
Max-Planck-Institut für Mathematik
Bonn

Transformation and integrability of a generalized short
pulse equation

by

Sergei Sakovich

Max-Planck-Institut für Mathematik
Preprint Series 2015 (52)





Transformation and integrability of a
generalized short pulse equation

Sergei Sakovich

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Institute of Physics
National Academy of Sciences
220072 Minsk
Belarus

MPIM 15-52





TRANSFORMATION AND INTEGRABILITY OF A

GENERALIZED SHORT PULSE EQUATION

SERGEI SAKOVICH

Abstract. By means of transformations to nonlinear Klein–Gordon equa-
tions, we show that a generalized short pulse equation is integrable in two

(and, most probably, only two) distinct cases of its coefficients. The first case
is the original short pulse equation (SPE). The second case, which we call the
single-cycle pulse equation (SCPE), is a previously overlooked scalar reduc-
tion of a known integrable system of coupled SPEs. We get the Lax pair and

bi-Hamiltonian structure for the SCPE and show that the smooth envelope
soliton of the SCPE can be as short as only one cycle of its carrier frequency.

1. Introduction

In this paper, we study the integrability of the nonlinear wave equation

uxt = u+ au2uxx + buu2x, (1)

where a and b are arbitrary constants, not equal zero simultaneously. The values
of a and b change under the scale transformations of u, x and t, but the ratio a/b
does not change in this way and serves as an essential parameter of (1) therefore.
This nonlinear equation (1) is a slight generalization of the well-known integrable
short pulse equation (SPE)

uxt = u+
1

6

(

u3
)

xx
(2)

which, in its turn, corresponds to the case of a/b = 1/2 in (1). The nonlinear
equation (2) appeared first in the context of differential geometry [1, 2]. Later the
SPE (2) was rediscovered in the context of nonlinear optics [3, 4], in the problem of
propagation of ultra-short infrared light pulses in silica optical fibers, and in this way
it acquired its current name and significance. The SPE has been studied in many
aspects, including its Lax pair [1, 2, 5], transformation to the sine-Gordon equation
[5, 6, 7], recursion operator and hierarchy [5, 8, 9], bi-Hamiltonian structure and
conserved quantities [8, 9], soliton solutions and periodic solutions [6, 10, 11, 12, 13],
wave breaking and well-posedness [14, 15], and integrable discretizations [16].

Our aim is to show that the generalized SPE (1) is integrable in two (and, most
probably, only two) distinct cases of its coefficients. The first case, with a/b = 1/2, is
the original SPE (2) up to a scale transformation of variables. The second case, with
a/b = 1, corresponds via a scale transformation of variables to the new nonlinear
wave equation

uxt = u+
1

2
u
(

u2
)

xx
(3)

which we call the single-cycle pulse equation (SCPE). We use this name because we
show that the smooth envelope soliton of the SCPE (3) can be as short as only one
cycle of its carrier frequency. In Section 2 of this paper, we transform the generalized
SPE (1) with any value of a/b to a corresponding nonlinear Klein–Gordon equation
whose nonlinearity depends on a/b. In Section 3, we use the previously known
results on integrability of nonlinear Klein–Gordon equations and show in this way
that the generalized SPE (1) corresponds to integrable nonlinear Klein–Gordon
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equations in the cases of a/b = 1/2 and a/b = 1 only. Next we concentrate on the
SCPE (3), reveal its relation to a known integrable system of coupled SPEs, obtain
its Lax pair and bi-Hamiltonian structure, and study its soliton solutions. Section 4
contains concluding remarks.

2. Transformation

Let us show how to transform the generalized SPE (1) with any value of a/b to
a corresponding nonlinear Klein–Gordon equation.

In the case of a = 0, we have b 6= 0 and make b = 1 in (1) by a scale transfor-
mation of variables, without loss of generality. Then it is easy to see that the new
dependent variable w(x, t),

w = arctanux, (4)

satisfies the nonlinear Klein–Gordon equation

wxt = tanw (5)

if u satisfies the considered case of the generalized SPE (1),

uxt = u+ uu2x. (6)

Note that the inverse transformation from (5) to (6),

u = wt, (7)

is also a local transformation, that is, like (4), it requires no integration.
From now on, we consider the case of a 6= 0 and follow the way of transformation

used in [7]. Introducing the new independent variable y,

x = x(y, t), u(x, t) = p(y, t), (8)

and imposing the condition
xt = −ap2 (9)

on the function x(y, t) to considerably simplify the result, we cast the studied
equation (1) into the form

xypyt + (2a− b)pp2y − px2y = 0. (10)

Note that this equation (10) is invariant under the transformation y 7→ Y (y) with
any function Y . This means that solutions of the system of equations (9) and (10)
determine solutions of the studied equation (1) parametrically, with y being the
parameter. Next we introduce the new dependent variable q(y, t), such that

xy =
1

q
py, (11)

which means that q(y, t) = ux(x, t). Compatibility condition xty = xyt for (9) and
(11) reads

pyt =
1

q
pyqt − 2apqpy. (12)

Eliminating xy from (10) and (11), and using (12), we obtain the expression for p
in terms of q,

p =
qt

1 + bq2
, (13)

and the third-order equation for q,
(

log

[

(

qt
1 + bq2

)

y

])

t

− qt
q
+

2aqqt
1 + bq2

= 0. (14)

Solutions q(y, t) of this equation (14) determine solutions of the second-order equa-
tion (1) parametrically, via (8), (9), (11) and (13). The fact that the order of (14)
exceeds the order of (1) by one (hence, there is one extra arbitrary function in the
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general solution of (14)) means that the arbitrariness y 7→ Y (y) of the parameter
y is still not fixed.

Let b = 0. Since a 6= 0, we make a = 1 in (1) by a scale transformation of
variables, without loss of generality. In this case, integrating (14) over t, we get

log qyt − log q + q2 = c(y), (15)

where the arbitrary function c(y) is the “constant” of integration. We choose c(y) =
0 without loss of generality, because it is always possible to make c(y) = 0 in (15) by
the transformation y 7→ Y (y) with a properly chosen function Y . Note that, when
the function c(y) is fixed, the arbitrariness of the parameter y is reduced only to
the shifts y 7→ y + y0 with any constant y0. As the result, we obtain that solutions
of the considered case of the generalized SPE (1),

uxt = u+ u2uxx, (16)

are determined parametrically by solutions of the nonlinear Klein–Gordon equation

qyt = q exp
(

−q2
)

(17)

via the relations

u(x, t) = qt(y, t),

x = x(y, t) : xy = exp
(

−q2
)

, xt = −q2t , (18)

where y serves as the parameter.
Let b 6= 0. In this case, we make b = 1 in (1) by a scale transformation of

variables, integrate (14) over t, and get

log
[

(arctan q)yt

]

− log q + a log
(

1 + q2
)

= c(y), (19)

where the arbitrary function c(y) is the “constant” of integration. Next we make
c(y) = 0 in (19) by the transformation y 7→ Y (y) with a properly chosen Y (y), and
introduce the new dependent variable r(y, t),

r = arctan q. (20)

As the result, we obtain that solutions of the considered case of the generalized
SPE (1),

uxt = u+ au2uxx + uu2x, (21)

are determined parametrically by solutions of the nonlinear Klein–Gordon equation

ryt = sin r(cos r)2a−1 (22)

via the relations

u(x, t) = rt(y, t),

x = x(y, t) : xy = (cos r)2a, xt = −ar2t , (23)

where y serves as the parameter. Note that a is an arbitrary nonzero constant in
this case. However, if we set a = 0, the expressions (22) and (23) correctly reproduce
the expressions (5) and (7), respectively.

3. Integrability

We have transformed the generalized SPE (1) with any value of a/b to a cor-
responding nonlinear Klein–Gordon equation whose nonlinearity depends on the
value of a/b. Now, using previously known results on integrability of nonlinear
Klein–Gordon equations, we can draw a conclusion on integrability of the general-
ized SPE.
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Integrability of nonlinear Klein–Gordon equations has been studied very well.
According to the classification made in [17], the equation

zξη = f(z) (24)

possesses a higher symmetry if and only if the function f(z) satisfies one of the
following two conditions:

f ′ = αf (25)

or

f ′′ = αf + βf ′, (26)

where z = z(ξ, η), the prime denotes the derivative with respect to z, the constant
α in (25) is arbitrary, while the constants α and β in (26) must satisfy the condition

β
(

α− 2β2
)

= 0. (27)

Consequently, up to scalings and shifts of variables, only three distinct nonlinear
equations of the form (24) possess nontrivial groups of higher symmetries: the
Liouville equation (Darboux integrable), the sine-Gordon equation (Lax integrable),
and the Tzitzeica equation (Lax integrable). No more integrable nonlinear equations
of the form (24) have been discovered by various methods as yet.

The right-hand sides of the nonlinear Klein–Gordon equations (5) and (17) do
not satisfy the conditions (25) and (26). The right-hand side of the nonlinear Klein–
Gordon equation (22) fails the condition (25) as well, but it satisfies the condition
(26) provided that a = 1/2 or a = 1. In the case of a = 1/2, we obtain from
(21)–(23) the well-known transformation [6]

u(x, t) = rt(y, t),

x = x(y, t) : xy = cos r, xt = −1

2
r2t (28)

which relates the original SPE (2) with the sine-Gordon equation

ryt = sin r. (29)

In the case of a = 1, using the new dependent variable s(y, t),

s = 2r, (30)

we obtain from (21)–(23) the transformation

u(x, t) =
1

2
st(y, t),

x = x(y, t) : xy =
1

2
+

1

2
cos s, xt = −1

4
s2t (31)

which relates the SCPE (3) with the sine-Gordon equation, too,

syt = sin s. (32)

Consequently, there are two (and, most probably, only two) distinct integrable
cases of the generalized SPE (1), namely, the original SPE (2) and the SCPE (3),
and they are two different “avatars” of one and the same sine-Gordon equation.
The words “most probably” mean, of course, that the validity of our conclusion
relies on the completeness of the known list of integrable nonlinear Klein–Gordon
equations.

From now on, we study the new integrable equation (3). Since we know the
transformation (31) relating the SCPE (3) with the sine-Gordon equation (32),
we can derive the Lax pair, bi-Hamiltonian structure and soliton solutions of the
SCPE from the corresponding known objects of the sine-Gordon equation, in the
way successfully used in [6, 18, 19, 20, 21, 22] for other equations. There is, however,
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the following easier way, at least for what concerns the Lax pair and bi-Hamiltonian
structure.

Let us give one example of how our result on integrability of the generalized SPE
(1) can be used. Consider the system of two symmetrically coupled SPEs

uxt = u+
1

6

(

u3
)

xx
+ gv2uxx, vxt = v +

1

6

(

v3
)

xx
+ gu2vxx, (33)

where g is an arbitrary constant. This system is a slight generalization of the in-
tegrable system of Feng [23] which, in its turn, corresponds to the case of g = 1/2
in (33). Are there any other integrable cases of the system (33) besides the known
case with g = 1/2? If we set v = 0 or u = 0 in (33), this two-component system
reduces to the integrable SPE (2) for u or v, respectively. However, if we set

v = ±u, (34)

the system (33) reduces to the generalized SPE

uxt = u+

(

g +
1

2

)

u2uxx + uu2x (35)

which, as we have already shown, is integrable in two (and, most probably, only
two) cases. The case of g = 0 in (35), when the equations in (33) are decoupled,
is the SPE (2). The case of g = 1/2 in (35), when (33) is the system of Feng, is
the SCPE (3). Taking into account that reductions of an integrable system must be
integrable themselves, we conclude that the system of Feng is (most probably) the
only integrable case of the coupled SPEs (33). As a by-product, we have established
the fact which was surprisingly overlooked in the literature till now, namely, that
the system of Feng [23] possesses two different scalar reductions, the SPE (2) and
the SCPE (3).

Since the Lax pair and bi-Hamiltonian structure of the system of Feng have
already been obtained in [22], we can use them to obtain the Lax pair and bi-
Hamiltonian structure of the SCPE (3) via the reduction (34). Taking from [22] the
Lax pair of the system of Feng and setting v = −u (note the choice of the sign), we
get the following Lax pair of the SCPE (3):

Ψx = XΨ, Ψt = TΨ (36)

with

X =

(

λ
(

1− u2x
)

2λux
2λux −λ

(

1− u2x
)

)

,

T =

(

λu2
(

1− u2x
)

+ 1
4λ 2λu2ux − u

2λu2ux + u −λu2
(

1− u2x
)

− 1
4λ

)

, (37)

where Ψ(x, t) is a two-component column, and λ is the spectral parameter. The
choice of v = u, however, would bring us to a “fake” Lax pair (36) with some
diagonal matrices X and T , which is equivalent to the conservation law

(

u2x
)

t
+
(

−u2 − u2u2x
)

x
= 0 (38)

of the SCPE (3). Next, taking from [22] the bi-Hamiltonian structure of the system
of Feng and applying the reduction (34) with any choice of the sign, we get the
following bi-Hamiltonian structure of the SCPE (3):

D = ∂−1
x , H =

∫

dx

(

1

2
u2 − 1

2
u2u2x

)

, (39)
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and

D =
[

∂−1
x

(

1− u2x
)

+ 2ux∂
−1
x ux

]

∂−1
x

[(

1− u2x
)

∂−1
x + 2ux∂

−1
x ux

]

,

H =

∫

dx

(

−1

2
u2x

)

, (40)

where D and H denote the Hamiltonian operator and functional, respectively, so
that ut = D(δH/δu) is the evolutionary form of (3) for D and H given either by
(39) or by (40).

Finally, let us proceed to the soliton solutions of the SCPE (3). We derive them
from the known soliton solutions of the sine-Gordon equation (32), using the trans-
formation (31). For any given solution s(y, t) of the sine-Gordon equation (32),
the relations (31) determine u as a function of y and t uniquely, and determine
x as a function of y and t up to an additive constant of integration. This deter-
mines a solution u(x, t) of the SCPE (3), given in a parametric form, with y being
the parameter. The invariance of the sine-Gordon equation (32) under the Lorentz
transformation

y 7→ γy, t 7→ γ−1t, s 7→ s (41)

corresponds via (31) to the invariance of the SCPE (3) under the scale transforma-
tion

x 7→ γx, t 7→ γ−1t, u 7→ γu, (42)

where γ is any nonzero constant. We can put the source solution of the sine-Gordon
equation into a simpler form by (41), in order to simplify the symbolic integration
required to obtain x(y, t). Then we can use (42) to generalize the target solution of
the SCPE, if necessary. Also we can simplify the source solution of the sine-Gordon
equation by shifts of y and t, y 7→ y+y0 and t 7→ t+ t0. A shift of t in s(y, t) causes
the same shift of t in u(x, t), while a shift of y has no effect on the target solution
of the SCPE.

Taking the kink solution [24] of the sine-Gordon equation (32), in the form

s = 4arctan[exp(y + t)] (43)

simplified by the Lorentz transformation (41) and a shift of y, we obtain via the
transformation (31) the following parametric expressions for the corresponding so-
lution of the SCPE (3):

u = 1/ cosh(y + t), x = y − tanh(y + t), (44)

where y serves as the parameter, −∞ < y < ∞, and the constant of integration
in x has been fixed so that x|y=t=0 = 0. (If we took the antikink solution of the
sine-Gordon equation as a source solution for the transformation (31), the target
solution of the SCPE would differ from (44) in the sign of u only.) This solution
(44) is the cusped soliton (cuspon) shown in Figure 1, which moves from the right
to the left with constant shape and unit speed. The angle of the cusp of this soliton
is zero, because the approximation

u ≈ 1− 1
3
√
2
(x+ t)2/3 (45)

is valid for |x+ t| ≪ 1. We can generalize this solution (44) by the scale transforma-
tion (42), thus obtaining either a bigger and faster cuspon or a smaller and slower
one. Let us also remind that the soliton solution of the SPE (2), which corresponds
via the transformation (28) to the same kink solution of the sine-Gordon equation,
is the loop soliton [6].

It is easy to see why and when the transformation (31), being applied to a smooth
solution of the sine-Gordon equation (32), generates a solution of the SCPE (3) with
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Figure 1. The cusped soliton (44): t = 1 (solid) and t = −1
(dashed).

a singularity. From (31) we get the relation

ux(x, t) =
sin s(y, t)

1 + cos s(y, t)
. (46)

Then it immediately follows from (46) that the target solution u(x, t) of the SCPE
can be free from singularities only if the corresponding source solution s(y, t) of the
sine-Gordon equation nowhere reaches any of the values

s = π ± 2πk, k = 0, 1, 2, . . . , (47)

for which |ux| → ∞. Any solution of the sine-Gordon equation, which contains
asymptotically free kinks or antikinks at large t, does not satisfy this requirement,
and the corresponding solution of the SCPE has to contain cusps therefore. Con-
sequently, in order to obtain any smooth solution of the SCPE, we have to take a
source solution of the sine-Gordon equation containing only breathers, which are
known to be the bound kink-antikink states.

Let us take the breather solution [24] of the sine-Gordon equation (32), simplified
by the Lorentz transformation (41) and shifts of y and t, that is

s = −4 arctan

(

m sinψ

n coshφ

)

, (48)

where m is a constant, 0 < m < 1, and

n =
√

1−m2, φ = m(y + t), ψ = n(y − t). (49)

Applying the transformation (31) to the solution (48), we obtain the following
parametric expressions for the corresponding solution of the SCPE (3):

u = 2mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
,

x = y +mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
, (50)
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Figure 2. The overcritical envelope soliton (50) with m = 0.85 >
mcr: t = 0.9 (solid) and t = −1.8 (dashed).

where y serves as the parameter, −∞ < y <∞, and the constant of integration in x
has been fixed so that x|y=t=0 = 0. Of course, this solution (50) can be generalized
by the scale transformation (42) and shifts of x and t, if necessary.

The obtained solution (50) of the SCPE (3), which we call the pulse solution or
the envelope soliton, is free from singularities not for all values of m. It is easy to
see that the function s(y, t) given by (48) does not reach any of the values listed in
(47), for all y and t, if and only if

0 < m < mcr = 1/
√
2 ≈ 0.707. (51)

Therefore, in the overcritical case, when m > mcr, the pulse solution (50) contains
cusps, as shown in Figure 2. In the undercritical case, when m < mcr, the pulse
solution (50) represents a smooth envelope soliton, a typical example of which
with a small value of m is shown in Figure 3. The envelope curve of this pulse is
determined by the hyperbolic functions in (50) and moves from the right to the
left. The oscillatory component of this pulse is determined by the trigonometric
functions in (50) and moves from the left to the right. The smaller the value of
m, the larger the number of oscillations in the pulse. For very small values of m,
m≪ 1, we find from (50) that x ≈ y and

u ≈ 2m
cos(x− t)

cosh[m(x+ t)]
. (52)

On the other hand, if the value of m tends to mcr in the undercritical case, the
smooth envelope soliton of the SCPE (3) can be as short as only one cycle of its
carrier frequency. This is shown in Figure 4. Let us also remind that the smooth
envelope soliton of the SPE (2), which corresponds via the transformation (28) to
the same breather solution of the sine-Gordon equation, cannot be shorter than
approximately three cycles of its carrier frequency [6].
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Figure 3. The undercritical envelope soliton (50) with m = 0.2 <
mcr: t = 15 (solid) and t = −15 (dashed).
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Figure 4. The critical envelope soliton (50) with m = 0.707 ≈
mcr: t = 0 (solid), t = −1.1 (dashed), and t = −2.2 (dotted).

4. Conclusion

In this paper, we have studied the integrability of a nonlinear wave equation
which slightly generalizes the well-known integrable short pulse equation (SPE).
We have transformed this generalized SPE to nonlinear Klein–Gordon equations
whose nonlinearities depend on the coefficients of the generalized SPE. We have
shown in this way that the generalized SPE is integrable in two distinct cases of its
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coefficients and that no more integrable cases should be expected unless the known
list of integrable nonlinear Klein–Gordon equations is incomplete.

The first integrable case is the original SPE, while the second one is a new equa-
tion which we have called the single-cycle pulse equation (SCPE) due to properties
of its solutions. The SPE and the SCPE are two different “avatars” of one and
the same sine-Gordon equation. Moreover, the SCPE is a previously overlooked
scalar reduction of the integrable system of coupled SPEs of Feng. We have ob-
tained the Lax pair and bi-Hamiltonian structure for the SCPE. From the kink and
breather solutions of the sine-Gordon equation we have derived the corresponding
cusped soliton and envelope soliton solutions of the SCPE. We have shown that the
smooth envelope soliton of the SCPE can be as short as only one cycle of its carrier
frequency.

Consequently, the SCPE is an interesting new equation of soliton theory, which
deserves further investigation in many aspect, including its hierarchy, conserved
quantities, multi-soliton and periodic solutions, problems of wave breaking and well-
posedness, integrable discretizations and multi-component generalizations. More-
over, owing to the properties of its smooth envelope soliton, the SCPE is able to
appear in physics and technology as a model equation describing the propagation
of extremely short wave packets in certain media with cubic nonlinearities.
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[3] T. Schäfer, C.E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media,

Physica D 196 (2004) 90–105.
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