ON MULTIGRADED REES ALGEBRAS OF IDEALS OF POSITIVE GRADE

M. Herrmann * E. Hyry ** J. Ribbe *

Mathematisches Institut der Universität zu Köln Weyertal 86-90 D-50931 Köln

Germany

**

*

National Defence College Santahamina 00860 Helsinki

Finland

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

, ,

.

ON MULTIGRADED REES ALGEBRAS OF IDEALS OF POSITIVE GRADE

M. Herrmann, E. Hyry, J. Ribbe

0. Introduction

Let A be a local ring with the maximal ideal m. Let $I \subset A$ be an ideal of grade I > 0. The purpose of this paper is to study the Cohen-Macaulay and Gorenstein properties of the multigraded Rees algebras $R_A(I^{k_1}, \ldots, I^{k_r}) =$ $A[I^{k_1}t_1, \ldots, I^{k_r}t_r]$, where t_1, \ldots, t_r are indeterminates and $k_1, \ldots, k_r \in \mathbb{N}^*$. The geometric object associated to $R_A(I^{k_1}, \ldots, I^{k_r})$ is the multiprojective scheme $\operatorname{Proj} R_A(I^{k_1}, \ldots, I^{k_r})$ embedded into some projective space $\mathbb{P}_A^{l_1} \times_A \ldots \times_A \mathbb{P}_A^{l_r}$. The scheme $\operatorname{Proj} R_A(I^{k_1}, \ldots, I^{k_r})$ is isomorphic to $\operatorname{Proj} R_A(I^{k_1+\ldots+k_r})$, which is the blow-up of Spec A along the subscheme $V(I^{k_1+\ldots+k_r})$. From the homological point of view these multigraded Rees algebras must thus be closely connected to the Rees algebras of powers of ideals.

The Cohen-Macaulay and Gorenstein properties of $R_A(I^{k_1}, \ldots, I^{k_r})$ have previously been considered in [HHR] for equimultiple ideals I. The main results from [HHR] concerning the Gorensteiness of $R_A(I^{k_1}, \ldots, I^{k_r})$ have partly been generalized to arbitrary ideals in [R]. For an equimultiple ideal, we could calculate (by an idea of E. Hyry) the local cohomology and the specific canonical modules of several graded algebras by using a slightly generalized concept of the Segre product of two graded rings in the following sense: Goto and Watanabe had determined the local cohomology of the Segre product of two graded rings over a field. Their arguments could be extended in [HHR] to graded rings over Artinian rings; in particular, we could compute the local cohomology of the Segre products

$$\left(\bigoplus_{n\geq 0} I^n/I^{n+1}\right) \sharp (A/I)[t_1,\ldots,t_r]$$

and

$$\left(\bigoplus_{n\geq 0}I^n/I^{n+q}\right)\sharp(A/I^q)[t_1,\ldots,t_r]\quad (q>1),$$

where t_1, \ldots, t_r are indeterminates and I is an *m*-primary ideal. Then, for any equimultiple ideal, one could proceed by standard arguments.

In [R], by a completely different approach the Cohen-Macaulay type of a multigraded Rees ring $R_A(I^{k_1},\ldots,I^{k_r})$ for an arbitrary ideal I has been determined. This computation together with the observation that the canonical module of $R_A(I)$ can be easily calculated in terms of the canonical module of $R_A(I^{k_1},\ldots,I^{k_r})$ led to the more general results in [R].

In this paper, we also consider the multigraded Rees ring $R_A(I^{k_1},\ldots,I^{k_r})$ for an arbitrary ideal I. In Theorem 2.4 we first give a necessary and sufficient condition for the Cohen-Macaulayness of $R_A(I^{k_1},\ldots,I^{k_r})$ in terms of the local cohomology of the usual Rees algebra $R_A(I)$. It then turns out in the main Theorem 3.16 that if $R_A(I^{k_1},\ldots,I^{k_r})$ is Cohen-Macaulay, $R_A(I^{k_1},\ldots,I^{k_r})$ is Gorenstein if and only if the Rees algebra $R_A(I^{k_1+\ldots+k_r})$ is Gorenstein. Consequently a suitable characterization of the Gorensteiness of $R_A(I^q), q \in \mathbb{N}^*$, for an arbitrary ideal I of grade I > 0 is desirable in this context. This is the second aim of this paper. The Gorenstein properties of ordinary Rees algebras $R_A(I^q), q \in \mathbb{N}^*$ have already been studied to some extent in [HRZ], [HRS], [H] and [Z]. Assuming $R_A(I)$ to be Cohen-Macaulay, it was shown in [HRZ] that if A is a local Gorenstein ring and ht I > 1, $R_A(I^q)$ is Gorenstein if and only if the associated graded ring $gr_A(I)$ is Gorenstein with the a-invariant -(q+1). This is a generalization of a result of Ikeda ([I]), which says that if $R_A(I)$ is Cohen-Macaulay and grade I > 1, $R_A(I)$ is Gorenstein if and only if $\omega_A \cong A$ and $\omega_{gr_A(I)} \cong gr_A(I)(-2)$. The result of Ikeda has been extended to the case grade I = 1 by Goto and Nishida in [GN]. They first prove that if $R_A(I)$ is Gorenstein, then $\omega_A \cong \operatorname{Hom}_A(I, A) = I^{-1}$ and there exists an exact sequence

$$0 \longrightarrow gr_A(I)(-2) \longrightarrow \omega_{gr_A(I)} \longrightarrow \operatorname{Ext}^1_A(A/I, A)(-1) \longrightarrow 0.$$

They then show that these conditions are under certain assumptions sufficient for the Gorensteiness of $R_A(I)$. Meanwhile Trung, Viêt and Zarzuela have proved in [TVZ] that these conditions are also sufficient in general. Here we follow the line of thinking in [GN] in the following sense.

If $I \subset A$ is an ideal, let $I^* = \bigcup_{n \geq 1} I^{n+1} : I^n$ be the corresponding Ratliff-Rush ideal (see [Mc]). Let $R^*_A(I)$ and $gr^*_A(I)$ denote the Rees algebra and the associated graded ring of the filtration

$$A \supset I^* \supset I^{2*} \supset I^{3*} \supset \dots$$

Set $I^{-n} = \text{Hom}_A(I^n, A)$ for n > 0. We shall show in Theorem 3.9 that if $R_A(I^q)$ is Gorenstein, there exists an exact sequence

$$0 \longrightarrow R^*_A(I)(-q) \longrightarrow \omega_{R_A(I)} \longrightarrow \bigoplus_{n=1}^{q-1} I^{n-q} \longrightarrow 0$$

and we have $\omega_A \cong I^{-q}$. If, moreover, $\underline{H}_{\mathfrak{M}}^{\dim A}(R_A(I)) = 0$, where \mathfrak{M} is the homogeneous maximal ideal of $R_A(I)$, there also exists an exact sequence

$$0 \longrightarrow gr^*_A(I)(-(q+1)) \longrightarrow \omega_{gr_A(I)} \longrightarrow \bigoplus_{n=1}^q I^{n-q-1}/I^{n-q} \longrightarrow 0.$$

We then prove in Theorem 3.12 under the assumption $\underline{H}_{\mathfrak{M}}^{\dim A}(R_A(I)) = 0$ that if grade I > 1 the conditions $\omega_A \cong A$, $\omega_{gr_A(I)} \cong gr_A^*(I)(-(q+1))$ imply the Gorensteiness of $R_A(I^q)$. In the case q = 1, this reduces to the above mentioned theorem of Goto and Nishida.

In Corollary 3.14 we show that if A is a local Cohen-Macaulay ring and $R_A(I^q)$ is Gorenstein, $gr_A(I)$ is Gorenstein if and only if either I is principal or ht I > 1 and $gr_A(I)$ is Cohen-Macaulay.

Acknowledgements. This paper was written when the second author was visiting Germany. Financially he was supported by a grant of the DAAD (Germany). We want to thank Ngô Viêt Trung (Hanoi) and Zhongming Tang (Suzhou) for many helpful discussions in the seminars of the Max-Planck-Institut für Mathematik during the preparation of this work.

1. Preliminaries

We begin by fixing some notation and by recalling certain basic facts about the local cohomology theory of multigraded rings and modules (for details see [HHR], [HIO], [GW1], [GW2]).

We use the following multi-index notation. The norm of a multi-index $\mathbf{n} \in \mathbf{Z}^r$ is $|\mathbf{n}| = n_1 + \ldots + n_r$. If $\mathbf{m}, \mathbf{n} \in \mathbf{Z}^r$ are multi-indexes, their product $\mathbf{mn} = (m_1n_1, \ldots, m_rn_r)$ and dot-product $\mathbf{m} \cdot \mathbf{n} = m_1n_1 + \ldots + m_rn_r$. If $m_i < n_i$ $(m_i \leq n_i)$ for every *i*, we set $\mathbf{m} < \mathbf{n}$ $(\mathbf{m} \leq \mathbf{n})$. We denote $\mathbf{l} = (1, \ldots, 1)$.

In the following we call \mathbb{Z}^r -graded rings and modules *r*-graded or simply multigraded. Rings are always assumed to be Noetherian and \mathbb{N}^r -graded. Let $S = \bigoplus_{n \in \mathbb{N}^r} S_n$ be an *r*-graded ring. Denote $S^+ = \bigoplus_{n \neq 0} S_n$, $S_i^+ = \bigoplus_{n_i > 0} S_n$ $(i = 1, \ldots, r)$ and $S^{++} = \bigoplus_{n > 0} S_n = S_1^+ \cap \ldots \cap S_r^+$. If $s \in S_n$, we say that *s* has total degree $|\mathbf{n}|$. From any graded ring *R* we can always form an *r*-graded ring $R^{r-gr} = \bigoplus_{n \in \mathbb{N}^r} R_{|\mathbf{n}|}$, which we call the *r*-graded ring corresponding to *R*.

From now on we assume that $S = \bigoplus_{n \in \mathbb{N}^r} S_n$, where $S_0 = A$ is a local ring. If m is the maximal ideal of A, the ring S now has a unique homogeneous maximal ideal $\mathfrak{M} = m \oplus S^+$. We have the multigraded local cohomology modules $\underline{H}^i_{\mathfrak{M}}(M)$. Put $d = \dim S$. An r-graded S-module ω_S is called a *canonical module* of S if

$$\underline{\operatorname{Hom}}_{S}(\underline{H}^{d}_{\mathfrak{M}}(S), \underline{E}_{S}(k)) \cong \omega_{S} \otimes_{A} \widehat{A},$$

where $\underline{E}_{S}(k)$ is the injective envelope of k in the category of r-graded S-modules. If a canonical module exists, it is finitely generated and unique up to an isomorphism. Moreover, it always satisfies the condition (S_2) and $\dim S/P = \dim S$ for all $P \in \operatorname{Ass} \omega_S$. There is the theorem of *local duality*, which says that if A is complete, S is Cohen-Macaulay if and only if every finitely generated r-graded S-module M satisfies

$$\underline{\operatorname{Hom}}_{S}(\underline{H}^{i}_{\mathfrak{M}}(M), \underline{E}_{S}(k)) = \underline{\operatorname{Ext}}_{S}^{d-i}(M, \omega_{S}) \quad (i = 0, \dots, d)$$

An important corollary of this theorem says that if S is Cohen-Macaulay and has a canonical module ω_S , then also every r-graded ring T defined over a local ring and admitting a finite ring homomorphism $S \longrightarrow T$ has a canonical module

$$\omega_T = \underline{\operatorname{Ext}}^{\boldsymbol{e}}_S(T, \omega_S),$$

where $e = \dim S - \dim T$. The ring S is Gorenstein if and only if it is Cohen-Macaulay and $\omega_S \cong S(\mathbf{n})$ for some $\mathbf{n} \in \mathbf{Z}^r$.

Recall then the notion of the *a*-invariant. If R is a graded *d*-dimensional ring defined over a local ring and has the homogeneous maximal ideal \mathfrak{N} , the *a*-invariant of R is

$$a(R) = \max\{m \in \mathbb{N} | [\underline{H}_{\mathfrak{N}}^{d}(R)]_{m} \neq 0\}.$$

If R has a canonical module, also

$$a(R) = -\min\{m \in \mathbb{N} | [\omega_R]_m \neq 0\}.$$

The *a*-invariant of an *r*-graded ring S is $\mathbf{a}(S) = (a_1, \ldots, a_r)$, where

$$a_j = \max\{n_j | \mathbf{n} \in \mathsf{Z}^r \text{ and } [\underline{H}^d_\mathfrak{M}(S)]_\mathbf{n} \neq 0\}$$

In the case S has a canonical module, we also have

$$a_j = -\min\{n_j | \mathbf{n} \in \mathbf{Z}^r \text{ and } [\omega_S]_{\mathbf{n}} \neq 0\}.$$

If S is Gorenstein, $\omega_S \cong S(\mathbf{a}(S))$.

If $\mathbf{k} \in (\mathbf{N}^*)^r$, the Veronesean subring $S^{(\mathbf{k})}$ of S is $S^{(\mathbf{k})} = \bigoplus_{\mathbf{n} \in \mathbf{N}^r} S_{\mathbf{kn}}$. If M is an r-graded S-module, the Veronesean submodule $M^{(\mathbf{k})}$ of M is the r-graded $S^{(\mathbf{k})}$ -module $M^{(\mathbf{k})} = \bigoplus_{\mathbf{n} \in \mathbb{Z}^r} M_{\mathbf{kn}}$. If S can be generated by elements of total degree one over A, we have $(\underline{H}^i_{\mathfrak{M}}(M))^{(\mathbf{k})} = \underline{H}^i_{\mathfrak{M}^{(\mathbf{k})}}(M^{(\mathbf{k})})$. Moreover, if dim $S = \dim S^{(\mathbf{k})}$ and S has a canonical module ω_S , so does $S^{(\mathbf{k})}$ and the canonical module of $S^{(\mathbf{k})}$ is $\omega_{S^{(\mathbf{k})}} = (\omega_S)^{(\mathbf{k})}$.

In many occasions it is useful to consider the ring S endowed with a different grading. Given a homomorphism $\varphi: \mathbb{Z}^r \to \mathbb{Z}^q$ satisfying $\varphi(\mathbb{N}^r) \subset \mathbb{N}^q$ we put

$$S^{\varphi} = \bigoplus_{\mathbf{m} \in \mathbf{N}^{\mathbf{f}}} \Big(\bigoplus_{\varphi(\mathbf{n})=\mathbf{m}} S_{\mathbf{n}} \Big).$$

For any r-graded S-module M there is the corresponding r-graded S^{φ} -module

$$M^{\varphi} = \bigoplus_{\mathbf{m} \in \mathbf{Z}^q} \Big(\bigoplus_{\varphi(\mathbf{n})=\mathbf{m}} M_{\mathbf{n}} \Big).$$

It is easy to see that for all r-graded S-modules N and every homomorphism $\varphi: \mathbb{Z}^r \to \mathbb{Z}^q$ satisfying $\varphi(\mathbb{N}^r) \subset \mathbb{N}^q$ $(\underline{\operatorname{Ext}}^i_S(M,N))^{\varphi} = \underline{\operatorname{Ext}}^i_{S^{\varphi}}(M^{\varphi}, N^{\varphi})$. The following lemmas show that the local cohomology groups and the canonical module behave well under a change of grading (see [HHR, §1]).

1.1. Lemma. Let S be an r-graded ring defined over a local ring and let \mathfrak{M} be the homogeneous maximal ideal of S. Let M be an r-graded S-module. If $\varphi: \mathbb{Z}^r \to \mathbb{Z}^q$ is a homomorphism satisfying $\varphi(\mathbb{N}^r) \subset \mathbb{N}^q$, we have

$$(\underline{H}^{\mathbf{i}}_{\mathfrak{M}}(M))^{\varphi} = \underline{H}^{\mathbf{i}}_{\mathfrak{M}^{\varphi}}(M^{\varphi}).$$

1.2. Remark. If φ is an isomorphism $\mathbb{Z}^r \to \mathbb{Z}^r$ such that $S^{\varphi} = S$ and $M^{\varphi} = M$, it especially follows that $(\underline{H}^i_{\mathfrak{M}}(M))^{\varphi} = \underline{H}^i_{\mathfrak{M}}(M)$.

1.3. Lemma. Let S be an r-graded ring defined over a local ring. Suppose $\varphi: \mathbb{Z}^r \to \mathbb{Z}^q$ is a homomorphism satisfying $\varphi(\mathbb{N}^r) \subset \mathbb{N}^q$ and $\varphi^{-1}(0) \cap \mathbb{N}^r = 0$. If S has a canonical module ω_S , so does S^{φ} and the canonical module of S^{φ} is

$$\omega_{S^{\varphi}} = (\omega_S)^{\varphi}.$$

Let A be a ring and let $I_1, \ldots, I_r \subset A$ be ideals. Set $\mathbf{I} = (I_1, \ldots, I_r)$. The *multi-Rees ring* $R_A(\mathbf{I})$ is the r-graded ring

$$R_A(\mathbf{I}) = \bigoplus_{\mathbf{n} \in \mathbf{N}^r} I_1^{n_1} \cdots I_r^{n_r}.$$

We often identify $R_A(\mathbf{I})$ with the subring $A[I_1t_1,\ldots,I_rt_r]$ of $A[t_1,\ldots,t_r]$. If ht $I_j > 0$ $(j = 1,\ldots,r)$, we have dim $R_A(\mathbf{I}) = \dim A + r$. In this paper we concentrate to the case where all the ideals I_1,\ldots,I_r are powers of the same ideal $I \subset A$. We use the notation \mathbf{I}_r for the r-tuple (I,\ldots,I) and set $\mathbf{I}_r^k = (I^{k_1},\ldots,I^{k_r})$ for $\mathbf{k} \in (\mathbf{N}^*)^r$. The associated r-graded ring $gr_A(\mathbf{I}_r) = R_A(\mathbf{I}_r)/IR_A(\mathbf{I}_r)$. If A is local and ht I > 0, we have dim $gr_A(\mathbf{I}_r) = \dim A + r - 1$.

2. The Cohen-Macaulay property of the multi-Rees algebras

Let A be a local ring and $I \subset A$ an ideal of ht I > 0. Let $\mathbf{k} \in (\mathbb{N}^*)^r$. We want to calculate the local cohomology of the multigraded Rees algebra $R_A(\mathbf{I}_r^k)$. Since $R_A(\mathbf{I}_r^k) = (R_A(\mathbf{I}_r))^{(k)}$, we can first consider the ring $R_A(\mathbf{I}_r)$. We have

$$R_A(\mathbf{I}_r) = \bigoplus_{\mathbf{n}\in\mathbf{N}^r} [R_A(I)]_{|\mathbf{n}|}$$

so that $R_A(\mathbf{I}_r)$ is the r-graded ring $(R_A(I))^{r-gr}$ corresponding to $R_A(I)$. We therefore begin with the following general lemma:

2.1. Lemma. Let R be a graded ring defined over a local ring and let \mathfrak{M} be the homogeneous maximal ideal of R. Put $S = \mathbb{R}^{r-gr}$ and $\mathfrak{N} = \mathfrak{M}^{r-gr}$. Let $j, l \in \{1, \ldots, r\}$ $(j \neq l)$. Then

- (1) $\underline{H}^{i}_{\mathfrak{M}}(S)_{(n_{1},\ldots,n_{r})} = \underline{H}^{i}_{\mathfrak{M}}(S)_{(n_{1},\ldots,n_{j}+n_{l},\ldots,0},\ldots,n_{r}) \text{ if } n_{j} \geq 0 \text{ and } n_{l} \geq 0.$
- (2) $\underline{H}_{\mathfrak{N}}^{i}(S)_{(n_{1},...,n_{r})} = 0$ if $n_{j} < 0$ and $n_{l} \geq 0$.
- (3) $\underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},...,n_{r})} = \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{l})_{(n_{1},...,n_{j}+n_{l},...,0}, \dots, n_{r})$ if $n_{j} < 0$ and $n_{l} < 0$. Moreover, $\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{l})_{(n_{1},...,n_{r})} = 0$ if $n_{j} \ge 0$ and $n_{l} = 0$.

Proof. By symmetry we can assume that j = r - 1 and l = r (see Remark 1.2). Consider the exact sequence

$$0 \longrightarrow S_r^+ \longrightarrow S \longrightarrow S/S_r^+ \longrightarrow 0.$$

From this sequence we get for all $n \in N^r$ the exact sequence

$$[\underline{H}^{i-1}_{\mathfrak{N}}(S/S^+_r)]_{\mathfrak{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S^+_r)]_{\mathfrak{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathfrak{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S/S^+_r)]_{\mathfrak{n}}$$

Since $[\underline{H}_{\mathfrak{N}}^{i}(S/S_{r}^{+})]_{\mathbf{n}} = 0$ if $n_{r} \neq 0$, we obtain an isomorphism

$$[\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})]_{\mathbf{n}} \cong [\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}}.$$

Similarly there is an isomorphism

$$[\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r-1})]_{\mathbf{n}} \cong [\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}}$$

for $n_{r-1} \neq 0$. Also note that the map $S_r^+ \longrightarrow S_{r-1}^+$, $s \mapsto t_{r-1}t_r^{-1}s$, $s \in S_r^+$ induces an isomorphism

$$[\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})]_{(n_{1},\dots,n_{r-1},n_{r})} \cong [\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r-1})]_{(n_{1},\dots,n_{r-1}+1,n_{r}-1)}.$$

We then have for any $n_{r-1} \neq 0, n_r \neq -1$

$$\underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},...,n_{r-1},n_{r})} \cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r-1})_{(n_{1},...,n_{r-1},n_{r})}$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},...,n_{r-1}-1,n_{r}+1)}$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},...,n_{r-1}-1,n_{r}+1)}.$$

If we now replace n_{r-1} and n_r with $n_{r-1} + n_r$ and 0 respectively, the repeated use of this formula implies (1). Also (2) follows, since for $k \gg 0$ we get

$$\underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},\ldots,n_{r-1},n_{r})} \cong \underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},\ldots,n_{r-1}-1,n_{r}+1)}$$
$$\cong \ldots$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},\ldots,n_{r-1}-k,n_{r}+k)}$$
$$= 0.$$

To prove (3) observe that for $n_{r-1} \neq -1$

$$\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},\dots,n_{r-1},n_{r})} \cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r-1})_{(n_{1},\dots,n_{r-1}+1,n_{r}-1)}$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},\dots,n_{r-1}+1,n_{r}-1)}.$$

By replacing n_{r-1} and n_r again with $n_{r-1} + n_r$ and 0 respectively, we get (3). To prove the last claim note that for $n_{r-1} \neq -1, n_r \neq 1$

$$\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},...,n_{r-1},n_{r})} \cong \underline{H}^{i}_{\mathfrak{N}}(S)_{(n_{1},...,n_{r-1}+1,n_{r}-1)}$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},...,n_{r-1}+1,n_{r}-1)}$$

so that for $k \gg 0$

$$\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},\ldots,n_{r-1},0)} \cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},\ldots,n_{r-1}+1,-1)}$$
$$\cong \ldots$$
$$\cong \underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})_{(n_{1},\ldots,n_{r-1}+k,-k)}$$
$$= 0.$$

2.2. Theorem. Let R be a graded ring defined over a local ring and let \mathfrak{M} be the homogeneous maximal ideal of R. Put $S = R^{r-gr}$ and $\mathfrak{N} = \mathfrak{M}^{r-gr}$. Then

$$[\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}} = \begin{cases} [\underline{H}^{i}_{\mathfrak{M}}(R)]_{|\mathbf{n}|} & \text{if } \mathbf{n} \ge \mathbf{0} \\ [\underline{H}^{i+1-r}_{\mathfrak{M}}(R)]_{|\mathbf{n}|} & \text{if } \mathbf{n} < \mathbf{0} \\ 0 & \text{otherwise} \end{cases}.$$

Proof. We use induction on r. The case r = 1 being trivial assume r > 1. Observe that $S^{(r-1)-gr} = S/S_r^+$. Let $n \in \mathbb{N}^r$ and consider the exact sequence

$$\underbrace{[\underline{H}^{i-1}_{\mathfrak{N}}(S)]_{\mathbf{n}} \longrightarrow}_{\underline{H}^{i-1}_{\mathfrak{N}}(S/S^{+}_{r})]_{\mathbf{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})]_{\mathbf{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}} \longrightarrow [\underline{H}^{i}_{\mathfrak{N}}(S/S^{+}_{r})]_{\mathbf{n}}}_{\longrightarrow [\underline{H}^{i+1}_{\mathfrak{N}}(S^{+}_{r})]_{\mathbf{n}}}$$

coming from the exact sequence

 $0 \longrightarrow S_r^+ \longrightarrow S \longrightarrow S/S_r^+ \longrightarrow 0.$

If $n \ge 0$, Lemma 2.1 first implies that

$$[\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}} \cong [\underline{H}^{i}_{\mathfrak{N}}(S)]_{(n_{1},\dots,n_{r-1}+n_{r},0)}.$$

Moreover, we get

$$[\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})]_{(n_{1},\dots,n_{r-1}+n_{r},0)} = [\underline{H}^{i+1}_{\mathfrak{N}}(S^{+}_{r})]_{(n_{1},\dots,n_{r-1}+n_{r},0)} = 0$$

so that there is an isomorphism

$$[\underline{H}^{i}_{\mathfrak{N}}(S)]_{(n_{1},\ldots,n_{r-1}+n_{r},0)} \cong [\underline{H}^{i}_{\mathfrak{N}}(S/S^{+}_{r})]_{(n_{1},\ldots,n_{r-1}+n_{r},0)}.$$

The claim now follows from the induction hypothesis. Suppose then that n < 0. We get

$$[\underline{H}^{i}_{\mathfrak{N}}(S)]_{\mathbf{n}} \cong [\underline{H}^{i}_{\mathfrak{N}}(S^{+}_{r})]_{(n_{1},\dots,n_{r-1}+n_{r},0)},$$

by Lemma 2.1, (3),

$$\cong \underline{H}_{\mathfrak{N}}^{i-1}(S/S_r^+)]_{(n_1,\ldots,n_{r-1}+n_r,0)}$$

since in the exact sequence mentioned above

$$[\underline{H}^{i}_{\mathfrak{N}}(S)]_{(n_{1},\dots,n_{r-1}+n_{r},0)} = [\underline{H}^{i-1}_{\mathfrak{N}}(S)]_{(n_{1},\dots,n_{r-1}+n_{r},0)} = 0$$

by Lemma 2.1, (2). This implies the claim by the induction hypothesis. The case, where some $n_j < 0$ and some $n_l \ge 0$ follows immediately from Lemma 2.1, (2).

We also need the following lemma (see [HHR, Theorem 2.2 and its proof]).

2.3. Lemma. Let A be a local ring and let $I_1, \ldots, I_r \subset A$ be ideals such that $\operatorname{ht} I_j > 0$ $(j = 1, \ldots, r)$. Then $\mathbf{a}(R_A(I_1, \ldots, I_r)) = -1$.

We now give a necessary and sufficient condition for the Cohen-Macaulayness of the multi-Rees algebra $R_A(\mathbf{I}_r^k)$.

2.4. Theorem. Let A be a local ring of dimension d and $I \subset A$ an ideal of $\operatorname{ht} I > 0$. Let $\mathbf{k} \in (\mathbb{N}^*)^r$. Let \mathfrak{M} be the homogeneous maximal ideal of $R_A(I)$. Then $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay if and only if $[\underline{H}^i_{\mathfrak{M}}(R_A(I)]_{\mathbf{k}\cdot\mathbf{n}} = 0$ for i < d+1 and $\mathbf{n} < 0$ or $\mathbf{n} \ge 0$.

Proof. Since $R_A(\mathbf{I}_r^k) = (R_A(\mathbf{I}_r))^{(k)}$ and $R_A(\mathbf{I}_r) = (R_A(I))^{r-gr}$, it follows from Theorem 2.2 that

$$[\underline{H}^{i}_{\mathfrak{N}}(R_{A}(\mathbf{I}^{\mathbf{k}}_{r}))]_{\mathbf{n}} = [\underline{H}^{i}_{\mathfrak{N}}(R_{A}(\mathbf{I}_{r}))]_{\mathbf{k}\mathbf{n}} = \begin{cases} [\underline{H}^{i}_{\mathfrak{M}}(R_{A}(I))]_{\mathbf{k}\cdot\mathbf{n}} & \text{if } \mathbf{n} \geq \mathbf{0} \\ [\underline{H}^{i+1-r}_{\mathfrak{M}}(R_{A}(I))]_{\mathbf{k}\cdot\mathbf{n}} & \text{if } \mathbf{n} < \mathbf{0} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

If $\underline{H}_{\mathfrak{M}}^{i}(R_{A}(\mathbf{I}_{r}^{\mathbf{k}})) = 0$ for i < d + r, this immediately implies $[\underline{H}_{\mathfrak{M}}^{i}(R_{A}(I)]_{\mathbf{k}\cdot\mathbf{n}} = 0$ for i < d + 1 and $\mathbf{n} < 0$ or $\mathbf{n} \ge 0$. Since $a(R_{A}(I)) = -1$ by Lemma 2.3, we have $[\underline{H}_{\mathfrak{M}}^{i}(R_{A}(I))]_{\mathbf{k}\cdot\mathbf{n}} = 0$ for $i \ge d+1$ and $\mathbf{n} \ge 0$. If $[\underline{H}_{\mathfrak{M}}^{i}(R_{A}(I)]_{\mathbf{k}\cdot\mathbf{n}} = 0$ for i < d+1 and $\mathbf{n} < 0$ or $\mathbf{n} \ge 0$, we thus get $\underline{H}_{\mathfrak{M}}^{i}(R_{A}(\mathbf{I}_{r}^{\mathbf{k}})) = 0$ for i < d + r and the claim has so been proved.

Theorem 2.4 immediately implies the following two corollaries.

2.5. Corollary. Let A be a local ring and $I \subset A$ an ideal of ht I > 0. Let $\mathbf{k} \in (\mathbb{N}^*)^r$. Denote $q = \gcd(k_1, \ldots, k_r)$. If $R_A(I^q)$ is Cohen-Macaulay, also $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay.

2.6. Corollary. Let A be a local ring of dimension d and $I \subset A$ an ideal of $\operatorname{ht} I > 0$. Let $\mathbf{k} \in (\mathbb{N}^*)^r$. If $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay, also $R_A(I^{|\mathbf{k}|})$ is Cohen-Macaulay.

Also recall the following result proved in [HHR] (see [HHR, Theorem 2.2]):

2.7. Theorem. Let A be a local ring of dimension d and $I \subset A$ an ideal of $\operatorname{ht} I > 0$. Let \mathfrak{M} and \mathfrak{N} be the homogeneous maximal ideals of $R_A(I)$ and $R_A(\mathbf{I}_r)$ respectively. The following conditions are equivalent.

- (1) $R_A(\mathbf{I}_r)$ is Cohen-Macaulay.
- (2) $[\underline{H}^{i}_{\mathfrak{N}}(gr_{A}(\mathbf{I}_{r})]_{n} = 0$ when i < d + r 1 and $n \neq -1$, $\mathbf{a}(gr_{A}(\mathbf{I}_{r})) < 0$.
- (3) $[\underline{H}^{i}_{\mathfrak{M}}(R_{A}(I)]_{n} = 0 \text{ when } i < d+1 \text{ and } n \notin \{-r+1, \ldots, -1\}.$
- (4) $[\underline{H}^{i}_{\mathfrak{M}}(gr_{A}(I)]_{n} = 0 \text{ when } i < d \text{ and } n \notin \{-r, \ldots, -1\},$ $a(gr_{A}(I)) < 0.$

3. The Gorenstein property of the multi-Rees algebras

Let A be a local ring and $I \subset A$ an ideal of grade I > 0. In this chapter we want to study the Gorenstein property of the multi-Rees algebra $R_A(\mathbf{I}_r^k)$, where $\mathbf{k} \in (\mathbf{N}^*)^r$. We begin with a series of lemmas.

3.1. Lemma. Let A be a local ring and let $I_1, \ldots, I_r \subset A$ be ideals. Set $S = R_A(I_1, \ldots, I_r)$ and $J = I_1 \cdots I_r$. Then

$$\underline{\operatorname{Hom}}_{S}(JS,S) = \bigoplus_{n \in \mathbf{N}^{r}} \operatorname{Hom}_{A}(J, I_{1}^{n_{1}} \cdots I_{r}^{n_{r}}).$$

Proof. Suppose first that $f \in [\underline{\operatorname{Hom}}_{S}(JS, S)]_{\mathbf{n}}$. Then $f = (f_{\mathbf{m}})_{\mathbf{m} \in \mathbb{N}^{r}}$, where $f_{\mathbf{m}} \in \operatorname{Hom}_{A}(JS_{\mathbf{m}}, S_{\mathbf{m}+\mathbf{n}})$. If $a \in J$ and $b \in I_{1}^{m_{1}} \cdots I_{r}^{m_{r}}$, we have

$$f_{\mathbf{m}}((ab)t_{1}^{m_{1}}\cdots t_{r}^{m_{r}})=(bt_{1}^{m_{1}}\cdots t_{r}^{m_{r}})f_{\mathbf{0}}(a)=f_{\mathbf{0}}(ab)t_{1}^{m_{1}}\cdots t_{r}^{m_{r}}\in S_{\mathbf{m}+\mathbf{n}}.$$

It follows that $f_{\mathbf{m}}(ct_1^{m_1}\cdots t_r^{m_r}) = f_{\mathbf{0}}(c)t_1^{m_1}\cdots t_r^{m_r}$ for all $c \in I_1^{m_1+1}\cdots I_r^{m_r+1}$. This shows that f is uniquely determined by an element of $\operatorname{Hom}_A(JS_{\mathbf{0}}, S_{\mathbf{n}}) = \operatorname{Hom}_A(J, I_1^{n_1}\cdots I_r^{n_r})$ and the lemma follows.

3.2. Lemma. Let A be a local ring and let $I_1, \ldots, I_r \subset A$ be ideals such that grade $I_j > 0$ $(j = 1, \ldots, r)$. Set $S = R_A(I_1, \ldots, I_r)$ and $J = I_1 \cdots I_r$. If grade $(JS + S^{++}) > 1$, we have $[\underline{\operatorname{Ext}}_S^1(S/S^{++}, S)]_n = 0$ for $n \ge 0$.

Proof. Let $a_j \in I_j$ (j = 1, ..., r) be non-zero divisors. Denote $a = a_1 \cdots a_r$ and $s = at_1 \cdots t_r$. Multiplication by s then induces an exact sequence

$$0 \longrightarrow S(-1) \longrightarrow S \longrightarrow S/sS \longrightarrow 0.$$

From this we get the exact sequence

$$0 \longrightarrow \underline{\operatorname{Hom}}_{S}(S/S^{++}, S(-1)) \longrightarrow \underline{\operatorname{Hom}}_{S}(S/S^{++}, S)$$
$$\longrightarrow \underline{\operatorname{Hom}}_{S}(S/S^{++}, S/sS) \longrightarrow \underline{\operatorname{Ext}}_{S}^{1}(S/S^{++}, S(-1))$$
$$\longrightarrow \underline{\operatorname{Ext}}_{S}^{1}(S/S^{++}, S) \longrightarrow \dots$$

Since $\underline{\operatorname{Hom}}_{S}(S/S^{++}, S) = 0$ and $\underline{\operatorname{Ext}}_{S}^{1}(S/S^{++}, S(-1)) \longrightarrow \underline{\operatorname{Ext}}_{S}^{1}(S/S^{++}, S)$ is a zero map, there is an isomorphism

$$\underline{\operatorname{Hom}}_{S}(S/S^{++}, S/sS) \cong \underline{\operatorname{Ext}}^{1}_{S}(S/S^{++}, S(-1)).$$

Because

$$\underline{\operatorname{Hom}}_{S}(S/S^{++}, S/sS) \cong sS : S^{++}/sS,$$

we get

$$[\underline{\operatorname{Ext}}^{1}_{S}(S/S^{++},S)]_{\mathbf{n}} \cong [sS:S^{++}/sS]_{\mathbf{n+1}}$$

for all n.

We shall next show that for $n \ge 1$ $[sS:S^{++}]_n = [sS:(JS+S^{++})]_n$. Let $ct_1^{n_1} \cdots t_r^{n_r} \in [sS:S^{++}]_n$. Then

$$(Jt_1\cdots t_r)(ct_1^{n_1}\cdots t_r^{n_r})\subset (at_1\cdots t_r)(I_1^{n_1}\cdots I_r^{n_r}t_1^{n_1}\cdots t_r^{n_r}).$$

This implies $Jc \subset aI_1^{n_1} \cdots I_r^{n_r} \subset aI_1^{n_1-1} \cdots I_r^{n_r-1}$ so that

$$J(ct_1^{n_1}\cdots t_r^{n_r}) \subset (at_1\cdots t_r)(I_1^{n_1-1}\cdots I_r^{n_r-1}t_1^{n_1-1}\cdots t_r^{n_r-1}).$$

Hence $ct_1^{n_1} \cdots t_r^{n_r} \in [sS: (JS + S^{++})]_n$ and the above claim has been proved.

If grade $(JS + S^{++}) > 1$, we have $sS : (JS + S^{++}) = sS$ and get thus $[\underline{\operatorname{Ext}}_{S}^{1}(S/S^{++}, S)]_{n} = 0$ for $n \geq 0$ as wanted.

3.3. Lemma. Let A be a local ring and let $I_1, \ldots, I_r \subset A$ be ideals such that grade $I_j > 0$ $(j = 1, \ldots, r)$. Set $S = R_A(I_1, \ldots, I_r)$ and $J = I_1 \cdots I_r$. If grade $(JS + S^{++}) > 1$, the canonical homomorphism

$$I_1^{n_1-1}\cdots I_r^{n_r-1} \longrightarrow \operatorname{Hom}_A(J, I_1^{n_1}\cdots I_r^{n_r})$$

is an isomorphism for all $n \ge 1$.

Proof. By dualizing the exact sequence

$$0 \longrightarrow S^{++} \longrightarrow S \longrightarrow S/S^{++} \longrightarrow 0$$

by S one obtains the diagram

where ϱ is the degree 1 isomorphism induced by the isomorphism $JS \longrightarrow S^{++}$, $s \mapsto st_1 \cdots t_r$, $s \in JS$. Since grade J > 0, we have $\underline{\operatorname{Hom}}_S(S/S^{++}, S) = 0$. By Lemma 3.2 we know that $[\underline{\operatorname{Ext}}_S^1(S/S^{++}, S)]_n = 0$ for $n \ge 0$. The diagram then implies that for $n \ge 1$ there is an isomorphism $S_{n-1} \longrightarrow [\underline{\operatorname{Hom}}_S(JS, S)]_n$. In this isomorphism $s \in S_{n-1}$ is mapped to the element $s' \mapsto (s't_1 \cdots t_r)s$, $s' \in JS$ of $[\underline{\operatorname{Hom}}_S(JS, S)]_n$. Because

$$\underline{\operatorname{Hom}}_{S}(JS,S) = \bigoplus_{n \in \mathbf{N}^{r}} \operatorname{Hom}_{A}(J, I_{1}^{n_{1}} \cdots I_{r}^{n_{r}})$$

by Lemma 3.1, we get an isomorphism $I_1^{n_1-1} \cdots I_r^{n_r-1} \longrightarrow \operatorname{Hom}_A(J, I_1^{n_1} \cdots I_r^{n_r})$, which maps an element $a \in I_1^{n_1-1} \cdots I_r^{n_r-1}$ to the element $a' \mapsto aa', a' \in J$ of $\operatorname{Hom}_A(J, I_1^{n_1} \cdots I_r^{n_r})$ as desired.

3.4. Lemma. Let A be a local ring and $I \subset A$ an ideal of grade I > 0. Suppose that $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay for some $\mathbf{k} \in (\mathbb{N}^*)^r$. Then

- (1) The canonical homomorphism $I^n: I^m \longrightarrow \operatorname{Hom}_A(I^m, I^n)$ is an isomorphism for $m \leq |\mathbf{k}| \leq n$.
- (2) $I^{\mathbf{k} \cdot \mathbf{n}} : I^{|\mathbf{k}|} = I^{\mathbf{k} \cdot (\mathbf{n} 1)}$ for $\mathbf{n} \ge 1$.

Proof. We apply Lemma 3.3 with $I_j = I^{k_j}$ (j = 1, ..., r). Since $S = R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay, we have $\operatorname{ht}(JS + S_j^+) > 1$ (j = 1, ..., r) and so also $\operatorname{grade}(JS + S^{++}) = \operatorname{ht}(JS + S^{++}) > 1$. It follows that the canonical homomorphism $I^{\mathbf{k}\cdot(\mathbf{n}-1)} \longrightarrow \operatorname{Hom}_A(I^{|\mathbf{k}|}, I^{\mathbf{k}\cdot\mathbf{n}})$ is an isomorphism for all $\mathbf{n} \ge 1$. We then observe that (2) is a consequence of (1). To prove (1) note first that in the case $\mathbf{n} = \mathbf{1}$ the above isomorphism gives an isomorphism $A \longrightarrow \operatorname{Hom}_A(I^{|\mathbf{k}|}, I^{|\mathbf{k}|})$. Consider the exact sequence

$$0 \longrightarrow I^{|\mathbf{k}|} \longrightarrow I^m \longrightarrow I^m / I^{|\mathbf{k}|} \longrightarrow 0.$$

Dualizing by I^n gives the sequence

$$\operatorname{Hom}_{A}(I^{m}/I^{|\mathbf{k}|}, I^{n}) \longrightarrow \operatorname{Hom}_{A}(I^{m}, I^{n}) \longrightarrow \operatorname{Hom}(I^{|\mathbf{k}|}, I^{n}).$$

Since grade I > 0, we have $\operatorname{Hom}_A(I^m/I^{|\mathbf{k}|}, I^n) = 0$. Then

$$\operatorname{Hom}_{A}(I^{m}, I^{n}) \subset \operatorname{Hom}_{A}(I^{|\mathbf{k}|}, I^{n}) \subset \operatorname{Hom}_{A}(I^{|\mathbf{k}|}, I^{|\mathbf{k}|}) = A.$$

Hence we can make the identification

$$\operatorname{Hom}_{A}(I^{m}, I^{n}) = \{a \in A | aI^{m} \subset I^{n}\} = I^{n} : I^{m}$$

and the lemma has so been proved.

Let A be a ring and $I \subset A$ an ideal. Consider the so-called Ratliff-Rush ideal

$$I^* = \bigcup_{p>0} I^{p+1} : I^p$$

(see [Mc, Chapter 11]). Note that $I^{n+p} : I^p \subset I^{n+p+1} : I^{p+1}$ for all $n, p \ge 0$. When grade I > 0, it is well-known that

$$I^{n*} = \bigcup_{p>0} I^{n+p} : I^p$$

for all $n \in \mathbb{N}$ (see [Mc, Proposition (11.1), (v)]).

3.5. Lemma. Let A be a local ring and $I \subset A$ an ideal of grade I > 0. Suppose that $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay for some $\mathbf{k} \in (\mathbf{N}^*)^r$. If $\mathbf{n} \in \mathbf{N}^r$, let $\mathbf{s}(\mathbf{n}) = (s_1(n_1), \ldots, s_r(n_r)) \in \mathbf{N}^r$, where $n_j + s_j(n_j) \in k_j \mathbf{N}$, $0 \leq s_j(n_j) < k_j$ $(j = 1, \ldots, r)$. Then $I^{|\mathbf{n}|+p} : I^p = (I^{|\mathbf{n}|})^*$ for $p \geq |\mathbf{s}(\mathbf{n})|$.

Proof. It is enough to prove that $I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|}: I^{|\mathbf{s}(\mathbf{n})|} \supset (I^{|\mathbf{n}|})^*$. We show that

$$I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|+q|\mathbf{k}|}: I^{|\mathbf{s}(\mathbf{n})|+q|\mathbf{k}|} \subset I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|}: I^{|\mathbf{s}(\mathbf{n})|}$$

for all q > 0. If $a \in I^{|\mathbf{n}| + |\mathbf{s}(\mathbf{n})| + q|\mathbf{k}|} : I^{|\mathbf{s}(\mathbf{n})| + q|\mathbf{k}|}$, we obtain

$$aI^{|\mathbf{s}(\mathbf{n})|} \subset I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|+q|\mathbf{k}|} : I^{q|\mathbf{k}|}.$$

Now $\mathbf{n} + \mathbf{s}(\mathbf{n}) = \mathbf{k}\mathbf{m}$ for some $\mathbf{m} \in \mathbf{N}^r$. Since $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay, it follows from Lemma 3.4 that

$$I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|+q|\mathbf{k}|}: I^{q|\mathbf{k}|} = I^{\mathbf{k}\cdot(\mathbf{m}+q\mathbf{1})}: I^{q|\mathbf{k}|} = I^{\mathbf{k}\cdot\mathbf{m}} = I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|}.$$

Therefore $a \in I^{|\mathbf{n}|+|\mathbf{s}(\mathbf{n})|} : I^{|\mathbf{s}(\mathbf{n})|}$ and the claim has been proved.

We are now ready to consider the Gorensteiness of $R_A(I^q)$ $(q \in \mathbb{N}^*)$.

3.6. Proposition. Let A be a local ring and $I \subset A$ an ideal of ht I > 0. Set $S = R_A(I)$. Let $q \in \mathbb{N}^*$. If $n \in \mathbb{N}$, let $r(n), s(n) \in \mathbb{N}$ be the numbers determined by the conditions n + s(n) = r(n)q, $0 \le s(n) < q$. Denote $T = R_A(I^q)$. If T is Cohen-Macaulay and has a canonical module, also S has a canonical module and

$$[\omega_S]_n = [\underline{\operatorname{Hom}}_T(I^{s(n)}T, \omega_T)]_{r(n)}$$

for all $n \ge 1$. If $a \in I^m$ and $\varphi \in [\omega_S]_n$,
 $((at^m)\varphi)(bt^k) = \varphi(abt^{k+r(n+m)-r(n)})$

....

for $b \in I^{s(m+n)+kq}$, $k \in \mathbb{N}$. Moreover,

$$[\underline{\operatorname{Hom}}(IS,\omega_S)]_n = [\underline{\operatorname{Hom}}_T(I^{s(n)+1}T,\omega_T)]_{r(n)}$$

Proof. Put $U = A[I^q t^q]$ and denote $U^p = (It)^p U$ for $0 \le p < q$. First observe that U is a subring of S and S is a finite U-module. In fact, as a U-module

$$S = \bigoplus_{p=0}^{q-1} U^p.$$

If $\varphi : \mathbb{Z} \longrightarrow \mathbb{Z}$ is the map $n \mapsto qn, n \in \mathbb{Z}$, we have $U = T^{\varphi}$ and $U^p = (I^p T)^{\varphi} (-p)$. Since T and U are isomorphic as rings, also U is Cohen-Macaulay and so

$$\omega_S = \underline{\operatorname{Hom}}_U(S, \omega_U) = \bigoplus_{p=0}^{q-1} \underline{\operatorname{Hom}}_U(U^p, \omega_U).$$

By Lemma 1.3 we know that $\omega_U = (\omega_T)^{\varphi}$. Then

$$[\underline{\operatorname{Hom}}_{U}(U^{p},\omega_{U})]_{n} = [\underline{\operatorname{Hom}}_{T^{\varphi}}((I^{p}T)^{\varphi},(\omega_{T})^{\varphi})]_{n+p}$$
$$= [(\underline{\operatorname{Hom}}_{T}(I^{p}T,\omega_{T}))^{\varphi}]_{n+p}.$$

It follows that $[\underline{\text{Hom}}_U(U^p, \omega_U)]_n = 0$ if $p \neq s(n)$. So

$$[\omega_S]_n = [\underline{\operatorname{Hom}}_U(U^{s(n)}, \omega_U)]_n = [\underline{\operatorname{Hom}}_T(I^{s(n)}T, \omega_T)]_{r(n)}.$$

If $a \in I^m$, $b \in I^{s(n+m)+kq}$ and $\varphi \in [\omega_S]_n$, the claim concerning $((at^m)\varphi)(bt^k)$ follows easily from the observation that we can write

$$m + s(m + n) + kq = s(n) + kq + (r(n + m) - r(n))q$$

Since

$$IS = \bigoplus_{p=0}^{q-1} IU^p$$

and

$$\underline{\operatorname{Hom}}_{S}(IS,\omega_{S}) = \underline{\operatorname{Hom}}_{S}(IS,\underline{\operatorname{Hom}}_{U}(S,\omega_{U})) = \underline{\operatorname{Hom}}_{U}(IS,\omega_{U})$$

it follows in a similar way that

$$[\underline{\operatorname{Hom}}(IS,\omega_S)]_n = [\underline{\operatorname{Hom}}_U(IU^{s(n)},\omega_U)]_n = [\underline{\operatorname{Hom}}_T(I^{s(n)+1}T,\omega_T)]_{r(n)}.$$

In the proof of the following lemma we use the ideas presented in the proof of [Z, Proposition (1.1)].

3.7. Lemma. Let A be a complete local ring of dimension d and $I \subset A$ an ideal of ht I > 0. Set $S = R_A(I)$ and $G = gr_A(I)$. Let \mathfrak{M} be the homogeneous maximal ideal of S. There exists a commutative diagram

where τ is a homomorphism of degree -1 and ϱ is the degree 1 isomorphism induced by the isomorphism $IS \longrightarrow S^+$, $s \mapsto st$, $s \in IS$. Moreover, if n > 1, the homomorphisms $\tau_n: [\omega_S]_n \longrightarrow [\omega_S]_{n-1}$ are injective and for every $\alpha \in [\omega_S]_n \tau(\alpha)$ is uniquely determined by the property that $(ct)\tau(\alpha) = c\alpha$ for all $c \in I$.

Proof. Set $T = R_A(I^q)$ and $U = A[I^q t^q]$. Since U is isomorphic with T as ring, also U is Cohen-Macaulay. Moreover, U is a subring of S over which S is finitely generated. By dualizing the exact sequences

$$0 \longrightarrow S^+ \longrightarrow S \longrightarrow A \longrightarrow 0$$

and

$$0 \longrightarrow IS \longrightarrow S \longrightarrow G \longrightarrow 0$$

by ω_U we obtain the exact sequences of S-modules

$$\underbrace{\operatorname{Hom}_{U}(A,\omega_{U}) \longrightarrow}_{\operatorname{Hom}_{U}(S,\omega_{U}) \longrightarrow \operatorname{Hom}_{U}(S^{+},\omega_{U}) \longrightarrow \operatorname{\underline{Ext}}^{1}_{U}(A,\omega_{U})}_{\longrightarrow \operatorname{\underline{Ext}}^{1}_{U}(S,\omega_{U}),}$$

$$\underbrace{\operatorname{Hom}_{U}(G,\omega_{U})\longrightarrow}_{\underline{\operatorname{Hom}}_{U}(S,\omega_{U})\longrightarrow} \underline{\operatorname{Hom}}_{U}(IS,\omega_{U})\longrightarrow \underline{\operatorname{Ext}}_{U}^{1}(G,\omega_{U})$$
$$\longrightarrow \underline{\operatorname{Ext}}_{U}^{1}(S,\omega_{U}).$$

Now dim $G = \dim A = d$, but dim $U = \dim S = d + 1$. Let \mathfrak{M} be the maximal ideal of S. By local duality we get

$$\underline{\operatorname{Hom}}_{U}(A,\omega_{U}) = \underline{\operatorname{Hom}}_{U}(\underline{H}_{\mathfrak{M}}^{d+1}(A), \underline{E}_{U}(k)) = 0$$

and

$$\underline{\operatorname{Hom}}_U(G,\omega_U) = \underline{\operatorname{Hom}}_U(\underline{H}_{\mathfrak{M}}^{d+1}(G), \underline{E}_U(k)) = 0.$$

Since $\underline{E}_{S}(k) = \underline{\operatorname{Hom}}_{U}(S, \underline{E}_{U}(k))$, it follows that

$$\underline{\operatorname{Ext}}^{1}_{U}(S,\omega_{U}) = \underline{\operatorname{Hom}}_{U}(\underline{H}^{d}_{\mathfrak{M}}(S), \underline{E}_{U}(k)) = \underline{\operatorname{Hom}}_{S}(\underline{H}^{d}_{\mathfrak{M}}(S), \underline{E}_{S}(k)).$$

We also have $\omega_S = \underline{\operatorname{Hom}}_U(S, \omega_U), \ \omega_A = \operatorname{Ext}^1_U(A, \omega_U), \ \omega_G = \operatorname{Ext}^1_U(G, \omega_U)$ and

$$\underline{\operatorname{Hom}}_{S}(S^{+},\omega_{S}) = \underline{\operatorname{Hom}}_{S}(S^{+},\underline{\operatorname{Hom}}_{U}(S,\omega_{U})) = \underline{\operatorname{Hom}}_{U}(S^{+},\omega_{U}),$$

$$\underline{\operatorname{Hom}}_{S}(IS,\omega_{S}) = \underline{\operatorname{Hom}}_{S}(IS,\underline{\operatorname{Hom}}_{U}(S,\omega_{U})) = \underline{\operatorname{Hom}}_{U}(IS,\omega_{U}).$$

We thus get the exact sequences

$$0 \longrightarrow \omega_S \longrightarrow \underline{\operatorname{Hom}}_S(S^+, \omega_S) \longrightarrow \omega_A \longrightarrow \underline{\operatorname{Hom}}_S(\underline{H}^d_{\mathfrak{M}}(S), \underline{E}_S(k))$$

and

$$0 \longrightarrow \omega_S \longrightarrow \underline{\operatorname{Hom}}_S(IS, \omega_S) \longrightarrow \omega_G \longrightarrow \underline{\operatorname{Hom}}_S(\underline{H}^d_{\mathfrak{M}}(S), \underline{E}_S(k)).$$

Since $[\omega_A]_n = 0$ if $n \ge 1$, the map $[\omega_S]_n \longrightarrow [\underline{\text{Hom}}_S(S^+, \omega_S)]_n$ is an isomorphism for $n \ge 1$. Because a(S) = -1, $[\omega_S]_n = 0$ for $n \le 0$. By means of the diagram

we can now define a degree -1 homomorphism $\tau:\omega_S \longrightarrow \omega_S$ such that the diagram commutes. It follows easily from the definition of τ that $(ct)\tau(\alpha) = \tau((ct)\alpha) = c\alpha$ for all $c \in I$. To see that this property uniquely determines $\tau(\alpha)$ assume that $\beta \in \omega_S$ and $ct\beta = c\alpha$ for all $c \in I$. Then $ct(\tau(\alpha) - \beta) = 0$ for all $c \in I$, which implies that $S^+ \subset \operatorname{Ann}(\tau(\alpha) - \beta)$. If $\tau(\alpha) \neq \beta$, there would now exist $P \in \operatorname{Ass} \omega_S$ such that $S^+ \subset P$. We would then have dim $S/P < \dim S$, which is impossible, since dim $S/P = \dim S$ for all $P \in \operatorname{Ass} \omega_S$. So $\tau(\alpha) = \beta$ and the lemma has been proved.

Let A be a ring and $I \subset A$ an ideal of grade I > 0. Consider the Ratliff-Rush ideals I^{n*} $(n \in \mathbb{N})$. By [Mc, Proposition (11.1), (vi)] $I^{n*}I^{m*} \subset I^{n+m*}$ for all $m, n \in \mathbb{N}$. The ideals I^{n*} $(n \in \mathbb{N})$ so define a filtration

$$A \supset I^* \supset I^{2*} \supset I^{3*} \supset \dots$$

Let

$$R_A^*(I) = \bigoplus_{n \in \mathbb{N}} I^{n*}$$
 and $gr_A^*(I) = \bigoplus_{n \in \mathbb{N}} I^{n*}/I^{n+1*}$

denote the corresponding Rees-algebra and the associated graded ring respectively. By [Mc, Theorem (12.3)] we have $I^{n*} = I^n$ for all $n \in \mathbb{N}$ if and only if grade $(gr_A(I))^+ > 0$. We thus get $R_A^*(I) = R_A(I)$ and $gr_A^*(I) = gr_A(I)$ if and only if grade $(gr_A(I))^+ > 0$. By [V, p. 157] this is the case, for example, when $R_A(I)$ has the property (S_2) . It is also useful to note the following simple lemma. **3.8. Lemma.** Let A be a local ring and $I \subset A$ an ideal of grade I > 0. Then $gr_A^*(I) \cong gr_A(I)$ if and only if $\operatorname{grade}(gr_A(I))^+ > 0$.

Proof. Suppose $gr_A^*(I) \cong gr_A(I)$. There exists then for every $n \in \mathbb{N}$ an isomorphism $I^n/I^{n+1} \longrightarrow I^{n*}/I^{n+1*}$. From the isomorphism $A/I \longrightarrow A/I^*$ we get $I = I^*$. It follows by induction on n that $I^n = I^{n*}$ for every $n \in \mathbb{N}$. As mentioned above this is now equivalent to $\operatorname{grade}(gr_A(I))^+ > 0$.

We denote $I^{-n} = \operatorname{Hom}_A(I^n, A)$ for n > 0. For all $n \in \mathbb{N}$ there is the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A}(I^{n}/I^{n+1}, A) \longrightarrow \operatorname{Hom}_{A}(I^{n}, A) \longrightarrow \operatorname{Hom}_{A}(I^{n+1}, A)$$

coming from the sequence

$$0 \longrightarrow I^{n+1} \longrightarrow I^n \longrightarrow I^n/I^{n+1} \longrightarrow 0.$$

Since grade I > 0, we have $\operatorname{Hom}_A(I^n/I^{n+1}, A) = 0$ so that there is a monomorphism

$$0 \longrightarrow I^{-n} \longrightarrow I^{-(n+1)}.$$

By means of this monomorphism we shall consider I^{-n} as an A-submodule of $I^{-(n+1)}$.

3.9. Theorem. Let A be a local ring and $I \subset A$ an ideal of grade I > 0. Set $S = R_A(I)$ and $G = gr_A(I)$. Suppose that $R_A(I^q)$ is Gorenstein for some $q \in \mathbb{N}^*$. Then

(1) There exists an exact sequence of graded S-modules

$$0 \longrightarrow R_A^*(I)(-q) \longrightarrow \omega_S \longrightarrow \bigoplus_{n=1}^{q-1} I^{n-q} \longrightarrow 0.$$

- (2) $\omega_A \cong I^{-q}$
- (3) Set $d = \dim A$ and let \mathfrak{M} be the homogeneous maximal ideal of S. If $\underline{H}^d_{\mathfrak{M}}(S) = 0$, we also have an exact sequence of graded S-modules

$$0 \longrightarrow gr_A^*(I)(-(q+1)) \longrightarrow \omega_G \longrightarrow \bigoplus_{n=1}^q I^{n-q-1}/I^{n-q} \longrightarrow 0.$$

Proof. We may assume that A is complete. Lemma 3.7 implies the existence of the diagram

where ρ is an isomorphism of degree 1. Put $T = R_A(I^q)$. Since T is Gorenstein, $\omega_T = T(-1)$. By Lemma 3.1 it follows from Proposition 3.6 that

$$\omega_S = \bigoplus_{n \ge 1} [\underline{\operatorname{Hom}}_T(I^{s(n)}T, \omega_T)]_{r(n)}$$
$$= \bigoplus_{n \ge 1} [\underline{\operatorname{Hom}}_T(I^{s(n)}T, T)]_{r(n)-1}$$
$$= \bigoplus_{n \ge 1} \operatorname{Hom}_A(I^{s(n)}, I^{s(n)+n-q}).$$

Similarly

.

$$\underline{\operatorname{Hom}}_{S}(IS,\omega_{S}) = \bigoplus_{n \ge 1} \operatorname{Hom}_{A}(I^{\mathfrak{s}(n)+1}, I^{\mathfrak{s}(n)+n-\mathfrak{q}}).$$

If $1 \le n \le q$, s(n) = q - n and so

$$\operatorname{Hom}_{A}(I^{\mathfrak{s}(n)}, I^{\mathfrak{s}(n)+n-q}) = \operatorname{Hom}_{A}(I^{q-n}, A) = I^{n-q},$$

$$\operatorname{Hom}_{A}(I^{s(n)+1}, I^{s(n)+n-q}) = \operatorname{Hom}_{A}(I^{q-n+1}, A) = I^{n-q-1}$$

If n > q, $s(n) + n - q \ge q$ and it follows from Lemmas 3.4 and 3.5 that

$$\operatorname{Hom}_{A}(I^{s(n)}, I^{s(n)+n-q}) = I^{s(n)+n-q} : I^{s(n)} = (I^{n-q})^{*},$$
$$\operatorname{Hom}_{A}(I^{s(n)+1}, I^{s(n)+n-q}) = I^{s(n)+n-q} : I^{s(n)+1} = (I^{n-q-1})^{*}$$

The claim (1) is now immediate. Since T is Cohen-Macaulay, we have $[\underline{H}^d_{\mathfrak{M}}(S)]_0 = [\underline{H}^d_{\mathfrak{M}}(T)]_0 = 0$. Then

$$[\underline{\operatorname{Hom}}_{S}(\underline{H}^{d}_{\mathfrak{M}}(S), \underline{E}_{S}(k))]_{0} = \operatorname{Hom}_{A}([\underline{H}^{d}_{\mathfrak{M}}(S)]_{0}, E_{A}(k)) = 0.$$

Since also $[\omega_S]_0 = 0$, the diagram implies $\omega_A \cong [\underline{\text{Hom}}_S(IS, \omega_S)]_1 = \text{Hom}_A(I^q, A)$ so that (2) has been proved. To prove (3) observe that in degrees $1 \le n \le q$ one can identify the second row of the diagram with the sequence

$$0 \longrightarrow I^{n-q} \longrightarrow I^{n-q-1} \longrightarrow I^{n-q-1}/I^{n-q} \longrightarrow 0.$$

In the case $n \leq q$, we thus get that

$$[\omega_G]_n = I^{n-q-1}/I^{n-q}.$$

If n > q, we have

$$[\omega_G]_n = [\underline{\operatorname{Hom}}_S(IS,S)]_n / [\omega_S]_n = (I^{n-q})^* / (I^{n-q-1})^*$$

and the claim has so been proved.

Suppose that $R_A(I^q)$ is Gorenstein. In [HRZ] the *a*-invariant of $gr_A(I)$ was computed in the case grade I > 1 if $R_A(I)$ was Cohen-Macaulay. Now using Theorem 3.9 we can generalize this result as follows.

3.10. Corollary. Let A be a local ring of dimension d and $I \subset A$ an ideal of grade I > 0. Let \mathfrak{M} be the homogeneous maximal ideal of $R_A(I)$ and assume that $\underline{H}_{\mathfrak{M}}^d(R_A(I)) = 0$. Suppose that $R_A(I^q)$ is Gorenstein for some $q \in \mathbb{N}^*$. If grade I = 1, we have $a(gr_A(I)) > -(q+1)$, and if grade I > 1, $a(gr_A(I)) = -(q+1)$.

Proof. Set $G = gr_A(I)$. Assume first that grade I = 1. Then $I^{-1} \neq A$. According to Theorem 3.9 we then have $[\omega_G]_q \neq 0$ so that a(G) > -(q+1). In the case grade I > 1, we obtain $[\omega_G]_n = I^{n-q}/I^{n-q-1} = 0$ for $1 \leq n \leq q$, but $[\omega_G]_{q+1} = A/I^* \neq 0$, which means that a(G) = -(q+1).

We want to show next that if grade I > 1, the conditions mentioned in Theorem 3.9 are also sufficient for the Gorensteiness of $R_A(I^q)$.

3.11. Lemma. Let A be a complete local ring of dimension d and $I \subset A$ an ideal of grade I > 0. Let \mathfrak{M} be the homogeneous maximal ideal of $R_A(I)$ and assume that $\underline{H}^d_{\mathfrak{M}}(R_A(I)) = 0$. Let $q \in \mathbb{N}^*$. Suppose that $R_A(I^q)$ is Cohen-Macaulay. Set $S = R_A(I)$, $G = gr_A(I)$. If $[\omega_S]_q \cong A$ and if there exists an isomorphism

$$gr_A^*(I)(-(q+1)) \longrightarrow \bigoplus_{n \ge q+1} [\omega_G]_n,$$

then we have an isomorphism

$$R_A^*(I)(-q) \longrightarrow \bigoplus_{n \ge q} [\omega_S]_n$$

of graded S-modules.

Proof. Let $\tau: \omega_S \longrightarrow \omega_S(-1)$ be the homomorphism of Lemma 3.7. We first define homomorphisms $\psi_n: (I^{n-q})^* \longrightarrow [\omega_S]_n \ (n \ge q)$ so that the diagram

$$\begin{array}{cccc} [\omega_S]_n & \xrightarrow{\tau} & [\omega_S]_{n-1} \\ \uparrow \psi_n & & \uparrow \psi_{n-1} \\ (I^{n-q})^* & \longrightarrow & (I^{n-q-1})^* \end{array}$$

commutes. By assumption we can find an isomorphism $\psi_q: A \longrightarrow [\omega_S]_q$. According to Lemma 3.6 we can identify $[\omega_S]_n$ with

$$[\underline{\operatorname{Hom}}_T(I^{s(n)}T,\omega_T)]_{r(n)},$$

where $s(n), r(n) \in \mathbb{N}$ and n + s(n) = r(n)q, $0 \leq s(n) < q$. Set $\xi = \psi_q(1) \in [\omega_S]_q$. Let $a \in (I^{n-q})^*$. To define $\psi_n(a)$ we need a homomorphism $I^{s(n)}T \longrightarrow \omega_T$ of degree r(n). By Lemma 3.5 we have $(I^{n-q})^* = I^{s(n)+n-q} : I^{s(n)}$. Since $aI^{s(n)} \subset I^{s(n)+n-q}$ and ξ is a homomorphism $T \longrightarrow \omega_T$ of degree 1, we can define $\psi_n(a)$ by setting

$$\psi_n(a)(bt^k) = \xi(abt^{k+r(n)-1}) \quad (b \in I^{\mathfrak{s}(n)+qk}, k \in \mathbb{N}).$$

The definition now implies easily that $\psi_n(ca) = ct\psi_{n-1}(a)$ for $a \in (I^{n-q-1})^*, c \in I$. By Lemma 3.7 this means that $\psi_{n-1}(a) = \tau(\psi_n(a))$. So the diagram commutes. Now consider the diagram

By the induction hypothesis ψ_{n-1} is an isomorphism. It follows that the induced homomorphism $(I^{n-q-1})^*/(I^{n-q})^* \longrightarrow [\omega_G]_n$ is an epimorphism. Since there by assumption exists an isomorphism $(I^{n-q-1})^*/(I^{n-q})^* \longrightarrow [\omega_G]_n$, this epimorphism must be an isomorphism. By the five-lemma ψ_n is an isomorphism. Since $\psi_{n+m}(ca) = ct^m \psi_n(a)$ for all $c \in I^m$, $a \in (I^{n-q})^*$ and $n \ge q$, the isomorphisms ψ_n now induce a S-linear isomorphism

$$\bigoplus_{n\geq q} (I^{n-q})^* \longrightarrow \bigoplus_{n\geq q} [\omega_S]_n$$

and the lemma has so been proved.

3.12 Theorem. Let A be a local ring of dimension d and $I \subset A$ an ideal of grade I > 1. Let \mathfrak{M} be the homogeneous maximal ideal of $R_A(I)$. Suppose $\underline{H}^d_{\mathfrak{M}}(R_A(I)) = 0$. Set $G = gr_A(I)$. Let $q \in \mathbb{N}^*$. Then $R_A(I^q)$ is Gorenstein if and only if the following conditions are satisfied

(1) $R_A(I^q)$ is Cohen-Macaulay

(2)
$$\omega_A \cong A$$

(3) $\omega_G \cong gr^*_A(I)(-(q+1)).$

If grade $G^+ > 0$, condition (3) is equivalent with the condition (3') $\omega_G \cong gr_A(I)(-(q+1)).$

Proof. We may assume that A is complete. Put $S = R_A(I)$, $T = R_A(I^q)$. Since grade I > 1, we have $I^{n-q} = I^{n-q-1}$ for $1 \le n \le q$. According to Theorem 3.9 the Gorensteiness of T implies the conditions (1)-(3). Suppose then that the conditions (1)-(3) hold. Then $[\omega_G]_n = 0$ for $1 \le n \le q$ so that by the diagram of Lemma 3.7 we get $[\omega_S]_q \cong [\omega_S]_{q-1} \cong \ldots \cong [\omega_S]_1 \cong \omega_A \cong A$. By Lemma 3.11 this implies that

$$\bigoplus_{n\geq q} [\omega_S]_n = \bigoplus_{n\geq q} (I^{n-q})^*.$$

Now $\omega_T = (\omega_S)^{(q)}$. Since T is Cohen-Macaulay, $(I^{q(n-1)})^* = I^{q(n-1)}$ (see p. 15). We get $\omega_T = T(-1)$ so that T is Gorenstein as wanted. The equivalence of (3) and (3') follows from the fact that grade $G^+ > 0$ implies $G = gr_A^*(I)$ (see p. 15).

3.13. Example. ([HRS]) Let k be a field. Consider the ring

$$A = k[[X_1, \ldots, X_{11}]]/(X_1^2) =: k[[x_1, \ldots, x_{11}]],$$

where $k[[X_1, \ldots, X_{11}]]$ is the formal power series ring over k. The ring A is a hypersurface ring of multiplicity 2 and dimension 10. Let I denote the ideal generated by all monomials of degree 4 in x_2, \ldots, x_{11} different from $x_2^2 x_3^2$. Let m be the maximal ideal of A. We now have $I^2 = m^8$. Because $R_A(m)$ is Cohen-Macaulay and a(G(m)) = -9, we know by Theorem 3.12 that $R(I^2) = R(m^8)$ is Gorenstein. We shall show that in this case $gr_A(I)$ is not even quasi-Gorenstein. Set $S = R_A(I)$ and $G = gr_A(I)$. One now easily sees that there exists a short exact sequence

$$0 \longrightarrow S \longrightarrow R_A(m^4) \longrightarrow k x_2^2 x_3^2(-1) \longrightarrow 0.$$

Let \mathfrak{M} be the homogeneous maximal ideal of S. The corresponding cohomology sequence now implies $\underline{H}^{i}_{\mathfrak{M}}(S) = 0$ for $i \neq 1, 11$, but $\underline{H}^{1}_{\mathfrak{M}}(S) \cong k(-1)$. It then follows from the cohomolygy sequences corresponding to the short exact sequences

 $0 \longrightarrow S^+ \longrightarrow S \longrightarrow A \longrightarrow 0$ and $0 \longrightarrow S^+(1) \longrightarrow S \longrightarrow G \longrightarrow 0$

that $[\underline{H}_{\mathfrak{M}}^{0}(G)]_{0} = [\underline{H}_{\mathfrak{M}}^{1}(S^{+})]_{1} = [\underline{H}_{\mathfrak{M}}^{1}(S)]_{1} \neq 0$. Thus grade $G^{+} = \operatorname{depth} G = 0$. Because $\omega_{G} \cong gr_{A}^{*}(I)(-3)$ by Theorem 3.12, it follows from Lemma 3.8 that $\omega_{G} \not\cong G(-3)$.

3.14. Corollary. Let A be a local Cohen-Macaulay ring and $I \subset A$ an ideal of ht I > 0. Suppose that $R_A(I^q)$ is Gorenstein for some $q \in \mathbb{N}^*$. Then $gr_A(I)$ is Gorenstein if and only if either I is principal or ht I > 1 and $gr_A(I)$ is Cohen-Macaulay.

Proof. Denote $G = gr_A(I)$ and a = a(G). Observe first that the assumptions in any case imply by [HRZ, Corollary (2.7)] that $R_A(I)$ is Cohen-Macaulay. Assume now that G is Gorenstein and ht I = 1. Then $\omega_G = G(a)$. By Corollary 3.10 we have a > -(q+1). Because G is Cohen-Macaulay, $gr_A^*(I) = G$. By Theorem 3.9 we then get $[\omega_G]_{q+1} = G_0$. So $I^{q+1+a}/I^{q+2+a} \cong A/I$, which implies that I^{q+1+a} is principal. Since ht I > 0, it follows from [S, Proposition 1] that

20

I is principal. If ht I > 1 and *G* is Cohen-Macaulay, [HRS, Theorem (2.3)] (or Theorem 3.12) implies that $\omega_G = G(-(q+1))$ so that *G* is Gorenstein.

We shall now consider the Gorensteiness of $R_A(\mathbf{I}_r^k)$ $(k \in (\mathbb{N}^*)^r)$. We have the following general result about the canonical module of an *r*-graded ring corresponding a graded ring.

3.15. Proposition Let R be a graded ring defined over a local ring. Set $S = R^{r-gr}$. Suppose that dim $S = \dim R + r - 1$. If R has a canonical module, then so does S and we have

$$\omega_S = \bigoplus_{n>0} [\omega_R]_{|n|}.$$

Proof. Set $d = \dim R$, so that $\dim R^{r-gr} = d + r - 1$. Denote $A = S_0$ and let \mathfrak{M} be the homogeneous maximal ideal of R. Set $\mathfrak{N} = \mathfrak{M}^{r-gr}$. It follows from Theorem 2.2 that $[\underline{H}_{\mathfrak{N}}^{d+r-1}(S)]_{\mathbf{n}} = [\underline{H}_{\mathfrak{M}}^{d}(R)]_{|\mathbf{n}|}$ if $\mathbf{n} < \mathbf{0}$ and 0 otherwise. Then

$$\begin{split} \omega_{S} &= \underline{\operatorname{Hom}}_{S} \left(\underline{H}_{\mathfrak{M}}^{d+r-1}(S), \underline{E}_{S}(k) \right) \\ &= \underline{\operatorname{Hom}}_{A} \left(\underline{H}_{\mathfrak{M}}^{d+r-1}(S), E_{A}(k) \right) \\ &= \bigoplus_{\mathbf{n} \in \mathbf{Z}^{r}} \operatorname{Hom}_{A} \left([\underline{H}_{\mathfrak{M}}^{d+r-1}(S)]_{-\mathbf{n}}, E_{A}(k) \right) \\ &= \bigoplus_{\mathbf{n} > \mathbf{0}} \operatorname{Hom}_{A} \left([\underline{H}_{\mathfrak{M}}^{d}(R)]_{-|\mathbf{n}|}, E_{A}(k) \right) \\ &= \bigoplus_{\mathbf{n} > \mathbf{0}} [\underline{\operatorname{Hom}}_{A} \left(\underline{H}_{\mathfrak{M}}^{d}(R), E_{A}(k) \right)]_{|\mathbf{n}|} \\ &= \bigoplus_{\mathbf{n} > \mathbf{0}} [\underline{\operatorname{Hom}}_{R} \left(\underline{H}_{\mathfrak{M}}^{d}(R), \underline{E}_{R}(k) \right)]_{|\mathbf{n}|} \\ &= \bigoplus_{\mathbf{n} > \mathbf{0}} [\omega_{R}]_{|\mathbf{n}|}. \end{split}$$

3.16. Theorem. Let A be a local ring and $I \subset A$ an ideal of grade I > 0. Let $\mathbf{k} \in (\mathbf{N}^*)^r$. Then $R_A(\mathbf{I}_r^k)$ is Gorenstein if and only if it is Cohen-Macaulay and $R_A(I^{|\mathbf{k}|})$ is Gorenstein.

Proof. Denote $R = R_A(I)$, $S = R_A(\mathbf{I}_r)$ and $S' = R_A(\mathbf{I}_r^k)$, $R' = R_A(I^{|\mathbf{k}|})$. Assume first that S' is Gorenstein. We then know by Lemma 2.3 that $\omega_{S'} = S'(-1)$. By Proposition 3.15 we have

$$\omega_S = \bigoplus_{n>0} [\omega_R]_{|n|}.$$

Since $\omega_{S'} = (\omega_S)^{(\mathbf{k})}$, this implies

$$S'(-1) = \bigoplus_{n>0} I^{\mathbf{k} \cdot (n-1)} = \bigoplus_{n>0} [\omega_R]_{\mathbf{k} \cdot \mathbf{n}}.$$

Because $\omega_{R'} = (\omega_R)^{(|\mathbf{k}|)}$, it then follows that

$$\omega_{R'} = \bigoplus_{n>0} [\omega_R]_{|\mathbf{k}|n} = \bigoplus_{n>0} [\omega_R]_{\mathbf{k}\cdot(n\mathbf{1})} = \bigoplus_{n>0} I^{|\mathbf{k}|(n-1)} = R'(-1).$$

Since R' is Cohen-Macaulay by Corollary 2.5, we get that R' is Gorenstein.

Assume then that S' is Cohen-Macaulay and R' is Gorenstein. It follows from Theorem 3.9 that

$$\bigoplus_{n\geq |\mathbf{k}|} [\omega_R]_n = \bigoplus_{n\geq |\mathbf{k}|} (I^{n-|\mathbf{k}|})^*.$$

According to Proposition 3.15 we have

$$\omega_S = \bigoplus_{\mathbf{n} > \mathbf{0}} [\omega_R]_{|\mathbf{n}|}.$$

Then

$$\omega_{S'} = (\omega_S)^{(\mathbf{k})} = \bigoplus_{n>0} [\omega_R]_{\mathbf{k}\cdot\mathbf{n}} = \bigoplus_{n>0} (I^{\mathbf{k}\cdot(\mathbf{n}-1)})^*.$$

By Lemma 3.5 we know that $(I^{\mathbf{k}\cdot\mathbf{n}})^* = I^{\mathbf{k}\cdot\mathbf{n}}$ for all $\mathbf{n} \in \mathbb{N}^r$. So

$$\omega_{S'} = \bigoplus_{\mathbf{n} > \mathbf{0}} I^{\mathbf{k} \cdot (\mathbf{n} - 1)} = S'(-1)$$

and the theorem has been proved.

3.17. Example. Consider the class of Cohen-Macaulay almost complete intersection ideals I of ht I > 1 in a local Gorenstein ring A. For these ideals we know by [HRZ, Proposition (2.5)] that $gr_A(I)$ is Gorenstein and $a(gr_A(I)) = -\operatorname{ht} I < -1$. Since $R_A(I)$ is then Cohen-Macaulay, it follows from [HRZ, Theorem (3.5)] that $R_A(I^{\operatorname{ht} I-1})$ is Gorenstein. Therefore the multigraded Rees ring $R_A(I_r^k)$ is Gorenstein if $|\mathbf{k}| = \operatorname{ht} I - 1$.

Take in particular $A = k[[X_1, \ldots, X_6]]$, where $k[[X_1, \ldots, X_6]]$ is the formal power series ring over a field k, and

$$I = (X_1^2 - X_2 X_4, X_2^2 - X_3 X_5, X_3^2 - X_1 X_6, X_1 X_2 X_3 - X_4 X_5 X_6)$$

([HK]). Then ht I = 3, $a(gr_A(I)) = -3$ so that $R(I^2)$ and R(I, I) are Gorenstein.

By combining Theorem 3.16 with Theorem 3.12 we immediately get the following. **3.18. Corollary.** Let A be a local ring of dimension d and $I \subset A$ an ideal of grade I > 1. Let \mathfrak{M} be the homogeneous maximal ideal of $R_A(I)$. Suppose $\underline{H}^d_{\mathfrak{M}}(R_A(I)) = 0$. Set $G = gr_A(I)$. Let $\mathbf{k} \in (\mathbb{N}^*)^r$. Then $R_A(\mathbf{I}^k_r)$ is Gorenstein if and only if the following conditions are satisfied

- (1) $R_A(\mathbf{I}_r^k)$ is Cohen-Macaulay
- (2) $\omega_A \cong A$
- (3) $\omega_G \cong gr_A^*(I)(-(|\mathbf{k}|+1)).$

References

- [GN] GOTO, S. and NISHIDA, K.: Filtrations and the Gorenstein property of the associated Rees algebras. - Preprint.
- [GW1] GOTO, S. and WATANABE, K.: On graded rings, I. J. Math. Soc. Japan 30, 1978, 179-213.
- [GW2] GOTO, S. and WATANABE, K.: On graded rings, II. Tokyo J. Math. 1, 1978, 237-260.
- IKEDA, S.: On the Gorensteiness of Rees algebras over local rings. Nagoya Math J. 102, 1986, 135-154.
- [H] HYRY, E.: On the Gorenstein property of the associated graded ring of a power of an ideal. - To appear in Manus. Mat.
- [HHR] HERRMANN, M. and HYRY, E. and RIBBE, J.: On the Cohen-Macaulay and Gorenstein properties of multi-Rees algebras. - Manus. Mat. 79, 1993, 343-377.
- [HIO] HERRMANN, M. and IKEDA, S. and ORBANZ, U.: Equimultiplicity and blowing up. -Springer-Verlag, Berlin-Heidelberg, 1988.
- [HRS] HERRMANN, M. and RIBBE, J. and SCHENZEL, P.: On the Gorenstein property of form rings. - Math. Z. 213, 1993, 301-309.
- [HRZ] HERRMANN, M. and RIBBE, J. and ZARZUELA, S.: On the Gorenstein property of Rees and form rings of powers of ideals - To appear in Trans. Amer. Math. Soc.
- [HK] HERZOG, J. and KUNZ, E.: On the deviation and the type of a Cohen Macaulay ring -Manus. Mat. 9, 1973, 383-388.
- [Ma] MATSUMURA, N.: Commutative ring theory. Cambridge University Press, Cambridge, 1986.
- [Mc] MCADAM, S.: Primes Associated to an ideal. Contemporary Mathematics 102, American Mathematical Society, Providence, Rhode Island, 1989.
- [R] RIBBE, J.: On the Gorenstein property of multigraded Rees algebras. Proceedings of the workshop on commutative algebra, Trieste, 1992.
- [S] SALLY, J.: On the number of generators of powers of an ideal. -Proc. Amer. Math. Soc. 53, 1975, 24-26.
- [TI] TRUNG, N.V. and IKEDA, S.: When is the Rees algebra Cohen-Macaulay?. Communications in Alg. 17, 1989, 2893-2922.
- [TVZ] TRUNG, N.V. and VIÊT, D.Q. and ZARZUELA, S.: When is the Rees algebra Gorenstein? - Preprint.
- [Z] ZARZUELA, S.: On the structure of the canonical module of the Rees algebra and the associated graded ring of an ideal. Publ.Mat. 36, 1994, 1075-1084.
- [V] VASCONCELOS, W.V.: The S₂-closure of a Rees algebra. Results in Mathematics 23, 1993, 145-162.

M. Herrmann J. Ribbe Mathematisches Institut der Universität zu Köln Weyertal 86-90 D-5000 Köln 41 Germany

Eero Hyry National Defence College Santahamina 00860 Helsinki Finland

•

.

24