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§ 0. INTRODUCTION

Moduli spaces of stable vector bundles on algebraic surfaces have been de-
scribed by several authors.(See § 1 for the definition of stable bundles). Vec-
tor bundles on rational surfaces({Ba},[Hu},[D,P]), ruled surfaces([Br],[Q1]),
K3 surfaces([Mul,2},[Ty1,2]), elliptic surfaces({[F,M1,2],[F],[0,V]) and some
surfaces of general type([Bh],[D,K],[Huy],{Z]) have been studied. In this pa-
per we want to study the moduli spaces of stable bundles on Enriques sur-
faces. Every Enriques surface has a K3 surface as a universal covering space.
Mukai([Mul}) showed that the moduli space of stable vector bundles on a
K3 surfaces has a symplectic structure. We will describe the moduli spaces
of stable bundles on Enriques surfaces with relation to those on the corre-
sponding K3 surfaces. '

Theorem 1:(1); The image of the moduli space of stable bundles
on an Enriques surface by pull back map is a Lagrangian subvariety,
exactly the fixed locus of the induced involution, in the moduli
space of stable bundles, which is a symplectic manifold, on the
covering K3 surface.

(2); The singularities in the moduli space of an Enriques surface
are the direct images of finitely many union of the moduli spaces
of stable bundles on the K3 surface and the dimension of singular
locus is at most (1/2)(dimM + 3)(big codimensional singularty),
where M is the moduli space of stable bundles on the Enriques
surface.

(3); The pull back map is two to one from the smooth locus of
M to the moduli space of stable bundles on the K3 surface, with
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no branch points.

We studied also some 2 dimensional components in the moduli spaces
of vector bundles of even rank as the first exceptional case to the theorem
1. These are just the anologues of Mukai’s result that if the moduli space
of stable bundles on a K3 surface is of dimension two and compact, then
it is also a K3 surface isogeneous to the original K3 surface(See § 2 for the
definition of isogeny). In our Enriques surfaces, we have

Thorem2:If the 2 dimensional component of the moduli space
of stable bundles of even rank on an Enriques surface is compact,
then it is an Enriques surface isogeneous to the original Enriques
surface.

Furthermore we could find a relation involving 4 surfaces(2 K3 surfaces
and 2 Enriques surfaces).

Next we considered another exceptional case, exceptional bundles which
are simple and rigid(See §3, for definition.) Exceptional bundles have been
widely studied by several people. The condition of the existence of excep-
tional bundles on rational surfaces([D,P],[Ru])}, K3 surfaces([Kul}), Enriques
surfaces([D,R]) and surfaces of general type([Ty]) have been determined. Ex-
ceptional bundles are very important in particular on K3 surfaces and En-
riques surfaces. However, on Enriques surfaces, exceptional bundles of even
rank play important roles. On K3 surfaces Kuleshov proved that there ex-
ists an exceptional bundle for every possible case(realizing any exceptional
vector, see chapter IV) for any K3 surface. However there is some differ-
ence between K3 and Enriques surfaces. We showed that there exists an
exceptional bundle of rank 2 if and only if X has a.smooth rational curve.
We also related the exceptional bundles with a nodal cycle(a tree of rational
curves)([Kil]). Here we extend this result to any exceptional bundle of even
rank as follows.

Theorem 3:There exists an exceptional bundle E of rank 2k with



E=E(K) if and only if det(E)=N+2L+kK, where N is a nodal cycle
and L is any divisor and K is the canonical divisor. In particular,
there exists an exceptional bundle E with E=E(K) of even rank if
and only if X has a smooth rational curve.

For odd rank case we could generalize the case of rank one case as follows.

Theorem 4:There exists an exceptional bundle of odd rank on
any Enriques surface for every possible Chern Classes of excep-
tional bundle.

For the existence of stable bundles on algebraic surfaces, there are many
results, for example, on P?([D,P]), elliptic surfaces([Fr],[L,0]), K3 surfaces

([Mu2],[Ty1],[Ku2]) and surfaces of general type.([Do],[Gi]) Some of them
are on rank two bundles, while others are on bundles of any rank. On rank
two bundles on Enriques surfaces, we described not only the structure of
the moduli space but also the existence.([Ki2]) On Enriques surfaces there
exists a stable bundle of rank 2 for every possible Chern classes of stable
bundles. For bundles of arbitrary rank we could find a sufficient condition of
the existence of stable bundles, following the methods of Kuleshov([Ku2].)

The contents of this paper will be covered as follows. In chapter one we
will cover some preliminaries on Enriques surfaces,stable bundles and some
known results and in chapter two we will discuss about the general structure
of the moduli space of stable bundles and in the following two chapters we
study two exceptional cases, 2-dimensional component of the moduli space
of bundles of even rank and exceptional bundles respectively. In the final

chapter we will study a sufficient condition of the existence of the stable
bundles.

This paper is based on some part of my thesis, where we proved a weaker
form of theorem 1 and theorem 3 for rank 2, and has been improved during
the stay at Bayreuth University and Max-Planck-Institut in Bonn. [ thank
to Professor [.Dolgachev for suggesting this problem and guiding and to
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two institutions for good hospitality with financial support. Takemoto’s old
result was very important to our work, which I did not notice before. I
thank Professor C.Okonek for indicating that paper to me and for some
other helpful discussions. 1 thank Professors, Ono and Borovoi for a lemma
in chapter 2 and D. Huybrecht for a good comment in the proof of theorem
1 and constant discussions.



§ LPRELIMINARIES

1:An Enriques surface X .is an algebraic surface whose canonical divisor
Kx isnot 0, but 2Kx = 0. '

2:Every ‘Enriques surface has an elliptic structure. It has exactly two
multiple fibres of multiplicity 2 ,say them F4, Fg. Then the canonical divisor
can be expressed as a difference of two multiple fibres, that is, Kx = F4— Fpg.

3. The fundamental group of an Enriques surafce is Z,, so that the
universal covering space is a K3 surface. Let the quotient map be n. That is
an etale covering with respect to Kx. So, 1.(Ox) = Ox®Kx, 7*(Kx) = Ox

4. An Enriques surface X is called nodal if there exists a smooth rational
curve R. (In this case R?=-2.) Otherwise it is called unnodal. In the 10
dimensional moduli space of Enriques surfaces, a generic one is unnodal,
while the nodal ones form a 9 dimensional subspace.

5. A nodal cycle N on an Enriques, or K3 surface is a positive 1-cycle
such that A'(On) = 0. This is a tree of smooth rational curves.([Ar})

6. We define the slope of E with respect to some ample divisor H, denoted
by ug(E), as (¢;(E) - H)/rank(E). A vector bundle E is called H(-semi)-
stable if for every subsheaf F, with 0 < rank(F) < rank(E), py(F) <
(L)uu(E). There exists a moduli space of stable vector bundles which is
quasi-projective. -

From now on we fix the notations.

X is an Enriques surface and its universal covering space which is a K3
surface is denoted by X and the quotient map from X to X is 7. Let
Mx g(r,c1,c2) be the moduli space of stable vector bundles with respect
to H, where r is the rank of the bundles and ¢; is the i-th Chern class. Let
also Mz ,.;(r,c1,¢;) be the moduli space of stable vector bundles with re-
spect to #* H with rank r, Chern classes ¢;. We denote i to be the involution
on X compatible to 7 and i*, the induced involution on My



§ II. GENERAL STRUCTURE THEOREM

Here we interpret the results of Takemoto[Ta] in our Enriques surface X
and the covering K3 surface X.

Theorem[Ta): (1); if a 7*H-stable bundle F on X is not isomor-
phic to 7"E for any bundle E on X, then 7.(F) is H-stable. If F is
n* H-semi-stable, then =, F is H-semi-stable.

(2);If a simple bundle E on X is isomorphic to E{K), then there
exists a simple bundle F on X such that =,(F) = E.

Next we introduce the result of Mukai on the moduli spaces of stable
bundles on K3 surfaces.

Theorem[Mul):The moduli space M of stable bundles on a K3
surface S is smooth and there is a line bundle L = Oy and a skew-
symmetric bilinear form B : TM x TM — L such that B ® k([F]) is
nondegenerate and canonically isomorphic to the natural pairing
- EztY(F,F) x Ezt!(F,F) — Ezt(F, F) for any stable bundle F.

Let us begin with a lemma.

Lemma: Let X be an Enriques surface and X, be the universal
covering space of X and F be a simple vector bundle on X such
that F = :*F. Then there exists a bundle E on X such that =*E = F.

Proof: It suffices to prove that there exists a map f: F to F, over invo-
lution such that f? = id. For a given isomorphism h : F — i*F, let g be a
composition of h followed by the natural map j : :*F — F. Then g is a map
from F to F over involution and g? = AJd for some A # 0 in C. Then let { be
(A)~'/%g. Then f satisfies the required property. O

Remark: This can be generalized to any bundle F whose endomorphism
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is M, (C), where r is the rank of E.

Before going into the main theorems, we recall the formular for the di-
mension of M = Mx(r,¢;,¢2), the moduli space of stable bundles on an
Enriques surface X, and the dimension of the tangent space TgM at E € M.

DimgM > 2rc; — (r — 1)ed — 2 411

DimTgM = 2rc; — (r — 1)c2 — r* + 1 + h*(EndE).

Here h*(EndE) = 0 if E # E(K) and ! if E = E(K). This comes from the
fact that for any non-trivial homomorphism between two stable bundles with
the same slope is an isomophism. ([O,S,5]) We mean the smallest possible
dimension of M by the expected dimension of M.

Then we state our first main result.

Theorem 1: Let X be a K3 surface which is a universal covering
space of an Enriques surface X and My, (Myx) be a moduli space of
stable vector bundles on X(X) (See the fixed notation in § I).

(1);Then My is singular at E if and only if E = E(K) except the
case that E belongs to a 0-dimensional component (exceptional
bundle) or a two dimensional component, where every bundle E
satisfies that £ = E(K). The singular locus of My = Uvr.(M%‘), a
union of the direct images of 7 of finitely many different M%< on X,
where M3 = (F € Mx|F # i"F) and its dimension is < (1/2)(dimMx +
3). So, Mx is generically smooth. In particular, if rank is odd, it
is everywhere smooth, and if rank=2 then it can have only finitely
many isolated singular points.

(2):The pul! back map r* from M% to Mx is two to one with no
branch, where M} = (E € Mx|E # E(K)). Explicitly *E = n*(E(K))

(3):The image of M} by r* is a Lagrangian subvariety in My and
is equal to the fixed locus by involution :*.

Proof of (1): If E is a singular point in My then E =E(K), so that
E=n,F for some stable bundle F on X.([Ta],or §1) So, the rank is an even
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number, 2k. Then 7n*E = F @ :*. Let the Chern polynomial of F be
1+ ¢;(F)t 4 c3(F)t2. Then, that of i*F is 1 + (i*¢;(F))t + ¢;(F)t?. So,

7' (E) = a(F) +i*a (F),

2e2(E) = 7 cy(E) = i (F) - i*¢) (F) + 2¢,(F).

a(F)-m*H = i*¢;(F) 7" H since #*H = 1*(n* H). This implies that (¢;(F)—
i*¢;(F))? <0 by Hodge Index theorem (equality holds if and only if ¢;(F) =
i*¢)(F). Here we can find a relation between the dimensions of Mx(r =
2k, c|(E), c2(E)), and Mx(k, c1(F), c,(F)).

dimMy = 4key(E) — (2k — 1)E(E) — 4k* + 1

= 4k((1/2)(e1(F) - " e1(F))) = (2k = 1)(e{(F) + c1(F) - " ei(F)) — (4k* - 1)
= 4kcy(F) — (2k ~ 2)3(F) — (4k* - 1)
= 2(2key(F) — (k= 1)E(F) — 2k + 2) + (au(F) - i"e, (F) = &(F)) - 3.

(Here dimMyx is the expected dimension. For the dimension of the compo-
nent,where E=E(K), we must add by 1.) However we know that

(a(F) i"a(F) = ci(F)) 2 0
,where the equality holds if and only if ¢; = 1*¢;. So we can conclude that
DlmMy(k, CI(F)s CZ(F)) S (1/2)((12me(2’€, CI(E)u CQ(E)) + 3)7

where the equality holds if and only if ¢; = t*¢;. (Or dimM5 < (1/2)(dimMx+
2), equality holds if and only if ¢(F) = t*¢;(F) for the component where
From the above formular, we see that ¢;(F)*—c;(F)1*¢;(F) > —dimMx—
3 = B, so that,
2B < ((F) =" (F))* <0.

So, there can be only finitely many numbers for (c;(F) — i*¢,(F))? and for
a fixed value there can be only finitely many choices for ¢;(F) since (r*H)*
is a negative definite lattice. However 7, F is stable if and only if F # *F.
So the singular locus of My is a finitely many union of direct images of M%—.
Here the map 7, from these M5 to the singular locus of My is 2 to 1 with
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no branch. In fact 7, (F) = 7.(G) implies that #*(7.(F)) = #*(7.(G)). This
means that F@1"F =G @ 1*G. So, :

Hom(F,G) ® Hom(F,i*G) ® Hom(i"F,G) ® Hom(i*F,i*G)

= Hom(F&®i"F,G®:"G) #0.

So this forces that F = G, or F =1*G.

Soitis 2to1and 1 to 1 if and only if F=:*F. However in this case 7, F
is not stable( splitting). The singular locus is of even dimension and smooth
in itself. If the rank is odd, then M is everywhere smooth.

Conversely, if E =E(K), then E=n.F for some F on X. If E is a smooth
point in M, then E=E(K) everywhere in the component M containing E.
Then M is a finite union of the direct images of some components of My
with possibly different Chern classes. Among them one (and exactly one)
has the same dimension as M, call M, since M is irreducible. From the
previous formular, we get

dimM = dimM < (1/2)(dimM + 2).

(Note that E=E(K) in M). So, the possible dimension of M is 0 or 2. If
dimM=2, then for F in M, ¢,(F) = t*¢;(F) and if dimM=0, M has a unique
bundle E and M has a unique bundle F such that ¢;(F)? = ¢;(F)-i*c;(F)~2.
If rank is 2, then the singular locus is the direct images of finitely many
different line bundles. This completes the proof of (1). O

Remark 1: In fact the singularity of Myx(2k, ¢;,¢;) is closely related to
the singularity of the curves in the linear system of ¢, (the splitting behaviour
of the divisor of #*(¢;) on X.)

Remark 2: There can be 3 different types of components in My, (1) a
-component M which has the expected dimension and is smooth everywhere,
(2) a component M which has the expected dimension, but has some sin-
gularity, (3) a component M which has the dimension one bigger than the
expected dimension (must be smooth everywhere). The singularity can exist
only in the second type. The components with codimension one singularity
(of only the second type) can intersect with each other. These things can
happen only if dimM=1,3 or 5. :



Example 1: The simplest example of My with some singularities is
My (2, F4,1), where F4 is a half fibre. Then Mx(2, F4,1) = Fp, another half
fibre. If Fpg is singular with an ordinary double point,then the inverse image
of Fj is a union of two smooth rational curves Ry, R; = i*(R;)(A; type).
Then the bundle E corresponding to the singularity is just 7.O5(R;)(orRy).
Note that det(m.Ox(R1)) = Fs+ K = F,.

Example 2: We can find many examples of the moduli space M of
dimension three whose singularity is an Enriques surface. We can find a
moduli space Mx(k, c;,cz) such that ¢ = ¢; - t"¢; — 2(this holds if and only
if ¢, = N+ M, where N is a nodal cycle with N-:*N =0 and M is a divisor
fixed by involution. See §7V Exceptional bundles.) and dim M5=2. There
are many examples with these conditions. Then My is a K3 surface and
the dimesion of the corresponding My is 3 and the singular locus is just the
quotient of that K3 surface with no fixed point, so that it is an Enriques
surface. In fact there is no bundle E fixed by involution in M5 since ¢;(E)
is not invariant by involution (since N is a nodal cycle and N # :*N.)

Example 3: If we choose M5(k, ¢, ¢;) of dimension 4 with ¢; = 1*¢,(there
are many choices with odd k), then the image of M%— by =, is the singular
locus of 4 dimension in the 5 dimensional space, Mx.

Proof of (2) First we show that if E is H-stable and is not isomorphic
to E(K), then n*E is n*H-stable. From the fact that

H°(Endr"E) = H(EndE) @ H(EndE)(K)) = C,

n*E is simple. 7" FE is also a direct sum of stable bundles with the same
slope (since the pull back of an Einstein-Hermitian bundle is still Einstein-
Hermitian and an Einsten-Hermitian bundle is a direct sum of stable bundles
with the same slope.) From these two facts #* E must be 7*H-stable. From
the above equation we conclude also that if E is isomorphic to E(K), then 7*E
is not simple, just a direct sum of stable bundles. (In fact 7*E = F@1i"F, for
some F such that 7.F = E.([Ta])) So, . is well defined from M% = (E|E €
Mx,E # E(K)) to Mz. MY is the same as the smooth locus of My except
two cases as we saw in the proof of (1). Next we show that 7* is 2 to 1 with

10



no branch. If 7*E = n*E’, then H°(n*(E* ® E')) # 0. However,
HO(«"(E* ® E')) = H°(E" @ E') @ HY(E* @ E'(K)).

So, either HY(E*®E') # 0, or H°(E*® E'(K)) # 0. The property of stability
implies £ = E', or E = E'(K). So, the map 7 is 2 to 1 with no branch. O

Remark: (a) 7" restricted to M%(2k,D,c;) or M} (2k,D + K,c,) is
still 2 to 1 with no branch. In general, Mx(2k, D,¢;) is not isomorphic
to Mx(2k,D + K,c;). For example, Mx(2, F4,1) = Fp is not isomorphic
to Mx(2,Fg,1) = F4. If an exceptional bundle E of even rani exists for
det(E)=D, then there is no exceptional bundle for det=D+K (See §/V :
Exceptional bundles.) The same is true for two dimensional component of
vector bundles of even rank.(See § III: Enriques surfaces as moduli spaces.)

(b)However, 7, restricted to Mx(2k +1,D,¢;) or Mx(2k+1,D + K, ¢;)
is 1 to 1, so that Mx(2k + 1, D,c;)(= Mx(2k +1,D + K, c,)) is isomorphic
to its image.

Proof of (3) First we show that the dimension of M%(r,¢;, c,) is half of
the dimension of M5(r,7%¢c;, 7%¢y).

DimMyg = 2rnc; — (r = 1)(7%c;)? — 2r% + 2

=2(2rc; — (r — 1) — r? + 1) = 2dimM5.

Next we show that the pull back «f the holomorphic two form w on My to My
vanisches. The proof comes easily from the following commuting diagram,

Ezt'(z*E,m*E) x Ezt'(r*E,n"E) — Ext*(=*E,n"E)

T 1 T
Ezt'(E,E) x [Ezt(E,E) —  Ezt*(E,E),

and the fact that Ext*(E, E) = H*(EndE) = 0, for any E € M%. (In the
above diagram, Ezt'(E,E) = TgMx and Ezt*(n"E,n"E) = T,.gM+.) So,
we can also conclude that the image of M} is a Lagrangian subvariety in
M. That the image of MY is fixed by involution i* is obvious. Another
direction comes from the lemma easily. So the image is exactly the fixed
locus by involution. This completes the proof of (3). O
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Remark 1: We expect that M5 is birational to the cotangent bundle of
the image of M% by =°.

Remark 2: We know that the dimension of Mx(2k + 1,¢,,¢;) is even.
We expect that Mx(2k+1, D, c;) is birational to a symmetric power of some
Enriques surface. In fact we know many cases that M5 is birational to a
symmetric power of some K3 surface. In this case, the image of My is just
the fixed locus by involution, so that it is a symmetric power of an Enriques
surface, the quotient of that K3 surface. Another example is Mx(3,¢;,3),
where X is a fourfold covering of P? and ¢, is a pull back of hyperplane of
P?. Then ¢ = 4. In this case M is birational to the original Enriques surface

X.

Remark 3: We also know that the dimension of Mx(2k,¢;,c;) is odd
except two cases we mentioned. In this case we expect that My is birational
to the variety with SUy holonomy. We know one example. Let M denote
the moduli space of bundles of rank 2 with ¢? = 6, ¢, = 3, where ¢, is ample.
If || is not hyperelliptic (there does not exist a divisor f # 0, f> = 0 such
that ¢; - f = 1.), then M is birational to a double covering of P3.([Ki2])
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§ III. ENRIQUES SURFACES AS MODULI SPACES

Mukai showed that if the moduli space of stable bundles on a K3 surface
is of dimension 2, then it is also a K3 surface. More explicitly,

Definition: An algebraic cycle Z € HYX x Y,Q) on a prod-
uct of two surfaces X and Y is an isogeny if the homomorphism
fz: H}(X,Q) = H*(Y,Q),t = 7m.y(2 - t}t) is an isometry, i.e., an iso-
morphism compatible with cup product pairings. Two surfaces X
and Y are isogeneous ii there exists an isogeny Z eH*(X x Y, Q) on
X xY.

Theorem[Mu2]: Let S be an algebraic K3 surface and A moduli
space M of stable bundles on S be nonempty and compact. Then
M is irreducible and is a K3 surface. Moreover S and M are isoge-
neous.

Here we study the first exceptional case; a 2-dimensional smooth compo-
nent, where E=E(K) everywhere.

Theorem 2: If Mx(2k,c;,c;) has a component M of dimension
two which is compact, then M is an Enriques surface which is
isogeneous to the original surface X.

Sketch of Proof: If M is a component of dimention two of the moduli
spaces of even rank, then E=E(K) for every E in M and M must be smooth
since M is an image of a finite union of even dimensional variety by a degree
two map 7, and the dimension of Tg(M) is even. Then by the arguments
of Mukai(Mu2] and Huybrecht[Huy], mKp=0 for some natural number m.
To identify one of the four possible surfaces, K3 surface, Abelian surface,
hyperelliptic surface and Enriques surface we define a cycle map fz,(f%)
from H*(X) to H*(M)(from H*(M) to H*(X)), where H*(W) = e H'W,
exactly following the methods of Mukai([Mu2]). We define two cycles Z and

13



Z' on H*(X x M).
Z = px(VUdX) - ch(E") - pay(v/1dM)

Z' = p(VidX) - ch(E) - pis(v/tdM),
where E is a universal bundle on X x M (we can assume the existence of E
without loss of generality and the cycle map defined below is independent of
the choice of E), and /tdW is the unique cycle in H*(W) such that the self
intersection is td W. Now We define two maps fz, f5.

fz: HY(X,Q) = H'(M,Q), @ = pm.(Z - pxa),

fz: H"(M,Q) = H*(X,Q),8 - px.(Z" - pyB),

,where px,py are projections from X x M to X and M.

Then fz o f4 is the identity map on H*(M), so that H*(M) is a direct
summand of H*(X). Since these are cycle maps, even forms{odd forms)
go to even(odd) forms, so M must be an Enriques surface and fz is an
isomorphism. If we restrict to 4-dimensional cycles of Z and Z’, then this
induces an isometry from H?(X, Q) to H*(M,Q).0

Remark 1: If we use the results of theorem 1, then M is included in
a union of the direct images of 7 of M;, where exactly one M;, call M,
is a component of a moduli space My of dimension two and the other M;
s are all exceptional bundles. If My of dimension two is compact, then
it is also irreducible(]Mu2], so that My = M. For any F in M, ¢,(F) =
i*c1(F') as we saw in the proof of theorem 1. If we assume that there is no
bundle fixed by involution(for example; ¢;( F) is odd for F in M), then Mx =
7.(M) is compact and irreducible. There are lot’s of examples satisfying these
conditions.(See [Mu2])

Then in this case we have an interesting diagram which is commuting,

X..... - Mx
lmlm,
X..... —PMX



“

,where 7, 7, are quotient maps of degree two with no ramification and
...— indicates isogeny. 7
In the second cohomology level, we can find another commuting diagram,

HY(X,Q) - H(Mx, Q)

EES

H*(X,Q) — H*(Mx,Q),

where vertical maps are one to one and horizontal ones are isomorphisms.

Remark 2: But if ¢,(F) in M, mentioned above, is even and there exist

bundles fixed by involution, then M is not compact since M is the direct
image of (M)° = (F|F #i*F, F € M) and some exceptional bundles. In this
case M is birational to P32, "

Remark 3: If M is a component of Mx(2k + 1, ¢, ¢;) of dimension 2,
then in this case also we expect M to be an Enriques surface.
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IV.EXCEPTIONAL BUNDLES

First we can associate a vector v(E)=(r,D;s) € N x PicX x (1/2)2
for any vector bundle E on X, where r is the rank of E, D=det(E) and
s=(1/2)c;(E)? — c3(E) + r/2. This is a Mukai vector on an Enriques sur-
face.(For an algebraic surface S with x(Os) = x, s=(1/2)c1(E)? — c2( E) +
x(r/2).([Mu2]{Ty2])) Then we can define a symmetric bilinear form on that
lattice,

v U = (rlaDhsl) ' (T2,D2a32) =D - D2 —~ T182 — 733;.

Then
X(E®® F) = —v(E)-v(F).

So, if E is stable, then
dimM = v(E)}-v(E)+ 1+ h*(EndE),

where M is the moduli space containing E. Here we need a definition of
exceptional bundles.

Definition: E is exceptional if h°(EndE) =1 and h'(EndE) =0.

In this chapter we study the conditions of the existence of exceptional
bundles on Enriques surfaces. For an exceptional bundle E of even rank,
v(E) - v(F) = =2 if and only if A*(EndE) = 1. An exceptional bundle E
of even rank such that E=E(K) has the property h*(EndE) = 1. On the
otherhand, for an exceptional bundle E of odd rank, v(E)-v(E) = -1 if and
only if h2(EndE) = 0. There is a general theory on exceptional bundles de-
veloped by Russian school([Ty2]), where they emphasized the roles played by
exceptional bundles. They play very similar roles played by effective curves
of self intersection -2 acting on Picard groups by reflections, in particular on
K3 or Enriques surfaces. On K3 surfaces, every exceptional bundle E satisfies
v(E) - v(E) = —2, while on Enriques surfaces exceptional bundles of even
rank can satisfy v(F)- v(E) = —2, so that only exceptional bundles of even
rank play the role of acting on moduli spaces.
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Also there is another difference between K3 surfaces and Enriques sur-
faces. On K3 surfaces for every divisor D with D? = —2, D or -D is effective,
while on Enriques surfaces it is not always true. It holds only if the Enriques
surface is nodal(has a smooth rational curve), since the effective divisor with
self intersection -2 must have a smooth rational curve as a component.

There is also an anologue of this fact on exceptional bundles. On K3
surfaces, there always exists an exceptional bundle which realizes the excep-
tional vector v(v - v = —2, with the same definition as above, which is a
necessary condition for E to be exceptional) More explicitly,

Theorem [Ku] :Suppose that S is a complex algebraic K3 surface.
A is an arbitrary ample divisor on S, and v=(r,l,s), r > 0, is an
exceptional vector belonging to the Mukai lattice on S. Then there
exists a simple, u,-semi-stable bundle E which realizes the vector
v.

However on Enriques surfaces we showed that there exists an exceptional
bundie of rank 2 if and only if X is nodal, generalizing the result of Dolgachev
and Reider on exceptional bundles of rank 2 with ¢} = 10,¢; = 3 ([D,R]}).
More explicitly,

Theorem [Kil]: If E is an exceptional bundle of rank 2 such that
v(E) - v(E) = -2 if and only if E=Ey(D), where D is some divisor
and E; is a nontrivial extension,

O—PO)(—>E0—)O)((N-|-K)—’0,

where N is a nodal cycle with N?=-2 and K is the canonical divisor
on X. ’

We want to generalize this result to any exceptional bundle of even rank.
The following is our main theorem.

Theorem 3: There exists an exceptional bundle E such that
E=E(K) which realizes a vector v=(2k,D,s) with v.-v = -2 if

17



and only if the vector v=v(2k,D,s) with v.v = —2 satisfies that
D=N+2L+kK, where N is a nodal cycle and L is any divisor. In
particular,there exists an exceptional bundle E of even rank such
that E=E(K) if and only if X is nodal.

Proof: First we prove that if there exists an exceptional bundle E of even
rank which realizes a vector v=(r,D,s) with v-v = -2, then D=N+2L+kK,
for some nodal cycle N and some divisor L. First we can find a bundle F on

X, such that 7,(F) = E, so that n*(E) = F @ ¢*F. Then F is simple since
h°(End(n*E)) = h°(EndE) + h°((EndE)(K)) = 2.
F is also rigid since
h'(End(r*E)) = h'(EndE) + k' ((EndE)(K)) = 0.
So, by the formular in chapter 2, we get
a(F)? =c(F) q(*F)-2.

However this holds if and only if det(E) = N +2L + kK for some nodal cycle
N and some divisor L on X ([Kil}).

We show the converse that for a vector v=(2k,N+2L+kK,s), for some
nodal cycle N and some divisor L on X(X must be a nodal Enriques sur-
face), such that v-v = —2, then there exists an exceptional bundle E on X
which realizes the vector v. If we consider a vector v=(k,N, + 7*L,s) on X,
where N; is a component of #*N = N; + Np(N; = "Ny, N1 - N3 = 0), then
this is an exceptional vector. Then by the theorem of Kuleshov[Ku], there
exists an exceptional bundle F which realizes v. Then n,F = E is a bundle
which realizes the given vector v. To prove that E is exceptional, we show
first that h°(EndE) = 1. To show this we claim that Hom(F,:*F) = 0. If
Hom(F,1*F) # 0, then F = 1*F. This comes from the fact that the com-
position of h, a nontrivial homomorphism from F to :*F,with the natural
map ] from +*F to F is nontrivial, so that it is an isomorphism, since F is
simple. So, F is isomorphic to :*F, which is a contradiction to the fact that
c&1(F) # ¢1(i"F). The rigidity of E comes from that v(E) - v(F) = -2 and
h*(EndE) = 1, since E=E(K). Furthermore we can choose E which is uy
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-semni-stable, since we can choose F, which is g5 -semi-stable ([Ku]), then
by a theorem of Takemoto, 7, preserves the semi-stability. O

Corollary: Every exceptional bundle E of rank 2 with E=E(K)is
T.(Ox(N + 7*L)) for some nodal cycle N on X and some divisor L
on X.

Next we consider exceptional bundles of odd rank. These are less im-
portant than those of even rank. The simplest case is the case of rank one.
We know that every line bundle on Enriques surfaces is exceptional since
RY(X,0x) = 0 (as in K3 surfaces) and these can be identified to the line
bundles in K3 surfaces invariant by involution. We want to generalize this
fact to exceptional bundles of any odd rank.

Theorem 4: For any vector v=(2k+1,D,s) with v-v = —1 on any
Enriques surface X, there exists an exceptional bundle E which
realizes the vector v.

Proof For given vector v=(2k+1,D,s), we consider a vector v=(2k+1,7*D,2s).
Then this is an exceptional vector on X. So, by the theorem of Kuleshov[Ku],
there exists an exceptional bundle F realizing the vector v. We get x(F* ® i*F) =
2, so that there is a nontrivial homomorphism from F to :*F. The same
argument as in the proof of theorem 3 shows that this F is invariant by
involution. Then we know that there exists a bundle E on X such that
mFE = F by the lemma in chapter 2. This bundle realizes the given vec-
tor v. So it suffices to show that E is exceptional. It is easy to see that
E is simple and h!'(EndE) = 0. Furthermore , if we choose F which is also
pxepy — semi — stable, then E is also py -semi-stable.0

Remark 1: It is interesting to see that exceptional bundles on En-
riques surfaces can be used to re-classify the threefolds whose hyperplane
sections are Enriques surfaces (See [Co]) just as Mukai re-classified Fano
threefolds and Fano variety of co-index 3, using exceptional bundles on K3

surfaces.([Mu3})

19



Remark 2: It is also interesting to construct exceptional bundles by ex-
tensions or divisions by exceptional bundles of even rank ([D,P],[Ru],[Kul],[Ty2}).
For rank 2 case we could construct them explicitly. ({Kil}])

Remark 3: We want to see that the conditions (i) E is exceptional, (ii) E
is exceptional and h*(EndE) = 1, (iii) E is exceptional and E=E(K), (iv) E is
exceptional and stable, are equivalent for exceptional bundles of even rank.
(tv) — (#12) — (i1) — (i) are automatic. We expect that at least (i),(ii)
and (iii) are equivalent. We showed that (ii),(ili) and (iv) are equivalent
for rank two([Kil]). In our work, most results are on exceptional bundles
with (iii). On exceptional bundles of odd rank, we can also ask the similar
question that (i) E is exceptional, (ii) E is exceptional and h?(EndE) = 0,
(iii) E is exceptional and stable are equivalent. On K3 surfaces, there are two
exceptional bundles with the same numerical invariants, so that they can not
be py-stable at the same time for any ample H.([Kul])
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§ V: EXISTENCE OF STABLE BUNDLES

In this chapter we study a sufficient condition of the existence of stable
bundles on Enriques surfaces essentially following the methods of Kuleshov({Ku2].)
On any Enriques surface X, we can find an ample divisor H and a divisor {
such that H - f = 1. In fact, we can find an ample divisor H with H? = 2,
Then we can find a divisor f with H - f = 1(|C,D].)

Here we need another definition of stability. We define the Gieseker slope
of E as the polinomial in the integer variable n, py{E(n)) = x(E(nH))/rank(E).
We say E is Gieseker-H- (semi-)stable, if for any subsheaf F(0 < r(F) <
r(E)), one has py(F(n)) < (L)pu(E(n)), for n sufficiently large. Then we
know that if E is gy-stable, then E is Gieseker-H-stable and if E is Gieseker-
H-semi-stable, then E is ug-semi-stable,

Only in this chapter, we call E, H-stable if E is Gieseker-H-stable and
p-stable if E is H-stable with the definition in chapter one. (In the previous
chapters, we meant py-stable by H-stable.) Here we introduce the results of
Kuleshov on K3 surfaces.

Theorem [Ku2] (1): Let S be a smooth K3 surface with Picard
group isomorphic to Z. Let v=(r,al,s) be a primitive Mukai vector.
If 1/2 < a/r £ 3/2 and s < 0, then there is an l-stable torsion
free sheaf E on S that realizes the vector. (2): If we replace the
condition of primitivity of v with the condition of (r,a)=1, then
the vector is v is realized by a y, -stable torsion free sheaf. Also, if
r > 2, then E can be chosen to be locally free.

Now we state an anologue of this theorem on Enriques surfaces.

Theorem 5 (1): Let X be a smooth Enriques surface. Let
v=(r,D,s) be a Mukai vector such that (r,D . H,2s) is a primitive
vector and 1/2 < (D - H)/r €3/2 and s £0, then there is a H-stable
torsion free sheaf E on X that realizes the vector v. (2): Let the
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condition be same as (1) except replacing the primitivity of v with
(r,D - H)=1. Then the vector v is realized by a py-stable torsion
free sheaf. Also, if r > 2, then E can be chosen to be locally free.

Remark: We exactly followed the proof of Kuleshov, except a little
modification. This condition depends on H, but we hope that the moduli
spaces are independent of the choice of an ample divisor H as was shown to
be true in rank 2 case by Qin([Q2].) This is a sufficient condition, but it
is not too special since we can normalize E by E’ such that 1/2 < ¢,(E’) -
H/rank(E') < 3/2 by tensoring by Ox(f). However, this condition is not
necessary. Actually, we showed that there exists a ug-stable bundle of rank
2 for every possible case(4¢c; — ¢ — 3 > 0).([Ki2])
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