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I. Introduction

In this article we.will discuss the axially symmetric
pendent drop as it occurs in three different physical settings:
éroblem A (the siphon}), Problem B (the medicine dropper),
Problem C (drop pendent from a horizontal plate). Our goal is
to exhibit a scheme for identifying those drops determining
stable configurationg and to show that they satisfy a strong
minimizing property for the energy. First we describe the
problems in more detail.

Problem A: The drop is suspended from a fixed circular
opening of radius r located at the level u = u where u is
the vertical coordinate with positive direction upward and u = 0
is the zero pressure level of the fluid.[See Figure 1] If X 1is
the exposed body of the fluid and Q is the liquid-air interface
with A(Q) its area, the potential energy of the configuration

is

1.1) Eq(Q) = oA(Q)} + pg | zdv

X
o is the surface tension of the ligquid-air interface, p is the
density of the fluid, and g is the gravitational constant. The
condition for equilibrium is that the first variation of the
potential enerqgy BEO(Q,N) = 0 for all normal perturbations N

of © which vanish on the boundary. The Euler equations yield

1.2) 2 H=-ku on Q, k = pg/o



H 1is the mean curvature of the surface measured so that it is
positive at the drop tip. By a suitable scaling we may allow
k = 1 ., The condition for stability is that the second variation

is positive for all non-trivial normal perturbations.
1.3)  9°Ey(2,N) > 0 for all N40,N=0 on o

Problem B: As in Problem A the fixed circular opening of
radius r 1lies in a horizontal plane but the exposed volume ls
prescribed. [See Figure 1] The condition for equilibrium is
that the first variation of the energy BEO(Q,N) = 0 for all
normal perturbations N of Q vanishing on the boundary, and

for which the first variation of the volume is zero. By the method

of Lagrange multipliers we find
1.4) a(E0+AV)(Q,N) = 0 for some X

and all normal perturbations N wvanishing on ¢ . This yields

the condition

1.5) "2 H=-ku+ X, k = pg/o .

By a vertical translation of coordinates we may take X = 0 thus
reducing (1.5) to the condition (1.2) while the vertical coordinate
of the opening is at level u = u . The condition for stability

is that

1.6) 32(30 + AV) (Q,N) > 0



for all non-trivial normal perturbations N vanishing on the

boundary and for which the first variation of the volume is zero.

Problem C: The drop is now pendent from a homogeneous

horizontal plate. [See Figure 1] The potential energy is now
1.7)  E(Q) = Eq(Q) - oB|Z|

where B is a physical constant and |Z| 1is the wetted area of
the plate. Setting the first variation equal to zero for all

volume preserving perturbations gives
al 2 H=-ku+ X for some A , k = pg/o
b) B = cos «

Here «a 1is the angle of contact of the liquid-air interface with

the horizontal plate measured interior to the fluid. Again we may
choose k = 1 and by a vertical translation of coordinates may set

A = 0 , with the horizontal plate at level u = u . Clearly i; is
necessary for |B] § 1 so that 0 $ a € 7 . There are no pendent
drops with o = m so we may consider 0 S a < n (-1 < B £ 1) . As in

Problem B the condition for stability is that
2 .
1.9) 97 (E + AV) (Q,N} > O

for all non-trivial normal perturbations for which the first

variation of the volume is zero.



There are two control variables appropriate to each of the
problems we have described. For Problem A these variables are
the radius of the circular opening r and the vertical coordinate
u of this circle, The coordinate -u is just the pressure at the
opening. We proceed to describe those value (r,u) in the control’
space which correspond to stable configurations. We also show that
any stable configuration is a minimizer for the energy functional
EO(Q) in a strong sense. We do the same form of analysis for
Problems B and C . For Problem B the control variables are (r,V)
where r in the radius of the circular opening and V is the
exposed volume. For Problem C the appropriate variables are
(@;V) where y 1is the angle of contact and V in the volume.

ﬂAn early work was that of E. Pitts [9] who was interested in
Problem B. Suppose that the radius r of the circular opening is
sufficiently small so that the soiution u =0 1is stable and let
tﬁere be given a one parameter family of symmetric pendent drops
spanning the circle and parameterized by drop height. Let V(h)
be the exposed volume. Pitts showed that if V'(h) is positive
for 0 $ h <h and is ﬁegative for h > h then the corresponding
drops are (symmetrically) stable for 0 £ h < h and unstable for
h > h ., An informative but not mathematically rigorous discussion
is to be found in the paper of E.A. Boucher, M.J.B. Evans, and
H.J. Kent [3]. Their paper includes graphs depicting the. regions
.of stability in the control domain for each of our problems.

Another approach is. found in the paper of E. Gonzales,
U. Massari, and I. Tamanini [7]. In each of the problems one
readily observes that the energy functional has no lower bound

and thus a stable pendent drop can be at best a local minimizer,



Their approach is to put a floor underneath thé apparatus and
to restrict the fluid to remain above this floor. This puts a
lower bound on the energy functional and it follows that the
.variational problem always has a solution. The difficulty is
that the minimizer might be a connected drop which contacts the
floor or might consist of two components, one pendent and one
sessile. For problem C they show that for small enough volumes
the sclution is the pendent liquid drop. It seems unlikely that
this procedure will identify all stable drops. For example, if
one takes a stable pendent drop and puts a floor at the level of
the drop tip it does not follow that we have the minimizer. It
seems to me that for drops of larger volume the minimizer would
contact the floor.

Much of the work in the present article may be found in [11]
where proofs of many of the technical results to be gquoted are

. proven. A later discussion may also be found in [12].

ITI. Description of the Profile Curves

Suitably normalized, the differential equation for the profile
curve whose surface of revolution represents the liquid-air inter-

face satisfying (1.2) with k = 1 is

a) xr'(s) = cos y r(0) =0
2.1) b) u'(s) = sin yp u(0) = uy = -2x
c) y'(s) = -(sin y/r)-u p(0) = 0 .



The set of solutions to this system has been carefully discussed
by P. Concus and R. Finn [5]. There is a unigue solution
{r(s,k), uls,x), w{s,x)} to the system satisfying the initial
conditions r(0,x) = 0, u(0,k) = =2k = uo;.w(O,K) = 0 , where «

is the curvature at the drop tip. The sclutions exist for all s

and «k being analytic in both variables. We note that u 0 is

a solution and that a reflection of any solution about the r-axis

yields another solution. Drops with ug < 0 represent pendent

drops while solutions with uy > 0 represent "emerging" bubbles.

We now list other important properties of the family.[Figure 2]

1. For "small" u, < 0 the solutions can be expressed non-
parametrically with u as a function of r over the entire r-axis

and ul(r) ~ u.Jd

0 O(r) where J_.(r) 1is the zero order Bessel function.

0

2. There is a value u6(~ -2.5678) such that the profile
curve with drop tip at uB attains a simultaneous vertical tangent
and inflection point at (r?,u?) where r# = .91 and u# z 1.1
For 0 < 1r < rq the curve is convex while for r greater than

r? the curve may again be expressed non-parametrically in terms

of r .

3. For u6 <y, < 0 the solutions may be expressed in non-

parametric form u = u(r) for all r

4. For ug < ua the profile curves attain a vertical tangent

at a point (r1,u1) where 0 < r, < r: and u, < u# . The curves



form a bulge at this point and r decreases (with increasing s )

to a value r, forming a neck at (rz,uz) where u, < o . r,
and u, are increasing functions of ug for uy < ua with
limit ry = 0 and limit u, = -=® as u, approaches -o

5. For Uy << uB the solution curves form a sequence of

bulges and necks until it crosses the r-axis with r'(s) and
u'(s) both positive. From this point the curves continue non-
parametrically u = ul(r) out to r = +» . The entire curve has

no self intersections.

6. The first inflection point on a prefile curve with tip at
u, < 0 occurs at a point (E,ﬁ) where 4 <0 . r and U are
monotonically increasing functions of u, for u, < 0 . If

U, < u6 so that the profile curve has both a neck and a bulge,
then the first inflection point lies between the first bulge and

neck.

III. Analysis of Stability

Our method for determining the stable configurations for
each of the problems proceeds as follows. Take a given profile
curve {r(s,x), u(s,k), yp(s,k)} satisfying (2.1) and let

(r,u) be a point on the curve T = r(s,x) and 1 = u(s,k)
The curve from its tip to this point generates a possible pendent

drop whose exposed volume V can be calculated.



3.1) V = volume of drop = nri{ru + 2 sin 9)

The volume gives us a forth function of the parameters (s,k) ,
V = V(s,k) . For each of the three problems two of the four
functions are prescribed. This generates a mapping from the
(s,x)-plane (the parameter space) into the appropriate two-
dimensional "control" space. The analysis of this map determines

stability in each case.

IvV. Problem A (The Siphon)

The appropriate map here is A(s,k}) defined by

. 4,1) Af(s,x) = (r(s,x),uls,x)) .

The control space is the {(r,u)-plane. One can easily check that the

derivative of A, DA(s,x}) 1is invertible when s = 0. Let (¢ be

the set of all points in the (s,x)-plane where DA(s,t) is invertible.
Definition 4.1. OS < O 1is that component of O in the parameter
space containing the line s = 0 .

Theorem 4.1.: Every point (s,k) in 0S determines a stable

- pendent drop for Problem A. (i.e. the drop generated by the profile

curve (r({s,x),u{s,ck)) 0 £ s £ S . Any point outside 0. determines

an unstable pendent drop for Problem A.



The control set A(OS) is an open set in the (r,u)-plane.
A point (f,ﬁ) determines a stablé configuration for Problem A
only if it is in this set which we now wish to describe. Note that
A(OS) is symmetric about both axes so we may restrict ourselves

to. the case r 2 0, u 2z 0 .

Theorem 4.2.: [11, p. 434]: Let &k > 0 and consider the curve

(r(s,E), u(s,E)) for s 2 0 . There 1s a smallest value sA such

that (s,k) is in OS for 0 < s < S while (SA,E} is on the

boundary of O On the interval 0 < s £ sA we have 1r'(s) = cos

S
positive so that 0 < y(s) < n/2 .

The corresponding profile curve can thus be expressed in

non-parametric form u = f(r,E) for 0 < r s rn where rA = r{sA,m)
and u, = f(rA,E). The point (rA,uA) lies on the boundary of A(OS)
and in the point conjugate to the drop tip along this curve.

Since «r'(s) 1is positive we can use r as an independent
variable rather than s ., Points (rA,uA) on the boundary of
A(OS) are determined by the condition that DK(r,E} be singular
where RA(r,x) = (r,flr,k)) with u = f(r,x) the non-parametric
fepresentation of the profile curves. This occurs when fK(r,K) =0

which means that (r,kx) is on the envelope of the family of

extremals.

Theorem 4.3.[11, p. 434]: The first envelope 'y of the family

of profile curves u = f(r,x) for «k 2 O (u0 £ U0) and r-positive,

el(r) for

is the graph of a smooth analytic function u

0 <r g oq where %q is the first positive zero of the Bessel
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funhction Jo(r) . This function has the following properties.

"
1
8

limit e(r) as r —> 0

1
o

limit e(r) as r —> o

The derivative e'(r) 1is positive on the interval 0 < r < oy
with e'(ao) = 0 and limit e'(r}) = +» as r approaches 0 .
The entire envelope is a smooth curve without self inter-

sections with a cusp at (aO,O).[Figure 3]

Consequences:

1. The map Al(s,x) 1is a diffeomorphism of OS onto its

image A(OS)

2. For (r,u) in A(Og) where r < r* the profile curve
of the corresponding stable pendent drop is convex. On the other
hand if r is near g (r < a,) and (r,a) is in A(OS) then
the profile curve will contain an inflection point so that the

corresponding pendent drop loses convexity. [Figure 3]

3. There are no "inaccessible" stable pendent drops for
Problem A. The vertical line r = r intersects A(Og) in a
connected interval. Thus the stable pendent drop corresponding
to the point (E,ﬁ) can be reached from the zero pressure
solution u = 0 corresponding to the point (r,0) in A(OS)

merely by increasing the pressure p = -u from 0 to -u

[Figure 31].
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The set of stable‘extremals for Problem A furnish a strong
minimum for the functional EO(Q) as the following theorem will
show. Take the region of stability A(OS) for Problem A symmetric
with respect to the r and u axes, and rotate it about the
h-akis generating a simply connected region Uc R . The
boundary of U resembles a vertical cylinder becomming narrow
at the ends and possessing a cuspoidal curve in the plane u =0

This region is foliated by our family of axially symmetric pendent

drops which are extremals for the functional EO(Q)

These surfaces are oriented by choosing the unit normal
vector £ to point downward at the drop tip (i.e. the outward
normal to the fluid). We rewrite the functional EO(Q) as follows.

Let P(x) satisfy div P(x) = z and set
4.1) E () = a(Q) + k[P(x) - £ dA k = pg/o .
Q

Q2 are two

From the divergence theorem it follows that if 91, 5

oriented surfaces with the same boundary then

EO(QZ) - EO(Q1) = EO(QZ) - EO(Q1)

Theorem 4.4.: Let U c R3 be a simply connected region smoothly

 foliated by extremals of the functional EO(Q) .
Let L be any leaf of the foliation and consider a domain

ZO c L with boundary BEO . Let I be any other oriented surface

'in U with the same boundary. We claim that E_. (%) 2 EO(ZO) with

0

equality only if ¥ = ZO .



- 12 -

Proof: We have a vector field defined on U by choosing

for each p € U the oriented unit normal vector £(p) to the
leaf of the foliation containing p 1 One has the formula

2H = divzg + the surface divergence of the unit normal vector
field ¢ . Making use of the fact that div P(g) = z and

g - VEE = 0 so that disz = div £, we may rewrite Euler's

equation.
4.2) div(g + k P(X)) = 0

The vector field § + k P(E) is a calibration. Let E,EO c U

with ZO < L be as in the statement of the theorem. We

calculate

EO(Z) = [(v + kP(x)) - v dA
z

where v 1s the oriented unit normal to ¢

EO(E

o) | (g0+kp(x))-g0 dA = [(E+kP(x)])-v dA
2

Lo

by (4.2) and the divergence theorem. Thus we find

4.3) Eyj(n) - Ej(zy) = {[1-(v-£)]dA 2 0

]|
-—
o
H
1
il
1

with equality iff v.g



V. Stability for Problem B (The Medicine Dropper)

The constraints are now the radius of the tube r , and
the exposed volume V . The contrel space is the (r,V)-plane
and we are led to study the map B(s,kx} from the parameter

space to the control space defined by
5.1) B(s,x) = (r(.SIK)I Vis,k})

where V is given by (3.1). As in Problem A we let O' be the
open set in the (s,k)-plane where the derivative - DB{(s,«k) is
invertible. Since B{(0,k) = (0,0) we see that the line s = 0
lies outside of O©O' .

Fix k and consider the map B(s,k) for positive s
.There exists a smallest positive value Sg such that the
derivative DB(s,k) is invertible for 0 < s < SB but singular
at SB = SB(E) . Let (rB,uB) be the corresponding point on
the profile curve where ry = r(sB,E) and uy ~ u{sB,E) . It
is a classical resﬁlt that if (E,G) is a point on the profile
curve prior to (rB,uB) then the pendent drop generated b? the
profile curve up to (r,u) is "symmetricly" stable. for Problem B.

If (r,u) is chosen to be beyond the point (rB,uB) then the

generated drop is unstable for Problem B.

Definition 5.1.: The point (rB,uB) is called the "Volume-

constrained" conjugate point on the profile curve relative to

the drop tip.



Note: The axisymmetric pendent drop is said to be symmetricly
stable if the second variation (1.6) is positive for all non-
trivial symmetric normal perturbations N of Q vanishing on
the boundary of §Q and for which the first variation of volume
is zero. If the profile curve can be expressed in the form

r = r(u) then symmetric stability implies stability [11,

p. 464]. In this case we observe that the angle of inclination
must be nonnegative. However, if the angle of inclination becomes
negatiﬁe on some portion of the profile curve (the corresponding
drop is of reentrant type) then the drop is unstable for

Problem B due to a non-symmetric perturbation. This fact was
noted by D.H. Michael and P.G. Williams [8]. For an alternative
discussion see [11].

Let O be the subset of O' consisting of all points

S
(s,x) where 0 < s < SB(K) . It follows that (s,x} determines
a stable pendent frop for Problem B if it lies in Oé and an
unstable drop if outside Oé . We now describe Oé and its
image B(Oé) in the control space. It is clear that Oé is

an open set in the parameter space and LB(Oé) is an open set

in the control space.

Theorem 5.1.: [12 ] Oé

plane bounded on the left by the line s = 0 and on the right

is a connected open set in the (s,x)-

by an analytic curve Yg which is the graph of a positive
analytic function .SB = o(k) .
Theorem 5.2.: [11 ] Let (rB,uB) be the volume-constrained

conjugate point on the profile curve (x(s,k),u{(s,x)) . At the



point (rB,uB) the derivative xg(s,E) is positive. 'The
point (rB,uB) is located between the first and second
inflection points of the curve. If the profile curve

possesses a bulge (and hence a neck) then (rB,uB) is

located above the neck. As k —> 0 the point (rB,uB)

approaches the point (a1,0) where o, is a root of the

equation r J,(r) + 2 Jé(r) = 0.[See Figure 4]

By Theorem 5.1 the curve is an analytic arc

A5
parameterized by «k . Its image B(YB) is a parameterized

curve in the (r,V)-plane and is the envelope T of the

B
family of curves (r(s,x),V(s,x)) . Thus FB can be expressed
in the form (r(x),V(k)) where r(x) = r{(o(x),k) and
V(k) = V(o(k),k) are analytic functions of « . Furthermore

limit (xr(x},Vi(k)) (0,0) as Kk —> +w

limit (r{x),V(k))

(a1,0) as k —> 0

From Theorem 5.2 a given curve B(s,E) touches the envelope
FB at a point where r'(s) 1is positive. Thus in a neighborhood
of this point we may express the curve B(s,k) in the form
vV = g(r,E) . If the envelope is smooth it would be tangent to
this family of curves and itself would have a non-parametric
representation V = G(r) . A point on the envelope of the family
V = g{r,k) 1is determined by the condition gK(r,K) = 0 'while
the condition for smoothness is gKK(r,K) + 0 . Since the
envelope FB is an ahalytic parameterized curve it will be

smooth except perhaps at isolated points where the derivatives



r'(k} and V'(x) both vanish. At such points the possibility

of a cusp arises. One such cusp occurs at (a1,0)

Conjecture. That part of the envelope FB which lies in the half

space V > 0 1is a smooth cﬁrve which may be expressed as a graph

of a function V = G(r), 0 < r < oy with G(0) = G(a1) = 0 and
G'(a1) = 0 . There is a single value r* 0 < r* < oy where
G'(r*) =0 .

Computer calculations strongly indicate that the conjecture

is true but a complete proof is lacking. [Figure 5]

If the envelope is a smooth curve then it follows that the
map B(s,k) 1is a diffeomorphism of Oé onto its image B(Oé) .
In this case any vertical line r = r in the control space would
intersect B(Oé) in a connected interval. The stable pendent drop
corresponding to (r,V) is accessible from the flat drop u = 0
corresponding to the point (r,0) through a family of stable
pendent drops of increasing volume and fixed radius:for the
aperature until a maximum volume 1is reached.

If the envelope were not smooth then the possibility arises
that the map B 1is not a diffeomrphism of Oé onto its image or
that for some r the intersection of the line r = r with the
set B(Oé) is not connected. In either case there would exist
stable pendent drops correspeonding to some (r,V) iﬁ B(Oé)

which could not be connected to (r,0) in the manner described

above.



If we follow the procedure of describing those drops
accessible from (r,0) corresponding to u = 0 through stable

drops of increasing volume, then we have the following result. .

Theorem 5.3 [11]: (a) Suppose that r s r; where

(r;,u?) is that point on the curve ru = -1 which is an

inflection point with vertical tangent for one profile curve,
(see Section II), and consider the one-parameter family of stable
pendent drops for Problem B as the volume is increased from zero.
Through an initial range of volumes 0 < V < V1(f) the profile
curves will be convex and the drops will develop a bulge. At
V1(f) the profile curve will develop an inflection point at the
édge of the drop. With increasing volume the drops lose convexity
but before the limit of stability is reached pendent drops

possessing both a neck an bulge will evolve. [See Figure 6]

(b) For r > 81 where J1(B1) = 0 the drop u = 0 1is
unstable for Problem B due to non-symmetric perturbations. For
r < 81 the drop u = 0 1is stable and with increasing volume

" the profile curves for the family of stable pendént drops will

develop an inflection point before the maximum volume is attained.

(c) For any radius r , drop height increases monotonically

throughout the range of stability.

The result (a)” of this theorem was observed by A.K. Chesters
[4] in the case of small drops with narrow necks.

We will now prove two theorems on strong minimizing properties
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of stable pendent drops for Problem B. The first theoremn
restricts comparison with other symmetric pendent drops while

the second considers general comparisons. The situation is
clarified by the example of a symmetricly stable pendent drop

of reentrant type where the angle of inclination on the profile
curve becomes negative. Such a drop might be symmetricly stable
but is always unstable with respect to general perturbations. The
theorems take their nicest form if we assume that the envelope

FB has the smoothness properties discussed earlier. If this

were not true the statements of the theorems would have to be

adjusted accordingly.

Theorem 5.4.: Let (r1,V1} be a point in the stable control

set B(Oé) for Problem B. Let I be any axially symmetric surface

whose generating curve ( 1is a rectifiable curve (r,u) = (£(t),gl(t))
0 £ t s t1 with £(0) = 0 and £f(t) positive for 0 < t = t1
and (f(t1),g(t1)) = (r1,0) so that the boundary of 7 is the

circle xr = ry in the plane u = 0 . Suppose that the curve

(£(t),vir)) 0 <t s t, in the (r,V)-plane lies inside B(Oé)

connecting (0,0} with (r1,V1) . There 1s a unique stable

curve T = r(s,K1) , u o= U(S,K1) 0 £ s ¢ S, such that

r(s1,K1)=r V(s1,K1) = V1 . Let (I(S1,K1},U(ST,K1)) = (r1,u1)

1

Let I, be the extremal surface whose generating curve C, 1is

1 77 0 s s S Sy - Thus & and I

have the same boundary and enclose the same volume. We claim that

r = r{s,k,) , u = u(s,K1) - u

1

Eqg(Z) 2 E0(81) with equality only if ¥ = I,



Proof: The proof is an application of the Weierstrass

technique for parametric integrals as presented in [2]. If the

generating curve of some surface I is (Ir(t}),u(t))

then our relevant integrals are

F(r,u,r,u)dt

=]
~
n
O3

where F(r,u,r,u) = ﬁ[2rJf2+62 + rzuﬁ]

V(Z) = [ G(r,u,r,u)dt, G(r,u,r,q) =

oO—H

0 £t sT

2 e
1T u

Consider the surface I in the statement of the theorem

with generating curve C given by (r,u) = (£(t),g(t))

0 ¢ t s t1 and assume for the moment that the curve

continuously differentiable. For 0 s t g t,

is

let V(t) be

the volume integral evaluated between 0 and t and let

T = {(£(t),g(t),V(t)), 0 £ t s t,} be the lift of C

the (r,u,V)-space. The curve connects (O,uo,O) to

into

(r1,0,V1)

and its projection into the (r,V)-plane lies inside B(Oé)

We construct a one parameter family C(E), 0 st g t1

of

generating curves for symmetric surfaces £(t) all with the

same boundary and enclosing the same volume such that

r{0) = £ and 21t1) = 21 .

For 0 < t < t , the curve ( determines a point

(t,u,V) = (£(t),g(t),v(¥)) with projection (r,V) in

'B(Oé) . There is a unique extremal r = r(s,x) , u =

0 Ss < s with r(E,E) = r, V(is,k) = V . Suppose

o~

u(g,E) = u . The generating curve C(t) is

U(S;E) ’
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A
4]
.72}
nli

r(s,k}), u = u{s,k} - ua +.u, 0

=
fl

C(t) = |

f{t), u =glt), t st st

R
I

1

C(t) is a piecewise smooth curve whose lower part is a stable
extremal replacing part of the original curve while the upper
part is unchanged. The lower portion is an extremal for the

functional E; + AV where X =14 - u is the Lagrange

multiplier. We set Eo(t) e EO[E(t)] and V(t} = v(Z(t)) , so
that
s ty ..
Eo(t) = [ F(r,u,r_,u_)ds + [ FI(f,qg,f,g)dt
5 s’ s ’
t

where in the first integral we use the functions
r = r{(s,k,A) = r(s,c), u = u(s,E,X) = u(s,E) - X, A =u - a
The key observation is that from our assumptions it follows that

.E, k and X are differentiable functions of t . We may compute

dE /dt
dE, dEO _av - - - - — -
— = — + A — = - E(r,urrs'usrf' (t),g'(t))
dt dt dt

where E 1is the Weierstrass E-function for the parametric

integral H = P + pXe!

E(r,u,r_,ug, £'(t),g' (E)

= [Hrs(r,u.f'(t).g'(t)) - Hrs(r,u,rs.us)]f'(t)

+ [H, (r,u,f'(),g' (k) - H,

(r,ﬁ,fs,ﬁs)]g'(E)
s s
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A direct calculation now gives

Eé(E) = -21r(1 - cos 6)/%'(E)2+g'(5)2

where ©® is the angle between the tangent vectors (r _,u_) and

(£'(t),g"(t)) . Therefore

ty

By (L) =By (X,)= [ 20f(t) [1-cos 8(t)1/E' (t)2+g" (t) %at
0

This formula clearly can be extended to the space of rectifiable

curves. The theorem follows directly from the formula.

For more general configurations we have the following

result.

Theorem 5.5.: Let X be a connected open set in R3 which

lies below the horizontal plane u = 0 and where X n {u = 0} is

a disk B. with center the origin and of radius «r
1

0X = B U Z where I 1is an oriented surface with boundary

1 Suppose

0L

1
0

= 9B_ . Suppose V(X) = V, . Let X* be the
1

symmetrization of X about the vertical axis, namely

T

X* n {u = u} is a disk B whose area is egual to the area

of X N {u = u} . Suppose that 3X* = B, U Z* where IL* 1is a
1

symmetric surface lying below the plane u = 0 and 23L* = Cr
1

Let the generating curve of I* be

C*¥ = {{(r,u) = (£(t),g(t)), 0 s t s t1} and suppose that the



symmetrized configuration satisfies the conditions of Theorem 5.4.

In particular we have determined an extremal curve C1 given by
r = r(s,K1), u = u(s,K1) - uy, 0 § s § sS4 with r(s1,K1) =ry .
V(S1,K1) =V, . Let I, be the surface generated by C, . We

then have V(L) = V(Z1) =V, and EO(Z) 2 EO(E1) with equality

only if ¥ = 21

Proof: The proéf follows directly from two well-known
properties concerning syﬁmetrization, namely
V(X*) = V(X) and A(I*) S A(I) with equality only if I = §*
From this latter stﬁtement we find that EO(Z*) £ Ej(Z) as well.

We now can apply Theorem 5.4.

VI. Stability for Problem C (Drop from Horizontal Plate)

The control parameters are now the angle of inclination vy

and the volume V , giving
6.1) C(s,k} = (W(ka.)rv(le))

‘for the mapping from the parameter space to the control space.

As before we let 0" be the set of all points (s,k) where the
derivative DC(s,x) is invertible. We observe that C(s,0) =

= C{(0,x) = (0,0) so‘that 0" does not meet either.of the
coordinate axes. For any k > 0 there is a value S¢ = SC(K)
such that Ci(s,k) is invertible for 0 < s < SC(K) and singular

at s = SC(K) . We let O; < 0S be the set of points (s,k)
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where k¥ > 0 and 0 < s < SC(K)

Lemma 6.1: The set Og is an open simply connected set bounded

on the left by the line s = 0 , on the bottom by «x = 0 and on

the right by a curve y, which is the graph of an analytic
function s = SC(K) where limit SC(K) is zero as « becomes
infinite.

Definition 6.1: For a given profile curve (r(s,E),u(s,E)) s 20,

the volume constrained focal point for problem C is the point

(rC,uc) on the curve where

e = r(SC(K),K), Us = u(SC(K),K)

If a profile curve is to generate a stable configuration
it is necessary that the angle of inclination ¥ be non-negative
along the segment of the profile curve generating the drop.
Otherwise the drop would intersect the face and would also fail
to be stable due to non-symmetric perturbations. This eliminates
re-entrant drops from consideration. Therefore we let 0" be the

S

set of points (E,E) in Og such that the angle of inclination
w(s,k) is positive 0 < s < s . We allow the possibility that

p(s,k) = 0

Theorem 6.1: [11] The profile curve segment corresponding to any

member of 55 generates a stable configuration for Problem C. If

(s,k) lies outside the closure of 5& then the generated drop

is unstable.
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In other words, let (rc,uc) be the volume constrained
focal point for Problem C on some curve where we suppose that
this focal point comes before the point where the angle of
inclination is zero. If (r,u) is a point on the curve prior
to (rc,uc) then the corresponding pendent drop is stable for

Problem C while if it comes after (r

C,uc) the resulting drop

’will be unstable.

Theorem 6.2 [11]): The volume constrained focal point (rc,uc) on

a given profile curve lies between the first and second inflection
points. It comes ahead of the volume constrained conjugate point
(rB,uB) for Problem B if the angle ©of inclination at (rB,uB) is

positive. The two points coincide if the angle of inclination at

(rB,uB) is zero.

We consider the set C(5§) in the control space, the

(p,V)-plane. From our definition of ©0" it follows that

=
C(0") 1lies in the first quadrant and is bounded by the axes
y =0, V=0 and I, =C(y,) . As in Problem B,‘rc is the
envelope of the family of curves (y(s,x),V(s,k)) . By Theorem 6.2

each curve of the family will touch the envelope at a point where
ws(s,K) is negative. Therefore in a neighborhood of the touching
point each of these curves may be expressed non-parametricly

V = h(y,k) . The envelope is determined by the condition

hK(w,K) = 0 . It will be a smooth curve of hKK(w,K) #+ 0 . If the
“angle y is positive then av/dy = h(v,k) =V /y, will be
hegative. Where it is smooth the envelope T will be the graph

C

of a decreasing function.
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Conjecture: That part of the envelope Fd' which lies in the
first quadrant of the (y,V)-plane is the graph of a smooth
function Vv = V{y), 0 $ ¢y s m with V'(0) = 0, V'(y) negative

for 0 < yp<mm , and V'(n) =0 .

Computer calculations support the conjecture. If true then
{as in Problem B) the map C would be a diffeomorphism of 55 onto - -
its image, and the intersection of a vertical line ¢ = @ with
ciB;) would be a connected interval. This would imply that as
we move vertically along the line y = y from (@,O) to
(@,VMaX) in the control space, we would pass through the entire
family of stable pendent drops for Problem C with ¢ = p . If
r were not smocoth then there might exist stable drops not

C
accessible by this procedure. [See Figure 7]

The following theorem identifies those stable pendent drops

which are accessible from drops of small volume.

Theorem 6.3 [11](a) For any angle of contract uy, 0 < y < m stable

drop of small volume are convex and resemble spherical caps. These
drops are generated by profile curves wheose tip is at u, where

u is increasing from -« ., At a certain positive volume v1

0
depending on 1§ , the profile curve for the drop will develop an
inflection point at its edge. This drop is stable. As the volume
ig increased, further stable pendent drops are formed and the

inflection point on the profile curve will move to its interior.

The drops have lost convexity. With increasing volume the limit

of stability will be reached before a second inflection point
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appears. With increasing volume the area of. contact of the drop
with the horizontal plate will initially increase but will start

to decrease before the limit of stability is reached.

(b) If y = 0 then all profile curves corresponding to
dr6ps of positive volume contain an inflection point. Drops of
small volume correspond to small negative values of the drop
tip, uy As U, is decreased stable pendent drops of increasing
volume are formed. The drop generated by that profile curve which
possesses a simultaneous vertical tangent and inflection point

(u0 = UB = -2.5678) is unstable for y = 0 . Computer results

indicate that the drop of maximum volume occurs with u, = -1.6

2

with V 18.4. Furthermore as the volume increases the area of

M

contact of the drop with the plate decreases monotonically.

(c) For any angle of contact drop height increases monotonically

with volume throughout the range of stability. {See Figure 8]

Remark: For example, if the angle of contact were ¢ = u/2 , it
would follow that with increasing volume and before the limit of
stability 1is reached, pendent drops containing both a neck and a

bulge will appear. [See Figure 9]

We now use the Welerstrass technique coupled with a
symmetrization argument to prove a strong minimization property
for the stable pendent drops of Problem C. We state the theorems
with the assumption that the envelope T, is smooth. This makes

the statement cleaner than it otherwise would be. Our first result

is restricted to comparisons with axially symmetric drops.
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Theorem 6.4: Let (w1,v1) be a point in -C(Gg) . By our

assumptions there 1s exactly one extremal curve (1 (s,k ),u(s,ﬁ1))

1

0 5 s $ s, such that (s,k,) € 0" for 0 < s $'s and with

1 S 1
(W(S1,K1),V(51,K1)) = (W1,V1) . Let 81 be the surface whose
generating curve C1 is {r(s,K1),u(s,K1)-u1} 0 § s ¢ 54 where
uy = U(S1,K1) . Thus £, meets the plate {u = 0} on a circle

Cr of radius r, with constant angle of contact ¥y and enclosed
1

volume Vy, - Let I be an axially symmetric comparison surface
with generating curve C : {(r,u) = (f(t),g(t)), 0 S t $ t,) with
£(0) = 0 , f£(t) positive for t > 0, (f(t1),g(t1)) = (?,U} , and
V(t1) = V1 . Suppose further that the curve (£f(t),V(t)) 0 s t s t1
lies in B(0g) and that (£(t,},V(t;)) is in the set B(DZ) . Let
Ew1(E) be the energy

6.2) E, (I) = Ey(3) - (cos y,) |G|

1

where |G| is the wetted area for the drop. We claim that

E () 2 E (X

W1 vy 1] with equallty only if I = 21

Proof: The curve (f(t),v{t)) corresponding to I lies in
B(Oé) ending up at the point (;'VT) = (f(t1),V(tTJ) € 3(65)
This point determines a unique stable pendent drep & for
Problem B with generating curve ¢ meeting the plate {(u = 0)
in a circle of radius T and enclosing volume V1 . It follows
from Theorem 5.4 that Ej(f) 2 EO(E) with equality only if
I = % . Since the wetted area is the same for both surfaces it
follows that EuJ () 2 E,_ () . It remains to show that

1. ¥

E (%) 2 E, (£,)

Ty by 1
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Now (?,V1) lies on B(5§) which means that 73 determines
a point (E,V1) in C(S"S) . Consider the family of drops as we-
move along the line V = V., in C(Gg) from y, to Y . Each
point (w,V1) determines a symmetric drop IL(y) which 1s an
extremal for Problem C. Let E,(v),V{y) = v, and [G(w)| denote
the energy, volume and wetted area respectively of the drop I(y)

Since the volume stays constant we find

dE, (y) d|G(y) |
6.3) _d—'ﬂ-— - (cos vy) ——dw— = 0 .
Now dG/dy = (2wr){dr/dy) and one can show that dr/dy 1is negative.

This gives us

6.4) dEw {(p)/dy = (cos y - cos wT)(znr)(dr/dw)
1 .

If ¥y 2z 0 and 0 £ y £ m then we find this derivative to be

positive for w > v, and negative for ¢ < Uy o Thus the

energy EW (v} has a minimum at vy which gives us I

1 1

Theorem 6.5: Let I, be the stable pendent drop for Problem C

corresponding to the point (w1,v1) in C{Bg) . Let X be an
open set in R3 lying below the plane (u = 0) with X n {u = 0}
Suppose the boundary of X , 98X = L U G where 5 1s a smooth
surface with boundary 3 = 3G . Let X* be the symmetrization
of X about the u-axis and suppose that X* satisfies the

hypotheses of Theorem 6.4. Then E_ (I} 2 E (%

" 1) with equality
1 1

only if ¥ = ¢



- 29 -

Proof: The proof is exactly as in the discussion of
Theorem 5.4. Symmetrization decreases area while preserving

the volume, wetted area, and gravitational potential.
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Figure 1: Three Different Experiments

Problem A Problem B Problem C
(the Siphon) (the Medicine (Drop from Ceiling)
Dropper)

Figure 2: Possible Drop Configurations

u u
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u u
‘f’ ,/—-—,\ . 1 1 /’—:_\ =
» I > I
_2 b ‘2.——- (r2'u2) —2 -
o (r1,u1)
_4 - _4 -4
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Figure 3.

The Envelope

r

A

-

- 31 -

Stable Configurations for Problem A.

u u " u
. 4 rr* r
1 ] /f/://‘ Ly ’k'.f1 % ﬁ; " rn ,/”"% » T
a a a
0 0
0 V1! ____//
i The case ;(“O' ¥ near “,
the envelope FA f<r; A stable pendent

u = el(r)

Stable pendent
drops are all
convex

drop which is not
convex

Figure 4. Location of Volume-constrained conjugate point

curves

~ ﬂ Py ﬁ u /(—\
| _,// T v i
u u -
T /’/” > r ! el » T
the point (rB,uB)

on various profile
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Figure 5. The Stability Region for Problem B with the
Envelope [é )

v 1\
20 A
10 4 &~ the envelope FB
= T T ' r > r
1 2 3 4 5 %
Figure 6. Drop Formation for Problem B.
u - 1 z A z
J\ r - !:r D ’r "r

NI

{
| \E

2 Al
t’,

Figure 7. The Stability Region for Problem C with the envelope T

20 4

“— the envelope FC

10
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Figure 8. Drop Formation for Problem C

p =0
Figure 9. Stable Drops of Increasing Volume
L i -~ —_ - o~ -~ =D 4 - -
O<y<m/2 A p=m/2
o = a“~ - - L — -~
v
O O )
p>n/2 p=0 .

The arrows indicate motion of drop on wetted plate. The only
unstable drop is the third one when ¢ = 0



1)
)

3)

4)

5)
6)

7)

8)

9)

- 34 -

Bibliography

F. Bashforth and J.C. Adams, "An Attempt to Test the
Theories of Capillary Action", Cambridge Univ. Press, 1883.

0. . Bolza, Lectures on the Calculus of Variations, Dover
Edition 1961.

E.A. Boucher, M.J.B. Evans and H.J. Kent, Capillary
Phenonema, II, Equilibrium and Stability of Rotationally

Symmetric Fluid Bodies, Proc. Roy. Soc. London, Series A
349 (1976) 81-100.

A.K. Chesters, An Analytical Solution for the Profile and
Volume of a Small Drop of Bubbles Symmetrical about a
Vertical Axis, J. Fluid Mechanics, 81 Part 4 (1977)
609-624. ' '

P. Concus and R. Finn, The Shape of a Pendent Liquid Drop,
Philos. Trans. Roy. Soc. London, Ser A, 292 (1979) 207-223.

R. Finn, Equilibrium Capillary Surfaces. Springer Veflag
1986.

E. Gonzales, U. Massari, and I. Tamanini, Existence and

Regularity for the Problem of a Pendent Liquid Drop,
Pacific J. Math. 88 (1980} 399-420.

D.H. Michael and P.G. Williams, The Equilibrium and Stability

of Axisymmetric Pendent Drops, Proc. Roy. Soc. London A,
351 (1976) 117-128.

E. Pitts, The Stability of Pendent Liquid Drops, Part 2,
Axial Symmetry, J. Fluid Mech., 63 Part 3 (1974) 487-508.




- 35 -~

10) D.W. Thomson, On Growth and Form, Zﬂg Edition Cambridge

Univ. Press, 1973.

11) H.C. Wente, The Stability of the Axially Symmetric Pendent
Drop, Pac. J. Math., Vol 88, No. 2 (1980) 421-470.

12) H.C. Wente, The Stability of the Axially Symmetric Pendent

Drop, Proceeding of 2§Q Int. Conference on Drops and

Bubbles, {(1984) N.A.S.A.




