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Introduction

Moduli spaces of hOlllomorphisms or luore generally twisted hOluomorphisluS from
fundaluental groups of surfaces to compact connected Lie groups were connected
with geometry through their iclentification with moduli spaces of holomorphic vector
bundles [28]. Atiyah and Bott [2] initiated a new approach to the study of these
lnoduli spaces by identifying them with moduli spaces of projectively flat constant
central curvature connections on principal bundles over Riemann surfaces, which they
analyzed by lnethods of gauge theory. In particular, they showed that an invariant
inner product on the Lie algebra of the Lie group in question induces a natural
symplectic structure on a certain slnooth open strattlln. Although this 11lOduli space
is a finite dimensional object, generally a stratified space which is locally semi
algehraic [19] but sometimes a manifold, its sYlllplectic structure (on the stratum
just lnentioned) was obtained by applying the method of sYlnplectic reduction to
the action of an infinite dimensional group (the group of gauge transfonnations)
on an infinite dinlensional symplectic lllanifold (the space of all connections on a
principal bundle).

This infinite-dünensional approach to moduli spaces has deep fOOts in quantuIll field
theory [1], but it is nevertheless interesting to try to avoid the technical difficulties of
infinite dimensional analysis by using purely finite dinlensional methods to construct
the symplectic structure and to derive SOlne of its properties. This also allows
for arbitrary, not necessarily cOlupact, Lie groups. This program has been carried
forward by several authors in the past ten years, with the result being not only
technical simplification, but also new insight into the geometry of the moduli spaces,
especially into their singularities [17 - 21]. See [22] for a leisurely introduction.

To date, most of the program just described has been worked out only for compact
lliemann surfaces without boundary; see however [16]. The purpose of this article is
to extend these results and methods to the case of Riemann surfaces with a finite
number of punctures 01', equivalently, with a finite number of boundary components,
corresponding to the study of parabolic vector bundles in the hololnorphic category.
Specifically, we deal with the results listed below; the references indicate sources for
the closed compact case except [16] (see below).

• A description of the sYlnplectic form in terms of the cup product on the
cohomology of the fundaIuental group of the surface in question with values
in the Lie algebra [11].

• A proof, using a double cOlnplex of Bott and Shulman rather than gauge
theory, that the form constructed by using group cohomology is closed [33],
thereby allowing for a general Lie group, not necessarily compact.

• A proof, using the Bott-ShulmaIl cOluplex, that the moduli space can be
obtained by sYlnplectic reduction from a finite-dilnensional sYluplectic lllanifold
[15, 16,23,25].

Same further historical comments may be in order. Regarding the second item above,
a proof that the symplectic form is closed, using group cohomology rather than gauge
theory, was originally given by I{arshon (26]; her proof was reformulated in (33] in
terms of the double conlplex of Bott [6J and Shulman [29]. A partly finite dimensional
construction of the moduli space was accomplished earlier by Huebschmann [20] and
Jeffrey [24], but in these papers infinite dimensional techniques could not completely
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be avoided. A purely finite dimensional construction (for the closed cOlnpact case)
was announced in [23] and given in [15,25].

Passing to the case of punctured surfaces, we note that the symplectic structure
on a certain top stratum of the moduli space in this case (see Section 9 below
for details about the stratification) was constructed using methods of gauge theory
in [4]. A naive atteIupt to inütate the methods used in the closed cOlupact case
[15,23,25] seems to fail because the concept of fundamental group is too weak
to handle peripheral structuresj the special case where the fundamental group (of
a closed surface) is replaced by an orbifold fundamental group - in the vector
bundle case, this corresponds to parabolic bundles with rational weights - has been
successfully treated in [16], though.

The principal innovation in this paper is to replace the fundamental group by
two more general concepts which enable us to overcome the difficulties with the
peripheral structure in general: by that of a group system [31] and that of a
suitable fundamental groupoid. For our purposes, both notions do not serve for
equivalent purposes; rather, the two c01nplemellt each other. Group systems provide
the appropriate concept to handle the global structure of the moduli space while
the fundanlental groupoid turns out to be a crucial tool for a successful treatlnent
of the infinitesimal structure. In fact, a compact orientable topological surface L:
with n 2:: 1 boundary circles SI, ... , Sn gives rise to a group system (Jrj Jrl, ... , Jrn)
(see Section 1 below for details on this notion) with Jr = ?Tl (E),1Tj = Jrj (Sj) ::: Z,
and with a chosen generator Zj of each ?Tj, referred to henceforth as a surface
group system. Given a Lie group G, not necessarily compact, and an n-tuple
C = (Cl, ... , Cn) of conjugacy classes in G, we denote by HOln( Jr, G)c the space of
homomorphisms X froln 1T to G for which the value X(Zj) of each generator Zj of
lies in Cj, for 1 ~ j ~ n. Given a nOlldegenerate invariant symmetrie bilinear form
on the Lie algebra g of G, not necessarily positive definite, we shall construct an
extended moduli space M (P, G)c, that is to say, a smooth symplectic manifolel anel a
hamiltonian G-action anel luomentulll mapping whose reduced space M (P, G)c / / G
is homeonl0rphic to the space Rep( 7T, G)c of representations, the orbit space for
the action of G by conjugation on Hom(?T, G)c. The global construction of the
space M(P, G)c, of its closed 2-fonu, and of the momentum mapping, involve the
surface group system, whereas nondegeneracy of the form is proved by relating the
inn.nitesinlal part of structure with Poincan~ duality in relative 01' more precisely
parabolic cohomology of a certain fundamental groupoid.

Another proof of nondegeneracy is given in a companion paper to this one [13],
which uses a metric on the space of parabolic cocycles, leading to a (new?) lnetric
on the moduli space.

For compact G, in the gauge theory setting, the tangent space of an arbitrary
point of the top stratum of the moduli space mentioned above in the case of a
punctured surface can be identified with the image of corupactly supported de Rllalu
cohomology in the usual de Rham cohomology with coefficients in the acljoint bunelle,
calculated with reference to the operator dA of covariant derivative with respect
to a Hat connection A representing the point in question [4]. The COhOluology of
"group systems" is the analogue of cOlupactly supported cohomology in the algebraic
setting, and the tangent space at a point of the top stratum can be identified with
the image of the corresponding group systems cohomology in the usual cohomology.
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In the last section of this paper, we 11lake this explicit and show that the symplectic
structure on the top stratum obtained here by algebraic methods is equivalent to
the construction via gauge theory.

Another finite-dimensionalization of the space of flat connections, inspired by
lattice gauge theory, was introduced by Fock and Rosly [10].
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1. Group systems

Reca11 that a group system (7T"; eP1 , ... , ePn, 1f1 , ... , 71'"n) consists of a group 1f together
with a family of groups 7T"j and homonlorphisms ePj from 71'"j to 71'" [31]. \Ve sha11
occasiona11y refer to the 7fj as peripheral groups. For any such systelll, there is a pair
of spaces (X, UYj) such that X and the Yj are aspherical, 7T" = 1fl (X), 1fj = 1f1 (Xj),
and the maps 4>j are induced by inclusion. The (co)homology 0/ the group system
is that of the pair (X, UYj). TROTTER has given a purely algebraic construction
[31]. To introduce notation we reproduce it briefly:

Let R be an arbitrary COllllllutative ring, taken henceforth as ground ring. A
resolution ouer a system (7fj eP11'" ,ePn, 7T"1l'" ,71'"n) is a pair of R71'"-complexes (A, B)
such that

(1) A is aresolution over 7f;
(2) B is the direct SUIll of complexes B j = R71'" 0R7T'j A j where A j is aresolution

over 1fj and R71'" is considered a right R71'"j-module via the map ePj;
(3) B is a R71'"-direct summand of A.

The Aj are referred to as auxiliary resolutions; occasionally we shall refer to B
as the peripheral part of the resolution. Given aresolution (A, B) over a system
('rr; eP1 , ... , ePn, 71'"1, ... ,71'"n), the exact sequence

(1.1 ) o-+ B -+ A ---t AlB -+ 0

of R1f-modllles splits, and the homology H* ({ePj}, .) and COhOlllOlogy H· ({4>j}, .)
of the system are defined from the R7f-complex AlB, which plays the role of a
"relative" resolution. In particular, for every R7f-module M, the exact sequence
(1.1) gives rise to natural long exact sequences in homology and coholTIology of the
kind

and

Here Hk ({<Pj }, IvI) and Hk ({c,b j }, M) are j list the direct sums of the homology and
cohomology groups Hk ( 7fj, M) and Hk (71'"j, M), respectively.

Given a grollp system (71'"; epl , ... , 4>n, 7f1, ... , 7fn) where the ePj are inclusions of
subgroups we shall henceforth suppress eP1,"" <Pn in notation and simply write
(7T";71'"l, ... ,71'"n) and, likewise, we shall write H.(7f,{1fj};·) and H*(7T",{7fj}j') for
H.({cPj},·) and H*({ePj},·), respectively.

The explicit construction of aresolution of a system can concisely be handled by
means of a corresponding fundamental groupoid. We explain this for surface group
systems in the next section.
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2. Surface group systems

Let ~ be a compact orientable topological surface with boundary 8~ consisting of
n circles SI, ... , Sn; we suppose that when the genus e of ~ is zero there are n 2: 3
boundary circles. This surface gives rise to a group system (7fj 7fl, ... ,7fn ) with
7f = 7fl (~), 7fj = 7rl (Sj) f"V Z, referred to henceforth as a sur/ace group system. When
the boundary 8~ is non-empty the group 7f is free non-abelian; yet it is convenient
to use the presentation

(2.1 )

where

P = (Xl, YI, ... ,Xl, Yf., Zl, . .. ,Zn; r),

r = II[Xj, Yj]ZI ... Zn'

The Reidemcister-Fox calculus, applied to the presentation P, yields the free resolution

(2.2)

of R In the category of left R7r-modules. Here

and the boundary operators 8j are given by the formulas

81 [Xi] = (Xi - 1)

8dYi] = (Yi - 1)

8dZ j] = (z j - 1)

'" 81' " ßr '" 8r~(r] = Lt 8Xi [Xi] + Lt ßYi [Vi] + Lt 8zj [Zj].

Here and henceforth we decorate the free generators of the modules coming into play
in the resolution by square brackets, to distinguish theIn from the corresponding
elements of the group 7f etc. The chain complex arising from (2.2) which calculates
the absolute homology of 7f with values in R COlnes down to

Aresolution of the group systeill is concisely handled by means of the following
groupoid the full force of which will be exploited only in Section 8, though. Pick
a base point Po not on the boundary and, moreover, for each boundary component
Sj, pick a base point Pj. This determines the subgroupoid 7r = II(~; Po, PI,· .. ,Pn)
of the fundamental groupoid of ~ consisting of homotopy classes of paths in ~ with
endpoints contained in the set {pO,pI, ... ,Pu}. To obtain a presentation of it we
decompose l:j into cells as follows, where we do not distinguish in notation between
the chosen edge paths and their homotopy classes relative to their end points: Let
Xl, YI, . .. ,Xl, Yi be closed paths which (i) da not Ineet the boundary, (ii) have Po
as starting point, and (iii) yield the generators respectively Xl, YI, ... ,Xl, Yl of the
fundamental group 7r = 7fl (l:j, ]Ja); for j = 1, ... ,n, let aj be the boundary path of
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the j'th boundary circle, having Pj as starting point, and let ,j be a path from
Po to Pj. 'AThen we cut 2: along these l-cells we obtain a disk D whose boundary
yields the clefining relation of 7f = TI (2:; Po , pt, . .. ,Pn). The resulting presentation of
7f looks like

(2.4)

where the relator now reads

This is consistent with the presentation (2.1) of the fundalnental group if we identify
each generator Zj with 'jaji;I. Reading the boundary r counterclockwise arouncl
D determines an orientation of D and hellce of 2: in the usual way.

The Reidemeister-Fox calculus, applied to P, yields the free resolution of R

(2.5)

In the category of left R11'-Inodules. Here

R 2(P) = R11'[T], R ICP) = R11'[XI, Yl,· .. ,Xl, Yl, aI,· .. ,an,'1,· .. "n],

and

(2.6)

8dX i] = (Xi - 1)[po],

DdYi] = (Yi - 1)[po),

8dai] = (Zi - 1) [Pi],

8d,j] = [pj] - (po],

" 8r " 8r " 8r " 8r~ [Tl = L.J 8
X

i [xd + L.J DYi [Yi] + L.J 8z
i

[ai) + L.J 8z
i

(1 - Zj )[,j].

Notice that thi~ amounts to a concise clescription of the cellular chains of the
universal cover 2: of 2: whence it is lnanifestly a free resolution. This description of
the chains of the universal cover will be exploited in Section 10 below. Alternatively,
observe that dividing out the contractible R11'-subcolnplex generated by the [,j] and
[Pi] - (po] transforms (2.5) into the free resolution (2.2) above The resulting chain
cOlnplex calculating the hOlll0logy of 11' with values in R amounts to

(2.7)

where

82[T] = (al] + ... + [an],

8dx i] = 8r[Yi] = 0,

81 [aj] = 0,

81 [,j] = [Pj] - [Po),

1 ::; i ::; e,
1 ::; j ::; n.

1 ::; j ::; n.
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It equals that of cellular chains of ~, whell we identify the disk D with [r]. Notice
that when n 2. 1, the orientation of D is determined by the boundary relation

To see that (2.5) yields aresolution over our group system, for } = 1, ... ,n, let
A j be the slnall resolution of R over the free cyclic group 1fj determined by the
choice of generator aj, and let B j = R1f 0Rrrj A j ; explicitly:

The resolution (2.5) p~ainly contains the R1T-complex B = ffij=l, ... ,nBj as a direct
sumlnand. Hence (R(P), B) is aresolution over our group system. Notice that for
e= 0 and n = 1 the construction does not yield aresolution over the corresponding
group systeill.

By constructioll, the quotient cOlnplex R(P, {1fj}) calculating the (co)homology
of our surface system arises from (2.5) by dividing out the subcolnplex generated
by the [ai] and [pj], for 1 ::; j ::; n. Thus it looks like

its boundary operators Bi are given by the fonnulas

(2.9)

BJ[Xi] = (Xi - 1)

odyd = (Yi - 1)

01 ['i] = 1

'"' 8r '"'~ '"' 8r82 [r L.J OXi [Xi] + L.J OYi ftli] + L.J OZj (1 - zi)['j]·

In particular, the chain complex calculating the hOlnology of the system with values
in R amounts to

(2.10)

where

Thus the 2-chain

(2.11)

R[r] 8
2

) R[X1' Yl, ... ,Xl, Yl,,1, ... "n] 8
1

) R

82 [r] = 0

8dxi] = 8dYi] = 0, 1::; i ::; e,
81 [,j] = 1, 1 ::; j ::; n.

is a relative 2-eycle, and H2 (7f, {1fj } j R) is isomorphie to R, generated by the class
K of b.
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A eomparison map from R(F) to R(P, {7rj}) inducing the eohomology map from
H>I< Crr, {7t"j }; .) to H>I< (rr, .) oecurring in (1.3) above is giyen by the chain map

R(F): Rrr[r] 8'.l
) R'JT(xI' Y1, . .. ,Xl, Yt, Zl,· .. ,Zn]

81
) Rrr

(2.12) 1 1 1
R(P, {'JTj}): Rrr[T]

82
) Rrr[X1, Y1,· .. ,Xl, Yt, 11,· .. ,f'n]

81
) R'JT

which identifies the elements denoted by the same symbols in the top and bottoln
row and sends [T] to [T] and [Zj] to (Zj - l)[f'j], for 1 ::; j ::; n. In partieular, under
the induced chain lnap from (2.3) to (2.10), the boundary value [Zl] + ... + [zn] of
[T] in (2.3) goes to zero.

3. Poincare duality for surface group systenls

The surface group system (7r; rrI, ... ,7rn ) is a two-dimensional Poincare duality
system over R, that is, a PD2-pair in the tenninology of BIERI-EcKMANN [3],
having fundamental class "" E H2 ( 7r, {7rj }; R), so that, for every Rrr-lllOdule M, cap
product with K. yields natural isomorphislus

cf. [3], and these in fact fit ioto a commutative diagram

------+) H* (1I", {7r j}; M) H* ({ rrj }, .!vI)

n8Kl
-------t) H 1_*({rrj},M)

whose horizontal sequences are the corresponding long exact homology and cohomol­
ogy sequences of the group system. In particular, H2 (1I", { 1I"j }; R) is also just a copy
of R. Geometrically this duality is exactly that of the surface E with boundary oE
with coeffieients determined by M, viewecl as a local systeln, that is,

(3.2) ne: H*(E, M) -t H2-*(~,DE; M), ne: H*(E, DE; M) -t H2-*(E, M),

where e E H2 (E, BE; R) refers to the orientation dass.

Let R = IR. , the reals, let V be a finite diluensional real vector space with a
symmetrie bilinear form·, and suppose 'i endowed with a structure of IR1r-module
preserving the given symmetrie bilinear form (i.e. the action of 1r preserves thc
fornl). Via the multiplieative strueture of the cohomology of a group system ­
this amounts of course to the lnultiplicative structure of the COhOlllOlogy of the pair
(E, BE) - the symluetrie bilinear form . induees a pairing

(3.3)

which, corubined with
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yields abilinear pairing

(3.4)

Poincan~ duality in the cohomology of the group system inlplies that the paJflng
(3.4) is nondegenerate provided that . is nondegenerate. The multiplicative structure
has been made explicit in [31] for systems with a single peripheral subgroup. By
means of an appropriate groupoid we shall make explicit the multiplicative structure
in Section 8 below in the general case.

Next we write H~ar(tr, {rrj}; V) for the image of H1 (rr l {1rj}; 11) in H1 (rr, 1f ) undel'
the canonical lllap, cf. (1.3), ancl we refer to it as (first) pambolic cohomology, with
values in V. Parabolic cohomology classes are represented by parabolic 1-cocycles,
that is, by 1-cocycles (: rr -t V having the property that, for every Zj, 1 :S j :S n,
there is an elelnent Xj in 11 such that

(3.5) (( Z·) - Z·X· - X·) - )) ).

V\Te denote the space of parabolic 1-cocycles by Z~ar(rr,{trj}; V). Parabolic 1-cocycles
and parabolic COhOlllology have been introduced by A. WEIL (32], for arbitrary finitely
generated planar discontinuous grotlps, and he noticed that, for such a group with
only elliptic and hyperbolic generators (which, in the present description, alllounts
to inlposing the additional relations saying that every generator of the kind Zj has
finite order) every 1-cocycle is parabolic since the cohomology of a finite group with
coefficients in areal vector space is trivial.

Using the top row of the commutative diagrarn after (3.1), we have an exact
sequence

o ---+ I<er(j) ---+ H1 (rr, {rrj }; 1/ ) -4 H1 (rr, V) ---+ Coker(j) ---+ 0

and the restrietion of (3.4) to I<er(j) (8) IU1(j) is zero where hn(j) refers to the image
of j in H 1

( 1r, V). This implies that the pairing (3.4) yields a pairing

However j induces an isolllorphislll frorn H1 (1r, {rrj}; V)jI(er(j) onto Inl(j) which
equals H~ar(rr,{rrj}; 11). Hence the pairing (3.4) induces a skew-syrllrnetric bilinear
paInng

(3.6)

When IS nondegenerate, so is (3.4), anel Im(j) equals the annihilator in H1 (rr, V)
of I<er(j). Hence (3.6) is nondegenerate, that is, a symplectic structure on the
vector space H~ar (7f , { rrj }; V), provided that . is nondegenerate. This pairing will
be explicitly calculated in Lemma 8.4 below.
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4. Representation spaces of surface group systems

\.\frite F for the free group on the generators in P. Let G be a Lie group, not
neeessarily cOlnpact, write 9 for its Lic algebra, anel let C = {Cl, ... , Cn } be an
n-tnple of conjugacy classes in G.

Let 4> E Hom(F, G), anel suppose that 4>(1') lies in the centre of G. Then the
composite of 4> with the adjoint representation of Ginduces a structure of a (left)
iT-module on 9, and we write 9.p for 9, viewed as as iT-rnodule in this way. Vve
shall continue to take as ground ring R thc reals IR. Application of the functor
HomRrr (" 9.p ) to the free resolution R(P) yields the chain cornplex

(4.1)

cf. [15] (4.1), computing the group cohomology H* (7f, 9.p); we recall that there are
canonical isomorphisms

CO(P ) /'"V Cl (P, 9A..) ~ g21+n, c2 (P ) /'"V,g.p = 9, 'f' ,9.p = 9·

To reeall the geometrie signifieanee of this ehain eOluplex, denote by D:.p the smooth
map from G to HOIU(F, C) which assigns x4>x- 1 to x E C, write l' for the sluooth map
from Hom(F, G) to G induced by the relator l' so that the pre-iluage of the neutral
element e of G equals the space Hom(iT, G), and write R.p: 921+11 -+ T.pHom(F, G)
and Rr(.p): 9 -+ T r( .p) C for the corresponding operations of right translation. The
tangent maps TeD:.p and T.pr Iuake COllullutative the diagram

TeG
Teo,p

T .pHonl(F, G)
T,pr

T r(.p)C) >

(4.2) IdI R,pl R r (4')I
9 921+n 9,

8° 61
4' 4'

cf. [15] (4.2). The comnlutativity of this diagraIll shows at once that right translation
identifies the kernel of the derivative T rjl1' with the kernel of the eoboundary operator
J~ from CI(P, 9.p) to C2 (P,9.p), that is, with the vector spaee Zl(tr, 9.p) of 9fj>-valued
1-cocycles of iT; this space does not depend on a specific presentation P, whenee
the notation. We note that C1(P,g.p) = Zl(F,9rj1), the space of 9.p-valued 1-cocycles
for F,

For each j, 1 ::; j ::; n, wri te Fj for the snbgroup of F generated by Z j . We
then have two group systems (F;Fl, ... ,Fn ) and (tr;iTl, ... ,trn), together with the
obvious morphism of group systenls fron1 the former to the latter. Notiee that, for
each j, the eorresponding hornolllorphislu fro111 Fj to 7fj i8 an isolllorphislll but we
prefer to n1aintain a distinetion in notation between Fj and trj .. Extending notation
introduced earlier, we denote by Hom(F, G)c the space of homomorphisms 4> from
F to C for which the value 4>(Zj) of each generator Zj lies in Cj, for 1 ::; j ::; n.
The choice of generators induees a deeomposition

Hom(F, G)c ~ G21
X Cl X ... X Cn .
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Abusing notation, we denote the restrietion of r to HOln(F, G)c by r as weIl, so
that the pre-iInage r -1 ( e) ~ Horn(F, G)c of the neutral elemente of G equals the
space HOln( 7T , G)c .

We now suppose that our chosen 4> E Hom(F, G) lies in Hom(F, G)c, viewed as a
subspace of HOln(F, G). For j = 1, ... ,n, denote by h j the image in g of the linear
endomorphisln given by Ad( 4>( Z j)) - Id, so that there results the exact sequence

(4.3) o-t gj -t g -t h j -t 0

of vector spaces, where gj denotes the Lie algebra of the stabilizer of cjJ(Zj); notice
that h j is the tangent space of the conjugacy class Cj.

The following two observations will be crucial.

Proposition 4.4. The values 0/ the operator <5~ in (4.2) lie in g2l x h 1 X ... x h n ,

viewed as a subspace 0/ Cl (P, g4» rv g2l X gn, and the first cohomology group 0/ the
resulting complex

(4.4.1)

equals H~ar ('n-, {1l"j } j g4»

Proof. Let
<I> = (Ad(zd - Id, ... ,Ad(zn) - Id): gn -t gn.

Application of the functor Homnb'(', g4» to (2.12) yields the cochain map

0°
) g2l X gn

01

C(P,g4»;
4> 4>g ) 9

Idr (Id,tP)r Idr
Cep, {1l"j}; g4»; g ) g2l X gn ) g

0° 01
4> 4>

where the notation o~ and o~ is slightly abused. It is obvious that this chain
map factors through Cpar(P, g4»' A little thought reveals that this implies the
assertion. D

Proposition 4.5. The tangent maps T eO'4> and T 4>r make commutative the diagram

(4.5.1)

TeG

Idr
Cpar(P, g4»: 9

TeO'q,
-~) T 4> (Hom(F, G)c)

T4>r
-~) T r (4))G

R r (4))r
g,

having its vertical arrows isomorphisms 0/ vector spaces.

Proof. In fact, the diagram (4.2) restriets to the diagram (4.5.1). D

It is lnanifest that the kernel of the operator <5~ in C par (P, g4» (cf. (4.4.1 ))

Coillcides with the space Z~a.r(7T, {7rj}; g4» of parabolic 1-cocycles with values in g4>'
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5. The extended 1110duli space

Let . be an invariant symlnetric bilinear form on g, not necessarily positive definite
01' even nondegenerate. The additional hypothesis of nondegeneracy will be exploited
only in Section 8 - 10 below. As in [15], for a group 11, we denote by (C*(II), a)
the chain complex of its nonholllogelleous reduced normalized bar resolution over
the ground ring R. When the relators Zl,"" Zn are added to (2.1) we obtain the
presentation

(5.1)

of the fundamental group rr = ?Tl (~) of the closed surface ~ resulting from capping
of the n boundaries. Let F be the free group on the generators of Pj notice that
the generators of the latter coincide with those of P. We apply a variant of the
construction in [15] to the presentation P: Let 0 be the open G-invariant subset
of the Lie algebra g of G where the cxponential mapping is regular. Define the
space 1i(P, G)c by means of the pull back square

1i(P,G)c
("P,Zl, ... ,Zn) o X Cl X ... X Cn>

(5.2) ql 1expxId x .. ·xId

Hom(F, G)c > G X Cl x··· X Cn,
(r,Zl, ... ,Zn)

where rand 21, ... ,zn denote the induced maps. The space H(P, G)C is manifestly
a smooth lllanifold.

Let c be an absolute 2-chain of F which represents a 2-cyde for the group systerll
(?T;?Tl, ... , ?Tn ). Its image in the 2-chains of the fundamental group rr of the closed
(J) surface ~ is then dosed. Write K. E Hz(rr) for its dass. When the genus e
is different fronl zero rr is non-trivial and the canonical map from Hz (?T, {?Tj}) to
Hz (rr) is an isolllorphism identifying the fundamental dasses. Write

E: pZ x HOln( F, G) -+ GZ

for the evaluation map, and let

W c = (c, E*n),

the result of pairing c with the induced form, cf. [15 (13)].' Thi8 18 aG-invariant
2-form on Hom(F, G). In view of (15 (15)] we have

(5.3) dw c = (Be, E* A).

We now apply a variant of the construction in Theorem 1 of [15]:

Vve pick e in such a way that

(5.4) Be = [r] - [zr] - ... - [zn]
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in the chain cOlllplex C.(F) of the nonholllogeneous reduced normalized bar resolution
of F. This can always be done, cf. what is said abont the chain (2.11) at the
end of Section 2 above. In fact, for e~ 1, the construction in [15], applied to the
present ation

( b) b [ J [ J -1 -1Xl, Yl, ... , Xe, Yl; r , r == Xl, Yl ... Xl, Yl = rZ1 ... Zn

of the fundamental group 1? of E, yields a 2-chain Cl with

Since

8[ -1 -11 -1] [-1] [ -1 ,-1] [-1 -IJl' Zn ... Z2 Z 1 == ZI - r Zn ... Zl + r Zn ... Z2

8[ -1 -1 I -1] [-]] [-1 -1] [-1 -1]l' Zn ... Z3 Z2 == Z2 - r Zn ... Z2 + r Zn ... Z3

adding to Cl the 2-chains cOlning into play on the left-hand sides of these equations,
we arrive at a 2-chain C2 with

Finally, subtracting the 2-chains [z11z11], ... , [zn Iz;;-l J we obtain the desired 2-chain
C satisfying (5.4) as asserted. When e== 0, c may be taken to be the negative of
the surn of the chains

Henceforth we suppose that the hOIllOtOpy operator h on the forms on 13 used to
construct the various forms in [15J is the standard operator. Then the map 'lj; frOln
13 to 13*, cf. Lelllllla 1 in [15], boils down to the adjoint of thc symlnetric bilinear
form' on 13. Let ß == h(exp·(A)), and define the 2-forrn we,P Oll 1i(P, G)c by

(5.5) • """tI:ßwe,'P == 1] W e - r .

Since dß == exp·(A), In Vlew of (5.3) above,

(5.6) dw P == - z· A - ... - z* Ae, 1 n

where we do not distinguish in notation between A and its restrietions to the
conjugacy classes CI, ... , Cn . Next, let

p. == 't/J 0 r: H(P, G)c --+ 13·

that is, p. is the composite of the map r from H(P, G)c to g with the adjoint 1jJ
of the symmetrie bilinear form . from 13 to its dual; here we do not distinguish in
notation between a map into 0 anel its composite with the inclusion into 13. Recall

OcA == -d{) [15 (6)].
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As in [15], we write

for the adjoint of fl-. Vve now assert

(5.7) r d tt -* {) -* {)0ew P = 11 - Z - ... - Ze, r 1 n

where we do not distinguish in notation between {) and its restrietions to the
conjugacy classes Cl,"" Cn . Indeed, cf. the proof of Theorem 2 of [15],

'Ij;~ = ho (exp*{) - Sa(ß))

and
Sc(n) = S{) [15 (4)]

whence

SeWe,P = Sa(7]*we - r- ß)

= 7]* oewe - r- Saß

= 1]* (Bc, E*{)) - r- oaß

= ?(exp*{) - oaß) - z~{) - ... - z~{)

= dfl-tt - z;{) - ... - z~{)

as asserted. The fOrIllulas (5.6) and (5.7) show that fl- is sOlllewhat like a momentlllll
mapping for the (non-closed) 2-form We,P, up to certain error terms. In Section 7
below we shall add appropriate forms which will correct this error. Before we can
do so we need some preparation to which the next Section is devoted.

6. A single conjugacy class

Let C be a conjugacy dass of G and 0 an adjoint orbit which is mapped onto
C under the exponential lnapping frolll g to G. Let X, Y E g. The vector fields
Xo and Yo on 0 generated by X and Y are given by the assignment to a point
Z E 0 of [X, Z] E TzO and [Y, Z] E TzO, ancl the "I(irillov" form W on 0 is given
by the expression

(6.1 ) Wz(Xo,yPo) = wz((X,Z],[Y,Z]) = [X, Y]· Z = [Z,X]· Y.

Notice that there is no need to assunle the symmetrie bilinear form . on g to be
nondegenerate; just take the 2-form W on 0 defined by (6.1). For a point p of C,
an arbitrary tangent vector is of tbe fonn

Xp - pX = (X - Ad(p)X)p E TpC,

where . p and p' denote the effect of right and left translation and where X is an
element of the Lie algebra g, identified with the tangent space TeG of G at e. As
before, let ß = h(exp* A) where Adenotes Cartan's fundamental 3-fonll on G.
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Theorenl 6.2. The assignment

(6.2.1) r(Xp - pX, Yp - pY) = ~(X. Ad(p)Y - y. Ad(p)X), pE C,

yields an eq'll,ivariant 2-form T on CI having the property

(6.2.2) exp*T = ß - w.

Before proving the theorem, we speIl out the following which will be crucial:

Corollary 6.3. The 2-form T satisfies the lormulas

(6.3.1)

(6.3.2)

dT = A

OOT = {).

Proof 01 the Corollary. Since w is closed,

exp*(dr) = dexp*r = d(ß - w) = dß = exp* A

whence dr = A. Furthermore, denote by J the composite of the inchlsion of 0 irrto
9 with the adjoint of the given sYlnmetric bilinear form; formula (6.1) says that

wz(..-Yo, Yo ) = d(X 0 J)z(Yo ),

that is, with our definition of the operator 00 involving the negative (!) of the
contraction operator, cf. Section 1 of [15], we have

Jow=-J~.

On the other hand, In VleW of the fornutla

JOA = -d{) [15 (4)],

on the whole Lie algebra g, we get

Jo(ß) = Ja (hexp* A)

= -h(oo(exp* A))

= -h(exp* JO(A))

= h(exp*d(t9))

= hd(exp*({) ))

= exp*(t9) - dh(exp*(19))

= exp*({)) - 'l/J ~ .

Consequently, on 0, where 'l/J amounts to J, we obtain

exp*(ooT) = oo(exp*r) = oo(ß - w) = exp*(t?) - 'l/J~ + JU = exp*(t?)
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whence
Oc T = {}

holds on C as asserted. 0

REMARK. Notice that the proof of (6.3) works whether 01' not the restrietion of
the expollential mappillg to " is a diffeomorphism.

We 1l0W begin with the preparations for the proof of Theorem 6.2. Recall
[14 H.1.7] that the derivative at Z E 9 of the exponential 11lapping exp from 9 to
G is given by thc formula

1 - e-adZ

(6.4.1) dexpz = d(Lexpz)e 0 adZ

that is,

(6.4.2) (
1· 1 2 1 3 )dexpz = d(LexPZ)e 0 1 - -adZ + ,(adZ) - ,(adZ) +... .
2 3. 4.

We now consider the exponential mapping exp from CJ to the corresponding conjugacy
dass C. Let p = exp(Z) E C ~ G. The above formula entails that the derivative

dexp z: Tz 0 --+ T pC

of the exponential mapping sends the tangent vector [X, Z] to the tangent vector

Xp - pX = (X - Ad(p)X)p E TpC.

Consequently the statelnent of Theoreln 6.2 is equivalent to the following.

Lemlua 6.5. The 2-form ß on " is givcn by the formula

ßz([X, Z], [Y, Z]) = [Z, X] . Y + ~(X . Ad(p)Y - Y . Ad(p)X).

Henceforth we write ["".] for the tripie product.

Proof. As in [15], write p = exp· A, where ,,\ refers to the fundalnental 3-form on G.
For siInplicity, write Pt = exp(tZ) E G. Wc thcn have

2ßz([X, Z], [Y, Z]) = 2 [ Ptz(Z, [X, tZ], [Y, tZ))dt

= [ [p;-l (dexPtz(Z)), Ad(p;-I)X - X,Ad(p;-l)y - Y] dt

= [ [Z,Ad(p;-I)X -X,Ad(p;-l)y - Y] dt

= [ [Z, X, Y] dt + [ [Z, Ad(p;-l )X, Ad(p;-l )Y] dt

+ [[Z, Ad(p;-l )X, -Yjdt + [[Z, -X, Ad(p;-I )Yjdt

= 2[Z,X]. Y

+ [ (Ad(exp(tZ)X, Zj. Y - [Ad(exp(tZ)Y, Zj. X) dt.,
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Howevcr,

[Ad(exp(tZ)Y, Z] = - ([Z, Y] + t[Z, [Z, YJ] + ~~ [Z, [Z, [Z, YJ]] + ... )

whence

[1 [Ad(exp(tZ)Y, Z]dt = _ ([Z, Y] + ~[Z, [Z, V]] + ~[Z, [Z, [Z, V]]] + ... )Ja 2 3.
= Y _ ead(Z)y

= Y - Ad(p)Y

alld likewise

[[Ad(exp(tZ)X, Z]dt = X - Ad(p)X

whence the assertion. D

7. The cOlnpletion of the cOllstruction

In view of (5.6) , (5.7), and (6.3) above, very lit tle work relncuns to prove the
füllowing.

Theorem 7.1. The equi'Uariant 2-fonn

(7.1.1)

on 1-l(P, G)c is closedJ and the adjoint J1~ from g to COO(1-l(P, G)c) of the smooth
equivariant map J1 from 1-l(P, G)c to g* satisfies the identity

(7.1.2)

Consequently the difference wc,P,c - J1~ tS an equivariantly closed form t71

(nd* (1-l(P, G)c)j d, oe) 0/ total degree 2.

The identity (7.1.2) says that, für every X E g,

that is, p, is fornlally amomenturn lnapping for the G-action on 1-l(P, G)c, with
reference to Wc,P,C, except that the latter is not necessarily nondegenerate; here we
have written X1l for the vector field on 1-l(P, G)c induced by X E g.
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8. Groupoids and the equivarialltly closed form

Let </; E Horn(F, G)c and suppose that </;(1') lies in the centre of G. The above
construction (3.6), applied to the present data, yields an alternating bilinear form

(8.1)

on H~ar eil", {7l"j }; Bq)) whieh is syrnpleetic, i. e. nondegenerate, provided that . IS

nondegenerate. Next, let

(8.2)

This is a 2-fonn on HOlll(F, G)c whose restrietion to Hom('iT, G)c coineides with
the restrietion of wc,'P ,0 to Hom( 7r, G)o where Hom( 7f, G)o is viewed as a subspace
of 1-l(P, G)c as explained above. Henceforth we denote by I(q) the kernel of thc
derivative T q)r occurring in (4.5.1) above. Our present goal is to prove the following.

Theorelll 8.3. Right translation identifies the restrietion of thc 2-form wc,c to !(q)

with the alternating bilinear form on Z~ar ('iT, {'iT j }; flq)) obtained as the composite of
W K,. ,q) with the projection from Z ~ar ('iT, {1rj }; Bq)) to H~ar (1r, {1rj } j Bq))'

Key Lemnla 8.4. Por an arbitrary real representation V of 1r with an invariant
symmetrie bilinear form " the value of the altemating bilinear form (3.6) on
H~ar(1r, {1rj }; V) for two parabolic V -valued 1-cocycles u and v with

(8.4.1) x j, Yj E V, 1::; j ::; n,

1S gltJen by the formula

(8.4.2)

We postpone the proof for the moment and now give the

Proof of Theorem 8.3. The chosen 2-chain c E C2(F) in the nonhomogeneous reduced
normalized bar resolution for F looks like

Define the bilinear form WC,U,q) on

(cf. (5.1)) by the explicit formula

By [15 (4.6)], the 2-forrn W c is the right translation of the antisymrnetrization of
wc,u,q) and hence the two coincide on ](q)' This involves the Alexander-Whitney
diagonal map [27] (VIII.9 Ex. 1, p. 248). Inspection shows that, still Oll Kq)' the
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relnaining ternls Zir,'" ,~r in (8.2) eorrespond precisely to the remaining terms
in (8.4.2), with V = grj>. In view of Lemma 8.4, this proves Theorem 8.3. D

The proof of the Key Lemma relies on a detailed analysis of the multiplieative
strueture of the cohomology of the group system in terms of the fundarnental
groupoid 1r = TI(r:; Po, PI, . .. ,Pn) introdueed in Section 2 above. We now explain
this.

Let F denote the groupoid which is free on the ",generators o~ (2.4). To have a

neutral notation, whenever neeessary, we shall write TI for either F 01' 7i; aeeordingly
we write II for either F or 1r. As usual, view G as a groupoid with a single objeet
~hieh we write e. Write Hom(ii, G) for the spaee of groupoid homolllorphisms from

TI to G.

The assignnlents

i(e) = Po,

ret(pj) = e,

i(x') - x·1 - l'

ret(x') - x .1 - l'

yiel,,9 obvious functors i: II -t IT and ret: TI -r II inducing adeformation retraction
of TI onto TI; cf. e. g. [8] (6.5.13) for this notion. These funetors induce maps

i*: Hom(TI, G) -r HOln(TI, C), ret*: Hom(II, C) ~ Hom(TI, C)

which, for II = F, are manifestly smooth. Vve shall oecasionally refer to i* and ret*
as restrietion and corestriction, respectively.

The obvious action of G on Hom(II, G) by conjugation extends to an action of

the group Cno ~ C x ... x G (n + 1 eopies of C) on Hom(IT, C) ~ the.... following

way: \Ve denote by s and t the source and target mappings from II to IIo. Given

a hOlllomorphislll a from IT to C and {J E Cno , the homomorphism {Ja is defined
by

{Ja(w) = {J(t(w))a(w)({J(s(w)))-l.

The orbit space for the Gno-action on Hom(IT, G) will be denoted by Rep(II, G).

As in the group ease, we denote by HOIll(IT, C)c the spaee of hOlnolllorphisnls X

frol11 TI to G for which the value x(aj) of each generator aj lies in Cj, for 1 ::; j ::; n.

The eno-action ....on Hom(IT, G) leaves the subspace H0I11(IT, G)c invariarlt, aIld we

denote by Rep(TI, G)c thc orbit space for this action. Since

the condition 'x(aj) E C/ is equivalent to the condition 'X(Zj) E Ci', which we used
in the group ease.

Proposition 8.5. The restnction mapping induces bijections

i*: R.ep(TI, G) ~ Rep(TI, G), i*: R.ep(l1, G)c -7 Rep(l1, G)c.

Thus we can study the structure of Rep(TI, G)c by looking at Rep(IT, G)c instead.
In particular, this rel11ark applies to the infinitesimal structure, in the following
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way: Write ß for t~e nonhomogeneous unreduced normalized bar resolution. Jhe
retraction ret from l1 to Il induces adeformation retraction from the nerve Nil of
l1 to the nerve lVIl of Il, and <:. canonical section for the latter is of course induced
by the injection i from Il to Il; hence ret induces adeformation retraction from
ßIT to ßIl. In particular, ßIT yielcls a free resolution of R in the category of left
RIl-modules of the ~incl written A in Section 1 above. In fact, write 7f8 for the
free subgroupoid of F having PI, . .. ,Pn as objects and a}, ... , an as free generators
for its morphisnlSj this groupoid lnay also be viewed as a subgroupoid of 7f, and
we do not distinguish in notation between the two subgroupoids. Abstractly, 7fa
amounts of course to a disjoint union of thc n free cyclic groups rrl, ... , rrn, and

in such a way that extension of scalars yields an injection of B = ffij=l Rrr CZl1rj ßrrj
of Rrr-complexes onto a direct sUlnlnand of ß'ii. The R1T-complex B plays exactly
the same role as, that denoted in Section 1 above by the same symbol, we have the
split exact sequence (1.1) at our disposal, and the quotient

ß('ii, 'iia) = AlB = ß'iiIB

computes the relative cohomology H* ('ii, 'ii8; .). With the present interpretation of
(A,B) as resolution over the group system (1T;1TJ, ... ,1Tn ), the relative cohomol­
ogy H*('ii, 'iia; .) coineides with the cohomology H*(1T, {1Tj }; .) of the group systeIn
(1T; 1TI , •.. , 1Tn), though. In particular, the standard formula for the diagonal in the
nonhonl0geneous unreduced normalized bar resolution ß'ii for 'ii yields the multi­
plicative strllcture of H* (1T, {1Tj } j .).

Proof of the Key Lemma 8.4. Let u anel v be parabolic V-valued 1-cocycles on ßrr
so that (8.4.1) holels; the calculation of the value wv([u], [vD of the pairing (3.6)
and hence (8.1) may now be split into the following steps:

(1) Extension: The composites u' = u 0 ret and v' = v 0 ret of u and v,
respectively, with the retraction ret from ß7f to ß1T yields extensions to
parabolic 11-valued l-cocycles u' and v' on ß'ii.

(2) Normalization: Normalize u' and v' to obtain groupoid cocycles u and v
which take thc value zero on the peripheral part B of the resolution, cf.
Section 1 above; notice that this amounts to the requirement that u and v
vanish on the n boundary circles SI, ... , Sn.

(3) Lifting: Lift the 2-chain c E C2 (F) of the nonl,:onl0geneous reduced nor-

Inalized bar resolution for F to a 2-ch~n cE C2 (F) of the nonhomogeneous
reduced normalizecl bar resolution for F which (i) passes to a relative cycle

for (7f, 7ra) and whieh (ii) uncler the retraction ret from C*(F) to C*(F) goes
to c.

(4) COlnputation: The value wv([u], [vD is then computed by the fonnula

(8.6) W1f([U], [vD = (c, uu V).
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VVe note that the groupoid description is crucial for the normalization in step 2;
such a nonnalization would be inlpossible for the group cocycles u and v, and a
calculation of the value wv([uJ, [vD directly in terms of u and v would lead to a
mess. Moreover, by a purely formal reasoning in the relative cohomology of the
pair (A, B) or, what amounts to the salne, of the pair (E, a~), the right-hand side
of (8.6) is weH defined and yields the pairing (3.6).

There is no luore need to COlUluent on step 1, and we now explain the other
steps.

Step 2. With reference to (8.4.1), let X and Y be the groupoid O-cocycles
defined by

X(po) = 0, X(Pj) = Xj, Y(Po) = 0,

Define u and v by

Y(p') - y.) - ), 1 :::; j :::; n.

u = u' - oX = U 0 ret - oX, v = v' - oY = v 0 ret - 8Y.

Step 3. View c as a 2-chain of F by the embedding of F into Fand let

(8.7)

Then

c= C +L ([,;]l,jaj] - [,jaj!,;l]) .
j

whence, in particular, c is illanifestly a relative 2-cycle for (7r, rra). Notice that c
itself is not a relative cycle for (rr, rr8).

Step 4. By definition

(8.8)

(8.9)

(8.10)

wV([U], [vD = (c, ü u V) =
(c, (u ' - oX) U (v' - 8Y))

+L ([,j 1 I,jaj], (u ' - oX) U (v' - 8Y))
)

- L ({,jaj I,;]], (u ' - oX) U (v' - öY))
j

The tenu (8.8) is the surn

(8.11) (c, u' U v') - (c, u' U oY) - (c, oX U v') + (c, oX U oY)

Since c is a group chain, (c, u' U v') equals (c, u U v). Further, since u' is a cocycle,

(c, u' U 8Y) = (c, -8(u' u Y)) = (-Be, u' U Y)

= L([Zj], u' U Y) = L u(Zj) . Y(po) = 0
j j
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since Y(po) = O. Likewise, the last two tenns in (8.11) involve X(Po), which is zero
as weH, so we are Ieft with (c, u U v) as the value of the entire SUln (8.11) which
cOlnputes (8.8). The term (8.9) involves n factors which lnay be conlputed as

However, U'(,jl) = u(ret,jl) = u(e) which is zero,

JX(,;I) = X(8,;I) = X(po - Pj) = -Xj,

v'("'V'a') - v(ret("'V'a')) - v(z·) - z,y· - y.I) ) -. I)) - ) - )) ),

J jaj) = Y(8(,jaj)) :::Yfiajpj - Po) = zjYj ,

and ,j and ,;1 act as the identity on V. Hence (8.9) equals

"" X·· (z·y· - y. - z·y·) - - "" X·· y.D) J J ) J J - ~ ) ).
. .

) )

Finally the term (8.10) involves n factors which may be cOlnputed as

([,jaj 1,;1J,(u' - JX) U (v' - JY))

= ((u' - JX)('jaj)). (,jaj) ((v' - JY)(,;l))

= (u(ret(,jaj)) - JX(,jaj))' (,jaj) (v(ret(,jl)) - JY(,;I))

= Cu(Zj) - X (aj Pj - Po)) . (,ja j) ( - Y (B,; 1 ) )

- (Z'X' - X· - Z·X·)· z·y·-) J ) J) J)

= -Xj . zjYj

Consequently

w\'([u]' [v)) = (c, u U v) + L Xj . (Zj Yj - Yj).

Likewise,

wv([v], [u]) = (c, v U u) + L Yj . (zjXj - X j ).

By antisymmetry,

2wv([u], [v]) = wv([u], [v]) - wv([v], tu])

= 2(c,uUv) + LXj. (ZjYj - Yj ) - LYj ' (zjXj -Xj)

- 2(c u U v) + "" (X'· z·y· - y .. z'X')-, L-t J)) )))

This proves the key Lemma. 0
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9. Stratifled synlplectic structures

Suppose that is G eOlnpaet and that the symlnetrie bilinear form . on g IS

nondegenerate. Recall that the notion of a stratified symplectic space has been
introduced in [30].

TheorelTI 9.1. With respect to the decomposition according to G-orbit types, the
space Rep( 7T', G)c inherits a structure 01 a stratified symplectic space.

In fact, the argument for the main result of [30] shows that eaeh conneeted
component of a reduced space of the kind considered inherits a strueture of a
stratified symplectic space. In the setting of [30] the hypothesis of properness is
used only to guarantee that the reduced space is in fact connected. In our situation,
we know apriori that the reduced space is connected.

Corollary 9.2. The space Rep( 7T', G)c has a unique open, connected, and dense
stratum.

In fact, this follows at Ollee fronl [30] (5.9). The stratuln lnelltiolled in the
eorollary is called the top stratum. Thus there is a eertain subgroup T of C, unique
up to eonjugaey, such that every cf; E HOln( 7T', G)c representing a point of the top
stratum has stabilizer Z4> conjugate to T. In nlany eases, T is just the centre of G,
and the top stratuln consists of representations whieh are irreducible in the sense
that the stabilizer has Lie algebra the Lie algebra of the centre of G (but the top
stratum may be smalleI' than the space of irreducible representations). See [18] for
details. There lnay be 71,0 irreducible representations at all , though. This happens
for example when 1T is abelian and G non-abelian.

10. Relationship with gauge theory constructions

For G compact, and closed [2,12] as well as punctured [4,5] surfaces, the symplectic
strueture on the top stratum of the eorresponding spaee of gauge equivalence classes
of flat connections has been described using methods of gauge theory. In this seetion
we show that the usual identification of this spaee with the corresponding spaee of
representations identifies the synlpleetie struetures on the top strata. This extends
what is done in Section 6 of [19] where, for the case of a closed surface, the
sympleetic struetures Oll all strata have been shown to correspond to cach other.

Let G be a general, not necessarily compact Lie group. The compactness
hypothesis will be lnade at the appropriate stage. Dur surface E is compact, with
n ~ 0 boundary circles SI, ... , Sn and chosen base point Po. Write E- for the
eorresponding punctured surface with base point Po whieh eontains E as a based
defonnation retract in such a way that each Sj is a circle about the corresponding
puncture. y.·.,Te do not exclude the ease of a closed surfaee and we agree that in this
case E- and E coincide.

Let ~: P --+ E- be a flat principal G-bundle, having the structure group G act
from the right as usual, and pick a base point Po of P with ~(Po) = Po. In many
eases, for example when 7T' is a free group 01' when G is simply connected, ~ will be
topologically trivial. V/rite A(~) for the space of connections on ~. The assignment
to a gauge transformation v on ~ of x v E G defined by v(Po) = Po x v furnishes a
homolnorphisln fronl the group g(~) of gauge transformations onto G. Among the
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VRnous descriptions of the space n*(~-, ad(~)) of forms with values in the adjoint
bundle

ad(~):P Xa 9 -+ 2:-

we shall take that in terms of C-invariant horizontal g-valued forols on Pj we note
that here C acts on its ~ie algebra g from the left by the adjoint representation
Ad: G -+ Aut(g) as usual.

For a smooth closed path 10: I -+ 'E- defined on the unit interval I, with starting
point Po E L-, the holonomy Holw,po(A) E C of A with reference to Po is defined by

w(l) = Po Holw,po(A) E P

where w refers to the horizontal lift of 10 having starting point Po. For b E C, we
denote by Lb the operation of left translation from g to TbC.

We lllaintain the notation of Sections 2 and 4 above. In particular, F is the free
group on the generators Xl, Yl, ... ,Xl, Yl, Zl, . .. ,Zn of (2.1) and, with an abuse of
notation, the corresponding closed (edge) paths in L representing these generators
are denoted by the same symbols. The assignlllent to a connection A of the point

of G2l+n yields a smooth map

p: A(~) ~ G2f+n = Hom(F, G)

which IS 9(~)-equivariant in the sense that

p(vA) = xvp(A)X;l, for every gauge transformation v;

this map is referred to as Wilson loop mapping in [19], where a comlnent is lnade as
to the appropriate interpretation of the property of p being Slllooth. The restrietion
of p to the subspace F(~) of fiat connections yields the standard map from F(~)

to Honl(1r, C), viewed as a subspace of Hom(F, G) via the projection from F to 7f,
and this map depends only on the choice of Po but not on the choices of closed
paths representing the generators of F. The induced map from the space of gauge
equivalence classes of Rat connections on ~ to (the corresponding open and closed
subset of) the representation space Rep(1r, C) = Hom(1r, C) / G is then independent
of the choice of Po.

Now let A be a flat connection, and let 4> = p(A) be the corresponding homo­
morphisln from :: to C. Write n1 = nl(L"ad(~)) and TIj> = TIj>G2e+n. Consicler the

uni~rsal co;::.er L- of 2:-, and suppose things arranged in such a way that 7f acts
on ~- and 'E froln the right. As usual, this action is related to the corresponding
action of 7f fr~n the left by xp = px- 1 , for x E 7f and pE ~-. After a choice 0 of
base point of.....'E- over Po has been nlade, there is a canonical smooth 7f-equivariant
map a from ~- to P over the identity mapping of 2:-; here 1r acts on P via 1; froln
the right. Explicitly, given a point p of E-, let tu be a smooth path in ~- frolll
o to p, write 10 for its projection into 2:-, and let {jj be thc horizontal lift of 10,

with reference to A and Po; then a(p) equals the end point of w. In particular, a
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induces an isomorphism of principal hundles from ~tP: E- X tP G ---t E- to ~ identifying
the obvious flat connection Aep on ~tP with A, hut this fact will not be needed
helowj here E- X tP G is the space arising from E- X C by identifying points of the
kind (p, </>( x)b) and (pcjJ( x), b) as usual.

In Section 4 above, the Lie algebra 9 has been viewed as a Zelt 1T-lnodule via
eP, written Pep and, via right translation, we identified the tangent space T ep with
the spacc Cl (P, Pr/» of gep-valued Zelt 1-cochains on (2.2). We shall use the salne
notation Pq, for p, viewed as a right 1T-lnodule. There is no conflict of notation
since the left and right 1T-actions on gare related by

xX = Xx- 1 = Ad(cjJ(x))X, X E P, x E 7r.

Accordingly, there are two notions of PtP-valued 1-cocycles: A Zeft 1-cocycle is a
function u from rr to P satisfying u(xy) = u(x) +xu(y) (= u(x) +Ad( </>( x) )u(y)) while
a right 1-cocycle is a function v fronl 1T to P satisfying v(xy) = (v(x))y +v(y) where
(v(x))y = Ad(cj>(y)-l )(v(x)). Likewise, via 4>, the group 1T acts on the de Rham
complex (n*(E-,gtP),d) froln the right, and we can take invariants (n*(E-,PtP),d)1t'.
The operator of covariant derivative dA is a differential on n*(E-, ad(~)), and the
above map (J induces an isomorphisln

(10.1 )

where on the right-hand siele the sYlnbol d refers to the usual de Rham coboundary
operator.

Proposition 10.2. For a flat connection A, with cP = p(A), under the identification
0/ TA(A(~)) = n1 with nl(~-,PtP)1r via (10.1) (in degree 1) and of T tP with
p2l+n = C1 (P, Pep) via right transZat~onJ the derivative 01 p at A assigns to a closed
rr-invariant fltP -valued 1-form {) on E- the pep-vaZued Zelt 1-cocycle Ut'J lor 1T given by
the /ormuZa

un(x) = 10

{J, lor x E 1T;
xo

here the integral is taken along any smooth path in E- from xo to 0, and E­
is viewed as a left 1T-space. This assign1nent induces the usual isomorphism from
H~(E-,ad(~)) onto H1 (rr,PtP).

Proof. Theorem 2.7 of [19] entails that, at an arbitrary connection A, not necessarily
flat, with

p(A) = (a], bl, . .. , al, bl, Cl, ... , c n ) E C2l+n
,

the differential dp(A):TAA(~) ---+ T p(A)c2t+n of p is given by the assignment to
{J E n 1(~-, ad(~)) = TAA(~) of the vector

( La! ~ 'l9,Lb l ~ 'l9, ... ,Lat ~ {J,Lbt ~ 'l9,Lcl ~ {J, ... ,Lcn ~ fJ)lXI lYl lXl lYl lZl lZn
in TalG X TblG x··· X TalG X TblG X TclG x··· X TcnG. However, when A is fiat,
the tangent lnap of p, cambinecl with the inverse of (10.1) (in clegree 1) and with
left translation from T 4> to p2l+n

, looks like

n1(~-, gtP)1t' ---+ n1 ---+ T tP ---+ g2l+n;
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it IS glven by the assignment to a 1T"-invariant g4J-valued I-form {) on E- of

Vi) = ( ~ 79,1{), ... ,~ {),1{), ~ {), ...,~zn 79) E g2l+nlXI Yl lXl Yl lZt l'i

where, with an abuse of notation, Xj, fh, and Zk refer to the unique lifts in E- with
reference to 0 of, respectively, the closed paths Xj, Yj, and Zk in E. This assignment
is in fact the degree one twisted intcgration lllapping froin (fl*(E-,gq,), d) 1t to the
cellular cochains (C*(E, gqlJ), d) with loeal eoeffieients determined by 4>, cf. Section
4 of [19] and what is said beiow. In particuIar, the cellular 1-cocycles Zl p:, fl4J)
with Iocal coefficients coincide with the flqlJ-valued right 1-cocycles for 'Tr. Thus for
a closed I-form {), the cochain v{) yields a flqlJ-valued right 1-cocycle for 'Tr. Since
integration of a closed 1-fonn on a sinlply connected space does not depend on
the choice of path hut only on the endpoints, this 1-cocycle assigns to x E 1T" the
integral

Vß(X) = [X {)
taken along any smooth path froin 0 to ox.

The tangent Illap af p, combined with the inverse af (10.1) (in elegree 1) anel
right translation from '!' l/J to g2l+n, is givell by the assignnlent ta a 'Tr-invariant

gl/J-valued 1-fonn {) on E- of the vector

( Ad(cP(Xt}) ~ {}, ... ,Ad(cP(yt))1t9,Ael(4)(zt}) ~ t9, ... ,Ad(4)(zn)) ~ t9)
lXI Yl lZt lZn

In g2f+n. For a closed I-form 79, this yields the Q4J-valued left 1-cocycle UiJ for 1T"
asslgIllng the value

-1

U{)(x) = Ad(c;b(x))v{) (x) = Ad(4)(x)) fOX {} = Ad(4)(x)) fX 0 {) = fO {)
o 0 lxo

to x E 'Tr. 0

Let A be a Rat connection on ~, and let c;b = p(A). The right-hand side of (10.1)
involves only the vector space of de Rham fornls anel the homonl0rphism r/> but
no longer the conneetion A explicitly. Thus we ean eOinpletely da away with ~

and thc Hat eonneetion A anel work entirely in terms of 4> and the loeal systeill it
defines in the following way, where for the sake of clarity we proceeel in somewhat
greater generality than actually needed: Let V be areal representation of 'Trj in the
applieation below, V will be llq,. Thc de Rllain eomplex (fl*(I:-, V), d) inherits an
obvious action of 1T" (whether 01' not we take the left 01' right incarnation thereof
will not matter any ~ore sinee both lead to the same result), and we ean eonsider

its 'Tr-invariants (fl*(E· :-...V), d)1t; by n::.eans of an isomorphism of the kind (10.1),

the cohomology R;q u iv CE·, V) of (n*(~- ,V), d) 1t actually eornputes the cohomology
of E- with values in the corresponding flat veetor bundle as usual but this is not
important here. Integration
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into the cochains

on ~. with local coefficients d~tennined by V assigns, in particular, to a 7r-invariant
V -valued closed 1-fonn {) on ~. the V-valued left 1-cocycle U i} for 7r giyen by the
formula

un(x) = {O {), for x E 7r,
Jxo

and this association induces the standard isomorphislu frolu Hfocal (~., V) onto
H1 (7r,V).

Propositi0E- 10.3. When {) is a compactly supported closed 7r-invariant V -valued
l-form on ~.J UiJ is a parabolic l-cocycleJ that is, for 1 ::; j ::; n, there is Xi E V
such that

1L{J(Z') - z'X' - X·) - )) ).

Proof. Let 1 ::; j ::; n, and pick a point si of "E •. Then

r'"where X j = J
o

J {J. However, since {) is compactly supported it vanishes in a
neighborhood of the punctures whence, for a suitable choice of 5j, the integral
J:.i8' {) is zero. 0

J J

REMARK 10.4. By pushing thc boundary circles further towards thc punctures if
necessary, in (10.3) above, we can in fact assurne that {) vanishes on ~. \ E and
hence in particular on the boundary circles SI, ... , Sn. For 1 ::; j ::; n, the point 5}

may then be taken to be the end point of the unique lift 7} of /} having starting
point 0 so that 5 i is apre-image of Pi and the integral Xi = Joai {} lnay be taken
along 7j where the notation in Section 2 above is in force. More generally, given
finitely many cOlupactly supported forms we lnay still assume that things have been
arranged in such a way that these fonns vanish on ~. \ ~.

Suppose 11 endowed with a rr-invariant symluetric bilinear form' ; together with
the wedge product of forms it iuduces abilinear pairing

We cau now speIl out the main technical stateluent of the present section.

Theorem 10.5. For compactly supported closed 7r-invariant V -valued 1~forms 7] and
{J on ~.,

(10.5.1)
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where Wv is the skew-symmetric bilinear pairing (3.6).

Here _~e refers to ~e endowed with thc orientation opposite to that dctermined
by the clisk D in Section 2 above.

Proof. Write u71 and Ul) for the corresponding groupoid cocycles arising froln u 71
and Ul) by the normalization procedure in step 2 of the proof of Lelnma 8.4. In
view of (8.6),

where c is the groupoid chain arising froln c by the construction In step 3 of the
proof of Lemlna 8.4.

We lnay suppose that "1 and {) vanish on Ee \ E, cf. Remark 10.4 above. Then

The cell decomposition of Einduces a cell decolnposition of its universal cover ~
Extending earlier notation, we denote by Xj, Yj, eh, and ':::ik the unique lifts in E
with reference to 0 of, respectively, the edge paths Xj, Yj, ak, and ,k in E. These
edge paths, together with their left...., translates under the 11"-action, constitute the
l-cells of the cell decomposition of E. Inspection shows that

U71 (Xj) = - ~ "1, u1,(Yj) = - ~ "1,
JfXj JfYj

U71 (,k) = - ~ "1, u1,(ak) = 0,
Jf~k

In other words, the groupoid cocycles u71 and ut? coincide precisely with the ?T­

equivariant V-valuecl cellular 1-cocycles 11 71 and ut? arising frorn "1 and {), respectively,
under the integration rnapping

...., .......

(S1*(E, V), d) --+ (C;ell(E, V), d)

from V -valued de Rham forms to V -valued cellular cochains E, perhaps up to a
sign depending on how things have been adjusted but irrelevant for us since the
formula (10.5.1) does not depend on this signj it depends on the orientation of E,
though.

The disk D lnentioned in Section 2 above lifts to a disk f5 in E, and the left
translates of jj under 11" constitute the 2-cells of E. Furthermore,

.......

where on the right-hand siele the wedge product 1]/\ rJ is viewed as a 2-forn1 on Ee.

The cellular chains of E are given by (2.5). Cornparing (2.7) with (8.7), viewing
c as a groupoicl cochain for 7f, and cxploitil1g thc standard fact that the integration
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mapping from de Rham cohomology to usual (cellular or singular) cohomology IS

cOlllpatible with multiplicative structures, we conclude that

10 1) !I {j = -(c, u~ U Ut7).

This cOlnpletes the proof. A eloser look shows that, after a suitable triangulation of
"E arising from the nerve of 7f, a suitably chosen 2-chain c amounts to the negative
of the corresponding subdivision of the ccllular chain D. For related matters see
for exalllpie what is said in [27) (IV.5 p. 119) and on p. 495 of [9]. 0

Now suppose G compact and connected. Then the Vvilson loop mapping p identifies
the moduli space N(~) of gauge equivalence classes of flat connections on ~ with
(an open and closed subset of) the representation space Rep(rr, G) = Hom(rr, G)/G.
Write N(~)c for the pre-image of the subspace Rep(rr, G)c = Hom(rr, G)c/G of
Rep(rr, G) = Hom(rr, G)/G under this identification; thus N(~)c consists of gauge
equivalence elasses of flat connections A so that, for 1 :::; j :::; n, thc holonomy along
some small circle about the j'th puncture lies in the chosen conjugacy elass Cj.

Suppose . nondegenerate. For a point [~] of the top stratuIll Rep(rr, G)~P of
Rep(rr,G)c (cf. (9.2) above), in view of (4.4) and (4.5), a choice of representative ~

induces an isolnorphism A4J froln H~ar (rr, {'n"j } j Q4J) onto the (usual smooth) tangent

space T[4J] (Rep(7f, G)~P); this isolnorphislll is independent of the choice of ~ in the
sense that, for every x E C, the composite

1 ( { } ) Ad(x) 1 ( {} ) >":I:</> ( ( )to P )Hpar rr, rrj ; 94J ) Hpar rr, rrj ;9x4J -r T[4J) Rep rr, G c

coincides with A4>' This makes precise the folklore statement that 'the tangent space
is the first cohomology group with coefficients in the corresponding Lie algebra
representation'; details for the special case with no punctures have been worked out
in Section 7 of [19].

Under the \Nilson loop mapping, the top stratuln Rep(rr, G)~P of Rep(rr, G)c
corresponds to the subspace N(~)~P of points [A] of N(~)c whose representatives
A have lninimal stabilizer subgroup (in the group of gauge transformations). For
a flat connection A, write H~ cCE., ad(~)) for the subgroup of the first COhOlllOlogy

group H~ (~., ad(~)) generated by classes of compactly supported 1-forms. A choice
of representative A of a point [A] of N(~)~P induces an isolllorphisill AA from
H~,c("E·,ad(~)) onto the (usual smooth) tangent space T[A] (N(e)~p) and, for a
gauge tranSfOrIllation v, the COlllposi te

H~,c("E·,ad(e)) -4 H~A,c(~·, ad(e)) AVA) T[A](N(e)~p)

coincides with AA.

Let A be a flat connection on ~ representing a point of N(~)c and let cf; = p(A).
The isomorphisIll (10.1) identifies H~!c(E·,ad(~)) with the subgroup H~quiv,c(~·,grp)

of H~quiv(~. , 9cP ) generated by elasses of COlnpactly supported elosed equivariant 1­

fOrIllS. In view of (10.3), integration identifies H~quivlC(~·' g4J) with H~ar (7f, {7f j}; 94J)'
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Suppose in addition that [Al lies in N(~)~p. Up to signe, the gauge theory description
of the 2-forUl on N(~)~P induced by . is given on the tangent space T[A] (N(~)~P)

by the left-hand side of (10.5.1) with V = 9r,b' On the tangent space T r,bRep( 7r, G)~P,
via right translation, the 2-fonn induced by . is given on H~ar (7r, {1rj}; gr,b) by the
right-hand side of (10.5.1) with V = flr,b. Theorem 10.5 implies at Ollce that the
two fonns correspond, up to sign. This identifies the gauge theory description of
the symplectic form with the representation space description given in the present
paper. Notice that the given identification is independent of the symplecticity.

A silnilar statement can he made at an arbitrary point [Al of N(~)c and the
corresponding point [</J] of Rep(1r, G)c where 4> = p(A). Choices of 4> and A still
determine linear lnaps of the kind AA and Ar,b hut these maps will in general no
longer he isomorphisms. More precisely, Ar,b induces an isolnorphism of the subspace
H~ar ( 1T , { 1rj }; fllj» Z<j) of invariants onto the smooth tangentspace at [4>] of the strattun
in wmch [4>] lies where ZIj> ~ G refers to the stabilizer of </J; a corresponding statement
can be made for A. This has been worked out for the closed case (no punctures)
in Section 7 of [19].

When G is not compact, while the statement of (10.5) is still av-dilable, there is
no good space of gauge equivalence classes of flat connections nor is there a good
space of representations since there are orbits which are not closed. The appropriate
generalization of the present results should involve certain categorical 01' algebraic
quotients.
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