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Abstract

In the present paper we give the general nondegenerate solution of the functional equa-
tion
(f(=) + 9(v) + h(2))* = F(z) + G(y) + H(2),

z+y+2z=0,

which related to the exact factorized ground-state wave function for the quantum one-
dimensional problem of three different particles with pair interaction.



The purpose of the present paper is to give the general nondegenerate solution of the
functional equation

(f(z) +9(v) + h(2))* = F(=) + G(y) + H(2), 1)

r+y+2=0,

which related to the exact factorized ground-state wave function for the quantum one-
dimensional problem of three different particles with pair interaction. We obtain this
result as a consequence of a general analytic solution of the following functional equations:

_ _ =) =)
e(z +y) = ¢(z) + @(y) + 7(z)7(y) Az + y). (3)

Such equations are also interesting from mathematical point of view as new examples of
non-classical addition theorems.

1. Let us remind first that an analogous (but more simple) equation for the special
case of three identical particles was considered earlier by B. Sutherland [1] and F.Calogero
[2]. Namely, in the paper [1] the one-dimensional many-body problem of n identical
particles with pair interaction was considered, whose exact ground-state wave function
Yo(zy,22,...,T,) is factorized

‘1’0(31,12,...,:1:") = H 1lb(:l‘:j _‘Tk)'

i<k

It was shown that the logarithmic derivative of 1(z)
f(z) = ¥'(z) /(=)
should satisfy the functional equation
f(@)f(y) + f()f(2) + f(2)f(z) = F(z) + F(y) + F(2), (4)

z4+y+2z=0,

where

f(=2) =—-f(z), F(-z)=F(z).



In [1], partial solutions of equation (4) was also found.

The general solution of equation (4) was found in [2] (see also 3] for review of this and
related problems). This solution has the form

f(z) = a((z; g2,93) + B, (5)

F(z) = a*p(z; 92, 93), (6)
where ((z) and p(z) are the Weierstrass functions (see for instance [4]).

In the present paper we consider only the three-body problem, but in the general case
when all three particles are different from each other.

In this case the ground-state wave function has the form

Po(z1,22,73) = P1(z2 — z3)¥h2(z3 — 21 )¥3(z1 — 72) (7

and satisfies the Schrédinger equation
—A¥o + Uy = Eq¥o, | (8)
U =ui(z2 — z3) + u2(z3 — z1) + us(z1 — z2). (9)

Substituting ¥, from (7) into (8), we obtain
U5 'A% = U — Eo = 3(f{ (22 — 23) + f3(z3 = 21) + f3 (21 — 22))
—(fi(zz — z3) + fa(zs — 1) + fa(z1 — 72))?
+2(f1(z2 — z3) + fi(23 — 21) + filz1 — 22));
fi = ¥ /%;. (10)

Hence, for the potential energy U(z,,z2,23) to have the form of pair interactions (9),
the three functions

f(z) = h(z), 9(v) = fo(y), k(z) = fa(z) (11)
must satisfy the functional equation
(f(2) +9(v) + h(2))* = F(z) + G(y) + H(2),
z+y+2z=0. (12)

The following expression for the potential energies results from (10)—(12).
ui(z) = 3f%(z) + 2f'(z) — F(z) + &,
uy(z) = 3¢°(z) + 2¢'(z) - G(z) + &2, (13)
ug(z) = 3h%(z) + 2h'(z) — H(z) + ¢3.
€1 +€e2+€e3 =E



2. Let us consider the meromorphic solutions of the equation
(f(z) + 9(y) + h(2))* = F(z) + G(y) + H(2) (14)

z4+y+z=0

Definition. Let us call the solution of Eq. (14) nondegenerate, if each one of the
functions f(x), g(x) and h(x) have the pole in finite domain of complex x-plane.

The main result of this paper is the following

Theorem. The general nondegenerate solution of the equation (14) in the class of
meromorphic functions has the form

f(z) = af(z — a1;92,93) + Bz + 7, (15)

g(z) = af(z — az; 92,93) + Bz + 72. (16)

h(z) = a((z — a3; 92, 93) + Bz + 73. 17

F(z) = o’p(z — a1; 92, 93) + 2val(z — a1; g2, 93) + 7*. (18)

G(z) = o’ p(z — az; 92, 93) + 27a{(z — az; g2,93) + 7°. (19)

H(z) = o?p(z — a3; g2, 93) + 2va((z — a3; 92,93) + ¥°. (20)

where
= O,
a; +az + a3 (21)

M"+r+rvi=".

Proof . The proof of the theorem is divided on several steps.
Let us begin with

Lemma 1. The functions (f(z), 9(y), h(2)) satisfy equation (14) for the corresponding
functions (F(z),G(y), H(z)) if and only if these functions satisfy also the equation

'z} ¢"(y) h"(2)
fi(z) ¢'@) R(z)|=0 (22)
1 1 1



under condition: z +y+ z =0.

Proof. Let us apply the operator J_ - a% . %, where J_ = % - 3% to eq.(14). This
gives:

a% :2(f'() = (@) (f(2) +9(¥) + M=) = F'(z) - H'(2), (28)

S5 (@) + 90) + ha) +2f () - KNG () — KD = B, (24)

3—%% R"(2)(f'(z) — ¢'(¥)) + F"(2)(g' (v) — K'(2)) + ¢"(W)(K'(2) — f'(z)) = 0. (25)

Here we use the fact that J_ is the differentiation operator, and that 9_h'(z) =
0-h"(z) = 0.

Hence, if functions (f(z), g(y), h(z)) satisfy equation (14), then these functions satisfy
also equation (25), that can be obviously rewritten in the form (22).

Conversely, let the functions (f(z), g(y), h(2)) satisfy (22) and, consequently, (25). The
equation (25) may be rewritten as

8- [R"(2)(f() + 9(y) + A(2)) + (f'(z) — K'(N)(g'(v) — K'(2))] = 0;

then there is a function H,(z) satisfying the following equation:

R'(2)(f(2) + 9(y) + h(2)) + (f'(2) = B'(2))(¢'(v) — }'(2)) = Hr(2) (26)
Let us note that eq.(26) is equivalent to the equation

55 l7'E) = (@) + 9(0) + ha))] = Hao)

Therefore, there are functions Fi(z) and H2(z) such that Hi(z) = Hi(z), and
(f'(z) = B'(2))(f(=) + 9(v) + h(2)) = Fi(z) — Ha(2). (27)

On the other hand, equation (27) is equivalent to

a_ax(f(r) +9(y) + h(2))" = 2Fi(z) - Ha(2)),

i. e. there are functions F(z), G(y) and H(z) such that F'(z) = 2F(z), H'(z) = 2H,(z),
and

(f(z) + 9(v) + h(2))* = F(z) + G(y) + H(2).
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Thus Lemma 1 is proved.

Lemma 2. Equation (14) is invariant under the following transformations:
f(z) = fo+arz +azfasz + oy),

F(z) = Fy + asx + a3 F(asz + a1) + 2azcf(asz + ay),
9(¥) = go + a1y + azg(asy + a3).

G(y) — Go + asy + a;G(a3y + az) + 2a3¢9(asy + a2),
h(z) = ho + ayz + axh(azz + a3),

H(z) = Ho + a4z + a2 H(azz + a3) + 2a;ch(asz + a3),

where ag(k =1,...,4) and c are free parameters

fotgo+ho=c, Fo+Go+Hy=c% oay+az+a3=0. (28)

This Lemma is proved by a direct calculation .
Corollary 3. Taking corresponding values of the parameters «y,aq,a3,0ne can prove
that all the functions (f(z), g(y), h(2)), (F(z),G(y), H(z)) are regular at z =0,y =0,z =

0, respectively.

The proof follows from the fact that the set of poles of a meromorphic function of one
complex variable is discrete. Thus in what follows we may suppose that all the functions
are regular at z =0,y =0,z = 0.

Definition 4. Let us call the solution of equation (14) totally degenerate, if at least
one of functions f(z),g(x), and h(z) is linear.

The next Lemma describes all totally degenerate solutions of equation (14).

Lemma 5. Let (f(z),g9(y), h(2)), (F(z),G(y),H(2)) be a totally degenerate solution
of the equation (14).

Three cases are possible.
1. All three functions f(z),¢(y), h(z) are linear. Then

f(z) = fo+ fiz, g(y)=go+ a1y, h(z)=ho+ hz,
F(z)=Fo+ Fiz+ (fi —g1)(fi — h1)z?, G(y) = Go + Gry + (91 — )91 — h1)¥?,
H(z) = Hy + Hiz + (hy — g1)(hy — f1)2*
Here fo, f1, 90, 91, ho, b1 are free parameters.
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Let fo + go + ho = c. Then
F0+G0+Ho=62, F] =b+20f1, G1=b+2cg1, H1=b+2ch1
and b is a free parameter.

2. Two of the functions f(z),g¢(y), h(z) are linear. For example, it is g(y) = go +
@1y, h(z) = ho + hyz. Then f(z) is an arbitrary function, ¢{y) = go + ay, h{z) =
ho +az, G(y)=Gy+by, H(z)= Hy+ bz and

F(:C) = [go + ho — arT + f(I)]2 - (Go + Ho — b:z:)
Here go, ho,a, b,Go, Hy are free parameters.

3. Only one of the functions f(z),g(y), h(z) is linear. For example, h(z) = ho + h1z.
Then .

f(z) = fo+az +crexp(Az), g(y) = go +ay +c2exp(ly), h(z) = ho + az,

F(z) = Fy + bz + ¢; exp(Az)(2¢ + ¢; exp(Az)),
G(y) = Go + by + c2 exp(Ay)(2¢ + ¢z exp(Ay)),

H(z) = Hy + bz + 2¢1¢3 exp(—Az).
Here a, b, ¢, ¢y, c2, A are free parameters, and

fn+go+hn=c, F0+G0+HD=C2.
Proof.

Case 1. It follows from (22) that f(z),¢(y),h(z) are arbitrary linear functions. A
form of the functions F(z), G(y), H(z) can be reconstructed directly from (14), taking into
account the identity 2zy = 2% — 2% — 2.

Case 2. We obtain from (22)

f'(z)g1 —h1)=0

If f"(z) # 0, then g, = h; and f(z) is arbitrary. The form of the func-
tions F(z), G(y), H(z) can be reconstructed immediately.
Case 3. We get from (24):
2(f'(x) = M){g'(y) — 1) = H'(-z —y).
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If f'(z) and ¢'(y) are not constants, then according to the classical Cauchy-Pexider
result (6] (see also [7]) we obtain :

f'(z) — hy =& exp(Az), ¢'(y) — h1 = & exp(Az).
where ¢;,¢2 and A are free parameters.

Therefore

f(z) = fo+ hiz +crexp(Azr), g(y) = go + b1y + cz exp(Ay),

where ¢ = &x/A, k = 1,2. The form of the functions F(z), G(y), H(z) can be reconstructed
easily. The Lemma is proved.

So, further we can consider solutions of (14) which are not totally degenerate.

Lemma 6. On choosing the appropriate values of the parameters fy, go, ho, a1, Fo,Go
(see Lemma 2) we obtain

f(0) =9(0)=R(0) =0, H'(0)=0, F(0)=G(0). (29)

The proof is easy.

Lemma 7. An appropriate choice of the parameters ay and ay leads to the relation

f(z) # 9(=)

Proof. Suppose on the contrary that

flz +a1) — flar) = g9(z + az) — g(aa) (30)
for all a; and a2 in any neighbourhood of the point z = 0 . On differentiating (30), we
ebtain Oz +a) _ Of(z +an)

T (23] _ T s 4] o
oz = 3a1 - f (CI]),
i. e.

flz + 1) = f'(ea)z + fay).

in contradiction to the assumption about the nondegeneracy of the solution. The Lemma
is proved.

Hence, it is sufficient to find all solutions of eq. (1) which are not totally degenerate
and satisfy the following additional conditions:

f(=) #9(z),  f(0)=g(0) =h(0), H(0)=0, F(0)=G(0)=0.
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Then, using the transformations from Lemma 2 we obtain the general nondegenerate
solution. In what follows only the nondegenerate solutions of (14) satisfying the above
additional conditions will be considered.

Interchanging x and y in eq. (14), we obtain

(f(¥) +9(z) + h(2))* = F(y) + G(z) + H(2). (31)

Subtracting (31) from (14) we see that

[(f(2) = 9(2)) — (f(¥) — 9W)][(f(=) + 9(=)) + (f(y) + 9(¥)) + 2h(2)]
= (F(z) - G(=)) - (F(y) - G(v)) -

Hence,
= (2 _2(z) =)
¢(z +y) =n(z) +n(y) @) —Ey)’ (32)
where
o) = —2h(~z),

1(z) = f(z) + 9(z),

£(z) = f(z) —g(=),

7(z) = F(z) — G(=z),
and ¢(0) = ¢'(0) = n(0) = v(0) = £(0) = 0 and ¢"(z) # 0.

Definition 8. Let us call solution (p,n,£,v) of the equation (§2) normalized, if the
following initial conditions are satisfied:

¢0)=1, n'(0)=0.

Lemma 9. The map

(1, &,7) = (0,1 + b1€, bl ba(y + B1€2)), (33)

where by and by are parameters, by # 0, defines a group action. Each orbit of this group
contains one and only one normalized solution.

Proof. The first statement may be checked by a direct computation. To proof the
second statement, let us differentiate eq. (32) with respect to y. At the point y = 0 we
have:

(@) = 0+ T _ 1) 1)
o) =10+ L - 07,

9



Assuming ¢(z) is regular at £ = 0 and ¢"(z) # 0, it is easy to check that ¢'(0) # 0.

Applying the transformation (33) with by = (¢'(0))1, 5 = —»'(0)/€'(0) to the solution
(¢,7m,€,7), we obtain a normalized solution, and the Lemma is proved.

In what follows solutions are assumed to be normalized, unless the contrary is asserted.
Let us now consider the functional equation

w(z +y) = @(z) + o(y) + 7(z)r(v)Alz + v), (34)
p(0) =¢'(0)=7(0)=7"(0)=0, r'(0)=1

Lemma 10. For eny solution (p,n,£,v) of the eq. (92), there is a unique solution
(p,7,A) of the eq. (34) such that

o) = 7(x)
{(z) = @) ~ ber (@)’ (35)
n(z) = p(z) — ¢'(2)é(z), (36)
1(z) = —¢'(z)¢(2)?, (37)

where by = £"(0) is a free parameter.

Proof. Let (¢, 7, A) is some solution of the eq. (34). Then acting on (34) by the
operator 0_ = (& — 3%) we obtain

0=¢'(z) = ¢'(v) + (r'(2)7(y) — 7(2)r" (V) A= +v),

¢'(z)  ¢'(0) -

A+ = S =)

Hence, we transform the eq. (34) to the equation

= o(z )y ¢'(z) — #'(y)
e(z +y) = p(z) + ¢(y) + () (y)_r(x)r,(y) ) (39)
On the other hand,
T(z)(y) _ (=) 7(y) 1 _ _&(=)(y)

T(@)r'(W) = @r(y) 7@ ) (ZE —bs) - (G~ b)) — £

where the function {(z) may be expressed in terms of 7(z) by the formula (35) with a free
parameter b3.

10



Therefore,
o'(z) — o'(y)

ol +1) = o(2) + oly) + €00 Gy e

On substituting the expressions for n(z) and v(z) from (36) and (37) we obtain a
solution (p,7,£,7) of the eq. (32).

Let now (p,7n,£,7) be a solution of eq. (32). On substituting y = 0 in eq. (32) we
obtain
7(z)

wle) =n(2) = ¢y

i.e. v(z) = €(z)6(z), where 6(z) = n(z) — ¢(z), and our initial conditions ¢'(0) = 7'(0) =
0 = ¢(0) = n(0) are satisfied.

Hence, 4'(0) = 0, and from the formula for ¢'(z) obtained in the course of the proof of
Lemma 9 we have
71(z) = —¢'(2)¢*(2),

1(z) = ¢(z) - ¢'(z)é(2),

as asserted in (36) and (37). Let us note that formula (35) may be considered as the
differential equation for the function 7(z). Solving this equation at initial conditions
7(0) = 0,7'(0) = 1 we obtain the function 7(z), if, moreover, we take b; = ¢"(0) it will
satisfy the condition 7(0) = 0.

Substituting now the expressions for £(z),n(z),y(z) into eq. (32) we obtain eq. (39).

Let us apply the operator 0_ to the eq. (39); we obtain

¢'(z) —¥'(y) _
@ =) =

Thus it is shown that the functions ¢(z) and 7(z) determine the function A(z) given by
the expression (38). The Lemma is proved.

So it was shown, how it is possible to construct all the solutions of the eq. (32) using
the solutions of eq. (34).

Now we describe the general analytical solution of equation (34).

Lemma 11. Let (¢, 7, A) be a solution of equation (84). (Let us remind that ©(0) =
©'(0) = 7(0) = 7"(0) = 0 and 7'(0) = 1.) Then the function u(z) = ¢'(z) is a solution of
the differential equation

(1#')? = cau® + 4cou’ + 2 u + €2, (40)
u(0) =0, u'(0)=co.

11



The functions 7(z) and A(z) satisfy the following equations:

T(z) 1 v(z)+co
(z) 2 u(z) (41)
Az) 1 u'(z)—co
A(z) 2 u(z) (12)

If co = 0 then u(z) = L7(z)?, and A(z) = Z7(z), so that if co .=' 0 then c; #0.
Proof. Let us consider the first three derivatives with respect to y of the eq. (34)
¢'(z +y) = ¢'(y) + (@) WAz +v) + T(v)4' (= + )],
¢"(z +y) = ") + (@) W) A(z +y) + 2r' () A'(z + y) + 7(y) A" (= + y)],

¢"(z+y) = " (y)+7 ()" (v) Alz+y)+37" (v)A' (z+y)+37' (1) A" (z+y)+7 () A" (z+y)].

Taking y = 0 and making use of the initial conditions for ¢(z) and 7(z), we obtain

'(z) = 7(z)A(z), (43)
©"(z) = ¢"(0) + 27(z) A'(2), (44)
¢"(z) = "' (0) + 7(z)[7"(0)A(x) + 34" (2)]. (45)

Let o = ¢®(0) and 73 = 7"(0). From (43) and (44) we obtain

¢"(z) —p2 _ 9 ﬁ'_(_f_)_

P@ - Aa) (46)
from (45) and (43) it follows that
" (z) — s _ 13A(z) +34"(z)
@ Am (47)
Making use of the identity
2oy Gy

for the quantity ¢'(z) = u(z), we obtain the following equation (see eq. (46), (47)):
u" — 3 1 u'—py, 3 u-—gp,
u —-1'3+3(2 u )+4 ( u )

12



This equation may be rewritten as follows:
4(u" — p3)u = 4mau? + lun’ —u'(u' — @3] + 3(u' — p2)?,

2uu’ — 3(u')? + 4m3u? + dp3u + 32 = 0. (48)

Let
T3 =C2, P3=0C, P2=C¢C.

The equation (48) admit the integrable factor u™*u' and may be reduced to the equation
(W)Y = dea(u™) + 26, (w2 + (™). (49)

Integrating (49) and multiplying the result by u® we obtain eq. (40), where c3 is the
integration constant. Equation (42) follows from (46). Then from eq. (43) we obtain:

u'(z) = 7'(2)A(z) + 7(2)A'(z).

It follows from (44) that
r(z)A'(z) = YAT) "% (3:22— i

Making use of this fact, we obtain

u'(z) + ¢o

r@)A) = =5

Let us divide this eq. to eq.(43) : 7(z)A(z) = u(z) we come to the equation (41).
Note that if co = 0 equations (41),(42), and conditions 7(0) = 0,7'(0) = 1 imply
u(z) = S, Alx) = Fr(a),
2 2
and it follows, in particular, that ¢; # 0 if ¢ = 0. The Lemma is proved.

Consider the Weierstrass function p(z) with parameters g; and g3. We have

p'(z)? = 4p(z)® — g2p(z) — g3

Lemma 12. The general solution of the equation (40) may be written in one of the
following equivalent forms:

u(e) = =(p(z + o) — p(a), (59)

u(z) = c19¥(z) + i;st,b@f + co?'(2), (51)

13



where

1 1

()= ——/——— 52
@2 @ 1a (52)
Here p(z) is the Weidersirass function with parameters:

g =3(02p -2, g = B2y aan_(@ay (53)

4

‘and e CoCs
= — ! = —
p(O:‘) - 3 ) P (a) 4

Proof. Formula (50) gives:

(u!(2))* = 1—§l4p(x ) - gapl(z +a) = gal.

On the other hand,
(@) = eal = (pla-+a)-pla)]* +eal(p(o-+a)-p(a)]* +261 [ (pla-+a)—pla))] +

Hence
16[4p(z + a)’ — gap(z + @) — g3] =
Llp(z + a) ~ p(a))* + S elp(z + a) — p(a))? + Bercs[p(z + &) — p(a)] + cjes.
Let us compare the coefficients of the terms of the same degree in p(z + ). This shows

that formula (50) with parameters g;, g3 follows from (53). To deduce (51) from (50) one
makes use of the addition theorem for the p-function (cf., e.g., [4]).

? (1’) ')\

therefore
(p(z + @) — p(a))(p(z) — p(a))? = —(p(z) + 2p(a))(p()* — 2p(z)p(a) + p(a)?)+

1(46(2)° — 026(2) — 95 = 26/ ()¢ () + p'(a)?) =

p()

3p(2)p(a)? — 20(a)* ~ Lo(z) - 705 — 56/ ()¢ () + (2 =

(3p(a)® - :11'92)(5’7(3) — p(a)) - p "(z)p'(a) + —— p ( )2

14



Hence,

z d — ola) = 1 p'(z) o 3p(a)® — %92 1 p' () 2
This gives:
p'(a) = .c.‘g_“i, 3p(a)? — %92 _ 01863_

Formula (51) follows from eq.(54) on dividing by c;. The Lemma is proved.
Let
u (z) = im u(z), o.(z) = limO P(z), pJfz)= limo p(z).
cg— c3—

C3 —0

Corollary 13. If ¢ — 0, then the general solution of eq. (40) tends to the function

cosh2,/cor —1 sinh 2, /c;z
us(z) = c1( (2\/‘:—;)2 )+ CO%- (55)

Proof. By Lemma 12, the function p.(z) satisfies the equation
2¢9\2 2¢2\3 c2\? 2
1 2 _ 3 _ i} it} - == =
(@) = (e = 3(F2) (@) + () =4(p:@) - ) (pu() + 52).
Therefore

e =7 (ly - EOEE o) e (50)

Differentiating (56) with respect to z, one obtains

Pi(z) = deatpy(a) + 1,

pL(0) =0.

Therefore
cosh2,/czz — 1

(2 cz)*

"Ab*('?) =

15



In view of (51), it follows that

u.(z) = 19¥.(z) + cot,(z).

The Corollary is proved.

Note that according to Lemma 11, if the functions (¢, 7, A) satisfy equation (34) then
the function 7(z) is determined uniquely by the equation

u'(z) + co

u(z)

(57)

1
9

subject to the initial conditions 7(0) = 0,7'(0) = 1, and the function A(z) is determined
by the equation (43):

Az) = u(z) (58)

Below the function ¢ will be (informally) referred to as a solution of the equation (34).

Theorem 14. The general solution of the equation (94)

e(z+y) =o(z) +o(y) + T(z)7(y) Az + )

1s given by the function
o(z) = (@) = ¢(z + o) ~ pla)o)

#(0) = #'(0) = 0
where ((z) and p(z) are the Weierstrass (-function and p-function with the parameters g;
and g3 ( see Lemma 12).

Proof. According to the Lemmas (11) and (12) it is sufficient to prove that any function
©(z) given by the formula (50) is a solution of equation (34). It is convenient to consider
two different cases.

Case 1. ¢ =0.

pu(z) = lim ()

In this case p.(z) = [ u.(z)dz and hence, using the Corollary 13,we obtain

_ sinh 2,/coz — 2,/c;7 cosh2,/coz — 1
‘Pt(’:) =0 (2\/6)3 + ¢ (2‘/‘5)2 .
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Using the elementary identity
() 1) = (5 — 1) + (¥ — 1) + (eF — T )(e¥ — 7). (59)

we obtain

sinh 2 /c2(z + y)

= sinh2/c;z + sinh2,/cyy + 4sinh \/czz sinh \/cay sinh \/e2(z + y),
cosh2y/co(z +y) — 1

= (cosh2/czz — 1) + (cosh2\/czy — 1) + 4 sinh \/c;z sinh \/c2y cosh /c2(z + )

Hence
Po(z +9) = @u(@) + 0uly) + Te(2)7e(¥) A (= + 9),
where - -
T.(z) = Lﬁ, A(z) = % EI-E—\/? + ¢o cosh /c;z. (60)
Case 2. c3 # 0.

Then without any restriction we may take ¢z = 2. According to Frobenius-Stickelberger
formula the following functions

f(@) = ¢l = 5 — =) ~ pla)e = ((er = 3), (61)
9(v) = ((—a1 = 5 =) — p(a)y + ((aa + ), (62)
h(z) = ((a = 2) = p(@)z = ((a). (63)

are a solution of eq. (14).
Using the considered above reduction of the (14) to the eq.(32) we obtain
o(2) = —2h(~z) = 2(((a) - ple)z — (= + )
that gives the solution of eq. (34). The theorem is proved.

Corollary 15. The general normalized solution of eq. (82) is given by the formulas

p(z) = =(((e) = {(z + ) — pla)2)

_ 2u(z)
{e) = co — 2bzu(z) + u'(z)’

(64)

where u(z) = ¢'(z) = L(p(z + a) — p(a)) and by is free parameter.
n(z) = ¢(z) - ¢'(z)é(=),
17



1(z) = —¢'(2)E(2)".

The proof follows from the theorem 14, formula (61) and Lemma 10. Let us remind
that at the proof of Lemma 10 we will give the explicit construction of the solution eq.
(32) on the solution of eq. (34).

So, it was proved already that if (f(z), g(y), h(2)) is the nondegenerate solution of eq.
(14) with additional conditions

f(z) #9(z), f(0) = ¢(0) = h(0) = h'(0) = 0. (65)
than it is necessary that
ha) = —(((a - ) ~ pla)e - (@) (60)

where ¢3,a and the parameters g,,g3 of the Welerstrass p-function should satisfy the
condition of the Lemma (12). Moreover, ¢; # 0, because if ¢z = 0 then, according to
Corollary 13, the function h(z) has no poles (see eq. (55)). Then the functions

2 o a
f(z) = (o1 = 5 = 2) = ple)z = ((er — 7)), (67)
o(a) = (¢ = 5 =) = pla)z + G(an + ) (68)

where a is a free parameter, taken together with the function A(z) from formula (66) give
a solution of eq. (14).

Lemma 16. Let the functions (f1(z),g1(z), h1(z)) satisfy the equation (14) and the
initial conditions under consideration. Then, if hy(z) = h(z) is the function from formula

(66), then
fi(z) = s1f(x) + s29(x), (69)

91(z) = t1 f(z) + t29(), (70)
where f(z) and g(z) are given by formulas (67) and (68), and sy + s, =1,t; +t, = 1.

Proof.
For the functions, given by formulas (67) and (68) we have:

£() = £(2) = 9(2) = Z[o(on = 5 = 2) + ((ar + 5 +2) = lar = 5) = Coa + DL (1)

Then 0
€)= —lpler — 5 —2) = plas + 5 +2)),

18



a.

> + z))

2 ,
€'(x) = —[-pler — 5 = o) —p'(en +

We have that if the quantities a and «; are sufficiently close to the point ¢ = 0, then
€'(0) # 0, and the quantity £"(0) gives the free parameter b3 to construct the general
normalized solution of eq. (32). Therefore, in this case the general solution of the equation
(32) has the form

<l‘:'(‘f"-) = _2h(_3)1 77(3) + blE(x)s bgf(l'), 62(7(37) + b1€($)2)v

where h(z) is the function (66), £(z) = f(z)—g¢(z), and n(z) = f(z)+g¢(z) for the functions
(67) and (68), and y(z) = —¢'(z)&(z)?.

Let us introduce now

fi(z) + g1(z) = n(z) + bi€(z), |
fi(z) — g1(=) = ba€(x),

we have 1 b, + b,
fi(2) = 37(@) + 21 2E(@) = 51 () + s29(2),
1 by —
01(2) = 30(@) + 252E(@) = (z) + tag(e),
where |
b _ _
31=%+ I;bu7 32=l_b1;b23 t1=%+b12b23 t2=%—blzb2

The Lemma is proved.

Now we need just find the values of parameters s; and t,, for which the set of functions
(fi(z), g1(z), h(z)) from the Lemma 16 gives the solution of eq. (14).

Let us introduce the notation

'(z) ¢"(y) h"(2)
fi=) ¢'(y) H(2)
1 1 1

det(f, a, h) =

and let us use the following formula (see [WW], p.458)

1 qet(c(e ) = 2yt 2ol ~ylo(y — z)o(z — 2)
9 d t(C( )7 C(y)i C( )) 0,3(3,)0,3 (y)a,g(z)

If the conditions of the Lemma 16 are satisfied, we have

det(s1 f(z) + s29(z), t1f(y) +t29(y), h(z)) =

19



sity det(f(z), f(y), h(2)) + s2t2 det(g(z), 9(v), h(2)) (72)
On the other hand,

c3 c3 o a
S det(f(2), ), (o)) = Sdet(Clon = S =2, (o= S =), Clam2)

_Ci o(2a1)o(y —z)o(z —y+ a1 — Sa)o(z —z + 2o — )
4 ooy — § — z)o3(ay — § ~y)od(a —2)

= , (73)
S get(9(e),9(0), (=) = L det(((~en — 3 —2), C(-an— 5 1), ((a=2)

o(2ay)o(y —z)o(y — 24 oy + §a)o(z — 2+ a; + $a)
o3(ay + § +z)o3 (a1 + § +y)o(a ~ z)

(74)

c3
T4

From condition f(z) # ¢(z) we obtain that o(2a;) # 0. Comparison of expressions
(73) and (74) shows that if (2a;) # 0, then the determinant (72) is equal to zero if and
only if Sltl = Sgtz =0.

So, we have proved our main result.
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