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ON MULTIGRADED REES ALGEBRAS
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M. Herrmann, E. Hyry, J. Ribbe

0. Introduction

Let A be a local ring with the maximal ideal m. Let I C A be an ideal
of gradel > 0. The purpose of this paper is to study the Cohen-Macaulay
and Gorenstein properties of the multigraded Rees algebras Ra(I*1,..., I*) =
AlI*¥v¢y, ... I*t,.], where ¢;,...,t, are indeterminates and kq,...,k. € N*. The

geometric object associated to Ra(I*t,...,I*) is the multiprojective scheme
Proj Ra(I*,...,I*") embedded into some projective space P x4 ... X4 pi.

The scheme Proj Ra(I*t,...,I*r) is isomorphic to Proj Ra(I**++*-), which is
the blow-up of Spec A along the subscheme V(I¥1+**r) From the homological
point of view these multigraded Rees algebras must thus be closely connected to
the Rees algebras of powers of ideals.

The Cohen-Macaulay and Gorenstein properties of R4{I*!,...,I*) have pre-
viously been considered in [HHR] for equimultiple ideals I. The main results from
[HHR] concerning the Gorensteiness of R4(I*',..., I*") have partly been general-
ized to arbitrary ideals in [R]. For an equimultiple ideal, we could calculate (by an
idea of E. Hyry) the local cohomology and the specific canonical modules of several
graded algebras by using a slightly generalized concept of the Segre product of two
graded rings in the following sense: Goto and Watanabe had determined the local
cohomology of the Segre product of two graded rings over a field. Their arguments
could be extended in [HHR] to graded rings over Artinian rings; in particular, we
could compute the local cohomology of the Segre products

(P I /1A Dt -t

n>0
and
(P /1A /)t . ot (g> 1),
n>0
where t,,...,t, are indeterminates and I is an m-primary ideal. Then, for any

equimultiple ideal, one could proceed by standard arguments.



In [R], by a completely different approach the Cohen-Macaulay type of a
multigraded Rees ring R4(I*',...,I*) for an arbitrary ideal I has been de-
termined. This computation together with the observation that the canonical
module of R4(I) can be easily calculated in terms of the canonical module of
R4(I*,...,I*) led to the more general results in [R].

In this paper, we also consider the multigraded Rees ring Ra(I*,...,I*)
for an arbitrary ideal I. In Theorem 2.4 we first give a necessary and sufficient
condition for the Cohen-Macaulayness of R4(I*:,...,I*) in terms of the local co-
homology of the usual Rees algebra R4(I). It then turns out in the main Theorem
3.16 that if R4(I*1,...,I*) is Cohen-Macaulay, R4(I*,..., I*") is Gorenstein if
and only if the Rees algebra R4(I***+¥r) is Gorenstein. Consequently a suitable
characterization of the Gorensteiness of R4(I?), ¢ € N*, for an arbitrary ideal T
of gradel > 0 is desirable in this context. This is the second aim of this paper.
The Gorenstein properties of ordinary Rees algebras R4(I7), ¢ € N* have already
been studied to some extent in [HRZ|, [HRS], [H] and [Z]. Assuming R4(I) to be
Cohen-Macaulay, it was shown in [HRZ] that if A is a local Gorenstein ring and
ht I > 1, Ra(I%) is Gorenstein if and only if the associated graded ring gra(I) is
Gorenstein with the a-invariant —(¢ + 1). This is a generalization of a result of
Ikeda ([I}), which says that if Ra(I) is Cohen-Macaulay and gradel > 1, R4(I)
is Gorenstein if and only if wg = A and wy,, (1) = gra(l)(—2). The result of
Ikeda has been extended to the case gradel = 1 by Goto and Nishida in [GN].
They first prove that if R4(I) is Gorenstein, then ws = Homyx(I,4) = I~! and
there exists an exact sequence

0 — gra(I)(=2) — wyr, () — Extl(A/I, A)(-1) — 0.

They then show that these conditions are under certain assumptions sufficient for
the Gorensteiness of R4(I). Meanwhile Trung, Viét and Zarzuela have proved in
[TVZ] that these conditions are also sufficient in general. Here we follow the line
of thinking in [GN] in the following sense.

If I C Aisanideal, let I* =J,5, I"*! : I" be the corresponding Ratliff-
Rush ideal (see [Mc]) Let R%(I) and_ gr%(I) denote the Rees algebra and the
associated graded ring of the filtration

ADI'>I** > >

Set I™" = Hom4(I", A) for n > 0. We shall show in Theorem 3.9 that if R,(I7)

is Gorenstein, there exists an exact sequence

g—-1
0 — RY(I)(—q) — wr, 1) — @I"_q — 0

n=1
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and we have wy = I~7. If, moreover, H3™ *(Ra(I)) = 0, where 91 is the
homogeneous maximal ideal of R4(I), there also exists an exact sequence

q
0 — gra(I)(~{g + 1)) — wyracry — @197 /I"1 — 0.
n=1
We then prove in Theorem 3.12 under the assumption H3m4(R4(I)) = 0 that
if gradeI > 1 the conditions wa = A, wyr, () = griy(I)(—(¢ + 1)) imply the
Gorensteiness of R4(I7). In the case ¢ = 1, this reduces to the above mentioned
theorem of Goto and Nishida.

In Corollary 3.14 we show that if A is a local Cohen-Macaulay ring and
R 4(I7) is Gorenstein, gra(l) is Gorenstein if and only if either I is principal or
htI > 1 and gr4(I) is Cohen-Macaulay.

Acknowledgements. This paper was written when the second author was
visiting Germany. Financially he was supported by a grant of the DAAD (Ger-
many). We want to thank Ngo Viét Trung (Hanoi) and Zhongming Tang (Suzhou)
for many helpful discussions in the seminars of the Max-Planck-Institut fiir Mathe-
matik during the preparation of this work.

1. Preliminaries

We begin by fixing some notation and by recalling certain basic facts about
the local cohomology theory of multigraded rings and modules (for details see
[HHR), [HIO], [GW1], [GW2]).

We use the following multi-index notation. The norm of a multi-index n € Z7
is In| =n; +...+n.. f mn € 2" are multi-indexes, their product mn =
(miny,...,mn,) and dot-product m-n = miny +... + mn,. If m; < n;
(m; € n;) for every ¢, weset m <n (m < n). We denote 1 =(1,...,1).

In the following we call Z"-graded rings and modules r-graded or simply
multigraded. Rings are always assumed to be Noetherian and N"-graded. Let
S = @pnen- Sa be an r-graded ring. Denote St = @B, o Sn, S = @,,,5 5n
(i=1,...,r)and S** =@ .05 =57 N...NS}. If s € Sn, we say that s
has total degree |n|. From any graded ring R we can always form an r-graded
ring R™9" = @, cnv Rjn|» which we call the r-graded ring corresponding to R.

From now on we assume that S = B, cn- Sn, where So = A is a local ring. If
m is the maximal ideal of A, the ring S now has a unique homogeneous maximal
ideal 91 = m@®St. We have the multigraded local cohomology modules Hi,(M).
Put d=dimS. An r-graded S-module wg is called a canonical module of S if

Homg(Hir(S), E5(k)) 2 ws @4 4,

where E (k) is the injective envelope of k in the category of r-graded S-modules.
If a canonical module exists, it is finitely generated and unique up to an isomor-
phism. Moreover, it always satisfies the condition (S;) and dim S/P = dim S for
all P € Asswg.



There is the theorem of local duality, which says that if A is complete, S
is Cohen-Macaulay if and only if every finitely generated r-graded S-module M
satisfies

Homg(Hip(M), E5(k)) = Ext§ ™ (M,ws) (i=0,...,d).

An important corollary of this theorem says that if S is Cohen-Macaulay and has
a canonical module wg, then also every r-graded ring T defined over a local ring
and admitting a finite ring homomorphism S — T has a canonical module

wp = Mes(Ty wS))

where e = dim$§ — dim 7. The ring S is Gorenstein if and only if it is Cohen-
Macaulay and wg = S(n) for some n € Z7.

Recall then the notion of the a-tnvariant. If R is a graded d-dimensional
ring defined over a local ring and has the homogeneous maximal ideal I, the
a-invariant of R is

a(R) = max{m & NI[H(R)]m # 0).
If R has a canonical module, also
a(R) = ~min{m € N|[wr]m # 0}.
The a-invariant of an r-graded ring S is a(S) = (a1, ..., a,), where
a; = max{n;|n € Z" and [H§(S)la # 0}
In the case S has a canonical module, we also have
a; = —min{nj|n € Z" and [ws]n # 0}.

If S is Gorenstein, ws = S(a(S)).

If k € (N*)", the Veronesean subring S of § is S™ = @, cnr Skn- I
M is an r-graded S-module, the Veronesean submodule M) of M is the r-
graded ™ _module M) = @P.cz- Mun- I S can be generated by elements
of total degree one over A, we have (Hi,(M))™ = gi . (M®). Moreover,
if dimS = dimS™ and S has a canonical module ws, so does S and the
canonical module of S® is wguy = (ws)¥).

In many occasions it is useful to consider the ring S endowed with a different
grading. Given a homomorphism ¢:Z" — Z9 satisfying ¢(N") C N7 we put

v @ (@ )

meN!  p(n)=m
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For any r-graded S-module M there is the corresponding r-graded S¥-module

we- @ (@ )

meZ! p(n)=m
It is easy to see that for all r-graded S-modules N and every homomorphism
p: 2" — 79 satisfying o(N") € N? (Exts(M,N))? = Exts,(M¥ ,N¥). The
following lemmas show that the local cohomology groups and the canonical module
behave well under a change of grading (see [HHR, §1]).

1.1. Lemma. Let S be an r-graded ring defined over a local ring and let
M be the homogeneous maximal ideal of S. Let M be an r-graded S-module.
If o:21" — 17 is a homomorphism satisfying ¢(N") C N?, we have

(Hin(M))* = Hi, (M),
1.2. Remark. If ¢ is an isomorphism Z" — Z7 such that $¥ = S and
M¥ = M, it especially follows that (Hjy,(M))? = Hi,(M).
1.3. Lemma. Let S be an r-graded ring defined over a local ring. Suppose

@:2" — 19 is a homomorphism satisfying o(N") C N? and ¢~ 1(0)NN"=0. If
S has a canonical module wg, so does S¥ and the canonical module of S¥ is

wse = (ws)?.

Let A be aring and let Iy,..., I, C A be ideals. Set I = (Iy,...,I,). The
multi-Rees ring R4(I) is the r-graded ring

RaD)= P 17217
neN"

We often identify R4(I) with the subring A[Lity,...,I:t,] of Alty,...,t]. If
htI; >0 (5 =1,...,r), we have dim R4(I) = dim A+r. In this paper we concen-
trate to the case where all the ideals Iy,..., I, are powers of the same ideal I C A.
We use the notation I, for the r-tuple (I,...,I) and set IX = (I*,...,I*) for
k € (N*)". The associated r-graded ring gra(1,) = Ra(1,)/IRs(1,). If A islocal
and ht I > 0, we have dimgra(I,)=dimA +r - 1.

2. The Cohen-Macaulay property of the multi-Rees algebras

Let A be alocal ring and I C A an ideal of htI > 0. Let k € (N*)". We
want to calculate the local cohomology of the multigraded Rees algebra R4(IK).
Since RA(I¥) = (Ra(I,))®), we can first consider the ring R4(I,). We have

Ra(l;) = P [Ra(D)}jny
neENT

so that Ra(I,) is the r-graded ring (R4(I))""¢" corresponding to R4(I). We
therefore begin with the following general lemma:



2.1. Lemma. Let R be a graded ring defined over a local ring and let IM
be the homogeneous maximal ideal of R. Put S = R"9" and Ml = M"~9". Let

5 l€{l,...,r} (; #1). Then

(1) ﬂ"ﬁ(s)(nl ----- n.) = ._H_:_.)‘I(S)(nx,-.-,ﬂj(i)m,...,(cl’),...,n,) ifnj 2 0 aﬂd ny 2 0.

(2) HL(S)n,.ny =0 if nj <0 and n; > 0.

(3) E‘in(s)(nl;u-,ﬂr) = _Ii::n(sl-*-)(!u,...,n,‘(-ji-)n;,...,((')),...,n.,.) if nj < 0 a-nd n < 0.
Moreover, _:‘R(S;*')(,,l,___,n,) =01ifn;>0 and ny=0.

Proof. By symmetry we can assume that § = r — 1 and ! = r (see Remark
1.2). Consider the exact sequence

0 —St— 85— §/St—0.
From this sequence we get for all n € N the exact sequence
(5 (S/5a — [HR(SNa — [HR(S)n — [HH(S/ST)]a-
Since [Hi,(S/SH)|n =0 if n, # 0, we obtain an isomorphism
[H5(SH)In = [Hy(S)]a-
Similarly there is an isomorphism
(o (S7-1)ln 2 [Hy(S)ln

for n,_1 # 0. Also note that the map S} — St |, s v t.yt7ls, s € §F
induces an isomorphism

@‘g](sj)](nla-“s“r—l,ﬂr) g ﬁ;’](s;tnl)](nl,...,n,_1+1,ﬂr—l)'
We then have for any n,—; # 0,n, # —1
E;T(S)(ﬂlv---,"r-hﬂr) = E:;l(s+—l)(n1,...,n,_1,n,)
= E‘ln(‘s‘:-)(m....,n,._l—l,n,.+1)
= E‘ln(s)(nl,...,ﬂp_l—l,nr+1).

If we now replace n,—; and n, with n,_; + n, and 0 respectively, the repeated
use of this formula implies (1). Also (2) follows, since for k > 0 we get

ﬂ:ﬂ(s)(fh ----- "r-l,“r) = E;}(S)(nl:---,nr—l_]'nr'l'l)

R

iR

ﬂ;‘l(s)(nl ,un,ﬂr-—l_k,nr'*'k)
=0.



To prove (3) observe that for n,—; # —1
Hy(SHomomesme) = Hin(SF1)msmes41,m0-1)
= E:J'I(S)(nl,...,n,._l-f-l,n,—1)-

By replacing n,_; and n, again with n,._; + n, and 0 respectively, we get (3).
To prove the last claim note that for n,_; # —1,n, # 1

Eg'l(s:.)(ﬂlp---'"r—l."r) E ..fi;](s)(n]_,...,Tl,-_1+1,n'.—])
= E:J](S;"-)(nl,...,n,._,+1,n,._1)

so that for £ > 0

E;‘(S:)(nlv"'vnr—lso) = ﬂ;‘(sj)(nll"-ynr—l"'la_l)

o

g ﬂf}'i(sj-)("lw-;ﬂr—rfk,—k)
=0.

2.2. Theorem. Let R be a graded ring defined over a local ring and let 9
be the homogeneous maximal ideal of R. Put S = R"9" and M = 9IM""9". Then

| [Hiz(R)ljm #n>0
[Hy(S)ln =S [Hit' " "(R)]jn) if n < 0

0 otherwise .

Proof. We use induction on r. The case r = 1 being trivial assume r > 1.
Observe that S("—1=9" = §/§+ Let n € N™ and consider the exact sequence

[Hy ' ($)n —
Hy '(5/51)a — [Hp(SHla — [Hu($)la — [HH(S/5H)n
— [Hy (57l

coming from the exact sequence
0— St — 85— 5/SF —o0.
If n > 0, Lemma 2.1 first implies that

E:J‘((S)]n = E‘g](s)](nl,....n.._1+n,,0) .
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Moreover, we get

@;‘l(s:—)]("h--n"r-1+ﬂn0) = H;{-I(S;i-)](ﬂ1.--.,ﬂp_1+np,0) =0

so that there is an isomorphism

E;‘((S)](mpmﬂr-1+nn0) = [E;I(S/Sj)](nla---)nr~1+nn0)’

The claim now follows from the induction hypothesis. Suppose then that n < 0.
We get

[E:]](S)]n g @:_:R(S:)](nl,...,n.._1+n,.,0)s
by Lemma 2.1, (3),

= E:J‘[_I(S/Sj )](nl,...,n,._1+n,.,0)a

since in the exact sequence mentioned above

@fn(s)](nl,...,nr_ﬁnr,o) = uf_‘i)'c_l(S)](ﬂ1,---,nr-1+nn0) =0

by Lemma 2.1, (2). This implies the claim by the induction hypothesis. The case,
where some n; < 0 and some n; > 0 follows immediately from Lemma 2.1, (2).

We also need the following lemma (see [HHR, Theorem 2.2 and its proof]).

2.3. Lemma. Let A be a local ring and let I,...,I; C A be ideals such
that htI; >0 (j=1,...,r). Then a(Ra(14,...,I;)) = —1.

We now give a necessary and sufficient condition for the Cohen-Macaulayness
of the multi-Rees algebra R4(I¥).

2.4. Theorem. Let A be a local ring of dimension d and I C A an ideal of
htI > 0. Let k € (N*)". Let M be the homogeneous maximal ideal of R4(I).
Then R4(I¥) is Cohen-Macaulay if and only if [Hi(RA(I)]kn =0 for i <d+1
and n<0 orn2>0.

Proof. Since Ra(I¥) = (Ra(I,))™ and Ru(I,) = (Ra(I))""9", it follows
from Theorem 2.2 that
[Hin(Ra@)n  ifn20
[Hy(RAT)n = [Hyp(Ra(I )k = $ [HFE' " (Ra(I))lkn f n < 0

0 otherwise .

If Hi(Ra(I¥)) =0 for i < d+ r, this immediately implies [H},(R4(I)lkn =0
fori<d+1 and n <0 or n> 0. Since a(R4(I)) = ~1 by Lemma 2.3, we have
[Hip(Ra(I))kn =0 for i > d+1 and n > 0. If [Hiz(Ra(D)kn =0 for t < d+1
and n < 0 or n > 0, we thus get Hi(Ra(I¥)) =0 for ¢ < d+r and the claim
has so been proved.

Theorem 2.4 immediately implies the following two corollaries.
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2.5. Corollary. Let A be a local ring and I C A an ideal of htI > 0.
Let k € (N*)". Denote q = ged(k1,...,kr). If R4(I%) is Cohen-Macaulay, also
RA(I¥) is Cohen-Macaulay.

2.8. Corollary. Let A be a local ring of dimension d and I C A an ideal
of htI > 0. Let k € (N*)". If Ra(I¥) is Cohen-Macaulay, also Ra(I'™!) is
Cohen-Macaulay.

Also recall the following result proved in [HHR] (see [HHR, Theorem 2.2)):

2.7. Theorem. Let A be a local ring of dimension d and I C A an ideal
of ht I > 0. Let M and N be the homogeneous maximal ideals of R4(I) and
R4(I,) respectively. The following conditions are equivalent.

(1) Rs(I,) is Cohen-Macaulay.

(2) [Hip(gra(Ir))n =0 wheni<d+r—~1 and n# —1,
a(gra(I,)) < O.

(3) (Hiz(Ra(D)]n =0 wheni<d+landng{-r+1,...,—1}.

(4) (Hiz(gra(D)]a =0 wheni<d and n ¢ {-r,...,-1},
a(gra(l)) < 0.

3. The Gorenstein property of the multi-Rees algebras

Let A be a local ring and I C A an ideal of grade > 0. In this chapter we
want to study the Gorenstein property of the multi-Rees algebra R4(I¥), where
k € (N*)". We begin with a series of lemmas.

3.1. Lemma. Let A be a local ring and let I ,...,I, C A be ideals. Set
S=Rua(lh,....,I;) and J=1,---I.. Then

Homy(7S5,S) = @) Homa(J, I} -+ IT").
neNT

Proof. Suppose first that f € [Homg(JS,S)]n. Then f = {fm)menr, where
fm € Hom 4(JSm,Sm4n). f a € J and b€ I*! .- I, we have

Sm((ab)t" - 7)) = (bt]™ - - 877 ) fo(a) = fo(ab)t]™ -+ € Smsn.

It follows that fm(ct™ ---t™r) = fo(c)tP'---t™r for all ¢ € I *! ... [mrt1
This shows that f is uniquely determined by an element of Hom 4(JSe, Sn) =
Hom4(J, I7* -+ - I?*r) and the lemma follows.

3.2. Lemma. Let A be a local ring and let I,...,I, C A be ideals such
that gradel; > 0 ( = 1,...,r). Set S = R4(,...,I;) and J =1, ---I,. If
grade(JS + S*t+) > 1, we have [Ext5(S/S*t,S)]n =0 for n > 0.
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Proof. Let a; € I; (§ =1,...,r) be non-zero divisors. Denote a = a; - a,
and s = at; ---t,. Multiplication by s then induces an exact sequence

0— S(-1) — S — §/s§ — 0.
From this we get the exact sequence

0 — Homg(S/S*+,5(~1)) — Homg(S/5*+,5)
—s Homg(S/S%*,5/sS) — Exty(S/S*,5(-1))
— Exty(S/51*,8) — ...

Since Homg(S/St+,8) = 0 and ExtL(S/5t+,S5(—1)) — Exts(S/5*+,S5) is a
zero map, there is an isomorphism

Hom(5/S**,§/s8) 2 Extiy(S/S, $(~1)).

Because

Homg(S/S*+,5/38) 2 55 : §11/s8,
we get

[Extls(5/5++,5')]n = [SS : S++/SS]H+1
for all n.

We shall next show that for n > 1 [sS: S*Y), = [s5: (JS + StH)].. Let
ety -+ t?r € (35 : ST+],. Then

(Jty- -t )(etft - 277) C (aty -+ 2 )(I7 - I0e0 - 200),
This implies Je C alf* -+ I C aIf*~! ... I*~1 50 that
J(ctPr e tPr) C (aty -t ) I IR g,

Hence cty---tP € [sS: (JS + ST1)], and the above claim has been proved.
If grade(JS + St*) > 1, we have 3§ : (JS + S**) = sS and get thus
[Ext§(S/S*+,8)]n =0 for n > 0 as wanted.

3.3. Lemma. Let A be a local ring and let I,...,I, C A be
that gradel; > 0 (7 =1,...,7r). Set S = Ra(ly,...,I;) and J =
grade(JS + S**) > 1, the canonical homomorphism

ideals such
L---I.. If

It I — Homa(J, I - I7)

is an isomorphism for all n > 1.
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Proof. By dualizing the exact sequence
0— Sttt —S§ —85/sTt —0

by S one obtains the diagram

Homg(S/S++,8) — § — Homg(S*+,5) — Extg(S/ST+,S) — 0
le
Homg(JS, S) ,

where ¢ is the degree 1 isomorphism induced by the isomorphism JS§ — S*7,
s+ sty - -t., s € J§. Since gradeJ > 0, we have Homg(S/S*+,5) = 0. By
Lemma 3.2 we know that [Ext§(S/S+*,S)]a = 0 for n > 0. The diagram then
implies that for n > 1 there is an isomorphism S,-1 — [Homg(JS,S)|n. In
this isomorphism s € S,_1 is mapped to the element s' — (s'¢,---¢,)s, ' € JS
of [Homg(JS, S)|n. Because

Homg(JS,S) = @ Homa(J, It -+ I7")
nEN"

by Lemma 3.1, we get an isomorphism I* ... I*=1 — Homy(J, I - IPr),
which maps an element a € I7* ™' ... I"~! to the element o' +— aa’, a' € J of
Hom4(J, I --- IPr) as desired.

3.4. Lemma. Let A be a local ring and I C A an ideal of gradel > 0.
Suppose that R 4(I¥) is Cohen-Macaulay for some k € (N*)". Then
(1) The canonical homomorphism I™ : I™ — Hom 4(I™,I") is an isomorphism
for m < |k| < n.
(2) I<®: [kl = *(-1) for n > 1.

Proof. We apply Lemma 3.3 with I; = I*% (j = 1,...,r). Since § =
R4(I¥) is Cohen-Macaulay, we have ht(JS + 5;") >1(j=1,...,r) and so also
grade(JS + S**) = ht(JS + S**) > 1. It follows that the canonical homo-
morphism I*(™=1) —, Hom4(I'¥l, I*®) is an isomorphism for all n > 1. We
then observe that (2) is a consequence of (1). To prove (1) note first that in the
case n = 1 the above isomorphism gives an isomorphism A — Hom 4(I'kl, rlkl),
Consider the exact sequence

0— Ikl ™ Im/IIkI — 0.
Dualizing by I" gives the sequence

Hom(I™ /I, ™) — Hom4(I™,I™) — Hom(I'!, ™).
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Since gradel > 0, we have Hom(I™ /1% I") = 0. Then
Hom(I™, I") C Hom4(I'™!, I") € Hom 4(I'¥, 1'%y = 4.
Hence we can make the identification
Homs(I™,I")={a € AlaI™ CI"}=1I":I"

and the lemma has so been proved.

Let A bearingand I C A an ideal. Consider the so-called Ratliff-Rush ideal

r=Jrt.r
p>0

(see [Mc, Chapter 11}). Note that I™*P : JP C [™+P+1 ;. [P+ for all n,p > 0.
When gradel > 0, it is well-known that

= r
p>0

for all n € N (see [Mc, Proposition (11.1), (v)]).

3.5. Lemma. Let A be a local ring and I C A an ideal of gradel > 0.
Suppose that R4(I¥) is Cohen-Macaulay for some k € (N*)". If n € N", let
8(n) = (31(n1),...,s,-gn,.)) € N", where nj + sj(n;) € kjN, 0 < 3;(n;) < k;j
(7 =1,...,r). Then I'®l+?: 17 = (II")* for p > |s(n)|.

Proof. 1t is enough to prove that Iinl+ls(ml . fls(m)l 5 (flnl)*  We show that
Jinl+is(m)|+qlk| . fls(n)i+glk] ~ finl+|s(n)] . fls(n)]
for all ¢ > 0. If a € IInl+is(n)l+alkl . fla(n)l+elkl e obtain

a*] ¢ pinl+ls(o)i+alkl | palkl

Now n + s(n) = km for some m € N". Since R4(I¥) is Cohen-Macaulay, it
follows from Lemma 3.4 that

JInl+is(@)l+qlkl . palk| — pk-(m+q1) . pelk| _ pkem _ fin|+ls(n)]

Therefore a € IIn1+Is(n}l ; 18(n)] and the claim has been proved.

We are now ready to consider the Gorensteiness of R4(I9) (¢ € N*).
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3.6. Proposition. Let A bealocalringand I C A anidealof htI > 0. Set
S =Ra(I). Let g N*. If n € N, let r(n),s(n) € N be the numbers determined
by the conditions n+ s(n) = r(n)q, 0 € s(n) < q. Denote T = Ra(I?). If T is
Cohen-Macaulay and has a canonical module, also S has a canonical module and

[ws]n = [HomT(I’(")T, W) r(n)
foralln>1. Ifa € I™ and ¢ € |ws]a,
((at™p)(BE¥) = p(abtt ¥l m)=r(e))

for b e I*(m+n)tke ke N. Moreover,

[Hom(IS,ws)]a = [HomT(I‘(")"'lT,wT)],.(n).
Proof. Put U = A[I9t%} and denote UP = (It)*U for 0 < p < q. First observe
that U is a subring of § and § is a finite U-module. In fact, as a U/-module
g-1

s=gpur.

=0
If p:Z — 7 isthemap n— gn, n € Z, we have U = T¥ and U? = (I?T)¥(—p).
Since T and U are isomorphic as rings, also U is Cohen-Macaulay and so
g—1

ws = Homy,(S,wu) = @ Hom {U?,wy).
p=0

By Lemma 1.3 we know that wy = (w7)¥. Then
[Homy(UP,wu)ln = [Homz, (IPT)%, (wr)*®)]n+p
= [(Homp(I"T,wr))*]n+p.
It follows that [Homy{U?,wy)]n =0 if p # s(n). So
[wsla = [Homy(U*™, wp)]a = [Homp(I*™T, wr)]s(n). N

IfaecI™, be I*"m+ke and ¢ € |ws]a, the claim concerning ((at™ )p)(bt¥)
follows easily from the observation that we can write

m+ s(m +n)+ kg =s(n) + kg+ (r(n + m) — r(n))gq.

Since
g—1
IS=Iv?
p=0
and

Homg(IS,ws) = Homg(IS, Homy(S,wr)) = Homy(IS,wy),
it follows in a similar way that

(Hom(I5, ws)ln = [Homy (IU*™, wy)la = [Homp (I H T, w1)] (my.

In the proof of the following lemma we use the ideas presented in the proof
of (Z, Proposition (1.1)].
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3.7. Lemma. Let A be a complete local ring of dimension d and I C A an
ideal of ht I > 0. Set S = R4(I) and G = gra(I). Let 9 be the homogeneous
maximal ideal of S. There exists a commutative diagram

0 — ws — ﬂ(ﬂs(S'F,W,s') —_— w4 — m—mS(ﬂgn(s)aﬂs(k))
[ e
0 — ws — Homg(IS,ws) — we — Homs(HHu(S),Eg(k)),
where 7 is a homomorphism of degree —1 and p is the degree 1 isomorphism
induced by the isomorphism IS — S*t, s st, s € IS. Moreover, if n > 1, the

homomorphisms 7,: [ws]n — [ws]n-1 are injective and for every a € [ws], T(a)
is uniquely determined by the property that (ct)r(a) = ca forall c€ I.

Proof. Set T = R4(I?) and U = A[I%t9]. Since U is isomorphic with T as
ring, also U is Cohen-Macaulay. Moreover, U is a subring of S over which § is
finitely generated. By dualizing the exact sequences

0— ST —5S-—A-—0

and

0—IS—S5—G—0

by wy we obtain the exact sequences of S-modules

Hom(4,wy) —
Homy(S,wy) — Homy (S, wy) — Exty(4,wy)
- M(s,wu),
Homy(G,wy) —
Homy (S, wy) — Homy(IS,wy) — Exty(G,wy)
— Ext},(S,wy).

Now dimG = dimA = d, but dimU = dimS = d 4 1. Let 9 be the maximal
ideal of S. By local duality we get

Hom(A,wy) = Homy(Hg+ ' (A), Ey(k)) =0

and

Homy(G,wy) = @_@U(Edm}n(c;)aﬂv(k)) =0.
Since E (k) = Homy (S, E,;(k)), it follows that

Exty (S, wv) = Homy(Hg,(S), Ey(k)) = Homg(H3(S), E5(k))-
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We also have ws = Hom,(S,wr), wa = Ext},(A,wr), we = Ext;(G,wy) and
Homg(5%,ws) = Homg(S™, Homy, (S, wy)) = Homy, (ST, wy),

Homg(1S5,ws) = Homg(IS, Homy,(S,wy)) = Homy (IS, wy).

We thus get the exact sequences
0 — ws — Homg(S5*,ws) — wa — Homs(Hy(S), Es(k))

and
0 — ws — Homg(IS,ws) — wg — Homgs(HE(S), Es(k)).

Since [walp =0 if n > 1, the map [ws], — [Homg(St,ws)]n is an isomorphism
for n > 1. Because a(S) = -1, [ws], = 0 for n < 0. By means of the diagram

0 — ws — Homg(St,ws) — wa — Homg(H5(S), Es(k))

le

0 — wg -— HO_I'DS(IS,UJS) - wg — MS(E&((S)?ES(’C)):

we can now define a degree —1 homomorphism 7:ws — wg such that the
diagram commutes. It follows easily from the definition of 7 that (ct)r(a) =
7((ct)a) = ca for all ¢ € I. To see that this property uniquely determines 7(a)
assume that g € ws and ctf = ca for all ¢ € I. Then ct(r(a) — f) = 0 for all
¢ € I, which implies that $* C Ann(7(a) — 8). If 7(a) # B, there would now
exist P € Asswg such that §* C P. We would then have dimS/P < dim S,
which is impossible, since dim S/P = dim S for all P € Asswg. So 7(a) = f and
the lemma has been proved.

Let A bearingand I C A an ideal of grade I > 0. Consider the Ratliff-Rush
ideals I"* (n € N). By [Mc, Proposition (11.1), (vi)] I**I™* C I**™* for all
m,n € N. The ideals I"* (n € N) so define a filtration

ADI*D>I**>DB*>....

Let

RyD= I and gry()=p /e
neN neN

denote the corresponding Rees-algebra and the associated graded ring respec-
tively. By [Mc, Theorem (12.3)] we have I"* = I" for all n € N if and only
if grade(gra(I))* > 0. We thus get R%(I) = Ra(I) and gr%(I) = gra(I) if and
only if grade(gra(I))* > 0. By [V, p. 157] this is the case, for example, when
R 4(I) has the property (S;). It is also useful to note the following simple lemma.
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3.8. Lemma. Let A be a local ring and I C A an ideal of gradel > 0.
Then gr*(I) = gra(I) if and only if grade(gra(I))* > 0.

Proof. Suppose gri(I) = gra(I). There exists then for every n € N an
isomorphism I"/I™"*! — I™*/I**1*  From the isomorphism A/I — A/I* we
get I = I*. It follows by induction on n that I™ = I™* for every n € N. As
mentioned above this is now equivalent to grade{gra(I))* > 0.

We denote I™" = Hom4(I", A) for n > 0. For all n € N there is the exact
sequence

0 — Hom4(I"/I"t!, A) — Hom4(I", A) ~— Hom4 (1", A)
coming from the sequence
0 —iI"+1 N In —_— In/In-l-l — 0.

Since gradel > 0, we have Hom4(I"/I**!, A) = 0 so that there is a monomor-
phism
0— I™" — [7(*D),

By means of this monomorphism we shall consider ™" as an A-submodule of
I--(n+1) .

3.9. Theorem. Let A be a local ring and I C A an ideal of gradelI > 0.
Set S = Ra(I) and G = gra(I). Suppose that R4(I?) is Gorenstein for some
g € N*. Then

(1) There exists an exact sequence of graded S-modules
g—1
0 — RU(I)N—q) — ws — @ I~ —0.
n=1
(2) wa=I9
(3) Set d = dim A and let MM be the homogeneous maximal ideal of S. If
H3.(S) =0, we also have an exact sequence of graded S-modules

q
00— Q'T:Q(I)(—(q + 1)) -—_— WG — @ Iﬂ—q—l/In_q 0.

n=1

Proof. We may assume that A is complete. Lemma 3.7 implies the existence
of the diagram -

0 —ws — Homy(S5*ws) — wa — Homg(HH(S), Es(k))

le

0 —ws — .H_Qﬂs(IS,US) — wg — ﬂqﬂs(ﬂgn(s):ﬁs(k))v
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where g is an isomorphism of degree 1. Put T = R4(I?). Since T is Gorenstein,
wr = T(—1). By Lemma 3.1 it follows from Proposition 3.6 that

ws = P [Homp(I"™T,wr)](n)

n>1

= P [Homr(I"™T, )] (n)-1
n>1

= @ HomA(I’("), Ia(n)+n—q).
n>1

Similarly
Homg(IS,ws) = EB Hom 4(I°(M+1 pa(m)+n=q)
n>1

If1<n<gq, s(n)=¢—n and so
HomA(I’("),I'(“)""‘—‘I) = Hom4(I*™", A) = I"™9,
Hom 4(I*(M*+1, [*(M+7=9) = Hom 4(I9~ "+, A) = "9,
If n>gq, s(n)+n—gq> q and it follows from Lemmas 3.4 and 3.5 that
HomA(Ia(n),Ia(n)—i-n—q) — ¥(m+n—q ., pa(n) _ (I,,_q).’
Hom 4(I°(M+1 (M+n=gqy = ps(mtn=g, ps(m)+1 o (pn—g=1ys,

The claim (1) is now immediate. Since T is Cohen-Macaulay, we have [H,(S)]o =
[H3:(T)lo = 0. Then

Homs(H (), E5(k))o = Homa([Hgy(S)o, Ea(k)) = 0.
Since also [wglo = 0, the diagram implies w4 = [Homg(IS,ws)]1 = Homa(I7, A)
so that (2) has been proved. To prove (3) observe that in degrees 1 < n < ¢ one
can identify the second row of the diagram with the sequence
0 — 1" — "t L el 0,
In the case n < g, we thus get that
[wgln = I*797Y /1M1,

If n > q, we have

[weln = [Homg(IS, §)]n/[ws]n = (I"~9)* /(1" 7771y
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and the claim has so been proved.

Suppose that R4(17) is Gorenstein. In [HRZ] the a-invariant of gr4(I) was
computed in the case gradel > 1 if R4(I) was Cohen-Macaulay. Now using
Theorem 3.9 we can generalize this result as follows.

3.10. Corollary. Let A be a local ring of dimension d and I C A an ideal
of gradeI > 0. Let M be the homogeneous maximal ideal of R4(I) and assume
that H&,(Ra(I)) = 0. Suppose that R4(I?) is Gorenstein for some ¢ € N*. If
gradel = 1, we have a(gra{l)) > —(g + 1), and if gradel > 1, a(gra(l)) =
—(¢+1).

Proof. Set G = gra(I). Assume first that gradel = 1. Then I7! # A.
According to Theorem 3.9 we then have [wg], # 0 so that a(G) > —(¢+1). In
the case gradel > 1, we obtain [wg], = I""9/I""97! =0 for 1 < n < ¢, but
[wglg+1 = A/I* # 0, which means that o(G) = —(¢ +1).

We want to show next that if gradel > 1, the conditions mentioned in The-
orem 3.9 are also sufficient for the Gorensteiness of R4(I7).

3.11. Lemma. Let A be a complete local ring of dimension d and I C A
an ideal of gradel > 0. Let M be the homogeneous maximal ideal of R4(I)
and assume that Hi,(Ra(I)) = 0. Let ¢ € N*. Suppose that R4(I?) is Cohen-
Macaulay. Set S = Ra(I), G = gra(l). If [ws]; & A and If there exists an
isomorphism

gra~(g+1) — @ lwaln,

n>g+1

then we have an isomorphism
Ry(I)(-9) — D sl
n2g

of graded S -modules.

Proof. Let T:ws — wg(—1) be the homomorphism of Lemma 3.7. We first
define homomorphisms ¥,: (I"~9)* — [(ws]s (n > ¢) so that the diagram

wsln D [wsla-1
T‘»bn T'l)n—l
(In—q)t N (In-q-l)qn

commutes. By assumption we can find an isomorphism #,: A — [wg]y. Accord-
ing to Lemma 3.6 we can identify [ws], with

[Hom 7 (I*™T,wr))(n),
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where s(n),r(n) € N and n+s(n) =r(n)g, 0 < s(n) < g. Set £ = 4(1) € [ws],-
Let a € (I"~9)*. To define ¥,(a) we need a homomorphism I*("T — wr of
degree r(n). By Lemma 3.5 we have (I"~9)* = I*(®+n=4 . 15(")_ Since aI*(™) C
I1*(")+n=9 and ¢ is a homomorphism T — wr of degree 1 , we can define 1, (a)
by setting

a(a)(bt¥) = E(abt*TM 1) (b e PMFE ke N),

The definition now implies easily that ¥n(ca) = ctypn—1(a) for a € (I~ 1)* c€
I. By Lemma 3.7 this means that ¥,—1(a) = 7(¥n(a)). So the diagram commutes.
Now consider the diagram

0 — |wsln — [ws)n-1 — [weln — 0
Ilbn T@bn—l
0 — (In—q)t N (In—q—l)t —_ (In—q—l)t/(In—q)t — 0

By the induction hypothesis %,_; is an isomorphism. It follows that the induced
homomorphism (I"~971)*/(I"~%)* — [wg]. is an epimorphism. Since there
by assumption exists an isomorphism (I"~771)* /(I"~9)* — [wg],, this epimor-
phism must be an isomorphism. By the five-lemma 1, is an isomorphism. Since
Yn+m(ca) = ct™Pp(a) for all c€ I™, a € (I"~7)* and n > ¢, the isomorphisms
¥p now induce a S-linear isomorphism

Puoy — @ sl

n2q n>q

and the lemma has so been proved.

3.12 Theorem. Let A be a local ring of dimension d and I C A an ideal
of gradel > 1. Let 9 be the homogeneous maximal ideal of Rs(I). Suppose
HLI(Ra(I)) =0. Set G = gra(I). Let ¢ € N*. Then Rs(I9) is Gorenstein if
and only if the following conditions are satisfied
(1) Ra(19) is Cohen-Macaulay
(2) wa >~ A
(3) we = gri(I)(—(g +1)).

If grade G* > 0, condition (3) is equivalent with the condition
(3) we = gra(I}(-(g+1)).

Proof. We may assume that A is complete. Put § = R4(I), T = Ra(I7).
Since gradel > 1, we have I"~9 = I""9"! for 1 < n < ¢. According to Theorem
3.9 the Gorensteiness of T implies the conditions (1)-(3). Suppose then that the
conditions (1)-(3) hold. Then [wg]. =0 for 1 < n < ¢ so that by the diagram of
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Lemma 3.7 we get [ws]y & [ws|q-1 = ... = [ws)) Zws = A. By Lemma 3.11 this

implies that
P lwsl = Py

n2>g n>q

Now wr = (ws)®. Since T is Cohen-Macaulay, (79"~D)* = J9(*=1) (see p. 15).
We get wr = T(—1) so that T is Gorenstein as wanted. The equivalence of (3)
and (3’) follows from the fact that grade G* > 0 implies G = gr*(I) (see p. 15).

3.13. Example. ([HRS]) Let k be a field. Consider the ring
A=K[Xy,..., Xull/(X}) = k[z1,..., 211,

where k[[X1,...,X11]] is the formal power series ring over k. The ring A is a
hypersurface ring of multiplicity 2 and dimension 10. Let I denote the ideal
generated by all monomials of degree 4 in z3,...,z;; different from zZz2. Let
m be the maximal ideal of A. We now have I? = m8. Because R4(m) is Cohen-
Macaulay and a{(G(m)) = —9, we know by Theorem 3.12 that R(I?) = R(m®) is
Gorenstein. We shall show that in this case gr4(I) is not even quasi-Gorenstein.
Set S = Ra(I) and G = gra(I). One now easily sees that there exists a short
exact sequence

0 — § — Ra(m?*) — kzizi(-1) — 0.

Let 9 be the homogeneous maximal ideal of S. The corresponding cohomology
sequence now implies H;,(S) = 0 for ¢ # 1,11, but Hy,(S) = k(-1). It then
follows from the cohomolygy sequences corresponding to the short exact sequences

0—St—S—A4—0 and 0 >S5 (1)— S —G—0

that [H()]o = [Hi(ST)h = [Hyp(S)) # 0. Thus grade Gt = depthG = 0.
Because wg & gri(I)(—3) by Theorem 3.12, it follows from Lemma 3.8 that
wag ¥ G(-3).

3.14. Corollary. Let A be a local Cohen-Macaulay ring and I C A an
ideal of ht I > 0. Suppose that Ra(I?) is Gorenstein for some ¢ € N*. Then
gra(I) is Gorenstein if and only if either I is principal or ht I > 1 and gra(I) is
Cohen-Macaulay.

Proof. Denote G = gra(I) and a = a(G). Observe first that the assump-
tions in any case imply by [HRZ, Corollary (2.7)] that Ra(I) is Cohen-Macaulay.
Assume now that G is Gorenstein and ht I = 1. Then wg = G(a). By Corollary
3.10 we have a > —(q + 1). Because G is Cohen-Macaulay, gr%(I) = G. By
Theorem 3.9 we then get [wg|g4+1 = Go. So I9H1+e/rat2+a = A/T which implies
that I9t1*% is principal. Since htI > 0, it follows from [S, Proposition 1] that
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I is principal. If htJ > 1 and G is Cohen-Macaulay, [HRS, Theorem (2.3)] (or
Theorem 3.12) implies that wg = G(—(q + 1)) so that G is Gorenstein.

We shall now consider the Gorensteiness of R4(I¥) (k € (N*)"). We have
the following general result about the canonical module of an r-graded ring cor-
responding a graded ring.

3.15. Proposition Let R be a graded ring defined over a local ring. Set
S = R"9". Suppose that dimS = dimR +r — 1. If R has a canonical module,
then so does S and we have
- ws = Pwr)pa)-

n>0
Proof. Set d =dim R, so that dimR"™9" =d+r — 1. Denote A = Sp and
let 9 be the homogeneous maximal ideal of R. Set 01 = 91"~97. It follows from
Theorem 2.2 that [H3t" ™ (S))a = [H&(R)]jnj if n < 0 and 0 otherwise. Then
ws = Homg (Hy""'(S), E5(k))
= Hom,, (25"77(S), Ea(k))

= D Homa (HE51(S)]-n, Ea(k))

= éHomA ([Ha(R))=|n) Ealk))
- @[m (Han(R)s Ea(k))]jn)
= 6)9 Homp (Hin(R), Eo(K))]jni
= HEB[thnl-

n>0

3.16. Theorem. Let A be a local ring and I C A an ideal of gradel > 0.
Let k € (N*)". Then R4(I¥) is Gorenstein if and only if it is Cohen-Macaulay
and R4(I%l) is Gorenstein.

Proof. Denote R = Ra(I), S = Ra(I;) and §' = Ra(I¥), R' = R4(I'k).
Assume first that S’ is Gorenstein. We then know by Lemma 2.3 that wg =
S'(—1). By Proposition 3.15 we have

ws = Plwrln-
n>0
Since wg = (ws)®, this implies

S =P = Plwrlicn.

n>0 n>0
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Because wrr = (wgr){*P, it then follows that

wr = Plwrlin = @[wR]k-(u) = 69 IKI(=1) = pr_1y,

n>0 n>0 n>0

Since R’ is Cohen-Macaulay by Corollary 2.5, we gef that R' is Gorenstein.

Assume then that S’ is Cohen-Macaulay and R’ is Gorenstein. It follows
from Theorem 3.9 that

D lwaln = D (" ¥~.

n2 (k| n2k|

According to Proposition 3.15 we have

ws = @[‘%]my

n>0

Then
ws = (ws)® = Plwrlkn = U,

n>0 n>0

By Lemma 3.5 we know that (I*")* = I*" for all n € N". So

wg = @Ik'(n—l) — S'(‘**].)

n>0

and the theorem has been proved.

3.17. Example. Consider the class of Cohen-Macaulay almost complete
intersection ideals I of ht I > 1 in a local Gorenstein ring A. For these ideals
we know by [HRZ, Proposition (2.5)] that gra(I) is Gorenstein and a(gra(I)) =
—htI < —1. Since R4(I) is then Cohen-Macaulay, it follows from [HRZ, Theorem
(3.5)] that R4(I™7~1) is Gorenstein. Therefore the multigraded Rees ring R4(I¥)
is Gorenstein if |k| =htI —1.

Take in particular A = k[[X},...,Xe]], where k[[X,,...,X¢]] is the formal

power series ring over a field k, and
I=(X} - XX, X] - X3 X5, X2 — X1 X6, X1 X2 X3 — X4 X5X6)

([HK]). Then ht I = 3, a(gra(I)) = —3 so that R(I?) and R(I,I) are Gorenstein.

By combining Theorem 3.16 with Theorem 3.12 we immediately get the fol-
lowing.
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3.18. Corollary. Let A be a local ring of dimension d and I C A an ideal
of gradel > 1. Let 9 be the homogeneous maximal ideal of R4(I). Suppose
HE(Ra(I))=0. Set G = gra(I). Let k € (N*)". Then Ra(I¥) is Gorenstein if
and only if the following conditions are satisfied
(1) Ra(I¥) is Cohen-Macaulay
(2) waZ=A

(3) we = gri(I)(—(Ik| +1)).
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