. McConnell, J.C. Robsou, NoneoIuInutative Rings, John Wilcy & Sons, Chich­
ester - New York - Brisbane - Toronto - Singapore (1987)
[M] S.. Mac-Lane, Categories for the working lllathcnlaticians, Springer - Verlag; New York
- Heidelberg - Berlin (1971)
[MI] Yu.I. Manin, Quantum Groups and Non-colnmutative Geometry, CRM, Universitc
de Montreal (1988).
[M2] Yu. 1. Manin, Topics in NoncOlnInutative Geometry, Princeton University Press,
Prineeton New Jersey (1991).
[R] A. Rosenberg, NOneOIl1mutative algebraic geometry and representations of quantized
algebras, Mathematics and its applieations, v. 330, Kluwer Aeademie Publishers, 1995,
316 pp.
[Rl] A. Rosenberg, Noneommutative loeal algebra, Geometrie And Functional Analysis
(GAFA), vol.4, nO.5 (1994), 545-585.
[Sa] C. Sabbah, Systemes holonOIncs d'equations aux q-differences, in I D-modules and
Microlocal Geometry', M. Kashiwara, T. Montero Fernandes and P. Shapira Editors, Valter
de Gruyter . BerEu· New York, 1993.
[8] J .-P. Serre, Faisceaux algebriques coherents, Annals of Math.62, 1955

68



[So] Ya. S. Soibelrnan, On quantum fiag ,manifolds, Funet. Anal: Appl. 26; pp.. 225~227
[TT] E. Taft, J. Towber, QuantU111 deformations of of fiag scheInes allel Grassnlan sehenIes,
Preprint (1988).
[ThT] Tholllason, Trobaueh, Higher algebraic K -thcory of seheules, in The Grothendieck
Festschrift, v. 3, Birkhäuser, Boston-Basel-Berlin, 1990
[V] ,J.-L. Verdier, Categories derivees, LNM v.305 (1977)

69


