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§o. INTRODUCTION: 

One of the long-standing questions in complex differen-

tial geometry is the following: given a compact complex 

connected manifold V with c, (V) > 0 , can one find a simple 

criterion of the existence of an Einstein Kahler metric on V? 

At present, there are no definitive answers, but the following 

conjecture of A. Futaki [31 seems to be reasonable. 

(I) GENERALIZED CALABI'S CONJECTURE (FUTAKI): Suppose that 

the identity component AutO (V) of the group of holomorphic 

automorphisms of V is a reductive algebraic group. If 

futhermore to each holomorphic vector field·on V, the 

corresponding Futaki invariant vanishes, then V admits an 

Einstein Kahler metric. 

On the other hand, as a characterization of Einstein 

Hermitian vector bundles on compact Kahler manifolds, S. 

Kobayashi [5] raised the following: 

(II) KOBAYASHI'S CONJECTURE: Let E be an indecomposable 

holomorphic vector bundle on ~ compact Kahler manifold W 

with Kahler metric go . Then E admits an Einstein Hermitian 

metric if and only if E is stable (in the sense of Mumford­

Takemoto) with respect to go • 
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Recently, S.K. Donaldson [2] solved (.II) for the case 

where W is a projective algebraic surface. One crucial step 

of his proof is a construction of a non-linear functional A 

from the set of all Hermitian metrics on E to the real num-

bers such that (1) any critical point of A is exactly an 

Einstein Hermitian metric on E and that (2) A is bounded 

from below if and only if E is semistable with respect to g. 

Although {I} and (II) look quite different, there is some 

link between these conjectures. Actually even for (I), the 

same procedure as in Donaldson's work can considerably be 

carried out. 

Fix a Kahler form 

this introduction, for simplicity, we assume that 000 repre­

sents 2 1T c1. (V) R • We denote by K the set of all Kahler 

forms on V cohomologous to· 000 • Let fO be a real valued 

C~ function on V which is uniquely determined, up to con-

stant, by the equation 

ad log det (gaS) - L gasdZa A dza = d~ fO 

The main purpose of this paper is to prove the following 

theorem announced earlier in [6]. 

THEOREM: There exists a maEping ~: K --> R satisfying 

the following conditions: 

(i) An element w of K is a critical Eoint of ~ if and 

if w is Einstein Kahler, (cf. §3). 



(ii) 'Let Y be a holomorphic vector field on V, and 

til be an element of f( • Put Y
R

:= Y + Y and Yt := exp tY
R 

for t e: R • Then JJ.(Yt*tIl) is a linear fUnction of t. Namely 

for every t, 

where the right-hand side is the Futaki invariant of V 

corresponding to the holomorphic vector field Y, (cf. §5). 

(iii) If til is a.critical point of JJ., then the inequality 

~ 0 

holds for every smooth path in f( such 

that BO = til , (cf. §6). 

This JJ.: K -->-R is called the K-energy map of the 

Kahler manifold (V,wO) • In view of (i) and (ii) above, one 

can easily see that if JV(YRfO)wO~ ~ 0 for some holomorphic 

vector field Y on V , then JJ. cannot have a critical point, 

i.e., X does not admit any Einstein Kahler metric, which 

gives another proof of a fundamental theorem of Futaki [3]. 

Furthermore.lil and (iii) above gives us some indication that 

Conjecture (I) can be weakened in the following more plausible 

form. 
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(III) CONJECTURE: Suppose that AutO (V). is a reductive 

algebraic group. If ~ is bounded from below, then V 

admits an Einstein Kahler metric. 

Several supplements to this paper will be found in [7]. 

In a forthcoming paper (cf. S. Banda and T. Mabuchi [1]), we 

shall show the f~llowing interesting theorem. 

THEOREM: Let E be. the set of all Einstein Kahler forms in 

K , and K+ be the set of all w € K with positive definite 

Ricci tensor. Assume that E \ ¢ . Then 

(i) the restriction + 
~IK+ : K -> R is bounded from below, 

and ~IK+ takes its absolute minimum on E. 

(ii) For any 

g of A~tO (V) 

and 

such that 

in E, there exists an element 

We shall also give several generalizations of ~ in the 

latter paper. 

In conclus~on, I wish to thank all those people who 

encouraged me and gave me suggestions, and in particular 

Professors S. Kobayashi and H. Ozeki, and Doctors S. Bando 

I. Enoki and R. Kobayashi, who helped me again and again 

during the preparation of this paper. M~ hearty thanks. go 

also to the Max-Planck-rnstitut fur Mathematik for its 

hospitality and constant assistance all through my stay in 

Bonn. 



§1. NOTATION AND CONVENTION: 

Throughout this paper we fix an arbitrary n-dimensional 

compact Kahler connected manifold X with Kahler form 

00 0 = FT Ega.adzCX 1\ dzS , where 00
0 

is written in terms, of 

1 2 n holomorphic local coordinates (z,z , ••• ,z ) • Let 

K : = {. 00 I Kahler form on X which is cOhomolOgOUS} • 

to 00
0 

in H1 ,1(X,R) 

For each element 00 = F1 E g (00) a.i3dZCX /\ dzS of K, we denote 

by ER{oo) a.adZcx @ dzS the corresponding Ricci tensor. We put 

R(oo) := Fi ER(oo) iidzcx/\ dza • Then R(w)/271' represents - a.j.J 

c 1 (X)R and we have R(oo) = FT ad log det (gcxafW)~ Furthermore, 

let a(oo) (resp. D ) be the corresponding scalar curvature 
00 

(resp. Laplacian on functions): 

, 

where. (g (00) acx) is the inverse matrix of (g (00) a.S) . For 
co 00 

each real valued C function (j) € C (X) R on X , we put 

00
0 

«(j» .- 00
0 

+ I=T d a- (j) and let .- , 

Note that the natural map 
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H-> K 

is surj ecti ve. For each q> E H , the corresponding 

Ow (q») , a(wO(tp)} , RfwO(tp) , R(wO(q»)aB' g(wO{tp})Cl6 ' g(wo(tP)8a 
o 

will be .denoted simply by cq>' cr (tP) , R (tp) , R(tP) a~ , g (tp}a"B ' 

g(tp)Ba respectively. 

DEFINITION (1.1): A 1-parameter family {q>t l a ~ t ~ b} of 

functions in CW(X)R is said to be smooth (or a smooth path) 

if the mapping ... 

(a,b1 x X --> R 

(t, x) f-> tP
t 

(x) 

DE~INITION (1.2): 

by 

We define the real constants A and v 

A := 2mr J c 1 (X)wO
n - 1/ J won, v:= A/n 

X X 

Furthermore, to each 
Q) 

tp € c (X) R ' we associate an (n,n) -form 

Vo(tp) on X as follows: 



This is normalized so that f X V 0 {cp} = 1 . 1·1oreover, if 000 

represents 2~c1 (X)R ' then A = n 

DEFINITION (1.3): Let 1 2 n (z ,z , •.• ,z) be a system of 

holomorphic local coordinates on X. For every 

we use the following notation: 

f -as 

00 

f € C {X)R ' 

where we denote by da (resp. da,dS,dS,d y) the operator 

d/aZa (resp. a/aza, d/az S , a/azB , a/azY ) . Our nota-

tion is slightly different from the ordinary one, because 



§2. Basic Constructions: 

This section is a'crucial step in the construction of 

the X-energy map U • We shall introduce the mappings 

OCt OCt 

L : C (X)R x C "{X)R -> R, (cf. (2.5» , 

M : H x H -> R, ( cf • ( 2 • 4» , 

where the latter immediately defines ~, {cf. (2.7), (3.1». 

Although the functional L is not essential in later sec-

tions, it none the less plays an important role in our forth-

coming papers (cf. Mabuchi [7], Bando and Mabuchi [1]). 

DEFINITION (2.1): Let S be a non-empty set and A be 

an additive group. Then a mapping N: S x S -> A is said 

to satisfy the 1-cocycle condition if 

i) N (°1, a2l + N (°2 , ( 1 ) = 0 and 

ii) N(0"1,a2} + Ne02,(3) + N{0"3'0"1' = 0 

DEFINITION (2.2). For every (t:>' ,(p") e: H x fI, we define real 

numbers Lhp' ,cpU), M(cp' ,(pit) by 

(2.2.1) 
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where {lPtl a ;$ t ~ b} is an arbitrary piecewise smooth path 

in H such that and tp = tplt • 
b 

THEOREM (2.3). L(tpl,tpll) above is independent of the choice of 

(2.3.1) 

(2.3.2) 

and therefore well-defined. Moreover, 

L satisfies the 1-cocycle c~ndition, and 

L (tp1,tp2 + C) = L (tp1 ,tp2) + C for all tp1,<P2 

and all C E R • 

THEOREM (2.4). .M (tp.' ,tp:' ) above is independent of the choice 

of the path {(fJtl a S t S b} and therefore well-defined. More-

over, 

(2.4.1) 

(2.4.2) 

M satisfies the 1-cocycle condition, and 

M«(fJ, +C1 ,(fJ2+ C2) = M(tp"tp2) for all tp1,tp2 

and all C"C2 E B • 

PROOF of (Z.3): Let 1{J{s,t) := s(fJt for (s,t) E [O,ll x [a,b]. 

Since {<pt I a ~ t ~ b} is piecewise smooth, there exist a par­

tition a = a
O 

< a 1 < a Z < ••• < a r = b of the interval 

1a,b] such that {tpt I a i - 1 ~ t ~ ail is SInooth for each 

iE{1,2, ••• ,r} 



(*) . 
l. 

-10-

Step 1: We shall first show that 

Let '¥(s,t) := (Ix ¥S Wo(1fJ}n dS)+ (Ix ~two(",)n)dt. Then in 

view of Figure 1, we have 

t 

.. 
12' 

a. 1 l.- 13 
--+0:

0
---"-';;'-+---> s 

Figure 1 • 

1 t=a. a.' =-f (I~~ VO(1f1) )dsf _ 1. + J l. (J tPt Vo(<Pt))dt • 
o ~ t-ai _ 1 a i - 1 X 

Therefore the proof of (*) i is reduced to showing d'¥ = 0 • 

By routine computations, we have 

= r-:: f r a1f1 -(~) ~ - (.!2)} n-l/J n 1-1 dtAds X l as aa at + at aa as Anwo (1f1). / x Wo 

= 0 • 

Step 2: Adding up the equalities (*)1 (i=1,2, ••• ,r) I 

we obtain 
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Th:is shows tha t J: (t<i>t V 0 (1I't I ) dt :is :independent of the 

choice of the path {lPt I a ~ t ~ b}. (2.3.1) is also immedi­

ate. For (2.3.2), let "'t:= lP2 + tC (t E [0,1]). Then in view 

of (2.3.1), 

REMARK (2.5). The above proof is valid even in the case 

(lP I ,lP") E em (X)JR x c!X! (X)JR. Hence L natural,ly. extends to a 
. co co 

functional on C {X}JR x C (X}JR. This extended functional 

(denoted by . the same L J can still be def ined . by (2 • 2 • 1) and 

satisfies (2.3.1) and (2.3.2). 

For the proof of (2.4), we need the following Lemma: 

LEMMA (2.6). Suppose that a 2-parameter family {~(s,t) 

(s,t) € [0,1] x [a,b]} of functions in H is smooth in the 

sense that the mapping 

[0.1] x [a,b] x X --->JR 

( S,t, x) 1--> (VI ( S,t» (x) 

Then there exists a CCO function F=F(s,t,x) E 

CCO([O,1] x [a,b] x Xl 
JR 

(which is of course unique) such that 

(i) elF/as = -(01/1+\1) (al/l/as), 
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(ii) aF/at = - (ow + v) (aw/at), 

(iii) FI(s,t) (Ot a ) = 0 in cat (X)JR , and 
= 

(iv) R (w) - "1U0 (w) = R(w,) - vw + 1-1 aaF, , 
where we put 00

1 
:= 000 (w(O,a» • 

PROOF: Using the notation in (1.3), we have 

(2.6.1) (a/at) (0q,(aljl/as» - (a/as) (0tP(aw/at» 

= (a/at) U:g (w) &"( (aw/as) "(6) - (a/as) (Eg (w) as (al[l/at) 86 

= - r: {g(w)68 (aw/at)Sa g(w)ay (aw/as)"(6} 

+ 1: {g (w) ay taw/as) y6 g.(w} 6S (aw/at) sCi} 

= 0 

Hence (a/at) {(0tll + v) (alP/as)} = (a/as) {(DIP + v) (atll/at)} • 
co 

Therefore there exists F(s,t,x) E C ([O,lJ x [a,bJ x X) 

satisfying (il,(ii) and (iii). For (iv), we first ob-

serve that it is true for (s,t) = (O,a). We now have 

(alas) (R(W) - vWo (til» - ca/as} (1-1 aa F ) 

= r-; (a.a(olPcalP/as)} - aa (v alP/as) - aa(aF/as)} = 0 • 

Similarly (a/at) (R(W) - v Wo (ljI» - (a/at) (/=i aa F) = 0 • 

Hence we obtain (iv). 

PROOF OF (2. 4): Let tP (s, t) ::::: 5 <Pt for (5, t) E [0,1 J x [a,b] 

and ¥(s,t) be the 1-form 



-13-

Then similar to the proof of (2.3), that of (2.4) except for 

the equality (2.4.2) is reduced to showing d~ = 0 • 

step 1: By Lenuna (2.6) applied to our ~, there exists 

a function F = F(s,t,x) € C<lO([O, 1] x [a,b]}JR satisfying the 

equalities (i) "'" (iv). First by (iv), 

n(R(CIl0 ) - V"'O) OJo(Wj n-1/J OOo
n 

X 

= n(Rt.,,) - ""0("') - r-laaF).,o(.,,)n-l!I
x

wo
n 

= (a (1/1) - A - c
lP 

F) V 0 (1/1) • 

Therefore, introducing the 1-form ~ defined as 

{dS Ix n(R(OOo) - VOOo' ~ 000 (1/I)n-1 

+ dt Ix n(R(wo) - ""0) ~"'o (",)n-l}/fx "0 n • 

we obtain 

~ = - $ - (J X ~ (~1/IF) V 0 (1/1) ) ds 

= - $ - (I X (01J1*) F V 0 (lP) ) ds 

- (Ix ~ (01J1F ) Vo (1/1») dt 

- (J (C1J1~) FVO(1/I}) dt. 
X 

Hence d'l' = - d~ + I dSl\dt, where the coefficient I is 
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In view of the identities 3VO(tp)/dt = ctp(3tp/at) VO(tp) and 

aVO(tp)/3s = Ctp(dW/as) VO{tp), (Z.6.1) above combined with 

(i) and (ii) of (2.6) yields 

= J {(Ctp¥S' 
X 

-Jx{ (DlfJ*' 
= 0 • 

Thus, we obtain 

J . (2.!l!. a 2!f a) n-l , IJ n d'l'= -d~=ds"dt Xn(R(ooo ) -VOOo ) as at - at as (ooO{w) Jt XOOo 

= M dstdt J n(n-l) (R{WO) -VOOo'(- ~: aa'(I) -* aa(~)) ooo (W,n-91J won 
X . / Ix 

j- J (- ~ ]!l! ~ -]!l!) n-2/ J n = )" -1 dsi'dt X n (n-l) (R(ooO' - v 000' a (as)" a (at' + a( at) Aa (as' 000 (\f1 ) I xoo 0 

= o. 

Step 2: We shall finally show (2.4.2). Since 

M(q)1+Cl,q)2+C2) -"M(tpl'tpZ) = M(q)Z,tp2+C2) - M(<P1 ,<P1 +c
1

) I it 

suffices to show M(tp"q)+ C) = 0 for all q) and C. Let 

Wt : = q,+tC, t E (0, 11. Then 

The proof of (2.4) is now complete. 
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(2.7) In view of (2.4.2) above, M: fI x fI ->:R factors 

through K x K. Hence we can define a mapping 

M : K x K ->.Ii (denoted by the same M) satisfying the 

1-cocycle condition by 

(2.7.1) M(w' lOll!) := M(W' ,<p") , for all W'/W" E K , 

where <p',tp" . are functions in fI such that wO(tP ' ) = w' 

and We now put tr 0 : = {q> E. fI I L (0 I tP) = O} 

Then the restriction of the mapping <p E fI 1--> Wo (tP) € K to 

flO is an isomorphism: 

Hence we can regard 
. 

fI ~ K o 

K as the subset flO of H • By this 

identification, the mapping M: K x K ---> R defined just 

above coincides with the restriction . to flO x HOof the ori­

ginal mapping M: H x H -> R .. 

A 1-parameter family {wtla~t~b} of Kahler forms in K 

is said to be smooth (or a smooth path) if it forms a smooth 

path in via the identification 
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§ 3. K-energy maps and their critical points 

DEFINITION ( 3 .. 1 ).. Let ll: K --> R be the mapping which as so-

ciate, to each w € K , the real number ll(W) := M(wO'w) , 

(cf.. (2. 7) .. This }.l is called the K-energy map of the Kahler 

manifold (X, wo). For every q:> € H , II (w
O 

(<p)) will be denoted 

by 1l(<P) for simplicity. 

We write the above sometimes as because it de-

pends on the choice of wo" If we replace the original 000 

by another 00' 
0 

cohomologous to -000 
, then the difference 

between itw and }.loot is just a constant. In fact, for 
0 0 

all wE K 

which is independent of co E K • In particular every critical 

is, at the same time, that of llw' 
o 

and 'vice point of 

versa. Bence "critical points of' 1.1" have an intrinsic mea-

ning in the sense that it depends only on X and on the co­

homology class of wO' in H 1 , 1 (X,.lR) • 

THEOREM (3 .. 2).. Let ll: K --> R be the K -energy map of the 

Kahler manifold (X,wO)" Then for an arbitrary element 

w of K,. the following are eqUivalent: 

i) 

ii} 

iii) 00 

is a critical point of- ll, 

has a constant scalar curvature, 

has the constant scalar curvature A .. 
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PROOF: Let {q\, - e: ~ t ~ e:} be a smooth path in 

that wO(~O)'= w. Then by (2.2.2) and (2.7.1), 

H such 

which shows the equivalence of i) and iii). Thus the 

proof is reduced to showing that ii) implies iii). Since 

J (0'(00) - A) w n = 0 for every 00 E K, the required impli­
X 

cation is now immediate. 

DEFINITION (3.3). A compact complex connected manifold with 

ample anticanonical bundle (or equivalently with c
1 

> O) is 

said to be a Fano manifold. Differential-geometrically, a 

Fano manifold is a compact complex connected manifold which 

admits a Kahler metric with positive definite Ricci tensor, 

(cf. Yau [8]). 

THEOREM (3.4). Suppose that X is a Fano manifoid and 

furthermore that 000 represents 21TC1 (X)n • Consider the 

K-energy map }.l: K ->.R of the Kahler manifold (X,w
O
). 

Then for an arbitrary element 00 of K, the following are 

equivalent: 

i) 00 is a critical point of }.l, 

ii) W is Einstein Kahler, 

iii) w is Einstein Kahler with the constant scalar 

curvature n. 
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PROOF: Note that A is n, (cf. (1.2)). Since X is a 

Fano manifold, every Kahler form of constant scalar curvature 

in the cohomology class c 1 (X)n is Einstein. Then (3.4) is 

straightforward from Theorem (3.2). 
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§4. Another interpretation of the K-energy map. 

Recall that K is naturally identified with the subset 

HO of H, (cf. (2.7)). In this section, another interpreta­

tion of the K-energy map ll: Ho (= K) -> JR of (X,WO) I (cf. (3.1» , 

will be given. We shall actually show the following: 

THEOREM (4.1). For each q> € H I there exists a unique func­

tion f~ € Coo(X)R such that 

(4.1.1) 

(4.1.2) 
00 

in C (X)R' and 

(4.1.3) .... at (f - k ) = - (0 +v) <P for every smooth path 
a q>t q>t q>t t 

{q>tI a S t S b}. in H, 

k$ the function in 

where for each 1P € H , we denote by 
aD 

C (X)n defined by 

COROLLARY (4.2). Suppose that X is a Fano manifold and 

furthermore that represents Then to each 

~ € H 0' we can uniquely associate a function fq> € CaD (X)J1 

(which is the same one as in (4.1» such that 

(4.2.1) cr (~) - n = 0q> fq> , i.e., R(q» - wo (q» = 1-1 aaf 
lp 

(4.2.2) II (ql) = -Ix fq> Vo (tp) , and 

(4.2.3) ..!.f (0 + 1) 
. 

for every smooth path = - qlt at tp t q>t 

, 
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{q> t I a S t S b} in H 0 • 

In view of (4.2.2), the construction of 

our approach. The key in the definition of 

f is crucial to q> 

fq> is the following 

DEFINTION ( 4 .. 3). For each pair (q> f , q>") E H x H, we define a 

function 

(4.3.1) H (rn f , rn" ) Jb ( +). dt 
'l' 'Y : = - c<p \} <Pt ' 

a t 

where {<P t I a S t S b} is an arbitrary piecewise smooth path in 

H such that q> = <pI 
a and 

THEOREM (4. 4). H (cpf ,(J) ") above is independent, of the choice 

of the path {<ptl a S t ~b} and therefore well-defined. More-

over, 

(4.4.1) 
OCI 

H: H xH -> C (X)IR satisfies the 1-cocycle condition, ar 

(4.4.2) 
cp = (p" 

{R{q» - \}WO{q»} I = M aa H(<p' ,q>") 
q)= q>1 

PROOF: In view of the proof of (2.3}, we may assume that 

{Q)t1a st s b} is a smooth path. Let 1jJ(s,t) := sCPt for 
co 

(s,t) E [0,1] x (a,b]. Then by Lemma (2.6), we obtain a C func~ 

tion F(s,t,x) E Cco([0,1] x [a,b] x X)B with the properties 

(i) .... (iv) of (2.6). For each (O,T) € [0,1] x [a,b], we set 

F := FI ( t) ( ).. Then by (1), O',-r s, = O',-r 
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On the other hand, by (ii) applied to the cases s:: 0 and s = 1, 

FO,b = F O,a, 
. 
IPt dt 

Combining the three equalities obtained just above, we have 

b t=b 1 t = b -J (c,n + v) cPt dt = (F 1 t - F 0 t) I = - I (edl(s t) + v ) IPtdS} . 
a 'I" t " t=a 0 't' , t = a 

The proof, except for (4.3.2), is then straightforward, For 

(4.3.2), applying (lv)of (2.6) to the cases (s,t) = (1,a), (l,b), 

we now conclude-that 

We shall now define flP for each IP E H and then pro­

ceed to the proof of (4.1) and (4.2). 

DEFINTITION (4.5). 

(i) For each < IP E H I 

(ii) For each w E K, let 
00 

fU) E C (X'n denote the function 

flP ' where 
w 

I.PW is the unique element of HO such that 

w = Wo (lPw) • 
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PROOF OF (4.1). Since the uniqueness is easy, it suffices to 

show f~ defined in (4.5) satisfies (4.1.1) - (4.1.3). First, 

(4.1.2) is obvious from our definition of f
qJ

• We next ob­

serve that (4.1.3) .is an inunediate consequence of (4.3.1). 

For (4.1.1), we apply (4.4.2): 

Taking the wedge product with and then dividing 

both sides by we finally obtain 

a (~) - A c f • 
~ ~ 

PROOF OF (4.2): Since R(WO) and Wo are cohomologous, we have 
co 

k~ = fa fqr every ~ €"o' where fO € C (X}:R is the function 

defined by the conditions J fO Won = 0 and R(WO) -wo = 1-1 aa fO • 
X 

Since (4.2.3) is then obvious from (4.1.3), the proof is re-

duced to showing (4.2.2) for fqJ defined in (4.5). Fix an ar­

bitrary qJ €"O' and we put Wt:= t~ - L{O,t~}, t € [0,1] • 

Note that {1f1 t l 0 ~ t S 1} is a smooth path in "0 connecting 

o with qJ. In view of (4.1.2), the proof is further reduced 

to showing 

for every t € [0, 1 J. We can now finish the proof by the 

following computation: 
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§5. Futaki invariants as derivatives of the K-energy map. 

Let Aut (X) be the group of holomorphic automorphisms of 

X, and let AutO (X) be its identity component. For each ho-

lomorphic vector field Y € r (X, a (T (X) ) ) on X, we put 

YR:=Y+Y, 

and we later consider the corresponding 1-parameter group 

Y t : = exp t Yn , (t E R). For each w E K , 

be the function defined in (4.5). Recall that 

(j (w) - A = of, w w (cf. (4.1.1)) • 

Then a fundamental theorem of Futaki [4] states as follows: 

(5.1) 

c .­Y,tI) .-

For every Y E r (X, O(T eX) »), the number 

IX' (Y:a f
Cil

, up/Ix won doesn't depend on the choice of w in 

bub depends· possibly on the Kahler class K. 

Cy,w will be denoted by Cy,Ko) 

(Therefore 

(5.2) If there exists a ol"€ K such that (X,w) is a 

Kahler manifold·of constant scalar curvature, then Cy,K = 0 

for all Y € r(x,O (T(X) J) • 

The main purpose of this sect~on is to show that the 

first derivative of the K-energy map p: K --> R along each 

orbit {y t * wIt € JR} of the 1-parameter group {y t} t EJR is 
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nothing but Cy t K. Using this fact, we shall give another 

proof of (5.2) of Futakits theorem. In a subsequent paper 

(cf. Banda and Mabuchi [1]), a very simple proof of (5.1) will 

also be given in a more general situation. 

THEOREM (5.3). Let Y be an arbitrary holomorphic vector 

field on X. Then for all t e::R ~ W e: K 

PROOF: For each t'€ R, there uniquely exists a function 

y * wand 
t 

more put 

For simplicity, we write 

fyt*W as wt and f t respectively. We further­

V := Ix won/ n! • Note that 

we have, for every t e: ~ , 

CY,K = J X (YR ft' wtn
/ (n!V) = - n/-1 J X ftWt n-1 Aaaq.,tl (n!V) 

= r-1 JxCft"~~tAWtn-1/«n-1)!V) = (1/V) (cft,a<pt)L2(X,Wt) 

= - (1/V) (ow ft' cPt) 2 = - J cPt (o{tpt) - A} Va (tpt) 
t L (X,W

t
) x 

= d. lJ (wt ) / dt , 

from which the required equality immediately follows. 
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PROOF OF (5.2) of Futaki's theorem (by assuming (5.1)): 

By Theorem (3.2), lJ: K ->:It has a critical pOint at ;. 

Hence, for an arbitrary Y€ HO(X,O(T(X))) , 

For Fano manifolds, we have the following s~ronger facts: 

THEOREM (5.4). Assume that X is a Fano manifold (where it 

is not necessary to assume that 000 represents a specific 

class such as 2~c1(X)R). Suppose furthermore that there 

exists a Kahler form t E K of constant scalar curvature. 

Then the K-energy maE lJ: K ---> R of the compact Kahler 

manifold (X,ooO) satisfies 

}.l(g*oo) = }.l(oo) (0) E K) 

for all 9 € Aut(X) with g* K = K 

PROOF: Since X is a Fano manifold, there exists an mE Z 

(m » 1) such that the line bundle is very ample. 

Hence Aut (X) is regarded as a closed (algebraic) subgroup 

of PGL(N;(c). (=Aut(P(HO(X,O(K~m)}» (where N:hO(X,O(Kx-m))) • 

Thus for every 9 E Aut(X), we have gCL E AutO (X) for some 

positive integer CL. Then there exists a sequence 

hO = e, h 1 ,h2 , ••• , h r - 1 , hr = ga of points of AutO(X) such 

that hi = h i - 1 • exp YiJR (i = 1,2, ••• ,r) for some 
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Y. E aO (X, 0 (T (X) )) • We observe, from the defintion of M 
~ 

in §2, that 

. l' . 1 . 1 
M( (gJ- ) *w, (g) *w) = M( (gJ- ) *w, (gJ- ) * (g*w» = M(w,g*w) 

for each j. Hence 

a. (11 (g*w) - II (w» = aM(w,g*w) = La. M( (gj-l) *w, (gj) *w) = M{w, (ga) *w) 
j=l 

:: t r 
L Cy. K = 0 , 
i=1 J..' 

(cf. (5.2» , 

as required. 
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§6. The second variation formula for K-energy maps. 

Throughout this section, for simplicity, we assume that 

X is a Fano manifold with a Kahler form war= r-rr gaB dzal\dzB 

representing 2'1f c 1 (X)JR' (cf. §1). We furthermore fix a 

smooth path {Qlt l a ~ t ~ b} in H. 

We denote by ·t V the covariant derivative on the space 

of l-forms of the Kahler manifold (X,oo.O (tpt»' and let At 

be the A-operator 

1 \ B g(Qlt)B<l aND 
.;- l.a, "'v -1 

00 

of (X,oo
O 

(tpt») • Let fIP E C (X)JR be the function defined in 
t 

(4.5), and we denote this function simply by f t - Then 

• 
f t = - (°q)t + 1) cPt' and 

R(tpt' - 000 (Qlt) = ';-1 aa f t ' i.e., 

for every t E [a,b] , (cf. (4.2)). We shall first prove: 

LEMMA (6.1). be an arbitrary complex 
co 

valued C global vector field of type (l,O) on X. Then 

for every 

(6.1.1) .;=1 At a{ - (Yft ) d1l1+'Vid1p}+M At {(aY) (ft)hdW - V: aljJ} 
ay 

= Y( -0 l./1-ljJ) + (Yf
t

) 0 l./1 I 

Qlt Qlt 
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-
where (aY) Cft} : = la, a yaj3 (ft ' a dz a and 

-
, a a t 
I. a(Y adz 1\ v alP). 

a a a (We use SUCfl notation y 6 = ay /cz , 
a,lJ IJ a/a za 

as is explained in (1.3).) 

PROOF: Fix an arbitrary pair (t,P) E :m x X. We then choose 

a system 1 2 n z = (z , z , ••• , z ) of holomorphic local coordinates 

of X centered at p such that 

and 

for all a and a. Since there is no fear of confusion, the 

following g (tPt ) ae' g (tPt ) ey, R{tPt ) 0.6 ' f t , vt, At ' C
tPt 

will be 

ih denoted simply by GaB' G , RaS' f, v, A, c respectively. 

Then at the Doint (t,P) E JR x X, 

(6.1.2) 1-1 A ~){ - (Yf) alP + 'Vy d1/1} 

= La, a (yas fa Wa + yo. faa Wa + yo. fa Was) 

, {a a a, 2 a a 
+ La,S -y B lPSa - y WSaa + y 1.0 lPo(c GS'd/dZ dZ )} 

= La,s{yaafaWa+ya(Ras-OaS) i;Ja} + (Yf)cl/1 

+ La, S ( - yas Waa - yaWaBa ) - La 0 yo. Ra6 W cS , 

On the other hand, at the same point (t,p), 

(6 - - a a .1.3) 1-1 A {(dY) (f)l\dtjJ-V- dtpJ=-I (y-f W -y-I/J ). 
() Yo., a 6 a B 6 6a 
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Adding up (G.1.2) and (G.l.3), we obtain (G.l.l). 

THEOREM (G.2). (Second variation formula). For every 

tE[a,bl, we have 

(G.2.1) 2 1 H - 2 
:t

2 
1-1 (Q)t) = V: 1\ ayt , L2 (X,w

O 
(Q)~) ) 

- Ix {<Pt - ra,ag(tPt)aa (cPt)a (cPt'ji} (a(tPt ) -n) Vo(tPt ), 

where v: = J Wo n/n! 
X 

PROOF: We integrate, on x, the equality (G.1.1) applied 

to (If/, YJ = (q,t' Yt )· Then by J X 1=1{At a { .... l)V 0 (qJt' = 0 , 

we obtain 

(6.2.2) Ix r-1 At {(ayt ) (ft ) A dePt - vfY
t 

dePt} V 0 (~t) 

= J Yt (-0tp <Pt - <Pt ) V 0 «(/)t} + I (Yt f t ) (°tP ~t) V 0 (Q)t) • 
X tXt 

On the other hand 

d
2 

. f (6.2.3) ~ll(~) = :t -q,t(°tpft , Vo{tpt) 
dt X t. 

= :t{(1/V} (§tPt,aft)L2(XtWo(tpt))} 
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. 
Since f t = - {c<p + 1)tPt , the right-hand side of (6.2.2) 

t 
coincides with the sum of the last two integrals of the bot-

tom of (6.2.3). Hence 

(6.2.4) 

J \' Sy . oa. . 
- X L. a , a,y, 15 g (<pt ) {<pt \6' g (<pt ) (<Pt ' B (ft)a Vo (lPt~ 

J \' Sa -+ X L.a,S g(<pt ) (<pt)s (ft)a VO(<pt) 

+ J r-1 At { (;iYt ) (f t ) "dtPt - v~~ atPt } Vo (lPt ) • 
X t 

Note the following identities: 

(6.2.6) 
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Adding up (6.2.4) I (6.2.5) and ( 6 • 2.6), we obtain 

, 

(D 

where h = h {t,x) € C ([a,b] x X) is the function defined by 

On the other hand,. writing Y _ t 

a \ aa . 
we put y := La g(~t) (~t)8)' 

as r ya a/aza 
a 

we have 

(Right-hand side of (6.2.1») = J k VO(~t) , 
X 

(in which 

where k = k(t,x) € C;<£a,bJ x X) is the function defined by 

We fix an arbitrary pair (t,p) € [a,b] x X and choose a 
• 

system 
1 . 2 n 

(z ,z , .•. ,z ) of holomorphic local coordinates of 

X centered at p such that 

and 

for all a and a. Then at the point (t,p' E [a,b] x X , 
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as required. 

COROLLARY ( 6 .3). If w is a cri tical point of J.l: K --> JR , 

then the inequality 

~ 0 

holds for every smooth path fat I - g ~ t ~ g} in K such 

that '9 0 = w • 

REMARK (6.4). An interesting interpretation of (6.2.1) will 

be given in a forthcoming paper[7J. 
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