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Abstract

In tbe present paper we give the general nondegenerate solution of the functional equa
tion

(f(x) + g(y) + h(Z))2 = F(x) + G(y) + H(z),

x + y + z = 0,

which related to the exact factorized ground-state wave function for the quantum one
dimensional problem of three different particles with pair interaction.
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The purpose of the present paper is to give the general nondegenerate solution of the
functional equation

(f(x) + g(y) +h(z)? = F(x) +G(y) +H{z), (1)

x +y+z = 0,

which related to the exact factorized ground-state wave function for the quantum one
dimensional problem of three different partic1es with pair interaction. We obtain this
result as a consequence of a general analytic solution of the following functional equations:

,(x) - ,(y)
cp(x + y) = f7{x) + f7{y) - ~(x) _ ~(y)

cp(x + y) = cp(x) + cp(y) + r(x)r{y)A{x + y).

(2)

(3)

Such equations are also interesting from mathematical point of view a.s new examples of
non-classical addition theorems.

1. Let us remind first that an analogaus (but more simple) equation for the special
case of three identical particles was considered earlier by B. Sutherland [1] and F.Calogero
[2]. Namely, in the paper [1] the aue-dimensional many-body problem of n identical
particles with pair interaction was considered, whose exact ground-state wave function
wo( XI, X2, ••• , x n ) is factorized

'l'O{Xl, X2,·· . ,xn ) = rr 1/J{Xj - Xk).
i<k

It was shown that the logarithmic derivative of ,pex)

fex) = 1/J'{x)/1/J{x)

should satisfy the functional equation

f(x)f(y) + f(y)f(z) + f(z)f(x) = F(x) +F{y) + F{z),

x + y + z = 0,

where
J{ -x) = - fex), F{ -x) = F{x).
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In [1], partial solutions of equation (4) was also found.

The general solution of equation (4) was found in [2] (see also [3] for review of this and
related problems). This solution has the form

f{x) = o({x; g2, g3) + ßx,

F{x) = a2p(x; g2, g3),

where ((x) and p{x) are the Weierstrass functions (see for instance [4]).

(5)

(6)

In the present paper we consider only the three-body problem, but in the general case
when all three particles are different !rom each other.

In this case the ground-state wave function has the form

WO{XIl X2,X3) = "pl(X2 - X3)tP2{X3 - Xl)tP3(Xl - X2)

and satisfies the Schrödinger equation

(7)

- ß '1' 0 + U 'I! 0 = Eo'I! 0 , ( 8)

U = Ul{X2 - X3) + U2(X3 - Xl) + U3{X1 - X2)' (9)

Substituting \l1 0 !rom (7) into (8), we obtain

wöl ß Wo = U - Eo = 3(f;(X2 - X3) + fi(X3 - Xl) + f;(X1 - X2))

-(f1(X2 -x3)+f2(X3 -x1)+f3(X1 -X2))2

+2(f~ (X2 - X3) + f~(X3 - Xl) + f~(X1 - X2))j

fj = 1/Jj/1/Jj. (10)

Hence, for the potential energy U(X1,X2,X3) to have the form ofpair interactions (9),
the three functions

(11)

must satisfy the functional equation

(f(x) +g(y) + h{z))2 = F(x) +G(y) +H(z),

X + y + z = o.

The following expression for the potential energjes results from (10)-(12).

u](x) = 3f2(x) +2f'(x) - F(x) +Cil

U2(X) = 3g2(x) + 2g'(x) - G(x) + &2,

U3(X) = 3h2(x) +2h'(x) - H(x) +C3'

Cl +c2 + &3 = Eo

3
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2. Let us consider the meromorphic solutions of the equation

(f(x) + g(y) + h(z))2 = F(x) + G(y) + H(z)

x+y+z=O

(14)

Definition. Let us call the solution of Eq. (14) nondegenerate, if each one of the
functions f(x), g(x) and h(x) have the pole in finite domain of complex x-plane.

The main result of this paper is the following

Theorem. The general nondegenerate 30lution of the equation (14) in the cla.M 0/
meromorphic function3 ha" the form

g(x) = o«x - a2; g2, 93) +ßx + 12·

h(x) = a«x - a3;92,93) + ßx +13·

where
al + a2 + a3 = 0,

11 + 12 +,3 = ,.

Proof. The proof of the theorem is divided on several steps.

Let us begin with

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Lemma 1. The functio~ (f( x), g(y), h(z)) "ati,,/y equation (14) for the corrcspondin9
fu.nctio~ (F(x), G(y), H(z)) if and only if the3e function3 3ati"fy abo the equation

f"(x) g"(y) h"(z)
f'(x) g'(y) h'(z) = 0
111
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under condition: x + y +z = O.

. Proof. Let us apply the operator 8_ . :1/ . :%' where 8_ = :% - :y to eq.(14). This
gtves:

8
8x: 2(f'(x) - h'(z))(f(x) +g(y) + h(z)) = F'(x) - H'(z), (23)

~:X: 2h"(z)(f(x) + g(y) + h(z» + 2(f'(x) - h'(z»(g'(y) - h'(z» = H"(z), (24)

0- ~:X:h"(z)(f'(x) - g'(y» + J"(x)(g'(y) - h'(z» + g"(y)(h'(z) - /,(x» = O. (25)

Here we use the fact that 8_ is the differentiation operator, and that 8_h'(z) =
8_h"(z) = O.

Hence, if functions (f(x), 9(y), h(z)) satisfy equation (14), then these functions satisfy
also equation (25), that can be obviously rewritten in the form (22).

Conversely, let the functions (f(x),g(y),h(z)) satisfy (22) and, consequently, (25). The
equation (25) may be rewritten as

8_(h"(z)(f(x) + g(y) + h(z)) + (f'(x) - h'(z))(g'(y) - h'(z))] = 0;

then there is a function H 1(z) satisfying the following equation:

h"(z)(f(x) +g(y) +h(z)) + (f'(x) - h'(z))(g'(y) - h'(z)) = H1(z) (26)

Let us note that eq.(26) is equivalent to the equation

8
8y(f'(x) - h'{z))(f{x) + g{y) + h(z))] = H 1(z)

Therefore, there are functions F1{x) and H2 (z) such that H~(z) = H1 {z), and

(f'(x) - h'(z))(f(x) +g{y) + h(z)) = F1 (x) - H2 (z).

On the other hand, equation (27) is equivalent to

(27)

8
8x (f(x) +g(y) +h(z))2 = 2(F1(x) - H2 (z)),

i. e. there are functions F(x), G(y) and H(z) such that F'(x) = 2F1(x), H'(z) = 2H2 (z),
and

(f(x) + g(y) + h(z))2 = F(x) +G(y) + H(z).
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Thus Lemma 1 is proved.

Lemma 2. Equation (14) i" invariant under the lollowing trarw/ormations:

F(x) -+ Fo + a4x + a~F(aax +GI) +2a2c/(aaX +GI),

g(y) -+ go +a1Y +a2g(aaY +G2)'

G(y) -+ Go + a4Y + a~G(aaY +G2) + 2a2cg(aaY + G2)'

h(z) ~ ho +a1z + a2h(aaz +Ga),

H(z) -t Ho + a4z + a~H(aaz +Ga) +2a2ch(aaz +Ga),

where ak(k = 1, ... ,4) and c are free parameter"

/0 + go + ho = c, Fo +Go +Ho = c2, GI + G2 + Ga = O.

This Lemma is proved by a rnrect calculation .

(28)

Corollary 3. Taking COTTe"ponding value" 01 the parameter" GI, G2 , Ga, on e can prove
that all the functions (/(x), g(y), h(z)), (F( x), G(y), H( z)) are regular at x = 0, y = 0, z =
0, re"pectively.

The proof follows from the fact that the set of poles of a meromorphic function of one
camplex variable is discrete. Thus in what follows we may suppose that all the functions
are regular at x = O,y = O,z = O.

Definition 4. Let UJ call the "olution 01 equation (14) totally degenerate, i/ at least
one 0/ functio~ /(x), g( x), and h(x) i3 linear.

The next Lemma describes all totally degenerate solutions of equation (14).

Lemma 5. Let (/(x), g(y), h(z)), (F( x), G(y), H (z)) be a totally degenerate .!olution
0/ the equation (14).

Three cases are possible.
1. All three functions /(x), g(y), h(z) are linear. Then

/(x) = /0 + /I X, g(y) = go + 91Y, h(z) = ho+ h1z,

F(x) = Fo+FIx +(/1 - 91 )(/1 - h1 )X2
, G(y) = Go + G1y + (gI - /1 )(91 - h1 )y2,

H(z) = Ho + H1z + (h1 - gl)(h1 - /1)Z2

Here /0, /1 , go, 91 , ho, h1 are free parameters.
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Let Ja + go +ho = c. Then

Fa + Go + Ho = c2
, Ft = b+ 2c/t, Gt = b+ 2cg}, Ht = b+ 2cht

and bis a free parameter.

2. Two of the functions /(x),g(y), h(z) are linear. For example, it is g(y) = go +
gtY, h(z) = ho + htz. Then J(x) is an arbitrary function, g(y) = go + ay, h(z) =
ho + az, G(y) = Go + by, H(z) = Ho + bz and

F(x) = [gO + ho - ax + /(X)]2 - (Go + Ho - bx).

Here go, ho,a, b, Go , Ho are free parameters~

3. OnIy one of the functions /(x),g(y),h(z) is linear. For exampIe, h(z) = ho + htz.
Then

J(x) = /0 + ax + Ct exp(..\x), g(y) = go + ay + C2 exp(..\y), h(z) = ho + az,

F(x) = Fo + bx + Ct exp(..\x )(2c + Ct exp(..\x)),

G(y) = Go + by + C2 exp(..\y)(2c + C2 exp(..\y)),

H(z) = Ho + bz + 2CtC2 exp( -..\z).

Here a, b, c, Cl, C2, ..\ are free parameters, and

/0 + go + ho = c, Fo + Go + Ho = c2
.

Proof.

Ca&e 1. It follows from (22) that /(x), g(y), h(z) are arbitrary linear functions. A
form of the functions F(x), G(y), H(z) can be reconstructed directly from (14), taking into
account the identity 2xy = z2 - x 2 _ y2.

CaJe f . We obtain from (22)

H /" (x) # 0, then gt = ht and f( x) is arbitrary. The form of the func
tions F(x), G(y), H(z) can be reconstructed immediately.

Ca&e 9 . We get from (24):

2(f'(x) - ht)(g'(y) - ht ) = H"( -x - y).
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H I'(x) and g'(y) are not constants, then according to the classical Cauchy-Pexider
result [6] (see also [7]) we obtain :

I'(x) - hl = Cl exp(AX), g'(y) - h l = C'J exp(Ax).

where CI, C'J and A are free parameters.

Therefore

where Ck = Ck/A, k = 1,2. The form. ofthe functions F(x), G(y), H(z) can be reconstructed
easily. The Lemma is proved.

So, further we can consider solutions of (14) which are not totally degenerate.

Lemma 6. On choo~ing the appropriate tJalue~ 0/ the parameter~ 10,90, ho, al, Fa, Go
(~ee Lemma B) we obtain

1(0) = g(O) = h(O) = 0, h'(O) = 0, F(O) = G(O).

The proof is easy.

(29)

Lemma 7. An appropriate choice 0/ the parameter~ 01 and 0:'2 lea~ to the relation

I(x) i= g(x)

Proof. Suppose on the contrary that

(30)

for all 01 and 02 in auy neighbourhood of the point x = O. On differentiating (30), we
obtain

1. e.

in contradiction to the assumption about the nondegeneracy of the solution. The Lemma
is proved.

Hence, it is sufficient to find all solutions of eq. (1) which are not totally degenerate
and satisfy the following additional conditions:

f(x) i= g(x), 1(0) = g(O) = h(O), h'(O) = 0, F(O) = G(O) = O.
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Then, using the transformations from Lemma 2 we obtain the general nondegenerate
solution. In what follows only the nondegenerate solutions of (14) satisfying the above
additional conditions will be considered.

Interchanging x and y in eq. (14), we obtain

(f(y) + g(x) + h(z))2 = F(y) + G(x) + H(z).

Subtracting (31) from (14) we see that

[(fex) - g(x)) - (f(y) - g(y))][(f(x) +g(x)) + (f(y) + g(y)) + 2h(z)]
= (F(x) - G(x)) - (F(y) - G(y)) .

Hence,
leX) - ;(y)

<p(x + y) = 'lex) +7](Y) - ~(x) - ((y) ,

where
ep(x) = -2h(-x),

7](x) = fex) +g(x),

((x) = fex) - g(x),

leX) = F(x) - G(x),

and ep(O) = <p'(0) = 7](0) = ;(0) = ~(O) = 0 and <pl/(x) f; O.

(31)

(32)

Definition 8. Let u~ call .!olution (<p, 7], el ;) 0/ the equation (Sf) normalized, if the
/ollowing initial condition.! are .!ati.!fied:

((0) = I; 1]'(0) = O.

Lemma 9. The map

(<p, 7], e, ;) -t (<p, 7] + b1e, ~ ~, ~(; + b1e2
) ), (33)

where b1 and b2 are parameter.!, b2 f; 0, define.! a group action. Each orbit of thi3 group
contairw one and only one normalized .!olution.

Proof. The first statement may be checked by a direct computation. To praof the
second statement, let us differentiate eq. (32) with respect to y. At the point y = 0 we
have:

'() '(0) ;'(0) t'(O) leX)
<p x =7] + ((x) -~ ((x)2'

9



Assuming cp(x) is regular at x = 0 and ,;,"(x) '# 0, it is easy to check that e'(O) '# o.

Applying the transformation (33) with ~ = (e'(0»-1, b1 = -t]'(0)/€'(0) to the solution
(cp, t], e, 1), we obtain a nonnalized solution, and the Lemma is proved.

In what follows solutions are assumed to be normalized, unless the contraxy is asserted.
Let us now consider the functional equation

,;,{x + y) = ,;,{x) + <p{y) + r{x)r{y)A{x + y),

,;,{O) = <p'(0) = T{O) = T"{O) = 0, T'{O) = 1.

(34)

Lemma 10. For any 30lution (,;" 1], e, 1) 0/ the eq. (9~), there i" a u.nique 30lution
(,;" r, A) 0/ the eq. (94) 3uch that

e T{X)
(x) = r'{x) _ ~r{x)'

1]{x) = <p{x) - ,;,'{x)e{x),

I{X) = -,;,'{x)e{x)2,

where bJ = e"{O) i3 a free parameter.

(35)

(36)

(37)

Proof. Let (<p, r, A) is some solution of the eq. (34). Then acting on (34) by the
operator 8_ = (:x - ty ) we obtain

o= e,o'{x) - e,o'{y) + (r'{x)T{y) - T{x)r'{y»A{x + y),

1. e.
A{x + y) = _ ep'{x) - ep'{y) .

r'{x)T{y) - T{X)T'{y)

Hence, we transform the eq. (34) to the equation

ep'{X) - ep'{y)
<p{x+y) = ep{X) + <p{y) +r{x)T{y) ()'{) '() ()"rXT y -T xry

On the other hand,

T{x)r{y) r{x) r{y) 1 e{x)€{y)
r{x )r'{y) - T'{ X)r(y) = -r'(-x) -r'(-y) (;'«:)j - bJ ) - (;'\~)j - bJ ) = €(x) - e{y) ,

(38)

(39)

where the function €(x) may be expressed in terms of T{X) by the fonnula (35) with a free
parameter ba.

10



Therefore,
<,o'(x) - <,o'(y)

<,o(x + y) = <p(x) + ep(y) + e(x)e(y) e(x) _ ((y) .

On substituting the expressions for 1](x) and ,(x) from (36) and (37) we obtain a
solution ('P, 1], e,,) of the eq. (32).

Let now (ep, 1],~,,) be a solution of eq. (32). On substituting y = 0 in eq. (32) we
obtain

,(x)
ep(x)=1](x)- e(x)'

i.e. ,(x) = ((x)6(x), where 6(x) = '7(x) - ep(x), and our initial conditions ep'(O) = '7'(0) =
o= <p(0) = 1](0) are satisfied.

Hence, ,'(0) = 0, and from the formula for <p'(x) obtained in the course of the proof of
Lemma 9 we have

,(x) = -<,o'(X)~2(X),

l1(X) = ep(x) - 'P'(x)~(x),

as asserted in (36) and (37). Let us note that formula (35) may be considered as the
differential equation for the function r( x). Solving this equation at initial conditions
r(O) = 0, r'(O) = 1 we obtain the function r(x), if, moreover, we take ba = e"(O) it will
satisfy the condition r"(O) = O.

Substituting now the expressions for e(x), '7(x), ,(x) into eq. (32) we obtain eq. (39).

Let us apply the operator 8_ to the eq. (39); we obtain

8 ( ep'(x) - ep'(y) ) = 0
- r(x)r'(y) - r'(x)r(y) - .

Thus it is shown that the functions ep(x) and r(x) determine the function A(x) given by
the expression (38). The Lemma is proved.

So it was shown, how it is possible to construct all the solutions of the eq. (32) using
the solutions of eq. (34).

Now we describe the general analytical solution of equation (34).

Lemma 11. Let (ep, r, A) be a 30lution 0/ equation (94). (Let tL3 remind that <,0(0) =
ep'(O) = r(O) = r"(O) = 0 and r'(O) = 1.) Then the function u(x) = ep'(x) ü a solution 0/
the differential equation

( ')2 a 4 2 2 2U = C3U + C2U + Ct U + Co,

u(O) = 0, u'(O) = Co.

11
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The functio~ T(X) and A(x) 3at~/y the /ollowing equation~:

T'(X) _ ~

T(X) - 2

A'(x) _ ~

A(x) - 2

u'(X) + Co

U(X)

u'(x)-eo
u(x)

(41)

(42)

/1 Co = 0 then u(x) = TT(X)2, and A(x) = TT(X), 30 that il Co ·0 then Cl '10.

Proof. Let us consider the first three derivatives with respect to y of the eq. (34)

tp'(x + y) = 1f"(Y) +T(X)[T'(y)A(x + y) +T(y)A'(x + y)],

<;>"(x + y) = tp"(y) + T(X)[T"(y)A(x + y) +2T'(y)A'(x + y) +T(y)A"(x + y)],

tp'" (x+y) = tp'" (y )+T(x) [T'" (y )A(x+y)+3T" (y )A' (x+y )+3T'(y )A" (x+y )+T(Y)A'" (x+y)].

Taking y = 0 and making use of the initial conditions for tp(x) and T(X), we obtain

tp'(X) = T(x)A(x),

If'''(x) = 1f'''(O) +2T(X)A'(x),

tp"'(x) = tp"'(O) + T(X)[T"'(O)A(x) + 3A"(x)].

Let If'k = <p(1:)(0) and T3 = T"'(O). From (43) and (44) we obtain

tp"(x) - tp2 A'(x)
tp' (x) = 2 A(x) ;

from (45) and (43) it follows that

tp"'(x) - tp3 T3A(X) + 3A"(x)
-

<p'(x) A(x)

Making use of the identity

A" =(A')'+(A')2
A A A

for the quantity <p'(x) = u(x), we obtain the following equation (see eq. (46), (47»:

(43)

(44)

(45)

(46)

(47)

u" - <;>3 1
--u- = Ta + 3('2

U'-V(2), 3 (U'-VJ2)2.
U +'4 u

12



This equation may be rewritten as follows:

4(u" - C;'3)U = 473U2 +6[uu" - u'(u' - C;'2)] +3(u' - <fJ2)2,

2uu" - 3(u'):2 + 473U:2 +43U + 3C;'~ = o.

Let

(48)

73 = C2, <P3 = Cl, 'P'J = Co·

The equation (48) admit the integrable factor u -4u ' and may be reduced to the equation

(49)

Integrating (49) and multiplying the result by u 3 we obtain eq. (40), where C3 is the
integration constant. Equation (42) follows from (46). Then from eq. (43) we obtain:

u'(x) = r'(x)A(x) + 7(x)A'(x).

I t follows from (44) that

7(x)A'(x) = u'(x) - Co
2

Making use of this fact, we obtain

'( )A( ) _ u'(x) + Co
7 X X - 2 .

Let us divide this eq. to eq.(43): 7(x)A(x) = u(x) we come to the equation (41).
Note that if Co = 0 equations (41 ),(42), and conditions 7(0) = 0, T'(O) = 1 imply

CI:2 Cl
u(x) = "27(X), A(x) = "2T(X),

and it follows, in particular, that Cl f:. 0 if Co = O. The Lemma is proved.

Consider the Weierstrass function p(x) with parameters 92 and 93. We have

Lemma 12. The general 30lution 0/ the equation (40) may be written in one 0/ the
jollowing equivalent /Orm3:

4
u(x) = -(p(x +0) - p(o»,

C3

2

u(x) = CI,p(X) + C02C
3t/J(x)2 + co'l/J'(x),

13
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where
1

t/J(x) = 
2

1
(52)

Here p(x) i" the WeierJtTaJJ function with parameterJ:

(53)

and

Proof. Formula (50) gives:

On the other hand,

Hence
16[4p(x +0)3 - 92P(X +0) - 93] =

43 [p(x + 0) - p(0)]3 + 43 cz[p(x + 0) - p(o)]Z + 8CIC3[P(X + er) - peer)] + c~c;.

Let us compare the coefficients of the terms of the same degree in p( x +0'). This shows
that formula (50) with parameters 92, 93 follows from (53). To deduce (51) from (50) one
makes use of the addition theorem for the p-function (cf., e.g., [4]).

therefore

(p(x + a) - p(O'))(p(x) - p(a))2 = -(p(x) +2p(O'))(p(x)2 - 2p(x)p(a) + p(O')2)+

1
4"(4p(X)3 - 9ZP(X) - 93 - 2p'(x)p'(O') + p'(a)2) =

( ) ( )
2 )3 92 ( 1 1" p' (a) 23pxpa -2p(a --PX)--93--p(x)p(a)+(--) =

4 4 2 2

1 1 p'(0')2
(3p(O')2 - 492 )(P(X) - p(o)) - 2P'(x)P'(o) + 2 .

14



Hence,

. 1 p'(x) , 3p(0)2 - t92 1 p'(O) 2 (54)
p(x +0) - p(o) = 2(p(x) _ p(0))2 P (0) + p(x) - p(o) + 2(p(x) - p(o)) .

This gives:

Formula (51) follows from eq.(54) on dividing by ~C3' The Lemma is proved.

Let
u.(x) = lim u(x), 1f1.(x) = lim t/J(x), P.(x) = lim p(x).

C3-0 ca-O C3-0

Corollary 13. 1/ C3 -+ 0, then the_ general ",olution 0/ eq. (40) tendJ to the function

( )
_ (cosh 2,jC2x - 1) sinh 2{§x

u. x - Cl (2,jC2)2 + Co 2,jC2 .

Pro0 f. By Lemma 12, the function p. (x) satisfies the equation

Therefore

(55)

Differentiating (56) with respect to x, one obtains

. t/J~(x) = 4C2t/J.(X) + 1,

1/J.(0) = 0,

1/J:(0) = o.

Therefore
./. ( ) = cosh 2\jC2x - 1
0/* _~ (2,jC2)2
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In view of (51), it follows that

u.(x) = CltP.(X) + cotP~(x).

The Corollary is proved.

Note that according to Lemma 11, if the functions ('P, T, A) satisfy equation (34) then
the function T(x) is determined uniquely by the equation

u'(x) + Co

u(x)
(57)

subject to the initial conditions T(O) = 0, T'(O) = 1, and the function A(x) is determined
by the equation (43):

A( ) = u(x)
x T(X)' (58)

Below the function 'P will be (informally) referred to as a solution of the equation (34).

Theorem 14. The general ~oltJ.tion 0/ the equation (94)

<p(x + y) = <p(x) + <p(y) + T(X)T(y)A(x + y)

i~ given by the function

4
<p(x) = -(((0) - ((x +a) - p(Q)x),

C3

<p(0) = <p'(0) = 0

where ((x) and p(x) are the Weier~tr~~ (-function and fP-function with the parameters 92
and 93 ( ~ee Lemma 12).

Proof. According to the Lemmas (11) and (12) it is sufficient to prove that auy function
<p(x) given by the formula (50) is a solution of equation (34). It is convenient to consider
two different cases.
Case 1. C3 = O.

In this case <P.(x) = fox u.(x)dx and hence, using the Corollary 13,we obtain

( )
_ sinh 2yC2x - 2yC2x cosh 2yC2x - 1

<p. x - Cl (2yC2)3 + Co (2yC2)2 .
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Using the elementary identity

we obtain

sinh 2JC2(x + y)

- sinh2JC2x + sinh2JC2y + 4sinhJC2xsinhJC2ysinhJC2(x + y),
cosh 2JC2(x + y) - 1

= (cosh2JC2x - 1) + (cosh2JC2y - 1) +4sinh JC2x sinh JC2y cosh JC2(x +y)

Hence
cp.(x +y) = <f'.(x) +<P.(y) + r.(x)r.(y)A.(x + y),

where

()
sinh JC2x

r. x = ~,

V C2

Cl
A.(x) ="2 sinhJC2x

JC2 + Co cosh JC2x.
C2

(60)

Case 2. Ca i:- O.
Then without any restriction we may take Ca = 2. According to Frobenius-Stickelberger
formula the following functions

a a
fex) = «(al_ - "2 - x) - p(o)x - ((al - 2")'

a a
g(y) = «(-al - - - y) - p(a)y + ((al + -),

2 2
h(z) = ((0 - z) - p(a)z - ((0).

are a solution of eq. (14).

Using the considered above reduction of the (14) to the eq.(32) we obtain

<f'(x) = -2h(-x) = 2(((0) - p(o)x - «(x + a»

(61)

(62)

(63)

that gives the solution of eq. (34). The theorem is proved.

Corollary 15. The general normalized ~olution 0/ eq. (9E) ü given by the /ormula3

4
<f'(x) = -(((0) - «(x +0) - p(a)x),

Ca

~ 2u(x)
(x) = Co - 2bau(x) + u'(x)'

where u(x) = <p'(x) = c~ (p(x + a) - p(o» and ba ü /ree parameter.

TJ(x) = <p(x) - <p'(x)~(x),

17
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,(x) = -cp'(X)~(X)2.

The proof follows from the theorem 14, formul~ (61) and Lemma 10. Let us remind
that at the proof of Lemma 10 we will give the explicit construction of the solution eq.
(32) on the solution of eq. (34).

So, it was proved already that if (f(x),g(y), h(z)) is tbe nondegenerate solution of eq.
(14) with additional conditions

f{x) # g{x), f{O) = g{O) = h(O) = h'(O) = O.

than it is necessary that

2
h(x) = -«((a - x) - p{a)x - (a)),

Ca

(65)

(66)

where Ca, Q' and the parameters 92,9a of the Weierstrass p-function should satisfy the
condition of the Lemma (12). Moreover, Ca # 0, because if Ca = 0 then, according to
Corollary 13, the function h{x) has no poles (see eq. (55). Then the functions

2 a a
f(x) = -«((al - - - x) - p(a)x - (al - - )),

Ca 2 2

2 a a
g(x) = -«((-al - - - x) - p(a)x + (al + - ),

Ca 2 2

(67)

(68)

where al is a free parameter, taken together with the function h(x) from formula (66) give
a solution of eq. (14).

Lemma 16. Let the function~ (!l(X),9l(X),hl{x») Jati~fy the equation (14) and the
initial condition~ under cOn3ideration. Then, if hl (x) = h(x) ü the function /rom formula
(66), then

fl(X) = slf(x) +S29(X),

9l(X) = tlf(x) + t2g(x),

(69)

(70)

where f(x) and g{x) are given by formula~ (67) and (68), and SI + 092 = 1, t l + t2 = 1.

Proof.
For the functions, given by formulas (67) and (68) we have:

2 0' a 0' a
~(x) = f(x) - g(x) = -[(al - - - x) + (al + - + x) - (al - -) - (al + - )]. (71)

Ca 2 2 2 2

Then

18



"() 2 ['( 0" ) '( 0"' ]~ x = - -p 0"1 - - - x - P 0"] + - + x)
C3 2 2

We have that if the quantities 0" and 0'] are sufficiently elose to the point x = 0, then
e'(0) =f 0, and the quantity ~"(O) gives the free parameter ba to construct the general
normalized solution of eq. (32). Therefore, in this ease the general solution of the equation
(32) has the form

<p(x) = -2h( -x), f7(x) + b]~(x), b-ze(x), ~(,(x) + b]~(x)2),

where h(x) is the funetion (66) l ~(x) = I( x) - g(x), and f7( x) = I(x)+g(x) for the funetions
(67) and (68), and ,(x) = -cp'(x)~(x)2.

Let us introduce now
I](x) + 9](X) I f7(x) + bl~(X),

I] (x) - g](x) = b2~(X),

we have
1 bl + ~

II(x) = 2"f7(x) + 2 ~(x) = sl/(x) +s2g(X),

1 b] - ~
g](x) = 2"f7(x) + 2 ~(x) = tl/(x) + t2g(x),

where

1 b] +~
8] = 2" + 2 '

The Lemma is proved.

1 b] +~
S2=----

2 2

Now we need just find the values of parameters 8] and t], for which the set of funetions
(I] (x), gl (x), h(x)) from the Lemma 16 gives the solution of eq. (14).

Let us introduee the notation

I"(x) g"(y) h"(z)
det(/,g,h) = f'(x) g'(y) h'(z)

111

and let us use the following formula (see [WW], p.458)

~ cl ((( ) (( ) (( )) = u(x + y + z)O'(x - y)O'(y - z)O'(z - x)
2 et x, Y l Z 0'3 ( X )0'3 (y )0'3 (z )

H the eonditions of the Lemma 16 are satisfied, we have
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81 t 1 det(f( x), f(y), h(z)) +82t2 det(g(x), g(y), h(z))

On the other hand,

c3 c3 0' 0'
: det(f(x),f(y),h(z)) = : det«((O'l- '2 -x), (0'1- 2" -V), (O'-z))

(72)

c~
=-

4

0'(20'1 )O'(y - X)O'( Z - Y + 0'1 - jO' )O'( X - Z + !O' - 0'1 )

0'3(0'1 - i - X)0'3(0'1 - i - y)O'3(0' - z) ,
(73)

c3
C 0' 0'

; det(g(x),g(y), h(z)) = ; det«(( -0'1 - '2 - x), (( -0'1 - '2 - V), (0' - z)

O'(2O'1)0'(Y - x)O'(Y - z + 0'1 + !O')O'(X - z + 0'1 + !O')

(13(0'1 + -r +X)O'3(O'1 + -r + y)0'3(O' - z)
(74)

From condition f( x) f g(x) we obtain that 0'(20'1) f O. Comparison of expressions
(73) and (74) shows that if 0'(20'1) f 0, then the determinant (72) is equal to zero if and
only if 81 t 1 = 82t2 = o.

So, we have proved our main result.
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