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Introduction. Let G be a finite group, and R be a commutative ring with identity. We
denote by #(RG) the category of RG—modules. For any subgroup H C G, one has two
G G

ResH Ind

basic functors 4(RG) ——— 4(RH) and 4(RH) — D #(RG) given by

restriction and induction which play an essential role in representation theory. An
important and elementary class of RG—representations are permutation modules which are
direct sums of modules Indg(R) obtained by induction from the trivial RH—moduole R
for various H C G . In another extreme, one has RG—modules which arise by induction
from RH—projective modules, leading to the concept of relative projectivity and Green’s
theory of vertices and sources [CRj [GR]. The value of these subcategories of modules in
representation theory and related areas is well-known. in a different direction (influenced
by algebraic geometry and topology), one considers not only module categories, but various
categories of chain complexes of modules and their cohomologies. This culminates in the
more recent approaches to representation theory through the theory of derived categories.
See [SC] [CPS] and their many references.

A natural problem is to develop and study generalizations of induction—restriction
theories in the set—up of derived categories. Of course, one has the various generalization of
the restriction and induction functors to the categories of chain complexes. However, most
of natural examples of RG—chain complexes which arise in applications are those complexes
whose constituent chain modules only happen to be permutation modules. This leads to the
study of complexes of permutation moduels and the representation afforded by their
homologies. On the other hand such RG—complexes are far t00 general for the purposes of
induction—restriction theory. For example an RG—free resolution C, of an arbitrary
RG-module M may be thought of as a complex of permutation modules whose only
non—vanighing homology Hy(Cy) = M . On theother hand, natural finiteness conditions in
the derived category leads to urdue restriction. For example, if we require further that C,

above be quasi—isomorphic to a bounded RG—free chain complex, then M will be very
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close to be RG—projective. For instance, if R is the field of characteristic pand G isa
p—group, then M is necessarily RG—free. Thus the familiar conditions in the derived

category leads to either severe restrictions or unmanagable generality.

A middle—ground is provided by "permutation complexes" which forma restricted
and proper subcategory of the complexes of permutation modules. See SEction One for
exact definitions. In particular, permutation complexes which are quadi—isomorohic to
bounded permutation complexes form a distinguished nd a suitably large subcategory with
a rich structure. Homology representations afforded by bounded permutation complexes
demonstrate remarkable properties which make them desirable objects of study. In
practice, such complexes arise naturally in the combinatorial approach to group theory,
topology, and algebraic geometry (See Section One).

The theme of the present paper is a preliminary study of the deep relationship
between the representation—theoretic and homological properties of permutation complexes
and their homology representations from a local-to—global point of view. In particular, e
prove a localization theorem (Theorem 2.1.) which is an elementary but basic tool. A
projectivity criterion (Theorem 3.3) is applied to relate the present subject to more familiar
constructions in group theory (Theorem 3.4.). We introduce and study a Hermitian
analogue of the theory in Section Four which is applied to some well-known and classical
topics in fixed point theory of topological transformation groups (Theorem 4.5 and
Corollary 4.13). In Section Five we study the so—called invertible elements (called units of

the stable Green ring) and endo—trivial homology representations.

SECTION ONE. PE TATION COMPLEXE

Let S bea G—set, i.e. a disjoint union of left cosets G/H for various H C G . The
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free R—module whose basis is given by S is denoted by R[S] . The trivial G—action on
R and the left action of G on S gives R[S] the structure of an RG—module. R[S] is
called the permutation module with permutation basis S.If S=¢, R[S§] =0.A
complex of permutation modules is a chain (cochain) RG—complex Cy such that each C,

is & permutation module. A special case occurs in the following:

L1 Definition. Let o =] |5, bea disjoint union of G—sets. An RG—complex Xy is
i€l
called a permutation complex with permutation basis ¢ if
(1) each X, = R[S;] is a permutation module with basis S, ;
(2) the boundary homomorphisms &, : C; —— C;_, is RGinear and satisfies
8i(SIi:‘[) C R[S]il_l] foreach HC G.

It follows that ':HR [SE[] < X, is a subcomlex which we will denote by Xy (H) . It
i

is clear that condition (2) of 1.1 is equivalent to the follwoing:
(2)’ For each H C G, the graded submodule X4(H) is a subcomplex of X, . We
call X4(H) the subcomplex of H—fixed points of X, . The equivalent properties (2) and
(2) tie the local and global structures of X, together and impose non—trivial restrictions
on the homology representations of bounded permutation complexes. The isotropy
subgroups of o/ are caled also the isotropy subgroups of X, . With respect to the natural
action of N(H)/H on Sfi[, X«(H) becomes an R [Nq(H)/H]—permutation complex,
and restricting actions to N5(H) , yields a pair of N(H)-permutation complexes
(X4, X4(H)) . Let #(RG) be the category of RG—complexes and RG—chain maps. There
are two subcategories of #¥(RG) whose objects consist of permutation complexes. The
first oneis P(RG) where the morphisms are those chain maps Xy —— Y, which are

induced form the G—maps of the permutation bases (as G—sets) of X4 and Y, . The

second category is 2 (RG) which is the full subcategory of #(RG) whose objects are the



—4 —

same a8 the objects of #(RG) . #(RG) is closed under most of the familiar constructions:

quotient complexes, maping cylinders, mapping cones, push—outs, etc.

1.2. Definition. Let Xy be a positive permutation complex, and let R be concentrated in
degree zero. Xy is called based if there is a split augmentation in P(RG) X, —— R,
so that X4 ~ o(R) ® Ker(e) in P(RG) . Baesd complexes and based chain

homomorphisms form a subcategory QO(RG) .

1.3. Constructions on permutation complexes. Let Xy and Y, be permutation

complexes with permutation bases A= | A , B=] | B ,and let X4 and Y4 be

n€l nel
71
based permutation complexes with split augmentations X(’) ——— 'R and
1
T2
Y)———— R . We have the following constructions in 2(RG) :
2
(i) Direct sum X, ® Y, corresponding to the disjoint union A | | B.
(ii) Tensor product X, ® Y, corresponding to the cartesian product A x B .
(iii) m—fold shift for m € Z by shifting the grading of the basis, or equivalently,
(Xx [m] )i = Xi—m .
(iv) Wedge X& V Yy =Zy in the subcategory of based complexes £(RG) is

defined by Z; =X;®Y; for i21,and Z(’] is the push—out:

7

R — X, together with the induced split augmentation

2| |

Yp——1%
Z(’) "R from this square. One may think of X} V Y} as "sum" in
2,(RG) .

(v) Product in £ (RG) is the smash—product X4 A Yy defined as the
pull-back:



(vii)

Equivalently,let X4 VY:=X:® 02(3) v al(B,) ®Y, and
(Xe AYL), = (Xx®YL)/(XL VYy)), for i21 and for i=0 the
pull-back diagram of RG—modules:

(X4 A Yi), —— X}

L 4 |

Y6 — R

Reduced suspension in #,(RG) of X is the based complex ¥ Xy defined
by (2}(,.:)i+1 =X; for i20,and (EX*)O =R@®R with (E@)H_l = 0, and
L4, : (BX4); — (EX,) given by €: Xy — (R); = first factor in
(EX*)O . The split augmentation is provided by the projection onto the second
factor of (EX,.,)O . The iteration of suspension for each n > 1 is denoted by
"X . This is the analogue of the shift in (iii) for 2 (RG).

In addition, there are other constructions suggested by their first analogues for
topological spaces, e.g. the join X4 o Y, , the coneon X, denoted by cXx
or unreduced suspension in P(RG) . We leave these, and the verification of
the fact that most of the other familiar constructions for chain complexes (e.g.
mapping cylinders, mapping cones, etc.) can be performed in £(RG) or
3’0(RG) . The proof of this lemma follows from definitions and is left out.

1.4. Lemma. The above constructions are functorial in #(RG) and 2(RG) . In
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particular, they commute with the formation of "subcomplexes of fixed points", e.g.

(Xx A Ya)(H) = Xu(H) A Yy(H) etc.

1.5. Important Remark. In literature, the terminology "permutation complex" occurs in
various contexts with different meanings. Often, what we refer to as a complex of
ermutation modules (i.e. only condition (1) of Definition 1.1 above) is called a permutation
complex and condition (2) is not imposed. See, e.g. Arnold [Arl] [Ar2], Adem [Ad1]
[Ad2], and Justin Smith [Sm1]. See [A1] Chapter Eight for further references.

1.6. Exampleg. (1) It is obvious from the definition that a complex of permutation modules
need not satisfy condition (2) of Definition 1.1. For instance, let Cq=1ZG, C; =1 and

8:C; — C, be the norm map §(1) = 2 g.
g€G
(2) Permutation complexes arise naturally in the combinatorial approach to finite group

theory, e.g. as in Ken Brown [B1] [B2], Quillen [Q2], Webb [W1] [W2], D.
Smith [Sd1] and their references. One considers a partially ordered set of subgroups
of G, and chooses the permutation basis in dimension n to be the chains of length
n . The G-action is induced from the conjugation by elements of G .

(3) If X is asimplicial complex and elements of G act on X by simplicial maps, then
the simplicial chains of the second bary centric subdivision of X yield a permutation
complex. See Bredon [Bdn] Ch. Two.

(4) More generally, if X is a G-CW—complex (see Bredon [Bdn], Hlmann [I] or
Matsumoto [Mat] for various properties of G—CW complexes), then the complex
C«(X) of cellular chains of X is a permutation complex. If xG # ¢, then Cu(X)
will be a based permutation complex if we choose a base point in xC . In (3) and (4)
above, C4(H) corresponds to the simplicial and cellular chains of xH

(5) Smooth G—manifolds as well as complex algebraic subsets of €" and CP™ with
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algebraic G—actions also admit triangulations with simplicial G—actions. See Illmann
[I] and Hironaka [Hir]. Thus, by (3) above applies. For instance, one concludes
that their homology arises as the homology of a permutation complex.

(6) For more general G—spaces (e.g. paracompact ones), it is possible to use suitable Cech
coverings as in Bredon [Bdn] Chapter Two to obtain a permutation complex whose
cohomology computes the cohomology of the space.

(7) 1t is easy to see that #(RG) contains many permutation complexes which do not
arigse from topological situations of (3)—6). Even for RG—complexes C, whose
underlying R—complex is the complex of cellular chains of a CW—complex X , it
happens (more often than not) that C, is not even RG—chain homotopy equivalent
to a permutation complex of a G-CW complex as in (4) above. See Justin Snith
[Sm1] and Quinn [Qf] for obstruction theories which analyze the homological

obstructions for topological realization of chain complexes.

SECTION TWO. LOCALIZATION AND VARIETIES

In this section we discuss localization and its consequences in the theory of module
varieties.

Let X, be a permutation complex, and let W, be a projective resolution of R
over RG . The homology and cohomology of the total complexes associated to the double
complexes W, QG X4 and HomG(W*,X*) are called the hypercohomology and the
hypercohomology of Xy , and they are denoted by H,(G;X,) and [H*(G;x*) . The
topological analogue of the above construction for topological transformation groups is the
Borel equivariant homology H$(X;R) and Hy(X;R) defined for a Gspace X , using
the twisted product (or the Borel construction) Eq*a X —ZX 1 BG associated to the
universal principal bundle E —— BG . See Bredon [Bdn], W.Y. Hsiang [Hsg], Borel
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[Bor], or Quillen [Q1] for the topological theory, and Ken Brown [B3],
Cartan—Eilenberg [CE], as well as Swan [Sw] for an algebraic discussion.

Let R = IF or any other field of characteristic p (e.g. IF ),andlet G = (H " .
Then for p = 2, H (BGIF ) " (GF )—IF [tl, AN w1th t. €H (G[F ) . For
p>2,let A(uy,..,u o) De the exterior algebra generated by
H (GIF ) Homﬂ: ((F ) JF ) andlet t, €H (GIF ) be the image of the Bockstein

B: H(GIF )-——-—»H(GIF) ThenH(G[F)_A(ul, ) OF [t t ] . Similar

10
formulas hold for R replacing [Fp .If X is a finite—dimensional paracompact G—space,
and j: XG —— X is the inclusion, then the induced homomorphism in equivariant
cohomology jé : Hé(X;R) e Hé(XG;R) i8 H*(G;R)—-linear. Let SC H*(G;R) be
the multiplicatively closed subset generated by the non—zero [Fp-linea;r combinations of the
polynomial generators {tl,...,tn} . The localization theorem is equivariant cohomology
(originally due to Borel [Bor] and further generalized by W.Y. Hsiang [Hsg] and Quillen
[Q1] states that the localized homomorphism 571 ja : S—IHE.'(X;R) — S_lﬂé(XG;R)
is an isomorphism. This theorem and its ramifications have been at the heart of the
developments in the cohomology theory of transformation groups since 1950’s. See Borel
[Bor], Bredon [Bdn], W.Y. Hsiang [Hsg], and Quillen [Q1] for examples of
applications.

We have the following generalization of the above localization theorem which will be

one of the main technical tools in the homological study of permutation complexes.

2.1 THEQOREM (Localization theorem for permutation complexes). Let C, be a bounded

RG-permutation complex. Assume that G = (Hp)n, £ is a field of characteristic p , and
*

S CH (G;R) is as in the above. Then, the inclusion p : C4(G) —— C4 induces an

isomorphism §~1p" : T (G;¢”) — 57 (G;¢7(@)) -
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Proof: Consider the exact sequence of RG—chain complexes:

0 — Ci«(G) L _,c,-4Q,—— 0. Consider the long exact sequence in
*x

hypercohomology: ... —— M(G:Q") —S— Hi(G;C ") ' H(G;c' (G) 24— ... in
which all homomorphisms are H*(G;R)—linear. Since localization is an exact functor, the
theorem will follow from the statement S—IIH*(G;C*) = 0. Note that Q, isa
permutation complex for which Q4(G) = 0 . Therefore, the following lemma will complete

the proof of the above theorem. -

2.2 Lemma. Let G = (Ep)11 and R be a commutative ring. Suppose Q4 is a bounded
complex of permutation modules with basis El such that E(i?' = ¢ . Then [H*(G;Q*) is an
H*(G;R)—torsion module. Therefore, if P, is an RG—complex RG—chain homotopic to

Q« , then [H*(G;P*) is also H*(G;R)—torsion.

Proof: If length of Q4 is one,i.e. Q« =M concentrated in dimension d, then
* * * * *
H(GQ )=9H (GR[G/H]) ¥ H (H;R) is H (G;R)-torsion (since H; # G and
* % *
p; : H, —— G induces a homomorphism p; : H (G;R) —— H (H;;R) with

non—nilpotent kernel). In general, Q, is the result of splicing a finite number of short
3

exact sequences: 0_'Zd+1_"Qd+1 A.Bd +0 and

0 + Bd 12y ) Hd(Q*) —— 0 . First suppose that there is only one integer s
such that H (Q4) #0 and H,(Q4) =0 forall i # s . In this case, all of the above short

exact sequences, except possibly 0 ~ Bs y Z8 b HS(Q,.,) —— 0 have two
terms which are permutation modules. Hence by the above case and induction all
[H*(G;Md) are H*(G;R)—torsion, where Md is any of the modules By» Zg» Qd or
H,(Qu) . On the other hand, H (G;Q ) & H (G;E%(Q")) (with a shift of dimension,
possibly) since the hypercohomology spectral sequence H*(G;H*(Q*)) 2 IH*(G;Q*)

degenerates. Next, we proceed by induction on the length of cohomology £ = cardinality
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{s|H (Q«) # 0} . Let & = the length of the cohomology of Qs , and choose d to be the
smallest integer such that H d(Q*) #0.Let F beafree RG—module and F the free
RG—complex concentrated in dimension d . We may choose F and an RG—chain map

f: F ——— Q, such that the induced RG-homomoprhism fy: F —— H d(Q*) is
surjective. It is easily seen that we may arrange f to be surjective, so that the following is

a short exact sequence of RG—complexes: 0 —— Ker({f) = » Qe —— 0. Now

the length of cohomology of Ker(f) is £~1, and by induction IH*(G;Ker(f)*) is
H'(G;R)~torsion. Since H(G;Q") =3 +1(G;Ker(f)') is an isomorphism for all i # d,
d + 1, it follows that [H*(G;Q*) is also H*(G;R)—torsion. This proves the lemma.
(Alternatively, for a shorter proof we may have argued that the second spectral sequence of

the double complex Hom(Wy,Qx) is convergent, and its E,—term has a filtration by

*
H (G;R)—torsion modules). -

2.3. Corollary. Keep the notation and hypothese of Theorem. Let D, is an RG—chain
complex which is RG—chain homotopic to a permutation subcomplex C4 C C4 and

’ -1 * * -1 * *
assume that C4(G) L Cx.Then S 'H (G;D ) S "H (G;C).

Proof:  The hypotheses imply that
-1, * * —1..* ¥ —1..¥ * ~1.* *
SH(GD)~S H(GC’ )uS H(GC(G)xS H(GC). m

Next, we study the varieties for homology representations of permutation complexes. The
localization process in cohomology is closed related to the notions of support and rank
varieties for modules, introduced by J. Carlson [C1] [C2] and developed further by
Avrunin—Scott [AS] and others. For simplicity, let E = (I/p)" be generated by
<X{peeeXp> and consider the reduced cohomology ring

Hp = H*(E;k)/Radical & k[t;,..t ] . Any kE—module M gives rise to an Hp—module
H*(E;M) , and as such, it has a support in Spec Hy, . For many purposes, it suffices to



consider the subspace of closed points in Spec HE , namely Max HE consisting of
maximal ideals. Let I(M) C Hp denote the annihilating ideal of the Hp—module
H*(E;M) . The cohomological support variety V5(M) C Max Hp is nothing but the
variety defined by I(M): Vp(M) = {~ € Max Hp : = ) I(M)} . This definition
generalizes directly to any p-group G, and with a slight modification to the case of
general finite groups, see Avrunin—Scott [AS] for details, and Carlson [C1] [C2] for
details of what follows. Notice that Max HE ~ k™ = the affine k—space of dimension n .
There is another n—dimensional affine space associated to E = (Z/p)" . Namely, let

Jg CKE be the usual augmentation ideal, and observe that Jp/J2 o H, (E:k) 2 k™ . By

o
choosing a basis for JE/J% and a splitting o of the projection x:Jp —— JE/JF% ,
we obtain an n—dimensional k—subspace of kE , which is denoted by L . For example, for

E = <x,x >, let a basis of L be {xl—l,...,xn—l} . To an n—tuple (al,...,an) €k,
n
there corresponds the element u =1+ z ai(xi—l) € 1 4+ L, which is a unit, and it
j=

generalites a subgroup <u > ¥ I/p CkE. <u > is called a shifted cyclic subgroup of
kE , and it was introduced by E. Dade [D] to study endo—trivial modules. Uisng shifted
cyclic subgroup, Jon Carlson defined the subset VE(M) CLxk" via

VPI:(M) = {(a;,...,a)) € kn|M|k<ua> is not k<ua>—£ree} U {0} called the rank

variety of M . Indeed Vé(M) is a well—defined subset of JE/J% = k" independent of
the choice of L, and it is a homogeneous affine subvariety of k™ . There is a natural
identification JE/J% —2  Max Hp , and this results in a map V]IB(M) — Vp(M),
which was shown to be an isomorphism of sets by Avrunin—Scott [AS], thus proving a
conjecture of Carlson, see also [C2]. This isomorphism is natural and compatible with
respect to the inclusion of subgroups, in particular, products of shifted cyclic subgroups
S=<u >x <ug>x .. x<u ¢ (the so—called shifted subgroups of kE which have
ranks < rank (E)).
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The theory of varieties for modules have proved to be extremely valuable, not only in
representation theory and finite group theory, but in the context of restricted Lie algebras
(Friedlander—Parshall [FP] Jantzen [J]) and topological transformation groups and
homotopy theoretic aspects of geometric topology (e.g. Adem [Ad2], Assadi [A2] [A5]
and Benson—Carlson [BC] and many other references).

We will use the theory of varieties in the following sections, and for future reference,
we discuss briefly how this theory generalizes to the context of permutation complexes. The
motivation and much of the details may be found in Assadi [A2] and further applications
in [A5].

First suppose that C, is any kG—complex such that '?E Hi(C*) is a finitely
i

generated kG—module. For simplicity of exposition, assume that G is a p—group, so that
the kG—module k (with trivial G—action necessarily) is the only simple kG—module.
Following [A2], the idea is to modify C, in the category of kG—complexes so as "to
simplify" its cohomological structure without changing its hyper cohomology IH*(G;C*)
locally. Namely, call C, freely equivalent to a kG—chain complex D, if thereis a

kG—chain complex K, such that C, C K, and D, C K. are kG—subcomplexes and
K4«/Cs« and K,/D, are both kG—reely, and bounded with finitely generated homology.
This notion was introduced in Assadi [A1] in order to study combinatorial properties of
permutation complexes. As in [A2] (compare with [A1]) it is easy to see that free
equivalence is an equivalence relation, and the equivalence class of C, hasa
representative é* such that Hi(ét) =0 for i¥¢ and H I,‘((‘J,.t) =M is a finitely
generated kG—module. Call é,., a resolvent for Cy .

2.4. Definition — Proposition: Let G be a p—elementary abelian group. The rank variety
and support variety of Cy is defined by Vé(C*) = Vé(H*(é*)) = Vé(M) and
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V(Cs) = V(M) , where Cy is any resolvent of Cy defined as above. Vg(Cy) and
Vé(C,..) are independent of the choices of the resolvent C, .

Remark. The above definitions certainly make sense for any finite group G with the
appropriately defined varieties, e.g. as in Avrunin—Scott [AS] and Assadi [A5].

When dealing with based kG—complexes, it is possible to choose the resolvent é*
also in the category of based complexes, hence £ 2 0. In this case, the sensible definition
is to let Bt = §,(C,) = the reduced homology and defined V§(Cyk) = VE(M) and
V(Cak) = V(M) . Clearly VE(Cyk) = VE(Cy/k) = VE(Cy/k) and similarly for
Vg -

It is useful to generalize some of the properties of module varieties to kG—complexes

before specializing to the case of permutation complexes.

2.5. Proposition. Let Xj, X;, Y, and Yi be kG—complexes with finitely generated total

cohomology, and let X4 and Y, be based. Then the following hold:
(a) Vé(X*), V(X4) , and their based versions are unchanged under:

(i) free equivalence,

(ii) iterated shifts and iterated suspensions of 1.3;

(iii) taking duals X = Hom(X4 k) =X &; |

(iv) chain homotopy equivalence, or more generally kG chain maps of any

degree inducing a homology isomorphism.
(b) Vg(Xa) 2 V(X
() Vé(X* ®Y,) = Vé(X*) n V(r;(Y*) ‘
(d) Similarly for the based version vé(x; VYLK = vé(x,;,g) U vé(Y;,g) and
VEXE A YY) = V(X4 nVE(YL) .
(€) If X4 is bounded and kG—free then V(X4) =10,
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() If X, is kG—chain homotopy equivalent to a non—negative kG—complex, then
V(Xs) is the variety defined by the annihilating ideal of the Hy—module
* *
H(GX).

Proof: Most of the above follow from the definitions and elementary observations. (b) is
essentially the Avrunin—Scott theorem [A5] mentioned above. In (c) and (d), we may first
take resolvents having their non—trivial homologies in the same dimension (reduced
homology for based complexes). In (e) the resolvent 5(* is seen to have a kG—free
homology since X, is bounded and kG—free. (f) From the hypercohomology exact
sequence of the short exact sequence 0 + X4 i, }:[* ) )A(,., /Xy —— 0 that

L I SEE ; * -
j :H(G;X ) —— H'(G;X ) is an isomorphism for all sufficiently large i (since X./X

is kG—free and bounded, hence with bounded hypercohomology). Therefore, the annihilaing
* * * - % * * ~ %
ideals of H (G;X ) and M (G;X ) have the same radical. Similarly, H (G;H (X )) and

* ~ %
H (G;X ) define the same varieties and (f) follows. -

Next, we specialize to the case of permutation complexes. It is convenient to think of
all varieties defined for complexes or modules over kG as homogeneous affine subvarieties
of Vi(k) =k" for G = (Z/p)" . In particular, for each subgroup K C G, V(r;(lndg(k))
is a linear subspace of V(I;(k) defined with le—coeffic;ients and it is isomorphic to
Vé(k) - The cohomological analogue is the restriction of Spec Hy —— Spec Hy induced
by the restriction homomorphism pg : H*(G;k) — H*(K;k) to the subspace of closed
points. In this way, we establish a one—to—one correspondence between F p—rational linear
subspaces of V(r;(k) (or equivalently V(k) ) and subgroups of G itself. In particular,
cyclic subgroups of G and IFp—rational linea of J G /J é correspond under the above. An
important property of shifted cyclic subgroups <u o C kG (corresponding to

a= (al,...,an) € k" as above) is that kG is k<ua>—£tee. Moreover the usual apparatus
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of induction and restriction of representations, (e.g. Mackey’s formula) and their
homological consequences hold for shifted subgroups. See Carlson [C2] and Kroll {K] for
justification and details. In particular, k[G/H] = Indg(k) i8 a k<u >—free module if
k<u el kH = k<1> & k by Mackey’s formula. Thus, if we choose a such that the line
k{a} is not [Fp—rational in Jn/J é = k", then k[G/H] are k<u o> —free for all proper

subgroups H C G . Suppose that X, is a permutation complex with permutation basis
& = | l §, . For the above choice of a, the only elements of Si C X, which are left by
1

<u,> are those with isotropy group G . This suggests the slight abuse of notation

<u > G
= o . Since kG is k<ua>—£ree and

X4(<u,>) indicating the fact o
X*(<ua>) = X«(G), Xs|k<u_ > is a k<u >—permutation complex and we can apply
our machinary and results on k [Z/p] —permutation complexes as before. The following

summarises these observations with a slight useful generalization.

2.6. Proposition. Let X4 be a permutation kG—complex where G is any finite group,
and let HC G, H = (Z/p)" . Then for a suitable choice of a shifted cyclic subgroup
<u > CkH, X4 k<ua> will have a natural structure of a k<u o> —Permutation complex

such that X*(k<ua>) = X*(H) and X*/X*(H) is k<ua>—ﬁee ]

Remark: Clearly the set of a € Vﬁ(k) for which <u_ > has the above property form a
Zariski open dense subset. A useful application of the above discussion is a simplified

calculation of fixed subcomplexes.

2.7. Proposition: Suppose X, is a bounded permutation kG—complex, and
(Z/p)* ~ H C G is a subgroup. (a) For any shifted subgroup <u,>CkH asin

Proposition 2.6 above,
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H,(X4(H)) & (H (<u,>X k< >)[2-] 8, k ,
a

where A = ﬁ*(<ua>;k) n H*(<ua>;k) [%;] and t € Hi(<ua>;k) is the polynomial
generatorand i=1 for p=2 and i=2 for p> 2.

(b) If 5{* is a resolvent for X, and H*(}A(*) =M, then

Hy(X+(H)) ¥ B (<u,>M)®, k (ungraded).

Proof: Consider the short exact sequence
0 —— X4(H) A Xy — X¢/X4(H) —— 0 and the corresponding long exact

*

* * * *
sequence in hypercohomology ... H (<u_>;X )L H (<u o> X (H)) — ... The
proof of the localization theorem 2.1 applies to this case since

IH*(<u a>;Hom(X*/X*(H),k)) [%—-] o 0 since Xy4/X4(H) is k<u a>-free and bounded. A
a

standard calculation implies (a) and (b). =

The following results shows that homology representations of bounded permutation
complexes (permutable modules) have special types of rank varieties which arise for

permufation modules.

2.8. Theorem. Let X, be a bounded permutation kG—complex, where G = (Z/p)" . Then
vé(x*) consists of IFp-rationa.l linear subspaces of Vé(k) corresponding to subgroups
K C G for which H*(X*(K)) # 0.

Proof: First,let K C G be a subgroup such that H,(X4(K)) # 0 . Without loss of
generality and for simplicity of notation, assume that X, is a resolvent complex, and
HO(X,.,) = M . By Proposition 2.7. above, we may choose <u > CkK such that
X«(<u,_>) = X«(K) . Then, Proposition 2.7 (b) shows that
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f[(<ua>;M) ®, k¥ Hy(Xy(K)) # 0, hence ﬁ(<ua>;M) # 0 . This implies that
M/k<u_ > ignot k<u, >—free. The set of such a € Vi (k) with Xu(<u >) = X«(K)
forms a Zariski dense open subset. Thus for all a € VIE{(k)’ M| k<u > is not

k<u >-free. As discussed above, the [ p—rationa.l linear subspace Vé(lndg(k)) e VII((k)
corresponds to K , and hence it lies in Vé(M) . Conversely, if M|k<u o> 18 free for such
a choice of a, the localization result of 2.7 (b) shows that

H*(X*(<ua>)) = Hy(X«(H)) = 0. It remains to see that if there exists an a € Vé(M)
which does not lie in any proper F p-rational linear subspace of Vé(k) , then

Vé(M) = Vé(k) and H.(X«(G)) # 0 . But this follows from the same argument applied

abelian. -

Let us make a few useful technical remarks which will be needed for the following
proof of the analogue of Carlson’s conjecture (Avrunin—Scott [AS] Theorem 1 and Carlson
[C2]). First, for a kG—complex Y, and a short exact sequence
0 — K —3 G — G/K — 0 of groups, there is a Lyndon—Hochschield—Serre spectral
sequence with Eiz’j Y Hi(G /K; IHj(K;Y*)) 2 [Hj+j(G;Y*) when Y, is bounded below.
There is an analogue of this spectral sequence for G = (Z/p)" and shifted subgroups
K CkG and K’ C kG with the property kK ® kK’ » kG
Hi(K’ ;I}Ij(K;Y*)) 3 lHi+j(G;Y*) . This is discussed for kG—modules in Carlson [C2]. One
may modify Carlson’s argument and apply it to the double complex
Hompy , 1/ (Ws ® Wi,Y*) (where W, and W, are the free resolutions of k over kK
and kK’ respectively) to obtain the above spectral sequence. However, the usual spectral
sequence for modules can be used for the following arguments provided that we replace Y,

by a resolvent kG—complex of Y, .

2.9. Proposition. Suppose Y, is a bounded permutation kG—complex for G = (Z/p)",
and let <u o be a shifted cyclic subgroup of kG, and t a € Hi( <u a>;k) a polynomial
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* * 1 ~ % * *
generator of H<ua> . Then H (G;Y )[‘Z] v H (<u,>k)®H (K'Y (<u,>)) where
kG & k<u > ® kK’ . In particular, IH*(G;Y*) [%—] # 0 if and only if
a

He(Ya(<u, >)) # 0.

Proof: Since localization is an exact funcor, we can localize the above mentioned spectral
* * * 1 * * 1
sequence: H (K’;H (<u_>;Y ))[+] 2 H (G;Y )[+] . But
a t "

* ’ * * 1 * P * * 1 * ’ % *

H (K'H (<u,>Y ) [1—0] ~H (K'H (<u >Y )[ra]) 2 H (K'H (<u,>Y (<u,>))
* ~ X L N

[%—]) ~H (K’;H (<u,>k)®H (Y (<u_>))) by the localization theorem 2.1 and since

a

*

<u,> acts trivially on Y (<u a>) . To verify the formula for the E_—term, consider
performing the localization on the El-levelz

Ll R P L ;o F * 1
By (-1 & Homye (WHH (<u > Y ) (1] & Homy /(WA (<u, >3 (<)) [-])

* *

and since K’ acts trivially on H (<u >;k) and <u > acts trivially on Y (<u_>),

*% £ * - %
E; [%~] oY HomK,(Wi;H (Y (<u a>))) ®H (<u a>;k) which clearly converges to
a

~*

[H*(K’ ;Y*(<u o>)) @ H (<u >;k) and the first assertion is proved. If

Hy(Ys(<u,>)) #0, then M (K’;Y (<u,>))# 0 and hence M (G;Y )[3~] # 0. This
a

follows from considering the second spectral sequence of the double complex

Homy (W,{,;Y*(<u o)) which is convergent since Yy(<u,>) is bounded and the
universal coefficients formula. If Hy(Y4(<u_>)) =0, then the LHS-spectral sequence
shows that H*(G;Y*)[:_a] =0. -

We use the above to prove the analogue of Carlson’s conjecture (Avrunin—Scott
[AS] Theorem 1) by a different proof for bounded permutation complexes. This proof is
particularly interesting from the point of view of local-to—global properties of the

homology representations of permutation complexes. It also suggests an alternative proof of
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Carlson’s conjecture for arbitrary modules which will be presented elsewhere.

2.10 Corollary (Carlson’s conjecture for permutation complexes). Let G = (Z/p)" and X,
a bounded permutation kG—complex. Then Vé(X*) = VG(X*) .

Proof: Vy(Xs) is defined by the annihilating ideal of the H'(G;k)-modules
H*(G;H*(i*)) or equivalently EH*(G;X*) , where X isa resolvent of X' ,if p=2,
otherwise the annihilating ideal as Hy—modules. As in Theorem 2.8 above, assume
H(X4) =0 for i >0 and Hy(Xy)=M.If KCG is any subgroup then the inclusion
induces split surjections H (G;k) —— H (Kik) and Hg —— Hy . The same is true
for a shifted subgroup K C kG . The corresponding map on spectra yields an embedding
pg : Vg(k) — Vi (k) whose image may be identified with VG(IndIcé(k)) v Vg (k).

G S .
<ua>(k)) n V<ua>(k) does not lie

Now let a € k™ be chosen such that the line Vé(Ind
in Vé(X*) . According to the proof of Theorem 2.8 above this condition is equivalent to
Hy(X4(<u,>)) = 0 . By Proposition 2.9 above, the latter condition implies that

* * * *

H (G;X )[%—-—] =0 and consequently VG(IndEu 5 ()) N Support(H (G;X )) = 0. That
a a

G

is, p
<u éjr>
I
VG(Ind<u o
* * 1
H(GX )[§] #0.
a

(Vy (k) does not liein V(Xy) . Conversely, if the line
a

(k)) les in vé(x,.,) , then Hy(Xq(<u _>)) # 0, and by Proposition 2.9

Translated into a statement about supports, this is equivalent to

VA(Xe) NV, (IndG (k)) # 0. Since both varieties are homogeneous, the proof is
G G\ < o«

completed. -
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SECTION THREE. HOMOLOGY REPRESENTATIONS

Every RG—module M has a free RG—resolution
C:o. —C; —Cy— M — 0. That is, H,(C4) =0 for i>0,and
Hy(Cs) =M . Unless M is cohomologically trivial in the sense of Tate (see Brown [B3],
Cartan—Eilenberg [CE] or Rim [R]), C« is infinite dimensional. If we choose C; to be
permutation modules, we may arrange to have a finite dimensional classe complex C, .
This point of view has been studied by Arnold [Ar2], who has developed for instance,
analogues .of the familiar homological algebraic constructions using permutation modules.
For instance, Arnold proves that in this context for cyclic groups G , every ZG—module
M has a "resolution" by a complex of permutation modules of length 2. However, if we
require "the resolutions” to be permutation complexes, then we get non—trivial restrictions
on the type of RG—modules which arise in this way. More generally we formulate the

following,.

3.1. Problem: Suppose X, is a bounded permutation complex such that for some integer
d, Hi(X4) =0 for i#d and Hy(Xs) =M. Wecall X, a "permutable resolution" of
M . (1) Which RG—modules M have a permutable resolution? (2) If M is a finitely

generated RG—module, when can we find a finite permutable resolution for M ?

This is an algebraic analogue of the well-known Steenrod Problem (see Lashof [L],
Swan [Sw2], Arnold [Arl], Smith [Sm1] [Sm2], Carlsson [Cg] and Assadi [A2] for
a partial survey).

As we shall see below, the class of RG—modules which arise in (1) is quite restricted.
Therefore, the existence of a permutable resolution may be considered as extra structure

imposed on an RG—module which is a natural generalization of being a permutation
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module.

3.2. Definition: An RG—module which has a permutable resolution is called a permutable
module.

As for part (2) of the above problem, the obstruction theory of R. Swan [Sw2]
generalizes to the context of permutable resolutions. Therefore, the results of Swan [Sw2]
are valid in this context and show that even among permutable modules, the existence of
finite permutable resolutions imposes number—theoretic conditions on finitely generated
IG—modules.

Using the localization theorem 2.1, we may extend many results of topological

transformation groups to the context of permutation complexes. For example:

3.3. Theorem. Let X, be RG—chain homotopic to a bounded permutation, and assume
that for each maximal p—elementary abelian group E C G and each pj |G| for which
p'_1 £ R, the hypercohomology spectral sequence H*(E;H*(X*)) = IH*(E;X*) degenerates.
Then the RG—module M = 613 Hi(x,.,) is RG—projective if and only if for each subgroup

CC G suchthat |C| =p and p_l £ R, M|RC is RC—projective.

Proof: The proof of Theorem 1.1 for G—spaces in Assadi [A2] is based on the localization
theorem and arguments involving constructions which are valid in #(RG) as well, see

Section One. We leave the minor modification to the reader. g

Let us mention some applications to group theory. Let G be a finite group, and let
x be a poset of proper subgroups of G . Let Sn be the set of chains of subgroups
Pp<P; <. <Py of length n+1 . Conjugation by elements of G makes S11 a G—set.
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The i—th face map 0i : Sn —_ Sn—l i8 defined by dropping the i—th subgroup in the
n
chain, and 8:5 —— R[S ] isgivenby 8= 2 (-1} 8, . The resulting RG—chain
i=0
complex C, is a permutation complex for suitable choices of « . In fact, Cx is the

simplicial chain complex of the simplicial complex A(x) associated to the poset x by the
standard construction. See Brown [B1] [B2], Quillen [Q2], Solomon [Sol], Tits [Tt],
and Webb [W2] for further discussion and applications. We use Quillen’s notation [Q2]
A p(G) = the poset of non—trivial p—elementary abelian subgroups of G, < p(G) = the
poset of p—subgroups of G .If G is the finite group of IF q—rationa.l points of a
semi—simple algebraic group (q = p°) of rank £ over [Fq , then we denote the
Solomon—Tits building associated to G by T, see Solomon [Sol] and Tits [Tt]. The
complex of permutation modules Cy(.£ p(G)) is in fact a permutation complex, and
according to Quillen ([Q2] Theorem 3.1) Cy(.£ p(G)) and C4(T) are chain homotopy
equivalent. Moreover, C4(T) are chain homotopy equivalent. Moreover, C4(T) is based
and H,(C«(T))#0 onlyfor i =0 and i= £~1 where £ is the rank. The localization

theorem
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2.1 and the projectivity criterion together imply the following well—known results.

3.4. Theorem

(a) HQ—I(T) is RG~projective, where R is a field of characteristic p or the p—adic
integers.

(b) Hy_;(Cs(A p(G—l)) is RG—projective for an arbitrary finite group G and R asin
(a).

(¢) Let G beof p—rank 2, and €, be the reduced RG—chain complex associated to
44(G) or (G). Then H,(C,) is RG-projective.

Part (c) is obtaned by Webb [W1] in a different context, and as pointed out in [Q2], and

[W1], HI(C*) is isomorphic to the Steinberg module if G is assumed to be a finite

Chevalley group of p—rank 2.
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Next, the projectivity criterion 3.3 above may be used as in Assadi [A2] (see also
[A3]) to provide non—permutable modules. Notice that since IH*(G;X*) does not
necessarily admit auxiliary structures, such as an action of the Steenrod algebra, the
counter examples to the Steenrod problem (e.g. as in [Cg]) which use such structures do

not apply to Problem 3.1. above.

3.5. Theorem: Suppose G 2 lp x Ilp or QB (= the quaternion group of order 8). Then

there are finitely generated non—permutable ZG—lattices.

Proof: The examples constructed in Assadi [A2] [A3] use the projectivity criterion
[A2] Theorem 1.1. We may apply the analoguous criterion, Theorem 3.3 of above, to the
examples of [A2] [A3]. -

It is worth noticing that the analogue of Theorem 3.1 of [A2] also hold for homology

representations of bounded permutation complexes:

3.6. Theorem: Let G D Hp x le or Q8 . Then:

(a) there are non—trivial ZG-lattices M; and M, such that M, ® M, does not occur
as the homology representation of any bounded RG—permutation complex.

(b) There are ZG—attices M; and M, such that neither M; nor M, occur as
homology representations of bounded permutation complexes, but

M1 @ M2 ~ Hy(X4) for a bounded permutation complex Xy .

Proof: The strategy of the proof is similar to Assadi [A2] with minor modifications. The
details will be omitted. -
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SECTION FOUR. DUALITY

There is a "Hermitian analogue" of Problem ..... above which we will briefly discuss.
Another property of permutation modules is their "self—duality": If M is a permutation
RG—module, then HomR(M,R) ~ M as RG—modules. This property is not shared by most
modules, and again, it can be tﬁought of an extra structure imposed on M . In particular,
one may ask for the description of permutable modules which are in addition self—dual. A
special case which arises in geometric topology and topological transformation groups is the
homology representations of highly—connected self—dual permutation complexes. Let C,
be a positive RG—complex, and C* = HomR(C*,R) . If we use the usual convention
C,= Ci , then the duality condition is formulated as follows:

4.1. Condition (SD). Let C4 be a connected (augmented) RG—complex. C, is called

self—dual of formal dimension d , if there is a chain homotopy equivalence of degree d

*
h:C —— Cyi . (We may equivalently say that C, satisfies duality of formal dimension
d).

Let X, be a self—dual bounded permutation complex of formal dimension 2M such
that H.(X4) =0 for 0 <i<n (and by duality for n <i<2n),and H (X4) =M
finitely generated. Then we have an RG—isomorphism Hn(x*) £ ,H I_,L(Xlk) , which
shows that M HomR(M,R) , using the universal coefficients formula. We call X, a
self—dual permutable structure (SDP—structure for short). It is not unreasonable to
conjecture that a module M with an SDP—structure is permutable. We will provide some
evidence for this later. Based on this, we call an RG—module M to be self—dual

permutable if there is an SDP—structure for M.
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4.2. Problem. Determine self—dual permutable RG—modules.

4.3. Proposition. Let p| |G| be an odd prime. Suppose that C, is a bounded connected
RG-permutation complex such that Hy(Cs) = Hy (Cs) =R, H,(C4) =0 for i > 2n,
and for 0 <i<2n H,(Cy) is RG—projective. Then for each H € £ p(G),

Hy(C4(H)) xR@R.

Proof: It suffices to assume that G ~ (le)r and R =k.Choose a= (al,...,ar) €x
such that the shifted subgroup <u o> Satisfies k<u 2> N kH = k1] for all proper
isotropy subgroups H# G in C, .

Consider the hypercohomology spectral sequence

* * * *
H (<u,>; H (C))3H (<u,>; C) in which the only possible non—trivial differential is

.pi,2n i+2n+1,0
don+1 Bont1 — Eony1

i,2n i oy pdton+l a1y i +2n+1,0 _ :
E21'1+1-H(<ua>,k)—H (<ua>’k)_E2n+1 "=k and dy ., i8

* *
H (<u a>;k)—linea.r. Since p is odd, the cohomology period of H (<u a>;k) is even

. We note that

(considering the action of the Bockstein on cohomology). Therefore d, ., =0 and the

2n+

gpectral sequence collapses. Now, the localization theorem 2.1 implies that
1. * * 1. % * -~ %

s~ (<u,>C <u >)¥S Iy (<u,>k) @ H (<u >k)) 2 H (<u,>k) @ (k®k).

—1.* * 1, % * % - ¥

Since Sl (<u,>C <u >)¥$ 1(15[ (<u >k)@H (C <u >)) 2 H (<u,>k) ®
* ¥

H (C <u_>) . Therefore
* ¥ _I‘H* * -

H (C<u,>)us$ (<u,>iC <u,>)@ 4 (

<“a>5k)k v k ® k . By our choice of a,

Ci(<u_>) ¥ C«(G) , since for all H# G, Cy(H)| k<u > is k<u >—free. Therefore,

H'(C'(G)) 2k ®k as claimed. -

4.4 Proposition. Let Cy be a connected bounded RG—permutation complex such that



—27—

Hy(C4) =0 for i ¢ {0,n,2n} and Hy(Cy) = Hy (C4) =R . Foreach E€ ./{p(G) such
*
that C4(E) = 0, one has rk,(H (E;H(C’)) =2 where A=H (ER).

Proof: Asin the above, we may assume that R =k, G = (Ip)r and prove the statement
for E= G . Again choose a € k™ as in 4.3 above such that k<u > NkH =k[1] forall
isotropy subgroups H of C, . We remark that the set of such a forms a Zariski open
(hence dense) subset of the affine k—space k' . Since C4(G) =0, Cy(<u o>) =0 alsoand

Ci|k<u > is k<u >—free. It follows that H (Cy) vnMO®M®@®F where F is

|
k<ua>
k<u >—freeand M = k if n =o0dd and M =1 = augmentation ideal for n = even . See
A% - X
Assadi [A4]. Thus, H (<ua>;Hn(C)) ¢ H (<u >k ®k). Since the set of all & for
which this holds forms an open dense subset of k' , we conclude that

H (GEY(C))[3-] ¥ B (Gk ®X)[1-] , and from this the claim follows. ~ w
a a

4.5. Theorem. Let p be an odd prime, and E € £ p(G) . Let M be a self—dual
*
permutable kG—module with an SDP—structure C, . Suppose the rank of H (E;M) over

H*(E;k) is one. Then dim, Hy(Cy(E)) = 3.

Proof: Asin the above, we may assume that E = ﬂ; = G, and let Hi“(G;k)red = A and
K = quotient field of A . Recall that in the hypercohomology spectral sequence
H*(G;H*(C*)) 3 !H*(G;C*) all E:*—terms are modules over H*(G;k) for n2 2, and the
differentials are H*(G;k)——ljnear. The first differential to consider is

dp :*15:}1 DAL g =00 andall i1 C+(G) = 0, then

rank H (G;M) = 2 by Proposition 4.4. Therefore, we may assume that C4(G)# 0, and
choose 0 < £ < 2n to be the smallest integer such that C,(G) # 0 . As in Proposition .....
choose @ € k™ such that k<u o> Nkl =k [1] . We will need the follwoing lemmas in

order to study the above spectral sequence:
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4.6. Lemma: In the hypercohomology spectral sequence

* * * . i
H*(<ua>;H*(C ))=2H (<ua>;C ) the differential d .q: g! 2 gi+n+1,0

+ n+1 n+1

vanighes for all i.

Proof of Lemma 4.6.: If £ =0, then we have a split augmentation Cy(G) ——k
which gives a split augmentation C0 k. Thus, the induced homomorphism
H*(<u a>;k) —_ (H*(<u a>;C*) is split injective. Now suppose that £ > 0. We define
kG—chain complexes Dy such that D, = C, for 0 <i< -1 and D, =0 for i 22 ,and

é¢ from the exact sequence of kG—comlexes: 0 - D, - Ce 1 é* — 0. By

the choice of £ > 0, Dy is k<u a>—£ree, and since it is founded, IHi(<u a>;D*) =0 for

i >> 0. Therefore, for all large values of i, q* : Hi(<ua>;é*) —_— [Hi(<ua>;C*) is an
isomorphism. Since é* has a split augmentation (shifted to degree £ )

0! éﬂ =Cy =k, the differential &n—£+1 : E;:E_'_l(é*) —_— Eliliﬁii’n-ﬂ'(é*)
vanishes for all large values of i, as in the previous case. The periodicity of the
cohomology of <u > implies that &n_g +1=0 for all values of i . Therefore,

o : H*(<u o> k) —-»IH*(<u a>;é*) is injective. Since q* is an H*(<u o> k)-linear
isomorphism for i >> 0, Hi(<u oK) — IHi(<u a>;C*) is injective. This in turn

implies that the above differential d_ +1=0 forall i. -

Let h: C* — C4 be a chain homotopy equivalence given by the self—duality of
Cs,andlet by : HY(C') —— Hy _(C") be the induced kG—isomorphism. Choose a
generator (1€ Hzn(C*) ~ k, and define the non—degenerate pairing
n:B(C)@EZ ") — kv B2(C’) via 7(f®g) = g(ha(D)N . Here we have used
the universal coefficients formula H2n'i(C*) —= 4 Hom, (H, _:(C4),k) . Since hy isa

kG—isomorphism,  becomes a kG—homomorphism with respect to the diagonal action on

the left side. Besides, we have the following commutative diagram in which 7 is the trace
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of an endomorphism:

M ® M 1 y k

et
M@Hom(M, k) —=—— End(M)

4.7. Lemma: Keep the above notation and assume that Igli(<u a>;M) ~k forall i. Then
it follwos that:

(a) = is split surjective;

(b) 7 f[*(<ua>;M ®@M) — ﬁ*(<ua>;k) i8 an isomorphism;

(c) M isstably k<u >—isomorphic either to k or the augmentation ideal of k<u e

Proof of Lemma 4.7.: Any indecomposable k [ﬂp] —module N, is determined by the
Jordan canonical form of the generator of le acting on the k—vector space N . This shows
thatif N#0 and N #kZ D’ then 1< dimk(N) <p-1, and a standard cohomology
calculation and induction on dim; N shows that f[i(ﬂp;N) ~k forall i €7 in this case.
The assumption of Lemma 4.6 shows that M & M, ®F , where F is k<u a>—£ree and M,
is indecomposable such that 1 € dim M, < p-1.Hence dim M 30 mod p . Define a
splitting £ : k —— End(M) by ¢(1) = (1/dim M)(id) where id € End(M) is the
identity. The above commutative square (D) yields (a). To prove (b), observe that

@M _O6F®M _OM

MeM«~M ®FOF®F~M’ @F’ where M’ is

0 0 0 0
indecomposable and M’ is k<u o>—iree. The splitting of part (a), and the
Krull-Schmidt—Azumya theorem applied to the isomorphism k ® Ker(n) ¥ M’ ® F’
implies that M®M 2k ® (k <u_>)° and Ker(n) ¥ F’ is k<u_ >—free. Thus, ny is an
isomorphism and (b) follows. An easy calculation shows that for M0 to satisfy
My®@M,2k® (k(ua>)t » the only possibilities are dim My =1 or p—1, hence (c)

follows. -



4.8. Lemma: Keep the hypotheses of Lemma 4.7 and the above notation, and consider the

internal cup product in group cohomology

B: ﬁr(<ua>;M) ® fis(<ua>;M) — flr+8(<ua>;M ®M).

(a) If M isk<u o> —Stably isomorphic to k , then § is an isomorphism for all
r=0mod2 andall s€Z.

(b) If M is k<u >-stably isomorphic to the augmentation ideal of k<u_>,then B is

an isomorphism for all r=s=1mod 2.

Proof: The proof of (a) is immediate from periodicity of the cohomology of <u o = le .
To see {b), we proceed as follows. Consider the exact sequence

0 ' M » F

| —k ® Fy— 0 in which F, and F, are suitable k<u >-—free
modules, and tesno it with M to obtain the exact sequence:

0— M®M—F] — M®F, — 0 where F| and F, are also free. Let

6: ﬁ*(<ua>;k) —_ ﬁ*+1(<ua>;M) and 6’ : ﬁ*(<ua>;M) —_ ]E{*+1(<ua>;M ® M)
be the connecting homomorphisms in the long exact sequences of group cohomology applied
to the above short exact sequences. § and 6’ and ﬁ*(<u a>;k)—module isomorphisms
and compatible with cup—products (see Brown [B3] or Cartan—Eilenberg [CE]).

Therefore, we obtain the following commutative diagram:

Hzi(<ua>; k)® H2j—1(<ua>;M) £ gAt+2)-l (<u, >M)
6®idlg & |

H2i+l(<ua>;M) ® H2j‘1(<ua>;M) ——»H2i+2j(<ua>;M ® M)

In the above, 4 and f are given by cup—products. Since x is an isomorphism, sois 3,

and (b) is proved. =
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4.9. Lemma: If ﬁi(<u a>;M) vk forall i €Z, then the hypercohomology spectral

* L A * *
sequence H (<u >;H (C))=aH (<u >;C) collapses.

Proof: From Lemma 4.6, it follows that we need to consider only

.pi,2n i+n+1n
dn+1 : En+1 En+1

sequence 7 : E;’a ® Eg’b —_ E;"'j’a'*'b as follows. Let
* i, X j * * i+] * .
*x - y )
7% H (<u >H(C )®H(C ))—— H (<u >H"*(C )) be theinduced

. First, notice that there is a pairing in the above spectral

homomorphism from the pairing 5 given above by the self—duality. Note that in this case,
we need to consider i=j=mn,and if i=0 or j=0, 7, istheidentity. Next, we have
the group cohomology cup—product A as in Lemma 4.8 above. 7 is the composition

N« © B on the E2—level. We remark that 3 is constructed using a diagonal approximation
in a resolution for <u g hence, A satisfies a suitable form of the Leibnitz formula with
respect to the differentials in the hypercohomology spectral sequences whose E2—terms are
H (<u,>H (C)) and B (<u >H (C 8C ) 2H (<u>H (C)®H(C)).
Moreover, 1, commutes with the differentials since it is induced by coefficient
homomorphisms.

Let t € H2(<ua>;k) ~k and 1€ ﬁ0(<ua>;H2n(C*)) ~ k be generators. From
Lemma 4.7 (c) we are led to consider the two cases of Lemma 4.8. First suppose M is
stably isomorphic to k , and write 1 = nH(x®y), where x,y € ﬁ0(<u a>;M) and we
have used Lemma 4.7 (b) and Lemma 4.8 (a). Then
dp (M =4d,  (mBx®y)) = nd ,(Bx®y)) = ne(d ,(x)@y+x®d ,(y))=0
since d  ,(x)=0=d +1(y) by Lemma 4.6. In the case M is stably isomorphic to the
augmentation ideal of k(ua> , we have t01 = n,8(u®v), where v,u € H1(<u a>;M) .
Then dn+1(tﬂ) = n*dn+1(ﬁ(u ®v)) = ﬂ*(dn+1(u) ® : xu® dn+1(v)) = 0 again by the
same Lemmas. Since the E —terms are modules over H (<u a);k) and the differentials are

*
H (<u a>;k)—linea.r, the periodicity of cohomology of <u o implies that dIl +1° 0. For
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*
dimension reasons and using the H (<u >;k)-module structure, it follows that d, 4150

also, and the spectral sequence collapses as claimed. -

4.10 Lemma: With the hypotheses and the notation of Lemma 4.9 above, we have
Hy(Cu(<u,>)) 2 K5 .

Proof: This follows from Lemma 4.9 and the localization theorem 2.1 applied to the

k<u a>—permutation complex C, asin Proposition 4.3 above. -

4.11 Lemma: Let p be an odd prime, and let X, be a connected k[Z P] —permutation
complex such that H(Xy) =0 for i £ {0,0,2n} and Hy(Xy) =H, (Xs)=k.If
He(Xe(Z)) =k , then H'(X,) satisfies ﬁi(zzp;H“(x*)) =k forall i€Z.

* : .
Proof: Asin Lemma 4.6, the differential d n_;_lll : Elll_i_lll — E:I_T_Ill"'l’o vanishes. Denote

by t € H2(Hp;k) = k the generator, and localize the spectral sequence by inverting t , so
i, nply A * i 001y i,2n 1

that EJ +‘i‘ GE H‘(ﬂp;Hn(x )2 and *EIII "Ll[fl. ;2_ H’(zzp;k) v E] ¢ 1" [§] - By the

localization theorem (see 2.1) H (le;X )[%—] ~H (Ilp;k) , 80 that the differential

* on 1+ i o, ¥ " 1 ¥ . . .
dn-;-ln 5] ;Hl(np;ﬂ (X)) — BT (le;Hn(X )) is an isomorphism. -

%x
We complete the proof of Theorem 4.5 as follows. Suppose rank(H (G;M))=1.In

¥ k% *  *
the hypercohomology spectral sequence H (G;H (C ))=2H (G;C ), the differential

L@l ,N i+n+1,0
dn+1 ’ En+1 En+1

*Dg.i.p¥,0 *+n+1,0
dg-i’-lald'En;l-laAK__*En-i;l @AK and
y20 gy , 2n +n—1 .
dn+1 ®1d.En+1 @AK—-—-—-rElH_l QAK.Bemdes,

* * * 2 .
En~i-111 @A KrvKy En-’H QA Ko Eniln GA K . The proof of Lemma 4.6 applied to the

*
hypercohomology spectral sequence of G shows that dn-i’-Ill ®id = 0. (One needs to
* * ' *
remark only that by Lemma 2.2 H (G;D') ®, K = 0 in that proof). If d_22"®, K #0,

induces K—homomorphisms
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* *
then it must be an isomorphism. This implies that H (G;C ) ®, K © K. From the
* %
localization theorem 2.1 it follows that H (C (G)) = k. For a choice of a € k™ as in
Lemma 4.6, C4(G) = C4(<u>) so that Hy(Cy<u >) =k . From Lemma 4.2 above, it
follows that fli(<u o>M) =k forall i €7 . But this contradicts Lemma 4.10. This
* *
contradiction shows that dn_;_:l"n @ A K =0. Since dm’l_?_lll ®, K =0 again by the proof

*

of Lemma 4.6, and d2 1’1_1*1_1 = ( for dimension reasons, the spectral sequence collapses.
* *

Hence H (G;C )@ A K2 K® and the localization theorem shows that

dimy Hy(C4(G)) = 3 as desired. -

4.12. Example: Let p beodd, G=1 D and consider the linear representation of G on
Cs with 3 non—trivial distinct weight. The induced action on the complex projective space
CP? has precisely 3 fixed points, and H2(CP2) = I . If we choose m free orbits of points
in €P? and blow—up at these points, we get another algebraic action on an algebraic
surface X = CP2#(m EP':‘,) (connected sum) and Ho(X) ¥ Z (IG)™ . Similar examples

can be constructed using projective actions of G = Hp xZ_ on CP? and by blowing up

at an orbit G/H of points, one obtains an algebraic surfacz Y with

Hy(Y) 2 I ® ZI[G/H] . More complicated examples can be constructed by a variation of
these examples. As remarked in Section One, Cy(X) and Cy(Y) for suitable G—simplicial
structures on X and Y provide examples of SDP—structures in which H*(G;M) has
rank one over H*(G;k) . The geometric consequence of Theorem 4.5 is that for a Poincaré
duality complex with an effective (Hp)r—action, the fixed point set of any subgroup H C H;
is never homologically acyclic. Theorem 4.5 may be considered the algebraic analogue of
the theorems of Conner—Floyd [CF1] [CF2] and Atiyah—Bott [AB] and W. Browder

[Bw].

4.13. Corollary: Let p be an odd prime, G = (Hp)r ,and C, be an SDP—structure over
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kG of formal dimension 2n and H_(Cs) = M. Then the following hold:

(1) If C4(G)#0,then dim Hy(C4(G)| 2 2.

(2) dim Hy(Cy(G)) = 2 if and only if H (G;M) is a torsion H (G;k)~module.
(3) Inanycase, Hy(Cy(G)) # k.

Proof: (1) By choosing a € k” as in Theorem 4.5 above, it follows that

dim Hy(Cs(<u >)) #1. Since Cy(<u_>) = C«(G), dim Hi(C«(G)) 2 2.

(2) Follows from Proposition 4.3 and the following argument. H*(G;M) i a torsion
H' (G;k)~module if and only if the Krull dimension of the support of H (G;M) in
Spec H*Y(G;k) is less than dim Spec H®Y(G;k) = rank(G) = r . Here,

H®Y(Gk) = ? H2i(G;k) is a commutative k—algebra whose reduced k—algebra is
i20

isomorphic to the polynomial ring k [tl,...,t n] . From the positive answer to the Carlson
conjecture (Avrunin—Scott [AS], Carlson [C1] [C2]) it follows that there is an @ € k
such that M|k<u o> 18 k<u a>—£ree. In fact, the set of such vectors a form a Zariski
open dense subset of k* , namely, the complement of the proper closed subset

(Supp H*(G;M)) N Max Spec(H®Y(G;k)) . Thus, it is possible to arrange for such an a to
satisfy Cu(<u,>) = C«(G) as well. Now Proposition 4.4 shows that

Hy(Ca<u, > =Lk ®k, hence dim Hy(C4(G)) = 2. The converse proceeds along the same
lines: For any a € k' in the complement of the IFp—rationa.l linear subspaces
corresponding to proper subgroups of G, C.(<u a>) = C4(G) . The proof of Proposition
4.4 shows that if dim Hy(Cx(<u,>)) =2, then f[*(<u o>M) =050 that M is
k<u_>-free. Therefore, the Carlson rank variety V(r}(M) (see Carlson [C1]) is a proper
subset of k' . Again, by the Avrunin—Scott theorem ([AS] Theorem 1), the cohomological
support variety VG(M) is a proper subset of Max Spec(H®Y(G;k)) . Hence H*(G;M) isa
torsion H*(G;k)—module.

(3) This follows from (1), (2).
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SECTION FIVE. UNITS IN THE GREEN RING

Recall that the Green ring of RG is the Grothendieck ring associated to the set of
isomorphism classes of indecomposable RG—lattices. The direct sum and tensor product
(over R ) of RG—modules induce the ring operations. The stable Green ring is the quotient
of the Green ring by the ideal generated by RG—projective modules. WE will use the
notation R(RG) and ®(RG) for the Green ring and its stable version. A unit in R(RG)
is seen to be represented by an RG—lattice M for which there exists another RG—lattice
M’ such that M®M’ ¥ R® P, where P is RG—projective. An important class of
RG-lattices are the endo—trivial modules introduced by J. Alperin and E. Dade (see Dade
[D] and Alperin [Alp] and they are characterized by Endp(M)2 R®P with
P = projective RG—module. The canonical RG—isomorphism
Homp(M,R) ® M & Endp(M) shows that endo—trivial modules represent units of R(rG) .
in the following, we will determine the units of (RG) which are permutable RG—moduels
arising in Steenrod’s problem. It is appropriate to call an RG—module M spherical if there
is a finite dimensional G—space X such that non—equivariantly X is homotopy
equivalent to a bouquet of d—dimensionak spheres and the homology representation
H d(X;R) is8 RG—isomorphic to M . This i8 inpsired by Quillen’s terminology of
d—spherical posets [Q2]. For example, if M is the Steinberg module of a finite Chevalley
group G, or more generally the reduced homology of the simplicial complexes associated
to posets £ P(G)’ o p(G) or Solomon—Tits buildings (see Quillen [Q2] and Section
Three above) d—spherical, where d+1 is the appropriate "rank" of G. Letuscall M a
spherical unit of ®(G) ,if M is spherical and a unit in ®(G) and such that its inverse in
®(G) is also spherical.
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5.1. Example. If M is a finitely generated endo—trivial and spherical, then M is a
psherical unit. To see this, suppose that H d(X;R) ~ M and we have arranged for X to be
a finite dimensional simplical complex with a simplicial G—action using standard
approximation arguments of algebraic topology. Then we choose for G a large dimensional
real or complex representation space V , and embed X G—equivariantly in V , using the
Mostow—Palais embedding theorem (cf. Bredon [Brd]. Let V,, be the one—point
compactification of V, which is a sphere with G—action. Let Y be the complement of X
in V_ . Then by Alexander duality, Y is connected, Hi(Y) =0 for i#0, n—d—1, and
H —d—l(Y) o Hd(X) ;80 that H _, (Y;R) & Homp(H (X;R),R) ¥ Homp(M,R) . Thus,
Homp(M,R) is also spherical. By endo—triviality, Homp (M,R)® M~ R@P where P is
RG—projective. Thus M is a spherical unit in R(RG) as claimed.

5.2. Theorem. Suppose M is a spherical unit in the stable Green ring m(RG) , where G
is an abelian p—group, and R is a field of characteristic p. Then M is stably isomorphic
to O%(R) forsome n € Z.If M isindecomposable, then M x Q™(R).

5.3. Remarks. 1) 01 is the Heller operator. See Curtis—Reiner [CR] for the definition and
properties.

2) A deep and difficult theorem of E. Dade [D] characterizes endo—trivial RG—modules,
for G = abelian p—group and R = field of characteristic p . In a forthcoming paper, we
prove that 5.2 holds without the spherical hypothesis by a proof independent of Dade’s.
However, the more general results require non—elementary results from algebraic geometry.
The spherical case, however, uses elementary arguments which may be helpful to get an
intuitive feeling for the more general results.

3) From Section One it easily follows that spherical RG—modules are RG-~permutable.

Proof: Let E be the maximal p—elementary abelian subgroup of G . By suspending, if
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necessary, we may assume that there is a G—space X such that H,(X;R) =M and
XG # ¢ . By definition, dim X < w and X is homotopy equivalent to a bouquet of

d—dimensional spheres. By standard arguments in algebric topology, we may assume that

def
X is a G-CW complex, 8o that C4, = C4(X) is a permutation complex with

permutation basis given by the cells of X . Let ¥(X) be the singular set of the G—action
on X, that is the union of fixed points XH forall 1# HC G . Notice that in the reduced
representation ring €[G]/ ¢C , we may choose a G—invariant inner product by averaging
any given inner product. Call S the unit sphere in the reduced representation ring. S is a
sphere with G—action and SG = ¢ . Hence the join X o S with its natural G—action is
homologically only an iterated suspension of X , so that X o S will be still spherical.
Moreover, (X o S)G = XG # ¢ . This operation preserves homology up to
RG—isomorphism and it has the effect of increasing the codimension of the singular set, i.e.
dim X — dim ¥3(X) will be arbitrarily large after repreated replacement of X by Xo S.
There is another operation which changes H d(X) by O'H d(X), r 2 0, up to stable
RG—isomorphism. This is obtained by adding free orbits of (d+1)—cells to X, obtaining a
G—CW complex X’ . We choose a surjection (RG) £ M and regard this as

Hy +1(X’ X)@®R 9 .m 4(X) , which is geometrically realized (using Hurewicz’s
theorem) by attaching cells || G x p4+1 16 X to obtain X’ . This operation has the
effect of increasing the homological codimension, i.e., since ¥(X) = E(X’), dim ¥(X)
remains constant and the dimension d where H (X;R) # 0 grows arbitrarily large. Since

('M ® 17N is RG—stably isomorphic to M ® N, ("M is still a spherical unit.

Now choose Y satisfying YG # ¢ and satisfying other hypotheses which already X
satisfies, and such that H,(Y;R) & M’ isaninverse of M in R(RG). That is,
M@®M’ ¥y R®P where P is RG—projective. Notice that since R is a field of

characteristic p and G is a p—group, RG is local and projectives coincides with free
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RG—modules. However, we will use this remark only for convenience. Consider

Z=XAY, the smash product with the induced action, (see Section One). The Kiinneth
formula shows that Hy(Z;R) ¥ H d(X;R) ®H d/(Y;R) ~ R @ P . By the localization
theorem (Theorem 2.1 above for example, or Hsiang [Hsg] ), H*(ZH;R) ~ R for each
1#HCE. Since 28 = X2 A YH and H,(zER) » H,(xE;R) @ B (YIR), it follows
that H*(XH;R) ~R.Let 6(H) be the integer such that Hd(XH;R) = R and notice that
since XI )_XG + ¢, §(H)20.

=X

Consider theset ¥ ={H(CE: |E/H| =p}, andlet W be the real linear
representation of E which is the direct sum of m(H) irreducible non—trivial linear
representations of E/H & Hp foreach H € % . We choose m(H), depending on p = 2

or p > 2 such that dimIRWH

= 6(H) + 1. Let dimpW = £ + 1. By shifting dimension
or join operation as described above, we may arrange for X, and hence £ , to satisfy

d 2 £+2 < dim X(H) + 2 . While this conditon on X is not necessary for the proof, it will
simplify and make the following argument more elementary. Consider the ¢—skeleton of
X, call it X(P') and its cellular chain complex C,.(X(Q')) = Dy . Let Fy = Cy(X)/Dy,
which is RG—free by choice of £ . D4 is a permutation complex which is based and
HP,(D* ®R) v H“_l(F* ® L) . Since Hi(F* @R)=0 unless i=d or i=£€+1,and F,
is RG—reeand F; =0 for i< ¢ or i>dim X, it follows easily that H,(X;R) is
RG-stably isomorphic to H, +1(F* ® £) . Hence, up to replacing M by O'M for some
r € Z , we have reduced the problem to showing that H 2_(D,.: ®R) is RG—stably
isomorphic to N"(R) for some n € Z . (In the terminology of Assadi [A2], M and

Hy (D« _R) are w—stably isomorphic. See [A2] for related discussions).

The linear representation W satisfies The dimension equation

dim W—dim WE = Y (dim WY — dim W") , hence the restriction of the G—action on
HE %
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X to the E—action satisfies the Borel formula € — 6(E) = 2 (6(H)—6(E)) . (See Borel
HE %«
[Bor], Bredon [Brd] or Hsiang [Hsg] for more details). According to Dotzel [Dot], the

converse to Borel’s theorem holds for such a situation and H t(X(f');R) is RE—isomorphic
to R® P0 , where P0 is RE—projective. By the above discussion, we may write

M e (RE) » n¢~t(a, (x(Y;R)) @ (RE)® v 09 (R) @ (RE)" as RE-modules. Consider
Qa_d(M) as an RG—module. By the above, ﬂﬂ'_d(M) |g X R®Q where Q is RE—free.

Consider the induced homomorphism p* : f[*(G;ﬂp'_d(M)) — ﬁ*(E;ﬂt_d(M))
which i8 an F—somorphism in the terminology of Quillen [Q1]. To see this, observe that
n"-‘d(M) is stably isomorphic to HQ(X(E');R) , and for a choice of base point x € XG,

B (x(YxR) v B(GEY XM xR) for i €41, and similarly for E . This is true since
the spectral sequences of equivariant cohomology (or equivalently hypercohomology) have
only one row. By Quillen [Q1], one knows tat Hé(x,x;R) —_ H;\I(X,x;R) is an
F—isomorphism since E is the unique p—elementary abelian subgroup of G . In particular,
p* : ﬁO(G;ﬂf‘—d(M)) — ]E[O(E;ﬂe’_d(M)) ~ R is non—zero, hence surjective. Let

M’ = f,f'_d(M) . Thus, we may choose f € HomRG(R,M’) such that in the diagram:

“0 fe “0
H(G;R) —— H'(G;M’)

l= 1

ﬁO(E ;R) —# ﬁO(E;M')

e

fe : ﬁo(G;R) —_— ﬁO(G;M’ ) is injective. In the exact sequence of RG—modules,
0—R-LM —Kex() —0 1, BAER) — H (E;M’) is an isomorphism, 0
that H (E;Ker(f)) = 0. It follows from Rim [R] that Ker(f)|p, is RE—free. By
Chouinard’s theorem (cf. [Ch], Curtis—Reiner [CR], Ker(f) is RG—projective, hence the

short exact sequence above splits over RG and M’ is stably isomorphic to R . Hence M
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is stably isomorphic to nd"-(R) ,and if M is indecomposable, M & R.d_e‘(R) . -

~ In the above proof we only used the fact that G has a unique p—elementary abelian
group in an essential way. Other references to G being an abelian p—group may be
avoided, and a modification of the above argument proves the following more general

result:

Theorem: Let R be a field of characteristic p, and assume that G is a finite group with
a unique conjugacy class of maximal p~elementary abelian subgroups. Suppose that M is
a spherical unit in the stable Green ring X(RG). Then M is RG—stably isomorphic to
Q"(R) for some n €7 . -

It is also worthwhile to point out the following whose proof follows from 5.3 and the

constructions of Section One as used in the proof of Theorem 5.2.

5.4. Proposition: The spherical units of any finite group G in R(RG) form a
multiplicative subgroup of the group of all units. Therefore, if M is a spherical unit, so are
Homp(M,R) and "M forall n€Z. -

The. above results provide some evidence for the following:

5.5. Conjecture: For an arbitrary finite group G and R = Z or a field of characteristic
p, all units of R(RG) are spherical.
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