K-energy Maps Integrating Futaki Invariants

by

Toshiki MABUCHI

Dedicated to the memory of the late Professor Takehiko Miyata

```Max-Planck-InstitutSonderforschungsbereich 40fūr MathematikGottfried-Claren-Str. 26Theoretische Mathematik
BeringstraBe 4
D-5300 Bonn'3
D-5300 Bonn 1
```


K-energy maps integrating Futaki invariants

§0. INTRODUCTION:

One of the long-standing questions in complex differential geometry is the following: given a compact complex connected manifold V with $c_{1}(V)>0$, can one find a simple criterion of the existence of an Einstein Kähler metric on V ? At present, there are no definitive answers, but the following conjecture of A. Futaki [3] seems to be reasonable.
(I) GENERALIZED CALABI'S CONJECTURE (FUTAKI): Suppose that the identity component $A u t^{0}(V)$ of the group of holomorphic automorphisms of V is a reductive algebraic group. If futhermore to each holomorphic vector field on V, the corresponding Futaki invariant vanishes, then V admits an Einstein Kähler metric.

On the other hand, as a characterization of Einstein Hermitian vector bundles on compact Kähler manifolds, s. Kobayashi [5] raised the following:
(II) KOBAYASHI'S CONJECTURE: Let E be an indecomposable holomorphic vector bundle on a compact Kähler manifold W with Kähler metric g_{0}. Then E admits an Einstein Hermitian metric if and only if E is stable (in the sense of MumfordTakemoto) with respect to g_{0}.

Recently, S.K. Donaldson [2] solved (II) for the case where W is a projective algebraic surface. One crucial step of his proof is a construction of a non-linear functional λ from the set of all Hermitian metrics on E to the real numbers such that (1) any critical point of λ is exactly an Einstein Hermitian metric on E and that (2) λ is bounded from below if and only if E is semistable with respect to g.

Although (I) and (II) look quite different, there is some link between these conjectures. Actually even for (I), the same procedure as in Donaldson's work can considerably be carried out.

Fix a Kähler form $\quad \omega_{0}=\sqrt{-1} \Sigma g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}$ on V. In this introduction, for simplicity, we assume that ω_{0} represents $2 \pi c_{1}(V)_{R}$. We denote by K the set of all Kähler forms on V cohomologous to ω_{0}. Let f_{0} be a real valued C^{∞} function on V which is uniquely determined, up to constant, by the equation
$\bar{\partial} \partial \log \operatorname{det}\left(g_{\alpha \bar{\beta}}\right)-\Sigma g_{\alpha} \bar{\beta}^{\alpha z^{\alpha}} \wedge d z^{\bar{\beta}}=\partial \bar{\partial} f_{0}$.

The main purpose of this paper is to prove the following theorem announced earlier in [6].

THEOREM: There exists a mapping $\mu: K \rightarrow \mathbf{R}$ satisfying the following conditions:
(i) An element ω of K is a critical point of μ if and if ω is Einstein Kahler, (cf. §3).
(ii) Let Y be a holomorphic vector field on V, and ω be an element of K. Put $Y_{R}:=Y+\bar{Y}$ and $Y_{t}:=\exp t Y_{R}$ for $t \in R$. Then $\mu\left(y_{t}{ }^{*} \omega\right)$ is a linear function of t Namely for every t.

$$
\frac{d}{d t} \mu\left(Y_{t}^{*} \omega\right)=\int_{V}\left(Y_{R} f_{0}\right) \omega_{0}^{n} / \int_{V} \omega_{0}^{n}
$$

where the right-hand side is the Futaki invariant of V corresponding to the holomorphic vector field Y, (cf. §5). (iii) If ω is a.critical point of μ, then the ineguality

$$
\left.\frac{d^{2}}{d t^{2}} \mu\left(\theta_{t}\right)\right|_{t=0} \geq 0
$$

holds for every smooth path $\left\{\theta_{t} \mid-\varepsilon \leq t \leq \varepsilon\right\}$ in K such that $\theta_{0}=\omega,(C f . \S 6)$.

This $\mu: K \rightarrow R$ is called the K-energy map of the Kähler manifold $\left(V, \omega_{0}\right)$. In view of (i) and (ii) above, one can easily see that if $\int_{V}\left(Y_{R} f_{0}\right) \omega_{0}{ }^{n} \neq 0$ for some holomorphic vector field Y on V, then μ cannot have a critical point, i.e., X does not admit any Einstein Kähler metric, which gives another proof of a fundamental theorem of Futaki [3]. Furthermore (i) and (iii) above gives us some indication that Conjecture (I) can be weakened in the following more plausible form.
(III) CONJECTURE: Suppose that $A u t^{0}(V)$ is a reductive algebraic group. If μ is bounded from below, then V admits an Einstein Kähler metric.

Several supplements to this paper will be found in [7]. In a forthcoming paper (cf. S. Bando and T. Mabuchi [1]), we shall show the following interesting theorem.

THEOREM: Let E be the set of all Einstein Kähler forms in K, and K^{+}be the set of all $\omega \in K$ with positive definite Ricci tensor. Assume that $E \neq \varnothing$. Then
(i) the restriction $\mu \mid K^{+}: K^{+} \rightarrow \mathbf{R}$ is bounded from below, and $\mu \mid K^{+}$takes its absolute minimum on E.
(ii) For any ω_{1} and ω_{2} in E, there exists an element g of Aut ${ }^{0}(V)$ such that $g * \omega_{2}=\omega_{1}$.

We shall also give several generalizations of μ in the latter paper.

In conclusion, I wish to thank all those people who encouraged me and gave me suggestions, and in particular Professors S. Kobayashi and H. Ozeki, and Doctors S. Bando I. Enoiki and R. Kobayashi, who helped me again and again during the preparation of this paper. My hearty thanks. go also to the Max-Planck-Institut für Mathematik for its hospitality and constant assistance all through my stay in Bonn.

Throughout this paper we fix an arbitrary n-dimensional compact Kähler connected manifold X with Kähler form $\omega_{0}=\sqrt{-T} \Sigma g_{\alpha \bar{\beta}} \mathrm{d} z^{\alpha} \wedge \mathrm{d} z^{\bar{\beta}}$, where ω_{0} is written in terms of holomorphic local coordinates $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$. Let

$$
K:=\left\{\omega \left\lvert\, \begin{array}{l}
\text { Kähler form on } x \text { which is cohomologous } \\
\text { to } \omega_{0} \text { in } H^{1,1}(x, R)
\end{array}\right.\right\}
$$

For each element $\omega=\sqrt{-1} \Sigma g(\omega)_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}$ of K, we denote by $\Sigma R(\omega){ }_{\alpha} \bar{\beta}^{d z^{\alpha}} d z^{\bar{\beta}}$ the corresponding Ricci tensor. We put $R(\omega):=\sqrt{-T} \sum R(\omega)_{\alpha} \bar{\beta}^{d z^{\alpha}} \wedge d z^{\bar{\beta}}$. Then $R(\omega) / 2 \pi$ represents $c_{1}(X)_{R}$ and we have $R(\omega)=\sqrt{-1} \bar{\partial} \partial \log \operatorname{det}\left(g_{\alpha \bar{\beta}}(\omega)\right)$. Furthermore, let $\sigma(\omega)$ (resp. \square_{ω}) be the corresponding scalar curvature (resp. Laplacian on functions):

$$
\begin{aligned}
\sigma(\omega) & :=\Sigma g(\omega)^{\bar{\beta} \alpha} R(\omega) \alpha \bar{\beta} \\
\square_{\omega} & :=\Sigma g(\omega)^{\bar{\beta} \alpha} \partial^{2} / \partial z_{\partial} \alpha^{\bar{\beta}}
\end{aligned}
$$

where. $\left(g(\omega)^{\bar{\beta}} \alpha\right)$ is the inverse matrix of $(g(\omega) \alpha \bar{\beta})$. For each real valued C^{∞} function $\varphi \in C^{\infty}(X)_{R}$ on X, we put $\omega_{0}(\varphi):=\omega_{0}+\sqrt{-1} \partial \partial \varphi$, and let

$$
H:=\left\{\varphi \in C^{\infty}(X)_{R} \mid \omega_{0}(\varphi) \in K\right\}
$$

Note that the natural map

is surjective. For each $\varphi \in H$, the corresponding
$\sigma_{\omega_{0}(\varphi)}, \sigma\left(\omega_{0}(\varphi)\right), R\left(\omega_{0}(\varphi)\right), R\left(\omega_{0}(\varphi)\right)_{\alpha \bar{\beta}}, g\left(\omega_{0}(\varphi)\right)_{\alpha \bar{\beta}}, g\left(\omega_{0}(\varphi)\right)^{\bar{\beta} \alpha}$ will be denoted simply by $\square_{\varphi}, \sigma(\varphi), R(\varphi), R(\varphi)_{\alpha \bar{\beta}}, g(\varphi)_{\alpha \bar{\beta}}$. $g(\varphi)^{\bar{B} \alpha}$ respectively.

DEFINITION (1.1): A 1-parameter family $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ of functions in $C^{\infty}(X)_{R}$ is said to be smooth (or a smooth path) if the mapping

$$
\begin{aligned}
{[a, b] \times x } & \longrightarrow R \\
(t, x) & \longrightarrow \varphi_{t}(x)
\end{aligned}
$$

is c^{∞}. We then put $\dot{\varphi}_{t}:=\partial \varphi_{t} / \partial t$ and $\ddot{\varphi}_{t}=\partial^{2} \varphi_{t} / \partial t^{2}$.

DEFINITION (1.2): We define the real constants λ and v by

$$
\lambda:=2 n \pi \int_{x} c_{1}(x) \omega_{0}^{n-1} / \int_{x} \omega_{0}^{n}, v:=\lambda / n
$$

Furthermore, to each $\varphi \in C^{\infty}(X)_{R}$, we associate an (n, n)-form $V_{0}(\varphi)$ on X as follows:

$$
v_{0}(\varphi):=\omega_{0}(\varphi)^{n} / \int_{X} \omega_{0}^{n}
$$

This is normalized so that $f_{X} V_{0}(\varphi)=1$. Moreover, if ω_{0} represents $2 \pi c_{1}{ }^{(X)}{ }_{R}$, then $\lambda=n$.

DEFINITION (1.3): Let $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ be a system of holomorphic local coordinates on X. For every $f \in C^{\infty}(X)_{R}$, we use the following notation:

$$
\begin{aligned}
& f_{\alpha}:=\partial_{\alpha} £, f_{\bar{\alpha}}:=\partial_{\bar{\alpha}} £, f_{\alpha \beta}:=\partial_{\alpha} \partial_{\beta} f, f_{\bar{\alpha} \bar{\beta}}:=\partial_{\bar{\alpha}} \partial_{\bar{\beta}} \bar{f}, \\
& f_{\alpha \bar{\beta}}:=\partial_{\alpha} \partial_{\bar{\beta}} f, f_{\alpha \bar{\gamma}}:=\partial_{\alpha} \partial_{\beta} \partial_{\bar{\gamma}} f, \ldots,
\end{aligned}
$$

where we denote by ∂_{α} (resp. $\partial_{\bar{\alpha}}, \partial_{\beta}, \partial_{\bar{\beta}}, \partial_{\bar{\gamma}}$) the operator $\partial / \partial z^{\alpha}$ (resp. $\partial / \partial z^{\bar{\alpha}}, \partial / \partial z^{\beta}, \partial / \partial z^{\bar{\beta}}, \partial / \partial z^{\bar{\gamma}}$) . Our notation is slightly different from the ordinary one, because for instance, $f_{\alpha \beta}$ is not $\nabla_{\beta} \nabla_{\alpha} f$.

§2. Basic Constructions:

This section is a crucial step in the construction of the K-energy map μ. We shall introduce the mappings

$$
\begin{aligned}
& L: C^{\infty}(X)_{R} \times C^{\infty}(X)_{R} \longrightarrow R,(C f .(2.5)), \\
& M: \quad H \times H \quad \rightarrow R,(C f .(2.4)),
\end{aligned}
$$

where the latter immediately defines μ, (cf. (2.7), (3.1)). Although the functional L is not essential in later sections, it none the less plays an important role in our forthcoming papers (cf. Mabuchi [7], Bando and Mabuchi [1]).

DEFINITION (2.1): Let S be a non-empty set and A be an additive group. Then a mapping $N: S \times S \rightarrow A$ is said to satisfy the 1 -cocycle condition if
i) $N\left(\sigma_{1}, \sigma_{2}\right)+N\left(\sigma_{2}, \sigma_{1}\right)=0$ and
ii) $N\left(\sigma_{1}, \sigma_{2}\right)+N\left(\sigma_{2}, \sigma_{3}\right)+N\left(\sigma_{3}, \sigma_{1}\right)=0$
for all $\sigma_{1}, \sigma_{2}, \sigma_{3} \in S$.

DEFINITION (2.2). For every $\left(\varphi^{\prime}, \varphi^{\prime \prime}\right) \in H \times H$, we define real numbers $L\left(\varphi^{\prime \prime}, \varphi^{\prime \prime}\right), M\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)$ by
(2.2.1)

$$
L\left(\varphi^{\prime}, \varphi^{\prime \prime}\right):=\int_{a}^{b}\left(\int_{X} \dot{\varphi}_{t} v_{0}\left(\varphi_{t}\right)\right) d t
$$

$$
\begin{equation*}
M\left(\varphi^{\prime}, \varphi^{\prime \prime}\right):=-\int_{a}^{b}\left\{\int_{X} \dot{\varphi}_{t}\left(\sigma\left(\varphi_{t}\right)-\lambda\right) v_{0}\left(\varphi_{t}\right)\right\} d t \tag{2.2.2}
\end{equation*}
$$

where $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ is an arbitrary piecewise smooth path in H such that $\varphi_{a}=\varphi^{\prime}$ and $\varphi_{b}=\varphi^{\prime \prime}$.

THEOREM (2.3). L($\left.\varphi^{\prime}, \varphi^{\prime \prime}\right)$ above is independent of the choice of the path $\left\{\varphi_{t} \mid a \leq t \leq b\right\} \quad$ and therefore well-defined. Moreover,
(2.3.1) I satisfies the 1-cocycle condition, and
$\mathrm{L}\left(\varphi_{1}, \varphi_{2}+\mathrm{C}\right)=\mathrm{L}\left(\varphi_{1}, \varphi_{2}\right)+\mathrm{C}$ for all φ_{1}, φ_{2} and all $C \in R$.

THEOREM (2.4). $M\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)$ above is independent of the choice of the path $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ and therefore well-defined. Moreover,
(2.4.1) M satisfies the 1 -cocycle condition, and
(2.4.2) $M\left(\varphi_{1}+C_{1}, \varphi_{2}+C_{2}\right)=M\left(\varphi_{1}, \varphi_{2}\right)$ for all φ_{1}, φ_{2} and all $C_{1}, C_{2} \in R$.

PROOF of $(2.3):$ Let $\psi(s, t):=s \varphi_{t}$ for $(s, t) \in[0,1] \times[a, b]$. Since $\left\{\varphi_{t} \mid a \leqq t \leqq b\right\}$ is piecewise smooth, there exist a partition $a=a_{0}<a_{1}<a_{2}<\cdots<a_{r}=b$ of the interval $[a, b]$ such that $\left\{\varphi_{t} \mid a_{i-1} \leqq t \leqq a_{i}\right\}$ is smooth for each $i \in\{1,2, \ldots, r\}$.

Step 1: We shall first show that

$$
(*)_{i} \int_{a_{i-1}}^{a_{i}}\left(\int_{x} \dot{\varphi}_{t} v_{0}\left(\varphi_{t}\right)\right) d t=\left.\int_{0}^{1}\left(\int_{x} \frac{\partial \psi}{\partial s} v_{0}(\psi)\right) d s\right|_{t=a_{i-1}} ^{t=a_{i}}
$$

Let $\Psi(s, t):=\left(\int_{X} \frac{\partial \psi}{\partial s} \omega_{0}(\psi)^{n} d s\right)+\left(\int_{X} \frac{\partial \psi}{\partial t} \omega_{0}(\psi)^{n}\right) d t$. Then in view of Figure 1, we have

$$
\begin{aligned}
& \int_{\Delta} d \Psi=\int_{\partial \Delta} \Psi=\sum_{i=1}^{4} \int_{\gamma_{i}} \Psi \\
& =-\left.\int_{0}^{1}\left(\int_{X} \frac{\partial \psi}{\partial s} v_{0}(\psi)\right) d s\right|_{t=a_{i-1}} ^{t=a_{i}}+\int_{a_{i-1}}^{a_{i}}\left(\int_{X} \dot{\varphi}_{t} V_{0}\left(\varphi_{t}\right)\right) d t .
\end{aligned}
$$

Figure 1.

Therefore the proof of $\left({ }^{(*)}{ }_{i}\right.$ is reduced to showing $\mathrm{d} \Psi=0$. By routine computations, we have

$$
\begin{aligned}
& d \psi=\operatorname{dt\wedge ds} \int_{X}\left\{\frac{\partial}{\partial t}\left(\frac{\partial \psi}{\partial s} v_{0}(\psi)\right)-\frac{\partial}{\partial s}\left(\frac{\partial \psi}{\partial s} v_{0}(\psi)\right)\right\} \\
& =\sqrt{-1} \operatorname{dtads} \int_{X}\left\{\frac{\partial \psi}{\partial s} \partial \vec{\partial}\left(\frac{\partial \psi}{\partial t}\right)+\frac{\partial \psi}{\partial t} \overline{\partial \partial}\left(\frac{\partial \psi}{\partial s}\right)\right\} \wedge n \omega_{0}(\psi)^{n-1} / \int_{X} \omega_{0}^{n} \\
& =\sqrt{-1} \operatorname{dt\wedge ds} \int_{X}\left\{-\partial\left(\frac{\partial \psi}{\partial s}\right) \wedge \bar{\partial}\left(\frac{\partial \psi}{\partial t}\right)-\bar{\partial}\left(\frac{\partial \psi}{\partial t}\right) \wedge \partial\left(\frac{\partial \psi}{\partial s}\right)\right\} \wedge n \omega_{0}(\psi)^{n-1 /} \int_{X} \omega_{0}^{n} \\
& =0 .
\end{aligned}
$$

Step 2: Adding up the equalities (*) ${ }_{i}(i=1,2, \ldots, r)$, we obtain

$$
\int_{a}^{b}\left(\int_{x} \dot{\varphi}_{t} v_{0}\left(\varphi_{t}\right)\right) d t=\left.\int_{0}^{1}\left(\int_{x} \varphi v_{0}(s \varphi)\right) d s\right|_{\varphi=\varphi^{\prime}} ^{\varphi=\varphi^{\prime \prime}} .
$$

This shows that $\int_{a}^{b}\left(\int_{X} \dot{\varphi}_{t} V_{0}\left(\varphi_{t}\right)\right) d t$ is independent of the choice of the path $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$. (2.3.1) is also immediate. For (2.3.2), let $\psi_{t}:=\varphi_{2}+t C(t \in[0,1])$. Then in view of (2.3.1),

$$
L\left(\varphi_{1}, \varphi_{2}+C\right)-L\left(\varphi_{1}, \varphi_{2}\right)=L\left(\varphi_{2}, \varphi_{2}+C\right)=\int_{0}^{1} \int_{X} C v_{0}\left(\psi_{t}\right) d t=c .
$$

REMARK (2.5). The above proof is valid even in the case $\left(\varphi^{\prime}, \varphi^{\prime \prime}\right) \in C^{\infty}(\mathrm{X})_{\mathbb{R}} \times C^{\infty}(\mathrm{X})_{\mathbb{R}}$. Hence L naturally extends to a functional on $C^{\infty}(X)_{\mathbb{R}} \times C^{\infty}(X)_{\mathbb{R}}$. This extended functional (denoted by the same L) can still be defined by (2.2.1) and satisfies (2.3.1) and (2.3.2).

For the proof of (2.4), we need the following Lemma:

LEMMA (2.6). Suppose that a 2-parameter family $\{\psi(s, t)$ $(s, t) \in[0,1] \times[a, b]\}$ of functions in H is smooth in the sense that the mapping

$$
\begin{aligned}
{[0.1] \times[a, b] \times x } & \longrightarrow \mathbb{R} \\
(s, t, x) & \longmapsto(\psi(s, t))(x)
\end{aligned}
$$

is C^{∞}. Then there exists a C^{∞} function $F=F(s, t, x) \in$ $C^{\infty}([0,1] \times[a, b] \times X) \quad$ (which is of course unique) such that
(i) $\partial F / \partial s=-\left(a_{\psi}+\nu\right)(\partial \psi / \partial s)$,
(ii) $\quad \partial F / \partial t=-\left(a_{\psi}+\nu\right)(\partial \psi / \partial t)$,
(iii) $\left.\quad\right|_{(s, t)}={ }_{(0, a)}=0$ in $C^{\infty}(X)_{\mathbb{R}}, \quad$ and
(iv) $R(\psi)-v \omega_{0}(\psi)=R\left(\omega_{1}\right)-v \omega_{1}+\sqrt{-1} \partial \bar{\partial} F$,
where we put $\omega_{1}:=\omega_{0}(\psi(0, a))$.

PROOF: Using the notation in (1.3), we have
(2.6.1) $\quad(\partial / \partial t) \quad\left(\square_{\psi}(\partial \psi / \partial s)\right)-(\partial / \partial s) \quad\left(\square_{\psi}(\partial \psi / \partial t)\right)$

$$
\begin{aligned}
= & (\partial / \partial t)\left(\Sigma g(\psi)^{\bar{\delta} \gamma}(\partial \psi / \partial s)_{\gamma} \bar{\delta}\right)-(\partial / \partial s)\left(\Sigma g(\psi)^{\bar{\alpha} \beta}(\partial \psi / \partial t)_{\beta \bar{o}}\right. \\
= & -\Sigma\left\{g(\psi)^{\bar{\delta} \beta}(\partial \psi / \partial t)_{\beta \bar{\alpha}} g(\psi)^{\bar{\alpha} \gamma}(\partial \psi / \partial s)_{\gamma \bar{\delta}}\right\}^{\bar{\alpha}}(\partial)^{\bar{\alpha} \gamma}(\partial \psi / \partial s)_{\gamma \bar{\delta}} g(\psi)^{\bar{\delta} \beta}(\partial \psi / \partial t)_{B \bar{\alpha}^{-}} \\
& +\Sigma\{g(\psi) \\
= & 0 .
\end{aligned}
$$

Hence $(\partial / \partial t)\left\{\left(a_{\psi}+v\right)(\partial \psi / \partial s)\right\}=(\partial / \partial s)\left\{\left(\square_{\psi}+v\right)(\partial \psi / \partial t)\right\}$. Therefore there exists $F(s, t, x) \in C^{\infty}([0,1] \times[a, b] \times x)$ satisfying (i),(ii) and (iii) . For (iv), we first observe that it is true for $(s, t)=(0, a)$. We now have

$$
\begin{aligned}
& (\partial / \partial s)\left(R(\psi)-v \omega_{0}(\psi)\right)-(\partial / \partial s)(\sqrt{-1} \partial \bar{\partial} F) \\
& =\sqrt{-1}\left\{\bar{\partial} \partial\left(\square_{\psi}(\partial \psi / \partial s)\right)-\partial \bar{\partial}(v \partial \psi / \partial s)-\partial \bar{\partial}(\partial F / \partial s)\right\}=0 .
\end{aligned}
$$

Similarly $(\partial / \partial t)\left(R(\psi)-v \omega_{0}(\psi)\right)-(\partial / \partial t)(\sqrt{-1} \partial \bar{F})=0$. Hence we obtain (iv).

PROOF OF (2.4): Let $\psi(s, t):=s \varphi_{t}$ for $(s, t) \in[0,1] \times[a, b]$ and $\Psi(s, t)$ be the 1 -form

$$
\left(\int_{X}-\frac{\partial \psi}{\partial s}(\sigma(\psi)-\lambda) v_{0}(\psi)\right) d s+\left(\int_{X}-\frac{\partial \psi}{\partial t}(\sigma(\psi)-\lambda) v_{0}(\psi)\right) d t .
$$

Then similar to the proof of (2.3), that of (2.4) except for the equality (2.4.2) is reduced to showing $d \Psi=0$.

Step 1: By Lemma (2.6) applied to our Ψ, there exists a function $F=F(s, t, x) \in C^{\infty}([0,1] \times[a, b])_{\mathbb{R}}$ satisfying the equalities (i) ~ (iv). First by (iv),

$$
\begin{aligned}
& \mathrm{n}\left(R\left(\omega_{0}\right)-v \omega_{0}\right) \omega_{0}(\psi)^{\mathrm{n}-1} / \int_{X} \omega_{0}^{n} \\
& =\mathrm{n}\left(\mathrm{R}(\psi)-v \omega_{0}(\psi)-\sqrt{-1} \partial \partial \bar{\partial}\right) \omega_{0}(\psi)^{\mathrm{n}-1} / \int_{X} \omega_{0}^{n} \\
& =\left(\sigma(\psi)-\lambda-\square_{\psi} F\right) v_{0}(\psi) .
\end{aligned}
$$

Therefore, introducing the 1-form Φ defined as

$$
\begin{aligned}
& \left\{d s \int_{X} n\left(R\left(\omega_{0}\right)-v \omega_{0}\right) \frac{\partial \psi}{\partial s} \omega_{0}(\psi)^{n-1}\right. \\
& \left.+d t \int_{X} n\left(R\left(\omega_{0}\right)-v \omega_{0}\right) \frac{\partial \psi}{\partial t} \omega_{0}(\psi)^{n-1}\right\} / \int_{X} \omega_{0}^{n}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\psi & =-\Phi-\left(\int_{X} \frac{\partial \psi}{\partial s}\left(a_{\psi} F\right) V_{0}(\psi)\right) d s-\left(\int_{X} \frac{\partial \psi}{\partial t}\left(\square_{\psi} F\right) V_{0}(\psi)\right) d t \\
& =-\Phi-\left(\int_{X}\left(\square_{\psi} \frac{\partial \psi}{\partial s}\right) F V_{0}(\psi)\right) d s-\left(\int_{X}\left(\square_{\psi} \frac{\partial \psi}{\partial t}\right) F V_{0}(\psi)\right) d t .
\end{aligned}
$$

Hence $d \Psi=-d \Phi+I$ ds^dt, where the coefficient I is

$$
\int_{X} \frac{\partial}{\partial t}\left(\left(a_{\psi} \frac{\partial \psi}{\partial s}\right) F V_{0}(\psi)\right)-\int_{X} \frac{\partial}{\partial s}\left(\left(a_{\psi} \frac{\partial \psi}{\partial t}\right) F V_{0}(\psi)\right)
$$

In view of the identities $\partial V_{0}(\psi) / \partial t=\square_{\psi}(\partial \psi / \partial t) V_{0}(\psi)$ and $\partial V_{0}(\psi) / \partial s=a_{\psi}(\partial \psi / \partial s) \mathrm{V}_{0}(\psi),(2.6 .1)$ above combined with (i) and (ii) of (2.6) yields

$$
\begin{aligned}
I & =\int_{X}\left(a_{\psi} \frac{\partial \psi}{\partial s}\right) \frac{\partial}{\partial t}\left(F V_{0}(\psi)\right)-\int_{X}\left(a_{\psi} \frac{\partial \psi}{\partial t}\right) \frac{\partial}{\partial s}\left(F V_{0}(\psi)\right) \\
= & \int_{X}\left\{\left(a_{\psi} \frac{\partial \psi}{\partial s}\right)\left(-a_{\psi} \frac{\partial \psi}{\partial t}-v \frac{\partial \psi}{\partial t}\right)+\left(\square_{\psi} \frac{\partial \psi}{\partial s}\right) F\left(\square_{\psi} \frac{\partial \psi}{\partial t}\right)\right\} V_{0}(\psi) \\
& -\int_{X}\left\{\left(a_{\psi} \frac{\partial \psi}{\partial t}\right)\left(-a_{\psi} \frac{\partial \psi}{\partial s}-v \frac{\partial \psi}{\partial s}\right)+\left(a_{\psi} \frac{\partial \psi}{\partial t}\right) F\left(a_{\psi} \frac{\partial \psi}{\partial s}\right)\right\} V_{0}(\psi) \\
= & 0 .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
& d \Psi=-d \Phi=d s \wedge d t \int_{X} n\left(R\left(\omega_{0}\right)-v \omega_{0}\right)\left(\frac{\partial \psi}{\partial s} \frac{\partial}{\partial t}-\frac{\partial \psi}{\partial t} \frac{\partial}{\partial s}\right)\left(\omega_{0}(\psi)^{n-1}\right) / \int_{X} \omega_{0}^{n} \\
& =\sqrt{-1} d s \wedge d t \int_{X} n(n-1)\left(R\left(\omega_{0}\right)-v \omega_{0}\right)\left(-\frac{\partial \psi}{\partial s} \bar{\partial} \partial\left(\frac{\partial \psi}{\partial t}\right)-\frac{\partial \psi}{\partial t} \partial \bar{\partial}\left(\frac{\partial \psi}{\partial s}\right)\right) \omega_{0}(\psi)^{n-2} / \int_{X} \omega_{0}^{n} \\
& =\sqrt{-1} d s \wedge d t \int_{X} n(\Omega-1)\left(R\left(\omega_{0}\right)-v \omega_{0}\right)\left(\bar{\partial}\left(\frac{\partial \psi}{\partial s}\right) \wedge \partial\left(\frac{\partial \psi}{\partial t}\right)+\partial\left(\frac{\partial \psi}{\partial t}\right) \wedge \bar{\partial}\left(\frac{\partial \psi}{\partial s}\right)\right) \omega_{0}(\psi)^{n-2} / \int_{X} \omega_{0}^{n} \\
& =0 .
\end{aligned}
$$

Step 2: We shall finally show (2.4.2). Since
$M\left(\varphi_{1}+C_{1}, \varphi_{2}+C_{2}\right)-M\left(\varphi_{1}, \varphi_{2}\right)=M\left(\varphi_{2}, \varphi_{2}+C_{2}\right)-M\left(\varphi_{1}, \varphi_{1}+C_{1}\right)$, it suffices to show $M(\varphi, \varphi+C)=0$ for all φ and C. Let $\psi_{t}:=\varphi+t C, t \in[0,1]$. Then

$$
M(\varphi, \varphi+C)=-\int_{0}^{1}\left(\int_{X} C\left(\sigma\left(\psi_{t}\right)-\lambda\right) v_{0}\left(\psi_{t}\right)\right) d t=0
$$

The proof of (2.4) is now complete.
(2.7) In view of (2.4.2) above, $M: H \times H \longrightarrow R$ factors through $K \times K$. Hence we can define a mapping $M: K \times K \longrightarrow R$ (denoted by the same M) satisfying the 1-cocycle condition by
(2.7.1) $M\left(\omega^{\prime}, \omega^{\prime \prime}\right):=M\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)$, for all $\omega^{\prime}, \omega^{\prime \prime} \in K$,
where $\varphi^{\prime}, \varphi^{\prime \prime}$ are functions in H such that $\omega_{0}\left(\varphi^{\prime}\right)=\omega^{\prime}$ and $\omega_{0}\left(\varphi^{\prime \prime}\right)=\omega^{\prime \prime}$. We now put $H_{0}:=\{\varphi \in H \mid L(0, \varphi)=0\}$. Then the restriction of the mapping $\varphi \in H \longmapsto \omega_{0}(\varphi) \in K$ to H_{0} is an isomorphism:

$$
\begin{aligned}
& H_{0} \cong K \\
& \varphi \longmapsto \omega_{0}(\varphi)
\end{aligned}
$$

Hence we can regard K as the subset H_{0} of H. By this identification, the mapping $M: K \times K \longrightarrow \mathbf{R}$ defined just above coincides with the restriction to $H_{0} \times H_{0}$ of the original mapping $M: H \times H \longrightarrow \mathbf{R}$.

A 1 -parameter family $\left\{\omega_{t} \mid a \leqq t \leqq b\right\}$ of Kähler forms in K is said to be smooth (or a smooth path) if it forms a smooth path in $C^{\infty}(X)_{R}$ via the identification $K=H_{0}$.
§ 3. K-energy maps and their critical points

DEFINITION (3.1). Let $\mu: K \longrightarrow \mathbf{R}$ be the mapping which associate, to each $\omega \in K$, the real number $\mu(\omega):=M\left(\omega_{0}, \omega\right)$, (cf. (2.7)). This μ is called the K-energy map of the Kähler manifold $\left(X, \omega_{0}\right)$. For every $\varphi \in H, \mu\left(\omega_{0}(\varphi)\right)$ will be denoted by $\mu(\varphi)$ for simplicity.

We write the above μ sometimes as $\mu_{\omega_{0}}$ because it depends on the choice of ω_{0}. If we replace the original ω_{0} by another ω_{0}^{\prime} cohomologous to ω_{0}, then the difference between $\dot{\mu}_{\omega_{0}}$ and $\mu_{\omega_{0}^{\prime}}$ is just a constant. In fact, for all $\omega \in K$

$$
\mu_{\omega_{0}}(\omega)-\dot{\mu}_{\omega_{0}^{\prime}}(\omega)=M\left(\omega_{0}, \omega_{0}^{2}\right)
$$

which is independent of $\omega \in K$. In particular every critical point of $\mu_{\omega_{0}}$ is, at the same time, that of $\mu_{\omega_{0}^{\prime}}$ and vice versa. Hence "critical points of $\mu^{\prime \prime}$ have an intrinsic meaning in the sense that it depends only on X and on the cohomology class of ω_{0} in $H^{1,1}(X, \mathbb{R})$.

THEOREM(3.2). Let $\mu: K \longrightarrow \mathbf{R}$ be the K-energy map of the Kähler manifold $\left(X, \omega_{0}\right)$. Then for an arbitrary element
ω of K, the following are equivalent:
i) ω is a critical point of μ,
ii) ω has a constant scalar curvature,
iii) ω has the constant scalar curvature λ.

PROOF: Let $\left\{\varphi_{t} \mid-\varepsilon \leq t \leq \varepsilon\right\}$ be a smooth path in H such that $\omega_{0}\left(\varphi_{0}\right)=\omega$. Then by (2.2.2) and (2.7.1),

$$
\frac{d}{d t} \mu\left(\left.\omega_{0}\left(\varphi_{t}\right)\right|_{t=0}=\left.\int_{x} \dot{\varphi}_{t}\right|_{t=0}(\sigma(\omega)-\lambda) \omega^{n} / \int_{x} \omega_{0}^{n}\right.
$$

which shows the equivalence of i) and iii). Thus the proof is reduced to showing that ii) implies iii) . Since $\int_{X}(\sigma(\omega)-\lambda) \omega^{n}=0 \quad$ for every $\omega \in K$, the required implication is now immediate.

DEFINITION (3.3). A compact complex connected manifold with ample anticanonical bundle (or equivalently with $c_{1}>0$) is said to be a Fano manifold. Differential-geometrically, a Fano manifold is a compact complex connected manifold which admits a Kähler metric with positive definite Ricci tensor, (cF. Yau [8]).

THEOREM (3.4). Suppose that X is a Fano manifold and furthermore that ω_{0} represents $2 \pi c_{1}(X)_{R}$. Consider the K-energy map $\mu: K \longrightarrow R$ of the Kähler manifold (X, ω_{0}). Then for an arbitrary element ω of K, the following are equivalent:
i) ω is a critical point of μ,
ii) ω is Einstein Kähler,
iii) ω is Einstein Kähler with the constant scalar curvature n.

PROOF: Note that λ is n, (cf. (1.2)). Since X is a Fano manifold, every Kähler form of constant scalar curvature in the cohomology class $c_{1}(X)_{\mathbb{R}}$ is Einstein. Then (3.4) is straightforward from Theorem (3.2).
84. Another interpretation of the K-energy map.

Recall that K is naturally identified with the subset H_{0} of H, (cf. (2.7)) . In this section, another interpretation of the K-energy map $\mu: H_{0}(=K) \longrightarrow \mathbb{R}$ of (X, ω_{0}), (cf. (3.1)), will be given. We shall actually show the following:

THEOREM (4.1). For each $\varphi \in H$, there exists a unique function $f_{\varphi} \in C^{\infty}(X)_{R}$ such that
(4.1.1) $\quad \sigma(\varphi)-\lambda=\square_{\varphi} f_{\varphi}$,
(4.1.2) $\int_{X} f_{\varphi} V_{0}(\varphi)=0$ if $\varphi=0$ in $C^{\infty}(X)_{\mathbb{R}}$, and
(4.1.3) $\frac{\partial}{\partial t}\left(f_{\varphi_{t}}-k_{\varphi_{t}}\right)=-\left(\square_{\varphi_{t}}+\nu\right) \dot{\varphi}_{t} \quad$ for every smooth path $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$. in H, where for each $\psi \in H$, we denote by k_{ψ} the function in $\quad C^{\infty}(X)_{\mathbb{R}}$ defined by

$$
\begin{aligned}
& \square_{\psi} k_{\psi}=\left(R\left(\omega_{0}\right)-v \omega_{0}\right) \wedge \cdot n \omega_{0}(\psi)^{n-1} / \omega_{0}(\psi)^{n} \\
& \int_{X} k_{\psi} \omega_{0}^{n}=0
\end{aligned}
$$

COROLLARY (4.2) Suppose that X is a Fano manifold and furthermore that ω_{0} represents $2 \pi c_{1}(X)_{\mathbb{R}}$. Then to each $\varphi \in H_{0}$, we can uniquely associate a function $f_{\varphi} \in C^{\infty}(X){ }_{R}$ (which is the same one as in (4.1)) such that
(4.2.1) $\sigma(\varphi)-\mathrm{n}=\mathrm{a}_{\varphi} \mathrm{f}_{\varphi}$, i.e., $\mathrm{R}(\varphi)-\omega_{0}(\varphi)=\sqrt{-1} \partial \bar{\partial} f_{\varphi}$,
(4.2.2) $\mu(\varphi)=-\int_{X} f_{\varphi} \nabla_{0}(\varphi)$, and
(4.2.3) $\quad \frac{\partial}{\partial t} f_{\varphi_{t}}=-\left(\square_{\varphi_{t}}+1\right) \dot{\varphi}_{t} \quad$ for every smooth path
$\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ in H_{0}.

In view of (4.2.2), the construction of f_{φ} is crucial to our approach. The key in the definition of f_{φ} is the following

DEFINTION (4.3). For each pair $\left(\varphi^{\prime}, \varphi^{\prime \prime}\right) \in H \times H$, we define a function $H\left(\varphi^{\prime}, \varphi^{\prime \prime}\right) \in C^{\infty}(\mathrm{X})_{R}$ by

$$
\begin{equation*}
H\left(\varphi^{\prime}, \varphi^{\prime \prime}\right):=-\int_{a}^{b}\left(\square_{t}+v\right) \dot{\varphi}_{t} d t \tag{4.3.1}
\end{equation*}
$$

where $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ is an arbitrary piecewise smooth path in H^{\prime} such that $\varphi_{a}=\varphi^{\prime}$ and $\varphi_{b}=\varphi^{\prime \prime}$.

THEOREM (4.4). $H\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)$ above is independent of the choice of the path $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ and therefore well-defined. Moreover,
(4.4.1) $H: H \times H \longrightarrow C^{\infty}(X)_{\mathbb{R}}$ satisfies the 1 -cocycle condition, ar (4.4.2) $\left\{R(\varphi)-v \omega_{0}(\varphi)\right\} \left\lvert\, \begin{aligned} & \varphi=\varphi^{\prime \prime} \\ & \varphi=\varphi^{\prime}\end{aligned}=\sqrt{-1} \partial \bar{\partial} H\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)\right.$.

PROOF: In view of the proof of (2.3), we may assume that $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ is a smooth path. Let $\psi(s, t):=s \varphi_{t}$ for $(s, t) \in[0,1] \times[a, b]$. Then by Lemma (2.6), we obtain a c^{∞} function $F(s, t, x) \in C^{\infty}([0,1] \times[a, b] \times x)_{\mathbb{R}}$ with the properties (i) ~ (iv) of (2.6). For each $(a, \tau) \in[0,1] \times[a, b]$, we set $F_{\sigma, \tau}:=F_{\mid(s, t)=(\sigma, \tau)}$. Then by (i),

$$
F_{1, t}-F_{0, t}=-\int_{0}^{1}\left(a_{\psi(s, t)}+\nu\right) \varphi_{t} d s
$$

On the other hand, by (ii) applied to the cases $s=0$ and $s=1$,

$$
\begin{aligned}
& F_{0, b}=F_{0, a} \\
& F_{1, b}-F_{1, a}=-\int_{a}^{b}\left(a_{\varphi_{t}}+v\right) \dot{\varphi}_{t} d t
\end{aligned}
$$

Combining the three equalities obtained just above, we have

$$
-\int_{a}^{b}\left(a_{t}+v\right) \dot{\varphi}_{t} d t=\left.\left(F_{1, t}-F_{0, t}\right)\right|_{t=a} ^{t=b}=-\left.\int_{0}^{1}\left(a_{\psi}(s, t)+v\right) \varphi_{t} d s\right|_{t=a} ^{t=b}
$$

The proof, except for (4.3.2), is then straightforward, For (4.3.2), applying (iv) of (2.6) to the cases $(s, t)=(1, a),(1, b)$, we now conclude that

$$
\left.\left\{R(\varphi)-\operatorname{v\omega }_{0}(\varphi)\right\}\right|_{\varphi=\varphi^{\prime}} ^{\varphi=\varphi^{\prime \prime}}=\sqrt{-1} \partial \bar{\partial}\left(\mathrm{~F}_{1, \mathrm{~b}}-\mathrm{F}_{1, \mathrm{a}}\right)=\sqrt{-1} \partial \bar{\partial} \mathrm{H}\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)
$$

We shall now define f_{φ} for each $\varphi \in H$ and then proseed to the proof of (4.1) and (4.2).

DEFINTITION (4.5).
(i) For each $\varphi \in H$, we define $f_{\varphi} \in C^{\infty}(X)_{R}$ by $f_{\varphi}:=k_{\varphi}+H(0, \varphi)$.
(ii) For each $\omega \in K$, let $f_{\omega} \in C^{\infty}(X)_{R}$ denote the function $\mathrm{f}_{\varphi_{\omega}}$, where φ_{ω} is the unique element of H_{0} such that $\omega=\omega_{0}\left(\varphi_{\omega}\right)$.

PROOF OF (4.1). Since the uniqueness is easy, it suffices to show f_{φ} defined in (4.5) satisfies (4.1.1)~(4.1.3). First, (4.1.2) is obvious from our definition of f_{φ}. We next observe that (4.1.3) is an immediate consequence of (4.3.1). For (4.1.1), we apply (4.4.2):

$$
R(\varphi)-v \omega_{0}(\varphi)=R\left(\omega_{0}\right)-v \omega_{0}+\sqrt{-1} \partial \bar{\partial} H(0, \varphi) .
$$

Taking the wedge product with $n \omega_{0}^{n-1}$, and then dividing both sides by $\omega_{0}(\varphi)^{n}$, we finally obtain

$$
\sigma(\varphi)-\lambda=\sigma_{\varphi}\left(k_{\varphi}+H(0, \varphi)\right)=\square_{\varphi} f_{\varphi} .
$$

PROOF OF (4.2): Since $R\left(\omega_{0}\right)$ and ω_{0} are cohomologous, we have $k_{\varphi}=f_{0}$ for every $\varphi \in H_{0}$, where $f_{0} \in C^{\infty}(X)_{R}$ is the function defined by the conditions $\int_{X} f_{0} \omega_{0}{ }^{n}=0$ and $R\left(\omega_{0}\right)-\omega_{0}=\sqrt{-1} \partial \bar{\partial} f_{0}$. Since (4.2.3) is then obvious from (4.1.3), the proof is reduced to showing (4.2.2) for f_{φ} defined in (4.5). Fix an arbitrary $\varphi \in H_{0}$, and we put $\psi_{t}:=t \varphi-L(0, t \varphi), t \in[0,1]$. Note that $\left\{\psi_{t} \mid 0 \leq t \leq 1\right\}$ is a smooth path in H_{0} connecting 0 with φ. In view of (4.1.2), the proof is further reduced to showing

$$
\frac{d}{d t} \mu\left(\psi_{t}\right)=-\frac{d}{d t} \int_{X} E_{\psi_{t}} V_{0}\left(\psi_{t}\right)
$$

for every $t \in[0,1]$. We can now finish the proof by the following computation:

$$
\begin{aligned}
& -\frac{d}{d t} \int_{X} f_{\psi_{t}} V_{0}\left(\psi_{t}\right)=\int_{X}\left(a_{\psi_{t}}+v\right) \dot{\psi}_{t} V_{0}\left(\psi_{t}\right)-\int_{X} f_{\psi_{t}}\left(a_{\psi_{t}} \dot{\psi}_{t}\right) V_{0}\left(\psi_{t}\right) \\
& =-\int_{X} f_{\psi_{t}}\left({a_{\psi_{t}}} \dot{\psi}_{t}\right) V_{0}\left(\psi_{t}\right)=-\int_{X}\left(\sigma\left(\psi_{t}\right)-\lambda\right) \dot{\psi}_{t} V_{0}\left(\psi_{t}\right)=\frac{d}{d t} \mu\left(\psi_{t}\right)
\end{aligned}
$$

§5. Futaki invariants as derivatives of the K-energy map.

Let Aut(X) be the group of holomorphic automorphisms of x, and let $A u t^{0}(x)$ be its identity component. For each holomorphic vector field $Y \in \Gamma(X, O(T(X))$ on X, we put

$$
Y_{R}:=Y+\bar{Y},
$$

and we later consider the corresponding 1-parameter group $y_{t}:=\exp t Y_{R},(t \in R)$. For each $\omega \in K$, let $f_{\omega} \in C^{\infty}(X)_{R}$ be the function defined in (4.5). Recall that

$$
\left.\sigma(\omega)-\lambda=\square_{\omega} f_{\omega}, \quad \text { (cf. }(4.1 .1)\right)
$$

Then a fundamental theorem of Futaki [4] states as follows:
(5.1) For every $Y \in \Gamma(X, O(T(X)))$, the number $C_{Y, \omega}:=\int_{X}\left(Y_{R} f_{\omega}\right) \omega^{n} / \int_{X} \omega_{0}^{n}$ doesn't depend on the choice of ω in but depends possibly on the Kähler class K. (Therefore $C_{Y, W}$ will be denoted by $C_{Y, K}{ }^{\prime}$)
(5.2) If there exists a $\tilde{\omega} \in K$ such that $(X, \widetilde{\omega})$ is a Kähler manifold of constant scalar curvature, then $C_{Y, K}=0$ for all $Y \in \Gamma(X, O(T(X)))$.

The main purpose of this section is to show that the first derivative of the K-energy map $\mu: K \longrightarrow R$ along each orbit $\left\{y_{t} * \omega \mid t \in \mathbb{R}\right\}$ of the 1 -parameter group $\left\{y_{t}\right\}_{t \in \mathbb{R}}$ is
nothing but $C_{Y, K}$. Using this fact, we shall give another proof of (5.2) of Futaki's theorem. In a subsequent paper (cf. Bando and Mabuchi [1]), a very simple proof of (5.1) will also be given in a more general situation.

THEOREM (5.3). Let Y be an arbitrary holomorphic vector field on X. Then for all $t \in R$ and $\omega \in K$

$$
\mu\left(Y_{t}^{*} \omega\right)=\mu(\omega)+t C_{Y, K}
$$

PROOF: For each $t \in \mathbb{R}$, there uniquely exists a function $\varphi_{t} \in H_{0}$ such that $y_{t}{ }^{*} \omega=\omega_{0}\left(\varphi_{t}\right)$. For simplicity, we write $y_{t} * \omega$ and $f_{y_{t}}{ }^{*} \omega$ as ω_{t} and f_{t} respectively. We furthermore put $\quad V^{t}:=\int_{X} \omega_{0}^{n} / n!$. Note that

$$
L_{Y_{\mathbb{R}}} \omega_{t}=\frac{\partial}{\partial t} \omega_{t}=\sqrt{-1} \partial \bar{\partial} \dot{\varphi}_{t}
$$

Since $0=\int_{X} L_{Y_{R}}\left(f_{t} \omega_{t}{ }^{n}\right)=\int_{X}\left(Y_{R} f_{t}\right) \omega_{t}^{n}+n \sqrt{-1} \int_{X} f_{t} \omega_{t}^{n-1} \wedge \partial \vec{\partial} \dot{\varphi}_{t}$, we have, for every $t \in \mathbb{R}$,

$$
\begin{aligned}
& C_{Y, K}=\int_{X}\left(Y_{R} f_{t}\right) \omega_{t}^{n /(n!V)=-n \sqrt{-1} \int_{X} f_{t} \omega_{t}^{n-1} \wedge \partial \bar{\partial} \dot{\varphi}_{t} /(n!V)} \\
& =\sqrt{-1} \int_{X} \partial f_{t} \wedge \bar{\partial} \dot{\varphi}_{t} \wedge \omega_{t}^{n-1} /((n-1)!V)=(1 / V)\left(\partial f_{t}, \partial \dot{\varphi}_{t}\right)_{L}^{2}\left(X, \omega_{t}\right) \\
& =-(1 / V)\left(a_{\omega_{t}} f_{t}, \dot{\varphi}_{t}\right)_{L}^{2}\left(X, \omega_{t}\right)=-\int \dot{\varphi}_{t}\left(\sigma\left(\varphi_{t}\right)-\lambda\right) V_{0}\left(\varphi_{t}\right) \\
& =d \mu\left(\omega_{t}\right) / d t .
\end{aligned}
$$

from which the required equality immediately follows.

PROOF OF (5.2) of Futaki's theorem (by assuming (5.1)): By Theorem (3.2), $\mu: K \longrightarrow \mathbf{R}$ has a critical point at $\tilde{\omega}$. Hence, for an arbitrary $Y \in H^{0}(X, O(T(X)))$,

$$
c_{Y, K}=\left.\frac{d}{d t} \mu\left(Y_{t} * \tilde{\omega}\right)\right|_{t=0}=0
$$

For Fano manifolds, we have the following stronger facts:

THEOREM (5.4). Assume that X is a Fano manifold (where it is not necessary to assume that ω_{0} represents a specific class such as $2 \pi c_{1}(X)_{R}$) . Suppose furthermore that there exists a Kähler form $\tilde{\omega} \in K$ of constant scalar curvature. Then the K-energy map $\mu: K \longrightarrow R$ of the compact Kähler manifold $\left(X, \omega_{0}\right)$ satisfies

$$
\mu\left(g^{\star} \omega\right)=\mu(\omega) \quad(\omega \in K)
$$

for all $g \in A u t(X)$ with $g^{*} K=K$.

PROOF: Since X is a Fano manifold, there exists an $m \in Z$ ($m \gg 1$) such that the line bundle $K_{X}{ }^{-m}$ is very ample. Hence Aut (X) is regarded as a closed (algebraic) subgroup of $\operatorname{PGL}(N ; \mathbb{C})\left(=\operatorname{Aut}\left(\mathbb{P}\left(\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}\left(\mathrm{K}_{\mathrm{X}}^{-\mathrm{m}}\right)\right)\right)\right)\right.$ (where $\mathrm{N}=\mathrm{h}^{0}\left(\mathrm{X}, \mathrm{O}\left(\mathrm{K}_{\mathrm{X}}{ }^{-\mathrm{m}}\right)\right)$. Thus for every $g \in A u t(x)$, we have $g^{\alpha} \in A u t^{0}(x)$ for some positive integer α. Then there exists a sequence $h_{0}=e, h_{1}, h_{2}, \ldots, h_{r-1}, h_{r}=g^{\alpha}$ of points of Aut ${ }^{0}(x)$ such that $h_{i}=h_{i-1} \cdot \exp Y_{i \mathbb{R}}(i=1,2, \ldots, r)$ for some
$Y_{i} \in H^{0}(X, O(T(X)))$. We observe, from the defintion of M in $\S 2$, that

$$
M\left(\left(g^{j-1}\right) * \omega,\left(g^{j}\right) * \omega\right)=M\left(\left(g^{j-1}\right) * \omega,\left(g^{j-1}\right) *\left(g^{*} \omega\right)\right)=M\left(\omega, g^{*} \omega\right)
$$

for each j. Hence

$$
\begin{aligned}
& \alpha\left(\mu\left(g^{\star} \omega\right)-\mu(\omega)\right)=\alpha M\left(\omega, g^{*} \omega\right)=\sum_{j=1}^{\alpha} M\left(\left(g^{j-1}\right) * \omega,\left(g^{j}\right) * \omega\right)=M\left(\omega,\left(g^{\alpha}\right) * \omega\right) \\
& =\sum_{i=1}^{r} M\left(\left(h_{i-1}\right) * \omega,\left(h_{i}\right) *(\omega)=\sum_{i=1}^{r} M\left(\left(h_{i-1}\right) * \omega, \quad\left(\exp \left(Y_{i \mathbb{R}}\right)\right)^{*}\left(h_{i-1}\right) * \omega\right)\right. \\
& =\sum_{i=1}^{r} C_{Y_{i}, K}=0, \quad \text { (cf. (5.2)), }
\end{aligned}
$$

as required.
§6. The second variation formula for K-energy maps.
Throughout this section, for simplicity, we assume that X is a Fano manifold with a Kähler form $\omega_{0}=\sqrt{-1} \sum g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}$ representing $2 \pi c_{1}(X)_{\mathbb{R}}$, (cf. §1). We furthermore fix a smooth path $\left\{\varphi_{t} \mid a \leq t \leq b\right\}$ in H.

We denote by ∇^{t} the covariant derivative on the space of 1 -forms of the Kähler manifold $\left(X, \omega_{0}\left(\varphi_{t}\right)\right)$, and let Λ_{t} be the Λ-operator

$$
\sum a_{\alpha \bar{\beta}} \mathrm{d} z^{\alpha} \wedge d z^{\bar{\beta}} \xrightarrow{\Lambda_{t}} \frac{1}{\sqrt{-1}} \sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha} a_{\alpha \bar{\beta}}
$$

of $\left(X, \omega_{0}\left(\varphi_{t}\right)\right)$. Let $f_{\varphi_{t}} \in C^{\infty}(X)_{\mathbb{R}}$ be the function defined in (4.5), and we denote this function simply by f_{t}. Then

$$
\begin{aligned}
& \dot{f}_{t}=-\left(\square_{\varphi_{t}}+1\right) \dot{\varphi}_{t}, \text { and } \\
& R\left(\varphi_{t}\right)-\omega_{0}\left(\varphi_{t}\right)=\sqrt{-1} \partial \bar{\partial} f_{t}, \quad \text { i.e., } \sigma\left(\varphi_{t}\right)-n=a_{\varphi_{t}} f_{t},
\end{aligned}
$$

for every $t \in[a, b],(c f .(4.2))$. We shall first prove:

LEMMA (6.1). Let $Y\left(=\sum_{\alpha} y^{\alpha} \partial / \partial z^{\alpha}\right)$ be an arbitrary complex valued c^{∞} global vector field of type $(1,0)$ on X. Then for every $\psi \in C^{\infty}(X)_{\mathbb{R}}$,

$$
\begin{aligned}
\text { (6.1.1) } & \sqrt{-1} \Lambda_{t} \bar{\partial}\left\{-\left(Y f_{t}\right) \partial \psi+\nabla_{Y}^{t} \partial \psi\right\}+\sqrt{-1} \Lambda_{t}\left\{(\bar{\partial} Y)\left(f_{t}\right) \wedge \partial \psi-\nabla_{\partial}^{t} \partial \psi\right\} \\
& =Y\left(-\nabla_{\varphi_{t}} \psi-\psi\right)+\left(Y f_{t}\right){a_{\varphi}}_{t} \psi
\end{aligned}
$$

where $(\bar{\partial} Y)\left(f_{t}\right):=\sum_{\alpha, \beta} y_{\bar{\beta}}^{\alpha}\left(f_{t}\right)_{\alpha} d z^{\bar{\beta}}$ and $\nabla \frac{t}{\partial} Y \partial \psi:=$ $\sum_{\alpha, \beta}\left(y^{\alpha} \bar{\beta} d z^{\bar{\beta}} \wedge \nabla_{\partial / \partial z^{\alpha}}{ }^{\partial \psi}\right)$. (We use such notation $y^{\alpha} \bar{\beta}=\partial y^{\alpha} / \partial z^{\bar{\beta}}$, $\left(f_{t}\right)_{\alpha}:=\partial f_{t} / \partial z^{\alpha}, \ldots$ as is explained in (1.3).)

PROOF: Fix an arbitrary pair $(t, p) \in \mathbb{R} \times X$. We then choose a system $z=\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates of X centered at p such that

$$
g\left(\varphi_{t}\right)_{\alpha \bar{\beta}}(p)=\delta_{\alpha \beta} \quad \text { and } \quad d\left(g\left(\varphi_{t}\right)_{\alpha \bar{\beta}}\right)(p)=0
$$

for all α and β. Since there is no fear of confusion, the following $g\left(\varphi_{t}\right)_{\alpha \bar{\beta}}, g\left(\varphi_{t}\right)^{\bar{\beta} \gamma}, R\left(\varphi_{t}\right)_{\alpha \bar{\beta}}, f_{t}, \nabla^{t}, \Lambda_{t}, q_{\varphi_{t}}$ will be denoted simply by $G_{\alpha \bar{B}}{ }^{\prime} G^{\bar{\beta}} \gamma, R_{\alpha \bar{\beta}}, f, \nabla, \Lambda$, a respectively. Then at the point $(t, p) \in \mathbb{R} \times X$,
(6.1.2) $\sqrt{-1} \Lambda \bar{\partial}\left\{-(Y f) \partial \psi+\nabla_{Y} \partial \psi\right\}$

$$
\begin{aligned}
= & \sum_{\alpha, \beta}\left(y^{\alpha} \bar{\beta} f_{\alpha} \psi_{\beta}+y^{\alpha} f_{\alpha \bar{\beta}} \psi_{\beta}+y^{\alpha} f_{\alpha} \psi_{\beta \bar{\beta}}\right) \\
& +\sum_{\alpha, \beta}\left\{-y_{\bar{\beta}}^{\alpha} \psi_{\beta \alpha}-y^{\alpha} \psi_{\beta \alpha \bar{\beta}}+y^{\alpha} \sum_{\delta} \psi_{\delta}\left(\partial^{2} G_{\beta \bar{\delta}} / \partial z^{\alpha} \partial z^{\bar{\beta}}\right)\right\} \\
= & \sum_{\alpha, \beta}\left\{Y^{\alpha} \bar{\beta} f_{\alpha} \psi_{\beta}+y^{\alpha}\left(R_{\alpha \bar{\beta}}-\delta_{\alpha \beta}\right) \psi_{\beta}\right\}+(Y \bar{y}) \square \psi \\
& +\sum_{\alpha, \beta}\left(-y^{\alpha} \bar{\beta} \psi_{\beta \alpha}-y^{\alpha} \psi_{\beta \bar{\beta} \alpha}\right)-\sum_{\alpha, \delta} y^{\alpha} R_{\alpha \bar{\delta}} \psi_{\delta} \\
= & \sum_{\alpha, \beta}\left(y^{\alpha} \bar{B} f_{\alpha} \psi_{\beta}-y^{\alpha} \bar{\beta} \psi_{\beta \alpha}\right)+Y(-\psi-\square \psi)+(Y f) \square \psi
\end{aligned}
$$

On the other hand, at the same point (t, p),
(6.1.3) $\sqrt{-1} \Lambda\left\{(\bar{\partial} Y)(E) \wedge \partial \psi-V_{\bar{\partial} Y} \partial \psi\right\}=-\sum_{\alpha, \beta}\left(Y_{\bar{B}}^{\alpha} E_{\alpha} \psi_{\beta}-Y_{\bar{B}}^{\alpha} \psi_{B \alpha}\right)$.

Adding up (6.1.2) and (6.1.3), we obtain (6.1.1).

THEOREM (6.2). (Second variation formula). For every $t \in[a, b]$, we have
(6.2.1) $\frac{d^{2}}{a t^{2}} \mu\left(\varphi_{t}\right)=\frac{1}{v} \|\left.\bar{\partial} Y_{t}\right|_{L} ^{2}\left(x, \omega_{0}\left(\varphi_{t}\right)\right)$

$$
-\int_{X}\left\{\ddot{\varphi}_{t}-\dot{L}_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\dot{\varphi}_{t}\right)_{\alpha}\left(\dot{\varphi}_{t}\right)-\bar{\beta}\right\}\left(\sigma\left(\varphi_{t}\right)-n\right) v_{0}\left(\varphi_{t}\right)
$$

where $V:=\int_{X} \omega_{0}^{n / n!}$ and $Y_{t}:=\sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\dot{\varphi}_{t}\right) \bar{\beta}^{n / \partial z^{\alpha}}$.

PROOF: We integrate, on X, the equality (6.1.1) applied to $(\psi, Y)=\left(\dot{\varphi}_{t}, Y_{t}\right)$. Then by $\int_{X} \sqrt{-1}\left(\Lambda_{t} \bar{\partial}\{\ldots\}.\right) v_{0}\left(\varphi_{t}\right)=0$, we obtain

$$
\begin{aligned}
& \text { (6.2.2) } \int_{X} \sqrt[r-1]{ } \Lambda_{t}\left\{\left(\bar{\partial} Y_{t}\right)\left(f_{t}\right) \wedge \partial \dot{\varphi}_{t}-\nabla \frac{t}{\partial Y_{t}} \partial \dot{\varphi}_{t}\right\} V_{0}\left(\varphi_{t}\right) \\
& \quad=\int_{X} Y_{t}\left(-a_{\varphi_{t}} \dot{\varphi}_{t}-\dot{\varphi}_{t}\right) V_{0}\left(\varphi_{t}\right)+\int_{X}\left(Y_{t} f_{t}\right)\left(a_{\varphi_{t}} \dot{\varphi}_{t}\right) V_{0}\left(\varphi_{t}\right)
\end{aligned}
$$

On the other hand

$$
\text { (6.2.3) } \begin{aligned}
& \frac{d^{2}}{d t^{2}} \mu\left(\varphi_{t}\right)=\frac{d}{d t} \int_{X}-\dot{\varphi}_{t}\left(\square_{\varphi_{t}} f_{t}\right) v_{0}\left(\varphi_{t}\right) \\
&=\frac{d}{d t}\left\{(1 / V)\left(\bar{\partial} \dot{\varphi}_{t}, \bar{\partial}_{t}\right)\right. \\
&\left.L^{2}\left(X, \omega_{0}\left(\varphi_{t}\right)\right)\right\} \\
&=\int_{X} \frac{\partial}{\partial t}\left\{\sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{B} \alpha}\left(\dot{\varphi}_{t}\right) \bar{\beta}\left(f_{t}\right)_{\alpha} v_{0}\left(\varphi_{t}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & -\int_{X} \sum_{\alpha, \beta, \gamma, \delta} g\left(\varphi_{t}\right)^{\bar{\beta} \gamma}\left(\dot{\varphi}_{t}\right)_{\gamma \bar{\delta}} g\left(\varphi_{t}\right)^{\bar{\delta} \alpha}\left(\dot{\varphi}_{t}\right)_{\bar{\beta}}\left(f_{t}\right)_{\alpha} V_{0}\left(\varphi_{t}\right) \\
& +\int_{X} \sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\ddot{\varphi}_{t}\right) \bar{\beta}^{\left(f_{t}\right)_{\alpha} V_{0}\left(\varphi_{t}\right)} \\
& +\int_{X} Y_{t}\left(\dot{f}_{t}\right) V_{0}\left(\varphi_{t}\right)+\int_{X}\left(Y_{t} f_{t}\right)\left(\square_{\varphi_{t}} \dot{\varphi}_{t}\right) V_{0}\left(\varphi_{t}\right)
\end{aligned}
$$

Since $\dot{f}_{t}=-\left({a_{\varphi}}_{t}+1\right) \dot{\varphi}_{t}$, the right-hand side of (6.2.2) coincides with the sum of the last two integrals of the bottom of (6.2.3). Hence
(6.2.4) $\frac{d^{2}}{d t^{2}} \mu\left(\varphi_{t}\right)=$

$$
\begin{aligned}
& -\int_{X} \sum_{\alpha, \beta, \gamma, \delta} g\left(\varphi_{t}\right)^{\bar{\beta} \gamma}\left(\dot{\varphi}_{t}\right)_{\gamma \bar{\delta}} g\left(\varphi_{t}\right)^{\delta \alpha}\left(\dot{\varphi}_{t}\right)_{\beta}\left(f_{t}\right)_{\alpha} V_{0}\left(\varphi_{t}\right) \\
& +\int_{X} \sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\ddot{\varphi}_{t}\right) \bar{\beta}\left(f_{t}\right)_{\alpha} V_{0}\left(\varphi_{t}\right) \\
& +\int_{X} \sqrt{-1} \Lambda_{t}\left\{\left(\bar{\partial} Y_{t}\right)\left(f_{t}\right) \wedge \partial \dot{\varphi}_{t}-\nabla_{\bar{\partial} Y_{t}}^{t} \partial \dot{\varphi}_{t}\right\} V_{0}\left(\varphi_{t}\right)
\end{aligned}
$$

Note the following identities:
(6.2.5) $0=\int_{X}-\sqrt{-1} \Lambda_{t} \bar{\partial}\left(\sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha_{(}}\left(\dot{\varphi}_{t}\right)-\dot{\beta}\left(\dot{\varphi}_{t}\right)_{\alpha} \partial f_{t}\right) V_{0}\left(\varphi_{t}\right) ;$
(6.2.6) $\int_{X} \sum_{\alpha, \beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\ddot{\varphi}_{t}\right)_{\bar{\beta}}\left(f_{t}\right) V_{\alpha}\left(\varphi_{t}\right)=(1 / V)\left(\bar{\partial} \ddot{\varphi}_{t}, \partial f_{t}^{\prime}{ }_{L}{ }^{2}\left(X, \omega_{0}\left(\varphi_{t}\right)\right)\right.$

$$
=(1 / V)\left(\ddot{\varphi}_{t^{\prime}}-\square_{\varphi_{t}} f_{t}{ }_{L^{2}\left(X, \omega_{0}\right.}\left(\varphi_{t}\right)\right)=-\int_{X} \ddot{\varphi}_{t}\left(\sigma\left(\varphi_{t}\right)-n\right) V_{0}\left(\varphi_{t}\right)
$$

Adding up $(6.2 .4),(6.2 .5)$ and $(6.2 .6)$, we obtain

$$
\frac{d^{2}}{d t^{2}} \mu\left(\varphi_{t}\right)=\int_{x} h v_{0}\left(\varphi_{t}\right)
$$

where $h=h(t, x) \in C^{\infty}([a, b] \times x)$ is the function defined by

$$
\begin{aligned}
h:= & -\sum_{\alpha, \beta, \gamma, \delta}\left\{g\left(\varphi_{t}\right)^{\bar{\beta} \gamma}\left(\dot{\varphi}_{t}\right)_{\gamma \bar{\delta}} g\left(\varphi_{t}\right)^{\bar{\delta} \alpha}\left(\dot{\varphi}_{t}\right) \bar{\beta}\left(f_{t}\right)_{\alpha}\right\}-\ddot{\varphi}_{t}\left(\sigma\left(\varphi_{t}\right)-n\right) \\
& +\sqrt{-1} \Lambda_{t}\left\{\left(\bar{\partial} Y_{t}\right)\left(f_{t}\right) \wedge \partial \dot{\varphi}_{t}-\nabla \bar{\partial}^{t} Y_{t} \partial \dot{\varphi}_{t}-\bar{\partial}\left(\sum_{\alpha_{, \beta}} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha^{\prime}}\left(\dot{\varphi}_{t}\right) \bar{\beta}^{(}\left(\dot{\varphi}_{t}\right)_{\alpha} \partial f_{t}\right)\right\} .
\end{aligned}
$$

On the other hand, writing Y_{t} as $\sum_{\alpha} y^{\alpha} \partial / \partial z^{\alpha}$ (in which we put $\left.y^{\alpha}:=\sum_{\beta} g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\dot{\varphi}_{t}\right) \bar{\beta}\right)$, we have

$$
(\text { Right-hand side of }(6.2 .1))=\int_{X} k v_{0}\left(\varphi_{t}\right)
$$

where $k=k(t, x) \in C_{\mathbb{R}}^{\infty}([a, b] \times X)$ is the function defined by

$$
k:=\left\{\sum g\left(\varphi_{t}\right)_{\alpha \bar{\beta}} g\left(\varphi_{t}\right)^{\bar{\gamma} \delta}\left(y^{\alpha}\right)_{\bar{\gamma}}\left(\overline{y^{\beta}}\right)_{\delta}\right\}-\left(\ddot{\varphi}_{t}-\sum g\left(\varphi_{t}\right)^{\bar{\beta} \alpha}\left(\dot{\varphi}_{t}\right)_{\alpha}\left(\dot{\varphi}_{t}\right) \bar{\beta}\right)\left(\sigma\left(\varphi_{t}\right)-\mathrm{n}\right)
$$

We fix an arbitrary pair $(t, p) \in[a, b] \times X$ and choose a system $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates of X centered at p such that

$$
g\left(\varphi_{t}\right)_{\alpha \bar{\beta}}(p)=\delta_{\alpha \beta} \quad \text { and } \quad d\left(g\left(\varphi_{t}\right)_{\alpha \bar{\beta}}\right)(p)=0
$$

$$
\begin{aligned}
& h=\left\{\sum_{\alpha, \gamma}\left(\dot{\varphi}_{t}\right)-\bar{\gamma}\left(\dot{\varphi}_{t}\right)_{\gamma \alpha}\right\}-\ddot{\varphi}_{t}\left(\sigma\left(\varphi_{t}\right)-n\right)+\sum_{\alpha, \gamma}\left(\dot{\varphi}_{t}\right)_{\alpha}\left(\dot{\varphi}_{t}\right)-E_{\gamma \bar{\gamma}} \\
& =\left\{\sum_{\alpha, \gamma}\left(\dot{\varphi}_{t}\right) \bar{\gamma} \bar{\alpha}\left(\dot{\varphi}_{t}\right)_{\gamma \alpha}\right\}-\left(\ddot{\varphi}_{t}-\sum_{\alpha}\left(\dot{\varphi}_{t}\right)_{\alpha}\left(\dot{\varphi}_{t}\right)-\right)\left(\sigma\left(\varphi_{t}\right)-n\right)=k
\end{aligned}
$$

as required.

COROLLARY (6.3). If ω is a critical point of $\mu: K \longrightarrow \mathbb{R}$, then the ineguality

$$
\left.\frac{d^{2}}{d t^{2}} \mu\left(\theta_{t}\right)\right|_{t=0} \geq 0
$$

holds for every smooth path $\left\{\theta_{t} \mid-\varepsilon \leq t \leq \varepsilon\right\}$ in K such that $\theta_{0}=\omega$.

REMARK (6.4). An interesting interpretation of (6.2.1) will be given in a forthcoming paper[7].

REFERENCES

[1] S. Bando and T. Mabuchi: Uniqueness of Einstein Kahler metrics modulo connected group actions (to appear).
[2] S.K. Donaldson: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles (to appear).
[3] A. Futaki: An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437-443.
[4] A. Futaki: On compact Kähler manifolds of constant scalar curvatures, Proc. Japan Acad. 59 Ser. A (1983), 401-402.
[5] S. Kobayashi: Curvature and stability of vector bundles, Proc. Japan Acad. 58 Ser. A (1982), 158-162.
[6] T. Mabuchi: A functional integrating Futaki's invariant, Proc. Japan Acad. 61 Ser. A (1985), 119-120.
[7] T. Mabuchi: Some symplectic geometry on compact Kähler manifolds (to appear).
[8] S.T. Yau: on the Ricci curvature of a compact Kähler manifold and the complex Monge-Amperre.equation (I), Comm. Pure Appl. Math. 31 (1978), 339-411.

