
Stability for the Axially Symmetrie

Pendent Drop

by

Henry C. Wente

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
0-5300 Bonn 3

West Gerrnany

'Department of Hathernatics
The University of Toledo
Tqledo, Ohio 43606

USA

MPI/8 7- 37





I. Introduction

In this article we will discuss the axially symmetrie

pendent drop as it oecurs in three different physical settings:

Problem A (the siphon), Problem B (the medicine dropper) ,

Problem C (drop pendent from a horizontal plate). Gur goal is

to exhibit a scheme for identifying those drops determining

stable configurations and to show that they satisfy a strong

minimizing property for the energy. First we describe the

problems in more detail.

Problem A: The drop is suspended from a fixed cireular

opening of radius r located at the level u ~ u where u is

the vertical coordinate with positive direction upward and u ~ 0

is the zero pres5ure level of the fluid. [See Figure 1] If X is

the exposed body of the fluid and n is the liquid-air interface

with A(n) its area;' the potential energy of the configuration

is

~ oA(ü) + pg f zdV .
X

o is the surface tension of the liquid-air interface, p i5 the

density of the fluid, and 9 is the gravitational constant. The

condition for equilibrium 15 that the first variation of the

potential energy aEO(n,N) ~ 0 for all normal perturbations N

of n which vanish on the boundary. The Euler equations yield

1.2) 2 H ~ -ku on n, k ~ pg/a .
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H is the rnean curvature of the surface rneasured so that it is

positive at the drop tip. By a suitable 5caling we may allow

k = 1 . The condition for stability is that the second variation

is positive for all non-trivial normal perturbations.

1 • 3 )
2

a EO(n,N) > 0 for all N + 0, N = 0 on an.

Problem B: As in Problem A the fixed circular opening of

radius r lies in a horizontal plane but the exposed volume is

prescribed. [See Figure 1] The condition for equilibrium is

that the first variation of the energy aEO(n,N) = 0 for all

normal perturbations N of n vanishing on the boundary, and

for which the first variation of the volume is zero. By the method

of Lagrange multipliers we find

1.4) Cl (EO+AV) (n,N) = 0 for some A

and all normal perturbations N vanishing on c.~~. This yields

the condition

1.5) ·2 H = -ku + A , k = pg/o .

By a vertical translation of coordinates we may take A = 0 thus

reducing (1.5) to the condition (1.2) while the vertical coordinate

of the opening is at level u = u . The condition for stability

is that

1 .6) 2
d (E

O
+ AV) (Sl,N) > 0
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for all non-trivial normal perturb~tions N- vanishing on the

boundary and for which the first variation of the volume i8 zero.

Problem C: The drop is now pendent from a homogcIlcous

horizontal plate. [See Figure 1J The potential energy 1s 110W

where S is a physical constant and lEI is the wetted area of

the plate. Setting the first variation equal to zero for all

volume preserving perturbations gives

1 .8)

a) 2 H -ku + A for same A, k = pg/o

b) ß = cos a

Here a is the angle of contact of the liquid-air interface with

the horizontal plate measured interior to thc fluid. l\gain we may

choose k = 1 and by a vertical translation of coordinates may set

A = 0 , with the horizontal plate at level u = u . Clcurly it 1s

necessary for IS"I ~ 1 so tha t O;S a ::; TI • 'l'here are HO pCllllcn t

drops with a = TI so we may consider O;S a < 11 I~ 1 < ß ~ 1) • 1\5 in

Problem B the condition for 5tability i5 that

1 .9)
2a (E + ,\V) (H,N) > 0

for all non-trivial normal perturbations for which the first

variation of the volume is zero.
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There are twa contral variables appropriate to each of the

problems we have described. For Problem A these variables are

-the radius of the circular opening rand the vertical caordinate

u of this circle. The coordinate -u 1s just the pressure at the

opening. We proceed to describe those value (r,u) in the control'

space which correspond to stable configurations. We also show that

any stable configuration is a minimizer for the energy functional

EO(n) in a strang sense. We do the same form of analysis for

Problems Band C . For Problem B the contral variables are (r,V)
-where r in the radius af the circular opening and V is the

exposed volume. For Problem C ~he appropriate variables are

(~,V) where ~ is the angle of contact and V in the volume.

An early werk was that of E. Pitts [9] who was interested in

Problem B. Suppese that the radius r of the circular opening is

su~ficiently 5mall so that the solution u = 0 is stable and let

there be given a one parameter family of symmetrie pe~dent drops

spanning the circle and parameterized by drop height. Let V(h)

be the expased volume. Pitts showed that if VI (h) 1s positive

for 0 ~ h < hand is negative for h > h then the corresponding

drops are (symmetrically) stable for 0 S. h < hand unstable for

h > h . An informative but not rnathernatically rigorous discu5sion

is ta be found in the paper af E.A. Baucher, M.J.B. Evans, and

H.J. Kent [3]. Their paper includes graphs depicting the· regions

.af stability in the control domain for each of our problems.

Another approach is.found in the paper of E. Gonzales,

u. Massari, and I. Tamanini [7]. In each cf the problems one

readily observes that the energy functional has no lower bound

and thus a stable pendent drap can be at best a loeal rninimizer.
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Their approach is to put a floor ~nderneath the apparatus and

to restrict the fluid to remain above this floor. This puts a

lower bound on the energy functional and it follows that the

,variational problem always has a solution. The difficulty is

that the minimizer rnight be a connected drop which contacts the

floor or might consist of two components,one pendent and one

sessile. For problem C they show that for small enough volumes

the solution i5 the pendent liquid drop. It 5eems unlikely that

this procedure will identify all stable drops. For example, if

one takes a stable pendent drop and puts a floor at the level of

the drop tip it does not follow that we have the minimizer. It

seems to me that for drops of larger volurne the minimizer would

contact the floor.

Much of the work in the present article rnay be found in [11]

where proofs cf rnany cf the technical results to be quoted are

proven. A later discussion may also be found in [12].

II. Description of the Profile Curves

Suitably norrnalized, the differential equation for the profile

curve whose surface of revolution represents the liquid-air inter­

face satisfying (1.2) with k = 1 is

2 • 1 )

'a) r l (s) = cos ~

b) ul(s) = sin ~

c) Wl (s) = -(sin w/r)-u

r(O) = 0

u(O) = u = -2Ko
W(O) = 0 •
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The set of solutions to this system has been carefully discussed

by P. Concus and R. Finn [5]. There is a unique solution

{r(s,K), U(S,K), ~(S,K)} to the system satisfying the initial

conditions r(O,K) = 0, U(O,K) = -2K = uo~ ,1J!(O,K) = 0 , where K

is the curvature at the drop tip. The solutions exist for all s

and K being analytic in both variables. We note that u = 0 is

a solution and that arefleetion of any solution about the r-axis

yields another solution. Drops with Uo < 0 represent pendent

drops while solutions with u o > 0 represent "emerging" bubbles.

We now list other important properties of the family. [Figure 2]

1. For " smallll U o < 0 the solutions ean be expressed non­

parametrieally with u as a funetion of r over the entire r-axis

is the zero order Bessel function.

2. There is a value uO(~ -2.5678) such that the profile

curve with drop tip at u*o attains a simultaneous vertical tangent

and inflection point at where r* ;;: . 91
1

and u1';;: 161

For 0 < r < r 1 the curve is convex while for r greater than

ri the curve may again be expressed non-parametrically in terms

of r.

36 For Uo < Uo < 0 the solutions may be expressed in non-

parametrie form u = u.(r) for all r.

46 For Uo < Uo the profile curves attain a vertical tangent

at a point (r
1
,u1 ) where 0 < r 1 < r; and u 1 < U; 6 The curves
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form a bulge at this point and r decreases (with increasing s )

to a value r 2 forming a neck at (r2 ,u
2

) where u 2 < 0 . r
1

and u
1

are increasing functions of Uo for Uo < u* with
0

limit r 1 = 0 and limit u
1 = -00 as Uo approaches -00

5. For Uo « uD the solution curves form a sequence of

bulges and necks until it crosses the r-axis with r' (s) and

u ' (s) both positive. From this point the curves continue non-

parametrically u = u(r) out to r = +00 • The entire curve has

no self intersections.

6. The first inflection point on a profile curve with tip at

occurs at a point
~ A

(r, u) where G. < 0
.....

. r and
......
u are

monotonically increasing functions of Uo for Uo < 0 . Tf

Uo < Uö so that the profile curve has both a neck and a bulge,

then the first inflection point lies between the first bulge and

neck.

111. Analysis of Stability

Our method for determining the stable configurations for

each of the problems proceeds as follows. Take a given profile

curve {r(s,K), U(S,K), W(S,K)} satisfying (2.1) and let

(r,ü) be a point on the cutve r = r(s,K) and U = U(S,K)

The curve from its tip to this point generates a possible pendent

drop whose exposed volume V can be calculated.
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nr(ru + 2 sin tlJ}

The volume gives us a forth function of the parameters (S,K)

V = V(S,K) . For each of the three problems two oE tbc four

functions are prescribed. This generates a mapping from the

(s,K)-plane (the parameter space) ioto the appropriate two-

dimensional "control" space. The analysis of this map determines

stability in each case.

IV. Problem 1\ (l'h8 Siphon)

The appropriate map here 1s A(S,K) defined by

4.1) A(S,K) = (r(s,K) ,U(S,K))

The eon trol space is the (r, u) -plane. One can easily check tlla t the

derivative of 1\, DA(s,K) is invertible when s::: U. Lc tobe

the set of all poin ts in the (s, K) -plane where D1\ (s .•:) is invertible.

Definition 4.1. Os c ° is that component of 0 in thc parameter

spaee containing the line s = 0 •

Theorem 4.1.: Every point (S,K) in Os determines Cl stable

pendent drop for Pro1?lem A. (i.e. the drop generated by thc profile

curve (r(s,KI,u(s,K)) 0 S s S S . Any point outside Os determines

an unstable pendent drop for Problem A.



- 9 -

The eontral set A{OS) is an open set. in thc (r,u)-plane.

A point (r,ü) determines a stable eonfiguration for Problem A

only if it is in this set whieh we now wish to deseribe. Note that

A(OS) 1s symmetrie about both axes so we may restrict aurselves

to. the case r ~ 0, u ~ 0 .

Theorem 4 .2. : [ 11 , p. 434] : Let K > 0 and consider the curve

(r(s,K) , 11 (s, K) ) for S G:: 0 . There 18 a srnallest value 81\ such

that (S,K) is in Os for 0 < s < sA while (51\' f'::) is on the

baundary cf Os . On the interval 0 < 5 s: 5
A

wc !lave r I (s) = cas tr

positive so that 0 < qJ(s) < n/2 •

The corresponding profile eurve ean thus be expressed in

non-parametric form u = f(r,K) for r wlicrc
1\

and u A = f(rA'~). The point (rA,u
A

) lies on the boundary of A(OS)

and in the point conjugate to the drop tip along this curve.

Since r' (s) is positive we can use r as an independent

variable rather than s. Points (rA,u
A

) on the boundary of

A(OS) are determined by the eondition that DA(r,K) be singular

where A(r,K) = (r,f(r,K» with u = f(r,K) thc non-parametric

representation of the profile eurves. This accurs when f (r, v:)
f-::

o

which means that (r,K) 1s on the envelope of the family of

extremals.

Theorem 4.3.[11, p. 434]: The first envelope 1'1\ of the family

of profile curves u = f(r,K) for K ~ 0 (uO ~ U) und r-positive,

is the graph of a smooth analytic function u = e(r) for

o < r ~ 0. 0 where 0. 0 is the first positive zero of the Bessel
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fuhction JO(r) . This function has the following properties.

limit e(r) = -00 as r --> 0

1 imi t e (r) = 0 a s r -> 0.
0

The derivative e' (r) is positive on the interval 0 < r < 0. 0

with e' (0. ) = 0o and limit e' (r) = +00 as r approaches o .

The entire envelope is a smooth curve without self inter-

sections with a cusp at (0.
0

,0). [Figure 3]

Consequences:

1. The map A(S,K) is a diffeomorphism of Os onto its

image A (Os)

2. For (~,~) in A(OS) where r < rr the profile curve

of the corresponding stable pendent drop is convex. On the other

is in A(Oc) then
L)

the profile curve will contain an inflection point so that the

corresponding pendent drop loses convexity. [Figure 3]

3. There are no "inaccessible ll stablependent drops for

Problem A. The vertical line r = r intersects A(OS) in a

connected interval. Thus the stable pendent drop corresponding

to the point (r,u) can be reached from the zero pressure

solution u = 0 corresPQnding to the point (r,O) in A(OS)

merely by increasing the pressure p = -u from 0 to -u

[Figure 3].
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The set of stable extrernals for Problem A furnish a strong

minimum for the funetional EO(n) as the following theorem will

show. Take the region of stability A(OS) for Problem Asymmetrie

with respeet to the rand u axes, and rotate it about the

u-axis generating a simply eonnected region U c R3 . The

boundary of U resernbles a vertieal eylinder becomming narrow

at the ends and possessing a euspoid~l eurve in the plane u = 0 .

This region is foliated by our family ofaxially symmetrie pendent

drops whieh are extremals for the functional EO(n)

These surfaees are oriented by choosing the unit normal

veetor S to point downward at the drop tip (i.e. the outward

normal to the fluid). We rewrite the functional EO(n) as follows.

Let P(x) satisfy div P(x) ~ z and set

4 . 1 ) · s dA k ~ pg/o .

From the divergence theorem it follows that if n
1

, ~2 are two

oriented surfaces with the same boundary then

Theorem 4.4.: Let U c R3 be a sirnply connected region smoothly

foliated by extremals of the functional Eo(n)

Let L be any leaf of the foliation and consider a domain

EO c L with boundary dEO. Let E be any other oriented surfaee

in U with the same boundary. We claim that EO(E) ~ EO(E O) with

equality only if E ~ E
O

.
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Proof: We have a vector field definep on U by choosing

for each p E U the oriented unit normal vector ~(p) to the

leaf of the foliation containing p. One has the formula

2H = divL~ I the surface dfvergence of the unit normal vector

field ~ . Making use of the fact that div P(x) = z and

~ . v~~ = 0 so that divL~ = div S, we may rewrite Euler's

equation.

4.2) div(s + k P(x)) = 0 .

The vector field s + k P(x) is a calibration. Let E,L a C U

with La C L be as in the statement of the theorem. We

calculate

f(v + kP(x)) · v dA
L

where v is the oriented unit normal to E.

= f(~+kP(x)]·v dA
E

by (4.2) and the divergence theorem. Thus we find

4 • 3) f [ 1 - (v • S). ] dA G a
L

with equality iff .v·~ - 1 or L = LQ .

Q.E.D.
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v. Stability for Problem B (The Medicine Dropper)

The constraints are now the radius of the tube r, and

the exposed volume V. The control space is the (r,V)-plane

and we are led to study the map B(S,K) from the parameter

space to the control space defined by

5.1) B(S,K) = (r(s,K), V(S,K)

where V is given by (3.1). As in Problem A we let 0' be the

open set in the (s,K)-plane where the derivativ~ DB(s,K) is

invertible. Since B(O,K) = (0,0) we see that the line s = 0

lies outside of 0'

Fix K and consider the map B(S,K) for positive s.

There exists a smallest positive value sB such that the

DB(s,K) 1s invertible for 0 < S < S but singular
B

at sB = SB(K) . Let (rB,uB) be the corresponding point on

the profile curve where r B = r(sB,K) and u B = u{sB,K) . It

is a classical result that if (r,u) is a point on the profile

derivative

curve prior to (rB,u
B

) then the pendent drop generated by the

profile curve up to (r,u) is " symrnetriclyll stable for Problem B.

is chosen to be beyond the point (rB,u
B

) then the

generated drop is unstable for Problem B.

is called the "Volume-Definition 5.1.: The point (rB,uB)

constrained" conjugate point on the profile curve relative to

the drop tip.
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Note: The axisymmetric pendent drop is said to be symmetricly

stable if the seeond variation (1.6) is positive for all non-

trivial symmetrie normal perturbations N of n vanishing on

the boundary of n and for which the first variation of volume

is zero. If the profile curve can be expressed in the form

r = r(u) then symmetrie stability implies stability [11,

p. 464]. In this ease we observe that the angle of inclination

must be nonnegative. However, if the angle of inclination becomes

negative on some portion of the profile curve (the corresponding

drop is of reentrant type) then the drop is unstable for

Problem B due to a non-symmetrie perturbation. This fact was

noted by D.H. Michael and P.G. Williams [8]. For an alternative

discussion see [11].

Let o~ be the subset of 0' consisting of all points

(S,K) where 0 < s < 8
B

(K) . It follows that (S,K) determines

a stable pendent frop for Problem Bif it lies in Os and an

unstable drop if outside o~ . We now describe O~

image B(O~) in the control space. It is clear that

and its

0' is
S

an open set in the parameter space and ~B(O~) is an open set

in the control space.

Theorem 5.1.: [12 O~ is a connected open set in the (S,K)­

plane bounded on the 1eft by the line 5 = 0 and on the right

by an analytic curve YB which is the graph of a positive

analytic function sB = a(K) .

Theorem 5.2.: [11] Let (rB,u
B

) be the volurne-eonstrained

conjugate point on the profile curve (r(s,~) ,u(s,;)) . At the
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the derivative r (S,K)
s

is positive. 'rhe

point (rB,uB) is located between the first and second

inflection points of the curve. If the profile curve

pOS5esses a bulge (and hence a neck) then (rB,u
B

) i5

located above the neck. As K ---> 0 the point (rB,u
B

)

approaches the point (u
1

,0) where 01 i5 a raot of the

equation r JO(r) + 2 JÖ(r) = O.[See Figure 4]

By Theorem 5.1 the curve Y
B

i5 an analytic are

parameterized by K. Its image B(y
B

) i5 a parameterized

curve in the (r,V)-plane and i5 the envelope f
B

of the

family of curve5 (r(s,K) ,V(5,K» . Thus f
B

can be expressed

in the form (r(K),V(K» where r(K) = r(a(K) ,K) and

V(K) = V(a(K) ,K) are analytic functions of K. Furthermore

limit (r(K) ,V(K» = (0,0) a5 K --> +00

limit (r(K) ,V(K» = (u
1

,0) as K --> 0

From Theorem 5.2 a given curve B(5,K) touches the envelope

f
B

at a point where r' (s) is positive. Thus in a neighborhood

of this point we may express the curve B(S,K) in the form

V = g(r,K) . If the envelope is smooth it would be tangent to

thi5 family of curves and itself would have a non-parametric

representation V = G(r) . A point on the envelope of the family

V = g(r,K) i5 determined by the condition 9 (r,K) = 0 'while
K

the condition for smoothne5S is 9 (r,K) * 0 Since the
KK

envelope f
B

i5 an analytic parameterized curve it will be

smooth except perhap5 at isolated points where the derivatives



- 16 -

r'(k) and V' (K) both vanish. At such points the possibility

of a cusp arises. One such cusp occurs at (a 1 ,O)

Conjecture. That part 6f the envelope r B which lies in the half

space V > 0 is a smooth curve which may be expressed as a graph

of a function V = G(r), 0 < r < ~1 ' with G(O) = G(a 1 ) = 0 and

G'(O,1) = 0

G'(r*) = 0

There is a single value r* o < r* where

Computer calculations strongly indicate that the conjecture

is true but a complete proof is lacking. [Figure 5]

If the envelope is a smooth curve then it follows that the

map B(S,K) is a diffeomorphism of 0'
S

onto its image

In this case any vertical line r = r in the control space would

intersect B (Os) in a connected interval. The stable pendent drop

corresponding to (r, V) is accessible from the flat drop u - 0

corresponding to the point (r, 0) through a family of stable

pendent drops of increas-ing volume and fixed radius for the

aperature until a maximum volume is reached.

If the envelope were not smooth then the possibility arises

that the map B is not a diffeomrphism of 0'
S

onto its image or

-
that for some r the intersection of the line r = r with the

is not connected. In either case there would exist

stable pendent drops corresponding to same (r,V) in E(OS)

which could not be connected to (r,O) in the rnanner described

äl;>ovea
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If we follow the procedure of describing those drops

accessible from (r,O) corresponding to u = 0 through stahle

drops of increasing volume , then we have the following result. '

Theorem 5. 3 [11]: (a) Suppose tha t r ~ r*
1

where

(r1,ur) is that point on the curve ru = -1 which is an

inflection point with vertical tangent for one profile curve ,

(see Section 11) ,and consider the one-parameter family of stable

pendent drops for Problem B as the volume is increased from zero.

Through an initial range of volumes 0 < V < V
1

(r) the profile

curves will be eonvex and the drops will develop a bulge. At

V
1

(r) the profile curve will develop an infleetion point at the

edge of the drop. With inereasing volume the drops lose'convexity

but before the limit of stability is reached pendent drops

.possessing both a neek an bulge will evolve. [See Figure 6]

(b) For r > ß
1

where J 1 (8
1

) = 0 the drop u a 0 is

unstable for Problem B due to non-symmetrie perturbations. For

r < 81 the drop u 5 0 is stable and with increasing volume

the profile curves for the family of stahle pendent drops will

develop an inflection point before the maximum volume is attained.

(c) For any radius r I drop height increases rnonotonically

throughout the range of stability.

The result (a)~of this theorem was observed by A.K. Chesters

[4] in the case of small drops with narrow neeks.

We will now prove two theorems on strong minimizing properties
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of s table penden t drops for Problem B. The' f irs t theorem

restriets comparison with other symmetrie pendent drops while

the second eonsiders general eomparisons. The situation is

clarified by the example of a symmetriely stable pendent drop

of reentrant type where the angle of inclination on the profile

eurve beeomes negative. Such a drop might be symmetriely stable

but is always unstable with respect to general perturbations. The

theorems take their nicest form if we assume that thc envelope

f s has the smoothness properties discussed earlier. If this

were not true the statements of the theorems would have to be

adjusted accordingly.

Theorem 5.4.: Let (r"V,) be a point in the stable contral

set ß(O~) for Problem ß. Let L be any axiillly symmetrie surEace

whase generating curve C is a rectifiable curve (r,u) (f (t) ,g (t))

0 $ t :5 t 1 with f (0) ::;: 0 and f (t) positive for 0 < t S t 1

and (f(t
1
),g(t 1)) ::;: (r 1 ,0) so that the boundary of I. is the

circle in the plane usO • Suppose that thc curve

(f(t),V(t)) 0 < t ~ t
1 in the (r,V)-plane lies inside B (O~)

connecting (0,0) with (r
1

,V1 ) . There 15 a unique stable

curve r ;; r(s,K
1

) , u ::;: U(S,K
1

) 0 ~ s ~ 8 1
such lila t

r ( s 1 ' K1) ;;r 1 V(S1,K 1 ) :::; V
1 Let (r(s1,K,) ,U(S1,K 1 )) ::: (r

1
,u

1
)

Let E1 be the extremal surface whose generating eurve C1 is

r ;; r(s,K 1 ) , u :; U(S,K 1 ) - u, ,OS: s ~ s1 . 'I'hus J.: anel L:
1

have the same boundary and enclose the same volume. We claim that
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Proof: The proof is an application of the Weierstrass

technique for parametrie integrals as presented in [2]. If the

generating curve of some surface E is

then our relevant integrals are

(r(t) ,u(t») O;S t ;S T

T

= J
o

. .
F(r,u,r,u)dt

where · · ;.2.2 2·F(r,u,r,u) = n[2r r +u + r uu]

v (E)
T

= J
o

. .
G(r,u,r,l,l)dt, G(r,u,r,u) 2 •= '!Ir u

Consider the surface E in the statement of the theorem

with generating curve C given by (r,u) = (f(t) ,g(t))

° ~ t ~ t 1 and assurne for the moment that the curve is

eontinuously differentiable. For 0 S t ~ t
1

let V(t) be

-
the volume integral evaluated between ° and t and let

c = {(f(t) ,g(t) ,V(t)), ° ~ t ;S t 1 } be the lift of C into

the (r,u,V)-space. The curve connects (O,uO,O) to (r
1

,O,V
1

)

and its projection into the (r,V)-plane lies inside B (O~)

-We construct a one parameter family C (t ) , ° ;S t ;;;; t 1
of

generating curves for symmetrie surfaces E(t) all with the

same boundary and enclosing the same volurne such that

For 0 < t < t , the curve C deterrnines a point

·B(O~) • There is a unique extrernal r = r(s,K) , u = U(S,K)

° :.::l s ~ S with res,;) = r, V(S,K) = V . Suppose

lieS,;) = u . The generating curve C(t) is
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r(S,K) , U(S,K) -r = u = - U +.u, 0 ~ s S s

C(t) =

r = f (t) , u = g (t) , t S t S t
1

C(t) is a piecewise smooth curve whose lower part is a stable

extremal replacing part of the original curve while the upper

part is unchanged. The lower portion is an extremal for the

functional EO + A V where ~ = u - u is the Lagrange

multiplier. We set EO(t) 5! EO[l:(t)] and V(t) = V(l:(t» , so

that

s
= J

o

t
1

F(r,u,r ,u )ds + f
S s -

t

. '.
F(f,g,f,g)dt

where in the first integral we use the functions

r = r(s,K,5:) = r(s,K), u = U(S,K,~) = U(S,K) - >::, A = u - u

The key observation is that from our assurnptions it follows that

S, K and Aare differentiable functions of -t . We may compute

dEO dV
= + A =

dt dt

where E is the Weierstrass E-function for the parametrie

integral H = F + AG .

E(r,ü,r ,ü ,f l (t) ,gi (t»
5 s

= [H
r

(r,u,f'(tl,g'(t)
5
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A direct calculation now gives

- cos

where 8 is the angle between the tangent vectors

(f I (t) , g I'. ( t)) . The re f 0 r e

t
1

E (l:) - E (l: ) = f 2 TI f ( t) [ 1-c 0 s 8 (t) ] If I (t) 2 +9 I (t) 2d t .
001 0

(r ,ü) and
s s

This formula clearly can be extended to the space of rectifiable

curves. The theorem follows directly from the forrnula.

For more general configurations we have the following

result.

Theorem 5.5.: Let X be a connected open set in R3 which

-lies below the horizontal plane u = 0 and where X n {u = O} is

a disk with center the origin and of radius r
1

• Suppose

ax = B U E where E is an oriented surface with boundary
r 1

aE = c = aB . Suppose V(X) ~ V1 • Let X* be the
r 1 r 1

syrnmetrization of X about the vertical axis, namely

X* n {u = ü} is a disk B- whose area is equal to the area
r

6f X n {u = u} . Suppose that ax* = B U E* where
r 1

E* is a

symmetrie surfaee lying below the plane u = 0 and

Let the generating curve of E* be

C* = {(r,u) = (f(t) ,g(t)), 0 ~ t ~ t 1 } and suppose that the
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symmetrized configuration satisfies the conditions of Theorem 5.4.

In particular we have determined an extremal curve C1 given by

r ::;; r ( s , K 1 ), u ::;; U ( S , K 1) - u l' 0 S s S S1 wi th r (s 1 ' K 1) = r 1 '

V(S1,K 1 ) = V1 · Let E1 be the surface generated by C1 . We

then have v (E) = V(E 1) - V- 1 and with equality

only if E::;; E
1

.

Proof: The proof follows directly from two well-known

properties concerning symmetrization, namely

V(x*) = V(X) and A(E*) S A(E) with equality only if L = E* .

From this latter statement we find that EO(E*) S ~O(L) as weIl.

We now can apply Theorem 5.4.

VI. Stability for Problem C (Drop from Horizontal Plate)

The control parameters are now the angLe of inclination ~

and the volurne V, giving

6.1) C(S,K) = (W(S,K),V(S,K))

for the mapping from the parameter space to the contral space.

As before we let O" be the set of all points (S,K) where the

derivative DC(S,K) is invertible. We observe that C(s,O) ::;;

= C(O,K) = (0,0) so that 0" does not meet either of the

eoordinate axes. For any K > 0 there is a value Sc = Sc (K)

such that C(S,K) is invertible for 0 < s < Sc (K) and singular

at S = Sc (K) . We let Oll c 0 be the set of points (s, K)s s
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where K > 0 and 0 < ,5 < SC(K)

Lenuna 6.1: The set 0"
S

is an open simply connected set bounded

on the left by the line S = 0 , on the bottom by K = 0 and on

the right by a eurve YC whieh is the"graph of an analytic

funetion S =SC(K) where limit SC(K) is zero as K becomes

infinite.

Definition 6.1: For a given profile curve (r(s,K) ,U(5,K)) 5 ~ 0 ,

the volume constrained foeal point for problem C i5 the point

If a profile eurve is to genera te a stable configuration

it is neeessary that the angle of inclination ~ be non-negative

along the segment of the profile curve generating the drop.

Otherwise the drop would intersect the face and would also fail

to be stable due to non-synunetric perturbations. This eliminates

re-entrant drops from consideration. Therefore we let Oll
S

be the

set of points (s, K) in 0"
S

such that the angle of inclination

~(S,K) is positive 0 < S < 5 . We allow the possibility that

~(s,;) = 0 .

Theorem 6.1: [11] The profile curve segment corresponding to any

m'ember of Oll
S

generates a stable configuration for Problem C. If

lies outside the closure of O"s then the generated drop

is unstable.
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In other words, let (rc'uc ) be the volume eonstrained

foeal point for Problem C on some curve where we suppose that

this focal point comes before the point where the angle of

inclination is zero. If (r,u) 1s a point on the curve prior

to (rc'uC) then the corresponding pendent drop 1s stahle for

Problem C while if it comes after (rc'uC) the resulting drop

will he unstable.

Theorem 6.2 [11]: The volume constrained focal point

a given profile curve lies hetween the first and second inflection

points. It comes ahead of the volume constrained conjugate point

(rB,u
B

) for Problem B if the angle of inclination at (rB,uB) is

positive. The two points coincide if the angle of inclination at

is zero.

We consider the set C(OIl) in the control space, theS

(~,V)-plane. From our definition of o~ it follows that

C(Oll) lies in the first quadrant and 1s bounded by the axes

~ = 0, V = 0 and r c = C(YC) . As in Problem B, f c i5 the

envelope of the family of curves (~(S,K) ,V(S,K)) . By Theorem 6.2

each curve of the family will touch the envelope at a point where

i5 negative. Therefore in a neighborhood of the touching

point each of these curves may be expressed non-pararnetricly

v = h(~,K) . The envelope is deterrnined by the condition

h (~,K) = 0 . It will be a smooth curve of h (~,K) * 0 . IE the
K KK

angle ~ is positive then dV/d~ = h~(~,K) = vs/~s will be

negative. Where it is srnooth the envelope f c will be the graph

of a decreasing function.
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Conjecture: That part of the env~lope f6' which lies in the

first quadrant of the (lJI,V)-plane 1s the graph of a smooth

function V = V(~), 0 ~ ~ ~ TI with VI (0) = 0, VI (lJi) negative

for 0 < lJI < TI , and VI (n) = 0 .

Computer calculations support the conjecture. If true then

(as in Problem B) the map C would be a diffeomorphism of O"s onto

its image, and the intersection of a vertical line ~ = lJI with

C(O~) would be a connected interval. This would imply that as

-
w~ move vertically a10n9 the line 1p = 1p from (I~,O) to

(~,VMax) in the contral space, we would pass through the entire

family cf stable pendent drops for Problem C with lJI = ~ • If

f C were not smooth then there might exist stable drops not

accessible by this procedure. [See Figure 7)

The following theorem identifies those stable pendent drops

which are accessible from drops of small volume.

Theorem 6.3 [11 J (a) Far any angle of contract lJI, 0 < ~) < TI stable

drop of small volume are convex and resemble spherical caps. These

drops are generated by profile curves whose tip i8 at Uo where

Uo is increasing from -00. At a certain positive volume V 1
-depending on lJI, the profile curve for the drop will develop an

inflection point at its edge. This drop is stable. As the volurne

is increased, further stahle pendent drops are formed and the

inflection point on the profile curve will rnove to its interior.

'l'he drops have lost convexity. With increasing voluIIIC thc limit

of stability will be reached befare a secand inflection point
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appears. With increasing volume the area of. contact of the drop

with tl18 horizontal plate will initially increase but will start

to decrease before the limit of stability is reached. '

(b) If ~; 0 then all profile curves corresponding to

drops of positive volurne contain an inflection point. Drops of

small volurne correspond to srnall negative values of the drop

tip, Uo . As U o is decreased stable pendent drops of increasing

volurne are forrned. The drop generated by that profile curve which

possesses a simultaneous vertical tangent and inflection point

*(uD; uD ~ -2.5678) is unstable for w; 0 . Computer results

indicate that the drop of maximum volume occurs with u O :: -1.6

with VM - 18.4. Furtherrnore as the volurne increases the area of

contact of the drop with the plate decreases monotonically.

(c) For any angle of contact drop height increases monotonical1y

with vo1ume throughout the range of stabillty. [See Figure 8J

Remark: For example, if the ang1e of contac t were qJ; 11/2 , i t

would fol1ow that with increasing volume and before the limit of

stabi1ity is reaehed, pendent drops containing both a neck and a

bulge will appear. [See Figure 9]

We now use the Weierstrass technique coupled w_ith a

symmetrization argument to prave astrang minimizatian property

for the stable pendent drops of Problem C. We state the theorems

with the assumption that the envelope r C is sIl1ooth. 'l'his makes

the statement cleaner than it otherwise would be. Gur first result

is restricted to comparisons with axially symmetrie drops.



- 27 -

Theorem 6.4: Let (~"V,) be a point in . c(3~) . Uy Dur

assurnptions there is exactly one extrernal curve (r(s,K,) ,u(s,~,))

o s s S s, such that (S,K,) E 5~ for 0 < s S·s, and with

(~(S"K,),V(S"K,)) = (lp"V,) . Let L, be the surface whose

generating curve Cl i5 {r(5,K 1) ,U(S,K,) -u,} 0 :;; s ~ 5, where

u, = U(S1,K,) . Thus k, meets the plate {u == Ol on a circle

er, of radius r 1 wi th constant angle of con tac t q" and enclosed

volume V, . Let L be an axially symmetrie comparison surface

with generating curve C: {(r,u) = (f (t) ,g (t)), 0 ;S t ~ t, ) with

f(O) = 0 , f(t) positive for t > 0, (f(t,) ,g(t_,)) = (r,O) , and

V(t,) = V, . Suppose further that the eurve (f(t) ,V(t)) 0 $ t ~ t,

lies in 8(08) and that (f(t 1 ) ,V(t,)) is in the set 0(08) • Let

ElJ! (E),
6.2)

be the energy

where IGI i5 the wetted area for the drop. We claim that

E~, (E) ~ E (r,) with equality only if E = L, .'Y, 1fJ ,

Proof: The eurve (f(t) ,V(t)) eorresponding to E lies in

B(O~) ending up at the point (~,V,) = (f(t,) ,V(t,)) E ß(3~)

This point determines a unique stable pendent drop T for

Problem 8 with generating eurve e' meeting the plate (u = 0)

~

in a circle of radius rand enclasing valurne V, . It follows

fram Theorem 5.4 that EO([) '-: EO(~) with eguality only if

1: = ~ • Since the wetted area is the same for both surfaces it
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point (qJ,V
1

) determines a symmetrie drop

B (os) which means tha t T determines

move along the line
.....

to ~J. Each

which i8 an

41 1

[ (Ip)

fromC (O")sin

• Consider the family of drops as weC(O" }
S

V = V1

lies on

in

Now

a point

extremal for Problem C. Let EO(~} ,V(~) = V 1 and IG(~) I denote

the energy, volume and wetted area respeetively of the drop [(41) .

Sinee the volume stays constant we find

6.3)
dEO (41)

dl/J - (cas ljJ) = 0 .

Naw dG/d41;;;; (2nr) (dr/dljJ) and one ean show that dr/dl/J is negative.

This gives us

6.4) dE (41) /d'lJ ;;;; (cos l/J - eos 'P
1

) (2TIr) (dr/dll;) .
1P1

If 41 1
?; 0 and 0 :;;; 41 ~ TI then we find this derivative to be

positive for l/J > 'lJ 1
and negative for l/J < ql1 'rhus the

energy E ( 41 ) has a minimum at l/J 1
which gives us L .

l/J 1
1

Theorem 6.5: Let L1
be the stable pendent drop for Problem C

corresponding to the point (l/J1'V,) in C (0") Let X be an
S

open set in R
3 lying below the plane (u = 0) with X n {u ;;;; o} ::: G

Suppose the boundary of x, ax ::: l: U G where t: 1s a smooth

surface with boundary 8L:;;;; 8G . Let X* be the symIlletrization

of X about the u-axis and suppose that X* satisfies the

hypotheses of Theorem 6.4. Then with equality

only if L = [1 •
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Proof: The proof is exactly as in the discussion of

Theorem 5.4. Symmetrization decreases area while preserving

the volume, wetted area, and gravitational potential.
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Figure 1: Three Different Experiments

-

Problem A

(the Siphon)

Problem B

(the Medicine
Dropper)

Problem C

(Drop from Ceiling)

Figure 2: Possible Drop Configurations
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Figure 3. 'l'he Envelope r

A
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Stable Configurations for Problem A.
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Stable pendent
drops are all
convex

r<u o' r near (~U

l\ stable pendent
drop which is not
convex

Figure 4. Location of Volume-constrained conjugate point
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Figure 5. The Stability Region for Problem B with the
Envelope r

B
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Figure 6. Drop Formation for Problem B.
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Figure 7. The Stability Region for Problem C with the envelope r
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Figure 8. Drop Formation for Problem C

tp = 0

-!J:.. ---,r..~,,;r..----~ r

lJJ > n/2

-'----~---~r

u

-+-----~~e.--~r

Figure 9. Stable Drops of Increasing Volume

ü<tp<n/2

- .....;;...u--"--_-:b-~---.-.-U--4i-.,..---­
tp=n/2

4- _

o
lJJ>n/2

b--b~""-

t/J=O u
The arrows indicate motion of drop on wetted plate. The only

unstable drop is the third one when ~ = 0 .
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