A PROOF OF A CONJECTURE OF DEGTYAREV ON NON-TORUS PLANE SEXTICS

CHRISTOPHE EYRAL AND MUTSUO OKA

ABSTRACT. We show that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C)$ of the complement of an irreducible non–torus sextic C with the set of singularities $4\mathbf{A}_4$ or $4\mathbf{A}_4 \oplus \mathbf{A}_1$ is isomorphic to $\mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$, where \mathbb{D}_{10} is the dihedral group of order 10. This positively answers a conjecture by Degtyarev.

1. Introduction

A sextic F(X,Y,Z) = 0 in \mathbb{CP}^2 is said to be of torus type if there is an expression of the form $F(X,Y,Z) = F_2(X,Y,Z)^3 + F_3(X,Y,Z)^2$, where F_2 and F_3 are homogeneous polynomials of degree 2 and 3 respectively. A conjecture by the second author says that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C)$ of the complement of an irreducible sextic C with simple singularities and which is not of torus type is abelian. In [4] we checked this for a number of configurations of singularities, but early this year, Degtyarev [1] observed that this conjecture is false is general. Especially, Degtyarev proved that there exit 8 equisingular deformation families of irreducible non-torus sextics C with simple singularities such that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C)$ factors to the dihedral group \mathbb{D}_{10} , one family for each of the following sets of singularities: $4\mathbf{A}_4$, $4\mathbf{A}_4 \oplus \mathbf{A}_1$, $4\mathbf{A}_4 \oplus 2\mathbf{A}_1$, $4\mathbf{A}_4 \oplus \mathbf{A}_2$, $\mathbf{A}_9 \oplus 2\mathbf{A}_4$, $\mathbf{A}_9 \oplus 2\mathbf{A}_4 \oplus \mathbf{A}_1$, $\mathbf{A}_9 \oplus 2\mathbf{A}_4 \oplus \mathbf{A}_2$ and $2\mathbf{A}_9$. Furthermore, in the special case where the set of singularities is $4\mathbf{A}_4$, he conjectured that $\pi_1(\mathbb{CP}^2 \setminus C) \simeq \mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$ (cf. [1, Conjecture 1.2.1]). The aim of this paper is to prove this conjecture.

Hereafter, we use the term \mathbb{D}_{10} -sextic for an irreducible sextic $C \subset \mathbb{CP}^2$ with simple singularities such that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C)$ factors to \mathbb{D}_{10} (cf. [2]). By [1, 5, 8], a \mathbb{D}_{10} -sextic is not of torus type.

Theorem 1.1. If C is a \mathbb{D}_{10} -sextic with the set of singularities $4\mathbf{A}_4$ (respectively $4\mathbf{A}_4 \oplus \mathbf{A}_1$), then the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C)$ is isomorphic to $\mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$.

According to [1], there is only one equisingular deformation family of \mathbb{D}_{10} -sextics with the set of singularities $4\mathbf{A}_4$ (respectively $4\mathbf{A}_4 \oplus \mathbf{A}_1$). Therefore, to prove the theorem, it suffices to construct a \mathbb{D}_{10} -sextic C_1 with four \mathbf{A}_4 -singularities (respectively a \mathbb{D}_{10} -sextic C_2 with four \mathbf{A}_4 -singularities and one \mathbf{A}_1 -singularity) — notice that in [1] only the existence of \mathbb{D}_{10} -sextics is proved — and show the

²⁰⁰⁰ Mathematics Subject Classification. Primary: 14H30; Secondary: 14H20, 14H45, 14H50. Key words and phrases. Fundamental group; Irreducible non-torus plane sextic.

This research was supported by the Max-Planck Institut für Mathematik in Bonn.

¹We recall that a point P in a curve C is said to be an \mathbf{A}_n -singularity $(n \ge 1)$ if the germs (C, P) and $(\{x^2 + y^{n+1} = 0\}, O)$ are topologically equivalent as embedded germs.

isomorphism $\pi_1(\mathbb{CP}^2 \setminus C_i) \simeq \mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$ for i = 1 (respectively i = 2). This is done in sections 2 and 3 respectively.

Note that when this paper was being written, Degtyarev independently found the fundamental groups $\pi_1(\mathbb{CP}^2 \setminus C)$ for all \mathbb{D}_{10} -sextics C (cf. [2]). Let us also mention that in addition to the statement about \mathbb{D}_{10} -sextics with four \mathbf{A}_4 -singularities, Degtyarev's Conjecture 1.2.1 in [1] also says that $\pi_1(\mathbb{CP}^2 \setminus C) \simeq \mathbb{D}_{14} \times \mathbb{Z}/3\mathbb{Z}$ for any \mathbb{D}_{14} -sextic C with three \mathbf{A}_6 -singularities (a \mathbb{D}_{14} -sextic C is just an irreducible sextic with simple singularities such that $\pi_1(\mathbb{CP}^2 \setminus C)$ factors to the dihedral group \mathbb{D}_{14}). This second point of the conjecture is proved in [3].

2. An example of a \mathbb{D}_{10} -sextic with the set of singularities $4\mathbf{A}_4$ and the fundamental group of its complement

Let (X:Y:Z) be homogeneous coordinates on \mathbb{CP}^2 and (x,y) the affine coordinates defined by x:=X/Z and y:=Y/Z on $\mathbb{CP}^2\setminus\{Z=0\}$, as usual. We consider the following one–parameter family of curves $C(u):f(x,y,u)=0,\,u\in\mathbb{C}$, where f(x,y,u) is a polynomial given as $f(x,y,u)=g(x,y^2,u)$, with

$$g(x, y, u) := c_3 y^3 + c_2 y^2 + c_1 y + c_0,$$

and the coefficients c_3, \ldots, c_0 are defined as follows:

$$c_{3} := -64\,u^{3} + 96\,u^{2} + 16 + 16\,u^{4} - 64\,u,$$

$$c_{2} := 196\,u - 4\,x^{2}u^{6} - 36\,xu^{4} + 144\,xu^{3} - 226\,xu^{2} - 164\,x^{2}u + 12\,x^{2}u^{4} + 192\,u^{3} - 289\,u^{2} + 223\,x^{2}u^{2} - 40\,x + 16\,x^{2}u^{5} - 128\,x^{2}u^{3} - 52 + 160\,xu - 48\,u^{4} + 44\,x^{2},$$

$$c_{1} := 56 + 88\,x - 200\,u + 8\,x^{2}u^{6} + 72\,xu^{4} - 288\,xu^{3} + 454\,xu^{2} + 208\,x^{2}u + 2x^{2}u^{4} - 276\,x^{2}u^{2} + 152\,x^{2}u^{3} - 328\,xu - 192\,u^{3} + 48\,u^{4} + 290\,u^{2} - 64\,x^{2} - 72\,x^{3} + 40\,x^{4} + 264\,x^{3}u - 32\,x^{2}u^{5} + 16\,x^{4}u^{5} + 4\,x^{3}u^{6} + 166\,x^{4}u^{2} - 16\,x^{3}u^{5} - 338\,x^{3}u^{2} - 136\,x^{4}u + 184\,x^{3}u^{3} - 4\,x^{4}u^{6} - 80\,x^{4}u^{3} - 2\,x^{4}u^{4} - 24\,x^{3}u^{4},$$

$$c_{0} := -20 - 48\,x + 68\,u - x^{6}u^{6} + 144\,xu^{3} - 36\,x^{6}u + 3\,x^{4}u^{6} + 56\,x^{5}u^{3} + 52\,x^{2}u^{2} - 40\,x^{2}u - 120\,x^{5}u^{2} + 104\,x^{5}u - 44\,x^{4}u^{2} - 4\,x^{3}u^{6} - 2\,x^{6}u^{4} - 4\,x^{2}u^{6} + 2\,x^{5}u^{6} - 8\,x^{5}u^{5} + 298\,x^{3}u^{2} - 24\,x^{2}u^{3} - 240\,x^{3}u + 40\,x^{4}u + 18\,x^{3}u^{4} + 39\,x^{6}u^{2} + 16\,x^{4}u^{3} - 2\,x^{5}u^{4} - 14\,x^{2}u^{4} - 12\,x^{4}u^{5} + 4\,x^{6}u^{5} - 32\,x^{5} + 72\,x^{3} + 12\,x^{6} - 16\,x^{4} + 16\,x^{2} + 64\,u^{3} - 16\,u^{4} - 97\,u^{2} - 160\,x^{3}u^{3} + 16\,x^{2}u^{5} + 12\,x^{4}u^{4} - 228\,xu^{2} + 16\,x^{3}u^{5} - 16\,x^{6}u^{3} - 36\,xu^{4} + 168\,xu.$$

All the curves C(u) in that family are symmetric with respect to the x-axis. All of them have four A_4 -singularities located at $(0, \pm 1)$ and $(1, \pm 1)$, except the curves $C(\frac{9\pm\sqrt{33}}{6})$ which obtain, in addition, an A_1 -singularity at (-1,0), and the curve C(1) which is a non-reduced cubic (union of a smooth conic and a line). All the curves are irreducible except C(1). All of them are non-torus curves.

As a test curve with four A_4 -singularities, we take the curve $C_1 := C(11/5)$ defined by the equation $f_1(x, y) := f(x, y, 11/5) = 0$, where

$$a_0 \cdot f_1(x,y) := 518400 \, y^6 + (808511 \, x^2 - 1435150 \, x - 1555825) \, y^4 + \\ (259536 \, x^4 - 1580686 \, x^3 - 297122 \, x^2 + 2871550 \, x + 1556450) \, y^2 - \\ 45216 \, x^6 - 313968 \, x^5 + 503423 \, x^4 + 1177536 \, x^3 - 512014 \, x^2 - \\ 1436400 \, x - 519025.$$

with $a_0 := 15625$. In Fig. 1, we show its real plane section. (In the figures we do not respect the numerical scale.)

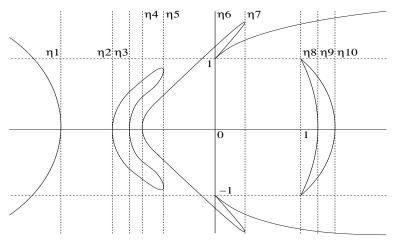


FIGURE 1. Real plane section of C_1

Theorem 2.1. $\pi_1(\mathbb{CP}^2 \setminus C_1) \simeq \mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$.

Proof. We use the classical Zariski-van Kampen theorem (cf. [10] and [9]) with the pencil given by the vertical lines L_{η} : $x = \eta$, $\eta \in \mathbb{C}$. We always take the point (0:1:0) as the base point for the fundamental groups. This point is nothing but the axis of the pencil, which is also the point at infinity of the lines L_{η} . Observe that it does not belong to C_1 .

The discriminant $\Delta_y(f_1)$ of f_1 as a polynomial in y, which describes the singular lines of the pencil (notice that the line at infinity Z=0 is not singular), is the polynomial in x given by

$$\Delta_y(f_1)(x) = b_0(x+1) x^{10} (408839 x^2 + 219050 x - 625)^2 (x-1)^{10} (45216 x^5 + 268752 x^4 - 772175 x^3 - 405361 x^2 + 917375 x + 519025),$$

where $b_0 \in \mathbb{Q} \setminus \{0\}$. This polynomial has exactly 10 distinct roots which are all real numbers: $\eta_1 = -7.9192...$, $\eta_2 = -1$, $\eta_3 = -0.7182...$, $\eta_4 = -0.7005...$, $\eta_5 = -0.5386...$, $\eta_6 = 0$, $\eta_7 = 0.0028...$, $\eta_8 = 1$, $\eta_9 = 1.6969...$, and $\eta_{10} = 1.6974...$ The singular lines of the pencil are the lines L_{η_i} ($1 \le i \le 10$) corresponding to these 10 roots. The lines L_{η_6} and L_{η_8} pass through the singular points of the curve. All the other singular lines are tangent to C_1 . See Fig. 1.

We consider the generic line $L_{\eta_6-\varepsilon}$ and choose generators ξ_1, \ldots, ξ_6 of the fundamental group $\pi_1(L_{\eta_6-\varepsilon} \setminus C_1)$ as in Fig. 2, where $\varepsilon > 0$ is small enough. The ξ_j 's are (the homotopy classes of) lassos oriented counter-clockwise (see [7] for the definition) around the intersection points of $L_{\eta_6-\varepsilon}$ with C_1 . In the figures, a lasso oriented counter-clockwise is always represented by a path ending with a bullet, as in Fig. 3.

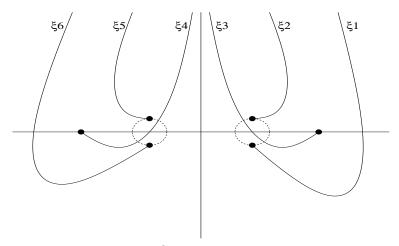


FIGURE 2. Generators at $x = \eta_6 - \varepsilon$

FIGURE 3. Lasso oriented counter-clockwise

The Zariski–van Kampen theorem says $\pi_1(\mathbb{CP}^2 \setminus C_1) \simeq \pi_1(L_{\eta_6-\varepsilon} \setminus C_1)/G_1$, where G_1 is the normal subgroup of $\pi_1(L_{\eta_6-\varepsilon}\setminus C_1)$ generated by the monodromy relations associated with the singular lines of the pencil. To determine these relations, we fix a system of generators $\sigma_1, \ldots, \sigma_{10}$ for the fundamental group $\pi_1(\mathbb{C} \setminus \{\eta_1, \ldots, \eta_{10}\})$ as follows: each σ_i is (the homotopy class of) a lasso oriented counter-clockwise around η_i with base point $\eta_6 - \varepsilon$. His tail is a union of real segments and halfcircles around the exceptional parameters η_i $(j \neq i)$ located between the base point $\eta_6 - \varepsilon$ and η_i . His head is a circle around η_i . For example, for i = 4, the lasso σ_4 is obtained when the variable x moves on the real axis from $x := \eta_6 - \varepsilon \to \eta_5 + \varepsilon$, makes half-turn counter-clockwise on the circle $|x-\eta_5|=\varepsilon$, moves on the real axis from $x := \eta_5 - \varepsilon \to \eta_4 + \varepsilon$, runs once counter clockwise on the circle $|x - \eta_4| = \varepsilon$, then comes back on the real axis from $x := \eta_4 + \varepsilon \to \eta_5 - \varepsilon$, makes half-turn clockwise on the circle $|x-\eta_5|=\varepsilon$, and moves on the real axis from $x:=\eta_5+\varepsilon\to\eta_6-\varepsilon$ (cf. Fig. 4). For i = 6, we get σ_6 just by moving x once counter-clockwise on the circle $|x - \eta_6| = \varepsilon$. The monodromy relations around the singular line L_{η_i} are obtained by moving the generic fibre $F \simeq L_{\eta_6-\varepsilon} \setminus C_1$ isotopically 'above' the loop σ_i so defined, and by identifying the generators ξ_j ($1 \leq j \leq 6$) with their own images by the terminal homeomorphism of this isotopy. For details see [10, 9]. Most of the remaining of the proof is to determine these relations.

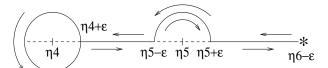


Figure 4. Lasso σ_4

Monodromy relations at $x = \eta_5$. In Fig. 5, we show how the generators at $x = \eta_6 - \varepsilon$ (cf. Fig. 2) are deformed when x moves on the real axis from $x := \eta_6 - \varepsilon \to \eta_5 + \varepsilon$. The line L_{η_5} is tangent to the curve at two distinct simple points $P_- = (\eta_5, -0.6132...)$ and $P_+ = (\eta_5, +0.6132...)$, and the intersection multiplicity of this line with the curve at these points is 2. Therefore, by the implicit function theorem, the germ (C_1, P_{\pm}) is given by

$$x - \eta_5 = \alpha_{\pm} \cdot (y \mp 0.6132...)^2 + \text{higher terms},$$

where $\alpha_{\pm} \neq 0$. So, when x runs once counter-clokwise on the circle $|x - \eta_5| = \varepsilon$, the variable y makes half-turn around $\pm 0.6132...$, and therefore the monodromy relations at $x = \eta_5$ are given by

(2.1)
$$\xi_6 = \xi_5 \text{ and } \xi_2 = \xi_1.$$

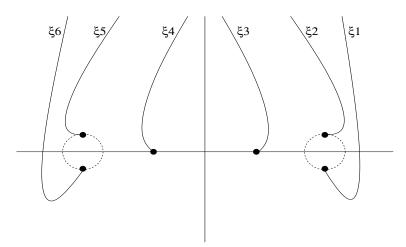


FIGURE 5. Generators at $x = \eta_5 + \varepsilon$

Monodromy relations at $x = \eta_4$. In Fig. 6, we show how the generators at $x = \eta_5 + \varepsilon$ (cf. Fig. 5) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_5| = \varepsilon$, then moves on the real axis from $x := \eta_5 - \varepsilon \to \eta_4 + \varepsilon$. The singular line L_{η_4} is tangent to the curve at one simple point P and the intersection

multiplicity of this line with the curve at P is 2. Then, as above, the monodromy relation at $x = \eta_4$ is simply given by

$$\xi_4 = \xi_3.$$

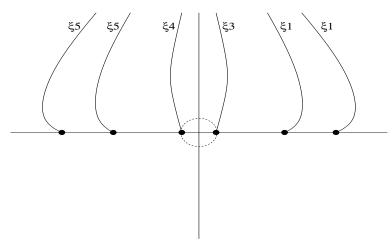


FIGURE 6. Generators at $x = \eta_4 + \varepsilon$

Monodromy relations at $x = \eta_3$. In Fig. 7, we show how the generators at $x = \eta_4 + \varepsilon$ (cf. Fig. 6) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_4| = \varepsilon$, then moves on the real axis from $x := \eta_4 - \varepsilon \to \eta_3 + \varepsilon$. The line L_{η_3} is also tangent to the curve at one simple point with intersection multiplicity 2, and the monodromy relation we are looking for is given by

$$\xi_5 = \xi_3 \xi_1 \xi_3^{-1}.$$

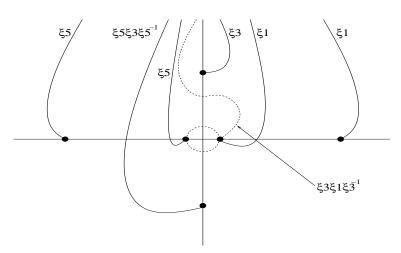


FIGURE 7. Generators at $x = \eta_3 + \varepsilon$

The monodromy relations around the singular lines L_{η_2} and L_{η_1} do not give any new information. The movement of the 6 complex roots of the equation

 $f_1(\eta, y) = 0$ for $\eta_1 \le \eta \le \eta_2$ can be chased easily using the real plane section of g(x, y, 11/5) = 0 (cf. Fig. 8). For details see [6].

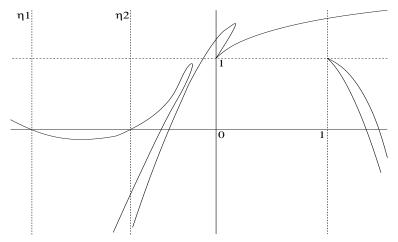


FIGURE 8. Real plane section of g(x, y, 11/5) = 0

Monodromy relations at $x = \eta_6$. By (2.1), (2.2) and (2.3), Fig. 2 (which shows the generators at $x = \eta_6 - \varepsilon$) is equivalent to Fig. 9, where

$$\zeta_1 := \xi_3 \xi_1 \cdot \xi_3 \cdot (\xi_3 \xi_1)^{-1}.$$

The line L_{η_6} passes through the singular points (0,1) and (0,-1) which are both \mathbf{A}_4 -singularities. Puiseux parametrizations of the curve at these points are given by

(2.4)
$$x = t^2$$
, $y = 1 + \frac{1}{2}t^2 + \frac{359}{200}t^4 + \frac{726}{125}\sqrt{22}t^5 + \text{higher terms}$

and

(2.5)
$$x = t^2$$
, $y = -1 - \frac{1}{2}t^2 - \frac{359}{200}t^4 - \frac{726}{125}\sqrt{22}t^5 + \text{higher terms}$

respectively. Equations (2.4) show that when $x = \varepsilon \exp(i\theta)$ moves once counter-clockwise on the circle $|x - \eta_6| = \varepsilon$, the topological behavior of the two points near 1 in Fig. 7 looks like the movement of two satellites (corresponding to $t = \sqrt{\varepsilon} \exp(i\nu)$, $\nu = \theta/2$, $\theta/2 + \pi$) accompanying a planet. The movement of the planet is described by the term $t^2/2$. It runs once counter-clockwise around 1 (this movement can be ignored in our case). The movement of the satellites around the planet is described by the term $\frac{726}{125}\sqrt{22}\,t^5$. Each of them makes (5/2)-turn counter-clockwise around the planet. Therefore the monodromy relation at $x = \eta_6$ that comes from the singular point (0, 1) is given by

$$(2.6) \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 = \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1}.$$

Similarly, equations (2.5) show that the monodromy relation at $x = \eta_6$ that comes from the singular point (0, -1) is also given by (2.6).

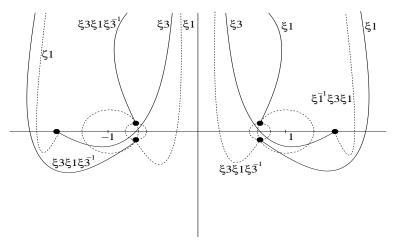


FIGURE 9. Generators at $x = \eta_6 - \varepsilon$

Monodromy relations at $x = \eta_7$. In Fig. 10, we show how the generators at $x = \eta_6 - \varepsilon$ (cf. Fig. 9) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_6| = \varepsilon$, then moves on the real axis from $x := \eta_6 + \varepsilon \to \eta_7 - \varepsilon$, where

$$\omega := \xi_3 \xi_1 \xi_3^{-1} \ (= \xi_5 = \xi_6).$$

The line L_{η_7} is tangent to C_1 at two simple points, in both cases with intersection multiplicity 2, and the monodromy relations at $x = \eta_7$ reduce to the following single relation:

$$\xi_1 \xi_3 \xi_1 = \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1}.$$

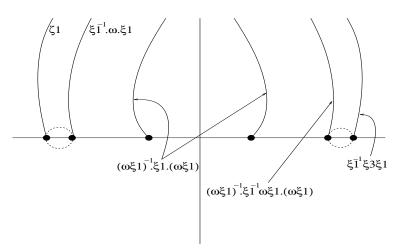


FIGURE 10. Generators at $x = \eta_7 - \varepsilon$

Monodromy relations at $x = \eta_8$. In Fig. 11, we show how the generators at $x = \eta_7 - \varepsilon$ (cf. Fig. 10) are deformed when x makes half-turn counter-clockwise

on the circle $|x - \eta_7| = \varepsilon$, then moves on the real axis from $x := \eta_7 + \varepsilon \to \eta_8 - \varepsilon$, where

$$\zeta_{1} := (\xi_{3}\xi_{1}) \cdot \xi_{3} \cdot (\xi_{3}\xi_{1})^{-1},
\zeta_{2} := \xi_{1}^{-1} \cdot \zeta_{1} \cdot \xi_{1},
\zeta_{3} := \xi_{1}^{-1} \cdot \omega \cdot \xi_{1},
\zeta_{4} := (\omega\xi_{1})^{-1} \cdot \xi_{1} \cdot (\omega\xi_{1}),
\zeta_{5} := (\omega\xi_{1})^{-1} \cdot \xi_{1}^{-1} \omega\xi_{1} \cdot (\omega\xi_{1}) = \xi_{1}^{-1}\xi_{3}\xi_{1} \text{ (by (2.7))},
\zeta_{6} := (\xi_{3}\xi_{1}\xi_{1})^{-1} \cdot \xi_{1} \cdot (\xi_{3}\xi_{1}\xi_{1}).$$

(To determine dotted lassos, we use the relation (2.7).) The singular line L_{η_8} passes through the singular points (1, 1) and (1, -1) which are both \mathbf{A}_4 -singularities, and Puiseux parametrizations of C_1 at these points are given by

$$x = 1 + t^2$$
, $y = 1 - \frac{61}{144}t^2 - \frac{7063}{13824}t^4 - \frac{125}{684288}\sqrt{22}t^5 + \text{higher terms}$

and

$$x = 1 + t^2$$
, $y = -1 + \frac{61}{144}t^2 + \frac{7063}{13824}t^4 + \frac{125}{684288}\sqrt{22}t^5 + \text{higher terms}$

respectively. As above, these equations show that the monodromy relation at $x = \eta_8$ is written as

$$(2.8) \xi_1 \xi_3 \xi_1 \xi_3 \xi_1 = \xi_3 \xi_1 \xi_3 \xi_1 \xi_3.$$

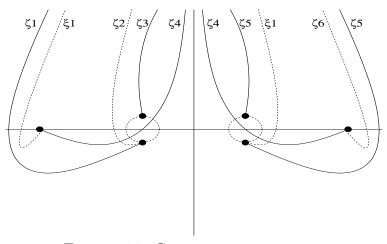


FIGURE 11. Generators at $x = \eta_8 - \varepsilon$

The monodromy relations around the singular lines L_{η_9} and $L_{\eta_{10}}$ do not give any new information (details are left to the reader).

Now, by the previous relations, it is easy to check that the vanishing relation at infinity $\xi_6\xi_5\xi_4\xi_3\xi_2\xi_1=e$, where e is the unit element, is written as

$$\xi_3 \xi_1 \xi_1 \cdot \xi_3 \xi_1 \xi_1 = e.$$

This relation, combined with (2.7), shows that (2.6) is equivalent to

$$(2.10) \xi_1 \xi_3 \xi_1 \cdot \xi_1 \xi_3 \xi_1 = e.$$

Finally, we have proved that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C_1)$ is presented by the generators ξ_1 and ξ_3 and the relations (2.7), (2.8), (2.9) and (2.10).

Simplification of the presentation. By (2.10), the relation (2.8) can be written as

$$\xi_3\xi_1 = \xi_1\xi_3\xi_1 \cdot \xi_3\xi_1\xi_3\xi_1\xi_3,$$

that is,

$$\xi_3 \xi_1 = (\xi_1 \xi_3)^4.$$

In addition, the relation (2.7) can be written as

$$\xi_1 \xi_3 \xi_1 \cdot \xi_3 \cdot (\xi_1 \xi_3 \xi_1)^{-1} = \xi_3 \xi_1 \xi_3^{-1}.$$

Combined with (2.10), this gives

$$\xi_1 \xi_3 \xi_1 \cdot \xi_3 \cdot (\xi_1 \xi_3 \xi_1) = \xi_3 \xi_1 \xi_3^{-1},$$

which is nothing but (2.11). Since the vanishing relation at infinity (2.9) is trivially equivalent to (2.10), it follows that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C_1)$ is presented by the generators ξ_1 and ξ_3 and the relations (2.10) and (2.11). Hence, after the change $a := \xi_1 \xi_3 \xi_1$ and $b := \xi_1 \xi_3$, the presentation is given by

$$\pi_1(\mathbb{CP}^2 \setminus C_1) \simeq \langle a, b \mid a^2 = e, aba = b^4 \rangle.$$

Now, we observe that $b^{15} = e$ and b^5 is in the centre of $\pi_1(\mathbb{CP}^2 \setminus C_1)$. Indeed, since $a^2 = e$, the relation $aba = b^4$ gives $b^{16} = ab^4a = b$, that is, $b^{15} = e$ as desired. To show that b^5 is in the centre of $\pi_1(\mathbb{CP}^2 \setminus C_1)$ we write:

$$b^{5}ab^{-5}a^{-1} = b \cdot b^{4} \cdot ab^{-5}a^{-1} = b \cdot aba \cdot ab^{-5}a^{-1} = ba \cdot b^{-4} \cdot a^{-1} = ba \cdot a^{-1}b^{-1}a^{-1} \cdot a^{-1} = e.$$

Hence $\pi_1(\mathbb{CP}^2 \setminus C_1)$ is also presented as:

$$\pi_{1}(\mathbb{CP}^{2} \setminus C_{1}) \simeq \langle a, b \mid a^{2} = e, aba = b^{4}, b^{15} = e, b^{5}a = ab^{5} \rangle$$

$$\simeq \langle a, b, c, d \mid a^{2} = b^{15} = e, aba = b^{4}, b^{5}a = ab^{5}, c = b^{6},$$

$$d = b^{5}, da = ad, db = bd, dc = cd \rangle$$

$$\simeq \langle a, b, c, d \mid a^{2} = b^{15} = e, aba = b^{4}, c = b^{6}, d = b^{5},$$

$$b = cd^{-1}, da = ad, db = bd, dc = cd \rangle$$

$$\simeq \langle a, c, d \mid a^{2} = c^{5} = d^{3} = e, acd^{-1}a = c^{4}d^{-1}, da = ad, dc = cd \rangle$$

$$\simeq \langle a, c, d \mid a^{2} = c^{5} = d^{3} = e, aca = c^{4}, da = ad, dc = cd \rangle$$

$$\simeq \mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}.$$

This completes the proof of Theorem 2.1.

3. An example of a \mathbb{D}_{10} -sextic with the set of singularities $4\mathbf{A}_4\oplus\mathbf{A}_1$ and the fundamental group of its complement

In this section, we consider the curve $C_2 := C(\frac{9+\sqrt{33}}{6})$ defined by the equation $f_2(x,y) := f(x,y,\frac{9+\sqrt{33}}{6}) = 0$, where

$$d_0 \cdot f_2(x,y) := 3867 - 6 x^3 y^2 \sqrt{33} + 6480 x + 54 y^2 x \sqrt{33} + 219 x^2 y^4 \sqrt{33} - 933 x^4 \sqrt{33} + 960 x^3 \sqrt{33} - 405 \sqrt{33} - 9270 y^2 + 2896 x^5 + 3723 x^4 - 8000 x^3 - 4838 x^2 - 1376 x^6 - 432 x^5 \sqrt{33} + 810 y^2 \sqrt{33} + 1146 x^2 \sqrt{33} - 432 x \sqrt{33} + 288 x^6 \sqrt{33} - 1770 x^2 y^2 \sqrt{33} + 6939 y^4 - 1536 y^6 + 10102 x^2 y^2 - 8298 y^2 x - 3056 x^4 y^2 - 405 y^4 \sqrt{33} - 2933 x^2 y^4 + 1818 y^4 x + 3482 x^3 y^2 + 528 x^4 y^2 \sqrt{33} + 378 y^4 x \sqrt{33},$$

with $d_0 := (3867 - 405\sqrt{33})/(-\frac{677}{18} - \frac{109}{18}\sqrt{33})$ (cf. section 2). We recall that this curve has four \mathbf{A}_4 -singularities located at $(0, \pm 1)$ and $(1, \pm 1)$, and one \mathbf{A}_1 -singularity situated at (-1, 0). In Fig. 12, we show its real plane section. Near the singular point (-1, 0), the equation of C_2 has the following form:

$$\frac{4}{9}\left(4\sqrt{33}+39\right)(x+1)^2 + \left(\frac{8}{3} + \frac{8}{9}\sqrt{33}\right)y^2 + \text{higher terms} = 0.$$

As the leading term $\frac{4}{9}(4\sqrt{33}+39)(x+1)^2+(\frac{8}{3}+\frac{8}{9}\sqrt{33})y^2$ has no real factorization, the point (-1,0) is an isolated point of the real plane section of the curve.

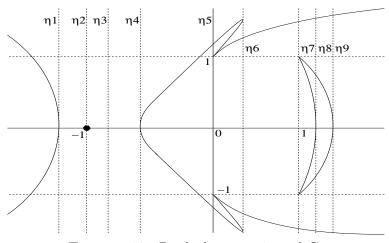


FIGURE 12. Real plane section of C_2

Theorem 3.1. $\pi_1(\mathbb{CP}^2 \setminus C_2) \simeq \mathbb{D}_{10} \times \mathbb{Z}/3\mathbb{Z}$.

Proof. We use again the Zariski-van Kampen theorem with the pencil given by the vertical lines L_{η} : $x = \eta$, $\eta \in \mathbb{C}$. Observe that the axis of the pencil (0:1:0) does not belong to C_2 . The discriminant $\Delta_y(f_2)$ of f_2 as a polynomial in y is the

polynomial in x given by

$$\Delta_y(f_2)(x) = e_0 (6592 x^4 - 14128 x^3 + 1872 x^3 \sqrt{33} - 7589 x^2 - 5397 x^2 \sqrt{33} + 14586 x + 1242 x \sqrt{33} + 11499 + 4347 \sqrt{33}) (x+1)^2 (x-1)^{10} x^{10} (16069 x^2 + 10680 x + 774 x \sqrt{33} - 10917 + 1890 \sqrt{33})^2,$$

where $e_0 \in \mathbb{R} \setminus \{0\}$. This polynomial has exactly 9 roots which are all real numbers: $\eta_1 = -2.2525...$, $\eta_2 = -1$, $\eta_3 = -0.9452...$, $\eta_4 = -0.7814...$, $\eta_5 = 0$, $\eta_6 = 0.0039...$, $\eta_7 = 1$, $\eta_8 = 1.7717...$, and $\eta_9 = 1.7740...$ The singular lines of the pencil are the lines L_{η_i} ($1 \le i \le 9$) corresponding to these 9 roots (notice that the line at infinity is not singular). The lines L_{η_i} , for i = 2, 5, 7, pass through the singular points of the curve. All the other singular lines are tangent to C_2 . See Fig. 12. The line L_{η_3} intersects the curve at 4 distinct non-real points. It is tangent to C_2 at $(\eta_3, \pm 0.2270...i)$ and the intersection multiplicity of L_{η_3} with C_2 at these two points is 2.

We consider the generic line $L_{\eta_5-\varepsilon}$ and choose generators ξ_1, \ldots, ξ_6 of the fundamental group $\pi_1(L_{\eta_5-\varepsilon} \setminus C_2)$ as in Fig. 13. The Zariski–van Kampen theorem says that $\pi_1(\mathbb{CP}^2 \setminus C_2) \simeq \pi_1(L_{\eta_5-\varepsilon} \setminus C_2)/G_2$, where G_2 is the normal subgroup of $\pi_1(L_{\eta_5-\varepsilon} \setminus C_2)$ generated by the monodromy relations around the singular lines L_{η_i} $(1 \le i \le 9)$. The latter are given as follows.

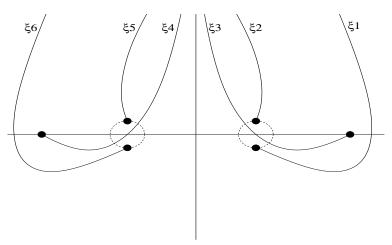


FIGURE 13. Generators at $x = \eta_5 - \varepsilon$

Monodromy relations at $x = \eta_4$. In Fig. 14, we show how the generators at $x = \eta_5 - \varepsilon$ (cf. Fig. 13) are deformed when x moves on the real axis from $x := \eta_5 - \varepsilon \to \eta_4 + \varepsilon$. The line L_{η_4} is tangent to the curve at one simple point with intersection multiplicity 2. Therefore, as above, the monodromy relation around this line is given by

$$\xi_4 = \xi_3.$$

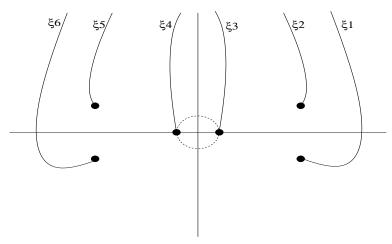


FIGURE 14. Generators at $x = \eta_4 + \varepsilon$

Monodromy relations at $x = \eta_3$. In Fig. 15, we show how the generators at $x = \eta_4 + \varepsilon$ (cf. Fig. 14) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_4| = \varepsilon$, then moves on the real axis from $x := \eta_4 - \varepsilon \to \eta_3 + \varepsilon$. The singular line L_{η_3} is tangent to C_2 at two non-real simple points, in both cases with intersection multiplicity 2, and therefore the monodromy relations we are looking for are given by

$$\xi_5 = \xi_3 \xi_2 \xi_3^{-1}$$
 and $\xi_6 = (\xi_5 \xi_3 \xi_2) \cdot \xi_1 \cdot (\xi_5 \xi_3 \xi_2)^{-1}$.

Equivalently,

(3.2)
$$\xi_5 = \xi_3 \xi_2 \xi_3^{-1} \text{ and } \xi_6 = (\xi_3 \xi_2 \xi_2) \cdot \xi_1 \cdot (\xi_3 \xi_2 \xi_2)^{-1}.$$

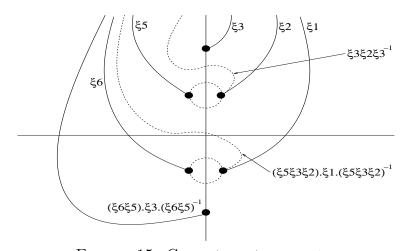


FIGURE 15. Generators at $x = \eta_3 + \varepsilon$

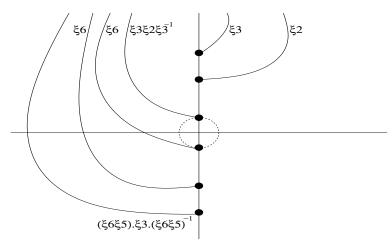


FIGURE 16. Generators at $x = \eta_2 + \varepsilon$

Monodromy relations at $x = \eta_2$. In Fig. 16, we show how the generators at $x = \eta_3 + \varepsilon$ (cf. Fig. 15) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_3| = \varepsilon$, then moves on the real axis from $x := \eta_3 - \varepsilon \to \eta_2 + \varepsilon$. The line L_{η_2} passes throuh the singular point (-1,0) which is an \mathbf{A}_1 -singularity. At this point, the curve has two branches K_1 and K_2 given by

$$K_1:$$
 $x = -1 + \frac{1}{331}\sqrt{3310 - 5958\sqrt{33}}y + \text{higher terms},$ $K_2:$ $x = -1 - \frac{1}{331}\sqrt{3310 - 5958\sqrt{33}}y + \text{higher terms}.$

These equations show up that when x runs once counter-clockwise on the circle $|x - \eta_2| = \varepsilon$, the points near the origin in Fig. 16 runs once counter-clockwise around it. So the monodromy relation at $x = \eta_2$ is given by

$$\xi_3 \xi_2 \xi_3^{-1} = \xi_6 \cdot \xi_3 \xi_2 \xi_3^{-1} \cdot \xi_6^{-1},$$

which can also be written, by (3.2), as

$$\xi_2 \xi_1 = \xi_1 \xi_2.$$

Monodromy relations at $x = \eta_1$. In Fig. 17, we show how the generators at $x = \eta_2 + \varepsilon$ (cf. Fig. 16) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_2| = \varepsilon$, then moves on the real axis from $x := \eta_2 - \varepsilon \to \eta_1 + \varepsilon$. The line L_{η_1} is tangent to C_2 at one simple point, with intersection multiplicity 2, and the monodromy relation at $x = \eta_1$ is given by

$$(\xi_3\xi_2)\cdot\xi_1\cdot(\xi_3\xi_2)^{-1}=\xi_3\xi_2\xi_3^{-1}$$

that is,

$$\xi_1 = \xi_2.$$

In particular, by (3.2), it implies

(3.4)
$$\xi_5 = \xi_6.$$

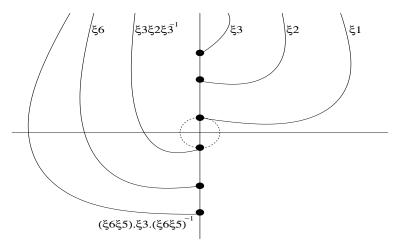


FIGURE 17. Generators at $x = \eta_1 + \varepsilon$

Monodromy relations at $x = \eta_5$. By (3.1), (3.2), (3.3) and (3.4), Fig. 13 (which gives the generators at $x = \eta_5 - \varepsilon$) is equivalent to Fig. 18, where

$$\omega := \xi_3 \xi_1 \xi_3^{-1} \ (= \xi_5 = \xi_6).$$

The line L_{η_5} passes through the singular points (0,1) and (0,-1) which are both \mathbf{A}_4 -singularities. Puiseux parametrizations of C_2 at these points are given by

$$x = t^2$$
, $y = 1 + \frac{1}{2}t^2 + \beta_4 t^4 + \beta_5 t^5 + \text{higher terms}$

and

$$x = t^2$$
, $y = -1 - \frac{1}{2}t^2 - \beta_4 t^4 - \beta_5 t^5 + \text{higher terms}$

respectively, where $\beta_4, \beta_5 \in \mathbb{R} \setminus \{0\}$. We deduce that the monodromy relation at $x = \eta_5$ is given by

$$(3.5) \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 = \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1}.$$

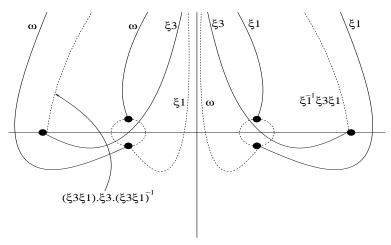


Figure 18. Generators at $x = \eta_5 - \varepsilon$

Monodromy relations at $x = \eta_6$. In Fig. 19, we show how the generators at $x = \eta_5 - \varepsilon$ (cf. Fig. 18) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_5| = \varepsilon$, then moves on the real axis from $x := \eta_5 + \varepsilon \to \eta_6 - \varepsilon$, where

$$\zeta_{1} := \xi_{1}^{-1} \omega \xi_{1},
\zeta_{2} := (\omega \xi_{1})^{-1} \cdot \xi_{1} \cdot (\omega \xi_{1}),
\zeta_{3} := (\omega \xi_{1})^{-1} \cdot \xi_{1}^{-1} \omega \xi_{1} \cdot (\omega \xi_{1}).$$

The line L_{η_6} is tangent to the curve at two simple points, in both cases with intersection multiplicity 2. So, once more, the monodromy relation around this tangent line is simply given by

(3.6)
$$\xi_1 \xi_3 \xi_1 = \xi_3 \xi_1 \xi_3^{-1} \cdot \xi_1 \cdot \xi_3 \xi_1 \xi_3^{-1}.$$

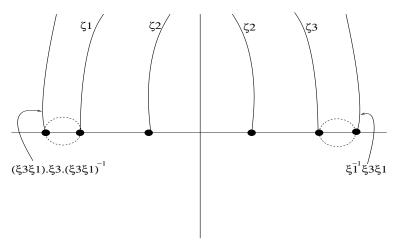


FIGURE 19. Generators at $x = \eta_6 - \varepsilon$

Monodromy relations at $x = \eta_7$. In Fig. 20, we show how the generators at $x = \eta_6 - \varepsilon$ (cf. Fig. 19) are deformed when x makes half-turn counter-clockwise on the circle $|x - \eta_6| = \varepsilon$, then moves on the real axis from $x := \eta_6 + \varepsilon \to \eta_7 - \varepsilon$ (use the relation (3.6) to determine all the lassos). The line L_{η_7} passes through the singular points (1, 1) and (1, -1) which are both \mathbf{A}_4 -singularities, and Puiseux parametrizations of the curve at these points are given by

$$x = 1 + t^2$$
, $y = 1 + \gamma_2 t^2 + \gamma_4 t^4 + \gamma_5 t^5 + \text{higher terms}$

and

$$x = 1 + t^2$$
, $y = -1 - \gamma_2 t^2 - \gamma_4 t^4 - \gamma_5 t^5 + \text{higher terms}$

respectively, where $\gamma_2, \gamma_4, \gamma_5 \in \mathbb{R} \setminus \{0\}$. Hence the monodromy relation at $x = \eta_7$ is given by

$$\xi_3 \xi_1 \xi_3 \xi_1 \xi_3 = \xi_1 \xi_3 \xi_1 \xi_3 \xi_1.$$

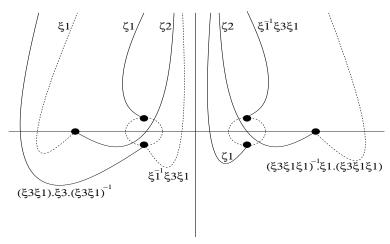


FIGURE 20. Generators at $x = \eta_7 - \varepsilon$

The monodromy relations around the singular lines L_{η_8} and L_{η_9} do not give any new information (details are left to the reader).

Now, by the previous relations, it is easy to check that the vanishing relation at infinity is written as

$$\xi_3 \xi_1 \xi_1 \cdot \xi_3 \xi_1 \xi_1 = e.$$

This relation, combined with (3.6), shows that (3.5) is equivalent to

$$\xi_1 \xi_3 \xi_1 \cdot \xi_1 \xi_3 \xi_1 = e.$$

Finally, we have proved that the fundamental group $\pi_1(\mathbb{CP}^2 \setminus C_2)$ is presented by the generators ξ_1 and ξ_3 and the relations (3.6), (3.7), (3.8) and (3.9). We conclude exactly as in section 2.

References

- A. Degtyarev, Oka's conjecture on irreducible plane sextics, arXiv:math.AG/0701671v1 24 Jan 2007.
- 2. A. Degtyarev, On irreducible sextics with non-abelian fundamental group, this volume.
- 3. A. Degtyarev and M. Oka, A plane sextic with finite fundamental group, this volume.
- 4. C. Eyral and M. Oka, On the fundamental groups of the complements of plane singular sextics, J. Math. Soc. Japan 57 (2005) 37–54.
- 5. D. T. Pho, Classification of singularities on torus curves of type (2,3), Kodai Math. J. **24** (2001) 259–284.
- M. Oka, Symmetric plane curves with nodes and cups, J. Math. Soc. Japan 44 (1992) 375–414.
- M. Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo 3 (1996) 399–443.
- 8. M. Oka and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math. 25 (2) (2002) 399–433.
- 9. E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933) 255–260.
- 10. O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. **51** (1929) 305–328.

 $\begin{tabular}{ll} Max-Planck Institut f\"{u}r Mathematik, Vivatsgasse 7, 53111 Bonn, Germany $E-mail\ address: eyralchr@yahoo.com \end{tabular}$

Department of Mathematics, Tokyo University of Science, 26 Wakamiya–cho, Shinjuku–ku, Tokyo 162–8601, Japan

E-mail address: oka@rs.kagu.tus.ac.jp