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TORSION POINTS OF ORDER 2g + 1 ON ODD DEGREE

HYPERELLIPTIC CURVES OF GENUS g

BORIS M. BEKKER AND YURI G. ZARHIN

Abstract. Let K be an algebraically closed �eld of characteristic di�erent from
2, g a positive integer, f(x) ∈ K[x] a degree 2g+ 1 monic polynomial without
repeated roots, Cf : y2 = f(x) the corresponding genus g hyperelliptic curve
overK, and J the jacobian of Cf . We identify Cf with the image of its canonical
embedding into J (the in�nite point of Cf goes to the zero of group law on
J). It is known [5] that if g ≥ 2 then Cf (K) does not contain torsion points,
whose order lies between 3 and 2g.

In this paper we study torsion points of order 2g + 1 on Cf (K). Despite
the striking di�erence between the cases of g = 1 and g ≥ 2, some of our
results may be viewed as a generalization of well-known results about points
of order 3 on elliptic curves. E.g., if p = 2g + 1 is a prime that coincides with
char(K), then every odd degree genus g hyperelliptic curve contains, at most,
two points of order p. If g is odd and f(x) has real coe�cients, then there are,
at most, two real points of order 2g+1 on Cf . If f(x) has rational coe�cients
and g < 51, then there are, at most, two rational points of order 2g+1 on Cf .
(However, there are exist odd degree genus 52 hyperelliptic curves over Q that
have, at least, four rational points of order 105.)

1. Introduction

Let K be an algebraically closed �eld with char(K) 6= 2. Let C be a hyperelliptic
curve of genus g ≥ 1 over K. Let K(C) be the �eld of rational functions on C and J
the jacobian of C, which is a g-dimensional abelian variety over K. Let O ∈ C(K)
be a Weierstrass point on C. Such a pair (C, O) is called a pointed or an odd degree
hyperelliptic curve [4]. (If g = 1, then every K-point of C is Weierstrass one. If
g > 1, then there are exactly 2g+2 Weierstrass K-points on C .) By the de�nition
of a Weierstrass point [4], there exists a rational function x ∈ K(C) that is regular
outside O and has a double pole at O. (Any other rational function on C that
enjoys these properties is of the form αx+ β with α ∈ K∗, β ∈ K [4].) The regular
map π : C → P1 to the projective line P1 de�ned by x is a double cover that sends
O to the in�nite point of P1. The K-biregular involution

ι = ιC : C → C
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attached to π is the so-called hyperelliptic involution of the hyperelliptic C, which
does not depend on a choice of x; it even does not depend on a choice of O if
g > 1. The set of �xed points of ι (i.e., the set of branch points of π) is a certain
(2g+2)-element set of Weierstrass points in C(K), including O. (If g > 1, then this
set coincides with the set of all Weierstrass points on C.) The K-vector subspace
L((2g + 1)(O)) ⊂ K(C) of functions that are regular outside O and have at O a
pole of order, at most, 2g + 1 has dimension g + 2; in addition, it is ι-stable and
contains g+1 linearly independent ι-invariant functions 1, x, . . . , xg that have at O
a pole of order, at most, 2g [4]. This implies that there exists a rational function
y ∈ K(C) that is ι-anti-invariant, regular outside O, and has a pole of order 2g + 1
at O; such a y is unique up to multiplication by a nonzero element of K0. In
addition, there exists a degree 2g + 1 polynomial f(x) ∈ K[x] without multiple
roots such that y2 = f(x) in K0(C) [4]. Multiplying x and y by suitable nonzero
elements of K, we may and will assume that f(x) is monic. The functions (x, y)
de�ne a biregular K-isomorphism between C and the (smooth) normalization Cf of
the projective closure of the smooth plane a�ne curve y2 = f(x) under which O
goes to the unique in�nite point of Cf [4], which we denote by ∞; in addition, ιC
becomes the involution

Cf → Cf , (x, y) 7→ (x,−y).

In what follows, we may assume without loss of generality that C = Cf for a suitable
f(x) ∈ K[x] and O = ∞.

Let us consider the corresponding canonical embedding alb : C ↪→ J that sends O
to the zero of the group law on J and every point P ∈ C(K) to the linear equivalence
class of the divisor (P )− (∞). Further we will identify C with its image in J . After
the identi�cation of C with its image in the jacobian, the hyperelliptic involution ι
on C coincides with multiplication by −1. This implies that the points of order 2 in
C(K) are all (except∞) (2g+1) branch points of π of C. Notice that if C(K) contains
a torsion point P of order n > 2, then it contains the torsion point ι(P ) 6= P of
the same order, which implies that then the number of points of order n in C(K)
is even. It was proven in [5] that C(K) does not contain a point of order n if g ≥ 2
and 3 ≤ n ≤ 2g. (The case of g = 2 was done earlier in [2] ). So, it is natural to
study genus g hyperelliptic curves with torsion points of order 2g+1. In the case of
g = 2 such a study was done in [3], where a classi�cation/parametrization of genus
2 curves (up to an isomorphism) with torsion points of order 5 over algebraically
closed �elds was given. In particular, it was proven in [3] that if char(K) = 5 and
C is an odd degree genus 2 hyperelliptic curve, then C(K) consists of, at most,
2 points of order 5. Notice that the latter assertion may be viewed as a genus 2
analog of the following well known fact: an elliptic curve in characteristic 3 has, at
most, 2 points of order 3.

In this paper we study odd hyperelliptic curves C with torsion points of order
2g+1 for arbitrary g over arbitrary �eld of characteristic 6= 2. Despite the striking
di�erence between the cases of g = 1 (elliptic curves) and g ≥ 2, some of our results
may be viewed as a generalization of well-known results about points of order 3
on elliptic curves. E.g., we prove that if p = 2g + 1 is a prime that coincides with
char(K), then every odd degree genus g hyperelliptic curve contains, at most, two
points of order p. When the polynomial f(x) has real coe�cients and one may view
Cf as a curve de�ned over the �eld R of real numbers, we prove that if g is odd,
then there are, at most, two real points of order 2g + 1 on Cf . If f(x) has rational
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coe�cients and one may view Cf as a curve de�ned over the �eld Q of rational
numbers, we prove that there are, at most, two rational points of order 2g + 1 on
Cf if g < 51. However, there are genus 52 odd degree hyperelliptic curves over Q
that have, at least, four rational points of order 105.

The paper is organized as follows. Section 2 contains basic de�nitions and auxil-
iary assertions from [5] that will be used later. In Section 3 we describe odd degree
genus g hyperelliptic curves with one pair of torsion points of order 2g + 1. It
turns out that such curves and points exist over any �elds for all g (Examples 1
and 2). We give a characterization of hyperelliptic genus g curves with two pairs of
torsion points of order 2g + 1 in terms of certain factorizations of the polynomial
(x − a2)

2g+1 − (x − a1)
2g+1 where a1 and a2 are abscissas of the torsion points.

Each such factorization gives rise to a one-dimensional family of such curves and
we study them in Section 4. In Section 5 we discuss the rationality questions,
proving the results over R and Q mentioned above. We also discuss the notion of
hyperelliptic numbers 2g + 1 that may be of independent interest. In Section 6 we
concentrate on the case of algebraically closed �eld. We study odd degree genus g
hypelliptic curves with two torsion points P,Q of order 2g + 1 with P 6= Q, ι(Q)
and provide a parametrization of their isomorphism classes by a disjoint union of
�nitely many a�ne rational curves. In Section 7 we compute the value of the Weil
pairing between certain torsion points of order 2g + 1 on Cf .

2. Odd degree genus g hyperelliptic curves

Let g ≥ 1 be an integer, K an algebraically closed �eld with char(K) 6= 2,
f(x) ∈ K[x] a monic degree 2g + 1 polynomial without multiple roots. Let C = Cf
be the genus g hyperelliptic curve de�ned by the equation y2 = f(x), i.e., the
normalization of the projective closure of the smooth plane a�ne curve y2 = f(x).
The curve C has the unique �in�nite� point, which we denote by ∞. Let ı : C → C
be the hyperelliptic involution, i.e., the biregular automorphism of C

ι : C → C, (a, b) 7→ (a,−b), ι(∞) = ∞.

One may easily check that the �xed points of ι are∞ and all the pointsWi = (wi, 0),
where wi ∈ K (1 ≤ i ≤ 2g + 1) are the roots of f(x). We view (C,∞) as a
pointed/odd degree hyperelliptic curve.

The action of ι on C(K) extends by linearity to the action on divisors of C.
Notice that for any nonzero rational function F on C we have div(ι∗(F )) = ι(divF ),
where div(F ) is the divisor of F and ι∗ the induced action of ι on the �eld of
rational functions on C. Thus we obtain the induced action of ι on the linear
equivalence classes of divisors on C. If P ∈ C(K), then we write (P ) for the
corresponding degree 1 e�ective divisor with support in P . If P = (a, b), then
div(x − a) = (P ) + (ι(P )) − 2(∞). This explains why after the identi�cation of C
with its image in J the involution ι becomes multiplication by −1 and C(K)∩J∗

2 (K)
consists of all Wi.

Remark 1. Suppose that K0 is a sub�eld of K and f(x) ∈ K0[x] ⊂ K[x]. Thus we
may view C as an irreducible smooth projectiveK0-curve with∞ ∈ C(K0). Suppose
that C1 : y21 = f1(x) is also a genus g hyperelliptic curve over K with in�nite point
∞1 such that f1(x) ∈ K0[x] ⊂ K[x] is also a monic degree g polynomial without
multiple roots. So, we may view C1 as an irreducible smooth projective K0-curve
as well with ∞1 ∈ C1(K0). The hyperelliptic involution ιC1

is also de�ned over K0.
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Let φ : C ∼= C1 be a K0-biregular isomorphism of K0-curves that sends ∞ to ∞1.
Then there exist λ ∈ K∗

0 and r ∈ K0 such that

φ∗(x1) = λ2x+ r ∈ K0(C), φ∗(y1) = λ2g+1y ∈ K0(C)
(see [4, Prop. 1.2 and Remark on p. 730]). This implies that in K0(C)

(λ2g+1y)2 = f1(λ
2x+ r)

and therefore

y2 =
f1(λ

2x+ r)

λ2(2g+1)
.

Consequently,

f(x) =
f1(λ

2x+ r)

λ2(2g+1)

and therefore

f1(x) = λ2(2g+1) · f
(
x− r

λ2

)
.

Assume additionally that f(0) 6= 0, f1(0) 6= 0, and φ sends a point P =
(
0,
√
f(0)

)
∈

C(K) \ {∞} with abscissa 0 to a point P1 ∈ C1(K) \ {∞} with abscissa 0. Then
r = 0 and

(1) φ∗(x1) = λ2x, φ∗(y1) = λ2g+1y, f1(x) = λ2(2g+1) · f
( x
λ2

)
.

Let us assume also that there are nonzero a,b ∈ K0 such that

f(a) 6= 0, f1(b) 6= 0

and φ sends a point Q = (a,
√
f(a)) ∈ C(K) \ {∞} with abscissa a to a point

Q1 ∈ C1(K) \ {∞} with abscissa b. Then b = x1(Q) = λ2x(P ) = λ2a, i.e.,

(2) λ2 =
b

a
, λ =

√
b

a
,

Since λ ∈ K0, we conclude that b/a is a square in K0. In addition

(3) f1(x) = λ2(2g+1) · f
( x
λ2

)
=

(
b

a

)2g+1

f

(
x

b/a

)
.

In particular, if a = b, then b/a = 1 and therefore f(x) = f1(x), i.e., C = C1 and
either

λ = 1, φ∗(x1) = x, φ∗(y1) = y1

and φ is the identity map or

λ = −1, φ∗(x1) = x, φ∗(y1) = −y1
and φ = ι.

We will need the following assertion that was proven in [5].

Lemma 1. Let D be an e�ective positive degreem divisor on C such thatm ≤ 2g+1
and supp(D) does not contain ∞. Assume that the divisor D−m(∞) is principal.

(1) Suppose that m is odd. Then:
(i) m = 2g + 1 and there exists exactly one polynomial v(x) ∈ K[x] such

that the divisor of y−v(x) coincides with D−(2g+1)(∞). In addition,
deg(v) ≤ g.

(ii) If Wi lies in supp(D), then it appears in D with multiplicity 1.
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(iii) If b is a nonzero element of K and P = (a, b) ∈ C(K) lies in supp(D),
then ι(P ) = (a,−b) does not lie in supp(D).

(2) Suppose that m = 2d is even. Then there exists exactly one monic degree
d polynomial u(x) ∈ K[x] such that the divisor of u(x) coincides with
D−m(∞). In particular, every point Q ∈ C(K) appears in D−m(∞) with
the same multiplicity as ι(Q).

We �nish this section by the following elementary useful statement.

Lemma 2. Let K0 be a �eld, let a be a nonzero element of K and w(x) ∈ K0[x] a
degree g polynomial with nonzero constant term. Then there exists a unique degree
g polynomial w̃(x) ∈ K0[x] with nonzero constant term such that in the �eld K0(x)
of rational functions

w̃(a/x) =
w(x)

xg
.

Proof. We have

(4) w(x) =

g∑
i=0

bix
i, ai ∈ K0, b0 6= 0, bg 6= 0.

Then

w(x)

xg
=

g∑
i=0

bix
i−g =

g∑
i=0

bi
ag−i

(a/x)g−i.

Let us put

w̃(x) =

g∑
i=0

bi
ag−i

xg−i ∈ K0[x].

Clearly, deg(w̃) ≤ g. The coe�cient of w̃ at xg is b0/a
g 6= 0, and therefore deg(w̃) =

g. The constant term of w̃ is bg 6= 0. It follows from (4) that

w̃(a/x) =
w(x)

xg
.

The uniqueness of w̃ is obvious. �

3. Torsion points of order 2g + 1

The next assertion describes all odd degree hyperelliptic curves of genus g that
admit a torsion point of order 2g + 1.

Theorem 1. Let g ≥ 1 be an integer and f(x) ∈ K[x] a monic degree 2g + 1
polynomial without multiple roots. Then the odd degree hyperelliptic curve y2 =
f(x) has a point P of order 2g+1 if and only if there exist a ∈ K and a polynomial
v(x) ∈ K[x] such that

deg(v) ≤ g, v(a) 6= 0, f(x) = (x− a)2g+1 + v2(x).

If this is the case, then the point P = (a, v(a)) ∈ C(K) has order 2g + 1.

Proof. Suppose that P = (a, c) is a K-point on C having order 2g + 1 in J(K).
Then the divisor (2g+ 1)(P )− (2g+ 1)(∞) is principal. By Lemma 1, there exists
precisely one polynomial v(x) with deg(v) ≤ g such that

div(y − v(x)) = (2g + 1)(P )− (2g + 1)(∞).



6 BORIS M. BEKKER AND YURI G. ZARHIN

Thus the zero divisor of y−v(x) coincides with (2g+1)(P ). In particular, c = v(a).
Notice that the point ι(P ) = (a,−c) also has order 2g + 1. The zero divisor of
y + v(x) equals (2g + 1)(ι(P )). Since P 6= ι(P ), the zero divisor of

y2 − v2(x) = f(x)− v2(x)

equals (2g + 1)(P ) + (2g + 1)(ι(P )) while its polar divisor is 2(2g + 1)(∞). This
means that the monic degree 2g + 1 polynomial f(x) − v2(x) equals (x − a)2g+1,
which implies that f(x) = (x− a)2g+1 + v2(x).

Conversely, let us consider the pointed hyperelliptic curve y2 = (x − a)2g+1 +
v2(x), where v(x) ∈ K[x] is a polynomial with deg(v) ≤ g and v(a) 6= 0. Let us
put c = v(a) and prove that P = (a, c) ∈ C(K) has order 2g + 1. It follows from
y2−v2(x) = (x−a)2g+1 that all zeros of y−v(x) have abscissa a. Clearly, P = (a, c)
is a zero of y− v(x) but ι(P ) = (a,−c) is not one, because y− v(x) takes the value
−c − v(a) = −2v(c) 6= 0 at ι(P ). This implies that y − v(x) has exactly one zero,
namely P . Obviously, y−v(x) has exactly one pole, namely ∞, and its multiplicity
is 2g + 1. It follows that

div(y − v(x)) = (2g + 1)(P )− (2g + 1)(∞) = (2g + 1)((P )− (∞)).

This implies that P has �nite order m in J(K) and m divides 2g + 1. Clearly, m
is neither 1 nor 2. If g = 1, then 2g+1 = 3 is a prime divisible by m. This implies
that m = 3 = 2g + 1, i.e., P is a torsion point of order 2g + 1. Now assume that
g > 1. By a result of [5], m cannot lie between 3 and 2g. This implies again that
m = 2g + 1, i.e., P is a torsion point of order 2g + 1.

�

Example 1. Suppose that char(K) does not divide 2g+1. Choose a nonzero b ∈ K.
Then the polynomial x2g+1+ b2 has no multiple roots and the genus g hyperelliptic
curve

y2 = x2g+1 + b2

contains a torsion point (0, b) of order 2g + 1 [5]. If we take b = 1, then we get
that the odd degree genus g hyperelliptic curve y2 = x2g+1+1 contains two torsion
points (0,±1) of order 2g + 1.

Example 2. Suppose that char(K) divides 2g + 1. Choose a nonzero b ∈ K. Then
the polynomial f(x) = x2g+1 + (bx + 1)2 has no multiple roots. Indeed, f ′(x) =
2b(bx+ 1). So, if x0 is a root of f ′(x), then bx0 + 1 = 0, which implies that x0 6= 0
and

f(x0) = x2g+1
0 + (bx0 + 1)2 = x2g+1

0 6= 0.

This proves that f(x) has no multiple roots. Applying Theorem 1 to a = 0 and
v(x) = bx+ 1, we conclude that the odd degree genus g hyperelliptic curve

y2 = x2g+1 + (bx+ 1)2

has a torsion point P = (0, 1) of order 2g + 1. If we take b = 1, then we get that
the odd degree genus g hyperelliptic curve y2 = x2g+1 + (x + 1)2 has two torsion
points (0,±1) of order 2g + 1.

Remark 2. Let v(x), w(x) ∈ K[x] be polynomials whose degrees do not exceed g
with

v(0) 6= 0, w(0) 6= 0
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and such that both degree 2g + 1 polynomials

f(x) = x2g+1 + v2(x), f1(x) = x2g+1 + w2(x)

have no multiple roots. Let us consider odd degree genus g hyperelliptic curves

C : y2 = x2g+1 + v2(x), and C1 : y21 = x2g+1
1 + w2

1(x)

over K. By Theorem 1, P = (0, v(0)) is a torsion point of order 2g+1 in C(K) and
P1 = (0, w(0)) is a torsion point of order 2g+1 in C1(K). It follows from arguments
of Remark 1 that if there is a K-biregular isomorphism of pointed curves φ : C ∼= C1
that sends P to P1, then there exists λ ∈ K∗ such that

φ∗x1 = λ2x, φ∗y1 = λ3y,

x2g+1 + w2(x) = f1(x) = λ2(2g+1) · f
( x
λ2

)
= x2g+1 + λ2(2g+1)

(
v
( x
λ2

))2
.

This implies that

w(x) = ±λ(2g+1)v
( x
λ2

)
.

Theorem 2. Let K0 be a sub�eld of K. Let g ≥ 1 be an integer and

f(x) ∈ K0[x] ⊂ K[x]

be a monic degree 2g + 1 polynomial without multiple roots.
Suppose that the odd degree hyperelliptic curve Cf : y2 = f(x) has a K0-point

P = (a, c) of order 2g+1. Then there exists precisely one polynomial v(x) ∈ K0[x]
such that

deg(v) ≤ g, v(a) = c 6= 0, f(x) = (x− a)2g+1 + v2(x).

Proof. It follows from Theorem 1 and its proof that there exists a polynomial
v(x) ∈ K[x] such that

deg(v) ≤ g, v(a) = c 6= 0, f(x) = (x− a)2g+1 + v2(x).

Since f(x) ∈ K0[x], we get v2(x) ∈ K0[x]. This implies that the polynomial
w(x) = v(x)/c satis�es

w(a) = 1, w2(x) ∈ K0[x].

It follows that if we put w̃(x) = w(x+ a) ∈ K[x], then

w̃(0) = 1, w̃2(x) ∈ K0[x], w(x) = w̃(x− a), v(x) = c · w̃(x− a).

Hence, in order to prove that v(x) ∈ K0[x], it su�ces to check that the polynomial
w̃(x) lies in K0[x]. Let us do it.

Let us put m := deg(w̃). If m = 0, then w̃(x) = w̃(0) = 1 ∈ K0[x], and we are
done. Assume now that m ≥ 1 and

w̃(x) = 1 +

m∑
k=1

akx
k ∈ K[x], w̃2(x) = 1 +

2m∑
k=1

bkx
k ∈ K0[x].

We know that all bk ∈ K0 and need to prove that all ak ∈ K0. Let us use induction
by k. First, b1 = 2a1. Since char(K) 6= 2, we have a1 ∈ K0, and the �rst step of
induction is done. (Notice that we have also proven that w̃(x) ∈ K0[x] if m ≤ 1.)
Now assume that k > 1 (and therefore m ≥ k > 1), and ai ∈ K0 for all i < k. Then

bk = 1 · ak + ak · 1 +Bk = where Bk =
∑

1≤i,j≤k−1,i+j=k

aiaj .
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By induction assumption, all ai and aj with 1 ≤ i, j ≤ k− 1 lie in K0. This implies
that Bk ∈ K0. Since bk = ak + ak +Bk lies in K0, we have 2ak ∈ K0 and therefore
ak ∈ K0. This ends the proof. �

Remark 3. Let K0 be a sub�eld of K and g a positive integer. It follows from
Examples 1 and 2 that there is a degree 2g + 1 monic polynomial f(x) ∈ K0[x]
without multiple roots such that the odd degree genus g hyperelliptic curve Cf :
y2 = f(x) de�ned over K0 has a torsion point of order 2g + 1 in Cf (K0).

Theorem 3. Let K0 be a sub�eld of K. Let g ≥ 1 be an integer and

f(x) ∈ K0[x] ⊂ K[x]

be a monic degree 2g + 1 polynomial without multiple roots.
Suppose that the odd degree genus g hyperelliptic curve Cf : y2 = f(x) over K0

has K0-points P = (a1, c1) and Q = (a2, c2) of order 2g + 1 such that Q 6= P, ι(P ),
i.e.,

ai, ci ∈ K0, c
2
i = f(ai) for i = 1, 2, a1 6= a2.

Then there exists precisely one ordered pair of polynomials u1(x), u2(x) ∈ K0[x]
such that the following conditions hold.

(i) deg(ui) ≤ g for i = 1, 2.
(ii)

u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1.

(iii) If char(K0) does not divide 2g + 1, then

deg(u1) = deg(u2) = g.

(iv) u1(a1) + u2(a1) 6= 0, u1(a2)− u2(a2) 6= 0. In particular, u2(x) 6= ±u1(x).
(v)

f(x) = (x− a1)
2g+1 +

(
u1(x) + u2(x)

2

)2

= (x− a2)
2g+1 +

(
u1(x)− u2(x)

2

)2

.

(vi)

P =

(
a1,

u1(a1) + u2(a1)

2

)
, Q =

(
a2,

u1(a1)− u2(a2)

2

)
.

Proof. It follows from Theorem 2 that there exists precisely one pair of polynomials
v1(x), v2(x) ∈ K0[x] such that for i = 1, 2

deg(vi) ≤ g, vi(ai) 6= 0, f(x) = (x− ai)
2g+1 + v2i (x), Pi = (ai, vi(ai)).

We get
0 =

(
(x− a2)

2g+1 + v22(x)
)
−
(
(x− a1)

2g+1 + v21(x)
)
,

i.e.,

(x− a2)
2g+1 − (x− a1)

2g+1 = v1(x)
2 − v22(x) = (v1(x) + v2(x))(v1(x)− v2(x)).

Let us put
u1(x) := v1(x) + v2(x), u2(x) := v1(x)− v2(x).

Then
u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1,

which gives us (ii). Clearly,

v1(x) =
u1(x) + u2(x)

2
, v2(x) =

u1(x)− u2(x)

2
.



TORSION POINTS ON HYPERELLIPTIC CURVES 9

This implies that

u1(a1) + u2(a1) 6= 0, u1(a1)− u2(a1) 6= 0, deg(ui) ≤ g for i = 1, 2,

which gives us (iv) and (i), and

f(x) = (x− a1)
2g+1 +

(
u1(x) + u2(x)

2

)2

= (x− a2)
2g+1 +

(
u1(x)− u2(x)

2

)2

,

which gives us (v).
We have

P = (a1, v1(a1)) =

(
a1,

u1(a1) + u2(a1)

2

)
,

Q = (a2, v2(a2)) =

(
a2,

u1(a2)− u2(a2)

2

)
,

which gives us (vi).
If char(K0) does not divide 2g+1, then the polynomial (x−a2)2g+1−(x−a1)2g+1

has degree 2g (and leading coe�cient (2g + 1)(a1 − a2)), and therefore

2g = deg(u1) + deg(u2).

Since both deg(u1),deg(u2) ≤ g, we conclude that

deg(u1) = deg(u2) = g,

which gives us (iii).
It remains to prove the uniqueness of u1(x), u2(x). It follows from (v) that both

polynomials u1(x) + u2(x) and u1(x)− u2(x) are de�ned up to sign. However, (iv)
and (vi) determine u1(x) + u2(x) and u1(x) − u2(x) uniquely. This implies the
uniqueness of u1(x), u2(x). �

Remark 4. Let a1, a2 be distinct elements of K. Let us put

p := char(K)

and let x0 ∈ K be a root of (x − a2)
2g+1 − (x − a1)

2g+1 Since a1 6= a2, we get
x0 6= a1 and x0 6= 0, i.e.

(x0 − a2)
2g 6= 0, (x0 − a1)

2g 6= 0.

Let us di�erentiate the polynomial (x− a2)
2g+1 − (x− a1)

2g+1 ∈ K[x]. We have(
(x− a2)

2g+1 − (x− a1)
2g+1

)′
= (2g + 1)(x− a2)

2g − (2g + 1)(x− a1)
2g =

(2g + 1)
(
(x− a2)

2g − (x− a1)
2g
)
.

In particular, if p divides 2g + 1, then p > 2 is a prime,(
(x− a2)

2g+1 − (x− a1)
2g+1

)′
= 0

and

(x− a2)
2g+1 − (x− a1)

2g+1 =
(
(x− a2)

(2g+1)/p − (x− a1)
(2g+1)/p

)p
;

in particular, all roots of (x − a2)
2g+1 − (x − a1)

2g+1, including x0, are multiple.
Now suppose that char(K) does not divide 2g + 1. Then(

(x− a2)
2g+1 − (x− a1)

2g+1
)′ 6= 0.
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Assume additionally that x0 is a multiple root of (x− a2)
2g+1 − (x− a1)

2g+1. This
means that

(x0 − a2)
2g+1 = (x0 − a1)

2g+1, (x0 − a2)
2g = (x0 − a1)

2g.

Dividing the �rst equality by the second one, we get

x0 − a2 = x0 − a1,

and therefore a1 = a2, which is not the case. The obtained contradiction proves
that if char(K) does not divides 2g + 1, then (x − a2)

2g+1 − (x − a1)
2g+1 has no

multiple roots.

Theorem 4. Let K0 be a sub�eld of K and g ≥ 1 be an integer. Let a1 and a2 be
distinct elements of K0. Let u1(x), u2(x) ∈ K0[x] be polynomials such that

deg(ui) ≤ g for i = 1, 2; u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1.

Assume additionally that if char(K0) does not divide 2g + 1, then

deg(u1) = deg(u2) = g.

Let us consider the monic degree 2g + 1 polynomial

fa1,a2;u1,u2
(x) = (x− a1)

2g+1 +

(
u1(x) + u2(x)

2

)2

.

Then the following conditions hold.

(a)

fa1,a2;u1,u2(x) = (x− a2)
2g+1 +

(
u1(x)− u2(x)

2

)2

= fa2,a1;u1,−u2(x).

(b) Let us put

a := a2 − a1 ∈ K∗, ũ1(x) := u1(x+ a1) ∈ K0[x], ũ2(x) = u2(x+ a1) ∈ K0[x].

Then

deg(ũ1) = deg(u1),deg(ũ2) = deg(u2),

ũ1(x)ũ2(x) = (x− a)2g+1 − x2g+1 = (x− a)2g+1 − (x− 0)2g+1

and

fa1,a2;u1,u2
(x+ a1) = f0,a;ũ1,ũ2

(x) = x2g+1 +

(
ũ1(x) + ũ2(x)

2

)2

.

(c) Suppose that fa1,a2;u1,u2(x) has no multiple roots. Then the following con-
ditions hold.
(c1) Let u′1(x), u

′
2(x) ∈ K0[x] be the derivatives of u1(x) and u2(x) respec-

tively. Then

u′1(x) 6= 0, u′2(x) 6= 0.

In particular, neither u1(x) nor u2(x) is a constant.
(c2) Let us consider the odd degree genus g hyperelliptic curve

Ca1,a2;u1,u2
:= Cfa1,a2;u1,u2

: y2 = fa1,a2;u1,u2
(x),

which is de�ned over K0. Then

u1(a1) + u2(a1) 6= 0, u1(a2)− u2(a2) 6= 0,
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and

Pa1,a2;u1,u2
=

(
a1,

u1(a1) + u2(a1)

2

)
and Qa1,a2;u1,u2

=

(
a2,

u1(a2)− u2(a2)

2

)
are points of order 2g + 1 in Ca1,a2;u1,u2

(K0) ⊂ Ca1,a2;u1,u2
(K).

Proof.

fa1,a2;u1,u2(x)−

(
(x− a2)

2g+1 +

(
u1(x)− u2(x)

2

)2
)

= (x− a1)
2g+1 +

(
u1(x) + u2(x)

2

)2

− (x− a2)
2g+1 −

(
u1(x)− u2(x)

2

)2

=

(
u1(x) + u2(x)

2

)2

−
(
u1(x)− u2(x)

2

)2

+
(
(x− a1)

2g+1 − (x− a2)
2g+1

)
= u1(x)u2(x)− u1(x)u2(x) = 0.

This proves (a).
Let us prove (b). Clearly, deg(u(x+ a1)) = deg(u) for every polynomial u(x) ∈

K[x]. This implies that deg(ũ1) = deg(u1),deg(ũ2) = deg(u2). It follows that
deg(ũ1) = deg(ũ2) = g if deg(u1) = deg(u2) = g. We have

(x− a)2g+1 − x2g+1 = ((x+ a1)− a2)
2g+1 − ((x+ a1)− a1)

2g+1

= u1(x+ a1)u2(x+ a1) = ũ1(x)ũ2(x).

Finally,

fa1,a2;u1,u2(x+ a1) = ((x− a1) + a1)
2g+1 +

(
u1(x+ a1) + u2(x+ a1)

2

)2

= (x− 0)2g+1 +

(
ũ1(x) + ũ2(x)

2

)2

= f0,a;ũ1,ũ2(x).

Let us prove (c1). We put p := char(K). Let us assume that, say, u′1(x) = 0.
We need to arrive to a contradiction. Under our assumption one of the following
condition holds.

(i) u1(x) is a nonzero constant, i.e., deg(u1) = 0 < g. This implies that
char(K) is a prime dividing 2g + 1.

(ii) p is a prime and there exists a polynomial w1(x) ∈ K[x] such that u1(x) =
wp

1(x).

Clearly, in both cases p is a prime dividing 2g+1 and there exists a polynomial
w1(x) ∈ K[x] such that u1(x) = wp

1(x). We have

wp
1(x)u2(x) = u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1 =(

(x− a2)
(2g+1)/p − (x− a1)

(2g+1)/p
)p
.

This implies that w1(x) divides (x−a2)(2g+1)/p−(x−a1)(2g+1)/p in K[x], i.e., there
exists a polynomial w1(x) ∈ K[x] such that

w1(x)w2(x) = (x− a2)
(2g+1)/p − (x− a1)

(2g+1)/p,

and therefore

(x− a2)
2g+1 − (x− a1)

2g+1 = (w1(x)w2(x))
p
= wp

1(x)w
p
2(x) = u1(x)w

p
2(x).
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It follows that u2(x) = wp
2(x). Consequently,

fa1,a2;u1,u2(x) = (x− a1)
2g+1 +

(
wp

1(x) + wp
2(x)

2

)2

=

(
(x− a1)

(2g+1)/p +

(
w1(x) + w2(x)

p
√
2

)2
)p

.

Hence fa1,a2;u1,u2(x) is a pth power in K[x] and therefore all its roots are multiple,
which contradicts our assumptions. Hence, u′1(x) 6= 0. By the same token, u′2(x) 6=
0. This ends the proof of (c1).

In order to prove (c2), notice that, from the very de�nition of fa1,a2;u1,u2
(x),

it follows that Pa1,a2;u1,u2
lies on Ca1,a2;u1,u2

. The fact that Qa1,a2;u1,u2
lies on

Ca1,a2;u1,u2 follows from (a). Applying two times Theorem 2 to a = a1, v(x) =
(u1(x) + u2(x))/2 and to a = a2, v(x) = (u1(x) − u2(x))/2, we conclude that
both Pa1,a2;u1,u2

and Qa1,a2;u1,u2
are points of order 2g + 1 in Ca1,a2;u1,u2

(K0) ⊂
Ca1,a2;u1,u2

(K). In addition,

u1(a1) + u2(a1)

2
6= 0,

u1(a2)− u2(a2)

2
6= 0,

i.e., u1(a1) + u2(a1) 6= 0, u1(a2)− u2(a2) 6= 0. �

Remark 5. Let a1, a2 be distinct elements of a sub�eldK0 ⊂ K and let u1(x), u2(x) ∈
K0[x] be polynomials that satisfy u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1. Then

u1(a1)u2(a1) = (a1 − a2)
2g+1 − (a1 − a1)

2g+1 = (a1 − a2)
2g+1 6= 0,

u1(a2)u2(a2) = (a2−a2)2g+1− (a2−a1)2g+1 = −(a2−a1)2g+1 = (a1−a2)2g+1 6= 0.

In particular,

u1(a1) 6= 0, u2(a1) 6= 0, u1(a2) 6= 0, u2(a2) 6= 0.

Remark 6. Let a1, a2 be distinct elements of a sub�eldK0 ⊂ K, and let u1(x), u2(x) ∈
K0[x] be polynomials that satisfy u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1. Then

−u1(x),−u2(x) ∈ K0[x] and

(x−a2)2g+1−(x−a1)2g+1 = (−u1(x))(−u2(x)) = u2(x)u1(x) = (−u2(x))(−u1(x)).

Assume additionally that deg(u1) ≤ g, deg(u2) ≤ g, and the equalities hold if
char(K) does not divide 2g + 1. Then

fa1,a2;u1,u2(x) = fa1,a2;−u1,−u2(x) = fa1,a2;u2,u1(x) = fa1,a2;−u2,−u1(x).

If, in addition, fa1,a2;u1,u2
(x) has no multiple roots, then

Ca1,a2;u1,u2
= Ca1,a2;−u1,−u2

= Ca1,a2;u2,u1
= Ca1,a2;−u2,−u1

.

So, in all four cases we get the same odd degree hyperelliptic curve. However, it
follows readily from Theorem 4(c1) that

Pa1,a2;−u1,−u2
= ι(Pa1,a2;u1,u2

), Qa1,a2;−u1,−u2
= ι(Qa1,a2;u1,u2

),

Pa1,a2;u2,u1
= Pa1,a2;u1,u2

, Qa1,a2;u2,u1
= ι(Qa1,a2;u1,u2

),

Pa1,a2;−u2,−u1
= ι(Pa1,a2;u1,u2

), Qa1,a2;u2,u1
= Qa1,a2;u1,u2

.
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Remark 7. Let a1, a2 be distinct elements of a sub�eld K0 ⊂ K and let u1(x),
u2(x), ũ1(x), ũ2(x) ∈ K0[x] be polynomials that satisfy

u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1 = ũ1(x)ũ2(x).

Let us assume that deg(u1) ≤ g, deg(u2) ≤ g. In addition, we also assume that the
equalities hold if char(K) does not divide 2g + 1.

Suppose that

fa1,a2;u1,u2(x) = fa1,a2;ũ1,ũ2(x),

i.e.,

(x− a1)
2g+1 +

(
u1(x) + u2(x)

2

)2

= (x− a1)
2g+1 +

(
ũ1(x) + ũ2(x)

2

)2

.

This means that (
u1(x) + u2(x)

2

)2

=

(
ũ1(x) + ũ2(x)

2

)2

,

i.e.,

ũ1(x) + ũ2(x) = ± (u1(x) + u2(x)) .

Since

u1(x)u2(x) = ũ1(x)ũ2(x) = (−u1(x)(−u2(x)),
we conclude that one of the following four conditions holds.

• ũ1(x) = u1(x), ũ2(x) = u2(x);
• ũ1(x) = −u1(x), ũ2(x) = −u2(x);
• ũ1(x) = u2(x), ũ2(x) = u1(x);
• ũ1(x) = −u2(x), ũ2(x) = −u1(x).

Theorem 5. Let p = char(K) be an odd prime and g a positive integer such that
2g + 1 = pk for a positive integer k. (E.g., g = (p − 1)/2.) Let f(x) ∈ K[x] be
a monic degree 2g + 1 polynomial without multiple roots and Cf : y2 = f(x) be
the corresponding odd degree genus g hyperelliptic curve. Then Cf (K) contains, at
most, two points of order pk.

Proof. Assume that Cf (K) contains, at least, three points of order pk = 2g+1. Let
P ∈ Cf (K) be one of them. Then P = (a1, c1) with

a1, c1 ∈ K, c1 6= 0, c21 = f(a1).

Consequently, ι(P ) = (a1,−c1) ∈ Cf (K) also has order 2g + 1. Hence there exists
another point Q ∈ Cf (K) of order 2g + 1 that is neither P nor ι(P ). This implies
that Q = (a2, c2) with

a2, c2 ∈ K, c2 6= 0, c22 = f(a2), a2 6= a1.

By Theorem 3 (applied to K0 = K) there exist polynomials u1(x), u2(x) ∈ K[x]
such that

u1(x)u2(x) = (x−a2)2g+1−(x−a1)2g+1, f(x) = (x−a1)2g+1+

(
u1(x) + u2(x)

2

)2

.

Since 2g + 1 = pk and p = char(K), the di�erence

(x− a2)
2g+1 − (x− a1)

2g+1 = (x− a2)
pk

− (x− a1)
pk

= (a1 − a2)
pk
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is a nonzero element of K. This implies that both u1(x) and u2(x) are also nonzero
elements of K say, u1(x) = b1 ∈ K∗, u2(x) = b2 ∈ K∗. It follows that

f(x) = (x− a1)
pk

+

(
b1 + b2

2

)2

= (x− a1 + b)p
k

,

where

b =

(
pk

√
b1 + b2

2

)2

.

Therefore, f(x) has multiple roots, which gives us the desired contradiction. �

Remark 8. The case p = 5, g = 2, k = 1 of Theorem 5 was done in [2, Lemma 3.1].

Remark 9. Let us consider the case when p = char(K) = 3 and f(x) is a degree 3
polynomial without multiple roots. Then the equation y2 = f(x) de�nes an elliptic
curve over the �eld K of characteristic 3. It is well known that an elliptic curve in
characteristic 3 has, at most, two points of order 3. Theorem 5 may be viewed as
a generalization of this fact, where 3 = 31 is replaced by any odd prime p and 1 by
any positive integer k.

4. Families of hyperelliptic curves

Theorem 6. Let us assume that char(K) does not divide 2g+1. Let w1(x), w2(x) ∈
K[x] be degree g polynomials without common roots. Then for all but �nitely
many λ ∈ K∗ the degree 2g + 1 polynomial

hλ(x) = λx2g+1 + (λw1(x) + w2(x))
2

has no multiple roots.

Proof. Fix x0 ∈ K. Then

hλ(x0) = w2
1(x0)λ

2 + (x2g+1
0 + 2w1(x0)w2(x0))λ+ w2(x0)

2

is a polynomial in λ of degree ≤ 2 such that at least one of its coe�cients does
not vanish. Indeed, either its coe�cient w2

1(x0) at λ
2 is not 0 or its constant term

w2(x0)
2 does not vanish, because either w1(x0) 6= 0 or w2(x0) 6= 0. This implies

that there exist, at most, two λ ∈ K such that hλ(x0) = 0. Hence, in order to prove
the theorem, it su�ces to check that there are only �nitely many x0 ∈ K for which
there is λ ∈ K∗ such that hλ(x0) = 0. Our plan is to produce several polynomials
in x that do not depend on λ and such that our x0 is a root of one of them.

We have

h′λ(x) = (2g + 1)λx2g + 2 (λw1(x) + w2(x)) (λw
′
1(x) + w′

2(x)) .

Suppose that x0 ∈ K and λ ∈ K∗ satisfy hλ(x0) = h′λ(x) = 0, i.e., x0 is a multiple
root of hλ(x). This means that x0 is a solution of the system

λx2g+1 + (λw1(x) + w2(x))
2
= 0,

(2g + 1)λx2g + 2 (λw1(x) + w2(x)) (λw
′
1(x) + w′

2(x)) = 0.

Multiplying the second equation by x and the �rst equation by 2g + 1, and sub-
tracting one from the other, we obtain that x0 is a solution of the equation

(2g + 1) (λw1(x) + w2(x))
2 − 2x (λw1(x) + w2(x)) (λw

′
1(x) + w′

2(x)) = 0.

Hence either



TORSION POINTS ON HYPERELLIPTIC CURVES 15

(i) λw1(x0) + w2(x0) = 0
or

(ii) (2g + 1) (λw1(x0) + w2(x0))− 2x0 (λw
′
1(x0) + w′

2(x0)) = 0.

Case (i). Since the set of roots of w1(x) is �nite, we may assume that x0 is not
one of them and get λ = −w2(x0)/w1(x0). It follows from the �rst equation of the
system that x0 is a solution of the equation

−w2(x)

w1(x)
x2g+1 +

(
−w2(x)

w1(x)
w1(x) + w2(x)

)2

= 0.

This means that −w2(x0)
w1(x0)

x2g+1
0 = 0, which implies that the case (i) holds only for

�nitely many values of x0, namely if either x0 is 0 or one of the �nitely many roots
of w2(x).

Case (ii). In this case we have

((2g + 1)w1(x0)− 2x0w
′
1(x0))λ = 2x0w

′
2(x0)− (2g + 1)w2(x0).

Since deg(w1) = g 6= 2g + 1, the polynomial (2g + 1)w1(x0)− 2x0w
′
1(x) has degree

g and the set of its roots is �nite. So, we may assume that x0 is not one of them,
i.e., ((2g + 1)w1(x0)− 2x0w

′
1(x0)) 6= 0 and

λ =
2x0w

′
2(x0)− (2g + 1)w2(x0)

((2g + 1)w1(x0)− 2x0w′
1(x0))

.

Plugging this expression for λ in the �rst equation of the system, we get that x0 is
a solution of the equation

2xw′
2(x)− (2g + 1)w2(x)

((2g + 1)w1(x)− 2xw′
1(x))

x2g+1+

(
2xw′

2(x)− (2g + 1)w2(x)

((2g + 1)w1(x)− 2xw′
1(x))

w1(x) + w2(x)

)2

= 0.

This means that x0 is a root of the polynomial

H(x) := (2xw′
2(x)− (2g + 1)w2(x))((2g + 1)w1(x)− 2xw′

1(x))x
2g+1

+ ((2xw′
2(x)− (2g + 1)w2(x))w1(x) + ((2g + 1)w1(x)− 2xw′

1(x))w2(x))
2
.

Since deg(w1) = deg(w2) = g 6= (2g + 1)/2, both polynomials (2xw′
2(x) − (2g +

1)w2(x)) and ((2g + 1)w1(x)− 2xw′
1(x)) have degree g. This implies that the �rst

term in the formula for H(x) is a polynomial of degree g+g+(2g+1) = 4g+1. On
the other hand, the second term in the formula for H(x) is a polynomial of degree
≤ 2 · (g+g) = 4g. Therefore, deg(H) = 4g+1 and the set of roots of H(x) is �nite.

To summarize: there are only �nitely many x0 ∈ K such that there exists λ ∈ K∗

for which x0 is a multiple root of hλ(x). This ends the proof. �

Theorem 7. Let us assume that char(K) does not divide 2g + 1. Let a1, a2 be
distinct elements of K, and let u1(x), u2(x) ∈ K[x] be degree g polynomials that
satisfy

u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1.

Then the following conditions hold.

(i) If µ ∈ K∗, then µu1(x), µ
−1u2(x) ∈ K[x] are degree g polynomials that

satisfy

(µu1(x))(µ
−1u2(x)) = u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1.
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(i) There are only �nitely many µ ∈ K∗ such that the polynomial

fa1,a2;µu1,µ−1u2
(x) = (x− a1)

2g+1 +

(
µu1(x) + µ−1u2(x)

2

)2

has a multiple root.

Proof. Using Theorem 4(b), we may and will assume that a1 = 0, a2 = a 6= 0, and

fa1,a2;µu1,µ−1u2
(x) = f0,a;µu1,µ−1u2

(x).

We have
u1(x)u2(x) = (x− a)2g+1 − x2g+1

and
ui(0) 6= 0, ui(a) 6= 0 for i = 1, 2.

Since char(K) does not divide 2g + 1, Remark 4 tells us that the polynomial (x−
a)2g+1 − x2g+1 has no multiple roots. This implies that u1(x) and u2(x) have no
common roots. We have

f0,a;µu1,µ−1u2
(x) = x2g+1+

(
µu1(x) + µ−1u2(x)

2

)2

= x2g+1+
(
µw1(x) + µ−1w2(x)

)2
,

where w1(x) = u1(x)/2, w2(x) = u2(x)/2. Clearly, w1(x) and w2(x) are degree g
polynomials without common roots. We have

µ2f0,a;µu1,µ−1u2
(x) = µ2x2g+1 +

(
µ2w1(x) + w2(x)

)2
.

It follows from Theorem 6 that there is a �nite set S ⊂ K∗ such that if µ2 6∈ S,
then µ2fa1,a2;µu1,µ−1u2

(x) has no multiple roots and therefore f0,a;µu1,µ−1u2
(x) also

has no multiple roots. Therefore, f0,a;µu1,µ−1u2
(x) has no multiple roots for all but

�nitely many µ ∈ K∗. �

Theorem 8. Let us assume that p := char(K) > 0, p divides 2g + 1, but 2g + 1 is
not a power of p. Let w1(x), w2(x) ∈ K[x] be nonconstant polynomials such that

deg(w1) ≤ g, deg(w2) ≤ g;w′
1(x) 6= 0, w′

2(x) 6= 0;w1(0) 6= 0, w2(0) 6= 0.

Assume also that
(w1(x)w2(x))

′
= 0.

Then for all but �nitely many λ ∈ K∗ the degree 2g + 1 polynomial

hλ(x) = λx2g+1 + (λw1(x) + w2(x))
2

has no multiple roots.

Proof. Fix x0 ∈ K. Then

hλ(x0) = w2
1(x0)λ

2 + (x2g+1
0 + 2w1(x0)w2(x0))λ+ w2(x0)

2

is a polynomial in λ of degree ≤ 2 such that at least one of its coe�cients does not
vanish. Indeed, if all the coe�cients vanish, then

w2
1(x0) = 0, w2(x0)

2 = 0, x2g+1
0 + 2w1(x0)w2(x0),

i.e.,
w1(x0) = 0, w2(x0) = 0, x0 = 0,

which means that
x0 = 0, w1(0) = 0, w2(0).

However, x0 = 0 is not a zero of w1(x), which gives us the desired contradiction.
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This implies that for any given x0 ∈ K there exist, at most, two λ ∈ K such that
hλ(x0) = 0. Hence, in order to prove the theorem, it su�ces to check that there
are only �nitely many x0 ∈ K for which there is λ ∈ K∗ such that hλ(x0) = 0.
Our plan is to produce (as in the proof of Theorem 6) several polynomials in x that
do not depend on λ and such that our x0 is a root of one of them. From the very
beginning, we may exclude �nally many values of x0. In particular, we may and
will assume that

(5) x0 6= 0, w1(x0) 6= 0, w′
1(x0) 6= 0, w2(x0) 6= 0, w′

2(x0) 6= 0.

Since the derivative of w1(x)w2(x) is identically 0, we get

0 = w′
1(x0)w2(x0) + w′

2(x0)w1(x0)

and therefore

(6)
w′

2(x0)

w′
1(x0)

= −w2(x0)

w1(x0)
.

We have

h′λ(x) = (2g + 1)λx2g+1 + 2 (λw1(x) + w2(x)) (λw
′
1(x) + w′

2(x))

= 2 (λw1(x) + w2(x)) (λw
′
1(x) + w′

2(x)) .

�

Suppose that x0 ∈ K and λ ∈ K∗ satisfy hλ(x0) = h′λ(x) = 0, i.e., x0 is a
multiple root of hλ(x). This means that x0 is a solution of the system

λx2g+1 + (λw1(x) + w2(x))
2
= 0,

(λw1(x) + w2(x)) (λw
′
1(x) + w′

2(x)) = 0.

Hence either

(i) λw1(x0) + w2(x0) = 0
or

(ii) λw′
1(x0) + w′

2(x0) = 0.

Case (i). Since w1(x0) 6= 0, we get λ = −w2(x0)/w1(x0). It follows from the
�rst equation of the system that x0 is a solution of the equation

−w2(x)

w1(x)
x2g+1 +

(
−w2(x)

w1(x)
w1(x) + w2(x)

)2

= 0.

Consequently,

−w2(x0)

w1(x0)
x2g+1
0 = 0,

which is not the case, since x0 6= 0 and w2(x0) 6= 0. So, the case (i) does not occur.
Case (ii). Since w′

1(x0) 6= 0, we get λ = −w′
2(x0)/w

′
1(x0). In light of (6),

λ =
w′

2(x0)

w′
1(x0)

.

It follows from the �rst equation of the system that x0 is a solution of the equation

w2(x)

w1(x)
x2g+1 +

(
w2(x)

w1(x)
w1(x) + w2(x)

)2

= 0,
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i.e., x0 is a solution of the equation

w2(x)

w1(x)
x2g+1 + (2w2(x))

2
= 0.

Multiplying this equation by w1(x), we obtain that x0 is a root of the polynomial

w2(x)x
2g+1 + 4(w2(x))

2w1(x) = w2(x)
(
x2g+1 + 4w1(x)w2(x)

)
.

Since w2(x0) 6= 0, x0 is a root of the polynomial H(x) = x2g+1 + 4w1(x)w2(x).
Since both deg(wi) ≤ g, we have deg(w1(x)w2(x)) ≤ 2g < 2g + 1, and therefore
H(x) is a polynomial of degree 2g + 1. In particular, the set of roots of H(x) is
�nite.

To summarize: there are only �nitely many x0 ∈ K for which there exists λ ∈ K∗

such that x0 is a multiple root of hλ(x). This ends the proof.

Theorem 9. Let us assume that p := char(K) > 0 and p divides 2g+1, but 2g+1 is
not a power of p. Let a1, a2 be distinct elements of K, and let u1(x), u2(x) ∈ K[x]
be polynomials that satisfy

u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1,

deg(u1) ≤ g, deg(u2) ≤ g, u′1(x) 6= 0, u′2(x) 6= 0.

Then the following conditions hold.

(i) If µ ∈ K∗, then µu1(x), µ
−1u2(x) ∈ K[x] are polynomials of degree ≤ g

such that

(µu1(x))
′ 6= 0, (µu2(x))

′ 6= 0,

(µu1(x))(µ
−1u2(x)) = u1(x)u2(x) = (x− a2)

2g+1 − (x− a1)
2g+1.

(ii) There are only �nitely many µ ∈ K∗ such that the polynomial

fa1,a2;µu1,µ−1u2
(x) = (x− a1)

2g+1 +

(
µu1(x) + µ−1u2(x)

2

)2

has a multiple root.

Proof. (i) is obvious. Let us prove (ii). Using Theorem 4(b), we may and will
assume that a1 = 0, a2 = a 6= 0,

fa1,a2;µu1,µ−1u2
(x) = f0,a;µu1,µ−1u2

(x),

u1(x)u2(x) = (x− a)2g+1 − x2g+1,

and

ui(0) 6= 0, ui(a) 6= 0 for i = 1, 2.

Since char(K) divides 2g + 1, the derivatives of both (x− a)2g+1 and x2g+1 are 0.
This implies that

(u1(x)u2(x))
′ = 0.

We have

f0,a;µu1,µ−1u2
(x) = x2g+1+

(
µu1(x) + µ−1u2(x)

2

)2

= x2g+1+
(
µw1(x) + µ−1w2(x)

)2
,

where w1(x) = u1(x)/2, w2(x) = u2(x)/2. Clearly, w1(x) and w2(x) are polynomi-
als of degree ≤ g and

w′
1(x) 6= 0, w′

2(x) 6= 0, (w1(x)w2(x))
′ = 0.
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Since
µ2f0,a;µu1,µ−1u2

(x) = µ2x2g+1 +
(
µ2w1(x) + w2(x)

)2
,

it follows from Theorem 8 that there is a �nite set S ⊂ K∗ such that if µ2 6∈ S, then
µ2fa1,a2;µu1,µ−1u2

(x) has no multiple roots, and therefore f0,a;µu1,µ−1u2
(x) also has

no multiple roots. It follows that f0,a;µu1,µ−1u2
(x) has no multiple roots for all but

�nitely many µ ∈ K∗. �

5. Rationality Questions

The aim of this section is to discuss the cases when there are, at most, two
K0-rational points of order 2g + 1 on an odd degree genus g hyperelliptic curve.

Theorem 10. Let K0 be a sub�eld of K and g ≥ 1 be an integer. Let us assume
that 2g + 1 is not divisible by char(K) and the degree 2g monic polynomial

x2g+1 − 1

x− 1
=

2g∑
i=0

xi ∈ K0[x]

does not have a factor in K0[x] of degree g or equivalently cannot be represented
as a product of two degree g polynomials with coe�cients in K0[x].

Let f(x) ∈ K0[x] be a monic degree 2g + 1 polynomial without multiple roots
and Cf : y2 = f(x) the corresponding odd degree genus g hyperelliptic curve that is
de�ned over K0. Then Cf (K0) contains, at most, two torsion points of order 2g+1.

Proof. Assume that Cf (K0) contains, at least, three points of order 2g + 1. Let
P ∈ Cf (K0) be one of them. Then P = (a1, c1) with

a1, c1 ∈ K0, c1 6= 0, c21 = f(a1).

The point ι(P ) = (a1,−c1) ∈ Cf (K0) also has order 2g + 1. Hence there exists
another point Q ∈ Cf (K0) of order 2g + 1 that is neither P nor ι(P ). This implies
that Q = (a2, c2) with

a2, c2 ∈ K0, c2 6= 0, c22 = f(a2), a2 6= a1.

In particular, Cf (K0) has four distinct order 2g + 1 points

(7) P = (a1, c1), ι(P ) = (a1,−c1), Q = (a2, c2), ι(Q) = (a2,−c2) ∈ Cf (K0).

By Theorem 3 applied to torsion K0-points P = (a1, c1) and Q = (a2, c2) of order
2g + 1, there exist degree g polynomials u1(x), u2(x) ∈ K0[x] such that

deg(u1) = deg(u2) = g, u1(x)u2(x) = (x− a2)
2g+1 − (x− a1)

2g+1,

u1(a1) 6= 0, u2(a1) 6= 0, u1(a2) 6= 0, u2(a2) 6= 0.

This implies that

(8) (x− a)2g+1 − x2g+1 = u1(x+ a1)u2(x+ a1) = ũ1(x)ũ2(x),

where
a = a2 − a1 ∈ K∗, ũ1(x) := u1(x+ a1), ũ2(x) := u2(x+ a1).

Clearly, both ũ1(x) and ũ2(x) are still degree g polynomials with coe�cients in
K0 and their constant terms ũ1(0) = u1(a1) and ũ2(x) = u2(0) do not vanish. It
follows from (8) that

ũ1(x)ũ2(x) = (x− a)2g+1 − x2g+1 = (−a) (x− a)2g+1 − x2g+1

x · (−a/x)
.
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On the other hand, dividing both sides of the latter equality by x2g = xgxg, we get

ũ1(x)

xg
ũ2(x)

xg
= (−a) (x− a)2g+1 − x2g+1

x2g+1((−a/x)
= (−a) (1− a/x)2g+1 − 1

(−a/x)
.

Since both ũ1(x) and ũ2(x) are degree g polynomials inK0[x] with nonzero constant
terms, it follows from Lemma 2 that there exist degree g polynomials w1(x) and
w2(x) in K0[x] such that

ũ1(x)

xg
= w1(−a/x),

ũ1(x)

xg
= w1(−a/x).

This implies that

w1(−a/x)w2(−a/x) = (−a) (1− a/x)2g+1 − 1

−a/x
.

Hence

w1(x)w2(x) = (−a) (x+ 1)2g+1 − 1

x
,

and therefore
(x+ 1)2g+1 − 1

x
=
w1(x)

−a
w2(x).

It follows that the polynomial

x2g+1 − 1

x− 1
=
w1(x− 1)

−a
w2(x− 1)

splits into a product of two degree g polynomials w1(x−1)/(−a) and w2(x−1) with
coe�cients in K0, which contradicts our assumptions. The obtained contradiction
proves the desired result. �

Example 3. Suppose that g = 1 and char(K) 6= 3. Assume that

x3 − 1

x− 1
= x2 + x+ 1

does not split into a product of linear factors, i.e., K0 does not contain a primitive
cubic root of unity. On the other hand, f(x) is a cubic polynomial and Cf is an
elliptic curve. It follows from Theorem 10 that Cf (K0) contains, at most, two points
of order 3 (which is well known). In this case one may give a direct proof.

Namely, suppose Cf (K0) contains, at least, three points of order 3, then one may
�nd two of them say, P,Q ∈ Cf (K0) such that Q 6= P, ι(P ) = −P , and therefore
the value of the corresponding Weil pairing e3(P,Q) between them is a primitive
cubic root of unity. Since both P and Q lie in Cf (K0), the root e3(P,Q) lies in K0,
which contradicts our assumptions.

Corollary 5.1. Suppose that K is the �eld C of complex numbers and K0 is its
sub�eld R of real numbers. Suppose that g is a positive odd integer and f(x) ∈ R[x]
a monic degree 2g+1 polynomial with real coe�cients and without multiple roots,
and Cf : y2 = f(x) the corresponding odd degree genus g hyperelliptic curve that
is de�ned over R. Then Cf (R) contains, at most, two points of order 2g + 1.

Proof. Notice that the polynomial (x2g+1 − 1)/(x − 1) has no real roots, because
2g + 1 is odd. Suppose that it splits into a product

(x2g+1 − 1)

(x− 1)
= u1(x)u2(x)
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of two real polynomials u1(x) and u2(x), both of degree g. Since g is odd, both
u1(x) and u2(x) have a real root, and therefore (x2g+1 − 1)/(x− 1) also has a real
root. So, (x2g+1 − 1)/(x− 1) does not split into a product of two real polynomials
of degree g. Now the desired result follows from Theorem 10. �

Theorem 11. Let K0 be an in�nite sub�eld of K and g ≥ 1 be an integer. Let us
assume that 2g + 1 is not divisible by char(K). Then the following conditions are
equivalent.

(i) The degree 2g monic polynomial

x2g+1 − 1

x− 1
=

2g∑
i=0

xi ∈ K0[x]

has a factor in K0[x] of degree g or equivalently can be represented as a
product of two degree g polynomials with coe�cients in K0[x].

(ii) There exists a monic degree 2g + 1 polynomial f(x) ∈ K0[x] without mul-
tiple roots that enjoys the following property. If Cf : y2 = f(x) is the
corresponding odd degree genus g hyperelliptic curve de�ned over K0, then
Cf (K0) contains, at least, four torsion points of order 2g + 1.

Proof. The implication (ii) =⇒(i) follows from Theorem 10 and its proof.
Suppose (i) holds, i.e., there exist two degree g polynomials w1(x), w2(x) ∈ K0[x]

such that

w1(x)w2(x) =
x2g+1 − 1

x− 1
=

2g∑
i=0

xi.

In particular,

w1(1)w2(1) = 2g + 1 6= 0,

and therefore w1(1) 6= 0, w2(1) 6= 0. This means that

w̃1(x)w̃2(x) =
(x+ 1)2g+1 − 1

x
,

where
w̃1(x) = w1(x+ 1) ∈ K0[x], w̃2(x) = w2(x+ 1) ∈ K0[x],

w̃1(0) = w1(1) 6= 0, w̃2(0) = w2(1) 6= 0.

Clearly, both w̃1(x), w̃2(x) are degree g polynomials with nonzero constant terms.
We have

(9) (1 + 1/x)2g+1 − (1/x)2g+1 =
(x+ 1)2g+1 − 1

x2g+1
=
w̃1(x)

xg
w̃2(x)

xg
.

By Lemma 2, there exist degree g polynomials u1(x), u2(x) ∈ K0[x] such that

u1(1/x) =
w̃1(x)

xg
, u2(1/x) =

w̃1(x)

xg
.

It follows from (9) that

(1 + 1/x)2g+1 − (1/x)2g+1 = u1(1/x)u2(1/x),

and therefore

(x+ 1)2g+1 − x2g+1 = u1(x)u2(x).
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Since K0 is in�nite, it follows from Theorem 7 that there exists µ ∈ K∗
0 such that

the polynomial

f0,−1;µu1,µ−1u2
(x) = x2g+1 +

(
µu1(x) + µ−1u2(x)

2

)2

has no multiple roots. By Theorem 4 the odd degree genus g hyperelliptic curve

C0,−1;µu1µ−1u2
: y2 = f0,−1;µu1,µ−1u2

(x)

over K0 has two distinct points

P0,−1;µu1,µ−1u2
, Q0,−1;µu1,µ−1u2

∈ C0,−1;µu1,µ−1u2
(K0)

of order 2g + 1 with abscissas 0 and −1, respectively, and with nonzero ordinates.
Consequently,

P0,−1;µu1,µ−1u2
, Q0,−1;µu1,µ−1u2

, ι(P0,−1;µu1µ−1,u2
), ι(Q0,−1;µu1,µ−1u2

)

are four distinct K0-rational points of order 2g+1 on C0,−1;µu1,µ−1u2
. This implies

that (ii) holds. �

Theorem 11 suggest the following de�nition.

De�nition 12. Let ϕ(n) be the Euler totient function. An odd integer 2g+1 ≥ 3 is
called hyperelliptic if it enjoys the following obviously equivalent properties.

(i) There is a set S of divisors of 2g+1 that does not contain 1 and such that∑
d∈S

ϕ(d) = g.

(ii) One may partition the set of all divisors of 2g+1 except 1 into two nonempty
subsets S1 and S2 such that∑

d∈S1

ϕ(d) =
∑
d∈S2

ϕ(d).

Theorem 13. Suppose that K is the �eld C of complex numbers and K0 is its
sub�eld Q of rational numbers. Suppose that g is a positive odd integer Then the
following conditions are equivalent.

(i) 2g + 1 is a hyperelliptic number.
(ii) There exists a monic degree 2g + 1 polynomial f(x) ∈ Q[x] with rational

coe�cients and without multiple roots that enjoys the following property.
If Cf : y2 = f(x) is the corresponding odd degree genus g hyperelliptic
curve de�ned over Q, then Cf (Q) contains, at least, four torsion points of
order 2g + 1.

Proof. Let D(2g + 1) be the set of all divisors of 2g + 1 except 1. Then the

monic polynomial x2g+1−1
x−1 coincides with the product

∏
d∈D(2g+1) Φd(x) of distinct

cyclotomic polynomials Φd(x), each of which is irreducible over Q. This implies

that each factor u(x) of x2g+1−1
x−1 in Q is of the form r ·

∏
d∈S Φd(x), where S is a

subset in D(2g + 1) and r ∈ Q∗. Since deg(Φd) = ϕ(d), we have

deg(u) =
∑
d∈S

ϕ(d).

The desired result follows readily from Theorem 11 applied to K0 = Q. �

Example 4. Let K0 = Q,K = C.
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(i) Let us take g = 52. Then 2g + 1 = 105 = 3 · 5 · 7,
ϕ(105) = 48, ϕ(5) = 4, 52 = 48 + 4 = ϕ(105) + ϕ(5).

Hence 105 is a hyperelliptic number and there exists a degree 105 polyno-
mial f(x) ∈ Q[x] without multiple roots such that the corresponding odd
degree genus 52 hyperelliptic Q-curve Cf : y2 = f(x) has, at least, four
Q-points of order 105.

(ii) Let us take g = 82. Then 2g + 1 = 165 = 3 · 5 · 11,
ϕ(165) = 80, ϕ(3) = 2, 82 = 80 + 2 = ϕ(165) + ϕ(3).

This implies that 165 is a hyperelliptic number and there exists a degree 165
polynomial f(x) ∈ Q[x] without multiple roots such that the corresponding
odd degree genus 82 hyperelliptic Q-curve Cf : y2 = f(x) has, at least, four
Q-points of order 165.

Corollary 5.2. Suppose that K is the �eld C of complex numbers and K0 is its
sub�eld Q of rational numbers. Suppose that g is a positive integer enjoying one of
the following properties.

(i) There exist a prime ` and a positive integer k such that 2g + 1 = `k.
(ii) There exist distinct odd primes `1 and `2, and positive integers k1 and k2

such that 2g + 1 = `k1
1 `

k2
2 .

(iii) There exist distinct odd primes `1, `2, `3 and positive integers k1, k2, k3
such that 2g + 1 = `k1

1 `
k2
2 `

k3
3 and none of `i is 3.

(iv) g ≤ 100 and g 6∈ {52, 82}.
Then:

(i) 2g + 1 is not a hyperelliptic number.
(ii) Let f(x) ∈ Q[x] be monic degree 2g+1 polynomials with rational coe�cients

and without multiple roots, and Cf : y2 = f(x) the corresponding odd
degree genus g hyperelliptic curve de�ned over Q. Then Cf (Q) contains, at
most, two points of order 2g + 1.

Proof. In light of Theorem 13, it su�ces to check that 2g+1 is not a hyperelliptic
number. Let us assume the contrary, i.e., one may partition D(2g + 1) into two
subsets S1 and S2 such that∑

d∈S1

ϕ(d) = g =
∑
d∈S2

ϕ(d).

Case (i). We have ` ≥ 3 and

ϕ(2g + 1) = (`− 1)`k−1 ≥ 2

3
`k >

2

3
2g =

4

3
g > g.

Case (ii). We may assume that `2 > `1, and therefore `1 ≥ 3, `2 ≥ 5. We have

ϕ(2g + 1) = (`1 − 1)`k−1
1 (`2 − 1)`k2−1

2 ≥
2

3
`k1
1 · 4

5
`k2
2 =

8

15
(`k1

1 · `k2
2 ) =

8

15
(2g + 1) >

16

15
g > g.

Case (iii). We may assume that `3 > `2 > `1 > 3, and therefore

`1 ≥ 5, `2 ≥ 7, `3 ≥ 11.

We have
ϕ(2g + 1) = (`1 − 1)`k−1

1 (`2 − 1)`k2−1
2 (`3 − 1)`k3−1

3 ≥
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4

5
`k1
1 · 6

7
`k2
2 · 10

11
`k3
3 =

48

77
(`k1

1 `
k2
2 `

k3
3 ) =

48

77
(2g + 1) >

96

77
g > g.

In all three cases ϕ(2g + 1) > g. Since 2g + 1 ∈ Si for i = 1 or 2,

g =
∑
d∈Si

ϕ(d) ≥ ϕ(2g + 1) > g,

which gives us a desired contradiction.
Let us assume that case (iv) holds. It follows from Corollary 5.1 that we may

assume that g is even. We may also assume that g satis�es neither (i) nor (ii).
Since g satis�es neither (i) nor (ii), 2g + 1 is divisible by, at least, three distinct
odd primes, hence 2g + 1 ≥ 3 · 5 · 7 = 105, i.e., g > 51. So, we may assume that
52 < g ≤ 100.

If 2g + 1 is not divisible by 3, then 2g + 1 ≥ 5 · 7 · 11 = 385, i.e., g > 191 > 118.
Hence 2g + 1 is divisible by 3. Since g is even, it is congruent to 4 modulo 6. This
implies that g ∈ {58, 64, 70, 76, 88, 94, 100}. However,

2 · 58 + 1 = 32 · 13, 2 · 64 + 1 = 3 · 43, 2 · 70 + 1 = 3 · 47, 2 · 76 + 1 = 32 · 17,

2 · 88 + 1 = 3 · 59, 2 · 94 + 1 = 33 · 7, 2 · 100 + 1 = 3 · 67.
Consequently, every g ∈ {58, 64, 70, 76, 88, 94, 100} satis�es (ii). This ends the
proof. �

Remark 10. Our results show that there are only two hyperelliptic numbers 2g+1 ≤
201, namely, 103 and 165. Is the set of hyperelliptic numbers in�nite?

The following assertion may be viewed as a counterpart in characteristic zero to
Theorem 5.

Theorem 14. Let ` be an odd prime and K0 a complete discrete valuation �eld of
characteristic 0 with residue �eld of characteristic ` and such that the rami�cation
index eK is 1, i.e., ` is a uniformizer. (E.g., K0 is the �eld Q` of `-adic numbers or
its �nite unrami�ed extension). Let K be an algebraic closure of K0. Suppose that
there exists a positive integer k such that g = (`k − 1)/2, i.e., 2g + 1 = `k.

Let f(x) ∈ K0[x] be a monic degree `k polynomial without multiple roots and
Cf : y2 = f(x) the corresponding odd degree genus (`k − 1)/2 hyperelliptic curve
over K0. Then Cf (K0) has, at most, two points of order `k.

6. Odd degree genus g hyperelliptic curves with two pairs of torsion points of
order 2g + 1.

In this section we assume that K is an algebraically closed �eld of characteristic
6= 2. We will need the following de�nition.

De�nition 15. Let g be a positive integer. An ordered pair of polynomials

u1(x), u2(x) ∈ K[x]

is called a nice pair of degree g over K if it enjoys the following properties.

(i) deg(u1) ≤ g, deg(u2) ≤ g.
(ii) u1(x)u2(x) = (x+ 1)2g+1 − x2g.
(iii) If char(K) does not divide 2g + 1, then

deg(u1) = g, deg(u2) = g.
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(iii)

u′1(x) 6= 0, u′2(x) 6= 0.

If (u1(x), u2(x)) is a nice pair of degree g and the polynomial

f(x) = f0,−1;u1,u2
= x2g+1+

(
u1(x) + u2(x)

2

)2

= (x+1)2g+1+

(
u1(x)− u2(x)

2

)2

has no multiple roots, then the pair (u1(x), u2(x)) is called very nice.

Remark 11. Suppose that (u1(x), u2(x)) is a nice pair of degree g.

(i) It follows from Remark 5 that

u1(0) 6= 0, u2(0) 6= 0, u2(−1) 6= 0, u2(−1) 6= 0.

In particular,

u2(x) 6= ±u1(x).
In addition, if (u1(x), u2(x)) is very nice, then it follows from Theorem 4
that

u1(0) + u2(0) 6= 0, u2(−1)− u2(−1) 6= 0.

(ii) Obviously, the pairs (−u1(x),−u2(x)), (u2(x), u1(x)), (−u2(x),−u1(x)) are
also nice of degree g. It follows from (i) that all four nice pairs (including
(u1(x), u2(x)) are distinct. However, they all give rise to the same polyno-
mial f(x) (see Remark 6). In particular, they all are very nice if and only
if (u1(x), u2(x)) is very nice.

(iii) If µ ∈ K∗ then obviously (µu1(x), µ
−1u2(x)) is a nice pair of degree g. It

follows from Theorems 8 and 9 that (µu1(x), µ
−1u2(x)) is actually very nice

for all but �nitely many µ.
(iv) Let (w1(x), w2(x)) be a nice pair of degree g such that

f0,−1;w1,w2(x) = f0,−1;u1,u2(x).

Then (w1(x), w2(x)) is one of four pairs described in (ii). Indeed, we im-
mediately get(

w1(x) + w2(x)

2

)2

=

(
u1(x) + u2(x)

2

)2

,

(
w1(x) + w2(x)

2

)2

=

(
u1(x) + u2(x)

2

)2

.

It follows that we have (at most) four choices for (w1(x) + w2(x), w1(x)−
w2(x)), and therefore (at most) four choices for (w1(x), w2(x)). However,
in (ii) we already described the four choices, and therefore (w1(x), w2(x))
is one of them.

De�nition 16. A monic degree 2g + 1 polynomial f(x) ∈ K[x] is called decorated
if there exists a nice pair (u1(x), u2(x)) of degree g such that f(x) = f0,−1;u1,u2(x).
If this is the case, then (u1(x), u2(x)) is called a decoration of f(x). It follows from
Remark 11 that a decorated polynomial admits precisely four decorations.

These de�nitions allow us to restate results of Section 3 in the following way.

Theorem 17. Let f(x) be a monic polynomial of degree 2g + 1 without multiple
roots and Cf : y2 = f(x) the corresponding odd degree genus g hyperelliptic curve
over K.
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(i) Let P and Q be points in Cf (K) such that

x(P ) = 0, x(Q) = −1.

Then both P and Q have order 2g + 1 if and only if f(x) is decorated.
(ii) Suppose that f(x) is decorated. Then each decoration (u1(x), u2(x)) of

f(x) gives rise to points

(10) Pu1,u2
:=

(
0,
u1(0) + u2(0)

2

)
, Qu1,u2

:=

(
−1,

u1(−1)− u2(−1)

2

)
∈ Cf (K)

of order 2g + 1.
Conversely, for each pair of points P,Q ∈ Cf (K) with

x(P ) = 0, x(Q) = −1

there exists exactly one decoration (u1(x), u2(x)) of f(x) such that

(11) P =

(
0,
u1(0) + u2(0)

2

)
, Q =

(
−1,

u1(−1)− u2(−1)

2

)
.

In addition, both P and Q have order 2g + 1.

Proof. (i) Suppose P and Q have order 2g + 1. It follows from Theorem 3 and
Theorem 4(c1) applied to a1 = 0, a2 = −1 that f(x) is decorated. Conversely,
suppose f(x) is decorated. It follows from Theorem 4(c1) applied to a1 = 0, a2 = −1
that there exist torsion points P1, Q1 ∈ Cf (K) of order 2g + 1 such that

x(P1) = 0, x(Q1) = −1.

This implies that P = P1 or ι(P1), Q = Q1 or ι(Q1). In all the cases, P and P1

have the same order, Q and Q1 have the same order. This implies that both P and
Q have order 2g + 1.

(ii) Suppose that f(x) is decorated.
Let (u1(x), u2(x)) be a decoration of f(x). It follows from Theorem 4(c1) applied

to a1 = 0, a2 = −1 that Pu1,u2 and Qu1,u2 are indeed torsion points in Cf (K) and
have order 2g + 1.

Let P,Q ∈ Cf (K) and x(P ) = 0, x(Q) = −1. It follows from (i) that both P and
Q have order 2g+1. Now it follows from Theorem 3 and Theorem 4(c1) applied to
a1 = 0, a2 = −1 that there is precisely one decoration (u1(x), u2(x)) of f(x) such
that P and Q are de�ned by (11). �

De�nition 18. (i) An enhanced hyperelliptic curve of genus g over K is an
ordered quadruple (C, O, P,Q), where (C, O) is a pointed odd degree genus
g hyperelliptic curve and P,Q are points of order 2g+1 such that Q 6= P, ιP .

We call an enhanced hyperelliptic curve of genus g over K normalized
if there exists a polynomial f(x) ∈ K[x] of degree 2g + 1 without multiple
roots such that C = Cf , i.e., C is the smooth projective model of y2 = f(x),
O = ∞ and x(P ) = 0, x(Q) = −1.

(ii) By an isomorphism φ : (C, O, P,Q) → (C1, O1, P1, Q1) of enhanced hyperel-
liptic curves we mean a K-biregular map φ : C → C1 such that φ(O) = O1,
φ(P ) = P1, and φ(Q) = Q1. We call an isomorphism φ : (C, O, P,Q) →
(C1, O1, P1, Q1) of enhanced hyperelliptic curves a marking if C1 = Cf1 is
the smooth projective model of y21 = f(x1), where f(x1) ∈ K[x1] is a degree
2g + 1 polynomial without multiple roots, O1 the in�nite point ∞1 of Cf1
and x1(P1) = 0, x1(Q1) = −1. In other words, a marking of (C, O, P,Q) is
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an isomorphism between (C, O, P,Q) and a normalized enhanced hyperel-
liptic curve.

Remark 12. (i) Notice that if φ : (C, O) → (C1, O1) is a K-biregular map of
pointed hyperelliptic curves and P is a K-point of C having order 2g + 1
on the jacobian J(C) of C, then the K-point φ(P ) of C1 has order 2g + 1
on the jacobian J(C1) of C1. Consequently, every K-biregular map φ :
(C, O) → (C1, O1) of pointed hyperelliptic curves yields an isomorphism
φ : (C, O, P,Q) → (C1, O1, P1, Q1) of enhanced hyperelliptic curves, where
P and Q are arbitrary points of order 2g + 1 on C and P1 = φ(P ) and
Q1 = φ(Q).

(ii) Recall (Section 1) that every pointed genus g hyperelliptic curve (C, O)
is K-isomorphic to (Cf ,∞), where Cf is the odd degree genus g hyperel-
liptic curve de�ned by equation y2 = f(x) (i.e., the normalization of the
projective closure of the smooth plane a�ne curve y2 = f(x)) and ∞ is
the unique �in�nite� point on Cf . Therefore, every enhanced hyperelliptic
curve is isomorphic to a enhanced hyperelliptic curve (Cf ,∞, P,Q).

Theorem 19. Let (C, O, P,Q) be an enhanced genus g hyperelliptic curve, where
Cf is the odd degree genus g hyperelliptic curve de�ned by equation y2 = f(x).
Then there exist a degree 2g + 1 monic polynomial f1(x) ∈ K[x] without multiple
roots and an enhanced genus g hyperelliptic curve (Cf1 ,∞, P1, Q1) that enjoys the
following properties.

(i) x(P1) = 0 and x(Q1) = −1, i.e., (Cf1 ,∞, P1, Q1) is normalized.
(ii) The enhanced hyperelliptic curves (Cf1 ,∞, P1, Q1) and (C, O, P,Q) are iso-

morphic.

In other words, every enhanced genus g hyperelliptic curve admits a marking.

Proof. Without loss of generality we may assume that

C = Cf : y2 = f(x),

where f(x) ∈ K[x] is a degree 2g+1 monic polynomial without multiple roots. Let

P = (a, b) ∈ Cf (K), Q = (c, d) ∈ Cf (K).

Then a and c are distinct elements of K, none of which is a root of f(x), i.e.,

b 6= 0, d 6= 0.

Let us consider the monic degree 2g + 1 polynomial

f1(x) =
f((a− c)x+ a)

(a− c)2g+1
∈ K[x]

without multiple roots and the hyperelliptic curve C1 de�ned by the equation y2 =
f1(x). Let us choose

r =
√
a− c ∈ K∗.

Then we get a K-isomorphism of pointed hyperelliptic curves

φ : (Cf ,∞) → (Cf1 ,∞), φ(x, y) =

(
x− a

a− c
, r(a− c)gy

)
,

which gives rise to a K-isomorphism

φ : (Cf ,∞, P,Q) → (Cf1 ,∞, P1, Q1)
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of enhanced hyperelliptic curves, where P1 = φ(P ) = (0, r(a − c)gb) and Q1 =
φ(Q) = (−1, r(a− c)gd). �

Remark 13. Let (Cf1 ,∞, P1, Q1) and (Cf2 ,∞, P2, Q2) be two normalized enhanced
hyperelliptic curves. In particular, the abscissas of both P1 and P2 equal 0 and the
abscissas of both Q1 and Q2 equal −1.

(i) If there exists an isomorphism

ψ : (Cf1 ,∞, P1, Q1) ∼= (Cf2 ,∞, P2, Q2)

of enhanced hyperelliptic curves, then it follows from Remark 1 that

f1(x) = f2(x), Cf1 = Cf2 ,

ψ is either the identity map or ι. It follows that either P2 = P1, Q2 = Q1

or P2 = ιP1, Q2 = ιQ1.
This implies that every automorphism (Cf1 ,∞, P1, Q1) ∼= (Cf1 ,∞, P1, Q1)

of a normalized enhanced hyperelliptic curve is the identity map.
(ii) Let (C, O, P,Q) be an enhanced genus g hyperelliptic curve overK. Suppose

that

φ1 : (C, O, P,Q) → (Cf1 ,∞, P1, Q1), φ1 : (C, O, P,Q) → (Cf2 ,∞, P2, Q2)

are two markings of (C, O, P,Q). Then

ψ := φ2 ◦ φ−1
1 : (Cf1 ,∞, P1, Q1) → (Cf2 ,∞, P2, Q2)

is an isomorphism of enhanced hyperelliptic curves that satis�es conditions
(i). It follows that

f1(x) = f2(x), Cf1 = Cf2

and either ψ2 = ψ1 or ψ2 = ψ1 ◦ ιC . Therefore, every enhanced hyperel-
liptic curve has exactly two markings, one is obtained from the other by
composing with the hyperelliptic involution.

Remark 14. Let (Cf ,∞, P2, Q2) be a normalized enhanced hyperelliptic curve over
K. By Theorem 17 there exists precisely one decoration (u1(x), u2(x)) of f(x) such
that

(12) P =

(
0,
u1(0) + u2(0)

2

)
, Q =

(
−1,

u1(−1)− u2(−1)

2

)
.

It follows from Remarks 6 and 11 that the same pointed hyperelliptic curve (Cf ,∞)
gives rise to three other normalized enhanced hyperelliptic curves (Cf ,∞, ιP, ιQ),
(Cf ,∞, P, ιQ), (Cf ,∞, ιP,Q) that correspond to the very nice pairs

(−u1(x),−u2(x)), (u2(x), u1(x)), (−u2(x),−u1(x))

respectively.

Now our goal is to describe nice pairs (u1(x), u2(x)) explicitly. In what follows
we write #(A) for the cardinality of a �nite set A.
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6.1. The case when char(K) does not divide 2g + 1. Recall that in this case each
of the polynomials u1(x), u2(x) has degree g. Let us put

M(2g + 1) := {ε ∈ K, ε2g+1 = 1, ε 6= 1}.

The degree 2g polynomial (x+1)2g+1 − x2g+1 has leading coe�cient 2g+1 and 2g
distinct roots

η(ε) =
1

ε− 1
, where ε ∈M(2g + 1).

We write

ΨI(x) =
∏
ε∈I

(x− η(ε)) ∈ K[x]

for each subset I ⊂M(2g + 1). Clearly, ΨI(x) is a degree #(I) monic polynomial;
Ψ′

I(x) = 0 if and only if I = ∅. It is also clear that if {I is the complement of I in
M(2g + 1), then

ΨI(x)Ψ{I(x) = ΨM(2g+1)(x) =
(x+ 1)2g+1 − x2g+1

2g + 1
.

Remark 15. Since #(M(2g + 1)) = 2g, the equality #(I) = g holds if and only if
#({I) = g.

Theorem 20. (i) Nice pairs (u1(x), u2(x)) of degree g over K are exactly the

pairs
(
µΨI(x),

2g+1
µ Ψ{I(x)

)
, where I is any g-element subset of M(2g+1)

and µ is any element of K∗.
(ii) Let I be a g-element subset ofM(2g+1). If µ ∈ K∗, then the corresponding

polynomial

(13)

fI,µ(x) := f0,−1;µΨI ,
2g+1

µ Ψ{I
= x2g+1 +

(
µΨI(x) +

2g+1
µ Ψ{I(x)

2

)2

= (x+ 1)2g+1 +

(
µΨI(x)− 2g+1

µ Ψ{I(x)

2

)2

decorated by
(
µΨI(x),

2g+1
µ Ψ{I(x)

)
has no multiple roots for all but �nitely

many µ.
(iii) If (Cf ,∞, P,Q) is a normalized enhanced genus g hyperelliptic curve y2 =

f(x) over K, then there is precisely one pair (I, µ), where I is a g-element
subset of M(2g + 1) and µ ∈ K∗ such that f(x) = fI,µ(x) and

(14) P =

(
0,
µΨI(0) +

2g+1
µ Ψ{I(0)

2

)
, Q =

(
−1,

µΨI(−1)− 2g+1
µ Ψ{I(−1)

2

)
.

(iv) Let I be a g-element subset of M(2g + 1) and µ ∈ K∗ such that fI,µ(x)
has no multiple roots. Then CfI,µ : y2 = fI,µ(x) is an odd degree genus g
hyperelliptic curve over K, and (14) de�nes torsion points P,Q ∈ CfI,µ(K)
of order 2g + 1. In other words, (CfI,µ ,∞, P,Q) is a normalized enhanced
genus g hyperelliptic curve.

Proof. (i) Since char(K) does not divide 2g+1, the polynomial (x+1)2g+1−x2g has
degree 2g, leading coe�cient 2g+1, and has no multiple roots. It follows that each
factor of (x+ 1)2g+1 − x2g is of the form µΨI(x), where I is a subset of M(2g+ 1)
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and µ ∈ K∗. This implies that for every factorization of (x + 1)2g+1 − x2g into a
product of two polynomials u1(x) and u2(x) we have

(15) u1(x) = µΨI(x), u2(x) =
2g + 1

µ
Ψ{I(x),

where I is a subset ofM(2g+1) and µ is an element ofK∗. Nice pairs (u1(x), u2(x))
must satisfy deg(u1) = deg(u2) = g. In light of (15) and Remark 15, this condition
is satis�ed if and only if #(I) = g.

Conversely, if I is an g-element subset of M(2g + 1) and µ is an element of K∗,
then

(µΨI(x))

(
2g + 1

µ
Ψ{I(x)

)
= (x+ 1)2g+1 − x2g+1,

deg (µΨI) = g = deg

(
2g + 1

µ
Ψ{I

)
,

i.e.,
(
µΨI(x),

2g+1
µ Ψ{I(x)

)
is a nice pair. This proves (i).

(ii) follows from Remark 11(iii).
(iii) follows from (i) combined with Theorem 17.
(iv) follows from (i) combined with Theorem 17.

�

Example 5. Let g = 2. Then there are exactly 3 families of genus 2 hyperelliptic
curves with two pairs of torsion points of order 5. (See [3, Sect. 3].)

6.2. The case when char(K) divides 2g+1. We write Z+ for the set of nonnegative
integers. Let us assume that char(K) = p > 0 and 2g + 1 = pk(2l + 1), where k is
a positive integer, l a positive integer and p - (2l + 1). Let us put

M(2l + 1) := {ε ∈ K, ε2l+1 = 1, ε 6= 1}, η(ε) = 1

ε− 1
∀ε ∈M(2l + 1).

If υ :M(2l+1) → Z+ is a function on M(2l+1) with values in Z+, then we de�ne
its degree

deg(υ) =
∑

ε∈M(2l+1)

υ(ε) ∈ Z+

and a monic polynomial

(16) Υυ(x) =
∏

ε∈M(2l+1)

(x− η(ε))υ(ε) ∈ K[x]; deg(Υυ) = deg(υ).

The polynomial

(17)

(
(x+ 1)2l+1 − x2l+1

)pk

= (x+ 1)2g+1 − x2g+1 = (xp
k

+ 1)2l+1 − (xp
k

)2l+1

= (2l + 1)x2lp
k

+

(
2l + 1

2

)
x(2l−1)pk

+ · · ·+
(
2l + 1

1

)
xp

k

+ 1

has degree 2lpk and leading coe�cient 2l + 1. Its roots have multiplicity pk and
coincide with the roots of the polynomial (x+1)2l+1−x2l+1. Hence the set of roots
coincides with

{η(ε) | ε ∈M(2g + 1)}.
We will need the following elementary statement.

Lemma 3. Let υ :M(2l + 1) → Z+ be a function and µ ∈ K∗.
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(i) The derivative (µΥυ(x))
′ 6= 0 if and only if there is ε ∈M(2l+1) such that

p does not divide υ(ε).
(ii) The polynomial µΥυ(x) divides (x+ 1)2g+1 − x2g+1 if and only if

(18) υ(ε) ≤ pk ∀ε ∈M(2l + 1).

(iii) If the inequalities (18) hold, then

(19) (x+ 1)2g+1 − x2g+1 = (µΥυ(x)) ·
2l + 1

2
Υῡ(x),

where the function ῡ :M(2l + 1) → Z+ is de�ned by

(20) ῡ(ε) = pk − υ(ε) ∀ε ∈M(2l + 1).

In addition, (µΥυ(x))
′ 6= 0 if and only if

(
2l+1
2 Υῡ(x)

)′ 6= 0. If a polynomial

u(x) ∈ K[x] divides (x + 1)2g+1 − x2g+1, then there exist precisely one
υ :M(2l+1) → Z+ and one µ ∈ K∗ such that u(x) = µΥυ(x). In addition,
υ satis�es (18).

Proof. (i) The derivative of a nonzero polynomial u(x) ∈ K[x] is not 0 if and only
if this polynomial is not a pth power in K[x] of a polynomial, i.e., it has a root
whose multiplicity is not divisible by p. Since the set of roots of µΥυ(x) coincides
with {η(ε) | ε ∈ M(2l + 1), υ(ε) 6= 0} and the multiplicity of η(ε) equals υ(ε), we
obtain that there is ε ∈ M(2l + 1) such that υ(ε) 6= 0 and p does not divide υ(ε).
This ends the proof of (i).

(ii) Recall that each η(ε) is a root of (x + 1)2g+1 − x2g+1 with multiplicity pk.
This implies that µΥυ(x) divides (x+ 1)2g+1 − x2g+1 if and only if η(ε), viewed as
a root of µΥυ(x), has multiplicity ≤ pk, i.e., υ(ε) ≤ pk. This ends the proof of (ii).

Assume now that (µΥυ(x))
′ 6= 0. By (i), there is ε ∈ M(2l + 1) such that

υ(ε) 6= 0 and p does not divide υ(ε). Then ῡ(ε) = pk − υ(ε) is also not divisible by
p. (iii) and (iv) are obvious.

�

De�nition 21. We call a function υ : M(2l + 1) → Z admissible if it enjoys the
following properties.

(i)

0 ≤ υ(ε) ≤ pk ∀ε ∈M(2l + 1).

(ii) There exists ε ∈M(2l + 1) such that υ(ε) 6≡ 0 (mod p).
(iii) ∑

ε∈M(2l+1)

υ(ε) ≤ g,
∑

ε∈M(2l+1)

(pk − υ(ε)) ≤ g.

Remark 16. If υ :M(2l + 1) → Z is an admissible function, then

ῡ :M(2l + 1) → Z, ε 7→ pk − υ(ε)

is also an admissible function.

Theorem 22. (i) Nice pairs (u1(x), u2(x)) of degree g over K are exactly the

pairs
(
µΥυ(x),

2l+1
µ Υῡ(x)

)
, where υ is an admissible function onM(2l+1)

with

deg(υ) ≤ g, deg(ῡ) ≤ g

and µ ∈ K∗.
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(ii) Let υ be an admissible function on M(2l + 1). If µ ∈ K∗, then the corre-
sponding polynomial

(21)

fυ,µ(x) := f0,−1;µΥυ,
2l+1

µ Υῡ
= x2g+1 +

(
µΥυ(x) +

2l+1
µ Υῡ(x)

2

)2

= (x+ 1)2g+1 +

(
µΥυ(x)− 2l+1

µ Υῡ(x)

2

)2

decorated by
(
µΥυ(x),

2l+1
µ Υῡ(x)

)
has no multiple roots for all but �nitely

many µ.
(iii) If (Cf ,∞, P,Q) is a normalized enhanced genus g hyperelliptic curve y2 =

f(x) over K, then there is precisely one pair (υ, µ), where υ is an admissible
function on M(2l + 1) and µ ∈ K∗ such that f(x) = fυ,µ(x) and

(22) P =

(
0,
µΥυ(0) +

2l+1
µ Υῡ(0)

2

)
, Q =

(
−1,

µΥυ(−1)− 2l+1
µ Υῡ(−1)

2

)
.

(iv) Let υ be an admissible function onM(2l+1) and µ ∈ K∗ such that fυ,µ(x)
has no multiple roots. Then Cfυ,µ : y2 = fυ,µ(x) is an odd degree genus g
hyperelliptic curve over K, and (22) de�nes torsion points P,Q ∈ Cfυ,µ(K)
of order 2g + 1.

Proof. (i) follows from Lemma 3 and (16).
(ii) follows from (i) combined with Remark 11(iii).
(iii) follows from (i) combined with Theorem 17.
(iv) follows from (i) combined with Theorem 17. �

7. Computations of Weil pairings

We will use the notation of Subsection 6.1. In this section we assume that
char(K) does not divide 2g+1; our goal is to compute the value of the Weil pairing
between torsion points P and Q in C(K) of order 2g+ 1, where alb(P) 6= ±alb(Q).
We may assume that the curve is de�ned by the equation y2 = x2g+1 + v1(x)

2,
where

v1(x) =
µ

2
ΦI(x) +

2g + 1

2µ
Φ{I(x),

while

x2g+1 + v21 = (x+ 1)2g+1 + v2(x)
2,

where

v2(x) =
µ

2
ΦI(x)−

2g + 1

2µ
Φ{I(x).

In this case one may take as points of order 2g + 1 the points P = (0, v1(0)) and
Q = (−1, v2(−1)).

Let us consider the degree zero divisors DP = (P )− (∞) and DQ = (Q)− (∞)
on C. We know that their classes of linear equivalence have order 2g + 1. Let
us consider a Weierstrass point W = (α, 0) on our curve, where α is a root of
x2g+1 + v1(x)

2. The linear equivalence class of the divisor DW := (W) − (∞) has
order 2. Therefore, the linear equivalence class of the divisor

D = DP −DW = (P )− (W)
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has order 2(2g + 1). Since div(x − α) = 2(W) − (∞)), the divisor 2D is linearly
equivalent to 2DP .

We have
e2(2g+1)(P,Q) = e2(2g+1)(D,DQ) = e2g+1(2D,DQ)

= e2g+1(2DP , DQ) = (e2g+1(DP , DQ))
2.

Let us put
gQ = (y − v2(x))

2.

Then
div(gQ) = 2div(y − v2(x)) = 2(2g + 1)(Q)− 2(2g + 1)(∞).

Let us put

gP =
(y − v1(x))

2

(x− α)2g+1
.

Since
div(y − v1(x)) = (2g + 1)(P )− (2g + 1)(∞)

and
div(x− α) = 2(W)− 2(∞),

we have
div(gP ) = 2(2g + 1)(P )− 2(2g + 1)(W).

Evaluating gP (DQ), we get

gP (DQ) =
gP (Q)

gP (∞)
= − (v2(−1)− v1(−1))2

(1 + α)2g+1

= −
(
2g + 1

µ

)2 Φ2
{I(−1)

(1 + α)2g+1
,

since gP (∞) = 1. Now let us evaluate gQ(D). We have

gQ(D) =
gQ(P )

gQ(W )
=

((v1(0)− v2(0))
2

v2(α)2
=

(
2g + 1

µ

)2 Φ2
{I(0)

v2(α)2
.

Notice that since α is a root of (x+ 1)2g+1 + v22(x), then

v2(α)
2 = −(1 + α)2g+1,

which gives us

gQ(D) = −
(
2g + 1

µ

)2 Φ2
{I(0)

(1 + α)2g+1
.

Therefore,

e2(2g+1)(P,Q) =
gP (DQ)

gQ(D)
=

Φ2
{I(−1)

Φ2
{I(0)

=

∏
i∈{I

(1 + η(ε))2∏
i∈{I

η(ε)2
=

∏
ε∈{I

ε

2

,

since 1+η(ε)
η(ε) = ε. This implies that

e2g+1(P,Q) = ±
∏
ε∈{I

ε.

Since e2g+1(P,Q) and all ε are (2g + 1)th roots of unity, and 2g + 1 is odd, we get
at last

e2g+1(P,Q) =
∏
ε∈{I

ε.
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