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K-enengy maps integrating Fultaki invariants

§0. INTRODUCTION:

One of the long-standing questions in complex differen-
tial geometry is the following: given a compact complex
connected manifold V with c1(V):>0 , can one find a simple
criterion of the existence of an Einstein Kihler metric on V ?
At present, there are no definitive answers, but the following

conjecture of A. Futaki [3] seems to be reasonable.

(I) GENERALIZED CALABI'S CONJECTURE (FUTAKI): Suppose that

the identity component Auto(V) of the group of holomorphic

automorphisms of V is a reductive algebraic group. IE

futhermore to each holomorphic wvector figld»cn V , the

corresponding Futaki invariant vanishes, then V admits an

Einstein Kdhler metric.

On the other hand, as a characterization of Einstein
Hermitian wvector bundles on compact Kdhler manifolds, S.

Kobayashi [5] raised the following:

(IT) KOBAYASHI'S CONJECTURE: Let E be an indecomposable

holomorphic vector bundle on a compact KZhler manifold W

with Kdhler metric 9y - Then E admits an Einstein Herﬁitian

metric if and only if E is stable (in the sense of Mumford-

Takemoto) with respect to 9y -+



Recently, S.K. Donaldson [2] solved (II) for the case
where W 1is a projective algebraic surface. One crucial step
of his proof is a construction of a non-linear functional A
from the set of all Hermitian metrics on E to the real num-
bers such that (1) any critical peint of A 1is exactly an
Einstein Hermitian metric on E and that (2) A 1is bounded

from below if and only if E is semistable with respect to g.

Although (I) and (II) look quite different, there is some
link between these conjectures. Actually even for (I), the
same procedure as in Donaldson's work can considerably be

carried out.

Fix a Kdhler form wo = ¢v=1 Zgagdza;\dzs on V . In
this introduction, for simplicity, we assume that wy repre-
sents 21rc1(V)R . We denote by K the set of all Kihler

forms ocn V cohomologous to. Wy - Let £ be a real valued

0
c” function on V which is uniquely determined, up to con-
stant, by the equation

33 log det (ga-B-) - ZgaBdZaAdZB = 35f0 .

The main purpose of this paper is to prove the following

theorem annocunced earlier in [6].

THEQREM: There exists a mapping p : K —> R satisfying

the following conditions:

(i) An element w of K is a critical point of p if and

if © is Einstein K&hler, (cf. §3).




{(ii) 'Let Y be a holomorphic vector field on V , and

w be an element of K . Put ¥, := Y+Y and Y, = exp t¥p

for t€ER . Then u(ytfw) is a linear function of t . Namely

for every t ,

a o n n
v v

where the right-hand side is the Futaki invariant of V

corresponding to the holomorphic vector field Y , (cf. §5).

(iii) If w 4is a.critical point of u , then the inequality

2
2 n(ey) 20
dt t=0

holds for every smooth path {et] -estge} in K such

that 90 = n , {cf. §6).

This g : K—>R is called the K-energy map of the

Kdhler manifold (V,mol . In view of (i) and (ii) above, one
can easily see that if [_(Ypfo)wy® X 0 for some holomorphic
vector field Y on V , then p cannot have a critical point,
i.e., X does not admit any Einstein K3hler metric, which
gives another proof of a fundamental theorem of Futaki [3].
Furthermore  {i) and (iii) above gives us some indication that
Conjecture (I) can be weakened in the following more plausible

form.



(III) CONJECTURE: Suppose that Aut®(V). is a reductive

algebraic group. If p is bounded from below, then V

admits an Einstein Kd&hler metric.

Several supplements to this paper will be found in [7].
In a forthcoming paper (cf. S. Bando and T. Mabuchi [1]), we

shall show the following interesting theorem.

THEOREM: Let E be. the set of all Einstein Kihler forms in

K , and k¥ be the set of all w€K with positive definite

Ricci tensor. Assume that E X & . Then

{i) the restriction u1K+ :K+ —> R is bounded from below,

and u K+ takes its absolute minimum on € .

(ii) For any w, and w, in E , there exists an element

g of AﬁtO{V) such that g*wz = g .

We shall also give several generalizations of in the

latter paper.

In conclusion, I wish to thank all those people whb
encouraged me and gave me suggestions, and in particular
Professors S. Kobayashi and H. Ozeki, and Doctors S. Bando
I. Enoki and R. Kobayashi, who helped me again and again
during the preparation of this paper. My hearty thanks. go
also to the Max-Planck-Institut flir Mathematik for its
hospitality and constant assistance all through my stay in

Bonn.



§1. NOTATION AND CONVENTION:

Throughout this paper we fix an arbitrary n-dimensional
compact Kdhler connected manifold X with Kdhler form
e _an® B
wg = V=1 Z‘.gaedz ~dz" , where Wy
holomorphic local coordinates (21,2

is written in terms. of

2,...,zn) . Let

K :={_w

Kdhler form on X which is cohomologous}

1.1

to mo in H (X,R)

For each element w = /=1 Zg,r(m)mgfdzm/\dzf—3 of K , we denote
by ZIR(w) aédzaédzg the corresponding Ricci tensor. We put
R{w) := M’ZR(w)aB—ngAdZE . Then R(w)/2m represents
c1(X)R and we have R(w) = V=71 393 log det (gaéf‘”)z Furthermore,

let o{w) (resp. 8, } be the corresponding scalar curvature

(resp. Laplacian on functions):

.= Ba _
of{w) := Iglw) R(m)aB ’

o := Dg(wB®3?/32%328

where. (g(w)f®) is the inverse matrix of (g(w), g) . For
each real valued C~ function cpECm(x) r ©n X, we put
wﬂ(cp) 3= W, +7-1233¢ , and let

H := {p€C (X)p | wyl0) €K} .

Note that the natural map



H
¢ > Wy (o)

> K

is surjective. For each @w€&€H , the corresponding

. ' _ : Ba
Dwo(w) r 0lwg (@)}, Rlw, (@) Rlwy (0)) 5 » glwg (@) g * Fluy (o))
will be denoted simply by o_, c(9) , R(yp) , R{y) aB ! g(ﬁp}aé v

)
glv) Ba respectively.

DEFINITION (1.1): A 1-parameter family {;ptl asts<sb} of

functions in Cm(X)R is said to be smooth (or a smooth path)

if the mapping

[a,b] xX —>R

(t, x) t—> wt(X)
is ¢~ We then put ¢, := 3@ /3t and @, = ach /31:2
. P e ¢ t t t :

DEFINITION {1.2): We define the real constants A and v

by

Az=2n7 J ¢4 (X)ms‘n'T/I m‘On, v := A/ .
X X

Furthermore, toc each g€ c“(X)R r we associate an (n,n)~form

VG(QD) on X as follows:

Vg lo) == wotw)“/] we® -
X



This is normalized so that fx VO(Q) = 1 ., Moreover, if Wy

represents 2wc1(X)R s them A =n .

DEFINITION (1.3): Let (z1,zz,...,zn) be a system of

holomorphic local coordinates on X . For every fEECw(X)R

we use the following notation:

s= aaf ’ fGB := BaBBf ’ f&B 1= Baagf
f r faB? HA aaaﬁa?f § ooy

£ := 39 £ , £~
n
£

where we denote by 3a (resp. 3&’86'33'8?) the operator
3/3z% (resp. 3/9z% , a/azB , a/azB , 8/5zY ) . Our nota-
tion is slightly different from the ordinary one, because

for instance, £ is not ¢



§2. Basic Constructions:

This section is a‘'crucial step in the construction of

the K-energy map 4§ . We shall introduce the mappings

t

CT(X)pxCX)y —> R, (cf. (2.5)) ,

M:  H x H —> R, {cf. (2.4)) ,

where the latter immediately defines p , {(cf. (2.7), (3.1)).
Although the functional L is not essential in later sec-
tions, it none the less plays an important role in our forth-

coming papers (cf. Mabuchi [7], Bando and Mabuchi [1]).

DEFINITION (2.1): Let S be a non-empty set and A be
an additive group. Then a mapping N : §x§ — A is said

to satisfy the 1-cocycle condition if

i) N(a1,02)+ N(oz,c1} = 0 and

ii) N(a1,02;+ N(az,a3) + N(o3,o1) =0

for all Tqr05:05 € 5 .

DEFINITION (2.2). For every (©',0") €H x H, we define real

numbers L(p',9"), Mlp',0") by

b -
{2.2.1) L{p',9") := ja(}'th Vo(wt})dt



b
(2.2.2) M(o',0") := - ja{-(x &’t(c(wt) - A) Vo(mt)}dt ’

where {cpt' ast<b} is an arbitrary piecewise smooth path

in # such that xpa=cp’ and @0, = 9" .

THEOREM (2.3). L(w',9") above is independent of the choice of

the path {o_|a<tsb} and therefore well-defined. Moreover,

(2.3.1) L satisfies the 1-cocycle condition, and
(2.3.2) L (0,0, + C) = L{w,,9,) + C for all u,,9,

anéall CER .

THEOREM (2.4). M(w',9") above is independent of the choice

of the path {(pt’ astsb} and therefore well-defined. More-

over,

(2.4.1) M satisfies the 1-cocycle condition, and

(2.4.2) M{o, +Cy,0, +C,) = M(0,,9,) for all o,,9,
and all C1,C2 €ER.

PROOF of (2.3): Let ¥(s,t) := so_ for (s,t) € [0,1]x [a,b].
Since {wt‘fa st £b} is piecewise smooth, there exist a par-
tition a = ag<ay;<az< -t <a = b of the interval

Ta,b] such that {o, | aj_qsts a;} is smooth for each

ie€{1,2,...,x} .
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Step 1: We shall first show that

E;U 9 o“”t’)dt ) I;(lev w’)dsi ai

i-1

i

Let ¥(s,t) : (jx-g-g we(d:)n ds)+ (Jx-g-%mo(w)n)dt. Then in

view of Figure 1, we have

ti\
Yq
a. e
1
I d‘1’=I ¥= X;J y Y21 A £Yy Figure 1.
a.
i-1 Y3
) > s
1 t=a, a. -
=- 3 v () i B S P (0.} }dt .
o\ x 38 Vo ca a gt Vo (o)
i-1 i-1

Therefore the proof of (*)i is reduced to showing d¥=0.

By routine computations, we have

d¥ = dtads

" '
Py
Q)
nJ”
Paan ™
e
n

<
[

-~

<+

——
L

]

Q
ml“
Pt
B2

<
o

p—y

pSA

S
N

i

Y=1 dtads [
|

/=1 dtads

0
Q

[

Step 2: Adding up the equalities (*); (i=1,2,...,7)

we obtain

r
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Jb(J mt O(mti)dt J;U wVO(sm))ds‘w s .

= !
ax X 9 =9

, b
This shows that f (J ®. 0((0 )) is independent of the
' a
X

choice of the path {9 _|asts$b} . (2.3.1) is also immedi-

ate. For (2.3.2), let \])t s= @ ++tC (t€[0,1]). Then in view

2
of (2.3.1),

1
L(‘D11¢2 +C) ~L(w1.cp2) = L(ipz,wz +C) =IO {XCVo(wt) dt = C .

REMARK (2.5). The above proof is valid even in the case

{o*,0") EC‘”(X)]R x C’“"(X)]R . Hence L naturally.extends to a
functional on CQ(X)]R x Cm(X)]R . This extended functional
{denoted by the same L} can still be defined by (2.2.1) and

satisfies (2.3.1) and {2.3.2).

For the proof of (2.4), we need the following Lemma:

LEMMA (2.6). Suppose that a 2-parameter family {¢(s,t)

(s,t) €[0,1] x[a,b]} of functions in H is smooth in the

sense that the mapping

[0.11 x [a,b] X X —> R

{s, t, x) F—> {V(s,t))(x)

is ¢° . Then there exists a C . function F =F{s,t,x) €

c={{0,1] x {a,b] xX) (which is of course unique) such that
R

(i} 9F/3s = -(a\p**\)) {3y/3s) ,
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(ii} aF/3t ~{a, +v) (3p/3at),

14

(0,a)"
(iv) R(Y) —vwg () = Rlwg) - vu, + /=1 39F,

{iii) Ft(s,t) 0 in C (X*m‘, and

where we put w, == wa(wto,a)).

PROOF: Using the notation in (1.3), we have

(2.6.1) (3/3t) (o (3y/3s)) - (3/3s) (am, (3y/3t))

14 v

(2/38) (29 (9)*V(39/3s) 5) - (3/3s) (g (0 *® (Qu/2t) g

i

- = (g (awsae) gz 90T (3u/3s) 5
+ 2 {g® @u/3s) 5 91 °F (Gu/at) g3}

O -

Hence (a/at){(uw-*v;v(aw/as)} = (3/85){(n¢-+v) (3p/at)} .
Therefore there exists F(s,t,x) € C ([0,1] x [a,b] x X)
satisfying (i), (ii) and (iii) . For (iv), we first ob-

serve that it is true for (s,t) = (0,a) . We now have

(3/3s) (R(Y) = vuw, (P)) - (3/3s) (V=1 33 F)

= Y=T {33(0, (3y/3s)) - a3 (vay/ds) — 33(3F/3s)} = 0.

1

Similarly (3/3t) (R(Y) - vuwgy(y)) - (3/3¢t) (V=17 33 F) = 0.

Hence we cobtain {(iv) .

PROOF OF (2.4): Let yls,t) := s9, for {s,t) € [0,1] x[a,bl]

and Y¥Y(s,t) be the 1-form
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(fx-%g(o(w) - 2A) VO(IP))ds + (J-x -—g%(c(xp) - 1) Vo(w))dt .

Then similar to the proof of (2.3), that of (2.4) except for

the equality (2.4.2) is reduced to showing d4d¥ = 0.

Step 1: By Lemma (2.6) applied to our ¥, there exists
a function F = F(s,t,x) €C”([0,1] x [a,b])m satisfying the

equalities (i) ~ (iv) . First by (iv) ,

n(R(wy) - vag) mO(WJn-1/J mon
X

n(R(Y) ~ vog(P) - ﬁasF)wO(w)n"/j Wy
X

"

(6(¥) - A=, F) Vy(¥) -

¥
Therefore, introducing the 1-form @& defined as
- oy n~1
{ds an(R(wo) \)wo) NS wo(w)

+ dtj n{R{w ) —vmg)% ONJ) }/j mon ’
X

we obtain

e e h o 3 9
Y= -9 Ux%(qwm vo(w))d (ng‘gw F) V (\b))dt
o (ot T o - (] o2 rvgun)
P (Ix(uwas) FVUN;) ds X wat) FV (y)
Hence d¥ = - d¢ + I dsadt, where the coefficient I is

jx-;-g(mwgga F V() - JX 2(w@ibrvom) .
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In view of the identities avo(tp)/at = nw(axp/Bt) Vo (¥) and
BVG(\M/QS = D‘y(B‘JJ/SS) VO(!,(:) , (2.6.1) above combined with

(i} and (ii) of (2.6) yields

_ 3y, 9 _ 3y, 3
I-}X(B‘p%} = (FVy () fxmﬁ%p = (FV,(y))

- 3 .3 3 ay
= ‘(x{( lﬁ%) ( ﬂw—a% vai_:_f) + (nwﬁ)F(nwat)} Vo (¥)

._IX{( ws%) (- u¢35 —ﬂ) + (o “ﬂji?(nmﬁg)} Vo(w)

= 0 .
Thus, we obtain

d¥Y = -d9d =dsadt I
X

3 -
= /-1 dsadt [ n(n-1) (R(w,) - o’(' % 33 —‘g -3-“-’ 91‘1)) (w;nﬁ Dn
X .

= J:Tdsx\dtj nin-1) (Rlw,) -vu )(a(—‘l‘-),\a )+3(_Q)A3( O(xp)n 2/‘{ o

X

= 0.

Step 2: We shall finally show (2.4.2). Since
suffices to show M(yp,p+C) = 0 for all ¢ and C. Let
¢'t := @g+tC, te€[0,1]. Then

1
M(p,p+C) = - J (I C(c(\bt) -2) Vo(wt})dt = 0.
) ] X

The proof of (2.4) is now complete.
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(2.7) In view of (2.4.2) above, M : HxH —> R £factors
through KxK . Hence we can define a mapping
M : KxK —>R (denoted by the same M) satisfying the

1-cocycle condition by

{(2.7.1) M{w',w") := M(v',0") , for all w',uw" € K,

i

where ¢',9" - are functions in H such that wo(xp') w!

and mo(tp") = w” . We now put HO := {9 €H | L{0,9) 0} .
Then the restriction of the mapping ¢w€eH > wo((p) €K to
HO is an isomorphism:

HO = K

Hence we can regard K as the subset Hy of H . By this
identification, the mapping M : K x K —> R defined just
above coincides with the restriction - to H 0 HO of the ori~

ginal mapping M : HxH —> R .

A 1-parameter family {mt[a £t £bl of RKdhler forms in K

is said to be smooth (or a smooth path) if it forms a smooth

path in CW(X)R via the identification K =H0 .



§ 3. K-energy maps and their critical points

DEFINITION (3.1). Let u: K —> R be the mapping which asso-

ciate, to each w € K, the real number p(w) := M(mo,w),
{cf. (2.7)). This u is called the K-energy map of the Kdhler
manifold (X,wg) . For every @W€H, u(wg(m)) will be denoted

by uflw) for simplicity.

We write the above u sometimes as umo because it de-

pends on the choice of Wy - If we replace the original Wy

by ancther wb cohomologous to Wy s then the difference

between ’uw and Hoo is just a constant. 1In fact, for
0 0
all we€ K

(W) - (0w = Mo, ,0})
wq wo 0’70

which is independent of w €K . In particular every critical

point of n, 1is, at the same time, that of u,, and vice
0 t]

versa. Hence "critical points of° u" have an intrinsic mea-
ning in the sense that it depends only on X and on the co-

homology class of . in H1'1 (X, R) .

¥

THEOREM(3.2}). Let pu : K—> R be the K-energy map of the

Kdhler manifold (X, wo) - Then for an arbitrary element

w of K, the following are equivalent:

i) w is a critical point of 1y,

.

ii) w has a constant scalar curvature,

iii) w has the constant scalar curvature ) .
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PROOF: Let {cpd- £estse} be a smooth path in H such

that w,(®,).= w. Then by (2.2.2) and (2.7.1),

a _ . N n/t n
sErloglog) = | ogfemp totwr = w/J w®
X X

which shows the equivalence of i) and 4iii) . Thus the
proof is reduced to showing that ii) implies iii) . Since
I (clw) - Nw®=0 for every w € K, the required impli-
X

cation is now immediate.

DEFINITION (3.3). 2 compact complex connected manifold with

ample anticanonical bundle (or equivalently with ¢, >0) is

1
said to be a Fano manifold. Differential-geometrically, a

Fano manifold is a compact complex connected manifold which
admits a Kihler metric with positive definite Ricci tensor,

(cE. Yau [8]).

THEOREM (3.4). Suppose that X is a Fano manifold and

furthermore that wg represents 2"01(X)R.' Consider the

K-energy map B : K —>.R of the Kdhler manifold (X,mo).

Then for an arbitrary element w of K, the following are

egquivalent:

i) w is a critical point of u,

ii) ® 1is Einstein Kihler,

iii) w 4is Einstein K&hler with the constant scalar
curvature n.,
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PROQOF: Note that A is n, (cf. (1.2)) . Since X is a
Fanc manifold, every Kidhler form of constant scalar curvature

in the cohomology class CT(X’R. is Einstein. Then ({3.4) is

straightforward from Thecrem (3.2).
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§4. BAnother interpretation of the K-energy map.

Recall that K is naturally identified with the subset
éfo of H, (cf. (2.7)) . In this section, another interpreta-
tion of the K-energy map u: HO (= K)— R of (x,mo), (ct. (3.1)) -

will be given, We shall actually show the following:

THEOREM (4.1). For each ¢ € H, there exists a unigue func-

tion £ € C“(X) such that
—_ © R —— ="

(4.1.1) og{p) - A = nw»fm,

(4.1.2) Jx fcgvo(‘p’: 0 if ¢ =0 in C (X)R, and

3 _ . ,
(4.1.3) 5L (fwt-kmt) = (uwtﬂ:) ®, for every smooth path

{cptla Sts<b} in H, where for each V¢ € H, we _denote by

k, the function in c”(X)R defined by

nl]iklp = (Rlwg) =vuw,) A~nw0(d!)n_%o(¢)n and

n
k w = 0,
wao

COROLLARY (4.2). Suppose that X is a FPano manifold and

furthermore that Wy represents 2':rc1 (X)R . Then to each

p € HO , wWe can uniquely associate a function f(p ec” (X)R

(which is the same one as in (4.1)) such that

(4.2.1)  alo) - n =18 f , i.e., RO - wyle) = /=T :a'a'f&p ,

(4.2.2) ulp) = -jX fwvo(w) , and

(4.2.3) 2 £ =~ (o +1) @ for every smooth path

ot ? tpt t
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{o lastsbl in Hj .

In view of (4.2.2), the construction of f(p is crucial to

our approach. The key in the definition of f(p is the following

DEFINTION (4.3). For each pair (o',0") € HxH, we define a

function H(g',@") € CW(X)R by

b
(4.3.1) H(p',0") := - J (B¢

"'V)&-’ dt ,
a t t

where {® £ |la<t<$bl is an arbitrary piecewise smooth path in

H such that coa:w' and @ =0" .

THEOREM (4.4). H(¢',o") above is independent of the choice

of the path {o |asts<b} and therefore well-defined. More-

over,

(4.4.1) H:HxH —> Cm(X)lR satisfies the 1-cocycle condition, ar

(4.4.2) {R(0) - voy(e)} = /=1 33 H{',0") .
¥=9'

PROOF: In view of the proof of (2.3}, we may assume that

{cpt]a <t sb} is a smooth path. Let 1y(s,t) := SO for

(s,t) €[0,1] %x [a,b] . Then by Lemma (2.6), we obtain a c” func-
tion F(s,t,x) € C {[0,1] x [a,b] x X) g with the properties
(i) ~ {iv) of (2.6). For each ({o,t) € [0,1]1x[a,b]l, we set

P t= Fi Then by (i},

O,T (S,t)=(0’,'{'} )
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1
th - FO,t = - Jo (Dw(s,t) +\))cpt ds .

On the other hand, by (ii) applied to the cases s=0 and s=1,

Combining the three equalities obtained just above, we have

t=b I1 t=b

(o +v) @ ds

b
[ e +vwe at=(r, .-F. ) ]

a t=a 0

The proof, except for (4.3.2), is then straightforward, For
(4.3.2), applying (iv)of (2.6) to the cases (s,t) = (1,a),(1,b),
we now conclude-that

@ ="

{R(®) ~ vu, (o)} = /=1 33(F

-F, ) = V=1 33 H{p',0").
p=yp'

1,b 1 pa

we shall now define f © for each ¢ € H and then pro-

ceed to the proof of (4.1) and (4.2).

DEFINTITION (4.5).

(1) For each w€EH, we define fwg c""(x;R by fw:=kw+H(0,m) )

{ii) FPor each w € K, let waCm(X)R dencote the function

£ o ! where ?, is the unique element of H 0 such that
w

w = mo(wm} .
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PROOF OF (4.1). Since the uniqueness is easy, it suffices to

show fm defined in (4.5) satisfies (4.1.1) ~{4.1.3). First,
{4.1.2) is obvious from our definition of f(p . We next ob-
serve that (4.1.3) is an immediate consequence of (4.3.1).

For (4.1.1), we apply (4.4.2):
R(®) = vwg (9) =R{ug) - vug + /=1 33 H(0,0) .

Taking the wedge product with n mon-1 , and then dividing

both sides by wg, ()™, we finally obtain

olp}) -1 = d’w(kw+H(0,wH = uwf@ .

PROOF OF (4.2): Since R(mo) and w, are cochomologous, we have
m . ' 3
k‘p = fO for every o€ HQ , wvhere fO €EC (X):R is the function

n

defined by the conditions I fqw, = 0 and Rlwy) —w0=/:1_ 3550 .

00
Since (4.2.3) is then obviou}sf from (4.1.3), the proof is re-
duced to showing (4.2.2) for fw defined in (4.5). Fix an ar-
bitrary ¢€H,, and we put ¢, _ := to~L(0,ty), t€ [o,1] .
Note that {xpt[o €ts1} 1is a smooth path in H,; connecting

0 with @© . 1In view of (4.1.2), the proof is further reduced

to showing
d __d
ge ) = é’EI By Vol

X T

for every t€[0,1] . We can now finish the proof by the

following computation:
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d - . - . )
- zrg[xfwt»vo”’t’ - jx (5, * V) e Vol ]X £y (@y by Volty

. . * d
=-| £, (o \P)V(\P)“I (o) =M b, Volb) = = uld,)
wat Pt 0L % t t o't T g Mt



§5. Futaki invariants as derivatives of the K-energy map.

Let Aut(X) be the group of holomorphic automorphisms of
X, and let Auto {X) be its identity component. For each ho-

lomorphic vector field Y € T(X,0(T(X))) on X, we put

and we later consider the corresponding 1-parameter group
o
Yy = exptYR, (t ER). For each w € K, Ilet fm€c (X)R

}:;e the function defined in (4.5). Recall that

G(w)—l=uwfm, (cE. (4.1.1)) .

Then a fundamental theorem of Futaki [4] states as follows:

{(5.1) For every Y € T'(X,o(T(X))) , the number

cY,w

.= J (YR fm) mn/} won doesn't depend on the choice‘of w in
x X

but depends possibly on the Kihler class K. {Therefore

CY,w will be denoged by CY,K .)

(5.2) If there exists a o€ K such that (X,%) is a

Kidhler manifold -0of constant scalar curvature, then CY K= 0

r

for all Y € I'(X,0(T(X))) .

The main purpose of this section is to show that the
first derivative of the K~energy map u: K —> R along each

orbit {yt*m |t € R} of the 1-parameter group {yt}tEIR is
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nothing but C Using this fact, we shall give another

¥,K*
proof of {5.2) of Futaki's theorem. In a subsequent paper
{cf. Bando and Mabuchi [1]), a very simple prcof of (5.1) will

also be given in a more general situation.

THEOREM (5.3). Let Y be an arbitrary holomorphic vector

field on X. Then for all t € R and w € K

u(yt*w) = p{w) + tCY,K .

PROOF: For each t € R, there uniquely exists a function

. - * = . P N
wteHO such that Y ruw mo(cpt) . For simplicity, we write

yt* w and £ Yt*m as wg and ft respectively. We further-
more put vV o:= I won/ n!{ . Note that
X
L, o, = = w_= /1233 ¢
Rt ot 't t °
. | —_ -1 =
Since O=JL (£ mn)-I(Y f)mn+n/-1jfmn AQd O, r
X %R tt X t t X tt t
we have, for every t €ER ,
C =J (Y. £.) w,/(n1v) = - n/:‘TJ‘ f.w n_1A35(}> /(niv)
YK URTE T : e t :
= /4 jxaft;\s o aw Y n=1) V) = (1/V) (3F,,90,) 12 (x4 )
- t
=-(1/V) (g, £, (bt) 5 = —I 9, (olw.) - livo(wt)

t L (X,wt) X

from which the required equality immediately follows.
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PROOF OF (5.2) of Futaki's theorem (by assuming (5.1)):

By Theorem (3.2), u: K—> R has a critical point at ® .

Hence, for an arbitrary Y€ HO(X,G(T{X)}) r

4

= * =
Cy,k = PO =0 -

For Fano manifolds, we have the following stronger facts:

THEOREM (5.4). Assume that X is a Fano manifold (where it

is not necessary to assume that wg represents a specific

class such as 2'1z'c:1 {(X) R} . Suppose furthermore that there

exists a Kihler form '5 € K of constant scalar curvature.

Then the K-energy map p : K —> R of the compact Kdhler

manifold (X, mo) satisfies

plg*w) = plw) (0 € K)

for all g € Aut(X) with g*K = K .

PROQF: Since X ’is a Fano manifold, there exists an m€Z
{m>>1) such that the line bundle Kx-m is very ample.

Hence Aut(X) is regarded as a closed (algebraic) subgroup

of PGL(N;€) (=aAut(®(EC(X,0(x;™)))) (where N =h’(x,0(x, ™)) .
Thus for every g € Aut({X), we have g“EAutG(X) for some
positive integer o« . Then there exists a sequence

hc = g, h1,h2,..., ho_qs hr = g% of pcints. of Auto(xj such

that hi = hi-T' epri]R (Li=1,2,...,r) for some
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YiGEHO(X,O(T(X))) . We observe, from the defintion of M

in §2, that

mitgd ™ rw, (ghrw = M3 2w, (g3 (gru) = M(w,g%w)
for each 3j . Hence

alu(g*n) - ulw)= aMlw,g*w) = 5%  Mgd )%, (@)% = Mlw, %%

3=1

= z; M((hy_.) %, (h) %) = Z; M((h;_1)*w, (exp(¥;p))* (hy_,)%w)

1

= ZI.. CY- K =0, (cE. (5.2)) ,

as required.
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§6. The second variation formula for K-energy maps.

Throughout this section, for simplicity, we assume that

o—

X is a Fano manifold with a Kdhler form w,= =1} = dz%Aazb

representing 27 ¢4 {(X),, », (c£. §1) . We furthermore fix a

smooth path {9 ]astsb}l in H.

We denote by Vt the covariant derivative on the space
of 1-forms of the Kihler manifold (X,ma ((pt)) ’ and let At

be the A-operator

z A
o 8 t 1
z aa-édz Adz > Z; ZCLIB g(tpt

Ba
) 3,3

of (X,mo(cpt}) . Let £, ECQ(_X)JR be the function defined in
t
{(4.5), and we denote this function simply by ft +« Then

ft = - (D‘pt+ 1) A and

R(p,) —uw, (o) = /-1 32 £, i.e., olw,) -n = umtft',

for every t€ [a,bl, (cf. (4.2)). We shall first prove:

LEMMA (6.1). Let Y( =Za y*3/3z%) be an arbitrary complex

valued C° global vector field of type (1,0) on X . Then

for every ¢ € CW(X)lR ’

(6.1.1) /7T 2, 3 - (YEQ) 3y + Vg )} + /7T A {(3Y) (£)a39 - v;ij}

= Y(‘Dwt‘#-d}) * (YE ) o

v,
Cy
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- L B t .=
where (3Y) (ft) := (f dz and Vay oY

o
zcr.,B Y3 t)o

BA Vt aaq;) . (We use such notation yaE= Bya/azs ’

Y (y%< dz

(£ = aft/az“, as is explained in (1.3).)

PROOF: Fix an arbitrary pair (t,p) €EIRx X. We then choose
a system z = (zi,zz,...,zn) of holomorphic local coordinates
of X centered at p such that

90 ) 47z (P) = §,5 and d(glo,) g) (p) = 0

B
for all o and 8. Since there is no fear of confusion, the
. _ By | _ t .
following g(cpt)ae, g((pt) ’ R(mt)as ’ ft' v, At ’ Uq’t will be

denoted simply by Ga‘é’ GBY, Ra'é' £, VvV, A, o respectively.

Then at the voint (t,p) €R xX,

(6.1.2) V=T A~ (YF)ay + vy3vl}

Q a a
Lo, g g ¥ty fog¥g+y £qVgp)

* Lol " Y%5 ¥ga = ¥ ¥gap * ¥7 L v (9%655/32%020 )

i

Za B{Y BfawB y*(R --.60-3) 1p } + (¥i)ay

. — — - —-— a .
* Za,B‘ Y5 Ve~ ¥ Va0 ~ Iy 6 ¥ Ryg Vs

Za,B(Yaﬁ £q “’B‘YGE Ygo! + Y( =¥ -oy) + (Y£) oy .

On the other hand, at the same point (t,p) .,

(6.1.3) /27 A {(3Y)(E) Ay - Vsy 30} = - Za,B (yagfaxps—yaé Paq! -
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Adding up (6.1.2) and (6.1.3}), we cobtain (6.1.1).

THEOREM ({6.2)}. (Second wvariation formula). For every

t € [a,b]l, we have

2 =
(6.2.1) d° ule) =

1 ymo 42
> R by (X,wglw,))
E

a1

- [x (F, = Iy, 5910 ¥ (o) | L) 3} (oley) —n) Vyloy) ,

L n, . e Ba .o . @
where V := [xmo /nl  and Y, : za;Bg(wt) (wt)Ba/az .

PROOF: We integrate, on X, the equality (6.1.1) applied
we obtain

/=7 3 o, -V 3¢ .-
(6.2.2) Ix' The (BY) (£) 796, =75, 26, Vp(o,)

=| Y (-o cb—cb)vwwj Y, £ ©) V
Ixt 0, % ¥t/ N0 < Fe t”%tt) olo) -

On the other hand

(6.2.3) —d—i—’u( ) =—d—J-tb(u £.) Vv, (0,)
- - PR at Jy " Pee it To e

)

a 30 , 9

I Ba =
L{ 3% (Lo, g Tl0) 7 (@ )7 (£ V(o))
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- _ EY . do oy
- sza.e,v,ﬁg(wt) wt)yS g(0) °% (do) g (FL) V(o)

. Ba
+ fxla,sg“"t’ (F,) 5 (£,), Vo l0p)

+] Y, (£,) Vg (0,) +f (Y £y) (2, bp) Vg (o)
X X

Since £, = - (g, +1)@, , the right-hand side of (6.2.2)
t wt t
coincides with the sum of the last two integrals of the bot-

tom of (6.2.3). Hence
g2

._._.p((p)z
dt2 €

(6.2.4)

- [ BY Sa ,» _
Jx Lo, B,y,6 T (@) 5 9lo) ™" ()5 (L) V(o)

( Bo,w ‘
* Lo, 907 (o) g (£) Voloy)

~ — - t a
] /=1 A (B (£,) A0, - ngt 20, 1 Vy(o) .

Note the following identities:

. - o 5 Bo - .
(6:2.5) 0 = JX N (L, 9le) PR 2 (b, 3 V(o)

Ea (1] bl 1 2
(6.2.6) j I g™ @G)E) Vo(0) = (1) (55,55,
. X, t t'g " t'a QY - t t’Lz(X'wowt”

= (1/V) (wt'-u“’tft)z.z(x, 1(0)) = -wat (o(w) -n) Volw) |
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Adding up (6.2.4),(6.2.5) and (6.2.6), we obtain

d2

:{;g u(tpt) =_Ith0(toti '

where h = h{t,x) €C ([la,b] xX) is the function defined by
= BY (o ) = - S -
=Ty 8,0, 1900 Y05 9000 ™ G5 (5, } -5, 00y - n)
- . b o= Ba, . e ,
+ /1 At{(BYt) (£,) ABD,_~ Vayta“’t 3‘Xa,sg“"t’ (“’t"s“"t’a Bft)} .

On the other hand, writing Y  as Xu y* 3/3z%  (in which

we put y°= := ZB g(cpt)ga(zbt)-é) , we have
{Right-hand side of (6.2.1}) = f kvo(cpt) v
X

where k = k(t,x) € CR([a b] x X) is the function defined by

k := { Zg(cpt) of 900y ¥8 > )— ly )5} (wt Y g(cpt) (wt) (mt) g (ole,) - n)

We f£ix an arbitrary pair (t,p) € [a,b]l xX and choose a
system (.21,22,...,211) of holomorphic local coordinates of

X centered at p such that

gtwt)a-é(p) = 6(18 and d(g(wt)a-é)(p) =0

for all a and B . Then at the point (t,p) €[a,b]l x X,



-33-~

h = {2 (“’t’ya (wt)w}- o, (o{o,) -n) + {a',{(wt)a (0)7 £
-—-{2 MR (q:t)m} = (Fy = Ly (9p)y D)) (oloy) —n)=k
as required.

COROLLARY (6.3). If w is a critical point of u: Kk —mR ,

then the inequality

2
a‘

u(e,) 2 0
adate 2 lt_

holds for every smooth path {'et |-es tg e} in K such
that 'eo =W .

REMARK (6.4). An interesting interpretation of (6.2.1) will

be given in a forthcoming paper[7].
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