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Elliptic surfaces with fixed jacobian

Gang Xiao*

This is the first part of a study on the geometry of algebraic elliptic surfaces over the
complex field. In this paper, we will give the structure of the moduli space of algebraic
elliptic surfaces with a fixed jacobian fibration:

Given an elliptic fibration j : J — C with a unit section such that ¢(J) = ¢(C)
and k integers my,...,my with- m; > 2, the coarse moduls space of algebraic
elliptic fibrations with j as jacobian fibration and with k muliiple fibres of multi-
plicities my, ..., mx 18 a number of disjoint copies of a quasi-projective variety of
dimension k, the set of the copies being naturally parametrized by the Shafarevich-
Tate group of j. This quasi-projective variety is srreducible when j is stable.

The exact description of this structure is to be found in Theorem 3.9.

Historically, there are two classical approaches to the classification of elliptic surfaces
with given jacobian fibration.

The point of view adopted by Kodaira is purely analytic. In [Kol], Theorem 10.1,
Kodaira gives the classification of all analytic elliptic fibrations without multiple fibres
associated to a given jacobian fibration. Combined with his logarithmic transforms intro-
duced in [Ko2], one arrives easily at a classification of fibrations with multiple fibres as
well.

The main shortcoming of Kodaira’s approach is that it does not work well with al-
gebraic fibrations, especially those with multiple fibres. In fact, the operation Kodaira
uses to reach fibrations with multiple fibres — logarithmic transforms — almost always
transforms an algebraic fibration into a non-algebraic one.

* Also partially supported by CNSF



On the other hand, the étale cohomology theory of Ogg-Shafarevich goes to the other
extremity. The set of algebraic fibrations with a given jacobian fibration is described as an
étale cohomology group in this theory. This theory is valid for any one-dimensional family
of abelian varieties in any characteristics, but at least as long as complex elliptic surfaces
are concerned, the heavy cohomological machinary used in the arguments hides away most
of the geometric significance of the results. For example, the group structure on the above
set does not reveal much of the geometric structure of the moduli space.

Here we propose a new approach for the study of algebraic elliptic surfaces over the
complex field, which also brings a link between the above two classical theories. Our
method is based on an operation called “fibre twist”, which is described in terms of topo-
logical surgery, in much the same way as Kodaira’s logarithmic transform. When fibre
twists of infinite order are allowed, they include logarithmic transforms as a special case;
when only finite-order fibre twists are considered, they are just the geometrical interpre-
tation of a torsor. And our basic result in this paper is that every algebraic fibration

can be obtained from its jacobian fibration, via a finite step of finite-order fibre twists
(Theorem 3.4).

Closely related to the operation of fibre twists is a special kind of divisors on the
elliptic surface called n-multisections, which are divisors whose restrictions to general
fibres are contained in subgroups generated by elements of order n (Definition 3.1). These
divisors behave especially well under the fibre twists, and they characterise in some sense
line bundles of degree d on the surface (see the proof of Lemma 3.3).

Using fibre twists and multisections, we are able to get the explicit structure of the
moduli of elliptic fibrations with a given jacobian fibration and a given set of multiplicities
for multiple fibres (Theorem 3.9). In particular, we find that although in general this
moduli has infinitely many components, these components are just copies of one of them,
the latter being quasi-projective. So we still have some kind of finite type here.

In the last section, we compare this approach with that of Ogg-Shafarevich, with a
new computation of the Shafarevich-Tate group which gives the cotorsion part as well as
the formula of Ogg-Shafarevich for the corank. This computation has the advantage of
revealing the relation between the Shafarevich-Tate group and the internal geometry of
the surface (i.e. the Mordell-Weil group).

Our treatment in this paper is elementary throughout. But as our main goal is the
geometry of the moduli space for elliptic surfaces, no effort is made to present the theory
in a manner as general as possible.

In a later occasion, we will use the tools developed here to study the moduli spaces
of complex algebraic elliptic surfaces. One sees already from the results here a fibre space
structure of those moduli spaces: the correspondence between elliptic fibrations and their
jacobians gives a projection of such a moduli space onto that of elliptic fibrations with a sec-
tion; and the fibres of this projection are quotients of the spaces described in Theorem 3.9
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by the involution induced by the elliptic involution on the jacobian fibration.

The author is indebted to Igor Dolgachev and Michel Raynaud for their helps con-
cerning Ogg-Shafarevich theory.

§1. Basics of fibre twists

We first give the general definition of a fibre twist, which is a priors a topological
construction.

Let S be a complete complex analytic surface, with a fibration f: S — C over a non-
singular curve C, whose general fibres are smooth curves of genus ¢ > 1. By definition,
the sheaf of vertical automorphism groups G associated to f is such that for any analytic
open set U of C', G(U) equals the group of automorphisms of f~!(U) fixing each fibre.

Definition 1.1. Let U be an open set of C, s a section of G(U), p a point in the
closure of U. s is finitely extendable to p, if for a neiborhood A of p, there is a finite
cover m: A — A ramified on p, and an open set U in A with n(0) = U, such that:

Let fz : Sz — A be the relatively minimal smooth model of the pull-back of f by
7. Then there is a holomorphic section § in the sheaf of vertical automorphisms of f3
such that 3|5 equals the pull-back of s, and that 3|,-1(, is of finite order.

Note that if # : A — A is a cover ramified on the inverse image of p, and fj : 53 — A
is the relatively minimal model of the pull-back of fz, then by the uniqueness of fz, §
pulls back to a (unique) section 8 of vertical automorphisms of §;. This allows us to
assume that f3 is semi-stable. Then in this case it is easy to see that the order of
8|(moir)-1(p) €quals that of 3|,-1(,), therefore we can further assume that the degree of =
is a multiple of the order of 3|,-1(,).

Let P be a path in the curve C, i.e. a continuous map
P:I1=[01]—C,

such that there exists a finite open cover Uy,...,Ur of I such that P maps each U;
homeomorphically onto its image in C. Let P’ be the interior of P (i.e. the image of
I' = (0,1)). For the sake of simplicity, we will also suppose that the restriction of G on
P’ is locally constant, and that the fibres of f over points in P’ are smooth.

To define a fibre twist along the path P, we first consider the simple case where P
maps I homeomorphically onto its image in C, so that there exists an open neighborhood
U of P’ with an orientation-preserving homeomorphism p: U — I' x (-1,1) (for a fixed
orientation on I' x (—1,1)), such that po P maps I' homeomorphically onto I' x {0}.
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We may also suppose that the restriction of G on U is locally constant (hence constant
as U is simply connected).

Now let po,p1 be the terminal points of P, C' = C — {po,p1} the open curve. Let
s be a holomorphic section of G on U, finitely extendable to py and p;. Then the fibre
twist of f along P, with s as tuisting section, is a fibration f; : §; — C, constructed as
follows:

Let Ut = p~((I' x [0,1)), U~ = p~'((I' x (~=1,0]), and let f} : S} — Ut be the
restriction of f over U*. Define similarly S, Sy, etc. If we glue f and f such that

for each point p on P, f,}"gl(p) is mapped to fa_l(p) (they are the same fibre of f) via
the automorphism s|,, we get a new fibration

fur: S —U.
Then we can glue fy; back to the old fibration over C' — U, to get a new fibration
fi:81—C".
The condition that s is a holomorphic section guarantees that S} is an analytic surface.

Lemma 1.2. There is a uniquely determined smooth complete analytic surface S,
with a fibration f1: 5, — C, such that:

1. The restriction of fi over C' equals f|;

2. there i3 no (—1)-curve contained in fibres of f1;

9. when g = 1, let t be a continuous section of f over P, and let t{*,t\" be the
two imagesections of t|p: in fi|pr, under the identifications over Ut and U~. Then the
closures of t'1+ and t]” in S are two continuous sections of fi|p.

Proof. The problem is local over the terminals of P. Therefore let p be one of the
terminals of P, and A a small neighborhood of p isomorphic to the unit disk with p as
the center, A* = A — {p}. We may also assume

PNnA={z€e AR(2z)20,3(z) =0} .

Let 7 : A — A be a base change as in Definition 1, such that the pull-back fibration f A
is semi-stable, and that the degree d of 7 is a multiple of the order of 3|z-1(,). Then there
is a section &' of finite order of vertical automorphisms of fz , such that 3'|,-1(,) = 3[r-1(p)
(and then we can suppose that the order of 3 divides d):

In fact, we can take §' = § when ¢ > 1, because an automorphism of a general fibre
of fi is always of finite order; when g = 1, the central fibre of f3 is of type I, in
the notation of Kodaira, and the automorphism group of this fibre is an extension of the
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automorphism group of the dual graph of this fibre by that of one of the components (the
latter being Aut(C*) = Q/Z when m > 0). Then one verifies directly that any element
of finite order in this group can be finite-order extended over A. Moreover, in this case
f = 35— & is a section composed of translations, hence it can be considered as a section
of fz, after fixing a unit section. Then as t passes through the neutral component of
the central fibre, it can be lifted to a section f of the Lie algebra R f A‘OS Through
a trivialisation R! fa.0s; & =~ A x C, t becomes a holomorphic function A — C, which
maps the central point 7~!(p) onto 0.

Let G = (v) & Z; be the Galois group of =, such that the action of v is a rotation
of degree 2w /d. This action of G lifts naturally to an action o : G — Aut(S3), such that
Sa is the relatively minimal smooth model of the quotient Sz /a(G).

Consider the automorphism p = a(y) 03’ of S;. Because a(-y) and §' do not neces-
sarily commute, we do not have p? = 1 in general. But p? is in any case an automorphism
of finite order on Sz, inducing identity on A. If we change 7 into the base change of
degree ed, where e is the order of p?, then p®® = 1. This allows to suppose p¢ = 1,
and get another action a' : G — Aut(S3z), with o'(y) = p. Let fy: 534 — A be the
relatively minimal smooth model of the quotient S3/a'(G). We now prove that fa|a. is
isomorphic to f]

A+, so that we can glue f, to f] to get our completion f; over p.

Indeed, there is nothing to show when g > 1 because §' = 5. Therefore suppose
g=1,and let A'=A - PNA. We can find an analytic section v of fz]a+, and as f] is
also a fibre twist of f, over A (with an image of  as twisting section), we have a canonical
isomorphism p : fz-l(A') — fI7Y(A"). Let ,,%; be the closures of v in f{7*(A*) and
f; 1(A*). For every point = € PNA*, the restriction of §; to the fibre over z is composed
of two points ¥; o(z) and ¥;1(z), where ¥; o(z) is the closure of v;|y+. We may suppose
that 9y 0(z) = ¥2,0(x) for any z € PN A*, and consider this point as the unit point of the
fibre over z. Then %27 — ;3 is just the image of i, via a lift of P onto A.

Now let z be a local parameter of A, with z = 0 at p. Then we have i = ¢(z),
where ¢ is a holomorphic function in ¢z, with ¢(0) = 0. Fix a trivialisation V =
R fl.Osi|ar & A' x C,and let 8 : V — f'"!(A’) be the covering map. Consider the
function ®(2) = 55¢(2)logz. ® defines a holomorphic isomorphism

P f7N (A — 7N (A
such that

p'(z)=p(z) = 0(f2(z),2(f2(2))) ,

where the addition is made through the group structure of the fibre. One checks immedi-
ately that p' extends to a holomorphic isomorphism over A*.

Moreover, as @ has a unique limit 0 at p, condition 3 is satisfied by the fibration f,
over p.
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It remains to show the uniqueness. But this is automatic when ¢ > 1, as the central
fibre is determined by the moduli map and the local Picard-Lefschetz monodromy. And
for ¢ = 1, the jacobian fibration of f; is determined for the same reason, therefore the
only thing to prove is thast the multiplicity of the central fibre over p is determined by
condition 3.

To see this, let f2 A : S2,o — A be another completion of f| over p, and let « : A
A be a base change such that the minimal models of the pull-backs of fi|a and f; o are
both semi-stable. As these two pull-backs both have a section, they are isomorphic, so we
may note them by a same fibration f3 : S; — A. Let G = Z, be the Galois group of .
There are two actions ay,az : G — Aut(S3), such that f{'(A) and S;,a are respectively
the minimal models of the quotients Sz /a1(G) and Sz /a2(G). Now using condition 3,
one sees immediately that the restrictions on the central fibre of f; of these two actions

of G are identical. QED

Roughly speaking, the operation of fibre twist is to cut the surface S along the inverse
image of the path P, then repaste fibre-to-fibre, modulo automorphisms provided by the
twisting section s. The fibrations f and f; arelocally isomorphic except over the terminals
of P.

The case of general P is reduced to the above simple case by cutting P into a finite
number of simple segments:

Let 0 = pg < p1 < --- < pn =1 be a series of points in I such that each I; is sent
homeomorphically to its image by P. Let P; : I; = [pi—1,ps] = C, i = 1,...,n, is the
i-th segment of P. A section s of P™!(G) is by definition piecewise holomorphic if on
each I;, s|p, is the restriction of a holomorphic section s; of G on a tubular neighborhood
of P;, such that s;|p; = sit1lp; is of finite order for ¢ =1,...,n - 1.

Starting from a fibration f:§ — C, we can construct a series of fibrations f; : §; —
C,1=1,...,n, such that f; is the fibre twist of fi_; along the path P;, with twisting
section s;. Now the final step f, : S, — C is by definition the fibre twist of f along P,
with s as twisting section.

Just as in the proof of Lemma 1.2, one shows easily that around each point p;,
t=1,...,n—1, the local effects of the i-th and 7 + 1-th twists cancel each other, so that
f and f, are locally isomorphic except at py and p,,.

Remark. For a fibre twist @ transforming f: S — C into f; : §; — C, there is
an inverse twist ©~! transforming f; : §; — C into f : § — C, which is along the same
path of ©, but uses the inverse of the twisting section of © as twisting section.

Example 1.3. Logathrimic transforms are fibre twists.

Let f: S — C be an elliptic fibration, p € C a point such that the fibre F' over p is
of type I,. Let A be a small neighborhood of p isomorphic to the unit disk with p as
the center. -
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The original description of a logarithmic transform centered at p is composed of two
successive fibre twists: the first twist is along a ray of A, joining p to a point ¢ at the
boundary of A, with a twisting section of finite order; the second is along the boundary
of A with ¢ as base point, and with a logarithmic twisting section to kill the multiplicity
of the fibre over ¢ introduced by the first fibre twist.

This operation is equivalent to a single fibre twist, along the ray joining p and ¢,
using a twisting section which finite-order extends non-trivially over p, but trivially over

q.

Lemma 1.4. Let f,: 51 — C be a fibre twist of f: S — C, with a twisting section
s of finite order (i.e. for every point p of P, s|, is of finite order). Then Sy s algebraic
iff S is algebraic.

In particular, fibre twists on a fibration with g > 2 always result in algebraic fibrations.

Proof. It suffices to prove one side: §; is algebraic when § is.

It results from the condition that s is of finite order that s is contained in a finite
sub-group sheaf H of G.

Let D be a sufficiently ample reduced and irreducible divisor on §. The orbit of
D under the action of ‘H is an effective divisor E on §, and f maps every irreducible
component of E surjectively onto C'. Therefore it is easy to see that for a sufficiently
ample divisor B on C, E + f*(B) is ample. QED

Remark that a twisting section of finite order is always finitely extendable to the ter-
minals, Also by the continuity of the twisting section, if a fibre twist satisfies the condition
in Lemma 1.4, the order of s|, for p € P' does not depend on p. This order will be called
the sectional order of the fibre twist.

Through a suitable triangularisation of the base curve C, one shows easily the follow-
ing result.

Proposition 1.5. Let f: 5 — C and f, : S = C be two fibrations, the general
fibres of both are curves of genus g. Suppose that the moduli map p: C — Mg induced by
f and f, are the same, where M, is the moduli space of stable curves of genus g. Then
f can be transformed into f; by a finite number of fibre twists.

As in [X1], fibre twists of finite sectional order can also be defined in terms of finite
base changes, which also works over positive characteristics:

Suppose that a fibre twist of finite sectional order n transforms a fibration f: 5 — C
into f; : 57 — C, and let ‘H be the finite sub-group sheaf of G containing the twisting
section. Let # : € — C be the Galois base change such that the pull-back H of H is
decomposed into sections. Let ¥ be the inverse image in C of the terminal points of the
twisting path, and let ¢' =€ - T,



The fibre twist on C pulls back to a monodromy homomorphism
pim (') — Aut (M)
which has finite image due to the generic triviality of H. Let
#:C—C

be the finite Galois map associated to Ker(u). It follows from the construction that the
composite map 7 o ¥ is Galois. Let G be the Galois group.

Now the pull-backs of f and f; by # o & are isomorphic. Let f : § = C be this
pull-back. We have two actions of G on S, p and p;, such that S (resp. Sj) is a smooth
model of the quotient $/p(G) (resp. 5/p\(G)). Take a general fibre F of f. The fibre
twist is uniquely determined by the action

T:G—rAut(ﬁ‘)

such that 7(v) = p1(y™") 0 p(7).

§2. Translating twists

Our main purpose in this paper is to use fibre twists to construct all the elliptic
fibrations associated to a given jacobian fibration. This leads to the following definition.

Definition 2.1. A fibre twist between two elliptic fibrations is called translating, if
the twisting section is composed of translations of finite order.

The following properties are immediate from the definition:

1) Translating twists are algebraic.
2) Elliptic fibrations differing by translating twists have the same jacobian fibration.

3) The only local differences introduced by a translating twist are the multiplicities
of the fibres over the terminals of the twisting path.

From now on, we will only consider elliptic fibrations, and all fibre twists will be
translating, if not otherwise specified.

Note that in the sheaf G of vertical automorphism groups associated to an elliptic
fibration f : S — C, the subsheaf consisting of translations is canonically isomorphic to
the Néron mode] of the jacobian fibration. Thus for a fixed jacobian fibration 7, translating
twists form a group acting on the set ; of (algebraic) elliptic fibrations with j as jacobian,
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which is easily seen to be abelian. It follows that a twist transforms a fibration into an
isomorphic one if and only if it does the same to every fibration in £;. We will call such
a fibre twist cohomologically trivial.

Furthermore, it is easy to see that a locally trivial translating twist transforms a
smooth family of elliptic fibrations with fixed jacobian fibration into a smooth family.
Consequently, locally trivial twist is an automorphism of the moduli space (if it exists) of
elliptic fibrations with given jacobian.

In order to investigate the effects of a translating twist on the multiplicity of the
terminal fibres, we need one more definition.

It is well-known that for a multiple fibre F' in an elliptic fibration, the corresponding
fibre E in the jacobian fibration is either a smooth elliptic curve, a rational curve with
an ordinary double point, or a semi-stable curve composed of a circle of n (—2)-curves.
In terms of Kodaira’s classification of singular elliptic fibres, E is of type I,,, for n > 0.
Then the type of F' is ,,I,, where m denotes the multiplicity of F'.

More precisely, let fa : Sa — A (resp. j:J — A) be a local fibration (resp. the
jacobian fibration of fa ) over the unit disk, with F' (resp. E) as central fibre. For any
multiple N of m, let #: A — A be the N :1 cyclic cover totally ramified at the center.
There is a unique fibration fA : §a — A such that S, is smooth and does not contain
vertical (—1)-curves, and cyclic covers I1: S5 — Sa and II': §5 — J of degree N, such
that the following diagrams commute:

~

SA —_— SA ~A e J
! ol !
A — A A — A

Let F be the central fibre of fa. F is isomorphic to E when n =0, and is of type
1Inn when n > 0. Let G = Zxn be the Galois group of II. When n = 0, consider the
induced action of G on F = E; when n > 0, consider the action of G on the dual graph
of F. The kernel of this action is the subgroup K of order N/m, and the quotient group
H = G/K acts freely on F or its dual graph according to the cases. If we fix a generator
T' of G such that the action of T on A (the base of fa) is a clockwise rotation of degree
2w /N, the'image of I' in H gives a uniquely determined generator v of order m. We call
v the direction of the multiple fibre F' (or a direction of order m associated to E).

For a fibre of type I, directions of order dividing m form an abelian group A iso-
morphic to Z,, (when n > 0), or Z,,, ®Z,, (when n =0). And the definition of direction
does not depend on the choice of N, in the sense that when n > 0 and m|N;|N;, the base
change 73 : A — A of degree N; factorises through =, : A — A of degree N, such that
the direction defined through m, is the natural inverse image of that defined through ;.

Conversely, let j : J — A be a local fibration with central fibre E of type 11,
and with a unit section, v a direction of order m > 2 associated to E, represented by
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some base change 7 : A — A or order N divisible by m. We can construct a fibration
fa : Sa — A with 7 as jacobian fibration, whose central fibre F' is of multiplicity m at
direction =, as follows:

Let fa, F as before, and let Dy be the inverse image of the unit section on Sa,
passing through a component T'y of F'. Let D be the divisor on 55 composed of points
of order dividing m in the fibres of fa. Then the monodromy of fa on D is trivial, in
other words D is composed of m? sections of fa. The set of these sections form in a
natural way a group G = Z,, ® L,,, with D as the unit element. When n > 0, it is easy
to see that D passes through m components of F, located at regular intervals of Nn/m
in F. The components of D passing through I'y form a cyclic subgroup X of order m,
such that the components passing through each of the m components of F' correspond to
a coset of K (or an element in H = G/K). This establishes an isomorphism between H
and A in the case n > 0. Of course, we have a trivial isomorphism X = A when n = 0.

Now let D; be a section in D whose image in A is the direction v, «a: Sn = Sa the
automorphism of Sa sending Dy to D, and inducing trivial automorphism on the base.
Let 8 be the generator of the Galois group of II' : $4 — J whose action on the base is
a clockwise rotation of degree 2r/N. Then the automorphism « o § generates a group G
of order N, and the smooth relatively minimal model Sa of the quotient Sa /G has an
induced fibration fa : Sa — A whose central fibre F' is of multiplicity m and direction
¥.

Thus we have established the correspondence of the following lemma (from ¥, to

).

Lemma 2.2. Let ja : Jao — A be a local fibration with central fibre E of type
1In, n > 0. For any tnteger N > 2, there 13 a 1-1 correspondence between the set T, of
directions of order N associated to E, and the set 33 of j-isomorphism classes of local

fibrations fa : Sa — A having j as jacobian fibration, whose central fibre is of multiplicity
N.

Proof. It remains only to show that the map ¥, — ¥, is injective when n > 0,
in other words with notation as in the discussion preceding the lemma, if &' is another
automorphism mapping Dy to D}, where D, and D! intersect the same component of
F, then the quotient fa : SA — A by the group generated by a o 8 is j-isomorphic to
fa.

In fact, we can write § = K @ H, with K = (k), H = (h), such that the action of
on G is an automorphism with S(ak + bh) = (a+ b)k + bh, and that a(z +y)=z+y+h
for z € K,y € H. We have a non-trivial homomorphism ¢ : H — K such that o'(z+y) =
z+¢(y)+y+h. Let g(h) = ak, for a € Z. Then if instead of Dy (i.e. the section 0 in
the above representation), we take the section —ah as the unit section of fa, the action
of o' becomes the same as that of & with Dy as unit section. QED
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We can recover the group sheaf of directions associated to a fibration f: S — C as
follows. Let j : J — C be the jacobian fibration of f, m > 2 an integer. Let D be
the normalisation of the closure in J of points of order dividing m in smooth fibres of ;.
Let ®,, be the (singular) curve constructed from D by joining into one point every set
of points whose image in J are smooth points in a same component of a fibre of type I,,,
n > 0. Provided with the natural projection to C, ®,, can be seen as a sheaf of groups

on C.

For any fibre E of type I, in J, when n = 0, the group of directions of order dividing
m is canonically isomorphic to the restriction of D,, on E. if n > 0, let F be the central
fibre of the pull-back of a local fibration around E via a base change of degree divisible
by m. By the fact that the Galois group of the cover of the inverse image over J fixes
every component of ¥, we find easily a canonical isomorphism between the directions of
E of order dividing m, and the restriction of ®,, on the image of E. Therefore ®,, is
just the parameter space of directions of order dividing m of f (or of j). And the points
of order m in ®D,, form a subvariety D,,, which is the parameter space of directions of
order m.

Now we consider the action of fibre twist on the fibre F' over a terminal point p of the
twisting path P. Let m; be the multiplicity of F', m, the order of the twisting section
s, N ‘a common multiple of m; and m,. Let 4, be the direction of F'.

First suppose that p is the starting point, but not the ending point, of P. The section
s can be considered as a lift of P on Dy, hence its value over p is a direction 2 of order
m, associated to F'. It is clear that the direction of multiplicity of the fibre Fy over p of
the new fibration f; : §1 — C after fibre twist is 47 + 2. In particular, the multiplicity
of F} equals the order of v; + 72.

By the same reason, if p is the ending point of P but not the starting point, the
direction of F) becomes 7v; — v, with the above notation.

Finally, suppose that P is a loop starting and ending at p. We assume that the fibre
F' over p is smooth, to simplify notations. In this case s introduces two directions 7,3, 3
on F, both of order m3, one from starting value, the other from ending value. and the
direction vy of F} is 41 +72—73. On the other hand, we have a monodromy homomorphism

pN :mi(C7) = Aut(Dnlp), (1)

where C' is the open subset of C' composed of non-critical points of j, such that v; =
#n(P)(v2). Therefore v =y + (1 — un(P))(72).

Furthermore, the monodromy gy is induced from the Picard-Lefschetz monodromy
M : 7, (C") = Aut(H(F,Z)) of j, in the sense that if we note by T'; a point in the inverse
image of «4; in the universal cover V' of F, there is a point I' in the inverse image of v
such that I' = T’y + (I — M(P))T';, where M(P) can be considered as a 2 x 2 integer



matrix with a choice of basis. With a slight abuse of notations, we just write
7=+ (L2 = M(P))7.. (2)

Definition 2.3. The twisting weight w = w(f) of an elliptic fibration f: S — C is
as follows:

If f has a singular fibre or if the jacobian fibration of f is trivial, w =1.

If f is has smooth non-trivial jacobian fibration, let F be a general fibre of f, and
consider the Picard-Lefschetz monodromy homomorphism 8 : m, (C) — Aut H'(F,Z). The
image of 8 is isomorphicto Z,, where 7 =2,3,40r6. Define w=2if r=2o0r4, w=3
ifr=3, w=1if r=6.

We now have the following result.

Theorem 2.4. Let 3 : J — C be an elliptic fibration with a unit section, v a
direction of order m on a point p of C. Suppose that j s non-triviel (or equivalently,
g(J) = ¢(C), or j has non-trivial Picard-Lefschetz monodromy).

There exist a path P and a translating section s on P, such that translaiing twists
along P using s gives a 1-1 correspondence between the set of elliptic fibrations, with j as
Jacobian fibration, without multiple fibre over p, and those whose fibre over p ts multiple of
direction . This correspondence preserves algebraicity of the fibrations, and corresponding
fibrations are locally isomorphic outside p.

Moreover, the translating twist can be chosen to be of sectional order equal to wm.

Proof. By the existence of inverse twists, we have only to prove one side of the
correspondence.

We can suppose that the fibre of j over p is smooth, for the singular case can be
easily deduced by taking limits. We have two choices for the possible twisting path P:
either a loop with base p, or a path starting at p and ending at a point ¢ over which the
fibre of j is singular (note that when the fibre over ¢ is of type I,,, n > 0, the fibre twist
will not change the multiplicity and direction of this fibre if the twisting section is chosen
appropriately).

First consider the case where j has no singular fibres. We take P to be a loop with
base p, such that the image of P by the Picard-Lefschetz monodromy M : =;{C) —
H'(F,7) is non-trivial. It is well-known that M(P) is a matrix of rotation, so that
I — M(P) is a non-singular matrix. We can therefore choose v, = (I — M(P))~!v, and
take the section of finite order on P whose starting value is v, , to be the twisting section
8. According to (2), we see that for any fibration f : § — C whose fibre over p is
not multiple, the fibre twist of f along P with s as twisting section is a fibration with
direction 4 over p and locally isomorphic to f elsewhere. The theorem follows therefore
in this case.



Note that in this case M(P) is a rotation of order 2,3,4 or 6, and a direct computation
gives Ord(s) = wm.

In the case where j has a non-semistable fibre over a point ¢ € C, the theorem can
be proved in the same manner, by letting P to be a path joining p and ¢, for such a twist
will not introduce multiplicity over g, hence is always locally isomorphic around ¢. And
in this case the twisting section will have the same order as 7.

It remains only the case where j has singular fibres, all of them are of type I,,. We
will show that in this case there is a path P from p to a critical value ¢ and a twisting
section s on P such that s|, = v, and that s|, is a point on the neutral component of
the fibre of j over ¢, hence the translating twisting associated to s will only introduce
multiplicity to the fibre over p. In particular, we also have the same order for s and ~.

To see this, let N > 3 be a multiple of the order of v, 7 : € — C be the Galois
covering such that the inverse image of Dy is completely decomposed. Let 7 : J — C be
the relatively minimal smooth model of the pull-back of j. Then the divisor formed by
elements of order dividing N in J is composed of N? sections of j, which gives a level
N structure on the fibres of j. This means that the moduli map ¢ : & — M, where
M is the moduli space of stable curves of genus 1, factors through the principal modular
curve Cn of level N, such that 7 is the model of the pull-back of the elliptic modular
fibration jn : Jy — Cn of level N as defined in [Shi]. The set of N? sections on J is
the inverse image of N? sections on Jp, which form a group I' isomorphic to Zy ® Zy
([Shi], Theorem 5.5). The map ¢n : Cn — M is Galois with group G =2 SLy(Zy). The
induced action of G on the set of N -cyclic subgroups of T' is transitive.

Take any singular fibre F} of j, which is of type 1Ty, with N|N;. The sections in
I’ passing through the neutral component of Fy form an N -cyclic subgroup I'y. By the
above transitivity, there is a point 7 in C, whose image in C is p, such that the inverse
image of ¥ on $ is contained in a section 5 in I';. Let P be a path in C joining p and
7(F1), P the image of P in C. It is immediate that P and the image s of 5| p satisfy
our requirements, QED

§3. Classification theorems

Definition 3.1. Let f: S — C be an elliptic fibration, D a reduced divisor on §,
not containing curves which are components of a fibre of f. D is called an n-multisection,
if for a general fibre F of f, D|p is stable under the translations of order n on F.

We have the following obvious lemma.

Lemma 3.2, If f: § — C has an n-multisection, then for any multiple N of n, f
has a N -multisection.

— 13 —



Note that a translating twist of sectional order n transforming f : § — C into
f1: 81 — C transforms any nN -multisection on S into an n/N -multisection on S, and
vice versa, forany N > 1.

The following result is communicated to us by M. Raynaud. We give here an elemen-
tary proof for the case of characteristic 0, while the original proof of Raynaud is included
at the end of this paper.

Lemma 3.3. An elliptic fibration f: S — C 13 algebrasc iff it has an n-multisection
for some n 2> 1.

Proof. Suppose D is a very ample divisor on 5. Let n be the degree of D over C.
For any general fibre F of f, there are exactly n? points p on F such that np is linearly
equivalent to D|p as divisors on F'. The closure in S of the set of all such points form an
n-multisection. The converse is an easy consequence of Nakai-Moishezon criterion. QED

Remark. The proof of the lemma gives in fact a little bit more: it shows that there is
a natural 1-1 correspondence between multisections and divisor classes of positive degree
on the generic fibre of f.

Theorem 3.4. Any algebraic elliptic fibration can be constructed from its jacobian
fibration, via a finite number of translating tunsts.

Proof. Let f: S — C be such a fibration. Modulo twists along paths joining two
multiple fibres, we can suppose that f has at most 1 multiple fibre, and this fibre, if any,
is smooth.

Let ¢1,...,¢; be the images of the singular fibres of f, F a general fibre of f,
p = f(F). Let g be another point on C, which will be the image of the multiple fibre if
any.

Let ay,...,ap,B1,...,0s, where b = g(C), be a standard set of loops on C, whose
conjugate classes generate 71(C). Let «4; (¢ =1,...,1) be small loops around ¢;. We can
choose base points a; (resp. b;,¢;) on a; (resp. fi,~i), which are all different, and paths
P; (resp. P/,Qi;,Q:,Gi,G}) joining p and a; (resp. p and b;, ¢ and a;, ¢ and b;, p
and ¢;, ¢ and ¢, ), such that all these loops and paths are mutually disjoint except at the
base points and except that «; and f;, as well as G} and +v;, meet transversally at one
non-base point.

Let C' =C - {¢y,...,c1,9}. The loops a;, B;, v together with their joining paths
form a free set of generators for 7, (C’, p). Let D be an n-multisection on S, and consider
the monodromy homomorphism pp : m(C',p) — Aut(D|Fr) associated to D. Fix any
point z in D|p, and identify it with the unique points over q;, b;, g; via paths P;, P!, G;.

Now modulo a suitable twist along 8; with b; as base, we may assume that
up (@) () = .
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Such a twist might introduce multiple fibre over b;, but another twist along @} can move
this multiplicity over to g. Symmetrically, we get up(8:i)(z) = z. And a twist along G}
will make pp(v:i)(z) = z (note that such a twist will not introduce multiplicity over ¢;).
But then z is a fixed point under the action of 7(C’), hence it belongs to a section of f
in D. QED

Remark. The proof of the Theorem gives in fact a little bit more: if f has an N-
multisection, then the translating twists can be chosen to have sectional orders dividing

N.

Definition 3.5. Let 7 : J — C be a fixed elliptic fibration with a section. Let
“1,-..,7Yk be a set of directions on j with orders my,...,mg, no two of them being on a
same fibre. Define ﬁ.,,,”_,.,,, (resp. Z.,... -, ) be the set of elliptic fibrations (resp. set of
algebraic elliptic fibrations) with j as jacobian fibration, and with multiple fibres exactly
at directions 71,...,7k. Define £4 (resp. T4) be the set of such fibrations (resp. such
algebraic fibrations) without multiple fibre.

With this definition, Theorem 2.4 is translated to the following.

Theorem 3.6. Suppose 7 is not trivial. Then there is a bijective map

(I)‘n.---.‘h: E‘n,m,‘n i 24’ )

which induces a bijection
Q‘hr"'sq’l : 2111"'17i — 2¢ "

Moreover, &, ..+, maps surfaces with an nN -multisection to one with the same property
and vice versa for n > 1, where

N = wlem(my,...,my).

Theorem 3.7. Suppose j is trivial (i.e. J = E x C, where E is an elliptic curve).
We consider the directions +; as points of finite order in E. Then the following are
equivalent:

a) Ly, v, 38 non-empty;

b) there ezists a bijective map

QTH"',TD : E'yl)--‘s'fi E¢

sending algebraic fibrations onto algebraic ones;

c)
> =0 (3)

Proof. In view of Theorem 3.4 and by using induction on k, we have only to notice
that translating twists on fibrations with trivial jacobian preserve the condition (3). QED
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The theory of Ogg-Shafarevich [O] {Sha] shows that T4, hence ., . ., , is discrete.
See also the next section.

Definition 3.8. Let j : J — C be an elliptic fibration with a unit section, my,..., mx
a set of integers with k> 1, m; > 1, Dy, the curve of directions of order m;, as defined
in §2, after Lemma 2.2, with projection ¢;: Dy, — C. Let V' be the dense open subset
imn Dy, X+« X Dy,

V' ={(dr,...,d)|¢i (di) # ¢; (d;) if i # 7} .

Let G be the symmetric group acting free.ly on V', exchanging components with equal
subscripts. Define

le!"'!mﬁ = V'/G ‘
Now we can state our main classification theorem in terms of the variety Vi, ., :

Theorem 3.9. Let j: J — C be an elliptic fibration with a unit section. Suppose
that j has singular fibres. Let my,...,my be a set of integers with k> 1, m; > 1, and
let

N =lem(my,...,mg) .

Let Mp,,. .. .m, be the moduli space of elliptic fibrations with jacobian fibration j and k
multiple fibres of multiplicities my,...,my. There ezists a morphism

Q : Mmli"'rmk — E¢ ’

whose non-empty fibres are tsomorphic to each other. Each such fibre My has an unram-
tfied cover

A: My —V,

my,...,ity

of degree d, where Vv;u,.--,mk 18 a quasi-projective variety with a bijective birational mor-
phism

!
le,...,mk — le,...,mk ?

and d 13 the number of algebraic elliptic fibrations without multiple fibres, with j as jaco-
bian fibration, and with an N -multisection. The value of d will be given by the formula
(9) at the end of next section.

Moreover, suppose that the singular fibres of j are all of type I,. Then My 13 irre-
ductble.

Proof. We first give the map ¥. Let f : S — C be a fibration in My, m,.
Vertical translations of order N generate a subsheaf H in G, which is almost everywhere
locally constant of group Zy @ Zn. The quotient of f by the action of H has a unique
relatively minimal model f(V : §(V) . It is easy to see that f(™) has no multiple
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fibres. Moreover, we have a canonical isomorphism between the jacobians of f and f(¥),
hence f(¥) € T4. Let

¥ (f)=f".
The rational map of projection of § to S is called the N -multiplication map of S.

Note that any nN -multisection of f is the inverse image of an n-multisection of f(V),
In particular, f(™ 2¢j iff f has an N-multisection.

Fix a ¢ € £4 such that the fibre M, of ¥ over ¢ is not empty. As fibre twists of
sectional order dividing N do not change the image of the fibration under ¥, it follows
from Theorem 3.6 that M, contains fibrations for any choice of directions {,...,7v}
such that the order of v; equals m;.

Let M,P be the set of fibrations with marked multiple fibres. The group acting on
MQ, exchanging multiple fibres of the same multiplicity induces a finite unramified cover
of M, over M,, therefore we have only to study the structure of M.

To any element of Mcp associating the direction of its i-th multiple fibre, we get a
map g : M‘P — D,,,. The multiple fibre being the image in C of a ramification locus of
the N -multiplication map, and D,,; being finite over C, it is not hard to see after a local
analysis that there is a bijective morphism

. !
le- . Dm.— -— Dm',

onto another curve D, ., which is locally isomorphic except possibly on points situated in
fibres of type I,, i > 1, such that for any family X — Y of fibrations in M, the map
Y — D,,. induced by vy,; o p; is a morphism. It follows that the geometric structure on

-~

M, is pulled back by the surjective product map
A= Vmpt1 X+ X Upny ikt My — Diy x - x Dy =V,

which is étale of degree d by Theorems 3.6 and 3.4, where d equals the number of fibrations
in ¥4 having an N -multisection.

It is easy to construct directly an isomorphism between two fibres My, M, of ¥.
Take a fibration f; : S; — C in each M;. We can suppose that f; and f; are locally
isomorphic. There is therefore a locally trivial transformation © composed of a finite series
of translating twists, such that @(f1) = f,. As © is composed of twists of sectional order
dividing N, one sees immadiately that © maps M; isomorphically onto M.

In the rest of this proof, we will assume that all the singular fibres of ; are of type
I . Retake the notations of the proof of Theorem 3.4, and let F,; be the fibre of j over g¢.
For each critical value of c¢;, the Picard-Lefschetz monodromy along +; may be considered
as an element p; € Aut H'(F,,Z) = SLy(Z), via the path G..

Lemma 3.10. After rerouting of the paths P;, P{, Q, Q}, G and G}, we can find two
critical points, say ci—1 and c, such that p—1 and y; generate Aut H'(F,, 7).
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Proof. The fixed points of y; form a subgroup Z; = Z in H'(F,,Z), with

HY (F,1)]Z; =21 .

First, we use our earlier result on the fundamental group of an elliptic surface to show
that H'(F,,Z) is generated by these Z;.

Let K be the image of the natural homomorphism
LT M (Fq) —4 TFI(J) s

which is a normal subgroup of m;(J). We deduce from the fact that j has a section that
there i1s an exact sequence

l1—mw K—m{J)—m({C)—1,

and the loops in the unit section form a subgroup of #;(J), which projects isomorphically
onto m(C). It follows that Ker(¢) is generated by the vanishing cycles of singular fibres.
With the duality between m(F,) = Hi(F,,Z) and H'(F,,Z), the vanishing cycles of the
1-th singular fibre are those corresponding to Z;. Therefore we have an isomorphism

K=H' (F9'1Z)/(Zl7'°')zl) :

Now by [X2, Theorem 4], we know that K is trivial.

Next, we show that after reorder of the ¢; and rerouting of the paths, we may have
HYF,1)={2i-1,2)).

Fix ¢;, and write H = H'(F,,Z)/Z;. Let ¢;, i = ,...,1—1 be the points such that the
image in H = 7 of a generator of Z; is a non-zero number n;. We have (n,,...,n_;) =1
by the first step.

Let 1,22 be 2 indices between 3 and ! — 1. If we change the path G:-l into a non-
self-crossing path isotopic in C' — G} to G} followed by a loop around c;,, n;, will be
changed into either n;, + n;, or n;, — n;,, depending on the direction of the loop around
¢i, chosen. We can then change accordingly the other paths so that they remain disjoint
as before. This allows us to apply Euclidean agorithm on the set {n,,...,n;_1}, to arrive
at nj_.y =1.

Finally, take a generator of Z;—; and one of Z; as a basis for H!(F,,Z). Under this

basis, the matrices of p—y and p; become (__11 (1)) and ((1] i) These 2 matrices

generate SLy(Z). QED

Corollary. D, is irreducible for any n > 1. In particular, V' is irreducible.
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Proof. In view of the projection of D, onto C, we have only to show that any two
points in Dy,|, can be joined by a path in the smooth part of D, .

Let I'; be the loop on C begining on ¢, going to +; along G. and turn around
it once, then return to ¢ via G}. The lift of I'; on D, starting at a point p ends at
1p,(p) = fi(p), where fi; is the class of y; in SLy(Z,) = Aut Dy, |,.

As SL,(Z,) acts transitively on D,|,, every point in D,|, can be reached from p,
by a finite sequence of lifts of loops composed of I';_;,I'; or their inverses. QED

According to the corollary, we have only to show that for any two points f;, f2 of M¢
such that A(f1) = A(f2) = p is a general point in V', there is a path in the smooth part
of M, joining f; and f,.

Note that the difference between f; and f; is a series of fibre twists which transform
j into a fibration f: S — C without multiple fibre, and with an N -multisection.

Lemma 3.11. f can be reached from j by a finste number of locally trivial twists
0y,...,0,, such that the twisting section of 8; 13 a loop contained in the smooth part of

DN.

Proof. Keeping the notations in the proof of Theorem 3.4, our aim is to modify the
series of translating twists so that each of them is a locally trivial twist made along a loop
not containing critical points of j. The twisting section will then be a loop contained in
the smooth part of D .

We first note that the condition that all the singular fibres are of type I; allows us to
assurne that each of the twists is made along a loop with base ¢. Indeed, we have only to
consider the twists along Gj. Let v; be a small loop around ¢;, entirely contained in +;,
meeting G% at a point g!. Then in view of (2), the effect on v; of the twist along G is
equivalent to that of a twist along the loop composed of path [g, ¢i] C G} followed by ~!
then by [¢,¢] C —G! (with a different twisting section). We will denote this loop simply
by ;.

Suppose that ¢;—; and ¢; are as in Lemma 3.10. Let 68},...,65,,, be the twists
transforming f into j as in the proof of Theorem 3.4 and modified as above to become
twists along loops, where b = ¢(C), and 6; is along o; (¢ = 1,...,b), Bi—s (i = b+
1,...,2b),0r 7i_qy (1 =2b+1,...,2b4+1).

For each 7 with 1 <2 < 2b+1-2,let §; ¢ and §;; be the starting and ending elements
of the twisting section of 8}, which are elements in D n|,. As the local monodromies along
Yi_1,7; generate Aut H'(F,,Z) by Lemma 3.10, there is a loop ¢;, composed of v|_, 7}
and their inverses, such that the monodromy up, (i) transforms é;, into ;0. Let 6;
be the fibre twist along the loop T'; consisting of the twisting loop of 8 followed by ¥;,
whose twisting section is the unique finite-order extension of the twisting section of 8. over
I';. Then this twisting section has §; ¢ as starting and ending elements, hence is a loop in
(the smooth part of) Dn.
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Let f' =8;10---08241-2(f). To prove the lemma, we have only to show that f' = j.
More precisely, if D’ is the image N -multisection of D for f', with the image z’ of = as
base point, we want to show that up/(y)(z') = z' for any v € m(C’, p).

Let Doy be the N -multisection of j containing the unit section. We identify the
restrictions of D' and Dy on the fibres over p, by matching z’' with the point on the
unit section. Let H be this restriction group. Instead of pp:, we consider the difference
monodromy & = pup — ptp,. j§ maps any element of m(C’,p) to a translation of H, so
we may write

fim(Clp) — H=1T4

Now by the above construction, we have ji(y) = 0 for y = «;, B; or 7,...,7i-2, and
i(v1—1) + () = 0 for some choice of orientations. To show f(y;—1) = fi(y:) = 0, we have
only to show that the subgroups f({vi-1)) 2 Zny and a{{y)) = Zn have zero intersection.

Indeed, as 7 now factors through m(C — {¢;-1, ¢1}, p), we have

Elv=) = ((n-1)) > B =20")

by fixing a path joining p and ¢. Now the relation

A((vi) NE () =0

is a direct consequence of the condition H'(Fy,Z) = (Z;-1, Z;), where Z;_; and Z; are
as in the proof of Lemma 3.10. QED

Due to Lemma 3.11, we may suppose that the difference between f; and f; is a twist
O along a loop s in the smooth part of D .

We can write s = ays; + -+ + axsg, where a; € Z, and s; is a loop in Dy,;. Then
O=a191+°--+ak9k 3

where ©; is the twist along s;. This allows us to further suppose that s is a loop in Dy, .

Now let é; € D,,, be the direction of the i-th multiple fibre of f;. Deforming this
multiple fibre along a path P in the smooth part of D,,; joining é; and the base s|; of s,
we get a fibration f], whose i-th multiple fibre is of direction s|;. Then further deform
this multiple fibre along s once, we get an f; with f; — f| = O. Finally, deforming the
i-th multiple fibre of 'f; back to §; via P, we get f, : S; — C, with fo — f; = fi — fi by
the commutativity of translating twists. QED



§4. Relations with Ogg-Shafarevich theory

We refer to [C-D), Section 5.4 for a recent account of Ogg-Shafarevich theory in the
case of elliptic surfaces. We suppose throughout this section that j: J — C is an elliptic
fibration with a unit section, and all elliptic fibrations are algebraic, with j as jacobian
fibration. An isomorphism between two such fibrations are called j-isomorphism, if it
induces the identity map on 3.

From cohomological point of view, the set ; of elliptic fibrations with jacobian j
equals the set of principal homogenious spaces (torsors) on the generic fibre J,, of j. We
have thus a canonical isomorphism £; & H}, (1, J,), where J, is the stalk over the generic
point i of C of the Néron sheaf of abelian groups associated to j.

Now a translating twist defined via finite base change is just a cocycle on the étale site
of n, which defines a torsor. Thus we have a canonical isomorphism between HJ (7, J)
and the group of translating twists modulo cohomologically trivial twists. With this cor-
respondence in mind, Theorem 3.4 just means that torsors can be represented by a special
kind of cocycles: those induced by a cocycle on a finite subgroup scheme.

We have following exact sequence:

0— H'(C,J) —Z; -5 §(p) — H*(C,T) , (4)
pEC

where &(p) is the group of directions of finite order on p, H'(C,J) is the subgroup of
locally trivial torsors (i.e. the Shafarevich-Tate group associated to j).

When 7 is not trivial, one shows by Ogg-Shafarevich theory that « is surjective, by
proving that H2(C,J) has no torsion [C-D, Theorem 5.4.4]. Our theorem 3.4 gives a
direct proof of this surjectivity, and shows moreover that for any element of order n in
Y. 8(p), we can find an inverse image element in £; which is of order at most wn.

Also when j is trivial, the condition (3) in Theorem 3.7 determines the image of «.

Another main result in Ogg-Shafarevich theory is the computation of the Shafarevich-
Tate group H!(C,J), which is shown to be isomorphic to (Q/Z)**~? @ T in the case of
elliptic surfaces, where T is a finite group, b2 and p are respectively the second Betti
number and the Picard number of J [Ra).

The following is a direct computation of the Shafarevich-Tate group using fibre twists,
which also determines the cotorsion ¥.

Deflnition 4.1. Let D, and D, be two nm-multisections on an elliptic fibration
f:S — C. Dy and D, are called congruent (resp. isomorphic ) if they are both
contained in a same an-multisection for some a > 1 (resp. if there is a j-automorphism

a: 8§ — S, such that a(D;) = D,).
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We denote by M the Mordell-Weil group of sections of ;. We may write
M=1"9T , (77)

where T is the subgroup of elements of finite order. Note that T is finite when j is not

trivial, otherwise T = (Q/Z)?.

Lemma 4.2. Let D be an n-multisection of f. We have a canonical isomorphism
between M and the group of isomorphisms of D with another n-multisection (which may
be D itself).

Under this isomorphism, elements in M of order dividing n correspond to automor-
phisms of D.

Proof. This follows directly from the fact that M is the group of j-automorphisms
of S. QED

Lemma 4.3. Suppose that f has an n-multisection D. Then there is a natural 1-1
correspondence between M/nM and the set A,, of isomorphism classes of n-multisections

of f.

Proof. Let v, : § — 5 be the n-multiplication map. The image of D being a
section in §("), we can write S(") = J, with v,(D) as the unit section. And v, thus
gives an isomorphism between M and the set of n-multisectionson 5. On the other hand,
vy induces an endomorphism €, : M — M, the first M being considered as the group
of j-automorphisms on S. ¢, is simply the multication by n. Now by Lemma 4.2, an
n-multisection D' is isomorphic to D iff its image by v, is contained in Im(e,). QED

Corollary. If j is non-trivial, we have
|An| =n"+|T0|

where T, = T/nT 1is isomorphic to the subgroup of T composed of elements of order
dividing n; if 7 is trivial,

|[An] =n" .
In particular, there are only a finite number of non-isomorphic n-multisections on an
elliptic surface.

Proof. The case of T finite follows directly from the theory of finite abelian groups.
Otherwise T is divisible, hence contained in Im(e,) for any n. QED

Now for each critical point ¢; (¢ =1,...,1) of 7, let ¢; be the number of components
in F; =j_1(ca')a
di = 1 F; is semistable
'7 12 otherwise,



! !

t=Z(t,~—1) , d=Zd,~ .

i=1 i=1

A look into Kodaira’s table of singular fibres gives

{
Cz(J)=Z(t.'—1+di)=t+d. (6)

i=1

Now we take the notations in the proof of Theorem 3.4.

Deflnition 4.4. An n-marked elliptic fibration is a triplet (f, D, z), where f: § — C
is an elliptic fibration with jacobian j, D an n-multisection on S, and z a point on Dj|p,
such that f has no multiple fibre outside g, and the multiplicity of Fy is a factor of
n. An isomorphism between two n-marked fibrations (f1, D1,z1) and (f2,D2,z2) is a

j-isomorphism « : §; — Sz such that a(z1) = z2. In this case we have automatically
Cr(Dl) = D2 .

Let £,,1 be the group of isomorphism classes of n-marked elliptic fibrations, with the
group structure induced by that of fibre twists. We first compute £, ; using arguments
in the proof of Theorem 3.4.

Two n-marked fibrations (fy, Dy, z1), (f2, D2, z2) are isomorphic if and only if the
following diagram commutes:

7t (C') p)
#D, / \FDz
Aut(D|F) 5 Aut (Da|F)

where « is induced by the group isomorphism ¢ : Dy|p — Da|p with o(z1) = o(z3).
Identifying D;|g with D;|p via ¢, the above diagram commutes iff

KD, (7) (:B]) = KD, (7) (I])

for every v = a;, Bi or vi. Therefore £, ; is the group of choices for all the up(y)(z).

For a fixed v, the choices of pp(7)(z) form a group G, isomorphic to Z% when
v = @; or f;, and isomorphic to Z3 when v = ;. The proof of Theorem 3.4 shows that
the choices are independent for different +’s, therefore

Zn,] = @G‘y = z;‘lg(c)‘{'d — Zig(C)_*_Cz_t
¥

by (6).

The next step is to compute the subgroup 2, 2 of X ; consisting of n-marked fibra-
tions without multiple fibre. Let D,|, = Z2 be the group of n-directions over q. To each
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marked fibration f associating the direction of multiplicity of its fibre over ¢, we get a
homomorphism
(Pq : z1'1,1 — D1'1|q' )

such that £,, = Kerp,. Noting that ¢, is trivial when j is trivial, we let T, =
®nlq/Imp, when j is non-trivial, and T, = 0 when j is trivial. Then one sees easily
that

PR Ziy(C)+2q(J)+c;-—t—2 T, . (7)

To compute ¥, for non-trivial j, note that Theorem 2.4 tells that T, is a subgroup
of 7%, where w is the twisting weight of j, therefore it is trivial except when j is locally
trivial and w|n.

Let 6 and 7 be as in Definition 2.3, and let v be an element of 7, (C) such that 8(v)
generates Im @. v induces an endomorphism 8(¥), : Dnlg = Dal,, and we let K, be its
kernel. Then we have

Ky & Dplo/Im8(y), = Dulg/Imp, =T,
by (2). As K, is simply the group of sections contained in D,, we get
2} 7r=2and7|n
Z3 T=3&1’ld ‘r|n (8)

Z, r=4and1|n
0 all other cases.

Tn

12

Now we divide out the congruences. Let H be the subgroup in ¥, ; consisting of n-
marked fibrations (f, D, z) such that S has an n-multisection D' congruent to D, which
contains a section.

Lemma 4.5. If j is trivial, H = 0; otherwise H = 12

Proof. When ; is trivial, f contains a section congruent to D iff D is trivial.
Therefore H = 0 in this case, and we may assume that j is non-trivial.

Due to Lemma 4.3, the n?-multisection E containing D contains a copy of every
isomorphism class of n-multisections congruent to D. Therefore (f,D,z) isin H iff E
contains a section.

Moreover, we can write T, ® Z,,, ® Z,,, and consider it as a subgroup of E|r. Then
the n-multisection contained in E cuts out a subgroup I = Z,, . & Z,,,n, in F which
contains T,, and F contains a section iff the intersection with F' of the sum of sections
in E is a coset of Ty, in I. This shows that H = I /T, =~ 72. QED



Let £,3 = X, 2/H. Z,; is the group of congruence classes of pairs (f, D) where a
congruence between (fy, D) and (fz, D;) is a j-isomorphism §; — S3 sending D; to an
n-multisection congruent to D;. By Lemma 4.3 and the formula (7) for I, 2, we have

Tos ¥ Ziﬂ(~’)+¢z-—t—4 &%, = Zf,"'t—z DT, .

Now by Lemma 4.3, the group of non-isomorphic congruence classes of n-multisections
of a fibration is isomorphic to Z,. Divide out this group from I, 3, we get the group
¥, of j-isomorphism classes of elliptic fibrations without multiple fibre and with an n-
multisection:

Tl T, =10 T, .

Finally, taking limit of n,

Theorem 4.6. (Ogg-Shafarevich) The Shafarevich-Tate group of j is isomorphic
to (Q/2)*2=°® T, where T is trivial unless j is locally trivial but not trivial, in the latter
case T 13 isomorphic to the torsion part of the Mordell-Weil group of 7.

Remark. Now we get the number d in Theorem 3.9:
d= Nbi—¢ (9)

(Note that under the assumption of Theorem 3.9, ¥, = 0.)
We close this paper by Raynaud’s original proof of Lemma 3.3, which works over any
characteristic.

Let z € H},(n,J,) be the element corresponding to f. It is known from the theory of
torsors that z is of finite order, so let n be this order, and consider the n-multiplication
map S—— — S(®, Then the torsor element corresponding to the fibration f(™ : §(®)  C
is nz = 0, in other words f(™) = j. Therefore (™ contains a section, whose inverse image
in S is an n-multisection. QED
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