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RATIONAL MORAVA E-THEORY AND DS°

NEIL P. STRICKLAND AND PAUL R. TURNER

1. INTRODUCTION

The extended-power spectrum DSP has two coproducts and two products, which interact in an intricate
way. Given an H, ring spectrum E, the resulting algebraic structure on E* DS? gives a framework in which
to encode information about power operations. (However, we will not study power operations in this paper).

Fix a prime p and an integer n > 0. We shall take £ to be a suitable completed and extended version of
E(n). To be more precise, we let W be the Witt ring of Fp~, and consider the following graded ring:

E* = Wluy, ... up—1fu,u™']

The generators uy have degree 0, and u has degree —2. We take ug = p and u, = 1 and uy = 0 for

&k > n. There is a map BP* — E* sending v to uP" =ty Using this, we define a functor from spectra to
E,-modules by

E‘(X) = F, @pp, BP-(X).

The BP*-module E* 13 Landweber exact, so this functor is 2 homology theory, which we shall call Morava
E-theory. It is represented by a spectrum which we shall also call E. It is known (by unpublished work of
Miller and Hopkins) that E is an E ring spectrum (but we shall not use this fact).

In the present work, we discuss the ring L{DS?) obtained from E°(DS%) by making a certain algebraic
extension and inverting p. Let A be the group (Qp/Zp)", and A* = Hom(A,Qp/Z,) = Zj its dual. Write
B for the Burnside semiring of A", in other words the semiring of isomorphism classes of finite sets with an
action of A*. Write F(B, L) for the set of functions from B to L. This has two coproducts and two products,
as follows:

¥.NX,Y) = f(Xuy)
@ N)XY) = f(XxY)

(fxa)(X) = D [V(2)
xX=YuzZ
(fog)(X) = J(X)g(X)

Our central result is to give an isomorphism of L{DS?) with F(BB, L), and show that this respects all structure
in sight.

This result can be seen as an introduction (as well as technical input) to the more delicate integral analysis
of E®(DS%) and power operations in E-theory as studied by Mike Hopkins, Matthew Ando and the first
author. The slogan is that in going from L(X) to E°{X) one has to replace the discrete group A by the
formal group associated to E°(CP®).

In the final section, we show how the same ideas give information about L(]],, BG Ly (k)) (where k is a
finite field) and E°(]],, BU(m)).

The motivation for this paper, as well a number of ideas used here, are due to Mike Hopkins.
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2. THE EXTENDED POWER FUNCTOR

We shall work in the category of spectra § = SR defined in {4]. Write h§ for the associaled homotopy
category, and W for the category of spectra X such that X is homotopy equivalent to a CW spectrum.
Recall from [4] that there is an extended power funcior Dy : § — & defined by

Di(X) = ESyxg, X

(where X(*) is the k-fold external smash power). We also write
D(X) = \/ Dm(X)

m>0

The basic properties of this functor are mostly stated in [1] and proved in [4]. It is a continuous functor,
and it preserves W (see [4, prop. VI.5.2 and following remarks]).
There are fairly obvious maps

Dk(X A Y) — Dk(J() A Dk(Y)
V' De(X)AD(Y) = Du(X VY).
k+i=m
These assemble to give two maps

D(X AY) = D(X) A D(Y)

D(X) AD(Y) = D(X VY).

The latter is an isomorphism [1, Theorem I1.1.1].
If X is a space, then [1, Corollary [.2.2] states that

DyE®X = Z°((ETk)4 As, X)),
Suppose that W is a real vector bundle over X with Thom spectrum X" . Write V for the Ex-equivariant

bundle over EX; corresponding to the usual representation of £ on R¥. Then by [4, Section 1X.5], we see
that

Di(X"™) = (EXy xg, X*)VOu "
Note that the stable pinch map A: X — X V X gives rise to a map

Do (A
D(X4) 228, DXy VXY =\ Da(Xe) A Di(Xy)

m=k+i{
In particular, we have a component
£9(ELm Xz, X™)4 = E2((EZy x3, X*) x (B xx, X))+

If we let £, ; be the evident copy of £ X L; in E,,, then this can be identified [1, Theorem II1.1.5] with the
transfer associated to the covering

Em/zk’J -3 EEm sz', X™ — EEm XEm xm
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3. THE CATEGORY OF FINITE SETS

In this section, we discuss a different picture of DS?, as the classifying space of a category. We would
like to consider the category of all finite sets and bijective maps, but technical difliculties arise because this
is not small. One way out is to consider the full subcategory Co consisting of the sets n = {0,1,...,n—1}.
Another way, which has some technical advantages, is to consider hereditarily finite sets. We define V; = @
and

Vot1 = Vo U power set of V,
C=Ve=JVa.

Then C is countable, and is equivalent to the category of all finite sets. It is also closed under products and
coproducts, as defined in axiomatic set theory. Of course, Cp is equivalent to C.

Let BC be the nerve of C. This is homotopy equivalent to BCp = [];5o BEx, from which it follows easily
that - :

DS® = £*°B(C,
We define several functors and maps as follows (the last of them being the diagonal):
u : ¢ — ¢ o=B8BU
x : € — € pu=Bx

A : € —= (C* §=BA.
The map & is weakly equivalent to a finite covering. To make this precise, consider the category
C={X,Y)|YCXEeC(}
We will often write a typical object of C' as (Y C X). The functor U: C2 — C factors as
CxCEHCSHC
k(X,Y)=(Y CXUY) Y CX)=X.

Note that « is an equivalence and that Bw: BC' — BC is a covering space (with 2" sheets over the n’th
component of BC). In fact, Br is equivalent to the coproduct over k and [ of the maps BEy x BE; — BXy .
We therefore get a stable transfer map (Br)': £°BC; — £®°BC) . Write

8 = (BU)' = (Br)~' o (Bm)': DS® = E®BCy — £°BCZ = DS® A DS°.

Some of our maps can also be described in terms of the total extended power functor D. If we identify

DS® A DS® with D(S° Vv S°) and write S0 2 59v S5 Y S for the pinch and fold maps, we have o = D(V)
and & = D(A). The first of these claims is easy, and the second is essentially theorem 11.1.5 of [1). We also
write x = D(~1): DS® — DS®. In summary, we have

o=B(U)=D(V): DS°ADS’*— DS°
p=B(x): DS°ADS®— DS°
8 = B(L)' = D(A): DS° — DS® A DS°
§=B(A): DS®— DS°ADS°.

The maps ¢ and u are commutative, associative products. They both have units, given by the maps
S® ~ (BZp)y — DS and S° ~ (BE,)y — DS respectively. The maps # and § are cocommutative,
coassociative coproducts. The counit for 8 is the map DS® — S° whose restriction to (BZx)4 is null for
k > 0 and the identity for & = 0. The counit for & is the map DS° — S° whose restriction to (BZ)4. is the
obvious projection.

We next need to analyse various identities satisfied the above maps. In this discussion, the additive
structure of the stable category will not be relevant. Instead, we will consider certain kinds of ring objects
in which the addition is given by a map EA E — E.
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Definition 3.1. A coring spectrum is a spectrum F equipped with a cocommutative, coassociative, counital
coproduct 6: £ = E A E. For example, if X is a space then £°°(X,.} is a coring In an obvious way. Il F
and F are coring spectra, we can make E A F into a coring spectrum, and it is the product of £ and F in
the category of coring spectra (cf. the case of coalgebras).

A semiring is the analogue of a ring in which we do not require additive inverses. A Hopf semiring
spectrum is a semiring in the category of coring spectra. Equivalently, it is a spectrum E equipped with
a commutative, associative, counital coproduct §: E — E A E and two commutative, associative, unital
products o, u: EAE — E. We require that ¢, 2 and the corresponding unit maps are all maps of coring
spectra, and also that the following distributivity diagram commutes:

EA(EAE) 189 »EAE
5,\1l
EAEAEAE 2
ll\twist/\ll
ENENENE—>ENE——E

A Hopf cosemiring spectrum is the dual thing, with one product ¢ and two coproducts 8,4 making the dual
diagram commute. A Hopf coring spectrum is a Hopf cosemiring spectrum F equipped with an antipode
map x: £ — E, making the following diagram commute:

S—>E<~2EAE

S<~i—E—>ENE

Here 7 and ¢ are the unit and counit for & and @ respectively. [inally, a Hopf ring spectrum is a Hopi
semiring spectrum equipped with an antipode making the appropriate diagram commute.

Given enough Kiinneth isomorphisms, applying a (co)homology theory to a Hopf (co)ring spectrum gives
a Hopf ring. If E is a ring spectrum then E®(Q* E),. is a Hop{ ring spectrum, as is

£* | holi Q=HE
oo T1
Kk i>—k +
This is (essentially) the usual source of Hopf rings (see [5)).
We will want to prove that many diagrams involving DS° commute. We have three different techniques
for this.

(1) We can apply the functor D to a commutative diagram of maps of finite wedges of zero-spheres,
noting that D(V/[_, S°) = D(S°)*". Note also that a map from the k-fold wedge to the i-fold wedge
can be represented by a k x [ matrix over Z = [S°, 59].

(2) We can apply the functor B to a diagram of categories, which commutes up to natural equivalence.

(3) We can use the Mackey property of transfer maps. Recall that a finite covering map f: X — ¥
gives rise to a stable transfer map f': Y, — X... Moreover, a pullback square as shown on the left

(where f and g are finite coverings) gives a commutative square as shown on the right:

V—X Ve — X4

N

W__"Y W+—>-}’+
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Remark 3.1. We will use ad hoc methods to replace certain maps by equivalent maps which are finite
coverings. For a more systematic approach, we can define a quasi-covering to be a map f: X — Y which
behaves on homotopy groups (with any basepoint) as though it were a finite covering. We also require that
Y be semi-locally 1-connected, so that honest coverings of ¥ can be classified in the usual way by subgroups
of fundamental groups. It follows that quasi-coverings are precisely maps of the form po g, where p is a
finite covering and g 1s a weak equivalence. Moreover, composites and homotopy-pullbacks of quasi-coverings
are quasi-coverings. We can define transfers for quasi-coverings by f' = £%g~! o p', and then the Mackey
property holds for homotopy pullbacks.

To apply this to spaces of the form BC, it is useful to note the following fact. If A 4y ¢ & B are functors

of groupoids, and D is the category of triples (A4, B, fA — gB), then the following square is a homotopy
pullback:

BD—bBA (A,B,u) "_>A
|
BB —> BC B

To see this, first reduce to the case of groups. For any map (¢ — H of groups, we can use the fibration
EG xg EH — EH/H as a model for the map BG — BH. With this model, the claim can be checked
directly.

Theorem 3.1. DS° is a Hopf semiring spectrum with coproduct § and products o, p1.

Proof. 1t is clear that Ll and x make C into a semiring object in the category of small categories and natural
equivalence classes of functors. [t follows that BC is a semiring object in the homotopy category of unbased
spaces, and thus that DS? = £ B(C, is a semiring object in the category of coring spectra. [

Theorem 3.2. DS® is a Hopf coring spectrum with product o, coproducts 8,4, and antipode x.

Proof. First, we need to prove that ¢ and § are maps of ring spectra. The diagram for ¢ is as follows:

D(v)
DS A DS? > D50
D(AAD(A)
DS® A DSY A DS® A DSP D(a)
lthiutxll
DS® ADS° A DS® A DSP DWMMW—*D@AD@

This is obtained by applying the functor D to the following commutative diagram of spectra:

(11)

S0 v g0 - 50
10
(43) (h
01
SOvSivsoy st 59 v 80

(6017)
Again, we leave discussion of units and counits to the reader. The antipode diagram is obtained by applying
the functor D to the following visibly commutative diagram:

0—2> 0 <Y — g0y g0

n 1=

07— S0 —>50vs®
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We also need to prove that é is a map of ring spectra if we use & as a product. 1t is equivalent to say that o is
a map of coring spectra if we use § as a coproduct. This was proved as part of the previous theorem. Finally,
we need to consider the distributivity diagram. For convenience, we will write BC instead of £®°B(, and
so on. We also write t: BC? - BC? for the twist map. The diagram is as follows.

BC d BC?

| e

BC? x4 BC4 1xtx1 BC4 oxl BC3

Recall that # = o'. The Mackey property of transfers will tell us that this diagram commutes, provided that
we can show that the following diagram is equivalent to a pullback diagram in which the vertical maps are
finite coverings.

BC s BC?

BC? —7 BC* BC* BC?

1xEx] oxl

The main rectangle of this diagram is obtained by applying B to the following system of functors.

XTY X —— (X, X) (X,Y L Z)
(X,Y) (X,Y) —= (X UY, X,Y) (X,Y,2)

We can replace C? by €', and €3 by C x C' to obtain an equivalent diagram of functors.

;I( X —— (X, X) (Z, X)
(¥ C X) (¥ € X) —= (X,¥Y C X) (Z,Y C X)

One can check directly that this commutes on the nose, and is a pullback diagram of small categories.
It therefore gives a pullback diagram of classifying spaces. The vertical maps are finite coverings, as re-
quired. [

4. RATIONAL MoRrRAVA E-THEORY

We now want to use the results of Hopkins-Kuhn-Ravenel {2, 3] to describe the structure in the rational
Morava E-theory of DS®. In the introduction, we defined the spectrum E. This comes equipped with a
map BP — E, and thus a complex orientation in E2CP®. We can divide this by u to get an orientation in
degree zero, and thus a formal group law F defined over the ring E® = W[wy,...,u.-1]. By the Weierstrass
preparation theorem, there is a unique way to write [p™]r(z) = gm(2)um () with u,, invertible and g, a
mouic polynomial of degree p™™ which reduces to #P"" mod the maximal ideal. We let D,, be the ring
obtained by adjoining to E a full set of roots for g,,,. There is a natural map Dy, = D41, and we write Dy,
for the colimit. We also write Ly, = p~!Dm and L = Le,. The roots of g, form a group A(m) = (Z/p™)"
under the formal sum operation, and we write A = |J,, A(m) = (Q,/Z;)". (If we examine the way in which
Dy, is constructed by successively adjoining roots of irreducible polynomials, we find that there are actually
no choices involved, and that an isomorphism A(m) = (Z/p™)" is built in to the constuction). The dual
group is A* = Hom(A,Qp/Zy) = Zp. The group I' = Aut(A*) = GLn(Z;) acts on L, and the fixed subring
is just p~1E.

Now let G be a finite group. Write

Rep(A*,G) = Hom(A*, G)/conjugacy.



RATIONAL MORAVA E-THEQRY AND DS

-1

and
L(BG) = L®g E(BG).
Theorem 3.3.4 of [2] gives a character isomorphism
7: L(BG) ~ F(Rep(A*,G), L)

(where the right hand side is just the set of functions from Rep(A®,G) to L). Given u € L(BG) and
A € Rep(A*, G) we write T(u, M) = 7(u}(A) € L for the corresponding character value.
The functorality properties of the character isomorphism are as follows.

Proposition 4.1. Given f: G — H and u € L(BH) we have
T(f u,A) = r(u, fo A)
Write v, for the inner automorphism z — g~'zg of G. Given a subgroup H < G and u € L(BH) we have
‘r(trﬁ(u), A) = Z T(u, 740 A)
gH
where the sum runs over those cosets ¢ such that the image of v, 0 A: A* — G actually lies in H.
Proof. The first statement is clear from the construction of 7, and the second is proposition 3.6.1 of [2]. O

More generally, for any groupoid G such that Autg(.X) is finite for all X, we can define Rep(A*,G) to be
the set of isomorphism classes of functors A* — G, where A* is regarded as a category with one object in
the usnal way. It turns out that L ®g E(BG) is not a convenient object to study; instead we perform a mild
(if somewhat ad hoc) completion and define

L(BG) = H L ®g E(BF).
FexoG
In particular, we have
L(DS®) = L(BC) = [] L(BLk).
k>0
Because this definition uses the splitting DS? = \/ D S°, the group L(DS®) is not obviously the result of
applying a functor defined on all spectra to DS?. However, all the spectra we consider have such splittings
and all maps we consider behave in a sensible way, so this does not cause a problem. We leave the details to

the reader. We also define
LY(DS°) = D Homy, (L(BL+), L).
k

[t is easy to deduce from the character isomorphism for finite groups that
L(BC) = F(Rep(A™,C), L)

Let By, be the set of isomorphism classes of A”-sets of order m, and put B = [],,,» B . This is a semiring,
with addition given by disjoint union of A*-sets, and multiplication by cartesian product. It is easy to see
that B ~ Rep(A*,C), and similarly that B, ~ Rep(A*,E,;). It follows that

L(BLy) = F(By, L)

L(DS%) = F(B, L).
Similarly,

L(DS® ADS®) = F(B x B, L) = L(DS®)&, L(DS°).
Dually, we have
LY(DS®) = L[B}.

The right hand side is the semiring ring of B, which is a free module over L with one generator [.X] for each
isomorphism class of finite A*-sets X. In particular, we write [m] for the generator corresponding to a set
of order m with trivial action. A similar argument gives

LY(DS®* ADS%) = LB x B = LY(DS°) @, LY (DS°).
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Our various structure maps induce maps of LY (DS°), named as follows:

x:  LV(DSY) ®L LY(DS%) — LV(DSD) induced by o
o: LY(DS®)®L LY(DS®) — LY(DS?) induced by p
¥y LY(DS®) = LY(DSYY @ LY(DS®) induced by 0
Po! V(DS®) — LY(DS%) ®,, LY(DS®) induced by &

We know by Theorem 3.1, DS® is a Hopf semiring spectrum, and by the above that LY(DS® A DS°) =
LY(DS®)y @ LY(DSP). It follows that we can apply LY{—) to make LY (DS°) into a Hopf semiring using *, o
and t,. We next name the dual maps of L{DS°):

$o:  L(DS%) = L(DS*)®L(DS®) induced by o

Yo: L(DS%) = L(DS®)®LL(DS®) induced by p
X : L(DS”)@LL(DS”) — L(DS%)  induced by ¢
o0 L(DS) (

Since, by Theorem 3.2, DS® is a Hopf coring spectrum we can apply L(—) to make L{DS®) into a Hopf ring
(in a suitable sense involving the completed tensor product) using x, e and ..

®LL(DS%) — L{DS®) induced by &

Theorem 4.2. With our identification L(DS®) = F(B, L), we have

@)X, Y) = f(Xuy)
W f)(X,Y) = f(XxY)
(FxgX) = D f(V)e(2)
A=Yuz
Fog)(X) = f(X)g(X)
xNX) = PArx)

(In the third formula, the sum runs over A™-equivariant partitions of X).

Proof, The e-product is induced by the ordinary diagonal map 4, so it is the ordinary product in L{BC).
The character map is a ring homomorphism, which implies that (f ¢ g}(X) = f(X)g¢(X). Next, let X and
Y be A*-sets, of order k and ! respectively. Let px : A* — C be the functor classifying X, and similarly py.

It is easy to see that
pxuy = (A 220 2 % ¢

PXxy = (A* M C2 ﬁ) C)

It now follows from the naturality properties of 7 that (. f)(X,Y) = f(XUY) and (¢ f)(X,Y) = f(X xY).
Finally, we need to show that (f x g}(X) = ¥ y_yuz f(Y)9(Z). We may assume for simplicity that f and ¢
are “homogeneous” of degrees k and I, so that f(U) = 0 unless |U| = &, and similarly for g. It is clear from
the definitions that f x g is homogeneous of degree k+!. Suppose that |X| = k+1, so by choosing a bijection
X ~{1,...,k+I} we obtain amap px : A* — Ty 4. The cosets g(Zx x L) biject with partitions X = YUZ
via Y = {g(1),...,9(k)}. This partition is A*-equivariant iff y4 0 px (A*) < Z¢ x X;. Recalling that the
x-product comes from the transfer map, and using the formula given above for transferred characters, we
see that (f x ¢)(X) =3 x_yuz f(Y)g(Z) as claimed.

Now define
1 ffX=0
(X
[01Cx) {0 otherwise

meo =
e
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It is clear from our previous formulae that [0] and [1] are the units for x and e respectively. We claim that
[1] x [1] = [0}. To see this, write X as a disjoint union of transitive A*-sets, say X = [[;.; X;. Then any
decomposition X =Y LI Z has Y =[], X; for some J C I. It follows that

(=1 x (X) = Y (-1l
JCr

It is easy to see that this is 1 if 7/ = @ and 0 otherwise. The Hopf ring distributivity law now tells us that
ne()) =[0]e f =3 (1o f) x (e f") =D ([=1]e ) x [

This is the characteristic property of the antipode in a Hopf algebra, proving that x(f) = [—1]e f. This in
turn implies the last formula in the theorem. 0O

Write L for the set of lattices (in other words, subgroups of finite index) in A*. Given a lattice M, we write
X for the A*-set A*/M, and 2y = [Xy] € L{B]. Any finite A*-set X can be decomposed uniquely as the
digjoint union of its orbits under the action of A*, each of which is isomorphic to Xps for a unique lattice M
(which is the stabiliser of any point in the orbit). It follows easily that with the product [X]*[Y] = [XUY],
the ring L[B) is just the polynomial ring L{zpm | M € L.

Corollary 4.3. We can identify LV(DS?) with L[B], in such a way that

(X]*[Y] = [xuY]

[X]O[Y] = [XXY]
Xl = Y [VIelz]

A=YuzZ

hlX] = [X]®[X]

The units for * and o are [0] and [1] respectively.

Proof. This follows from the previous theorem by duality. [

5. RING SCHEMES

We first give a general discussion of ring schemes, being deliberately vague about completeness and
continuity. We shall be more precise when we discuss specific examples. Let H be a Hopf ring over L, and
A an L-algebra. Then A ®; H is a Hopf ring over A. We write

RA)={z € A®L H |d(z) =2 @z, e(z) = 1}

This is sometimes called the set of grouplike elements in A @ H. It is a semiring, with addition given by
the *-product and multiplication by the o-product. It can also be described as

R(A) = Homp,_ algebras(H" , A)

where HY = Homy (H, L). Thus R is a representable [unctor from L-algebras to semirings, or in other words
a semiring scheme over L.

Theorem 5.1. The semiring scheme associated to the Hopf ring L(DS®) is given by R{A) = F(L, A)
{considered as a ring under pointwise operations).

Proof. To be precise, the functor we consider sends A to the set of grouplike elements in F(I, A), which is
a kind of completed tensor product F(B, L)® 1 A. This can also be described as

R(A) = Homya1g(LY(DS?), A) = Homp_aig(Lzy | M € L], A)

Given an L-algebra map f: L[zpy | M € L] — A, we define a map f': L. — A by f/(M) = f(za). Sending
[ to [’ gives a bijection R{A) — F(L, A). Suppose f,g € R(A). The addition in Homy,_p,g(LY{DS?), A) is
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induced from ¥x which is dual to the x-product in the Hopf ring L(DS°). We see, then, that the sum of f
and g in R(A) is the homomorphism h: LY(DS®) = L[B} — A defined by

WX = 3. ADe((2)
X=yvuz
If X = Xp wecan only take Y = or ¥ = Xy, and [B] = 1. Tt follows that h'(M) = f/(M) + ¢'(M), in
other words that the addition operation on R(A4) =~ F(IL, A) is the obvious one. Similarly, the product of f

and g in R{A) is the homomorphism k: LY(DS®) = L{B] — A defined by #([X]) = f([X])g([X]). It is thus
immediate that &’ is the pointwise product f'g’, as required. [J

Theorem 5.2. The semiring scheme associated to the Hopf semiring LY (DS?) is just the constant scheme
B. In other words R(A} = B provided that A has no nontrivial idempotents.

Proof. To be precise, the functor which we consider sends A to the set of grouplike elements in A ®;
LY(DS®) = A[B]. This can also be described as the set of homomorphisms f: F(B, L) — A which factor
through F(5, L} for some finite subset § C B, or as the set of homomorphisms which are continuous
when we give L and A the discrete topology, and F{B, L) the product topology. Consider an element
a=Y xax[X] € A[B], so that ax = 0 for almost all X € B. Then

e(a) = Zax

X

Po(X) =3 ax[X]®[X]

X
a®a= Z axay[X]®[Y]
XY
It follows that a is grouplike iff the elements ax are idempotents with ayay = 0 whenever X # Y, and

2.y ax = 1. In particular, if A has no nontrivial idempotents then ax = 1 for one X and ay = 0 for all
Y # X. Thus a — X gives a natural bijection R(A) ~ B, as claimed. O

6. PRIMITIVES AND INDECOMPOSABLES

Consider the Hopf ring L(DS®) = F(B, L) (with coproduct #. and products x,e). The augmentation
map ¢ is the counit for ., which sends f € F(B, L) to f(#). Define ex € F(B,L) by ex(Y)=1ifY =~ X
and 0 otherwise. Using these functions as a basis, we see that f is decomposable iff f(#) = 0 and f(Xx) =0
for all lattices M. It follows that we have an identification

Ind(L(DS%)) = F(L, L)

The indecomposables in any Hopf ring form a ring under the second product. In the present case, this is
just pointwise multiplication.

We next consider the space Prim(L(DS%)) of primitives. As in any Hopl ring, this is 2 module over the
ring of indecomposables. The unit for the first product is just eq. The primitives in L{DS®) are therefore
the functions f: B — L such that

Vo f)=/®ept+ep®f
or equivalently
JIXUY) = f(X)ea(Y) +ea (X} S (Y)

or equivalently, f(X) = 0 unless X is nonempty and transitive (ie X = Xp for some M). Now define
¢ € L(DS®) by ¢(Xar) = 1 for all M and ¢(X) = 0 if X is empty or intransitive. Clearly, Prim(L(DS?)) is
the free module over Ind{L(DS")) on one generator e:

Prim(L(DS%)) = Ind(L(DS%))c
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We next consider the Hopf ring LY(DS®) = L[B) = L[Xu | M € 1], with coproduct t, and products
*,0. The augmentation is the counit for ¢,, which sends [X] to 1 for all X, so that [X]—1 € I = ker(e).
Moreover, it is easy to see (using 1 = [#]) that

Xuyl-1=(X)~-1)+(Y]-1) (mod /%)
(XI-De(¥]-1)=[X xY]-1

From this we conclude that Ind(LY{DS?)) is the free module over L on the generators Xz — 1, and also
{after making some obvious definitions for tensor products of semirings) that as semirings

Ind(Z¥ (DS%)) = L[L] = L ®x B.

On the other hand, because ,([X]) = [X]® [X], we see using the obvious bases that Prim(LY(DS%)) = 0.

Let I'T be the monoid of injective endomorphisms of A, and I the subgroup of automorphisms. There is
an obvious action of ['t on L. It turns out that there is also a natural action of 't on L. These fit together
to give an action of I't on Ind(LY(DS®)) = L[L]. This arises topologically from the Mo, structure of E.
This will be discussed in detail in future work.

Note that although the coproduct we use in L(DS?) is dual to the x-product in LY(DSP), the primitives
in L(DS®) are not directly dual to the indecomposables in LY(DS%). The reason is that the definition
of primitives involves a unit as well as a coproduct. The unit in L(DS°) = F(B, L) is ep = [0], but the
element of L{DS®) dual to the augmentation on LY(DS?) is the constant function 1 = {1]. The dual of the
indecomposables in LY(DS") is naturally identified with

Prim’(L(DS%)) = {f € F(B,L) | /(X UY) = f(X) + f(Y)}
Note that

Wx N =3 1)
Y<Xx
One can check easily that the map f +— [1] x f is an isomorphism Prim(L{DS%)) ~ Prim’(L{DS®)). If we
let R = spec(LY(DS®)) be the ring scheme corresponding to the Hopf ring L(DS®), then Prim(L(DS%))
and Prim’(L({DS%)) are the tangent spaces of R at 0 and 1. For any commutative algebraic group (such as
the additive group of R), there is of course a canonical isomorphism between the tangent spaces at any two
points.

7. GENERALISATIONS

Instead of C, we can consider the category V of finite-dimensional vector spaces over a finite field &, so

that
BY = ] BGLm(k).
m>0

We replace the disjoint union by the direct sum and the product by the tensor product. The evident
analogues of theorems 3.1 and 3.2 hold, except that we do not have an antipode map. We strongly suspect
that an antipode map exists, but we do not have a construction as yet. The proofs for V are much the same
as for C, except that ¢’ must be replaced by the following category:

Vi={U; VW) | VWU, VnW=0and V+ W =U}

In this case, Rep(A*, V) is the semiring R (A*) of isomorphism classes of finite-dimensional representations
of A* over k. Again, evident analogues of theorem 4.2 and corollary 4.3 hold.

Suppose that k& has characteristic not equal to p. Then all such representations are completely reducible
and split over & as a direct sum of one-dimensional representations. These one-dimensional representations
biject with the group C of continuous homomorphisms A* — E*. Using these ideas one can show that
R}(A*) is a free Abelian monoid with the orbit set C/ Gal(k/k) as a basis.

As a different generalisation, we can consider the topological category U of finite-dimensional complex
Hilbert spaces, so that

BU = H BU (m).
m>0
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In this case, we need to use a Becker-Gottlieb type transfer. Ior a version which works when the base is
infinite (which we need), see chapter IV of [4]. We again get analogues of theorems 3.1 and 3.2. However, we
cannot use generalised character theory to study E* BU because the groups involved are not finite. There is
a description in terms of divisors on the formal group associated to E, as discussed in [6].
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