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The main goal of this paper is to prove the following result.

Theorem Let M be a compact Riemannian manifold of the negative curvature -1. If n =
dim M > 6, then the volume Vol(M) and the injectivity radius (M) satisfy

i(M) > Co(Vol(a))~(1+35)

One can deduce a weaker exponential estimate (M) > exp (—C;,Vol( M )) from the
argument of Gromov [3]. This exponential decay estimate remains true with the same proof
if the curvature of M is bounded between two negative constants. We emphasize that our
proof of the theorem above is valid only for hyperbolic manifolds (of constant curvature). It
remains an appealing question to know if the polynomial estimate of the theorem is stiil true
for manifolds of variable curvature.

The method of the proof relies on the precise estimate for volumes of so-called Margulis
tubes, which constitute the “thin” part of a hyperbolic manifold. We show that as the length
of the core geodesic decreases, all the widthes in orthogonal directions grow up so that one
can estimate the (n — 1)-volume of all orthogonal sections. It is interesting that the crucial
for our argument property of the geodesic flow in hyperbolic manifolds is that one can control
the divergence of geodesics from above, whereas in the volume-diameter theorem of Gromov
[3] one needs a divergence estimate from below. ‘

I would like to gratify S. Wang for many useful discussions, and F. Hirzebruch for the
hospitality in Max-Planck-Institut fiir Mathematik in Bonn.

1. Volume computations for Margulis tubes

We recall some now standard facts from the geometry of negatively curved manifolds. Let
M be a compact manifold whose curvature satisfies —1 < K(M) < 0. Fix the Margulis
constant &, and some ¢ < &, . Then the “thin” part of the manifold A/, ie. {z]iz(M) < e}
is a disjoint union of full tori, say ), , which are constructed as follows. There exists a
closed geodesic, say 7, , in O, , which is covered by some geodesic line in M . Next, for
some deck transformation ¢, of A , which leaves v, invariant, one defines a tube O, by
{y € M, dist (v, psy) <e for some s} . Then the Margulis tube O, is by definition the
quotient of (5,, under the action of the cyclic group generated by ¢, .

We will adopt some notational conventions. We will call the length of the cone closed

geodesic v, = 7,/{¢})'} the period of the Margulis tube and denote it {, . Next, if 2 € 7,
and Z € T, M such that Z is orthogonal to ¥,(z) , we issue a geodesic from z along Z



and measure its part up to the first intersection with 00O, . This length is called the width of
O, and denoted w,(z,Z) . The crucial observation is contained in the following lemma.

Lemma 1 The width and the period of a Margulis tube in M satisfy the relation
expwp(z,Z) > Cn,clﬁ? '

forall 2,72 .

Proof: Let ( is the geodesic issued from z at the direction Z and let ¢ of the first inter-
section of ¢ with 90, . We lift z,(,¢ to M and denote these 3.(,q . Since g € Bép,
we have distﬂ;!((j, rp;r.‘j) > ¢ forall s € Z. Let & be the (orthogonal) operator of the
parallel transport from 7.M to T, ()M along ¢ . Define A : T;M — T:M to be
A= ®1opp, . Weclaim disty (§,¢57) < Coexpwp(z,Z) - (s, + p(Z,A°Z)) , where
p stands for~the spherical distance in the unit sphere of T;M . Indeed, ;g lies on the
geodesic ¢p( , whose initial point 7z is at the distance s/, from Z and the tangent
vector is at the distance p(Z, A°Z) from the parallel transport of the tangent vector to
E . Next, fix some N > 1 and suppose for a moment that » is odd, so (n—1) is
even. Then A is a direct sum of ’-’-5—1 rotations in planes, say by some angles 6; . It

follows immediately that for some s < N one gets p(Z,A*Z) < C‘n(ﬁy)E , so for
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such s, disty (§,95¢) < Cnexp wp(z,Z)(Nlp+ C;,(?lv)_:") . Now we wish to mini-

mize the expressioin in brackets, varying V. The elementary derivative computation gives
! 2. " "e 2

min (NIP-E-C',,(%r)"“) < ClIFF . So € < min dist 5 (¢, 959) < C, expup(z, Z)*

and, finally, expwy(z,Z) > Cn,gl;% as desired. Next, for n even ( n — 1 odd) the oper-
ator A is a direct sum of rotations and + identity in R! and the argument goes as above,
completing the proof.

From now on we assume M to be hyperbolic , ie. K(M) = —1 . For Zz in %,

let Hp(z) be the totally geodesic hyperplane containing 2 and orthogonal to 4, . We

have Voln_l(ﬂ’p(z)ﬂ@p) > Cypminexp((n — 2)wp(z,Z)) . So by the lemma 1 we
F4
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,,,Elp n+1 and if n > 6 , then [, >

C;:’E(Vol((’)p))"(HTB:?) > C:’E(VOI(M))_(Hﬁ) . Now we take ¢ = €, then (M) =
m}jn I, by the properties of Margulis tubes (see [8], for example), and the theorem follows.

2. Applications and Discussion

The theorem above combined with the Cheeger finiteness results implies for hyperbolic
manifolds in dimensions > 6 the finiteness theorem of Gromov [3]: there are no more
than a finite number of differential structures of compact manifolds, admitting a hyperbolic
metric with the volume bounded from above by a constant V. Moreover, it is immediate to
show the existence of a simplicial complex, homotopically equivalent to A with no more
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than C‘n(\"ol(M))Q:—sn vertices, so the Betti numbers b(Af) satisfy the polynomial by

l'lg:tﬂ
Vol(M) estimate bp(M) < Cp 1 (Vol(M ))2"-*5 * A stronger growth estimate was stated in
Gromov [4], see Ballmann, Gromov and Schroeder [1] for a proof.

2



We already have mentioned that the proof given above uses very essentially the hyperbolicity
of M. For manifolds with the negative curvature bounded as —K < K(M) < -k <0, one
derives an estimate Vol(Op) > Cy 1 r|logly| instead of our lemma 1, using the argument
of Gromov [3]. This gives an exponential by Vol(M) decay of (M) . We do not know
to which extent the dimension restriction (n > 6) is important. One could expect that for
n > 4 the polynomial by Vol(A{) estimate for (M) still holds. Of course, this completely
breaks down for n = 3.

Finally, we wish to specify the relation of the volume estimates of Margulis tubes to
the isoperimetrical inequalities in M. Recall that the classical isoperimetrical inequality
Vola(D) < Cu(Voln—-1(8D))™ ™1 holds for domains in the hyperbolic -space. Here
C, can be made the standard “euclidean” constant for n = 2,3,4 (see [2], [5] and [7]).
Next, in compact hyperbolic manifolds M, the linear isoperimetrical inequality Vol(D) <
C,, Vol,—1(dD) holds by Schoen {8]. Moreover, the classical isoperimetrical inequality
holds for n > 4 . The proof is parallel to {8] and uses the diameter-volume inequality of
Gromov. But. for the three-dimensional hyperbolic manifoolds the classical isoperimetrical
inequality breaks down (yet the linear one is still true), and the counterexamples are provided
by Margulis tubes. We refer to [6] for the topological consequences of these inequalities.
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