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Introduction. Let G be a finite group, and R be a commutative ring with identity. We

denote by uK(RG) the category of RG-modules. For any subgroup H C. G , one has two

ResG IndG

basic funtiors ~(RG) H • ...K(RH) and .Jt'(RH) H • Jt(RG) given by

restrietion and induction which play an essential role in representation theory. An

important and elementary class of RG-representations are permutation modules which are

direct sums of modules Ind~(R) obtained by induction from the trivial RH-moduole R

for variOUB H C. G . In another extreme, one haB RG-modules which arise by induction

from RH-projective modules, leading to the concept of relative projectivity and Green's
I

theory of vertices and sources [CR] [GR]. The value of these subcategories of modules in

representation theory and related areas is well-known. in a different direction (influenced

by algebraic geometry and topology), one considers not only module categories, hut various

categories of chain complexes of modules and their cohomologies. This culminates in the

more recent approaches to representation theory through the theory of derived categories.

See [SC] [CPS] and their many references.

A natural problem ia to develop and atudy generalizations of induction-restriction

theories in the set-up of derived categories. Of course, one has the various generalization of

the restriction and induction functors to the categories of chain complexes. However, most

of natural examples of RG-chain complexes which anse in applications are those complexes

whose constituent chain modules only happen to be permutation modules. This leads to the

study of complexes of permutation moduels and the repreaentation afforded by their

homologies. On the other hand such RG-complexes are far too general for the purpoSe8 of

induction-restriction theory. For example an RG-free resolution C. of an arbitrary

RG-module M may be thought of as a complex of permutation modules whose only

non-vanishing homology HO(C.) = M . On theother hand, natural finiteness conditions in

the derived category leads to urdue restrietion. For example, if we require further that C*

above be quaai-isomorphic to a bounded RG-free chain complex, then M will be very
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dose to be RG-projective. For instance, if R is the field of characteristic p and G is a

p-group, then M is necessarily RG-free. Thus the familiar conditionB in the derived

category leads to either severe restrictions or unmanagable generality.

A middle-ground is provided by "permutation complexes" which forma restricted

and proper subcategory of the complexes of permutation modules. See SEction One for

exact definitions. In particular, permutation complexes which are quadi-isomorohic to

bounded permutation complexes form a distinguished nd a suitably large subcategory with

a rich structure. Homology representations afforded by bounded permutation complexes

demonstrate remarkable properties which make them desirable objects of study. In

practice, such complexes arise naturally in the combinatorial approach to group theory,

topology, and algebraic geometry (See Section One).

The theme of the present paper is a preliminary study of the deep re1ationship

between the representation-theoretic and homological properties of permutation complexes

and their homology representations !rom a loca1-t~obal point of view. In particu1ar, e

prove a localization theOrem (Theorem 2.1.) which is an elementary but basic too1. A

projectivity criterion (Theorem 3.3) is applied to relate ,the present subject tO more familiar

constructions in group theory (Theorem 3.4.). We introduce and study a Hermitian

analogue of the theory in Section FoUl which is applied to some well-known and dassical

topics in fixed point theory of topological transformation groups (Theorem 4.5 and

CoroUary 4.13). In Section Five we study the so-called invertible elements (called units of

the stable Green ring) and endo-trivial homology representations.

SECTION ONE. PERMUTATION COMPLEXES

Let S be a G-fiet, i.e. a disjoint union of left cosets GIH for various H CG . The
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Iree R-module whose basis is given by 8 is denoted by R [8] . The trivial G-action on

R and the left action of G on S gives R [S] the structure of an RG-module. R [S] is

called the permutation module with permutation basis S. H S = tP, R [S] = 0 . A

camplex of permutation modules is achain (cochain) R~mplex C. such that ea.ch C.
1

is a permutation module. A special case occurs in the following:

1.1 Definition. Let rJI = U Si be a disjoint union of G-eets. An R~mpiex X* is

iE71

called a permutation complex with permutation basis r!/ if

(1) each Xi = R [Si] is a permutation module with basis Si;

(2) the boundary homomorphisms 8i : Ci --+ Ci- 1 is RG-linear and satisfies

H H8i(S i ) ( R [S i -1] for each He G .

It follow8 that $ R [sJ:I] ~ X* is a subcomlex which we will denote by X.(H) . It
iEll 1

is clear that condition (2) of 1.1 is equivalent to the follwoing:

(2) I For each He G J the graded submodule X.(H) is a subcomplex of X* . We
.-

call X*(H) the subcomplex of H-fixed points of X•. The equivalent properties (2) and

(2) I tie the Ioeal and global structures of X. together and impose non-trivial restrietions

on the homology representations of bounded permutation complexes. The isotropy

subgroups of c!/ are caled also the isotropy subgroups of X•. With respeet to the natural

action of NG(H)/H on S!, X.(H) becomes an R[NG(H)/H]-permutation complex,

and restricting actions to NG(H) , yie1ds a pair of NG(H)-permutation complexes

(X.,X.(H)) . Let 'l4'(RG) be the category of R~omplexes and R~hain maps. There

are two subcategories of ~(RG) whose objects consist of permutation complexes. The

first one is 9'(RG) where the morphisma are those chain mapa X.~ Y. which are

induced form the G-maps of the permutation hases (as G-eeta) of X* and Y•. The
...

second category ia !fJ (RG) which is the full suhcategory of 'R(RG) whose objects are the
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same as the objects of .9(RG) . .9(RG) is closed under most of the familiar constructions:

quotient complexes, maping cylinders, mapping cones, push4:>uts, etc.

1.2. Definition. Let X. be a positive permutation complex, and let R be concentrated in

degree zero. X. is called based if there is a split augmentation in .9(RG) X. I • R ,
~

so that X. ~ I1(R) S Ker(~) in .9(RG). Baesd complexes and based chain

homomorphisms form a subcategory .90(RG).

1.3. Constructions on permutation complexes. Let X. and Y. be permutation

complexes with permutation bases A = U An' B = U Bn ' and let X~ and Y~ be
nE11 nE11

based permutation complexes with split augmentations X O' _I------tl R and
~1

Direct sum X. S Y. corresponding to the disjoint union AU B .

Tensor product X. 8 Y. corresponding to the cartesian product A)( B .

m-fold shift for m E 11 by shifting the grading of the basis) or equivalently,

---.....,1 R. We have the following constructions in .9(RG):
112

y
'

1

0 f 2

(i)

(ii)

(iii)

(iv)

(X. [m])i =Xi-rn .

Wedge X~ VY~ = Z~ in the subcategory of baaed complexes

defined by Zi = Xi mYi for i ~ 1 ,and Zo is the push-out:

111R -----t. Xo tagether with the induced split augmentation

u21 1
y ' 1 Z'o 0

Zo ' • R from this square. One may think of x~ VY~ as "sum" in

.9'O(RG) .

(v) Product in .9'O(RG) ia the amash-product X~ 1\ Y~ defined as the

pull-back:
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Equivalently, let X~ VY~ == X~ t» u2(R) vO"l(R) ~ Y~ and

(X~ AY~)i = ((X~ t» Y~)/(X~ VY~))i for i ~ 1 and for i = 0 the

pull-back diagram of RG-modules:

(vi) Reduced suspension in !fJO(RG) of X~ is the based complex ~ X~ defined

by (~.)i+l = Xi far i ~ 0 ,and (EX.)O = R SR with (~O)i+l = 8i and

~80 : (~.)1 -----+ (tx.) given by f: Xo-----+ (R)l = first factor in

(tx*)O . The split augmentation is provided by the projection onto the second

factor of (tx.)O . The iteration of suspension for each n ~ 1 is denoted by

~X•. This is the analogue of the shirt in (iii) for !fJO(RG) .

(vii) In addition, there are other constructions suggested by their first analogues for

topological spaces, e.g. the join X. 0 Y. , the cone on X. denoted by cX.

or unreduced suspension in .9'(RG). We leave these, and the verification of

the fact that most of the other familiar constructions for chain complexes (e.g.

mapping cylinders, mapping cones, etc.) can be performed in ..9'(RG) or

..9'O(RG) . The proof of this lemma follows from definitions and isleft out.

1.4. Lemma. The above constructions are functorial in 9'(RG) and 9'O(RG) . In
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partieular, ihey eommute with the formation of "subeomplexes of fixed points", e.g.

(X. " Y*)(H) = X.(H) AY.(H) ete.

1.5. Important Remark. In literature, the terminology "permutation eomplex" oeeurs in

various contexts with different meanings. Often, what we refer to as a complex of

ermutation modules (Le. only condition (1) of Definition 1.1 above) is called apermutation

complex and condition (2) is not imposed. See, e.g. Arnold [Ar!] [Ar2] , Adem [Ad!]

[Ad2] , and Justin Smith [Sm!]. See [Al] Chapter Eight for further references.

1.6. Examples. (1) It is obvious from the definition that a complex of permutation modules

need not s&tisfy condition (2) of Definition 1.1. For instance, let Co = 7I.G, Cl = 7I. and

8: Cl ---+ Co be the norm map 8(1) = l g.

gEG

(2) Permutation complexes arise naturally in the combinatorial approach to finite group

theory, e.g. as in Ken Brown [BI] [B2] , Quillen [Q2] , Webb [Wl] [W2], D.

Smith [Sdl] and their referenees. One considers a partially ordered set of subgroups

of G , and chooses the permutation basis in dimension n to be the chains of length

n . The G-action is induced from the conjugation by elements of G .

(3) If X is a simplicial complex and elements of G act on X by simplicial maps, then

the simplicial chains of the second bary centric subdivision of X yield apermutation

complex. See Bredon [Bdn] Ch. Two.

(4) More generally, if X is a G-CW-eomplex (see Bredon [Bdn] , llimann [I] or

Matsumoto [Mat] for various properties of G--CW complexes), then the complex

C*(X) of cellular chains of X is apermutation complex. If XG f f/J ,then C.(X)

will be a based permutation complex if we choose a base point in XG . In (3) and (4)

above, C*(H) corresponds to the simplicial and cellular chains of XH .

(5) Smooth G-manifolds as weIl as complex algebraic subsets of (n and (po with
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algebraic G-actions also admit triangulations with simplicial G-actions. See lllmann

[I] and Hironaka [Hir]. Thus, by (3) above applies. For instance, one coneludes

that their homology arises as the homology of a permutation complex.

(6) For more general G-5paces (e.g. paracompact ones), it is possible to use suitable Cech

coverings as in Bredon [Bdn] Chapter Two to obtain a permutation complex whose

cohomology computes the cohomology of the spare.

(7) It is easy to see that .9(RG) contains many permutation complexes which do not

arise from topologicalsituations of (3)-{6). Even for R~omplexes C* whose

underlying R-eomplex is the complex of cellular chains of a CW-eomplex X , it

happens (more orten than not) that C. is not even RG-ehain homotopy equivalent

to apermutation complex of a G-CW complex as in (4) above. See Justin Snith

[Sml] and Quinn [Qf] for obstruction theories which analyze the homological

obstructions for topological realization of chain complexes.

SECTION TWO. LOCALIZATION AND VARIETIES

In this section we discuss localization and its consequences in the theory of module

varieties.

Let X* be a permutation complex, and let W* be a projective resolution of R

over RG . The homology and cohomology of the total complexes associated to the double

complexes W. ~G X. and HomG(W*,X*) are called the hypercohomology and the

* *hypercohomology of X. , and they are denoted by IH.(G;X.) and IH (GjX ) . The

topological analogue of the above construction for topological transformation groups is the

Borel equivariant homology H~(X;R) and H~(X;R) defined for a G-space X, using

the twisted product (or the Borel construction) EG x G X ~ • BG associated to the

universal principal bundle EG -----+ BG . See Bredon [Bdn] , W.Y. Hsiang [Hag], Borel
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[Bor], or Quillen [Q1] for the topological theory, and Ken Brown [B3],

Canan-Eilenberg [CE], as well a.s Swan [Sw] for an algebraic discU8sion.

Let R = IFp o.r any other field of chara.cteristic p (e.g. IFp ), and let G = (7I.p)n .

• . 1Then for p = 2, H (BG;IFp) == H (GjlFp) = (fp [tl' ... ,tn] Wlth tj E H (Gjn=p) . For

p > 2 , let A(u1~... ,un) be the exterior algebra generated by

H1(GjlFp) ~ HOIDg:P((IFp)n,1Fp) and let t j EH2(GjlFp) be the image of the Backstein

ß: H1(GjlFp) --+ H2(GjlFp) . Then H*(GjlF) = A(u1, .. ·,un) @ IFP[t1,oo.,tn] . Similar

fonnulas hold for R replacing 0=p . If X js a finite-dimensional paracompact G-space,

and j: XG
----+ X is the indusion, then the induced homomorphism in equivariant

•• • G· •cohomology jG : HG(XiR) ----i HG(X ;R) is H (GiR)-linear. Let S (H (G;R) be

the multiplicatively closed subset generated by the non-zero 0=p-linear combinations of the

polynomial generators {t1,... ,tn}. The localization theorem is equivariant cohomology

(originally due to Borel [Bor] and further generalized by W.Y. Hsiang [Hsg] and Quillen

[Ql] states that the loca1ized homomorphism S-lj~: S-lH~(X;R) ----i S-1H~(XG;R)

ia an isomorphism. This theorem and ita ramificationa have been at the heart of the

developmenta in the cohomology theory of transformation groups since 1950's. See Borel

[Bor] , Bredon [Bdn], W.Y. Hsiang [Hag], and Quillen [Q1] for examples of

applications.

We have the following generalization of the above localization theorem which will be

one of the main technical tools in the homological atudy of permutation complexes.

2.1 THEOREM (Localization theorem for permutation complexes). Let C. be a bounded

RG-~rmutation complex. Assume that G = (71p)n, l is a fjeld of characteristic p , and

S ( H (GjR) ia aB in the above. Then, the indusion p: C.(G) ----+ C. induces an

-1· -1·· -1 * *isomorphism S p : S IH (GiC ) ----i S IH (G;C (G)) .
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Proof: Consider the exact sequence of RG-ehain complexes:

0--+ C.(G) ....E-. C.~ Q. ---+ 0 . Consider the long exact sequence in

• •. • qG .• .• 6
hypercohomology: ... ---+ IW(GjQ ) 'IW(G;C ) -L..1W(GjC (G))~ ... in

•which a11 homomorphisms are H (G;R}-linear. ~ince localization is an exact functor , the

-1· •theorem will follow from the statement S IH (GjC ) = 0 . Note that Q. is a

permutation complex for which Q.(G) = 0 . Therefore, the following lemma will complete

the proof of the above theorem. •

2.2 Lemma. Let G = (71. )n and R be a commutative ring. Suppose Q. is a bounded
p • •

complex of permutation modules with basis ~ such that Er = " . Then D-I (G;Q ) is an

•H (GjR)-torsion module. Therefore, if p. is an RG-complex RG-ehain homotopic to

• * *Q. ,then IH (GjP ) is also H (G;R)-torsion.

Proof: H length of Q. is one, Le. Q. = M concentrated in dimension d, then. *. . .IH (G;Q ) = ED H (GjR [G/Hi ]) ~ H (Hi;R) is H (GjR)-torsion (since Hi +G and

• * *
Pi : Hi --+ Ginduces a homomorphism Pi : H (GjR) -----. H (Hj;R) with

non-nilpotent kernei). In general, Q. is the result of splicing a finite number of short

. 8exact sequences. 0 -----. Zd+1 -----. Qd+1 --+ Bd -----.0 and

0----+ Bd --+ Zd -----. Hd(Q.) -----. 0 . First suppose that there is only one integer s

such that Hs(Q.) +0 and Hi(Q.) = 0 for all i +s . In this case, all of the above short

exact sequences, except possibly 0 ---+ Bs -----. Zs -----. Hs(Q.) --+ 0 have two

terms which are permutation modules. Hence by the above caae and induction all

• •D-I (GjMd) are H (GjR)-torsion, where Md is any of the modules Bd, Zd' Qd or
• • * •

Hs(Q.) . On the ather hand, IH (G;Q ) ~ H (G;Hs(Q )) (with a shirt of dimension,

* • * * *possibly) since the hypercohomology spectral sequence H (GjH (Q )) =* iH (G;Q )

degenerates. Next, we proceed by induction on the length of cohomology t = cardinality
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{s IHs(Q*) f O} . Let t = the length of the cohomology of Q*, and choose d to be the

smallest integer such that Hd(Q*) f 0 . Let F be a free RG-module and E the free

RG-complex concentrated in dimension d. We may choose F and an RG-chain map

f: F --+ Q* such that the induced RG-homomoprhism f.: F --+ Hd(Q*) ia

surjective. It is easily aeen that we may arrange f to be aurjective, so that the following is

a ahort exact aequence of RG-complexes: 0 ----+ Ker(f) ----+ F ----+ Q* ----+ 0 . Now

* *the length of cohomology of Ker(f) ia (-1, and by induction IH (GiKer(f) ) is

H*(GiR)-toraion. Since Ilf(GjQ*) LIlf+1(GiKer(f)*) is an isomorphism for all i *d,

* * *d + 1 , it follows that D-I (GiQ ) is also H (GiR)-torsion. This proves the lemma.

(Alternatively, for a shorter proof we may have argued that the second spectralsequence of

the double complex Hom(W*,Q*) is convergent, and its E2-term has a filtration by

*H (GiR)-torsion modules). _

2.3. Corollary. Keep the notation and hypothese of Theorem. Let D. ia an RG-ehain

complex which is RG-chain homotopic to a permutation Bubcomplex C~ (C* and

assume that C*(G).c. C~ . Then S-11Jt (GjD*) ~ S-lD-1*(GiG*) .

Proof:· The hypotheses imply that

S-llH*(GiD*) ~ S-llH*(GiC '*) ~ S-lD-l*(GiC*(G)) ~ S-lD-l*(GiC*). _

Next, we study the varieties for homology representations of permutation complexes. The

localization process in cohomology is closed related to the notions of support and rank

varieties for modules, introduced by J. Carlson [Cl] [C2] and developed further by

Avrunin-8cott [AS] and others. For simplicity, let E = (ll./p)n be generated by

<X1,... ,X > , and consider the reduced cohomology ringn .
*HE = H (E;k)/Radical ~ k [tl' ... ,tnJ . Any kE-module M gives riae to an HE-module

*H (E;M) , and as such, it has a support in Spec HE . For many purposes, it suffices to
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consider the subspace of dosed points in Spec HE ,namely Max HE consisting oI

maximal ideals. Let I(M) (HE denote the annihilating ideal of the HE-module

*H (EjM) . The cohomologica1support variety VE(M) ( Max HE is nothing but the

variety defined by I(M): VE(M) = {~ EMax HE : " J I(M)} . This definition

generalizes directly to any p-group G, and with a slight modification to the case oI

general finite groups, see Avrunin-Scott [AS] for details, and Carlson [Cl] [C2] for

details oI what follows. Notice that Max HE ~ kn = the affine k-;;pace of dimension n.

There is another n-dimensional affine space associated to E = (71/p)n . Namely, let

JE (kE be the usua! augmentation ideal, and observe that JE/J~ ~ H1(Ejk) ~ kn . By

u
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The theory of varieties for modules have proved to be extremely valuable, not only in

representation theory and finite group theory, but in the context of restricted Lie algebras

(Friedlander-Parahall [FP] Jantzen [J]) and topological transformation groups and

homotopy theoretic aspecta of geometric topology (e.g. Adem [Ad2] , Assadi [A2] [A5]

and Benson~arl80n [BC] and many other references).

We will use the theory of varieties in the following sectiona., and for future reference,

we discuss briefly how this theory generalizes to the context of permutation complexes. The

motivation and much of the details may be found in Assadi [A2] and further applications

in [A5].

First suppose that C. is any kG--eomplex such that '9 H.(C.) ia a finitely
iEll 1

generated kG-module. For simplicity of exposition, &Saume that G is a p-group, 80 that

the kG-module k (with trivial G-a.ction necesaarily) ia the only simple kG-module.

Following [A2], the idea is to modify C. in the category of kG--eomplexes so as "to

• *
simplify" ita cohomological structure without changing its hyper cohomology IH (G;C )

locally. Namely, call C. freely eguivalent to a k~hain complex D. if there ia a

kG-ehain complex K. such that C. CK. and D. CK. are kG-subcomplexes and

K./C. and K./D. are both kG-freely, and bounded with finitely generated homology.

This notion was introduced in Assadi [Al] in order to study combinatorial properties of

permutation complexes. As in [A2] (compare with [Al]) it is easy to see that free

equivalence is an equivalence relation, and the equivalence class of C. has a
...... ...

representative C. such that Hi(C.) = 0 for i =1= t and Hl.(C.) = M ia a finitely
...

generated kG-module. Call C. a resolvent for C•.

2.4. Definition - Proposition: Let G be a p-elementary abelian group. The rank variety

and support variety of C. ia defined by Va(C.):: Va(H.(C*)) :: Va(M) and
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(i)

(ii)

(iii)

(iv)
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...
vG(C.) = vG(M) , where C. is any resolvent of C. defined as above. VG(C.) and

Va(C.) are independent of the choices of the resolvent C•.

Remark. The above definitions certainly make sense for any finite group G with the

appropriately defined varieties, e.g. &8 in Avrunin-Scott [AS] and Assadi [A5].

...
When dealing with based kG--eomplexes, it is possible to choose the resolvent C.

also in the category of based complexes, hence t ~ 0 . In this case, the sensible definition

is to let Ei = il.(c.) == the reduced hornology and defined Va(C.,k) = Va(:~:) and

VG(C.,k) =VG(~) . Clearly Va(C.,k) =Va(C./k) =Va(C./k) and similarly for

VG "

It is useful to generalize sorne of the properties of module varieties to kG-eomplexes

before specializing to the case of permutation complexes.

2.5. Proposition. Let X., X I , Y. and Y~ be kG-eomplexes with finitely generated total
•

cohomology, and let X ~ and y ~ be based. Then the following hold:

VG(X.) , and their based versions are unchanged under:

free equivaIence,

iterated shHts and iterated suspensions of 1.3j

•taking duals X = Hom(X.,k) == X_. ;

chain homotopy equivalence, or more generally kG chain map8 of any

degree inducing a homology isomorphism.

(b) Va(X.) ~ VG(X.)

(c) Va(X. ~ Y.) = Va(X.) n Va(Y.) .

(d) Similarly for the based version VG(X~ VY~,!) = VG(X~,!) UVG(Y~,k) and

VG(X~ AY~) = VG(X~) n VG(Y~) .

(e) If X. is bounded and kG-free then VG(X.) = 0 .
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(f) H X. is kG--ehain homotopy equivalent to a non-negative kG--eomplex, then

VG(X.) is the variety defined by the annihilating ideal of the HG-module

• •IH (G;X ) .

Prcof: Most of the above follow from the definitions and elementary observations. (b) ia

esaentially the Avrunin-Scott theorem [A5] mentioned above. In (c) and (d), we may first

take resolvents having their non-trivial homologies in the same dimension (reduced
...

homology for based complexes). In (e) the resolvent X. is seen to have a kG-free

homology since X. ia bounded and kG-free. (f) From the hypercohomology exact

sequence of the ahort exact sequence 0 ----+ X. Lx. ----+ x./X. ----+ 0 that. . "'. .. '"'
j : of(G;X ) ----+ of(G;X ) ia an isomorphiam for all sufficiently large i (since X./X*

ia kG-free and bounded, hence with bounded hypercohomology). Therefore, the annihilaing

•• • '"'. * • "'.ideals of IM (G;X ) and IH (G;X ) have the same radical. Similarly, H (G;H (X )) and
• ... *

IH (G;X ) define the same varieties and (f) follows. •

Next, we apecialize to the case of permutation complexes. It ia eonvenient to think of

all varieties defined for complexes or modules over kG as homogeneous affine subvarieties

of VG(k) = kn for G = (71/p)n . In particular, for each 8ubgroup K.c. G, VG(Ind~(k) )

is a linear subspace of Va(k) defined with IFp-eoefficients and it ia isomorphie to

V~(k) . The cohomological analogue is the restrietion of Spec HK ----+ Spec HG induced

G • •by the restrietion homomorphiaID Pa : H (G;k) ----+ H (K;k) to the subspace of closed

points. In this way, we establish a one-to-one correspondence between IFp-rational linear

subspaces of Va(k) (or equivalently Va(k)) and subgroups of G itself. In particular,

cyclic subgroups of G and IFp-rationallinea of JG/J~ correspond under the above. An

important property of shifted cyclie subgroups <uQ> (kG (corresponding to

o = (01,... ,0 ) E kn as above) is thai kG ia k<u >-Iree. Moreover the usual apparatuan 0
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of induction and restriction of representations, (e.g. Ma.ckey's formula) and their

homological consequences hold for shifted subgroups. See Carlson [C2] and Kroll [K] for

juBtification and details. In particular, k [GIB] = Ind~(k) is a k<ua>-free module if

k<ua > nkB = k<l> ~ k by Mackey's formula. Thus, if we choose a such that the line

k{a} is not (fp-rational in JG/J~ =kn ,then k [G/B] are k<ua>-free for all proper

subgroups H ( G . Suppose that X* is a permutation complex with permutation basis
. f

c!/ =MSi . For the above choice of a, the only elements of Si CXi which are left by

<ua> are those with isotropy group G. This suggests the slight abuse of notation

<u > G
X.( <ua» indicating the fact ctI a = # . Since kG is k<ua>-free and

X.(<ua» = X*(G), X* Ik<ua > is a k<ua>-permutation complex and we can apply

our machinary and results on k [71/p] -permutation complexes aB before. The following

summarises these observations with a slight useful generalization.

2.6. Proposition. Let X. be apermutation kG-eomplex where G is any finite group,

and let H C. G, H = ("D./p)n . Then for a suitable choice cf a shifted cyclic subgroup

<ua> CkH, X* Ik<ua > will have a naturalstructure of a k<ua>-permutation complex

such that X*(k<ua» = X*(H) and X*/X*(H) is k<ua>-free. •

Remark: Clearly the set of a E V~(k) for which <ua> has the above property form a

Zariski open dense subset. A useful application of the above discussion ia a simplified

calculation of fixed subcomplexes.

2.7. Proposition: Suppose X. is a bounded permutation kG-complex, and

("D./p)n ~ H C. G is a 8ubgroup. (a) For any shifted subgroup <ua> CkH as in

Proposition 2.6 above,
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'" * * 1 .
where A = H «ua>;k) ~ H «ua>;k)[r] and t a EH1«ua>;k) is the polynomial

a

generator and i = 1 for p = 2 and i = 2 for p > 2 .
'" * "'*

(b) If X* ia aresolvent for X* and H (X ) = M , then

Proof: Consider the ahort exact sequence

0--+ X*(H) -.l..-. X. --+ X./X.(H) --t 0 and the corresponding long exact

•* *. • *
sequence in hypercohomology ... IH «ua>;X) J • (H «ua>jX (H» --t ... The

proof of the localization theorem 2.1 applies to this case since

* 1
[1-1 «ua> jHom(X./X.(H),k» [t] ~ 0 since X./X.(H) is k<ua>-free and bounded. A

a

standard calculation implies (a) and (b). •

The following results shows that homology representations of bounded permutation

complexes (permutable modules) have special types of rank varieties which arise for

permutation modules.

2.8. Theorem. Let X* be a oounded permutation kG-eomplex, where G = (71/p)n . Then

Va(X.) consists of IFp-rational linear subspaces of Va(k) corresponding to subgroups

K CG for which H.(X.(K» f 0 .

Proof: First, let K CG be a subgroup such that H*(X.(K» f 0 . Without loss of

generality and for simplicity of notation, assume that X* is aresolvent complex, and

HO(X.) = M . By Proposition 2.7. above, we may choose <ua> (kK such that

X*( <Ua» = X.(K) . Then, Proposition 2.7 (b) shows that



-17-

A A

H(<ua>;M) GDA k ~ H*(X.(K)) *0 ,hence H(<ua>;M) #0 . This implies that

M/k<ua > is not k<ua>-free. The set oE such a EV~(k) with X*( <ua» = X.(K)

forms a Zariski dense open aubaet. Thus for all a EV~(k), MI k<ua > ia not

k<ua>-free. Aa discuased above, the IF p-rational linear subspace VG(Ind~(k)) ~ V~(k)

corresponds to K , and hence it lies in Vb(M) . Conversely, if MI k<ua > ia free for such

a choice of a, the localization result of 2.7 (b) shows that

H.(X*( <ua>)) = H.(X.(H)) = 0 . It remains to see that if there exists an Q EVG(M)

which does not He in any proper IFp-rational linear subspace of Va(k) , then

Va(M) = Va(k) and H*(X.(G)) f 0 . But tbis follows from the same argument applied

abelian. •

Let us make a few useful technical remarks which will be needed for the following

proof of the analogue of Carlson's conjecture (Avrunin-Scott [AS] Theorem 1 and Carlson

[C2]). First, for a kG-eomplex Y. and a short exact sequence

0--+ K --+ G --+ G/K --+ 0 of groups, there is a Lyndon-Hochschield-Serre spectral
... .. .. .

sequence with E~,J ~ H1(G/Kj lW(KjY )) ~ u.f+J(GjY ) when Y. ia bounded below.

There is an analogue of tbis spectra1 sequence for G = (7llp)n and shifted subgroups

K ( kG and K' ( kG with the property kK GD kK' ~ kG
. . • .. *

H1(K' ;1J+l(K;Y )) =* u.f+J(GjY ) . This is discussed for kG-modules in Carl80n [C2]. One

may modify Carlson's argument and apply it to the double complex

•HomK)(K'(W. ~ W~,Y ) (where W. and W~ are the iree resolutions 01 k over kK

and kK' respectively) to obtain the above spectral sequence. However, the usual spectral

sequence for modu1es can be used for the following arguments provided that we replace Y.

by a resolvent kG-complex of Y•.

2.9. Proposition. Suppose Y* ia a bounded permutation kG-eomplex for G = (71/p)n ,

and let <ua> be a shifted cyclic subgroup of kG , and t a E Hi(<ua>;k) a polynomial
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* * 1"'* * *generator of H<u > . Then IH (G;Y ) [rl ~ H «ua>;k) e IH (K ';Y «ua») where
a a

* * 1kG ~ k<ua > e kK I • In particular, IH (G;Y ) [tl f 0 if and only if
a

Proof: Since localization is an exact funcor, we can localize the above mentioned spectral

* * * 1 * * 1sequence: H (K I ilH «ua>;Y )) [rl =t (H (G;Y )[tl. Hut
a a

* * * 1 * * * 1 * * *H (K / ;IH «ua>;Y ))[rl ~H (K / ;IH «ua>;Y )[rl)~H (K
/

;IH «ua>;Y «ua»)
a a

1 *.... * *[tl) ~ H (K/iH «ua>;k) ~ H (Y «ua »)) by the localization theorem 2.1 and since
a

*<ua> acts triviallyon Y «uo» . To verify the formula for the Em-term, consider

performing the localization on the E1-level:

** 1 I • * 1 I • * 1EI [t] ~ HomK I(W .;IH «uo>;Y )) [rl ~ HomK I (W*;IH «ua>;Y «ua >)) [t])
a 0 a

* *and since K I acts trivially on H «u >;k) and <U > acts trivially on Y «u »,a a Q
•• 1 * * ... *

EI [r~] ~ HomK I (W~;H (Y «ua»)) ~ H «ua>;k) which clearly converges to
a

* * ....
IH (K ';Y «ua >)) ~ H «ua>jk) and the first assertion ia proved. If

* • * * 1H.(Y*(<Ua») =1= 0 ,then IH (K I iY «Ua») f 0 and hence IH (GjY )[rl =1= 0 . This
a

follows from considering the second spectral sequence of the double complex

*HomK I (W~;Y «ua») which ia convergent since Y.(<Ua» is bounded and the

universal coefficients formula. If H.(Y.(<u a») = 0 , then the LH8-spectral sequence

* * 1
shows that IH (G;Y ) [tl = 0 . •

a

We uae the above to prove the analogue of Carlson's conjecture (Avrunin-Scott

[AS] Theorem 1) by a different proof for bounded permutation complexes. This proof is

particularly interesting from the point of view of local-to-global properties of the

homology representations. of permutation complexes. It also suggests an alternative prcof of



-19-

Carlson's conjecture for arbitrary modules which will be presented elsewhere.

2.10 Corollary (Carlson's conjecture for permutation complexes). Let G = (ll./p)n and X.

a bounded permutation kG-eomplex. Then Va(X.) = VG(X.) .

•
~: VG(X.) is defined by the annihilating ideal of the H (G;k)-modules. ..... ...... .
H (G;H (X )) or equivalently D-I (G;X ) , where X ia aresolvent of X ,if p = 2 ,

otherwise the annihilating ideal aB HG-modules. As in Theorem 2.8 above, aBsume

Hi(X.) = 0 for i > 0 and HO(X.) = M . If K (G is any subgroup then the indusion

• •induces split surjections H (Gjk) -------t H (Kjk) and HG ----+ HK . The same is true

for a shifted subgroup K CkG . The corresponding map on spectra yields an embedding

P~ : VK(k) -------t VG(k) whose image may be identified with VG(Ind~(k)) ~ VK(k) .

Now let Q E k
n

be chosen such that the line VG(Ind~u > (k)) ~ V~u > (k) does not lie
o 0

in Va(X.) . According to the proof of Theorem 2.8 above this condition is equivalent to

H.(X.( <uo>)) = 0 . By Proposition 2.9 above, the latter condition implies that

• • 1 G· •D-I (GjX ) [t 0] = 0 and consequently VG(Ind<uo>(k)) n Support(lH (GjX )) = 0 . That

is, P~u >(V<u >(k)) does not lie in VG(X.) . Conversely, ifthe line
a a

Va(Ind~Ua>(k)) lies in Va(X*) ,then H*(X*(<Ua >)) :J: 0 • and by Proposition 2.9

• • 1D-I (G;X ) [r] *0 .
a

Translated into a statement about supports, this is equivalent to

VG(X*) n VG(Ind~Ua> (k)) :J: 0 . Since both varieties are homogeneous, the proof is

completed. _
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SECTION THREE. HOMOLOGY REPRESENTATIONS

Every RG-module M has a free RG-resolution

C. : ..... ---i Cl ---i Co ---i M ---t 0 . That is, Hi(C.) = 0 for i > 0 , and

HO(C.) = M . Unless M is cohomologically trivial in the sense of Tate (see Hrown [H3] ,

Carlan-Eilenberg [CE] or Rim [R]), C. is infinite dimensional. If we choose Ci to be

permutation modules, we may arrange to have a finite dimensional classe complex C•.

This point of view has been studied by Arnold [Ar2] , who has developed for instance,

analogues of the familiar homological algebraic constructions using permutation modules.

For instance, Arnold proves that in this context for cyclic groups G , every 7ZG-module

M has allresolution" by a complex of permutation modules of length 2. However, if we

require IIthe resolutions" to be permutation complexes, then we get non-trivial restrictions

on the type of RG-modules which arise in this way. More generally we fonnulate the

following.

3.1. Problem: Suppose X. is a bounded permutation complex such that for sorne integer

d, Hi(X*) = 0 for i f d and Hd(X*) = M . We call X* a "permutable resolution" of

M . (1) Which RG-modules M have a permutable resolution? (2) If M is a finitely

generated RG-module, when can we find a finite permutable resolution for M?

This is an algebraic analogue of the well-known Steenrod Problem (see Lashof [L],

Swan [Sw2] , Arnold [Ar1] I Smith [Sm1] [Sm2] , Carlsson [Cg] and Assadi [A2] for

a partial survey).

As we shallsee below, the c1ass of RG-modules which arise in (1) is quite restricted.

Therefore, the existence of a permutable resolution may be considered as extra structure

imposed on an RG-module which is a natural generalization of being a permutation
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module.

3.2. Definition: An RG-module which has a permutable resolution is called a permutable

module.

As for part (2) of the above problem, the obstruction theory of R. Swan [Sw2]

generalizes to the context of permutable resolutions. Therefore, the results of Swan [Sw2]

are valid in this context and show that even among permutable modules, the existence of

finite permutable resolutions imposes number-theoretic conditions on finite1y generated

lIG-modu1es.

Using the localization theorem 2.1, we may extend many resu1ts of topological

transformation groups to the context of permutation complexes. For example:

3.3. Theorem. Let X* be RG--<hain homotopic to a bounded permutation, and assume

that for each maximal ~ementary abe1ian group E.c G and each pli G I for which

-1 * * * * •p ~ R , the hypercohomology spectral sequence H (E;H (X )) ~ lH (E;X ) degenerates.

Then the RG-module M = ~ Hi(X.) is RG-projective if and only if for each subgroup
1

C .c G such that IC I = p and p-1 ~ R, MI RC is RC-projective.

Proof: The proof of Theorem 1.1 for G-ßpaces in Assadi [A2] is based on the localization

theorem and arguments involving constructions which are valid in .9'(RG) as weil, see

Section One. We leave the minor modification to the reader . •

Let us mention some applications to group theory. Let G be a finite group, and let

~ be aposet of proper subgroups of G . Let Sn be the set of chains of subgroups

Po < PI < ... < Pn of length n+l . Conjugation by elements of G makes Sn a G-;;et.
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The i-th face map IJ.: S -------i S 1 ia defined by dropping the i-th aubgroup in the
1 n n-

n

chain, and lJ: Sn -------i R [Sn-I] ia given by {) = l (_I)i Bi . The resulting R~hain
i=Q

complex C. is a permutation complex for suitable choices of ~. In fact, C. is the

simplicial chain complex of the simplicial complex &( r) associated to the poset r by the

standard construction. See Brown [BI] [B2] I Quillen [Q2], Solomon [Sol] I Tits [Tt] ,

and Webb [W2] for further discUBsion and applications. We use Quillen's notation [Q2]

A p(G) = the poset of non-trivial p-elementary abelian subgroups of G, rtIp(G) = the

poset of p-5ubgroups of G . If G is the finite group of IFq-rational points of a

semi-ßimple algebraic group (q = pS) of rank t over IFq , then we denote the

Solomon-Tits building associated to G by T, see Solomon [Sol] and Tita [Tt]. The

complex of permutation modules C.( vip(G)) ia in fact apermutation complex, and

according to Quillen ([Q2] Theorem 3.1) C.( vip(G)) and C.(T) are chain homotopy

equivalent. Moreover, C.(T) are chain homotopy equivalent. Moreover, C.(T) ia based

and Hi(C.(T)) f 0 only for i = 0 and i = t-I where t ia the rank. The localization

theorem
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2.1 and the projectivity criterion together imply the following well-known results.

3.4. Theorem

(a.) Ht - 1(T) ia RG-projective, where R is a fieId of eharacteristie p or the p-adic

integers.

(b) Ht - 1(C*( A p(G-l)) ia RG-projeetive for an arbitrary finite group G and R a.s in

(a.).

(e) Let G be of p-rank 2, and ö* be the reduced RG-chain eomplex associated to

Ap(G) or #p(G). Then H*(Ö*) ia RG-projective.

Part (c) is obtaned by Webb [Wl] in a different context, and as pointed out in [Q2], and

[Wl] , H1(C*) ia isomorphie to the Steinberg module if G ia aBaumed to be a finite

Chevalley group of p-rank 2.
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Next, the projectivity eriterion 3.3 above may be used as in Assadi [A2] (see also

* *[A3]) to provide non-permutable modules. Notice that since IH (G;X ) does not

necessarily admit auxiliary structures, such as an action of the Steenrod algebra, the

counter examples to the Steenrod problem (e.g. as in [Cg]) whieh use Buch structures do

not apply to Problem 3.1. above.

3.5. Theorem: Suppose G J. 7l.p )( 7l.p or QS (= the quaternion group of order 8). Then

there are finitely generated non-permutable llG-lattices.

Proof: The examples constructed in Assadi [A2] [A3] use the projeetivity criterion

[A2] Theorem 1.1. We may apply the analoguous eriterion, Theorem 3.3 of above, to the

examples of [A2] [A3]. •

It ie worth noticing that the analogue of Theorem 3.1 of [A2] also hold for homology

representations of bounded permutation eomplexes:

3.6. Theorem: Let G) Hp )( IIp or Q8' Then:

(a) there are non-trivial llG-lattiees MI and M2 such that MI 4B M2 does not oeeur

as the homology representation of any bounded RG-permutation complex.

(b) There are 7lG-Iattiees Mi and M2 such that neither MI nor M2 occur as

homology representations of bounded permutation complex~8, but

Mi 4B M2 ~ H.(X*) for a bounded permutation complex X*.

Proof: The strategy of the proof is similar to Assadi [A2] with minor modifications. The

details will be omitted. •
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SECTION FOUa DUALITY

There is a "Hermitian analogue" of Problem ..... above which we will briefly discuss.

Another property of permutation modules is their Ilself-duality": If M is a permutation

RG-module, then HomR(M,R) ~ M as RG-modules. Tbis property is not shared by most

modules, and again, it can be thought of an extra structure imposed on M. In particnlar,

one may ask for the description of permutable modules which are in addition self-dual. A

special case which arises in geometrie topology and topological transformation groups is the

homology representationa of highly--eonnected self-dual permutation complexes. Let C.

*be a positive RG-complex, and C = HOIDR(C.,R) . If we use the usual convention

C-i == Ci , then the duality condition ia formulated as follows:

4.1. Condition (SD). Let C* be a connected (augmented) RG--eomplex. C. is called

self-dual of formal dimension d, if there is achain homotopy equivalence of degree d

•h : C --t C•. (We may equivalently say that C. satisfies duality of formal dimension

d ).

Let X. be a self-dual bounded permutation complex of formal dimension 2M such

that Hi(X.) = 0 for 0 < i < n (and by duality for n < i < 2n ), and Hn(X.) = M

finitely generated. Then we have an RG-isomorphism Hn(X*)~ Hn(X*) , which

shows that M ~ HOIDR(M,R) , using the universal coefficients formula. We call X* a

self-dual permutable structure (SDP~tructurefor short). It is not unreasonable to

conjecture that a module M with an SDP-structure is permutable. We will provide same

evidence for tbis later. Based on tbis, we call an RG-module M to be self-dual

permutable if there ia an SDP-structure for M.
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4.2. Problem. Determine self-dual permutable RG-modules.

4.3. Proposition. Let pli G 1 be an odd prime. Suppose that C* is a bounded connected

RG-permutation complex such that HO(C*) = H2n(C*) = R, Hi(C*) = 0 for i > 2n ,

and for 0 < i < 2n Hi(C.) is RG-projective. Then for each H E Ap(G),

H.(C*(H)) ~ R fit R .

Proof: 1t suffices to assume that G ~ (1lp)r and R = k . Choose a = (0l' ... ,or) Ekr

such that the shifted subgroup <uo> satisfiea k<ua > n kH = k [1] for al1 proper

isotropy subgroups H f G in C•.

Consider the hypercohoIDology spectral sequence

* * *. *H «Ua>i H (C )):::} IH «Uo>i C ) in which the only possible non-trivial differential is

i,2n i+2n+1,O
d2n+1 : E2n+ 1 --+ E2n+1 . We note that

E i ,2n=Hi«u >'k) = Hi+ 2n+ 1«u >'k)=Ei + 2n+ 1,O=k and n_ is
2n+l 0 ' 0 '2n+1 ~n+1
• *

H «u >;k)--linear. Since p is odd, the cohomology period of H «u >;k) is eveno 0

(considering the action of the Bockstein on cohomology). Therefore d2n+l == 0 and the

spectral sequence collapses. Now, the localization theorem 2.1 implies that
1 * * 1 * * ....

S- IH «ua>;C <Ua» ~ S- IH «ua>;k) mH «ua>;k)) ~ H «ua>;k) Q!O (k fB k) .

-1 • * 1 * * * ....
Since S IH «ua>;C <ua» ~ S- (H «Ua>ik) Q!O H (C <ua>)) ~ H «ua>;k) Q!O

* *H (C <ua» . Therefore

* * 1ft.· •
H (C <Ua» ~ S-lH «ua>;C <ua» ~ Ir·«Ua>;k)k ~ k fB k . By our choice of a,

C.( <U a» ~ C.(G) , since for al1 Hf G, C*(H) Ik<u > is k<ua>-free. Therefore,
a

• *
H (C (G)) ~ km k as claimed. •

4.4 Proposition. Let C* be a connected bounded RG-permutation complex such that
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Hi(C.) = 0 for i ~ {0,n,2n} and HO(C.) = H2n(C*) = R . For each E E vip(G) such

* n * •that C*(E) = 0 , one has rkA(H (E;H (C )) = 2 where A = H (E;R) .

Proof: As in the above, we may 8.8sume that R = k, G = ("o.p)! and prove the statement

for E = G . Again choose QEkr as in 4.3 above such that k<uQ> n kH = k [1] for a11

isotropy subgroups H of C•. We remark that the set of such Q forms a Zariski open

(hence dense) subset of the affine k-space kr . Since C*(G) = 0, C.(<uQ» = 0 also and

C*I k<uQ> is k<uQ>-free. It follows thai Hn(C.) Ik<u > ~ M '9 M '9 F where F ia
Q

k<u >-free and M = k if n = odd and M = I = augmentation ideal for n = even . See
Q A* A.

Assadi [A4]. Thus, H «ua>;Hn(C)) ~ H «uQ>;k $ k) . Since the set of all a for

which tbis holds forms an open dense subset of kr , we conclude that

• n * 1 * 1H (G;H (C )) [r] ~ H (Gjk '9 k) [r] , and from this the claim fo11ows. •
a a

4.5. Theor~m. Let p oe an Md prime, and E E "'p(G) . Let M oe a Self--:ual

permutable kG-module with an SDP-ßtructure C•. Suppose the rank of H (EjM) over

•H (Ejk) is one. Then dimkH.(C.(E)) = 3 .

r *Proof: As in the above, we may &Ssume that E = IIp = G , and let H (G;k)red = A and

K = quotient field of A. Recall that in the hypercohomology spectral sequence
* * * •••• *

H (G;H (C )) => (H (G;C ) all En -terms are modules over H (G;k) for n ~ 2 , and the

•differentials are H (Gjk)-linear. The first differential to consider is

d Ei , n+j Ei +n+l,j r . 0 d all' If C (G") 0 thn+l: n+l ~ n+l lor J = ,n an 1 . • =, en
*rank H (G;M) =2 by Proposition 4.4. Therefore, we may aBsume that C.(G) f 0 , and

choose 0 ~ t ~ 2n to be the smallest integer such that Ct(G) f 0 . As in Proposition .....

choose QEkI such that k<u > nk+l = k [1] . We will need the follwoing lemmas ina

order to study the above spectral sequence:
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4.6. Lemma: In the hypercohomology spectral sequence

H*«Ua>;H·(C*)) ~ [}t«uQ>;C*) the differential dn+1 : E~+~ --+ E~t~+1,O

vanishes for all i.

Proof of Lemma 4.6.: H t = 0 , then we have a split augmentation CO(G) I • k

which gives a split augmentation Co ' I k . Thus, the induced homomorphism

• ••H «ua>;k) --+ [H «ua>;C ) is split injective. Now suppose that t. > 0 . We define

kG-ehain complexes D. such that D. = C. for 0 <i <t.-1 and D. = 0 for i >t , and
1 I - - 1 -

C. from the exact sequence of kG--eomlexes: 0 --+ D. --+ C.~ C. --+ 0 . By
• •

the choice of t > 0, D. is k<ua>-free, and since it is founded, ur( <ua>;D ) = 0 for.. "'. . .
i » 0 . Therefore, for alllarge values of i, q : ~«ua>;C ) --+ ur(<ua>;C ) is an

'"
isomorphism. Since C. has a split augmentation (shifted to degree l)

C'" C ~ k th diu t·al d'" Ei,n (C"'·) Ei +t+1,n-t(C'" )
u: t = t --+ , eueren I n-t+l: n-t+1 --+ n-t+l *

vanishes for alllarge values of i , as in the previous ca.se. The periodicity of the
'"

cohomology of <ua> implies that dn-t+l = 0 for all values of i . Therefore,

* * • "'. * *u : H «ua>;k) -+ [H «ua>;C ) is injective. Since q is an H «ua>;k)-llnear
. . *

isomorphism for i» 0, HI
( <u >;k) --+ nf(<u >;C ) is injective. This in turn

Q' a

implies that the above differential dn+ 1 = 0 for all i . •

•Let h: C -+ C. be achain homotopy equivalence given by the self-duality of

. * *C* , and let h*: HJ(C ) ---+ H2n_1(C ) be the induced kG-isomorphism. Choose a

generator n E H2n(C·) ~ k , and define the non-degenerate pairing

1] : Hi(C*) ~ H2n- 1(C*) ---+ k ~ H2n(C·) via 1](f ~ g) = g(h.(f))n . Here we have used
2 .• N

the universal coefficients formula H n-l(C) = I Homk(H2n-i(C.),k) . Since h. is a

kG-isomorphism, 1] becomes a kG-homomorphism with respect to the diagonal action on

the left aide. Besides, we have the following commutative diagram in which T is the trace
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of an endomorphism:

M GD M __.....1]__-+1 k

U MShoW!:,k) : 'EndI~)

4.7. Lemma: Keep the above notation and aBsume that iri(<Ua>iM) ~ k for all i . Then

it follwoa that:

(a)

(b)

(c)

1/ ia aplit aurjectivej
A* A*,,* :H «ua>jM GD M)~ H «ua>;k) ia an iaomorphism;

M ia atably k<u >--isomorphie either to k or the augmentation ideal of k<u >.a a

•

Proof Pf Lemma 4.7.: Any indecomposable k [llp] -module N , ia determined by the

Jordan canonical form of the generator of IIp acting on the k-vector space N . This shows

that if N *0 and N*kllp ,then 1 ~ dimk(N) ~ p-l , and a standard eohomology

calculation and induction on diwkN shows that iri(71p;N) ~ k for all i E 7l in this case.

The assumption of Lemma 4.6 shows that M ~ MO fB F ,where F is k<ua>-free and MO

is indecomposable such that 1 ~ dim MO ~ p-l . Hence dirn M ~ 0 mod p . Define a

splitting f: k~ End(M) by e(l) = (l/dim M)(id) where id E End(M) is the

identity. The above eommutative square (0) yields (a). To prove (b), obaerve that

M GD M ~ MO GD MO fB F GD MO fB MO GD F fB F GD F ~ M' fB F' where M' ia

indecomposable and M' ia k<ua>-free. The splitting of part (a), and the

Krull-Schmidt-Azumya theorem applied to the isomorphism k fB Ker(,,) ~ M' EB F '

implies that M ~ M ~ k EB (k <ua»s and Ker(,,) ~ F ' is k<ua>-free. Thus, 1'/* is an

isomorphism and (b) follows. An easy caleulation shows that for MO to satisfy

MO e MO ~ k fB (k<ua»t , the only possibilities are dim MO = 1 or p-l, hence (c)

follows.
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4.8. Lemma: Keep the hypotheses of Lemma 4.7 and the above notation, and eonsider the

interna! eup produet in group eohomology

ß: Hr
( <Ua>iM) ~ HS

( <ua>;M) -------t Ur+s(<Ua>iM ~ M) .

(a) H M is k<ua>-stably isomorphie to k, then ß ia an isomorphisID for all

r == 0 mod 2 and all 8 E 7l. •

(b) H M ia k<ua>-iJtably isomorphie to the augmentation ideal of k<ua > ,then ß is

an isomorphism for all r == s == 1 mod 2 .

PIoof: The proof of (a) is immediate !rom periodicity of the cohomology of <ua> = 7l.p .

To see (b), we proeeed as follows. Conaider the exact sequenee

o-----. M --+ F1 --+ kEil F2 --+ 0 in whieh F1 and F2 are suitable k<ua>-free

modules, and tesno it with M to obtain the exact sequence:

0--+ M ~ M --t Fi --t M Eil F2--+ 0 where Fi and F2 are also free. Let

"'. "'. 1 "'. "'. 1o:H «ua>;k) --+ H + «ua>;M) and 6' : H «ua>;M) --+ H + «ua>;M ~ M)

be the connecting homomorphisms in the long exact sequences of group cohomology applied

"'.to the above ahort exact sequenees. 6 and 6' and H «Ua>ik)-module iaomorphisms

and eompatible with eup-products (see Brown [B3] OI Cartan-Eilenberg [CE]).

Therefore, we obtain the following commutative diagram:

H 2i «U
a

>; k) 8 H2j--l«ua>jM) Jl I H2i+2j-l «Ua>iM)

6~idl~ 6' l~
H2 i +l(<ua> j M) 8 H2j-l( <Ua>iM) ---t. H2i+ 2 j «u a>; M ~ M)

In the above, JJ and ß are given by eup-produeta. Sinee JJ ia an isomorphism, 80 is ß,

and (b) ia proved. •
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4.9. Lemma: H Bi(<ua>;M) ~ k for all i E Y. , then the hypercohomology spectral

* * * * *sequence H «ua>;H (C )) ~ D-I «ua>;C ) collapses.

Proof: From Lemma 4.6, it follows that we need to consider only

dn+ 1 : E~+~n --+ E~t~+l,n . First, notice that there is a pairing in the above spectral

sequence "1: E~,a GD E~,b --+ E~+j,a+b as folIows. Let '
* . * .• • . . *

TI. : H «ua>;H1(C ) GD HJ(C )) --+ H «ua>;H1+J(C )) be the induced

homomorphism !rom the pairing '1 given above by the self-duality. Note that in this case,

we need to consider i = j = n ,and if i =°or j = 0, TI. is the identity. Next, we have

the group cohomology cup-product ß aB in Lemma 4.8 above. "1 is the composition

TI. 0 ß on the E2--level. We remark that ß is constructed using a diagonal approximation

in a resolution for <u0> ; hence, ß satisfies a suitable form of the Leibnitz formula with

respect to the differentials in the hypercohomology spectral sequences whose E2-terms are
* * * • • * •• • * ••

H «ua>;H (C )) and H «ua>;H (C SC)) ~ H «ua>;H (C ) GD H (C )) .

Moreover, '1. commu~e8 with the differentials since it is induced by coefficient

homomorphisms.

Let t E H2(<uo>;k) ~ k and 0 E HO( <ua >;H2n(C*)) ~ k be generators. From

Lemma 4.7 (c) we are led to eonsider the two eases of Lemma 4.8. First suppose M is

stably isomorphie to k, and write n = ".ß(x GD y) ,where x,y E HO( <ua>;M) and we

have used Lemma 4.7 (b) and Lemma 4.8 (a). Then

dn+ 1(O) = dn+ 1('1.ß(x GD y)) = f7.dn+lC8(x S y)) = TI*(dn+ 1(x) GD y:!: x ~ dn+1(y)) =°
Bince dn+ 1(x) = 0= dn+1(y) by Lemma 4.6. In the ease M is stably isomorphie to the

augmentation ideal of k<:ua > , we have tO = f7.f3(u 8 v) ,where v,u E B1(<ua>;M) .

Then dn+1(tO) = ".dn+ 1(,B(u 8 v)) = 1J*(dn+1(u) 8 v:!: U ~ dn+ 1(v)) =°again by the
*same Lemmas. Since the Er-terms are modules over H «uQ>;k) and the differentials are

*
H «ua>;k)-linear, the periodicity of cohomology of <ua> implies that dn+l == °.For
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•dimension reasons and using the H «ua>jk)-module structure, it follows that d2n+l == 0

also, and the spectral sequence collapses as claimed. _

4.10 Lemma: With the hypotheses and the notation of Lemma 4.9 above, we have

3
H.(C.(<ua») ~ k .

Proof: This follows from Lemma 4.9 and the localization theorem 2.1 applied to the

k<u >-permutation complex C. as in Proposition 4.3 above. _a

4.11 Lemma: Let p be an odd prime, and let X. be a connected k [7Zp] -permutation

complex such that Hi(X.) = 0 for i i {O,n,2n} and HO(X.) = H2n(X.) = k . If
.... .

H.(X.(7Zp)) = k , then Hn(X.) satisfies HI(7ZpiHn(X )) =k for all i E 7Z .

Proof: As in Lemma 4.6, the differential d:+~: E~+~ --+ E~t~+I,O vanishes. Denote

by t E H2(7Zpik) = k the generator, and localize the spectral sequence by inverting t , so

that Ei , n [!] ~ iri(7Z 'Hn(X.)) and Ei ,°[!] ~ iri(7Z 'k) ~ Ei, 2n [r1] . By the
n+l t - p' n+l t - p' - n+l

• • 1 ... *localization theorem (see 2.1) D-I (7Zp;X ) [r] ~ H (7Zpik) , so that the differential

d:+~n[}] : iri (1lpiH2n(X*)) ---+ iri+n+1(llpiHn(X*)) is an isomorphism. •

•We complete the proof of Theorem 4.5 as follows. Suppose rank(H (GjM)) = 1 . In

* * * * *the hypercohomology spectral sequence H (G;H (C )) ~ IH (G;C ) , the differential

d Ei , n E i +n+1,O . d K-h hin+l: n+l --+ n+l In uces omomorp SIDS

d* ,n jQ,'d E*' n.o. K E*+n+l,O.o. K d
n+l 'Cf I : n+l '01A --+ n+l '01A an

d* , 2n Q:D'd E*' 2n e K E*+n-l e K B 'dn+l I: n+l A ----+ n+l A . es] es,
* n * 0 * 2nEn+1 8 A K ~ K ~ En+ 1 8 A K ~ En+ 1 8 A K . The proof of Lemma 4.6 applied to the

* nhypercohomology spectral sequence of G shows that dn+l Q:D id =0 . (One needs to

*.' * 2nremark only that by Lemma 2.2 D-I (GiD ) eA K = 0 in that proof). If dn+l Q:DA K f 0 I
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• •then it must be an isomorphism. This implies that IH (G;C ) ~A K ~ K . From the

• •localization theorem 2.1 it follows that H (C (G)) =k . For a choice of a Ekr as in

Lemma 4.6, C.(G) = C*( <ua » 80 that H*(C*<ua» = k . From Lemma 4.2 above, it

follows that iri(<ua>;M) = k for all i E 1l. . Hut this contradicts Lemma 4.10. This

contradiction shows that d:+~n ~A K = 0 . Since ~~;~ eA K = 0 again by the proof

•of Lemma 4.6, and d2~~1 = 0 for dimension reasonB, the spectral sequence collapses.

* * 3Hence IH (GjC ) ~A K ~ K and the localization theorem shows that

dimKH*(C*(G)) = 3 as desired. _

4.12. Example: Let p be odd, G = IIp and consider the linear representation of G on

(3 with 3 non-trivial distinct weight. The induced action on the complex projective space

G:p2 has precisely 3 fixed points, and H2((p2) = 1l. . H we choose m free orbits of points

in G:p2 and blow-up at these points, we get another algebraic action on an algebraic

surface X = (p
2#(m tp'2) (connected sum) and H2(X) ~ 1l. EB (1l.G)m . Similar examples

can be construeted using projective aetions of G = IIp x 1l.p on (P2 and by blowing up

at an orbit GIB of points, one obtains an algebraic surfaee Y with

H2(Y) ~ 1l. EB 1l. [GIB] . More complicated examples ean be construeted by a variation of

these examples. As remarked in Section One, C*(X) and C*(Y) for suitable ~implicial

*structures on X and Y provide examples of SDP-structures in which H (GjM) has

*rank one over H (Gjk) . The geometrie consequence of Theorem 4.5 is that for a Poincare

duality eomplex with an effective (1l. )r-action, the fixed point set of any subgroup H.c 1l.rp p

ia never homologically acyclic. Theorem 4.5 may be considered the algebraic analogue of

the theorems of Conner-Floyd [CF1] [CF2] and Atiyah-Bott [AB] and W. Browder

[Bw].

4.13. CoroliarY: Let p be an odd prime, G = (1l.p)r ,and C. be an SDP-structure over
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kG of formal dimension 2n and Hn(C.) = M . Then the following hold:

(1) If C.(G) *0 ,ihen dim H.(C.(G) I ~ 2 .
• •(2) dim H.(C.(G)) = 2 if and only if H (G;M) is a iorsion H (G;k)-module.

(3) In any ease, H.(C.(G)) *k .

~: (1) Hy ehoosing a Ekr as in Theorem 4.5 above, it follows that

dim H.(C.( <Ua») f 1 . Since C.(<ua» = C.(G), dim H.(C.(G)) ~ 2 .

*(2) Follows from Proposition 4.3 and the following argument. H (G;M) is a torsion

* •H (G;k)-module if and only if the Krull dimension of the support of H (G;M) in

Spec Hev(G;k) isless than dim Spec aev(G;k) = rank(G) = r . Here,

Hev(G;k) = EB H2i(G;k) is a eommutative k-algebra whose reduced k-algebra is
i~O

isomorphie to the polynomial ring k [tl ,... ,tn] . From the positive answer to the Carlson

conjecture (Avrunin-Scott [AS] J Carlson [Cl] [C2]) it follows ihat there is an a E kr

such that MI k<u > is k<u >-uee. In fact, the set of such veetors a form a Zariskia a
open dense subset of kr , namely, the complement of the proper closed subset

*(Supp H (G;M)) n Max Spec(Hev(G;k)) . Thus, it is possible to arrange for such an a to

s&tisfy C.(<ua » = C*(G) as well. Now Proposition 4.4 shows that

H.(C.<u a> = k EB k ,hence dim H.(C.(G)) = 2 . The converse proceeds &long the same

lines: For any a E kr in the complement of the IFp-rational linear subspaces

corresponding to proper subgroups of G, C.(<ua» = C.(G) . The proof of Proposition

"'.4.4 shows that if dim H.(C.( <ua») = 2 , t~en H «ua>;M) = 0 , 80 that M is

k<ua>-free. Therefore, the Carlson rank variety Va(M) (see Carlson [Cl]) is a proper

subset of kr . Again, by the Avrunin-Scott theorem ([AS] Theorem 1), the cohomological

•support variety VG(M) is a proper subset of Max Spec(Hev(G;k)) . Hence H (G;M) ia a

•torsion H (G;k)-module.

(3) This follows from (1), (2).
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SECTION FIVE. UNITS IN THE GREEN RING

Recall that the Green ring of RG is the Grothendieck ring associated to the set of

isomorphism classes of indecomposable RG-lattices. The direct sum and tensor product

(over R) of RG-modules induce the ring operations. The stable Green ring is the quotient

of the Green ring by the ideal generated by RG-projective modules. WE will use the

notation IR(RG) and 6i(RG) for the Green ring and its stable version. A unit in ~(RG)

is seen to be represented by an RG-lattice M for which there exists another RG-lattice

M I such that M ~ M I ~ R E9 P , where P is RG-projective. An important dass of

RG-lattices are the endo-trivial modules introduced by J. Alperin and E. Dade (see Dade

[D] and Alperin [Alp] and they are characterlzed by EndR(M) ~ R EB P with

P = projective RG-module. The canonica.l RG-isomorphism

HomR(M,R) 8 M ~ EndR(M) shows that endo-trivial modules represent units oI 6i(RG) .

in the following, we will determine the units of m(RG) which are permutable RG-moduels

arising in Steenrod's problem. It is appropriate to call an RG-module M spherical if there

is a finite dimensional G-ßPace X such that non--equivariantly X is homotopy

equivalent to a bouquet of d-dimensionak spheres and the homology representation

Hd(X;R) is RG-i80IDOrphic to M. This is inpsired by Quillen's terminology of

d-spherica.l posets [Q2]. For example, if M is the Steinberg module of a finite Chevalley

group G, or more generally the reduced homology of the simplicial complexes associated

to poseta A p(G), cV'p(G) or Solomon-Tits buildings (see Quillen [Q2] and Section

Three above) d-fipherical, where d+l is the appropriate "rank" of G . Let us call M a

spherical unit of ~(G) , if M is sphericaJ and a unit in m(G) and such that its inverse in

m(G) is also spherical.
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5.1. Examnle. If M is a finitely generated endo-trivial and spherical, then M is a

psherical unH. To see this, suppose that Hd(X;R) ~ M and we have arranged for X to be

a finite dimensional simplical complex with a simplicial G-action using standard

approximation arguments of algebraic topology. Then we choose for G a large dimensional

real or complex representation space V , and embed X G~uivariant1y in V , using the

Mostow-Palais embedding theorem (cf. Bredon [Brd]. Let V be the one-pointm

compa.ctification of V , which is a sphere with G-action. Let Y be the complement of X

in V . Then by Alexander duality, Y is connected, H.(Y) = 0 for i *0, n-d-l, andm 1

Hn-d-l(Y) ~ Hd(X) , so that Hn-d-1(Y;R) ~ HomR(Hd(X;R),R) ~ HomR(M,R) . Thus,

HomR(M,R) is also apherical. Hy endo-triviality, HOIDR(M,R) e M ~ R fB P where P is

RG-projective. Thua M ia a spherical unit in m(RG) aB claimed.

5.2. Theorem. SUPIX>se M ia a apherical unit in the stable Green ring m(RG) , where G

is an abelian p-grouPJ and R is a field of characteristic p. Then M is stably isomorphie

to rf(R) for same n E 11 . If M is indecomposable, then M ~ rf(R) .

5.3. Remarks. 1) n is the Heller operator. See Curtis-Reiner [CR] for the definition and

properties.

2) A deep and difficult theorem of E. Dade [D] characterizes endo-trivial RG-modules,

for G = abelian p-group and R = fjeld of characteristic p. In a fonhcoming paper, we

prove that 5.2 holds without the spherical hypothesis by a proof independent of Dade's.

However, the more general results require non--elementary results from algebraic geometry.

The spherical case, however, uses elementary arguments which may be helpful to get an

intuitive feeling for the more general results.

3) From Section One it easily follows that spherical RG-modules are RG-permutable.

Prcof: Let E be the maximal p-elementary abelian subgroup of G . Hy suspending, if
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neccssary, we mayassume that there is a G-space X such that Hd(X;R) = M and

XG f ; . By definition, dim X < m and X is homotopy equivalent to a bouquet of

d-dimensionalspheres. By standard arguments in algebrie topology, we mayassume that

def
X is a G-eW complex, so tha.t C. = C.(X) is apermutation complex with

permutation basis given by the cells of X . Let E(X) be the singular set of the G-action

on X, that is the union of fixed points XH for all 1 f H .c G . Notice that in the reduced

representation ring ([G] /(G , we may choose a G-invariant inner product by averaging

any given inner product. Call S the unit aphere in the reduced representation ring. S ia a

aphere with G-action and SG = ; . Henee the join X 0 S with its natural G-action ia

homologically only an iterated suspension of X , 80 that X 0 S will be still spherical.

Moreover, (X 0 S)G = XG t- ; .This operation preserves homology up to

RG-isomorphiam and it has the effect of increasing the codimension of the singular set, Le.

dim X - dim E(X) will be arbitrarlly large after repreated replacement of X by X 0 S .

There ia another operation which changes Hd(X) by ciHd(X), r ~ 0 , up to stable

RG-isomorphism. This is obtained by adding Iree orbits of (d+l)-eells to X, obtaining a

G-eW complex X' . We choose a surjection (RG) krp IM and regard this as

8Hd+ 1(X I ,X) ~ R I Hd(X) , which ia geometricalIy realized (using Hurewicz's

theorem) by atta.ching cells 11 G )( nd+1 to X to obtain X' . This operation has the

effect of increasing the homological codimension, Le., since I:(X) = I:(X '), dim E(X)

remains eonstant and the dimension d where Hd(X;R) t- 0 grows arbitrarily large. Sinee

rrM ~ n-lN is RG-stably isomorphie to M ~ N, ciM is still a spherical unit.

Now choose Y satisfying y G f ; and s8,tisfying other hypotheses whieh already X

satisfics, and such that Hd I (Y;R) ~ M' is an inverse of M in tft(RG). That is,

M ~ M' ~ Re P where P is RG-projective. Notiee that since R ia a field of

chara.cteriatic p and G ia a p-group, RG ia Ioeal and projectives coincidea with Iree
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RG-modules. However, we will use this remark only for eonvenience. Consider

Z = X A Y , the smash product with the induced action, (see Seetion One). The Künneth

formula shows that H*(Z;R) ~ Hd(X;R) ~ Hd I (Y;R) ~ R Ei P . Hy the localization

theorem (Theorem 2.1 above {or example, or Hsiang [Hsg]), H*(ZHjR) ~ R for each

1 f H CE. Since ZR = XH A yH and H*(ZH;R) ~ H*(XHjR) ~ H*(yH;R) , it follows

that H*(XH;R) ~ R . Let 6(H) be the integer such that Hd(XH;R) = R and notice that

since xH 1 xG f;, 6(H) ~ 0 .

Consider the set U = {H CE: IE/H I = p} , and let W be the real linear

representation of E whieh is the direet sum of m(H) irreducible non-triviallinear

representations of E/H ~ 7lp for eaeh HEft .. We ehoose m(H) , depending on p = 2

or p > 2 such that dimmWH = 6(H) + 1 . Let dimmW = t + 1 . Hy shifting dimension

or join operation as described above, we may arrange for X, and hence t, to satisfy

d ~ t+2 S dim t(H) + 2 . While this conditon on X is not necessary for the proof, it will

simplify and make the following argument more elementary. Consider the l.-skeleton of

X , eall it X(t) and its cellular chain eomplex C*(X(l.» = D* . Let F* = C*(X)/D* ,

whieh is RG-free by choiee of l. . D* is a permutation complex whieh is based and

Ht(D* ~ R) ~ Ht+1{F* ~ t) . Sinee Hi(F* ~ R) = 0 unless i = d or i = t+l ,and F*

is RG-free and Fi = 0 for iSt or i > dim X , it follows easily that Hd(X;R) is

RG-stably isomorphie to Ht +1(F* ~ t) . Hence, up to replacing M by liM for some

r E 7l , we have redueed the problem to showing thai Ht(D* GD R) is RG-stably

isomorphie to rfl(R) for some n E 7l . (In the terminology of Assadi [A2] , M and

Ht (D* _ R) are w-fitably isomorphie. See [A2] for related discussions).

The linear representation W satisfies The dimension equation

dim W - dim WE = 1: (dim WH - dim WE) , hence the restriction of the G-action on

HE U
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X to the E-aetion satisfies the BOtel fonnula t - 6(E) = l (6(H)-6(E)). (See Borel

HE ft

[Bor], Bredon [Brd] or Hsiang [Hsg] {or more details). According to Dotze! [Dot] , the

converse to Borel's theorem holds {or such a situation and Ht(X(t);R) is RE-isomorphie

to R EB PO' where Po is RE-projective. Hy the above discussion, we may write

M EB (RE)i ~ nd-t(Ht(X(t);R)) EB (RE)s ~ nd-t(R) EB (RE)u as RE-modules. Consider

nt-d(M) as an RG-module. Hy the above, nt-d(M) IE ~ R EB Q where Q is RE-free.

* '" * t-d '" * t-d
Consider the induced homomorphism p : H (G;n (M)) --+ H (E;n (M))

whieh is an F-isomorphism in the terminology o{ Quillen [Ql]. To see this, observe that

nt-d(M) is stably isomorphie to Ht(X(t)jR), and for a ehoiee of base point x EXG,

Hb(x(t),xjR) ~ Hi(G;Ht(X(t),x;R) for i ~ t+l , and similarly {or E. This is true since

the speetral sequences of equivariant eohomology (or equivalently hypereohomology) have

* *only one row. By Quillen [Ql], one knows tat HG(X,x;R) ------+ HE(X,x;R) is an

F-isomorphism sinee E is the unique p-elementary abelian subgroup of G . In partieular,

p* : HO(G;Ot-d(M)) ---+ HO(E;Ot-d(M)) ~ R is non-zero, hence surjeetive. Let

M' = t t-d(M) . Thus, we may choose {E HomRG(R,M / ) such that in the diagram:

irO(G jR)
f*

• ir°(G jM')

l~ Ip *

~#HO(E; R) I HO(E; M')

f* : irO(G;R) ---+ HO(G;M ') is injeetive. In the exa.ct sequence of RG-modules,

f '" ° '" *o--+ R ---t M' --+ Ker(f) --+ 0 f#: H (EjR) --+ H (EjM ') ia an isomorphism, so

"'*
thai H (E;Ker(f)) = ° . It {ollows from Rim [R] that Ker(f) lEis RE-free. Hy

Chauinard's theorem (cf. [Ch], Cuttis-Reiner [CR], Ker(f) is RG-projective, hence the

short exact sequence above splits aver RG and M' is stably isomorphie to R. Hence M
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is stably isomorphie to nd-t(R), and if M is indecomposable, M ~ t d-t(R) . •

In the above proof we only used the fact that G has a unique p-elementary abelian

group in an essential way. Other referenees to G being an abelian p-group may be

avoided, and a modification oI the above argument proves the following more general

result:

Theorem: Let R be a field oI eharacteristie p, and assume that G is a finite group with

a unique eonjugacy dass of maximal p-elementary abelian subgroups. Suppose that M is

a spherieal unit in the stable Green ring «t(RG) . Then M is RG-stably isomorphie to

rf(R) for some n E 7l . •

1t is also worthwhile to point out the following whose proof follows from 5.3 and the

constructions of Section One as used in the proof of Theorem 5.2.

5.4. Proposition: The spherical units of any finite group G in «i(RG) form a

multiplicative aubgroup of the group of all unita. Therefore, if M ia a spherical unit, so are

HomR(M,R) and filM for all n E 7l . •

The. above results provide some evidenee for the following:

5.5. Conjecture: For an arbitrary finite group G and R = 7l or a field of characteristic

p , all units of m(RG) are spherical.
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