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TORSION POINTS OF ORDER 2g + 1 ON ODD DEGREE
HYPERELLIPTIC CURVES OF GENUS g

BORIS M. BEKKER AND YURI G. ZARHIN

Abstract. Let K be an algebraically closed field of characteristic different from
2, g a positive integer, f(z) € K[z] a degree 2g + 1 monic polynomial without
repeated roots, Cy : y2 = f(x) the corresponding genus g hyperelliptic curve
over K, and J the jacobian of Cy. We identify Cy with the image of its canonical
embedding into J (the infinite point of C¢ goes to the zero of group law on
J). It is known [5] that if g > 2 then C;(K) does not contain torsion points,
whose order lies between 3 and 2g.

In this paper we study torsion points of order 2g 4+ 1 on C;(K). Despite
the striking difference between the cases of ¢ = 1 and g > 2, some of our
results may be viewed as a generalization of well-known results about points
of order 3 on elliptic curves. E.g., if p = 2g + 1 is a prime that coincides with
char(K), then every odd degree genus g hyperelliptic curve contains, at most,
two points of order p. If g is odd and f(z) has real coefficients, then there are,
at most, two real points of order 2941 on Cs. If f(x) has rational coefficients
and g < 51, then there are, at most, two rational points of order 2g+1 on Cy.
(However, there are exist odd degree genus 52 hyperelliptic curves over Q that
have, at least, four rational points of order 105.)

1. Introduction

Let K be an algebraically closed field with char(K) # 2. Let C be a hyperelliptic
curve of genus g > 1 over K. Let K(C) be the field of rational functions on C and J
the jacobian of C, which is a g-dimensional abelian variety over K. Let O € C(K)
be a Weierstrass point on C. Such a pair (C, O) is called a pointed or an odd degree
hyperelliptic curve [4]. (If ¢ = 1, then every K-point of C is Weierstrass one. If
g > 1, then there are exactly 2g + 2 Weierstrass K-points on C .) By the definition
of a Weierstrass point [4], there exists a rational function € K(C) that is regular
outside O and has a double pole at O. (Any other rational function on C that
enjoys these properties is of the form ax + g with a € K*, 8 € K [4].) The regular
map 7 : C — P! to the projective line P! defined by z is a double cover that sends
O to the infinite point of P!. The K-biregular involution

t=1c:C—=C
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attached to 7 is the so-called hyperelliptic involution of the hyperelliptic C, which
does not depend on a choice of z; it even does not depend on a choice of O if
g > 1. The set of fixed points of ¢ (i.e., the set of branch points of 7) is a certain
(29 + 2)-element set of Weierstrass points in C(K), including O. (If g > 1, then this
set coincides with the set of all Weierstrass points on C.) The K-vector subspace
L((2g + 1)(0)) € K(C) of functions that are regular outside O and have at O a
pole of order, at most, 2¢g + 1 has dimension g + 2; in addition, it is ¢-stable and
contains g+ 1 linearly independent ¢-invariant functions 1, z, ..., 29 that have at O
a pole of order, at most, 2¢g [4]. This implies that there exists a rational function
y € K(C) that is t-anti-invariant, regular outside O, and has a pole of order 2g + 1
at O; such a y is unique up to multiplication by a nonzero element of Kj. In
addition, there exists a degree 2g + 1 polynomial f(x) € K|z] without multiple
roots such that y? = f(x) in K¢(C) [4]. Multiplying = and y by suitable nonzero
elements of K, we may and will assume that f(z) is monic. The functions (z,y)
define a biregular K-isomorphism between C and the (smooth) normalization Cy of
the projective closure of the smooth plane affine curve y? = f(x) under which O
goes to the unique infinite point of Cy [4], which we denote by oo; in addition, ¢
becomes the involution

Cy — Cy, (z,y) = (z,—y).

In what follows, we may assume without loss of generality that C = C; for a suitable
f(z) € K[z] and O = oo.

Let us consider the corresponding canonical embedding alb : C < J that sends O
to the zero of the group law on J and every point P € C(K) to the linear equivalence
class of the divisor (P) — (00). Further we will identify C with its image in J. After
the identification of C with its image in the jacobian, the hyperelliptic involution ¢
on C coincides with multiplication by —1. This implies that the points of order 2 in
C(K) are all (except 0o) (2g+1) branch points of 7 of C. Notice that if C(K) contains
a torsion point P of order n > 2, then it contains the torsion point ¢(P) # P of
the same order, which implies that then the number of points of order n in C(K)
is even. It was proven in [5] that C(K) does not contain a point of order n if g > 2
and 3 < n < 2g. (The case of g = 2 was done earlier in [2] ). So, it is natural to
study genus g hyperelliptic curves with torsion points of order 2g+ 1. In the case of
g = 2 such a study was done in [3], where a classification/parametrization of genus
2 curves (up to an isomorphism) with torsion points of order 5 over algebraically
closed fields was given. In particular, it was proven in [3] that if char(K) = 5 and
C is an odd degree genus 2 hyperelliptic curve, then C(K) consists of, at most,
2 points of order 5. Notice that the latter assertion may be viewed as a genus 2
analog of the following well known fact: an elliptic curve in characteristic 3 has, at
most, 2 points of order 3.

In this paper we study odd hyperelliptic curves C with torsion points of order
2g + 1 for arbitrary g over arbitrary field of characteristic # 2. Despite the striking
difference between the cases of g = 1 (elliptic curves) and g > 2, some of our results
may be viewed as a generalization of well-known results about points of order 3
on elliptic curves. E.g., we prove that if p = 2¢g 4+ 1 is a prime that coincides with
char(K), then every odd degree genus g hyperelliptic curve contains, at most, two
points of order p. When the polynomial f(x) has real coefficients and one may view
Cy as a curve defined over the field R of real numbers, we prove that if ¢ is odd,
then there are, at most, two real points of order 2g + 1 on Cy. If f(z) has rational
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coefficients and one may view C; as a curve defined over the field Q of rational
numbers, we prove that there are, at most, two rational points of order 2¢g + 1 on
Cy if g < 51. However, there are genus 52 odd degree hyperelliptic curves over Q
that have, at least, four rational points of order 105.

The paper is organized as follows. Section 2 contains basic definitions and auxil-
iary assertions from [5] that will be used later. In Section 3 we describe odd degree
genus g hyperelliptic curves with one pair of torsion points of order 2g + 1. It
turns out that such curves and points exist over any fields for all g (Examples 1
and 2). We give a characterization of hyperelliptic genus g curves with two pairs of
torsion points of order 2g + 1 in terms of certain factorizations of the polynomial
(x — a2)?9™ — (z — a1)?9"! where a; and ay are abscissas of the torsion points.
Each such factorization gives rise to a one-dimensional family of such curves and
we study them in Section 4. In Section 5 we discuss the rationality questions,
proving the results over R and Q mentioned above. We also discuss the notion of
hyperelliptic numbers 2g + 1 that may be of independent interest. In Section 6 we
concentrate on the case of algebraically closed field. We study odd degree genus g
hypelliptic curves with two torsion points P,Q of order 2¢g + 1 with P # @, 1(Q)
and provide a parametrization of their isomorphism classes by a disjoint union of
finitely many affine rational curves. In Section 7 we compute the value of the Weil
pairing between certain torsion points of order 2g 4+ 1 on Cy.

2. Odd degree genus g hyperelliptic curves

Let ¢ > 1 be an integer, K an algebraically closed field with char(K) # 2,
f(z) € K[z] a monic degree 2g + 1 polynomial without multiple roots. Let C = Cy
be the genus g hyperelliptic curve defined by the equation y?> = f(z), i.e., the
normalization of the projective closure of the smooth plane affine curve y? = f(x).
The curve C has the unique “infinite” point, which we denote by co. Let 2 : C — C
be the hyperelliptic involution, i.e., the biregular automorphism of C'

t:C—C, (a,b) — (a,=D), t(co) = 0.

One may easily check that the fixed points of ¢ are co and all the points 23; = (w;, 0),
where w; € K (1 < i < 2g 4 1) are the roots of f(z). We view (C,00) as a
pointed/odd degree hyperelliptic curve.

The action of ¢ on C(K) extends by linearity to the action on divisors of C.
Notice that for any nonzero rational function F' on C we have div(.*(F)) = «(divF),
where div(F') is the divisor of F' and ¢* the induced action of ¢ on the field of
rational functions on C. Thus we obtain the induced action of ¢ on the linear
equivalence classes of divisors on C. If P € C(K), then we write (P) for the
corresponding degree 1 effective divisor with support in P. If P = (a,b), then
div(zx — a) = (P) + (¢(P)) — 2(c0). This explains why after the identification of C
with its image in J the involution ¢ becomes multiplication by —1 and C(K)NJ; (K)
consists of all 20;.

Remark 1. Suppose that K is a subfield of K and f(x) € Ko[z] C K[z]. Thus we
may view C as an irreducible smooth projective Ky-curve with co € C(Kjy). Suppose
that C; : y? = fi(z) is also a genus g hyperelliptic curve over K with infinite point
oo1 such that fi(x) € Ky[r] C KJz] is also a monic degree g polynomial without
multiple roots. So, we may view C; as an irreducible smooth projective Ky-curve
as well with ooy € C1(Kj). The hyperelliptic involution ¢¢, is also defined over K.
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Let ¢ : C = C; be a Kyp-biregular isomorphism of Ky-curves that sends co to oo .
Then there exist A € K and r € K such that

qb*(xl) = )\21' +7re Ko(C), ¢*(y1) = )\29+1y S Ko(C)
(see [4, Prop. 1.2 and Remark on p. 730]). This implies that in Ky (C)
(>\2g+1y)2 _ f1(>\21' + ’I")
and therefore
2 [Nz +7)
T \2(29+))
Consequently,

AN+
f(x): 1§2(2§+1)T)

and therefore

file) = N340 g (ﬂ;) :

Assume additionally that f(0) # 0, f1(0) # 0, and ¢ sends a point P = (0, «/f(O)) €
C(K) \ {oo} with abscissa 0 to a point P; € C1(K) \ {oo} with abscissa 0. Then
r =0 and

* * T
(1) ¢ (21) = Ma,6"(yr) = A1y, filw) = N f (5.
Let us assume also that there are nonzero a b € Ky such that

fla) #0, f1(b) #0

and ¢ sends a point @ = (a,/f(a)) € C(K) \ {oo} with abscissa a to a point
Q1 € C1(K) \ {oc} with abscissa b. Then b = z1(Q) = \2z(P) = \q, i.e.,

b b
2 M=2 A=4/-
@ a’ a’

Since A\ € K, we conclude that b/a is a square in Ky. In addition

(3) filw) = 20D f () = (Z)Qgﬂ ! (;@) .

In particular, if a = b, then b/a = 1 and therefore f(z) = f1(z), i.e., C = C; and
either

A=1, (]5*(1‘1) =, ¢*(y1) =0
and ¢ is the identity map or

A=—1,¢0"(x1) =2,¢0"(11) = —n
and ¢ = ¢.

We will need the following assertion that was proven in [5].

Lemma 1. Let D be an effective positive degree m divisor on C such that m < 2g+1
and supp(D) does not contain co. Assume that the divisor D — m(co) is principal.
(1) Suppose that m is odd. Then:
(i) m =2g+ 1 and there exists exactly one polynomial v(z) € K[x] such
that the divisor of y—v(x) coincides with D —(2g+1)(o0). In addition,
deg(v) < g.
(i) If 29; lies in supp(D), then it appears in D with multiplicity 1.
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(iii) If b is a nonzero element of K and P = (a,b) € C(K) lies in supp(D),
then +(P) = (a,—b) does not lie in supp(D).
(2) Suppose that m = 2d is even. Then there exists exactly one monic degree
d polynomial u(z) € KJx] such that the divisor of u(z) coincides with
D —m(c0). In particular, every point @ € C(K) appears in D —m(oo) with
the same multiplicity as ¢(Q).

We finish this section by the following elementary useful statement.

Lemma 2. Let K{ be a field, let a be a nonzero element of K and w(x) € Kylz] a
degree g polynomial with nonzero constant term. Then there exists a unique degree
g polynomial w(z) € Ko[x] with nonzero constant term such that in the field Ko(z)
of rational functions

- _ w(z)
w(a/x) = o
Proof. We have
g
(4) ’U.)(iC) = Zbixi, a; € Ky, by 7é 0, bg # 0.
i=0
Then
UJ(JZ) o J bopi—9 — g bz g—1
= bt =3 S/
Let us put

Clearly, deg(w) < g. The coefficient of w at x9 is by /a? # 0, and therefore deg(w) =
g. The constant term of @ is by # 0. It follows from (4) that

w(a/r) =

The uniqueness of @ is obvious. O

w(z)

x9

3. Torsion points of order 2g + 1

The next assertion describes all odd degree hyperelliptic curves of genus g that
admit a torsion point of order 2¢g + 1.

Theorem 1. Let g > 1 be an integer and f(z) € K[z] a monic degree 2g + 1
polynomial without multiple roots. Then the odd degree hyperelliptic curve y? =
f(z) has a point P of order 2¢g+1 if and only if there exist a € K and a polynomial
v(z) € K[z] such that

deg(v) < g, v(a) #0, f(z) = (z — a)* " +v*(2).
If this is the case, then the point P = (a,v(a)) € C(K) has order 2g + 1.

Proof. Suppose that P = (a,c) is a K-point on C having order 2g + 1 in J(K).
Then the divisor (29 4+ 1)(P) — (29 + 1)(oc0) is principal. By Lemma 1, there exists
precisely one polynomial v(z) with deg(v) < g such that

div(y —v(z)) = (29 + 1)(P) — (29 + 1)(c0).



6 BORIS M. BEKKER AND YURI G. ZARHIN

Thus the zero divisor of y —v(z) coincides with (2g+1)(P). In particular, ¢ = v(a).
Notice that the point ¢(P) = (a,—c) also has order 2¢g + 1. The zero divisor of
y+v(z) equals (29 + 1)(¢(P)). Since P # «(P), the zero divisor of

y* = v (2) = f(2) —v*(2)

equals (2g + 1)(P) + (29 + 1)(«(P)) while its polar divisor is 2(2g + 1)(o0). This
means that the monic degree 2g + 1 polynomial f(x) — v?(z) equals (x — a)?971,
which implies that f(x) = (z — a)?9*! + v2(2).

Conversely, let us consider the pointed hyperelliptic curve y? = (x — a)?971 +
v%(z), where v(z) € K|z is a polynomial with deg(v) < g and v(a) # 0. Let us
put ¢ = v(a) and prove that P = (a,c) € C(K) has order 2g + 1. It follows from
y?—v%(z) = (z—a)?9"! that all zeros of y—v(x) have abscissa a. Clearly, P = (a, c)
is a zero of y — v(x) but ¢(P) = (a, —c) is not one, because y — v(x) takes the value
—c—wv(a) = —2v(c) # 0 at +(P). This implies that y — v(z) has exactly one zero,
namely P. Obviously, y —v(z) has exactly one pole, namely co, and its multiplicity
is 2g + 1. It follows that

div(y —v(z)) = (29 + 1)(P) = (29 + 1)(o0) = (29 + 1)((P) — (9)).

This implies that P has finite order m in J(K) and m divides 2g + 1. Clearly, m
is neither 1 nor 2. If g = 1, then 29 + 1 = 3 is a prime divisible by m. This implies
that m =3 =2g+ 1, i.e., P is a torsion point of order 2¢g + 1. Now assume that
g > 1. By aresult of [5], m cannot lie between 3 and 2g. This implies again that
m = 2g + 1, i.e., P is a torsion point of order 2¢g + 1.

O

Example 1. Suppose that char(K') does not divide 2g+ 1. Choose a nonzero b € K.
Then the polynomial 297! + b2 has no multiple roots and the genus g hyperelliptic
curve

y? = 29+ 4

contains a torsion point (0,b) of order 2g + 1 [5]. If we take b = 1, then we get
that the odd degree genus g hyperelliptic curve y? = 229%! + 1 contains two torsion
points (0,+1) of order 2g + 1.

Example 2. Suppose that char(K) divides 2g + 1. Choose a nonzero b € K. Then
the polynomial f(z) = 229! + (bz + 1)? has no multiple roots. Indeed, f’(z) =
2b(bx + 1). So, if g is a root of f'(x), then bxg+ 1 = 0, which implies that xo # 0
and

flwo) = 23" + (bwo +1)% = 2" £ 0.

This proves that f(z) has no multiple roots. Applying Theorem 1 to a = 0 and
v(x) = bx 4+ 1, we conclude that the odd degree genus g hyperelliptic curve
y? = 2?9t + (bo 4 1)°

has a torsion point P = (0, 1) of order 2g + 1. If we take b = 1, then we get that
the odd degree genus g hyperelliptic curve y? = 297! + (z + 1) has two torsion
points (0,41) of order 2¢g + 1.

Remark 2. Let v(z),w(z) € K[x] be polynomials whose degrees do not exceed g
with
v(0) #0, w(0) #0
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and such that both degree 2g + 1 polynomials
fla) =¥ 4 02 (@), fie) =2 4w (a)

have no multiple roots. Let us consider odd degree genus g hyperelliptic curves

C:y? =22 1 0%(z), and Ci:y? =239 +wi(x)

over K. By Theorem 1, P = (0,v(0)) is a torsion point of order 2¢g+ 1 in C(K) and
Py = (0,w(0)) is a torsion point of order 2g+1 in C;(K). It follows from arguments

of Remark 1 that if there is a K-biregular isomorphism of pointed curves ¢ : C = C;
that sends P to P;, then there exists A € K* such that

¢*$1 = )\2:1;7 ¢*y1 = )\397

x T \\2
22 w?(x) = fi(z) = MO f () =2t 420 (u(5))
This implies that
w(z) = £A29H)y (%) .

Theorem 2. Let K be a subfield of K. Let g > 1 be an integer and
f(z) € Ko[z] C Klz]

be a monic degree 2g 4+ 1 polynomial without multiple roots.

Suppose that the odd degree hyperelliptic curve Cy : y* = f(z) has a Ko-point
P = (a,c) of order 2g+ 1. Then there exists precisely one polynomial v(z) € Ky|x]
such that

deg(v) < g, v(a) = c#0, f(z) = (z —a)* ™ +v*(2).

Proof. It follows from Theorem 1 and its proof that there exists a polynomial
v(x) € K[z] such that

deg(v) < g, v(a) = c#0, f(z) = (z —a)* ™ +v*(2).
Since f(z) € Kolx], we get v?(x) € Ko[z]. This implies that the polynomial
w(zx) = v(x)/c satisfies
w(a) =1, w?(z) € Kolz].

x
It follows that if we put w(x) = w(z + a) € K[x], then

x+
w(0) = 1,%%(x) € Kolz], w(x) = w(z — a),v(x) = c-w(z — a).
it

B
Hence, in order to prove that v(z) € Ko|x], it suffices to check that the polynomial
w(x) lies in Ko[z]. Let us do it.
Let us put m := deg(w). If m = 0, then @w(x) = w(0) =1 € Ky|x], and we are

done. Assume now that m > 1 and

m 2m
w(r) =14 ap® € Klz], @*(x) =1+ bpa" € Kola].
k=1 k=1

We know that all b, € Kq and need to prove that all a; € K. Let us use induction
by k. First, by = 2a;. Since char(K) # 2, we have a1 € Ky, and the first step of
induction is done. (Notice that we have also proven that w(z) € Koy[z] if m < 1.)
Now assume that & > 1 (and therefore m > k > 1), and a; € Ky for all ¢ < k. Then

bp=1-ap+ar -1+ By = where B, = E a;a;.
1<, j<k—1,i+j=k
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By induction assumption, all a; and a; with 1 <4,j < k—1 liein Ky. This implies
that By € Ky. Since by = ay + ax + By lies in K, we have 2a; € K and therefore
ar, € Ko. This ends the proof. O

Remark 3. Let K( be a subfield of K and g a positive integer. It follows from
Examples 1 and 2 that there is a degree 2g 4+ 1 monic polynomial f(z) € Ky[z]
without multiple roots such that the odd degree genus g hyperelliptic curve Cy :
y?> = f(z) defined over K| has a torsion point of order 2g + 1 in Cy(Kj).

Theorem 3. Let K be a subfield of K. Let g > 1 be an integer and
f(z) € Ko[z] C Klz]
be a monic degree 2g + 1 polynomial without multiple roots.

Suppose that the odd degree genus g hyperelliptic curve Cy : y? = f(x) over K
has Ko-points P = (a1,¢1) and Q = (ag, ¢2) of order 2g + 1 such that Q # P, (P),
ie.,

ai,c; € Ko, c¢? = f(a;) for i=1,2, a; # as.
Then there exists precisely one ordered pair of polynomials u(x),us(x) € Kolx]
such that the following conditions hold.
(i) deg(u;) < gfori=1,2.
(i)
up(z)us(z) = (z — a2)29+1 —(z— a1)29+1.
(iii) If char(Ky) does not divide 2g + 1, then
deg(u1) = deg(uz) = g.

(Evg ui(a1) + uz(ay) # 0, uy(az) — uz(az) # 0. In particular, ug(z) # Lus(x).

o) = oot 4 (BTN o () 2]}
(vi) p_ <a1’“1(al);ru2(al)>’ 0= <a27ul(a1)2uQ(a2)>.

Proof. It follows from Theorem 2 that there exists precisely one pair of polynomials
v1(x),va(z) € Ko[x] such that for i = 1,2

deg(vi) < g, vi(a;) # 0, f(x) = (z = a;)**! + 0} (), P = (ai, vi(a;)).

We get
0= ((z = a2)**! +03(2)) — ((z — @)™ +i(2)),

(= a2)?*! — (2 — 1) = v1(2)? — 03 (2) = (vi(2) + va2(2)) (01(2) — v2(2)).
Let us put
up(z) = v1(x) + va(x), us(z) := v1(x) — va(x).
Then

ui(w)ug(x) = (x — az)®* — (& — ar)**,
which gives us (ii). Clearly,
u () + us(z)

5 , vo(x) =

v1(z) =
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This implies that
ur(ar) +uz(ar) # 0, wi(ar) —uz(ar) # 0, deg(u;) < g fori=1,2,
which gives us (iv) and (i), and
2 2
f(:r) _ (:E _ a1)2g+1 + (W) — (m _ a2)29+1 + <u1(x);u2(:£)> ,

which gives us (v).
We have

P = (a1,v1(a1)) = <a1’ W) 7

Q = (a2,v2(a2)) = <a27 W) ;

which gives us (vi).
If char(Kj) does not divide 2g+1, then the polynomial (z—a3)?9*! —(z—a;)?97!
has degree 2¢g (and leading coefficient (2g 4+ 1)(a; — a2)), and therefore

29 = deg(u1) + deg(uz).
Since both deg(u1), deg(uz) < g, we conclude that
deg(u1) = deg(uz) = g,
which gives us (iii).
It remains to prove the uniqueness of u; (), uz(x). It follows from (v) that both
polynomials uq (z) + ug(x) and uq(x) — ug(x) are defined up to sign. However, (iv)

and (vi) determine w1 (z) 4+ ua(z) and wuj(x) — ug(x) uniquely. This implies the
uniqueness of u(z), us(z). O

Remark 4. Let a1, as be distinct elements of K. Let us put
p := char(K)

and let 9 € K be a root of (z — a3)?9™ — (z — a1)?9"! Since a1 # a2, we get
o 7é al and o 7& O, i.e.

(z0 — a2)® #0, (xo — a1)? # 0.
Let us differentiate the polynomial (z — a2)?™ — (z — a;)?9%! € K[z]. We have
((z — a2)**! = (2 — a1)?*) = (29 + 1) (@ — a2)* — (29 + 1)(w — 1) =
29+ 1) ((z — a2)® — (z — a1)%).
In particular, if p divides 2¢g + 1, then p > 2 is a prime,
(2= )2 = (2= a1)?7*1) = 0
and

(z — a2)?+! — (z — a1)29+! = ((x —ap) 9tV (g al)(2g+1)/p)p;

in particular, all roots of (z — a3)?9*! — (z — a1)?9*!, including x¢, are multiple.
Now suppose that char(K) does not divide 2¢g + 1. Then

((z = a2)?*! = (z — 1)) £ 0.
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Assume additionally that zg is a multiple root of (z — a2)?9*! — (z — a;1)?971. This
means that

(zo — a2)®t = (z0 — a1)®*, (zo — a2)? = (xo — a1)™.

Dividing the first equality by the second one, we get
To — a2 = To — a1,

and therefore a; = ao, which is not the case. The obtained contradiction proves
that if char(K) does not divides 2g + 1, then (z — a2)?9"! — (2 — a;)?9"! has no
multiple roots.

Theorem 4. Let Ky be a subfield of K and g > 1 be an integer. Let a; and as be
distinct elements of Ky. Let ui(x),uz(x) € Ko[z] be polynomials such that

deg(u;) < g for i=1,2; ui(x)ua(x) = (x — ax)**™ — (x — ay)? .
Assume additionally that if char(Ky) does not divide 2¢ + 1, then
deg(uy) = deg(ug) = g.

Let us consider the monic degree 2g + 1 polynomial

fa17a2§ul,u2 (I) = (I - a1)29+1 * (W)Q

Then the following conditions hold.

(a)

2
fahaz;uhuz (m) = (l‘ - a2)2g+1 * (Iul(x)glm(x)) B fa27‘115u17_u2 (I)

(b) Let us put
a:=az—a; € K*, U1(z) = ui(x + a1) € Kolz], t2(z) = ua(x + a1) € Kolz].
Then
deg(ti1) = deg(u1), deg(tig) = deg(us),
i1 (2l (7) = (2 — a)?Tt — 2291 = (z — a)?9F — (z — 0)29H!
and

iy (z) + am«))?

Fonsastus s @+ 01) = fo a2, (2) = 204 ( >

(c) Suppose that fa, as:usus () has no multiple roots. Then the following con-
ditions hold.
(c1) Let u)(x),ub(x) € Ko[z] be the derivatives of u(x) and us(x) respec-
tively. Then
(@) £ 0, uh(w) £ 0.
In particular, neither u(z) nor ug(x) is a constant.
(c2) Let us consider the odd degree genus g hyperelliptic curve

- a2
Ca1,02;u1,u2 = Cfal,a2;1L1,71,2 Y= fal,az;uhUz (.TC),

which is defined over K. Then
ui(ar) +ug(ar) # 0, ui(az) — ua(az) # 0,
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and

u1(a1) + uz(ar) ui(az) — us(as)
Pa1,a2;u1,uz = (ah f and Qal,ag;ul,uz =\ a2, f

are points of order 29 + 1 in Ca; as:u1,us (50) C Cay aniur us (K)-

_ (ul(a:) - U2(:c>>2 B (ul(m) - uz(:@)? b (0 — a5 — (o )

Proof.

2 2
= up(x)ug(z) — uy (z)uz(x) = 0.
This proves (a).

Let us prove (b). Clearly, deg(u(z + a1)) = deg(u) for every polynomial u(z) €
Klz]. This implies that deg(@1) = deg(uy),deg(iz) = deg(usz). It follows that
deg(t1) = deg(iiz) = g if deg(u1) = deg(uz) = g. We have

(Qj _ a)29+1 _ $2g+1 _ ((I +a1) _ a2)2g+1 _ ((IJFCH) _ a1)29+1
= uy(z + ar)uz(z + a1) = 41 (x) a2 (x).

Finally,

ui(x +ap) +u2(z+a1))2
2

Farazuns (@ +a1) = (& — a1) + a1)*+ + (

1 (z) + z(x)

= (z— 0" + ( 5

2
) = fosusalo).

Let us prove (cl1). We put p := char(K). Let us assume that, say, v} (xz) = 0.
We need to arrive to a contradiction. Under our assumption one of the following
condition holds.

(i) wi(z) is a nonzero constant, i.e., deg(u;) = 0 < g. This implies that
char(K) is a prime dividing 2¢g + 1.

(ii) pis a prime and there exists a polynomial wy (z) € K|z] such that uy(z) =
wh(z).

Clearly, in both cases p is a prime dividing 2¢g + 1 and there exists a polynomial
wi(z) € Kx] such that uy(z) = w}(z). We have

29+1 _ ( 29+1 _

wy (z)uz(z) = ur(2)uz(z) = (z — az) T —ay)

((x ~ap) @D/ (g a1)<2g+1)/p>’° .

This implies that wy (z) divides (z —ap)9+)/P —(z —a,)29+D/P in K[2], i.e., there
exists a polynomial wy(z) € K|[z] such that

wl((p)wz((p) = (1- — a2)(29+1)/17 _ (1- _ al)(29+1)/17’
and therefore

(@ = a2)*™ — (z = a)*™ = (wi(2)wa(2))” = wi (2)wh(2) = u1 (x)wh(2).
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It follows that us(x) = wh(z). Consequently,

fa17a2;u1,u2 (.Z‘) = (Z‘ - a1)2g+1 + <

- ((x—al)(2g+1)/p+ <W>2>p-

Hence fa4, a5:u1,us (%) is a pth power in K[z] and therefore all its roots are multiple,
which contradicts our assumptions. Hence, v} (x) # 0. By the same token, uj(z) #
0. This ends the proof of (c1).

In order to prove (c2), notice that, from the very definition of fo, asiuy us (),
it follows that Py, as;ui,u. lies on Cay apiuy,us- The fact that Qa, amiuy,u, lies on
Cay.az:u;y,us follows from (a). Applying two times Theorem 2 to a = az,v(z) =
(ur(x) + u2(x))/2 and to a = ag,v(x) = (u1(x) — uz(x))/2, we conclude that
both Py, apiuq,ue a0d Qay aziur,us are points of order 2g + 1 in Cay ay:uy,us (o) C
Cay,az:ur,us (K0). In addition,

ug(ay) 4 uz(az) uy(az) — uz(ag)

0 0
5 70, 5 70,

ie., ui(ar) +uz(ar) #0, ui(az) — uz(az) # 0. =

Remark 5. Let a1, as be distinct elements of a subfield Ky C K and let ui(z), us(z) €
Ko[z] be polynomials that satisfy uy (z)us(z) = (z — a2)?9™! — (z — ay)?9*!. Then

Uy (al)u2(a1) = (al - a2)29+1 - (@1 - a1)2gJrl = (al - G2)2g+1 #0,

’U,l(ag)UQ(ag) = (CLQ —a2)2g+1 — (a2 —a1)29+1 = —(O,Q —a1)2g+1 = (0,1 —a2)29+1 75 0.

In particular,

Ul(al) # 07“2(a1) # 0,U1(a2) # 03”2(%) # 0.

Remark 6. Let a1, az be distinct elements of a subfield K¢ C K, and let u; (x), uz(x) €
Ko[z] be polynomials that satisfy u; (z)uz(z) = (7 — a2)?9™! — (z — aq)?9!. Then
—uq (x), —us(x) € Kolz] and

(2 =a2)*™ — (2 —a1)*"" = (—ur(2)) (~u2(2)) = u2(@)ur(2) = (—ua(2))(~u1 ().

Assume additionally that deg(ui) < g,deg(uz) < g, and the equalities hold if
char(K') does not divide 2g + 1. Then

fa1,a2;u17u2 (l‘) = flll,llz;—uh—uz (l‘) = fal,az;u27u1 (l‘) = fal,a2§—u2,—u1 (JJ)

If, in addition, fo, ap:u1,u. (%) has no multiple roots, then

Ca17a2§ulau2 - Cal,az;—uh—uz - Ca17a2;u27u1 - Ca11a2;_u27_u1'

So, in all four cases we get the same odd degree hyperelliptic curve. However, it
follows readily from Theorem 4(cl) that

Pal,az;*u17*u2 - L(Pal,a2;u1,u2), Qal,a%*ulg*uz - L(Qal,GQ;Ul,u2)7
Puy asiuz,ur = Payaziunuzs Qarasius,us = UQay az5ur,uz),

Pauaz;—um—ul - L(Pa11a2§ulqu2)7 Qa1,¢12;uzyu1 - Qal,a2§u17u2'
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Remark 7. Let a1,as be distinct elements of a subfield Ky C K and let u;(z),
uz(x), t1(z), t2(z) € Ko[z] be polynomials that satisfy

uy (2)ug(z) = (x — a2)?* — (¢ — a1)**! = Gy (2) G ().
Let us assume that deg(u1) < g,deg(us) < ¢. In addition, we also assume that the
equalities hold if char(K) does not divide 2¢g + 1.
Suppose that
fa11a2§u17u2 (1’) = fal,afz;ﬁhﬁz (1’),

ie.,

(x—a1)29+1 + ( +u2

This means that

ie.,

iy (z) + ta(z) = £ (ur () + uz(z)).
Since

uy (z)ug(x) = U1 (2)tz () = (—ua(z)(—u2(2)),

we conclude that one of the following four conditions holds.
Uy (z) = u(x), to(x) = uz(2);
1 (x) = —uy(z), te(x) = —ua(z);
i (z) = u2(2), tiz(z) = wr(2);
Uy () = —up(x), Uz (z) = —ua ().
Theorem 5. Let p = char(K) be an odd prime and ¢ a positive integer such that
2g + 1 = pF for a positive integer k. (E.g., g = (p — 1)/2.) Let f(z) € K|[x] be
a monic degree 2g + 1 polynomial without multiple roots and Cy : y? = f(z) be
the corresponding odd degree genus g hyperelliptic curve. Then C;(K) contains, at
most, two points of order pk.

Proof. Assume that C;(K) contains, at least, three points of order pF =2g+1. Let
P € Cy(K) be one of them. Then P = (a1, ¢1) with

ai,c1 € K,c1 #0, ¢ = f(a1).

Consequently, ¢(P) = (a1, —c¢1) € C;(K) also has order 2¢g + 1. Hence there exists
another point @) € C¢(K) of order 2¢g + 1 that is neither P nor ¢«(P). This implies
that Q = (ag, cp) with

ag, ¢y € K,co # 0, ¢&§ = f(az), az # ar.
By Theorem 3 (applied to Ky = K) there exist polynomials u;(x),us(z) € Klx]
such that

we)un(e) = (o= a2 = (e, o) = om0

Since 2g + 1 = p* and p = char(K), the difference

( —ag)®™ — (x — )™ = (z — ap)? * —(z— al)pk = (a1 — ag)pk
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is a nonzero element of K. This implies that both wu;(x) and us(z) are also nonzero
elements of K say, ui(z) = by € K*, ug(x) = by € K*. It follows that

k (bl—‘rbg

fl@) = (z—a)” + > = (@ —a + 0",

2
where )
b1 + b
b= /L2
(4"
Therefore, f(x) has multiple roots, which gives us the desired contradiction. O

Remark 8. The case p=5,9 = 2,k = 1 of Theorem 5 was done in [2, Lemma 3.1].

Remark 9. Let us consider the case when p = char(K) = 3 and f(z) is a degree 3
polynomial without multiple roots. Then the equation y? = f(z) defines an elliptic
curve over the field K of characteristic 3. It is well known that an elliptic curve in
characteristic 3 has, at most, two points of order 3. Theorem 5 may be viewed as
a generalization of this fact, where 3 = 3! is replaced by any odd prime p and 1 by
any positive integer k.

4. Families of hyperelliptic curves

Theorem 6. Let us assume that char(K) does not divide 29+ 1. Let wy (z), wa(x) €
K|[x] be degree g polynomials without common roots. Then for all but finitely
many A € K* the degree 2g + 1 polynomial
ha(z) = Az 4 (hwy () + wa(x))?
has no multiple roots.
Proof. Fix xg € K. Then
h)\(.ro) = w%(]}o))\Q + ($§g+1 + 2’LU1(33‘0)’LU2(Z‘0)))\ + ’LU2($0)2

is a polynomial in A of degree < 2 such that at least one of its coefficients does
not vanish. Indeed, either its coefficient w? (o) at A? is not 0 or its constant term
wa(20)? does not vanish, because either wi(xg) # 0 or wa(zg) # 0. This implies
that there exist, at most, two A € K such that hy(z¢) = 0. Hence, in order to prove
the theorem, it suffices to check that there are only finitely many zg € K for which
there is A € K* such that hy(z¢) = 0. Our plan is to produce several polynomials
in x that do not depend on A and such that our x( is a root of one of them.
We have

Ry(x) = (29 + 1Az + 2 (ws (2) + wa (@) (wi (z) + wh(2)) .-

Suppose that zo € K and A € K* satisfy hy(xo) = h)(z) =0, i.e., zo is a multiple
root of hy(z). This means that xg is a solution of the system

Az 4 (wy () 4+ wa(2))? = 0,
(29 + DA2?9 + 2 (A\wy (2) + wa(x)) (M) (z) + wh(z)) = 0.

Multiplying the second equation by = and the first equation by 2¢ + 1, and sub-
tracting one from the other, we obtain that x( is a solution of the equation

(29 + 1) (Awr (@) + w(2))” = 22 Awi () + wa(@)) (Mwy (x) + wh(x)) = 0.

Hence either
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(1) Awi(zo) + walzg) =0
or
(ii) (29 +1) (Awi(zo) + wa(zo)) — 220 (Awi(zo) + wh(20)) = 0.
Case (i). Since the set of roots of wi () is finite, we may assume that z¢ is not
one of them and get A = —ws(xp)/w1(x). It follows from the first equation of the
system that zg is a solution of the equation

—M:fﬁl + (— ws(2) wy (z) + Ui2($)>2 =0.

w1 () wy(z)
This means that — 222032971 — 0 which implies that the case (i) holds only for
wl(wo) 0

finitely many values of z(, namely if either x( is 0 or one of the finitely many roots
of wa(x).
Case (ii). In this case we have
((2g + Vw1 (xg) — 220wy (20)) A = 2z0wh(20) — (29 + Vw2 (z0).

Since deg(w1) = g # 2¢g + 1, the polynomial (2g + 1)w; (z¢) — 2zow) (z) has degree
g and the set of its roots is finite. So, we may assume that x( is not one of them,
ie., ((29 + 1wi(zo) — 2zowi(z0)) # 0 and

2xowh(zo) — (29 + 1wa(xo)
((29 + Dwi(w0) — 2zowi(20))

Plugging this expression for A in the first equation of the system, we get that z is
a solution of the equation

2zwy(z) — (29 + Dwo(x) $29+1+( 2zwy(x) — (29 + Dws(x)
(29 + Dw: (2) - 22w (2)) (29 + Dwn (2) - 22w (2))

This means that zq is a root of the polynomial
H(z) := (2xwy(x) — (29 + Dwz(2))((2g + Dwi (z) — 2zw) (x))2*
+ (2zwh(e) — (29 + Dwa(a))wr (@) + (29 + Lwi (@) - 2ew) (2))wa(a))’

wi(z) + wz(:r))2 ~0.

Since deg(wy) = deg(wa) = g # (29 + 1)/2, both polynomials (2zw}(z) — (29 +
Dws(z)) and ((2g + 1)wq (x) — 22w](x)) have degree g. This implies that the first
term in the formula for H(z) is a polynomial of degree g+ g+ (29+1) =4g+1. On
the other hand, the second term in the formula for H(z) is a polynomial of degree
< 2-(g+g) = 4g. Therefore, deg(H) = 49+ 1 and the set of roots of H(x) is finite.

To summarize: there are only finitely many x¢ € K such that there exists A € K*
for which xq is a multiple root of hy(z). This ends the proof. O

Theorem 7. Let us assume that char(K) does not divide 2g + 1. Let aq, a2 be
distinct elements of K, and let u(x),us(xz) € K[z] be degree g polynomials that
satisfy

2g+1 _ ( 2g+1.

ur(z)us(z) = (z — ag) T —ay)

Then the following conditions hold.

(i) If u € K*, then pus(x), u"tug(x) € K[z] are degree g polynomials that

satisfy

(pur (2)) (0™ a2 (7)) = ur(@)ua(z) = (= a2)**! = (- ar)**.
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(i) There are only finitely many p € K* such that the polynomial

2
ui(x) + p tus(x
fal»a2§ﬂula#71u2(x) = ('T - a1)29+1 T (u 1( ) ;L 2( )>

has a multiple root.
Proof. Using Theorem 4(b), we may and will assume that a; = 0, as = a # 0, and

fal,ag;pul,u*1u2 (1‘) = fO,a;uul,ufluz (I)

We have

up (z)ug(x) = (x — )29t — 229+
and

u;(0) # 0,u;(a) #0 for ¢ =1,2.
Since char(K) does not divide 2g 4+ 1, Remark 4 tells us that the polynomial (z —
a)?9t1 — 22971 has no multiple roots. This implies that u;(z) and us(x) have no
common roots. We have

2
wi(x) + p tus(x _
fO,a;,um,u*luz (x) = x29+1+('u 1( ) ] 2( )) - $29+1+(Mw1(x) +u 1w2($))27

2

where wy (z) = u1(z)/2, wa(x) = ua(x)/2. Clearly, wy(z) and ws(x) are degree g
polynomials without common roots. We have

2
N2f0,a;uu1,u_1u2 (1’) = M2$29+1 + (/L2w1 (CL’) + w2(x)) .

It follows from Theorem 6 that there is a finite set S C K* such that if u? & S,

then p? fu, ay:piur.—1u, () has no multiple roots and therefore fo 4., -1, (%) also

has no multiple roots. Therefore, fo q.u, u-1u, () has no multiple roots for all but

finitely many p € K*. O

Theorem 8. Let us assume that p := char(K) > 0, p divides 2¢g + 1, but 2g + 1 is
not a power of p. Let wq(z), ws(z) € K[z] be nonconstant polynomials such that
deg(w1) < g, deg(wz) < g;wy(z) # 0, wy(x) # 0;w1(0) # 0,w2(0) # 0.

Assume also that
(w1 (2)wa(x))" = 0.
Then for all but finitely many A € K* the degree 2g + 1 polynomial
ha(z) = Az 4 (g () + wa())?
has no multiple roots.
Proof. Fix zy € K. Then
ha(o) = wi(wo)X* + (5" + 2wi (wo)wa(w0))A + wa (o)

is a polynomial in A of degree < 2 such that at least one of its coefficients does not
vanish. Indeed, if all the coefficients vanish, then

wi (o) = 0, wa(wo)? =0, 257" + 2wy (o) wa (o),

ie.,
’wl(l'()) = 0, ’U}Q({E()) = 0, o = 0,
which means that
o = 0, wl(O) = 0, 'LU2(0)
However, xo = 0 is not a zero of wy (), which gives us the desired contradiction.
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This implies that for any given xy € K there exist, at most, two A € K such that
hx(xzo) = 0. Hence, in order to prove the theorem, it suffices to check that there
are only finitely many zo € K for which there is A € K* such that hy(z¢) = 0.
Our plan is to produce (as in the proof of Theorem 6) several polynomials in x that
do not depend on A and such that our zq is a root of one of them. From the very
beginning, we may exclude finally many values of zy. In particular, we may and
will assume that

(5) zo # 0, wi(wo) # 0, wi(zo) # 0, wa(zo) # 0, wy(wo) # 0.
Since the derivative of wq(x)ws(z) is identically 0, we get

0 = wi(zo)wa(zo) + wh(wo)wi (o)
and therefore

(6) wIQ(xO) w2(l‘0) )

We have
PA(x) = (2g + D)Az?9 + 2 (\w;y ()
=2 (Awy (x) + wa(x)) (M) (2)

2(2)) (A} (z) + wh())

+ +

]

Suppose that zop € K and A € K* satisfy hy(xzo) = hi(z) = 0, ie., zo is a
multiple root of hy(z). This means that x¢ is a solution of the system
Az29T 4 Oy () + wg(x))2 =0,
(Awi (z) + w2 (x)) (Awy (2) + wy(x)) = 0.
Hence either
(i) Adwi(zo) + wa(zo) =0
or
(i) Awi(xo) + wh(zo) = 0.
Case (i). Since wi(zg) # 0, we get A = —wa(zo)/wi(xo). It follows from the
first equation of the system that x( is a solution of the equation

_Mﬁg ! —wQ(x)w x) + wa(x 2—
i+ (S +m) o

Consequently,
~ wa(zo) 22+ — 0,
w1 (o)
which is not the case, since zo # 0 and wa(xo) # 0. So, the case (i) does not occur.
Case (ii). Since w}(zg) # 0, we get A = —wh(zo)/wi (o). In light of (6),

It follows from the first equation of the system that x( is a solution of the equation

w2(x)l,2g+1 i (wQ(I)wl(x) + wg(x)>2 =0,

w1 () wi (z)
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i.e., xg is a solution of the equation

mng“ + (2w(x))” = 0.

Multiplying this equation by wi(z), we obtain that x( is a root of the polynomial
wo(z) 2?91 + d(wa(z))?wi (z) = wa(z) (291! + 4wy (2)wa(2)) .

Since wa(zg) # 0, mp is a root of the polynomial H(z) = 229! + 4w, (z)wa(z).

Since both deg(w;) < g, we have deg(w;(x)wz(x)) < 29 < 2g + 1, and therefore

H(z) is a polynomial of degree 2g + 1. In particular, the set of roots of H(z) is

finite.

To summarize: there are only finitely many xy € K for which there exists A € K*
such that xg is a multiple root of hy(x). This ends the proof.

Theorem 9. Let us assume that p := char(K) > 0 and p divides 2g+1, but 2g+1 is
not a power of p. Let aj,as be distinct elements of K, and let uy (), us(z) € Klx]
be polynomials that satisfy

2g9+1 ( 2g+1
7

up(x)ug(z) = (z — ag) x—ay)

deg(u1) < g,deg(uz) < g, uy(z) # 0,uy(x) # 0.
Then the following conditions hold.
(i) If u € K*, then puq(x), u tuz(z) € K[z] are polynomials of degree < g
such that
(pur ()" # 0, (puz(x))” # 0,
(pur () (™ ua(2)) = wi(2)ua(z) = (x = az)* ™ — (z — ay)**.
(ii) There are only finitely many p € K* such that the polynomial

ap)?+ (“ul(x) +2u1u2(x))2

fal’a2sl»mla#71u2 (I) = (‘T -
has a multiple root.

Proof. (i) is obvious. Let us prove (ii). Using Theorem 4(b), we may and will
assume that a; =0, as = a # 0,

far 001,51y (z) = Jo,aspur u=1us (z),

up (2)ug(z) = (x — a)?9 — 22971,

and
u;(0) #0, u;i(a) #0 for i=1,2.
Since char(K) divides 2g + 1, the derivatives of both (x — a)?9*!1 and 229! are 0.
This implies that
(u1(z)ua(z)) = 0.
We have

2
ur () + ptug(z _
fO,a;uuhM_luz (SL’) = m29+1+(’u 1( ) a 2( )) = $29+1+(Mw1($) + 1% 1w2($))2 ’

2

where wy(x) = uy(x)/2, wa(z) = uz(x)/2. Clearly, wy(z) and wo(x) are polynomi-
als of degree < g and

() £ 0, wh(x) £ 0, (wi(@)ws(x)) = 0.
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Since

szO,a;uuhu_luz ({E) = ﬂ2$29+1 + (ﬂ2w1(1’) + wQ(x))Q ’
it follows from Theorem 8 that there is a finite set S C K* such that if u? € S, then
u2fa17a2;wl,u_1u2 (x) has no multiple roots, and therefore f; 4.0, 14, (%) also has
no multiple roots. It follows that fy 4.,u,,~1u, () has no multiple roots for all but
finitely many p € K*. O

5. Rationality Questions

The aim of this section is to discuss the cases when there are, at most, two
Ky-rational points of order 2g + 1 on an odd degree genus g hyperelliptic curve.

Theorem 10. Let K be a subfield of K and g > 1 be an integer. Let us assume
that 2g 4+ 1 is not divisible by char(K’) and the degree 2g monic polynomial

=
= le € Kolz]
=0

does not have a factor in Ky[z] of degree g or equivalently cannot be represented
as a product of two degree g polynomials with coefficients in Kolx].

Let f(xz) € Kplz] be a monic degree 2g + 1 polynomial without multiple roots
and Cy : y*> = f(x) the corresponding odd degree genus g hyperelliptic curve that is
defined over Kj. Then C;(Kj) contains, at most, two torsion points of order 2g+1.

29+l _

r—1

Proof. Assume that C;(Kj) contains, at least, three points of order 2¢g + 1. Let
P € C¢(Ky) be one of them. Then P = (ay,¢;) with
ap,C1 € KO,Cl 7& 07 C% = f(a1)~

The point ¢(P) = (a1, —c1) € C¢(Kp) also has order 29 + 1. Hence there exists
another point @ € Cy(Ky) of order 29 + 1 that is neither P nor +(P). This implies
that Q = (ag, c2) with

ag,co € Ky, co 7é 0, C% = f(a2), as 7é aj.
In particular, C;(Ky) has four distinct order 2¢g + 1 points
(1) P=(a1,c1),u(P) = (a1, —c1),Q = (az,c2),L(Q) = (az, —¢c2) € C¢(Ko).
By Theorem 3 applied to torsion Ky-points P = (a1,¢1) and @ = (ag, c2) of order
2g + 1, there exist degree g polynomials uq(x), us(z) € Ko[z] such that

deg(u1) = deg(uz) = g, w1 (z)uz(r) = (v — a2)**! — (v — a1)**,

ul(al) 75 07u2(a1) # 0, Ul(az) 7& O,UQ(G,Q) 7£ 0.
This implies that
(8) (z—a)®t — 2?9 =y (2 + a1)ua(z + a1) = @ (2)T2(2),
where
a=as—a; € K* 41(x) :=ui(x + a1), te(x) := us(x + aq).
Clearly, both @4 (x) and ao(z) are still degree g polynomials with coefficients in

Ky and their constant terms 1(0) = uq(a1) and @(x) = u2(0) do not vanish. It
follows from (8) that

(3? _ a)2g+1 _ x2g+1

x-(—a/x)




20 BORIS M. BEKKER AND YURI G. ZARHIN

On the other hand, dividing both sides of the latter equality by 229 = 2929, we get
(o) 1a(o) _ @ s (1 afao
zd a9 22941 ((—a/x) (—a/x)
Since both @ (z) and @ (x) are degree g polynomials in Ky[z] with nonzero constant

terms, it follows from Lemma 2 that there exist degree g polynomials wi(x) and
we(x) in Ko[z] such that

i ()

()

=wi(—a/z), =wi(—a/z).
This implies that
(1—a/z)?9t -1

—a/z

wi(=a/z)wsy(—a/z) = (-a)

Hence (o4 )2+ 1
wi(@)ws(z) = (—a) —————,

and therefore
(x4+1)297 -1 wy(x)

T —a

It follows that the polynomial

29+1 1 -1
r = wi (@ )’U}Q(J}—l)
—a

z—1
splits into a product of two degree g polynomials wq(x—1)/(—a) and we(x—1) with
coefficients in K, which contradicts our assumptions. The obtained contradiction
proves the desired result. O

Example 3. Suppose that g = 1 and char(K) # 3. Assume that
3

v o1 =2 +z+1

z—1
does not split into a product of linear factors, i.e., Ky does not contain a primitive
cubic root of unity. On the other hand, f(z) is a cubic polynomial and Cy is an
elliptic curve. It follows from Theorem 10 that C;(Kj) contains, at most, two points
of order 3 (which is well known). In this case one may give a direct proof.

Namely, suppose Cy(K() contains, at least, three points of order 3, then one may

find two of them say, P,Q € C¢(Ky) such that Q # P,.(P) = —P, and therefore
the value of the corresponding Weil pairing e3(P, Q) between them is a primitive
cubic root of unity. Since both P and @ lie in C;(Ky), the root e3(P, Q) lies in Ky,
which contradicts our assumptions.

Corollary 5.1. Suppose that K is the field C of complex numbers and Kj is its
subfield R of real numbers. Suppose that g is a positive odd integer and f(z) € R[z]
a monic degree 2g + 1 polynomial with real coefficients and without multiple roots,
and Cs : y* = f(z) the corresponding odd degree genus g hyperelliptic curve that
is defined over R. Then C;(R) contains, at most, two points of order 2g + 1.

Proof. Notice that the polynomial (z29t! —1)/(x — 1) has no real roots, because
2g 4+ 1 is odd. Suppose that it splits into a product
(201 — 1)

) = up(x)ug(z)
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of two real polynomials ui(z) and wue(x), both of degree g. Since g is odd, both
uy(x) and uz(r) have a real root, and therefore (29! —1)/(x — 1) also has a real
root. So, (#2971 —1)/(x — 1) does not split into a product of two real polynomials
of degree g. Now the desired result follows from Theorem 10. O

Theorem 11. Let K be an infinite subfield of K and g > 1 be an integer. Let us
assume that 2g + 1 is not divisible by char(K’). Then the following conditions are
equivalent.

(i) The degree 2g monic polynomial

229t — 1 29

ErE P DL
=0
has a factor in Ky[z] of degree g or equivalently can be represented as a
product of two degree g polynomials with coefficients in Ky[z].

(if) There exists a monic degree 2g + 1 polynomial f(x) € Ky[x] without mul-
tiple roots that enjoys the following property. If C; : y? = f(z) is the
corresponding odd degree genus g hyperelliptic curve defined over Ky, then
Cy(Ky) contains, at least, four torsion points of order 2¢ + 1.

Proof. The implication (ii) == (i) follows from Theorem 10 and its proof.
Suppose (i) holds, i.e., there exist two degree g polynomials w; (x), wa(z) € Ko[x]
such that
29+l _

1 &
721'
=0

wy (x)wa () =

In particular,
wi(Lwa(1) = 29 +1 £0,
and therefore wq (1) # 0,w2(1) # 0. This means that
NP z+1)29% —1
Wy (z)Wa(7) = ¥7
x
where
w1 (z) = wi(x + 1) € Kplz], wa(x) = wa(zx+1) € Kolx],
w1(0) = wi (1) # 0, w2(0) = wa(1) # 0.
Clearly, both w; (z),ws(z) are degree g polynomials with nonzero constant terms.
We have

w
w

2g+1 _ (z+ 1?9 =1 g (x) wa(x)
- x29+1 9 z9

(9) (1+1/2)% — (1/x)
By Lemma 2, there exist degree g polynomials uj(x),us(x) € Ko[z] such that
ur(1/z) =

It follows from (9) that
(14 1/2)2" — (1/2)* = ui (1/2)uz(1/2),

1])1(.1‘)

QI)1 (.13)

us(1/x) = 2L

and therefore
(z + 1)29+1 — 2290 — o) (2)ug(z).
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Since Ky is infinite, it follows from Theorem 7 that there exists u € K¢ such that

the polynomial
—1 2
_ogr, (P (x) +p up(x)
fo,—tpur =t (¥) = 2797 + < 5

has no multiple roots. By Theorem 4 the odd degree genus g hyperelliptic curve

2
Co,~1ipurp—1us 2 Y~ = Jo,~Tipus p=Tus (z)

over K has two distinct points

PO,—l;Muhu*luz’ QO,—l;uul,M*luz € CO7—1;uu17u*1u2 (KO)
of order 2g + 1 with abscissas 0 and —1, respectively, and with nonzero ordinates.
Consequently,

Po s p=tuns Qo,— iy s L(F0,~1pur =tz )y H(Q0,~ 1ipsuuy =1 )

are four distinct Ko-rational points of order 2g+1 on Cy 1, ,u~1u,- This implies
that (ii) holds. O

Theorem 11 suggest the following definition.

Definition 12. Let ¢(n) be the Euler totient function. An odd integer 29+ 1 > 3 is
called hyperelliptic if it enjoys the following obviously equivalent properties.

(i) There is a set .S of divisors of 2¢g + 1 that does not contain 1 and such that

D el =g
des

(ii) One may partition the set of all divisors of 2g+1 except 1 into two nonempty
subsets S; and Sy such that

> eld) = e(d).

desy desSs

Theorem 13. Suppose that K is the field C of complex numbers and K is its
subfield Q of rational numbers. Suppose that g is a positive odd integer Then the
following conditions are equivalent.
(i) 2¢ + 1 is a hyperelliptic number.
(ii) There exists a monic degree 2¢g + 1 polynomial f(z) € Q[x] with rational
coefficients and without multiple roots that enjoys the following property.
If C; : y* = f(x) is the corresponding odd degree genus g hyperelliptic
curve defined over Q, then C;(Q) contains, at least, four torsion points of
order 2¢g + 1.

Proof. Let D(2g + 1) be the set of all divisors of 2¢g + 1 except 1. Then the

229t 1

monic polynomial *——— coincides with the product HdeD(2g+1) ®,(x) of distinct
cyclotomic polynomials ®4(x), each of which is irreducible over Q. This implies
that each factor u(z) of mzf_ll_l in Q is of the form 7 - [[,.q ®4(x), where S is a

subset in D(2g + 1) and r € Q*. Since deg(®4) = ¢(d), we have
deg(u) = ¢(d).

des
The desired result follows readily from Theorem 11 applied to Ky = Q. O

Example 4. Let Ko =Q, K =C.
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(i) Let us take g =52. Then 29 +1=105=3-5-7,
0(105) = 48, p(5) = 4, 52 = 48 + 4 = (105) + »(5).

Hence 105 is a hyperelliptic number and there exists a degree 105 polyno-
mial f(z) € Q[z] without multiple roots such that the corresponding odd
degree genus 52 hyperelliptic Q-curve Cy : y? = f(z) has, at least, four
Q-points of order 105.

(ii) Let us take g =82. Then 29 +1=165=3-5-11,

0(165) = 80, p(3) = 2, 82 = 80 + 2 = (165) + ©(3).

This implies that 165 is a hyperelliptic number and there exists a degree 165
polynomial f(z) € Q[x] without multiple roots such that the corresponding
odd degree genus 82 hyperelliptic Q-curve Cy : y? = f(x) has, at least, four
Q-points of order 165.

Corollary 5.2. Suppose that K is the field C of complex numbers and Kj is its
subfield  of rational numbers. Suppose that g is a positive integer enjoying one of
the following properties.
(i) There exist a prime ¢ and a positive integer k such that 2g + 1 = ¢*.
(ii) There exist distinct odd primes ¢; and ¢, and positive integers k1 and ko
such that 2g + 1 = (%172
(iii) There exist distinct odd primes ¢1, {2, {3 and positive integers ki, ko, k3
such that 2g + 1 = ¢¥1¢52¢% and none of ¢; is 3.
(iv) ¢ <100 and g & {52,82}.
Then:

(i) 2¢ + 1 is not a hyperelliptic number.

(ii) Let f(z) € Q[x] be monic degree 2g+1 polynomials with rational coefficients
and without multiple roots, and C; : y*> = f(x) the corresponding odd
degree genus g hyperelliptic curve defined over Q. Then C¢(Q) contains, at
most, two points of order 2¢g + 1.

Proof. In light of Theorem 13, it suffices to check that 2¢g + 1 is not a hyperelliptic
number. Let us assume the contrary, i.e., one may partition D(2¢g + 1) into two
subsets S7 and Sy such that

ded=g=> o).
desS de Sz
Case (i). We have £ > 3 and

2 2 4
©(2g+1) = (£ — 1)kt > gﬁk > 529 =39 > g.

Case (ii). We may assume that 5 > ¢1, and therefore ¢; > 3,02 > 5. We have
©(2g+1) = (61 — )10y — 1)05271 >
2 4 8 8 16
SOVl = () = —(29+ 1) > —g > g.
3t gh 15(1 5°) 15(9+)>159>9
Case (iii). We may assume that f3 > ¢ > ¢; > 3, and therefore
ly > 5,0y > 7,03 > 11.
We have
029 +1) = (61 — )10y — 1)k (05 — 1)kt >
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4 0 6. 10 48 48 96
SO Ok = () = (29 4+ 1) > —-g > g.
gt s 77(1 2 l5°%) 77(9+)>779>9

In all three cases (29 + 1) > g. Since 2g+1 € S; for i =1 or 2,

9=>_ ¢(d) >e2g+1)>g,
deSs;

which gives us a desired contradiction.

Let us assume that case (iv) holds. It follows from Corollary 5.1 that we may
assume that g is even. We may also assume that ¢ satisfies neither (i) nor (ii).
Since g satisfies neither (i) nor (ii), 2g + 1 is divisible by, at least, three distinct
odd primes, hence 2g+1 > 3-5-7 = 105, i.e., g > 51. So, we may assume that
52 < g < 100.

If 29 + 1 is not divisible by 3, then 29 +1>5-7-11 = 385, i.e., g > 191 > 118.
Hence 2¢g + 1 is divisible by 3. Since g is even, it is congruent to 4 modulo 6. This
implies that g € {58,64, 70, 76, 88,94,100}. However,

2.584+1=232.13,2-64+1=3-43, 2-70+1=3-47, 2-76+1=32.17,

2.88+1=3-59,2-94+1=3%.7,2-1004+1=3-67.

Consequently, every g € {58,64,70,76,88,94,100} satisfies (ii). This ends the
proof. O

Remark 10. Our results show that there are only two hyperelliptic numbers 2941 <
201, namely, 103 and 165. Is the set of hyperelliptic numbers infinite?

The following assertion may be viewed as a counterpart in characteristic zero to
Theorem 5.

Theorem 14. Let £ be an odd prime and K, a complete discrete valuation field of
characteristic 0 with residue field of characteristic ¢ and such that the ramification
index ex is 1, i.e., £ is a uniformizer. (E.g., Ky is the field Q, of ¢-adic numbers or
its finite unramified extension). Let K be an algebraic closure of Ky. Suppose that
there exists a positive integer k such that g = (¢¥ —1)/2, i.e., 29 + 1 = (¥,

Let f(z) € Ko[z] be a monic degree ¢¥ polynomial without multiple roots and
Cs : y? = f(=) the corresponding odd degree genus (¥ — 1)/2 hyperelliptic curve
over Ko. Then C(Kp) has, at most, two points of order ¢*,

6. Odd degree genus g hyperelliptic curves with two pairs of torsion points of
order 2g + 1.

In this section we assume that K is an algebraically closed field of characteristic
# 2. We will need the following definition.

Definition 15. Let g be a positive integer. An ordered pair of polynomials
u(z), us(x) € Klx]

is called a nice pair of degree g over K if it enjoys the following properties.

(i) deg(u1) < g, deg(uz) <g.
(i) ui(z)ug(x) = (z + 1)29H1 — 229,
(iii) If char(K) does not divide 2g + 1, then

deg(uy) = g,deg(uz) = g.
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(iii)
W (@) # 0, () # 0.

If (u1(x),uz(x)) is a nice pair of degree g and the polynomial

f(@) = fo—turu, = 227 + (W)Q = (z+1)%t 4 (W)Q

has no multiple roots, then the pair (u;(x),uz(x)) is called very nice.

Remark 11. Suppose that (u;(z),us(x)) is a nice pair of degree g.
(i) It follows from Remark 5 that

ul(O) 7é O,UQ(O) 7é 0, UQ(—l) 7é 0,11,2(—1) 75 0.
In particular,
us(x) # fuq(z).

In addition, if (ui(x),us(x)) is very nice, then it follows from Theorem 4
that

u1(0) +u2(0) # 0, uz(—1) —uz(—1) #0.

(if) Obviously, the pairs (—uq (), —uz(x)), (u2(x), ui(x)), (—uz(z), —ui(z)) are
also nice of degree g. It follows from (i) that all four nice pairs (including
(u1(zx),uz(x)) are distinct. However, they all give rise to the same polyno-
mial f(x) (see Remark 6). In particular, they all are very nice if and only
if (u1(x),us(x)) is very nice.

(iii) If u € K* then obviously (uuq(x), " tug(z)) is a nice pair of degree g. It
follows from Theorems 8 and 9 that (uuy (), u~tus(x)) is actually very nice
for all but finitely many pu.

(iv) Let (w1 (z),w2(z)) be a nice pair of degree g such that

Jo,~13w1 w2 (z) = Jo,~13ur (z).

Then (wq(z),wa(x)) is one of four pairs described in (ii). Indeed, we im-
mediately get

It follows that we have (at most) four choices for (w;(z) + wa(zx), w1 (z) —
wa(x)), and therefore (at most) four choices for (w;(x),ws(z)). However,
in (ii) we already described the four choices, and therefore (w;(x),ws(z))
is one of them.

Definition 16. A monic degree 2g + 1 polynomial f(z) € K|z] is called decorated
if there exists a nice pair (u1(z), uz(z)) of degree g such that f(z) = fo,—1,u;,us ().
If this is the case, then (uq(x),us(z)) is called a decoration of f(z). It follows from
Remark 11 that a decorated polynomial admits precisely four decorations.

These definitions allow us to restate results of Section 3 in the following way.

Theorem 17. Let f(z) be a monic polynomial of degree 2¢g + 1 without multiple
roots and Cy : y* = f(z) the corresponding odd degree genus g hyperelliptic curve
over K.
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(i) Let P and @ be points in C;(K) such that
#(P) = 0,2(Q) = —1.

Then both P and @ have order 2¢ + 1 if and only if f(x) is decorated.
(ii) Suppose that f(z) is decorated. Then each decoration (uy(z),us(z)) of
f(x) gives rise to points

10) P = (0.220520) g = (1, mENTE) ey

2

of order 2¢ + 1.
Conversely, for each pair of points P, Q € C;(K) with

#(P) = 0,2(Q) = 1
there exists exactly one decoration (uq(x),us2(z)) of f(x) such that
(11) p— O, U1(0)+U2(0) 7 Q: _Lul(*l)*ﬂ,g(*l) )
2 2
In addition, both P and @ have order 2g + 1.

Proof. (i) Suppose P and @ have order 2g + 1. It follows from Theorem 3 and
Theorem 4(cl) applied to a3 = 0,as = —1 that f(z) is decorated. Conversely,
suppose f(x) is decorated. It follows from Theorem 4(c1) applied to a; = 0,a9 = —1
that there exist torsion points Pi, Q1 € C¢(K) of order 2g + 1 such that
z(P) =0, z(Q1) = -1

This implies that P = P; or «(P;), Q@ = @1 or ¢(Q1). In all the cases, P and P;
have the same order, () and @1 have the same order. This implies that both P and
Q@ have order 2¢g + 1.

(ii) Suppose that f(x) is decorated.

Let (u1(x),uz(x)) be a decoration of f(z). It follows from Theorem 4(c1) applied
to a1 = 0,a9 = —1 that P,, ,, and Q,, ., are indeed torsion points in C;(K) and
have order 2g + 1.

Let P,Q € C¢(K) and z(P) = 0,2(Q) = —1. It follows from (i) that both P and
Q have order 2g + 1. Now it follows from Theorem 3 and Theorem 4(c1) applied to

a1 = 0,as = —1 that there is precisely one decoration (u1(x),us(z)) of f(x) such
that P and @ are defined by (11). O
Definition 18. (i) An enhanced hyperelliptic curve of genus g over K is an

ordered quadruple (C, O, P, @), where (C,O) is a pointed odd degree genus
g hyperelliptic curve and P, Q) are points of order 2g+1 such that Q) # P, .P.

We call an enhanced hyperelliptic curve of genus g over K normalized
if there exists a polynomial f(z) € K[x] of degree 2g + 1 without multiple
roots such that C = Cy, i.e., C is the smooth projective model of y? = f(z),
O =00 and z(P) =0,2(Q) = —1.

(ii) By an isomorphism ¢ : (C,O, P, Q) — (C1, 01, P1,Q1) of enhanced hyperel-
liptic curves we mean a K-biregular map ¢ : C — C; such that ¢(O) = Oy,
¢(P) = Py, and ¢(Q) = Q1. We call an isomorphism ¢ : (C,0,P,Q) —
(C1,01, P1, Q1) of enhanced hyperelliptic curves a marking if C; = Cy, is
the smooth projective model of y = f(x1), where f(x1) € K|[x1] is a degree
2g + 1 polynomial without multiple roots, O; the infinite point co; of Cy,
and z1(P;) =0, 1(Q1) = —1. In other words, a marking of (C, 0, P, Q) is
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an isomorphism between (C,0, P, Q) and a normalized enhanced hyperel-
liptic curve.

Remark 12. (i) Notice that if ¢ : (C,O) — (C1,01) is a K-biregular map of
pointed hyperelliptic curves and P is a K-point of C having order 2¢g + 1
on the jacobian J(C) of C, then the K-point ¢(P) of C; has order 2g + 1
on the jacobian J(C;) of C;. Consequently, every K-biregular map ¢ :
(C,0) — (C1,01) of pointed hyperelliptic curves yields an isomorphism
¢:(C,0,P,Q) — (C1,01, P1,Q1) of enhanced hyperelliptic curves, where
P and @ are arbitrary points of order 29 + 1 on C' and P; = ¢(P) and

Q1 = ¢(Q).

(ii) Recall (Section 1) that every pointed genus g hyperelliptic curve (C,O)
is K-isomorphic to (Cy,00), where Cs is the odd degree genus g hyperel-
liptic curve defined by equation y? = f(z) (i.e., the normalization of the
projective closure of the smooth plane affine curve y?> = f(z)) and oo is
the unique “infinite” point on C¢. Therefore, every enhanced hyperelliptic
curve is isomorphic to a enhanced hyperelliptic curve (Cy, 00, P, Q).

Theorem 19. Let (C, O, P,Q) be an enhanced genus g hyperelliptic curve, where
Cy is the odd degree genus g hyperelliptic curve defined by equation y? = f(z).
Then there exist a degree 2g + 1 monic polynomial f(x) € K[x] without multiple
roots and an enhanced genus g hyperelliptic curve (Cy,, 00, P1, Q1) that enjoys the
following properties.

(i) z(P1) =0and z(Q1) = —1, i.e., (Cy,, 00, P1, Q1) is normalized.
(ii) The enhanced hyperelliptic curves (Cy,, 00, P1,@Q1) and (C, O, P, @) are iso-
morphic.

In other words, every enhanced genus g hyperelliptic curve admits a marking.
Proof. Without loss of generality we may assume that
C=Cr:y’ = f(a),
where f(z) € K[x] is a degree 2g + 1 monic polynomial without multiple roots. Let
P = (a,b) € C;(K), Q= (c,d) € Cf(K).
Then a and ¢ are distinct elements of K, none of which is a root of f(x), i.e.,

b+#0,d#0.
Let us consider the monic degree 2g + 1 polynomial

_ flla—c)r +a)

fl(x) - (CL — C)2g+1 € K[.’E]

without multiple roots and the hyperelliptic curve C; defined by the equation y? =

fi(x). Let us choose
r=+va—ceK".
Then we get a K-isomorphism of pointed hyperelliptic curves
6+ (€1250) = €100, Do) = (=2, rla=oty).

which gives rise to a K-isomorphism
¢) : (Cf,OO,PvQ) — (CflaooaPth)

Tr—a

a—cC
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of enhanced hyperelliptic curves, where P; = ¢(P) = (0,7(a — ¢)9b) and Q; =
P(Q) = (=1,r(a = c)?d). O

Remark 13. Let (Cy,, 00, P1,Q1) and (Cy,, 00, P>, Q2) be two normalized enhanced
hyperelliptic curves. In particular, the abscissas of both P, and P, equal 0 and the
abscissas of both @ and @2 equal —1.

(i) If there exists an isomorphism

¢ : (Cf17007P1aQ1) = (Cf2,OO’P27Q2)

of enhanced hyperelliptic curves, then it follows from Remark 1 that

fl(x) = fQ(x)’ Cf1 :sz’

1 is either the identity map or ¢. It follows that either P, = Py, Qs = Q1
or P2 = LPl,QQ = LQl.
This implies that every automorphism (Cy, , 00, P1, Q1) = (Cy,, 00, P1, Q1)
of a normalized enhanced hyperelliptic curve is the identity map.
(if) Let (C, 0, P, Q) be an enhanced genus g hyperelliptic curve over K. Suppose
that

¢1 : (C,O7PaQ) — (C,f1?OO7P17Q1)7 (bl . (C7OaPaQ) — (Cf27OO7P27Q2)
are two markings of (C,0, P,Q). Then

Y=g oyl (Csyy00, P, Q1) — (Cpy, 00, Pa, Q2)

is an isomorphism of enhanced hyperelliptic curves that satisfies conditions
(i). Tt follows that

fi(x) = fo(z), Cp, =Cy,

and either 1o = 11 or o = 91 o 1¢c. Therefore, every enhanced hyperel-
liptic curve has exactly two markings, one is obtained from the other by
composing with the hyperelliptic involution.

Remark 14. Let (Cf, 00, P>, Q2) be a normalized enhanced hyperelliptic curve over
K. By Theorem 17 there exists precisely one decoration (uj(z),us(z)) of f(z) such
that

(12) P (0,00 g (1 mED el

It follows from Remarks 6 and 11 that the same pointed hyperelliptic curve (Cy, c0)
gives rise to three other normalized enhanced hyperelliptic curves (Cy, 00, (P, (Q),
(C¢, 00, P,1Q), (C¢,00,tP, Q) that correspond to the very nice pairs

(_ul(x)7 —u2(1‘)), (UQ(.Z‘),ul(:L‘)), (_UQ(‘T)’ _ul(x))
respectively.

Now our goal is to describe nice pairs (uj(x),us(x)) explicitly. In what follows
we write #(A) for the cardinality of a finite set A.
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6.1. The case when char(K) does not divide 2g + 1. Recall that in this case each
of the polynomials wu;(x), ua(z) has degree g. Let us put

M(2g+1):={c € K,e*" =1,¢ #1}.
The degree 2g polynomial (z + 1)29+1 — 22971 has leading coefficient 2g + 1 and 2g
distinct roots

1
n(e) = — where e € M(2g + 1).

We write
V() = [[(= = n(e)) € Ka]
eel
for each subset I C M(2g + 1). Clearly, ¥;(x) is a degree #(I) monic polynomial;
U’ (z) = 0 if and only if I = (). Tt is also clear that if (I is the complement of I in
M(2g + 1), then
(.73 + 1)2g+1 _ ng-&-l
2g+1
Remark 15. Since #(M (29 + 1)) = 2g, the equality #(I) = g holds if and only if
#(C1) =g.

Theorem 20. (i) Nice pairs (u1(z),us2(z)) of degree g over K are exactly the

Vi (x)¥g,(z) = ‘I’M(2g+1)(33) =

pairs (ullll(x), %\IICI(:C)), where I is any g-element subset of M(2g+1)
and p is any element of K*.

(ii) Let I be a g-element subset of M (2g+1). If u € K*, then the corresponding
polynomial

2
u¥r(z) M\PBI(J@)

= 2g+1
Jru(®) fov—l;u‘lngfl‘l’cr = ( 2N

(13)

() - Qijlwcf(x))Q

=(z+1)%* ¢+ ( 5

decorated by (M\IJI(z), lej'l Ue;s (x)) has no multiple roots for all but finitely
many p.

(iii) If (Cy,00, P,Q) is a normalized enhanced genus g hyperelliptic curve y? =
f(z) over K, then there is precisely one pair (I, ), where I is a g-element
subset of M(2g + 1) and p € K* such that f(z) = f; ,(x) and

0¥ (0) + 2250, (0) Py (1) — 2250, (1)
I A PR ]

(iv) Let I be a g-element subset of M(2g + 1) and p € K* such that f7,(z)
has no multiple roots. Then Cy, , : y* = f1,,(x) is an odd degree genus g
hyperelliptic curve over K, and (14) defines torsion points P,Q € Cy, ,(K)
of order 2g + 1. In other words, (Cy, ,,00, P,Q) is a normalized enhanced
genus g hyperelliptic curve.

Proof. (i) Since char(K) does not divide 2g+1, the polynomial (z+1)297 — 229 has
degree 2g, leading coefficient 2g 4 1, and has no multiple roots. It follows that each
factor of (x 4+ 1)29+! — 229 is of the form uW;(x), where I is a subset of M (2g + 1)
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and p € K*. This implies that for every factorization of (z + 1)29*! — 229 into a
product of two polynomials uq(x) and us(x) we have

(15) wn(z) = py(z), up(a) = 251

\IJGI(x)v

where I is a subset of M (2g+1) and p is an element of K*. Nice pairs (u1(z), ua(z))
must satisfy deg(ui) = deg(uz) = g. In light of (15) and Remark 15, this condition
is satisfied if and only if #(I) =g¢

Conversely, if I is an g-element subset of M(2g + 1) and p is an element of K*,

then
2g+1

(W 1(2)) ( wmm) — (o4 1)29H 20,

29 +1
deg (uV¥y) = g = deg ( gu ‘l'm) ;

" (M\I’I 2g+1\IJ i(z )) is a nice pair. This proves (i).
(11) follows from Remark 11(iii).

(iii) follows from (i) combined with Theorem 17.

(

iv) follows from (i) combined with Theorem 17.
(]

Example 5. Let ¢ = 2. Then there are exactly 3 families of genus 2 hyperelliptic
curves with two pairs of torsion points of order 5. (See [3, Sect. 3].)

6.2. The case when char(K) divides 2g+ 1. We write Z for the set of nonnegative
integers. Let us assume that char(K) = p > 0 and 2g + 1 = p*(2] + 1), where k is
a positive integer, ! a positive integer and p 1 (20 + 1). Let us put

1
M@2l41):={e € K, =1, £ 1}, n(e) = Py Ve e M2+ 1).

Ifv: M(2l4+1) = Z is a function on M (2] + 1) with values in Z,, then we define
its degree

deg(v) = Z v(e) € Z4
e€eM(21+1)
and a monic polynomial
(16) Y@= I @=nE)" e K] deg(Y,) = deg(v).
e€M(21+1)

The polynomial

((x + 1)21+1 o m21+1)Pk _ (a: + 1)2g+1 291 (mpk + 1)21+1 . (xpk)QH-l
(17)

_ (2l + 1)x2lpk + <2l ;_ 1)x(2l1)}7k 4+ (2l j— 1>xpk +1

has degree 2[p* and leading coefficient 21 + 1. Its roots have multiplicity p* and
coincide with the roots of the polynomial (z+1)2+! —22+1, Hence the set of roots
coincides with

{n(e) e e M(2g+1)}.
We will need the following elementary statement.

Lemma 3. Let v: M (2l 4+ 1) — Z, be a function and p € K*.
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(i) The derivative (Y, (z))" # 0 if and only if there is e € M (2] +1) such that
p does not divide v(e).
(ii) The polynomial uY, (x) divides (z + 1)29F1 — 229+ if and only if

(18) v(e) < p* Ve € M(21+1).
(iii) If the inequalities (18) hold, then

(19) (04 17— 2204 = (T () - 22T (),
where the function 0 : M (2] + 1) — Z is defined by
(20) o(e) = p* —w(e) Ve € M(21 +1).

In addition, (uY,(z))" # 0 if and only if (LQHT@(Q:))/ # 0. If a polynomial
u(xr) € K[z] divides (z + 1)29Ft! — 229+1 then there exist precisely one
v:M(2l4+1) = Z, and one u € K* such that u(z) = uY,(x). In addition,
v satisfies (18).

Proof. (i) The derivative of a nonzero polynomial u(z) € K|[z] is not 0 if and only
if this polynomial is not a pth power in K[z] of a polynomial, i.e., it has a root
whose multiplicity is not divisible by p. Since the set of roots of uY,(x) coincides
with {n(e) | e € M(2l + 1),v(e) # 0} and the multiplicity of 7(e) equals v(e), we
obtain that there is ¢ € M (2] + 1) such that v(¢) # 0 and p does not divide v(e).
This ends the proof of (i).

(ii) Recall that each n(¢) is a root of (z + 1)29+1 — x29%! with multiplicity p*.
This implies that uY, (z) divides (x + 1)2971 — 22971 if and only if n(e), viewed as
a root of uY, (), has multiplicity < p¥, i.e., v(¢) < p¥. This ends the proof of (ii).

Assume now that (uY,(z))" # 0. By (i), there is ¢ € M(2] + 1) such that
v(g) # 0 and p does not divide v(e). Then (e) = p* — v(e) is also not divisible by
p. (iii) and (iv) are obvious.

O

Definition 21. We call a function v : M (2] + 1) — Z admissible if it enjoys the
following properties.
(i)
0 <wv(e) <phVee M(20+1).
(if) There exists ¢ € M (2l + 1) such that v(e) Z 0 (mod p).

(iii)
Yoo <g Y, Wr-vE) <y

e€EM(21+1) e€EM(21+1)
Remark 16. If v : M (21 4+ 1) — Z is an admissible function, then
O:MQ2l4+1) = Z, e p* —v(e)

is also an admissible function.

Theorem 22. (i) Nice pairs (ui(z),us(x)) of degree g over K are exactly the
pairs (,uTU(a:), L:[11",;(93) , where v is an admissible function on M (2] +1)
with

deg(v) < g, deg(v) < g
and p € K*.
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(ii) Let v be an admissible function on M (20 + 1). If 4 € K*, then the corre-
sponding polynomial

2t () 2
f “(x) = fo LT 2ty :x2g+1+<ﬂrv($)+ m TU(CL')>
v, . ,— 1 v, 5T 2
(21) 2
20+1
(w1 (MTU@ - MTU<x>>
2

decorated by (/ffv(x), QZﬂin, (gc)) has no multiple roots for all but finitely
many p.

(iii) If (Cy, 00, P,Q) is a normalized enhanced genus g hyperelliptic curve y? =
f(x) over K, then there is precisely one pair (v, 1), where v is an admissible
function on M (2{+ 1) and p € K* such that f(z) = f, .(z) and

241y 1) — 2y
0 P (Ojumow :n(o>>7 o0 (LMTU( 1) - 2 1))_

2 - 2
(iv) Let v be an admissible function on M (2{+1) and p € K* such that f, ,(z)
has no multiple roots. Then Cy, , : 4*> = f, ,(2) is an odd degree genus g

hyperelliptic curve over K, and (22) defines torsion points P,Q € Cy, , (K)
of order 2g + 1.

Proof. (i) follows from Lemma 3 and (16).
(ii) follows from (i) combined with Remark 11(iii).
(iii) follows from (i) combined with Theorem 17.
(iv) follows from (i) combined with Theorem 17. O

7. Computations of Weil pairings

We will use the notation of Subsection 6.1. In this section we assume that
char(K) does not divide 2g+ 1; our goal is to compute the value of the Weil pairing
between torsion points P and @ in C(K) of order 2g + 1, where alb(P) # +alb(Q).
We may assume that the curve is defined by the equation y? = z29+! + v (z)2,
where

(@) = 5o + 200, o),
while
229t o = (2 4+ 1) 4 uy(2)?,
where —
va(w) = G (x) — S50y (@)
In this case one may take as points of order 2g + 1 the points P = (0,v1(0)) and
Q= (—1,v2(-1)).

Let us consider the degree zero divisors Dp = (P) — (c0) and Dg = (Q) — (c0)
on C. We know that their classes of linear equivalence have order 2g + 1. Let
us consider a Weierstrass point 20 = («,0) on our curve, where « is a root of
229%1 + vy (x)2. The linear equivalence class of the divisor Dy := (20) — (c0) has
order 2. Therefore, the linear equivalence class of the divisor

D = Dp — Day = (P) — (20)
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has order 2(2g + 1). Since div(z — a) = 2(20) — (c0)), the divisor 2D is linearly
equivalent to 2Dp.

We have
ea(2g+1) (P, Q) = e202911)(D, Dq) = €2411(2D, Dq)
= e2g11(2Dp, Dg) = (e2411(Dp, Dq))?
Let us put
9q = (y — v2(x))*.
Then
div(gg) = 2div(y — v2(z)) = 2(29 + 1)(Q) — 2(29 + 1)(c0).
Let us put
_ (y—u@)?
gp = (z — a)29t1 :
Since
div(y — vi(2)) = (29 + 1)(P) — (29 + 1)(c0)
and
div(z — o) = 2(20) — 2(0),
we have

div(gp) = 2(2g + 1)(P) — 2(2¢ + 1)(20).
Evaluating gp(Dg), we get

op(Dg) = Q) __ (v2(-1) — i (1))

gp(o0) (14 a)2tt

(2941 2 9% (-1)
- n ) T+t

since gp(oo) = 1. Now let us evaluate go(D). We have

(m_gdm:«m@—w@V:(%+w2ﬁﬂu
go(W) va ()2 L va(ar)?
Notice that since « is a root of (z + 1)29*! + v3(x), then

va(@)? = —(1 + @),

which gives us

2 2
29+ 1 @z, (0)
gQ(D):_ b 29+1"
I (14 )2
Therefore,
[T (1 +n(e))? 2
(2 +1 (P Q) gP(DQ) éél(_l) _ ielrI _ H e
g = 52 = 2 J
s0D) ~ 0,0~ T[40 s
since 1+(’7()5 ) — . This implies that
€2q+1 P Q + H E.
eeCr
Since ezg41(P, Q) and all € are (2g + 1)th roots of unity, and 2¢ + 1 is odd, we get
at last
eag41(P, Q) = H €.

eelr
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