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The volume and the injectivity radius of a hyperbolic manifold

Alexander Reznikov

The main goal of this paper is to prove the following result

Theorem Let !vI be a compact Riemannian manifold 0/ the negative curvature -1. I/ 11 ­

dinl M ~ 6 , then the valume Vol(M) and the injectivity radius i(M) satisfy

i( lvI) ~ Cn (Vol( lVl))-(1+ n~r.)

One can deduce a weaker exponential estimate i(NI) ~ exp ( -C;I\Tol(A1)) from the
argument of Gromov [3]. TItis exponential decay estimate remains true with the same praaf
if the curvature of lVI is bounded hetween two negative constants. We emphasize that our
proof of the theorem above is valid onJy for hyperbolic manifolds (of constant curvature). It
remains an appealing question to know if the polynomial estimate of the theorem is still true
for manifolds of variable curvature.

The method of the proof reHes on the precise estimate for valurnes of so-called Margulis

tubes~ which constitute the "thinu part of a hyperbolic manifold. We show that as the length

of the core geodesic decreases, a11 the widthes in orthogonal directions grow up so that one
can estimate the (n - 1) -volume of all orthogonal sections. It is interesting that the crueial

for our argument property of the geodesic flow in hyperbolic manifolds is that one ean control

the divergence of geodesics from above, whereas in the volume-diameter theorem of Gromov
[3] one needs a divergence estimate from below.

I would like to gratify S. Wang for many useful discussions, and F. Hirzebruch for the
hospitality in Max-Planck-Institut für Mathematik in Bonn.

1. Volume computations for Margulis tubes

We recall same now standard facts from the geometry of negatively curved manifolds. Let

!vI be a compact manifold whose curvature satisfies -1 ::; ]((Al) ::; 0 . Fix the Margulis

constant Cn and some C < Cu . Then the "thin" part of the manifold A1, i.e. {xlix (A1) < c}

is a disjoint union of full tori, say Op , which are constructed as follows. There exists a
closed geodesie, say lP 1 in CJp 1 which is covered by some geodesie line in NI . Next, for
some deck transfonnation <Pp of A~I 1 which leaves fP invariant, one defines a tuhe Op by

{Y E NI, dist.i.t (y, <p~Y) < € for SOHle S} . Then the Margulis tuhe CJp is by definition the

quotient of Op under the action of the cyclic group generated by tpp .

We will adopt some notational conventions. We will call the length of the cone closed

geodesic IP = 1p/ {<p~n} the period of the Margulis tube and denote it lp . Next, if Z E lP

and Z E TzM such that Z is orthogonal to 1'p(z) , we issue a geodesie from z along Z



and measure its part up to the first interseetion with 80p . This length is called the width of

Op and denoted wp(z, Z) . The erueial observation is eontained in the following lemma.

Lemma 1 The width and the period 0/ a Margulis tube in IvI satisfy the relation

tor all z, Z .

Proof: Let ( is the geodesic issued from z at the direetion Z and let q of the first inter­
section of ( with aop . We lift z, (, q to A~I and denote these z, (, ij . Sinee ij E 80p ,

we have distAl (ij, rp~ij) ;;::: E for a11 s E Z . Let <I> be the (orthogonal) operator of the
parallel transport from TzA1 to Tlpp(z)1'1 along ( . Define A : Tzl'1 ~ TzA1 to be

A = <1>-1 0 I.{Jp* . We claim dist1\1 (ql rp~q) ::; Cn exp 1Up( Z, Z) . (sip + p(Zl A S Z)) , where
p stands for ...tbe spherieal distance in the unit sphere of TzA1 . Indeed, l.{J~q lies on the

geodesie rp~( , whose initial point I.{J~Z is at the distance si]) from z and the tangent
veetor is at the distance p(Z, A S Z) from the parallel transport of the tangent veetor to
( . Next, fix some lV ;;::: 1 and suppose for a moment that 'n is odd, so (n - 1) is
even. Then A is a direct surn of ~ rotations in planes, say by some an~les Bi . It

follows immediately that for same s ::; lV one gets p( Z, AS Z) ::; C:1 ( fr)n :.. , so for

such s, distAl (q, rp~q) ::; Cn exp wp ( z, Z) (Nlp + C;I (-#) n ~l) . Now we wish to mini­

mize tbe expressioin in braekets, varying N. Tbe elementary derivative eomputation gives

(

I ( 1 ) _1: ) 11 1: ( ;;\ 111 2n1in lVlp+Cn N n-l ~ Culn:tT . So € ~ ll1indistA7f ij,rp~qJ ::; C r1 expwp(z,Z)I~N s
-1:

and, finally, exp lUp ( Z, Z) ;::: Cn,eZ;+i as desired. Next, for n even ( n - 1 odd) the oper-

ator A is a direct sum of rotations and ± identity in R1 and the argument goes as above,
eompleting the proof.

From now on we assume !vI to be hyperbolic ,i.e. 1«(!vI) - -1 . For z in 7p
let Hp ( z) be the totally geodesic hyperplane containing Z and orthogonal to 1p . We

have Voln- 1 (Hp(z) n Op) ;::: Cu n~ll exp ((n - 2)Wp(Zl Z)) . So by the lemma 1 we

( )

U-2

get Vol(Op) ;;::: Cnlp Cn,e' l; n~l = C:11elp :~~ and if n ;::: 6 , then lp ~

C~,e(Vol(Op))-(l+n~lI) ;;::: C~,e(Vol(AI))-(1+n~lI) . Now we take E: = ~ , then i(J'vJ) =

min lp by the properties of Margulis tubes (see [8], for example), and the theorem follows.
p

2. Applications and Discussion

The theorem above combined with the Cheeger finiteness results implies for hyperbolic

manifolds in dimensions 2:: 6 the finiteness theorem of Gromov [3]: there are no more
than a finite number of differential structures of compact manifolds, admitting a hyperbolic
metric with the volume bounded frorn above by a constant V. Moreover, it is immediate to
show the existence of a simplicial complex, homotopically equivalent to AI with no more

~
than Cn (\Tol(M)) n-5 vertices, so the Betti numbers bk(~I) satisfy the polynomial by

]n1:±n k
Vol(~1) estimate bk ( M) ::; Cn ,k(Vol(!vI)) n-11' • A stronger growth estimate was stated in
Gromov [4], see Ballmann, Gromov and Schroeder [1] for a proof.
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We already have mentioned that the proof given above uses very essentially the hyperbolicity

of !v!, For manifolds with the negative curvature bounded as -I( ::; /((11;1) ::; -k < 0 , one

derives an estimate Vol(Op) ~ Cn,k,Kllog lpl instead of our lemma 1, using the argument

of Gromov [3]. This gives an exponential by Vol(.i\t1) decay of i(/t.1) . We do not know

to which exteot the dimension restrietion (n ~ 6) is important. One could expect that for

n ~ 4 the polynomial by Vol(A1) estimate for i(1'1) still holds. Of course, this completely

breaks down for n :::: 3.

Finally, we wish to specify the relation of the volume estimates of Margulis tubes to

the isoperimetrical inequalities in M. Recall that the classical isoperimetrical inequality
Voln(D) ::; Cn(VOln_l(8D))n/(n-l) holds for domains in the hyperbolic n-space. Here

Cn can be made the standard "euelidean" constant for n = 2,3,4 (see [2], [5] aod [7]).

Next, in eompaet hyperbolie manifolds !vI, the linear isoperimetrieal inequality Vol( D) ::;
C~ VOln-l (aD) holds by Sehoen [8]. Moreover, the classical isoperimetrieal inequality

holds for 11 ~ 4 . Tbe proof is parallel to [8] and uses the diameter-volume inequality of

Gromov. But. for the three-dimensional hyperbolie manifoolds the classical isoperimetrieal

inequality breaks down (yet the linear one is still true), aod the eounterexamples are provided

by Margulis tubes. We refer to [6] for the topological eonsequenees of these inequalities.
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