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0.Introduction

Let G be the group of real points of a reductive algebraic
group which is defined over Q and satisfies the same assumptions -
as in [H,I]. Let ' be an arithmetic subgroup of G and denote by
Rp the right regular representation of G in LZ(P\G). The
theory of Eisenstein series [L1] implies that L%(T\G) admits

an orthogonal decomposition
2 _ 12 2
LE(M\G) = L3(I\G) & L_(I\G)

where Lﬁ(P\G) is the direct sum of all subspaces of LZ(T\G)
that correspond to irreducible subrepresentations of Rp and
Lg(P\G) is the subspace of LZ(T\G) where RP
% the restriction of RF to :Fé(F\G).
Let K be a maximal compact subgroup of G. Suggested by Sel-

decomposes con-

" tinuously. Denote by R

berg's work on the trace formula [S] it is natural to conjec-

ture that for each K-finite fGCS(G), the operator
RA(E) = [ £(g)R%(g)ag
G

is of the trace class. This is the so-called trace class conjec-
ture. To establish the trace class property for the operators
R%(f) is, of course, the first step toward a trace formula in
the spirit of Selberg. The case G=SL(2,R) was treated by Sel-
berg and the trace class property in this case was first estab-
lished by him (c.f. [S]). The proof is essentially the same for
all real rank one groups. For groups G of Q-rank one the trace
class conjecture has been proved by Donnelly [D2] and Langlands.
The purpose of this paper is to prove the trace class conjec-

ture in general. In our approach, the trace class conjecture is

i
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a consequence of an estimate of the number of eigenvalues of
the Casimir operator acting on a'fixed K-type.

Before we can state the precise result we have to introduce
some notation. First observe that, by passing to a subgroup of
finite index, we may assume that T acts without fixed points
on the symmetric space X = G/K. Let o: K—GL(V) be an irre-
ducible unitary representation of K and let E Be the asso-
ciated locally homogeneous vector bundle over TI'\X. The Casimir
element of G induces an elliptic second order differential
operator A acting in C?(T\X,B). 4 1is essentially selfadjoint
in LZ(F\X,E) and therefore, has a unique selfadjoint extension

A to an unbounded operator in LZ(T\X,E). Our main result is

the following:

Theorem 0.1 Let N(X) be the number of linearly independent
eigenfunctions of A with eigenvalue less than A . There exists

a constant C>0 such that
2n
N(A) £ C(1 + a%H)

for » 20 and n=dimX .

The Paley-Wiener theorem of Clozel and Delorme [C-D] implies

then:

Corollary 0.2 For each K-finite fGCS(G), the operator R%(f)

is of the trace class.

Even more is true. It follows from Theorem 0.1 that R%(f) is
of the trace cléss for each K-finite f€S1(G) where 31(6) is

Harish-Chandra's Schwartz space of integrable rapidly decreasing
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functions on G. It is also very conceivable that the K-finite-
ness assumption can be removed by making use of an improved ver-

sion of Theorem 0.1 which includes the dependence on oeK. We

think that the following estimation holds
N(A) € C(1 + (dim o)X + A2M)

with C>0 and keN independent of ceK. One only has to im-
prove Proposition 3.17. We shall discuss this point elsewhere.
Another observation is that Corollary 0.2 implies the corres-

ponding result for the adélic case (c.f.§8).

We shall now describe the content of this paper and
the main steps of the proof of Theorem 0.1. First we observe

that the discrete spectrum has a further decomposition

2 2 2
Ld(I‘\G) = LcuS(I‘\G) ® Lres

(T\G)

into the direct sum of the space of cusp forms Lgus(l‘\G) and
the residual spectrum Lies(r‘\G). For éﬁspidal eigenfunctions
the estimation claimed in Theorem 0.1 is true by Donnelly's re-
sults [D1] Therefore, it remains to investigate the Tesidual
spectrum. It follows from Langlands' theory of Eisenstein sys-
tems that LieS(T\G) is spanned by "iterated residues" of cus-
pidal Eisenstein series (c.f.[L1,§7]). This statement will be
made more precise in §8. Using this description of the residual
spectrum, the proof of Theorem 0.1 can be reduced to the fol-
lowing problem: For a given cuspidal Eisenstein series, we have
to estimate the number of its singular hyperplanes which are

treal and intersect a fixed compact set containing the origin.

But the singularities of a cuspidal Eisenstein series are essen-
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tially the same as the singularities of the corresponding inter-
twining operator. Using the factorization property of the inter-
twining operators, one can reduce everything to cuspidal Eisen-
stein series .associated to Tank one Q-parabolic subgroups of the
Levi components of Q-parabolic subgroups of G. Thus, we only
have to consider rank one cuspidal Eisenstein series. This
is the first step.

Let . P be a class of associate rank one parabolic subgroups
of G which are defined over @. The theory of Eisenstein se-

Ties associates to P a sequence of intertwining operators
C(s) : Ecus(c,O)—-—*Ecus(c,0)

where Ecus(o,O) is a finite-dimensional space of automorphic
forms and C(s) is a linear operator which is a meromorphic
function of sef (c.f. §3). The problem is now to estimate the
number of poles, counted to multiplicity, of detC(s) in a fi-
nite interval of the real line. In §3 we consider those poles of
det C(s) which are contained in the half-plane Re(s)>0. Let
te€eR. Using the analytic properties of C(s), it follows that the
number of poles of detC(s) in Re(s)>0 is bounded by the di-
mension of Ecus(o,OJ times the number of points soemf such

that

(0.3) Cls,) e = ~e2Soty,

for some non-zero ¢£Ecus(o,0). Since Ecus(c,o)' consists of
cusp forms on the Levi components of a finite number of para-
bolic subgroups in P , we can use Donnelly's results [D1] to

estimate the dimension .of Ecus(o,O). On the other ‘hand, each
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¢€Ecus(o,0) gives rise to a rank one cuspidal Eisenstein series
E(¢,s), seC. It is known that the constant term of E(¢,s) along
any rational parabolic subgroup of G, which is not in P , van-
ishes. Furthermore, the constant term of E(¢,s} along any
PeP is described by C(s). Let ATE(¢,50) be the Eisenstein se~-
Ties E(¢,so) truncated at level t (c.f. §3). If (0.3) is satis-
fied then ATE(¢,50) belongs to the Sobolev space H1(T\X,E)
and all its constant terms vanish in a neighborhood of infinity.
On the space of all these sections of E we introduce an auxi-
liary selfadjoint operator AT which has pure point spectrum.
In the two-dimensional case this operator was first introduced
by Lax and Phillips [L-P ] and has been employed by Colin de Ver-
diere in {[Co]. Under the assumption that (0.3) is satisfied, the
truncated Eisenstein series ATE(¢,50) is an eigenfunction of
AT. Then we géneralize the method of Donnelly ([D1] to get an
estimate on the growth of the number of eigenvalues of A Com-
bining these results gives the desired estimation for the number
of poles of detC(s) in Re(s)>0.

The next step is to show that det C(s) can be written as
F,(s)
F,(s)

(0.4) det C(s) =

where F1(s) and F,(s) are entire functions of finite order.
In the case of SL(Z;HU this result is due to Selberg (c.f.[He,Ch.VI,
§11 ] for a complete proof). Our proof of this result is based
on §4 where we develop a new method of analytic continuation of
rank one cuspidal Eisenstein series. This method is essentially
an -extension of the method employed by Colin de Verdiere [Co]

in the case of SL(2,R). In the higher rank case, the geometry
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of TI'\X 1is much more complicated so that several technical dif-
ficulties arise. In §5 we employ the results of §4 to establish
(0.4).

Using (0.4) together with Hadamard's factorization theorem,

we obtain in §6 the following product formula

s 1l s+0. S+T
(0.5) det C(s) = detC(0)q° T —=L p 220
j=15795 5 s°M

Here 01,...,01€IR+ are the poles of det C(s) in the half-plane
Re(s) 20 and n Tuns over all poles of detC(s) in Re(s) < 0.
q 1is a certain constant which satisfies 1log(q)s Cdime_ . (0,0)
and C is a constant which depends only on P . For SL(2,R)
this product formula is also due to Selberg (c.f.[He,Ch.VI,§121).

In §7 we first estimate the integral

A
(0.6) [ 12 10g det C(in)dn
=A

in terms.of A and the orbit type 0 . Let PeP with Langlands
decomposition P = NAM. M is the group of real points of a re-
ductive algebraic group defined over Q and Iy = NTA M is an
arithmetic subgroup of M. The orbit type 0 determines an eigen-
value p of the Casimir operator QM acting on sections of the
locally homogeneous vector bundle EM over 'FM\M/Kﬂ M associa-
ted to oK N M. Using facts established in §3, we show that the
integral (0.6) is bounded from above by the number of eigenva-
lues less than Az + +|pP|2 of the operator AT times the
dimension of Ecus(o,O). This enables us to estimate (0.6) by
")

C(1 + A" + ™), n = dimX. Now we can use (0.5) to compute the

logarithmic derivative of det C(s). The formula we obtain shows
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that d/ds logdet C(iX) is essentially of the form L, + I,

where I, is the sum over all poles in Re{s) < 0 and I, the
sum over all poles in Re(s) > 0. The point is that each term in
z, (resp. 22) is negative (resp. positive). By §3 we can esti-
mate the integral of L, over [-1,1] and therefore, we can
also estimate the integral of £, over [-1,1]. But this inte-
gral is bounded from below by a fixed constant times the number
of real poles of det C(s) in a finite interval [-¢,0], c>0.
This completes the estimation of the number of real poles of
det C{s) in a finite interval.

Finally, in §8 we prove Theorem 0.1. We also indicate briefly

how the adélic version of Corollary 0.2 can be deduced from

Corollary 0.2.

Our method to prove the trace class conjecture has also other
applications. It yields, for example, estimates for . the number
of zeros of principal L-functions for GL(n). This will be dis-
cussed elsewhere. It islalso an interesting question to under-
stand to what extent in the case of the Laplace operator the
locally symmetric structure of T\X 1is relevant for Theorem 0.1

to hold.

The author is very grateful to A.Borel, W.Casselman, R.Lang-
lands and P.Ringseth for helpful conversations. Most of this
wotk has been done during a visit of the author at "The Insti-
tute for Advance Study" in Princeton. He wants to thank the
Institute for its hospitality and the very stimulating atmo-

sphere.



1.Preliminaries

1.1 Let G be the group of real points of a reductive algebraic
group G defined over Q@ which satisfies the same assumptions as
in [H,I,§1]. T will denote an arithmetic subgroup of G. We fix a

maximal compact subgroup K of G and set X = G/K. Throughout
this paper we shall assume that T acts without fixed points on X.

By © we shall denote the Cartan involution of G with respect to K.

1.2 The Lie algebra of a Lie group G,H,... is denoted by the
corresponding l.c. German letter g,h,... By U(g) we shall
denote the universal envelopind algebra of the complexified Lie
algebra g®C and by Z(g) the center of U(g). Z{g) contains
the Casimir element &, (or simply @ ) of G with respect to an

admissible real valued bilinear form F on g (c.f. [B-G)).

1.3. Let P be a parabolic subgroup of G defined over Q. The
group P of real points of P- is called a Q-parabolic subgroup

of G. We may decompose P as

(1.1) P = NPAPMp

(or just NAM , if there is no danger of confusion) where NP is
the unipotent radical of P, APMP is the unique Levi subgroup of
P stable under © and Ap is the identity component of the
group of real points of the maximal ©-stable torus of the Q-

split radical of P. The decomposition (1.1) is called Langlands
decomposition of P. Ap is called special split component of P.
The rank of P 1is defined to be the dimension of Ap. The Weyl
group of Ap is W(AP) = NG(AP)/ZG(AP)“ Furthermore, we set
M = M/KM. Observe that XNM = KNP,

We have G = PK. Therefore, any element x€G has a decompo-

TMz NFnM,KM= KnM and X



sition
X = namk

with k€K, meM, a€A, neN. The factor a 1is uniquely determined

by x. Set
HP(x) = loga .

The roots of (P,A) will be denoted by %p and Yp will denote

the set of simple roots of (P,A). For B€¢P, let
ng = {yeg [[H,Y] = B(H)Y, Hea} .

Then
ne @n,.
B B

As usually, let

Pp =% [ din(ng)s .

BG‘IJP

For a given subset Fc ¥p we denote by PF the Q-parabolic sub-
group of G associated to F. Note that Pc PF. and the Lie
algebra ap of the split component of Pr  consists of all
Hea such that a(H) = 0 for all «eF,

Let P = NAM be a rank one Q-parabolic subgroup of G. Choose
Hea such that |H|| = 1 and «a(H) > 0, ae¥

p There exists a

unique selfadjoint element RMEZ(m) such that

(1.2) Q. = H® - 20(H)H + @, (mod nZ(g))

(c.f. [H,1,§6]). If 9, 1is defined by the admissible bilinear

form F on g , then QM is defined by the restriction of F
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to mxm.

1.4 Let P be a Q-parabolic subgroup of G with unipotent rad-
ical NP. Let f be a complex valued locally bounded measurable
function on I'\G. The constant term fp of f along P is

defined as

£P(x) = [ f(nx)dn
T N Np\Np

where the measure dn is normalized by the condition that the
volume of FI]Nﬁ\NP equals 1. The subspace of LZ(F\G) con-
sisting of all f satisfying fp = 0 for all Q-parabolic sub-
groups P ¢ G 1is denoted by Lgus( I'\NG). This is the space of

cusp forms in LZ(P\G). Given a finite-dimensional unitary re-

presentation o: K— GL{(V) of K, put
L2(1\6,0) = LA2(n\e)evn)® .

Let £ ©be the homogeneous vector bundle over X associated to
o and put E = I'\E. Then LZ(P\G,O) can be identified with the

space LZ(T\X,E) of square integrable sections of E. Set

VA y K
L2 (T\G,0) = (LZ _(M\G)@V)

This is the space of cusp forms in LZ(T\G,O). We may identify
Lius(T\G,c) with a subspace of LZ(F\X,E) which we denote by

Lgus(F\X,E). Similarly we define

C®(r\G,0) = (c=(re) ek .

This space can be identified with C®(TI'\X,E) - the space of C%-

sections of E.
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2.Eisenstein series and wave packets

For the convenience of the reader we shall recall in this
section some basic facts concerning Eisenstein series and wave
packets. For all details we refer to [H], [L1]. Since we are
working with TI'\G in place of G/T , we have to change some
signs and inequalities in the statements we are using from [H].
It will be clear from the context what has to be changed.

Let P Dbe a Q-parabolic subgroup of G with special split
component A and Langlands decomposition P = NAM. Let (o,V)
be a unitary representation of K. in a finite dimensional Hil-
bert space V. Let ¥x: Z(m)——=C be a character of Z(m) and
let oyt Ky— GL(V) be the restriction of ¢ to Ky = KN M.

Set

cus(rM\M 0,%) = {@eL < (T WM, 0p) | Do = x(D)o for all D€Z(m)}.

It is known that cus(r \M,0,x) is a finite dimensional Hil-

bert space of automorphic forms with inner product induced from
. . 2

the inner product in L (TM\M,GM). Let &€ Lcus(rM\M,c x). We ex-

tend ¢ to a function ¢:(TN P)NP\G-——*V by

(2.1) o(namk) = o(k)™' o(m)

Let a* be the dual Lie algebra of a and let
(a*)* = {dea* | <, >0 for all ae\yp} )

Let Aea& be such that Re(A) € pP+(a*)+. Then the Eisenstein

series attached to ¢ is defined as
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EIA, 0 A,x) = ] e hrep)EHplI)

InP\T
The Eisenstein series is absolutely and uniformly convergent on
compact subsets of (pp+(a*)+¥¢:T a*) xG. Let P, ,i=1,2, be two
Q-parabolic subgroups of G with special split componenfs Ai

and Langlands decomposition Py = N,AM,

AM, , i=1,2. (P,,A) and

(Pz,Az) are said to .be associate if there exists: xEGGI such
that Ad(x)a1 = a,. The set of all such isomorphisms is denoted
5 2
by W(a1,a2). Set W(a) = W(a,a). Let er(m1), ¢€Lcus(rM;\M1’°’X)
* s P RN )
and Ikea1’m with Re(A)ep1+(a1) . If (P1,A1) and (PZ’AZ) are

not associate and ransz 2 rankPT, then
Py
E (P1!A1,¢,A) = 0.

If (P1,A1) and (PZ,AZJ are associate, then the constant term

of E(P1|A1,¢,A) along P, is given by

EPZ(P1|A1,¢,A,X) -

(2.2)

<1 Gl e ()
P, IP,

weW(a1,a2)

where py = DPZ R H2 = HP2 and

p {(w:h) : L2

2 w
“p, IP, cus (T MM1205X) == Leyg (T Wg,0, 70

cus

is a linear operator which is holomorphic for Re(A)ep1+(a;)+.

This operator is .called intertwining operator.
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Lemma 2.3 There exist C > 0 and H,€a, such that

(Re(A)+p, ) (H,)

HCP lP (W:A)H s C e
2'"1 I <Re(A)+p1,u>
aeTP

for Aep1+(a;)*+v-1a; , wew(ax,az).

For the proof see Lemma 38 in [H,II].

The Eisenstein series E{P|A,®,A) and the intertwining ope-
rators cp | p (w:A) have analytic continuations to meromorphic
2171
&

functions of !\eqm whose singularities 1lie along hyperplanes

and they satisfy a system of functional equations.
For a given Q-parapolic subgroup P = NAM of G we set
CErAPINNG, o) = (c2((rnPIMG) @ V)¥ .

Given xei(m), denote by chs(P,o,x) the subspace of

C®((rnP)N\G,0) spanned by all functions of the form o¢(x) =

2

= f(exp(HP(x))¢(x) where fecg(A) and  deL_ o

(FM\M,o,x). For

¢5chS(P,0,x) set

E(9|P)(x) = I olyx)
InP\T

The proofs of the following Lemmas can be found in [H,II].

Lemma 2.4 The series E(¢|P) converges absolutely and uniformly
on compact subsets of I'\G. Moreover, for any @GHCUS(P,o,x),

one has E(¢|P)€L2(T\G,c).
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Lemma 2.5 Let wechs(P,O,x) and assume that eC®(TI\G,o) is
slowly increasing. Then

F{G(Ewlm(x),w(;x.-ndx - {\ e2P(l082) 1 (4ran), yP(an))dmda

M

Lemma 2.6 Let P1 and P2 be two Q-parabolic subgroups of G,
xiGZ(mpi) and ¢, eH  (P,,0,x;), i=1,2. If P, and P, are

not associate then

(ECoy IP{),E(9, |P,)) = 0.

For each ¢echs(P,o,x), define its Fourier transform by

§(A:x) = [ ¢(ax)e-(A+pP){Hp(aX)) a .
A
Then one has
(2.7) E(olP) = [ E(PIA,8(A),A) dAg
Re(A)=A0
where AoEp+(a*)+ and AI = Im(A).

Lemma 2.8 Let P1 and P2 be two associate Q-parabolic sub-

groups of G, xiez(mpi) and P; € chs(Pi’o’xi)’ i=1,2. Then

(E(9,[P,),E(9,[P})) =

weW(ay ,apz) ap 2

1 1

- 3 +
where A = Ap+ iA; and ARGOP +(a§ )

1 1
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3.The rank one spectrum

The main purpose of this section is to estimate the number of
poles of rank one cuspidal Eisenstein series in the half-plane
Re(s) >-0 . Residues of rank one cuspidal Eisenstein series at
poles in Re(s) > 0 form one part of the residual spectrum. We
call the subspace of Lies(r\G) spanned by all these residues
the rank one spectrum.

To begin with we rtecall some facts from [H,IV]. Let (o,V)
be an irreducible unitary representation of K. Fix a class P
of associate rank one Q-parabolic subgroups of G. Let Pe€P with
Langlands decomposition P = NAM. The Weyl group W(A) of A
acts on the characters Z(m). For a given orbit 0e€Z(m)/W(A), put

2 . o2
Lys (Ty\M,0,0) -;20LCUS(TM\M,0,X)

Let P PZE P with Langlands decomposition Pi = N.A.M., i=1,2.

1°? i7iie

Then the orbit spaces 2(m1)/W(Ai) and E(mz)/W(Az) are in ca-
nonical one-to-one correspondence. Corresponding orbits are said
to be associate.

Let PeP , P = NAM. Since rank(P) = 1, any element of P

is conjugate either to P or to the opposite group P~ = N AM.
Moreover, P and P  are conjugate if and only if -1eW(A).
Let P,,...,P_ be a set of representatives for P/GQ. Thus r=1
T
= -1 1= = .
or 2. Let P, = {gPig lgeGQ} i=1,2 . Then P ig1pi' Let
P.11 , 1=1, »Tss be a set of representatives for Pi/r . Then

{Pi1|1$iSr, Tsls7y}

is a set of representatives for P/T. Let inEK be such that
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1

Ps1 = ¥Y11Pivir

If special split components are taken, then

_ -1
Aip = YRV
Let Pi = NiAiMi and Pil = NilAilMil the corresponding

Langlands decompositions. Let

0i = {0il 1151 STy )

be a set of associate orbits with OiIEZ(mil)/W(Ail)- Set

2

Eeus(9:05) = ‘f Leus (M, \M;150,05)

cus i1

Let 0i and Qj be sets of associate orbits, 1 si,jsr. Let

weW(aj,ai) and Aieai,E' Define

Cji(W:Ai)

to be the matrix
-1 Yi1
c (Y Wy:q: A.))
( ijlpil jk"7il i
181 Sri, 15k Srj. Cji(w:Ai) maps Ecus(o’oil to Ecus(o,OjJ.
Now let O= {0il ltsisr, 151 STy } be a set of associate or-
bits. Set |

T
ECUS(G’ 0) =.® E

(G,Oi)
i=1

cus

Let oy be the unique simple root of (Pi,Ai) , i=1,...,T, and

put A; = ai/lai[. Then o, =]p|Ai (note that |o1]=|p2[ and this
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is denoted by |pl).
If r=1, then W(A,) = {z1}. Define

C(s) = C11(-1:5A1) , sS€eC .
If r=2, then W(A;) = {1} (i=1,2). Define

0 C12(w'1:sxz)
C(s) =

C21(w:sk1) 0

where sel and w is the unique element of W(a1,az).

In either case

C(s) : Ecus(o,O)-———+Ecu5(c,0]

is a linear transformation that is a meromorphic function of seC.

C(s) satisfies the following properties
(3.1) C(s)C(-s) = Id, C(s)"= C(3), sel .

The poles of C(s) in the half-plane Re(s) 20 are all simple and
contained in the interval (0, |p]].
Let ¢€E_ (0,0), ¢ = {¢il |1 sisr, 1 Slsr;}. Define

T.

I | 7i1,
E(Pil Ail,¢il,s( i)), sel.

by
E(¢,s) =
=1 1=1

i
The functional equation satisfied by Eisenstein ‘series is in
this case
E(C(s)®,-s) = E(®,s).

The poles of E(¢,s) coincide with the poles of C(s) (c.f.[H,IV,

Theorem 7 J).
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Set

Vi

1
til(x) = )\ll(HPil(x)) ’ XeG,

1sisr, 151 Sy It follows from (2.2) that the constant term

of E(¢,s) along P;1 1is given by

Epil(é,s,x) =
(3.2)

. e(s+|o|)til(x) (‘5+|°|)t11(XJ(c(s)¢)

¢il(x) + e il(x)

Here (C(s)¢)il denotes the component -of C(s)¢ with respect to
2

cus Tu, MMi1090 0510

Let QiIEZ(mil) be the Casimir element. Choose xileoil. Then

the orthogonal projection Ecus(o,O)-——»L

—xil(ﬂil) is independent of i,1 and the representative of Oil'

Call the common value B . It follows from formula (1.2) that
2 2
(3.3) - QE(o,s) = (-s“+|p|“+1w)E(0,s)

Our purpose is to estimate the number of poles of C(s) in the

half-plane Re(s) > 0. Given te€R, set
(3.4) C.(s) = e_ZSt]°|C(s), sel .

The poles of C(s) and Ct(s) coincide. To begin with we shall in-
-vestigate the spectral decomposition of Ct(s) in a neighborhood
of R*. By (3.1) we have Ct(uf = Ct(u) for uveR,i.e., Ct(uJ is
selfadjoint. Therefore, we can apply Rellich's theorem (c.f.[Ba,
p.1421, [K,II,§6]). Let soeIR'P and assume that s_ is not a pole

of C(s). Let the spectral representation of Ct(so) be given by
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q

Cilsg) = 1 2Py
i=1

where Pi are the eigenprojections of Ct(so). There exists a

punctured disc 0 < Is-so| < § which consists only of simple

points of Ct(s) and the spectral representation of Ct(s) takes

the form

q

i
C,(s) = 121 j£1 Aij(s)Pij(s), 0<-s |<s.

The eigenvalues lij(s) and the eigenprojections Pij(s) are ho-

lomorphic in Is-so|< ¢ . In particular, each eigenvalue Aij(s)

has an expansion of the form

i} T oK) kg
Aij(s) A+ k£1 Aij (s-s )", |s so|< S .

Now assume that 505(0,|D|] is a pole of Ct(s]. Then s_ is a

simple pole of Ct(s)' let

B = Res C,(s).

t
S$=§
o

Lemma 3.5 B is positive semidefinite i.e., (B%,$) 20 for all

¢EEcus(c,0).

Proof. We have B = e"25°t|p|Ress=s C(s). It is well-known that
0

in the Q-rank one case Ress_S C(s) is positive semidefinite (c.f.
=So

fA1], [wW,§2] ). The proof extends without difficulties to our

case. Q.E.D.
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Put
B(s) = (s-so)Ct(s).

Then B(s) is holomorphic at s=s  and B(so)=B. For ueR, B(u) is
again selfadjoint and we can apply Rellich's theorem to B(s) in
the same manner as above. It follows that there is a punctured
disc 0 <|s—sol<6 such that each eigenvalue A(s) of Ct(s) has

an expansion of the form

A(s) = —H— 4+ a-(s-so)j- , 0<|s=s <8,

5°So  j=o )

with p an eigenvalue of B. In view of Lemma 3.5, the eigenvalues

of B are non-negative. Summarizing we have proved

Proposition 3.6 Let u1,...,ﬁme(0,|pi] be the poles of C(s) in

the half-plane Re(s) 2 0 and let d = dimfcus(o, 0). There exist

Teal valued real analytic functions X1(u),...,ld(u) on R -

- {u1,...,um} with the following properties

1) For each ueR’ - {u1,...,um}, r(u), ..., x4q(u) are the eigen-
values of C, (u).

2) There exists &8 > 0 such that, in the punctured neighborhood

0 <fu-u,| <3, Aj(u) has an expansion of the form

[=+}

uvv
S B . (u-u)K
(3.7) Aj(u) T + kEO ajk(u u;)o,

with ”ji 0, j=1,...,d, i=1,...,m.

Assume that u, <up <ctrc<u o are the poles of C(s) in the half-

plane Re{(s) >0 and set
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Bi = Res Ct(s) , i=1,...,m.
s=u,

Consider the coefficients “ji’ i=1,...,m, j=1,...,d, in the ex-

pansion (3.7) and set

nj = #{ujil uji # 0, i=1,...,m} "

j=1,...,d. Now observe that for each i (1 sis m), I T

are the eigenvalues of B.. Since by Lemma 3.5, each B, is posi-

tive semidefinite, it follows that

rank(Bi) =_#{“ji| “ji 20, j=1,...,d}

m $ i£1 rank(B,;) = #{“jiluji# 0, i=1,...,m, j=1,...,d} =

(3.8) d
= ] n. Sdma}xnj

1 ) j

Assume that n, = maer for some k (1s ks d). If nk$1 then

J
msd = dim Ecus(o,O) which can be estimated using [D1]. Now sup-

pose that nk>1 and { uki' uki;eo, i=1,...,m} = {uki1""’ukip}
with i1 < i2 <t < ip’ p >1. By Proposition 3.6, Xk(u) is real

analytic in each interval (ui yUs ), 151 sp, and
1 1+1

lim A (u) = 2o,
k
u—u. 0

|

Let weéR be given. Using the observations above it follows that

each interval (ui Uy ), 151 <p, contains at least one point
1 1+1
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t; such that Ak(tl) =w . Let N(t) be the number of points
ve(0, [p|] where C,.(v) has at least one eigenvalue equal to -1.

Then it follows from (3.8) that

(3.9) m S dN(t)

Thus our problem is reduced to the estimation of N(t).

At this stage we need.the truncation operator (c.f.[AZ],[0-W]).
We recall its definition. Let P = NAM be a Q-parabolic subgroup
of G. Let @P denote the dual basis of the simple roots ¥, of
(P,A). Thus

(ma, B> = (SGB . a,BE‘i’P , wae\PP .

Set

*a = {Hea| wy(H) >0, aEYP}

Denote by Xp the characteristic function of *ac a . Let V be a
finite dimensional Hilbert space and ¢ : I'\G——V a-locally

bounded measurable function. Given He*a, set

Motx) = T xpHp(w) - H) o (w).
T nP\r

Let P,,...,P be a set of representatives for the T-conjugacy

1
classes of rank one Q-parabolic subgroups of G. Assume that the

L

P i=1,...,r, 1=1,...,T.

;» @are among the P1,...,PL. Let Aj be

i1’

the special split component of Pj' Put

a =@ a.
o) 3 j
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For each Q-parabolic subgroup P of G with special split compo-

nent AP there is a linear map

which is defined as follows: Let P ae¥ be the standard rank

P’
one Q-parabolic subgroup of G associated to F = WP-{a}. If A, is

(s} b4

the special split component of P, then

a, = N ker(B).
B#a
For each ae¥, , there exists Yo€ and j(a) (15j(a) s) such

that

-1 _
aa 'a Pj(u)

Denote by H €a , ae¥p, the element defined by <Ha’H> = a(H),
Hea . Then, for Teao,

-1
Ip(T) = azwpwa(Ad(ya )T5 () * Hp (Yo )y -

Given Teao, set

Let Q1,...,Q1 be a set of representatives for the T-conjugacy

classes of Q-parabolic subgroups of G. Set

(3.10) Ao = ® .
1 Q3

i

—
e~

To explain some of the properties of the truncation operator AT,
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we have to introduce a partial ordering on a,-let Q1,...,Qq be a
set of Tepresentatives for the T-conjugacy classes of minimal
Q-parabolic subgroups of G. For each i (1 $is gq) there exists

-1 . .
giEGQ such that Qi = giQTgi . Given T1,Tzeao, write

T1 «‘Tz

if there exists Hoeaa such that
1

Ad(gi)-1(IQ.(T2) - 1q (1)) = Hy
1 1

Now we can state the basic properties of the truncation operator,.

1) There exists Toea0 such that, for T » To’ AToAT = AT.

2) For T » T and any Q-parabolic subgroup P = NAM of G

T P _ o ) .
(M) =0, if HP(xJ IP(T)e ay

and ¢ is as above.

T

3) A transforms sufficiently smooth slowly increasing functions

into rapidly decreasing functions.

4) If T ».T0 then AT extends to an orthogonal projection on
L2(r\c)@ V.

(see [A2), [0-W] for the proof’of these facts).
Let T » T,. If ¢5L2(P\G,c) then AT¢6L2(T\G,0) and A induces

an orthogonal projection on LZ(P\G,U).

Next we introduce certain auxiliary operators b s Teao,
acting in a Hilbert space HT. Let E be the homogeneous vector
bundle over X associated to o: K —GL(V) and let E = T'\E. Denote

by ¥ the connection on E which is obtained by pushing down the
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canonical invariant connection on E. Given Teao, introduce the

following subspace of the Sobolev space H1(F\X,E):

1
Hp(I\X,E) =

= { meH1(T\X,E)i ¢Pi(aimi) = 0 for log(a;) >Ty, i=1,...,}

Let f% be the closure of H}(F\X,E) in LZ(T\X,E). Consider

the quadratic form

a(e) =lvell® , oeHp(I\X,E).

Since H%(T\X,E) is a closed subspace of H1(T\X,E), q has an

~

associated selfadjoint operator AT acting in HT. Let

A : C®(T\X,E)—— C”(T\X,E)

be the differential operator which is induced by e where
;€Z(g) is the Casimir element. Since (0,V) is irreducible,

there exists Aoem. such that
(3.11) A= -9V + Ald
(c.f. Proposition 1.1 in [M]). Set

(3.12) Ap = '&r + A ld .

Now we can continue with the estimation of N(t). Let Tpea0

be the element whose i-th component equals Hp - the image of
: i

p;  under the canonical identification of a} and a;. Let T ea

be as in 2). Then there exists t, such that
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tTp > To, if tat,.

Given PeP , P = NAM, set \p = IaP|-1aP where ap is~the simple
root of (P,A). Observe that IpP| is independent of PeP (c.f. [H,
Lemma 81]). Call its common value |p|. Choose t2 t . Let

¢eféus(o,0) and ser such that
C(so)¢ = -eZsolplt $ .

Then it follows from (3.2) that
Pij tHj 5 : -
(3.13) E (¢,so,e Im) = 0 , i=1,...,T, Fel, oo,y

where Hij = Hpij and meMij.
Lemma 3.14 Let T = tT . Put o= ATB(¢,50). Then ¢#0. Moreover

¢ belongs to the domain of A, and satisfies
2 2
bro = (-ss +[p|“+W)e

where u is defined by (3.3).

Poof. Let Q be a Q-parabolic subgroup of G. Then EQ(Q,SO) =0
unless Q€P (c.f. §2). Hence

T T.

1
ATECo,s ) = E(e,s)) - I 1 Ay E(85s0).
i=1 j=1 Tij

Furthermore, it follows from (3.13) that

Pi'
Xxn, (log(a..) - tH..)E *I(¢,s ,a..m;.)
Pij i] i] S0 %1571
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. tH, |
is smooth on (A.. - {e 1I}) xPM.f\Mij and continuous on

ij i
J
Hence AL E(9,s_ ) belongs to H] (I'\X,E) and
Pij (¢ loc ,
therefore, ATE(¢,SO) is in H

A.. xT M...
ij Mi;\ ij

1

1OC(I‘\K,E) too. But property 3)

of the truncation operator implies that ATE(¢,50) is square inte-
grable. Hence ATE(¢,SO)EH1(F\X,E). Furthermore, by property 2)

satisfied by AT,

(ATE(¢ ; )in(x) =0, if H, (x) - tT_e€a;
>0 y 1 Pl X pi i’
i=1,...,v . This shows that ATE(¢,SO)GH}(T‘\X,E). Next we have

to show that ATE(¢,50) is in the domain of A... The domain of A

T
can be characterized as follows: Let H™| (I'\X,E) denote the space
of all distributions in ©D'(I'\X,E) that extend to a continuous
linear functionﬁl on Hl(T\X,E). The domain of A consists of all
weH}(T\X,E) such there exists a distribution DEH'1(P\X,E) which
is orthogonal to H}(T\X,E} and satisfies Ay - Deh.. D isuniquely
determined and Apb = AV - D . Choose Hea, such that |[H]l = 1

and A (H)> 0. Set a = exp(uH), ueR. Given veC®(T\ X,E), put
wpi(u,m) = wpi(aum).
uelR, meMi . Then

dZ

? - 2pm) v itagm) = Sy - oy v itu,m).

(H

Let ¢eC§(T\X,E). Employing (1.2), we obtain
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(Ap E(®,s_),80) =
1

P.
J 1 xp(Hp (yx) - tH, )(E *(8,s ,vx),-0p(x))dx =
ING TNPAT i 7 i

P. -
= J  xp (Hp (x) - tH_)(E *(o,s_,x),-0¢(x)) dx =
TNPAG P, Py Ps o
= - i J (Epi(¢ s _,(u,m)) (—-‘ii - o] d | g )¢Pi(u m)) -
tfrp| Ty \ M; 7Tor T du’ du My ’
i 1
-e-(|p| -1)ududm
= (AL AE(0,s ),9) +
Pi ) o ’
p.
-tlp}? I de 4 P; ‘
+ e (=E “(¢,s_,(u,m)),q *(a m)) dm
Ty \ M, du o Y u=t|p|
. 1
1
Define the distribution DeD'(P'\X,E) by
—tlpl? ¢ a.Fi P,
D(g) = e t 1 [ (55E “(9,s_,(u,m)),¢ i(a m)) dm .
i=1 1, Ay, ° S Justio]

i
Then DGH-1(F\X,E) and D vanishes on H%(P\X,E). Moreover
MTE(9,5.) - D = ATAE(¢,50).

T

Employing again property 3) of A", it follows that ATAE(¢,SO)

is square integrable and hence, in Hp Thus ATE(¢,50) belongs

to the domain of AT and

T T
ACAE(®,s ) = A BE(6,s ).

Employing (3.3), we obtain
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A 4T o2 2 T ,
A A ECO,s ) = (-s_ +|ol“+u) ATE(0,s))

Finally, we observe that a direct computation shows that Dg# 0.

This implies that ATE(¢,50)¢ 0. Q.E.D.

Corollary 3.15 Let NT(k) be the number of linearly independent

eigenfunctions of AT with eigenvalue less than 2. Then

N(t) s NpllolZen).

Proof. let s_€(0,|p|] and assume that C (s )¢ = -¢ for some
b€t (0,0}, ¢#0. Then condition (3.13) holds for E(¢,s ) and

the Corollary follows from Lemma 3.14. Q.E.D.

It remains to estimate NT(A). For this purpose we shall use a
covering of T\X by special neighborhoods constructed in [B-S).
We start with the description of these neighborhoods. For de-
tails we refer to {B-S], [Z]. Let P be a Q-parabolic subgroup
of G with special split component A and corresponding Lang-

lands decomposition P = NAM. There is a canonical isomorphism

Mp NxXMxA—:—*X ,

where X, = M/KM. The map w, commutes with P where the action

of P on N xXy xA 1is defined by
p-(ny,z,a;) = (nman1a-1m'1,mz,aa1)

where p = nma, ae¢A, meM, neN. Set

e(P) = NxXM and e'(P) =TNnP\e(P).
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There is a canonical fibration

Tp i e’ (P) —— T Xy

with fibre TNN\N. Given Tea, put

A'r = {acA | a(loga) >al1), ae\i’P]

If Y 1is an open subset of e(P) and Tea, put

WY, 1) = up(¥ xa)).

Now assume that Yece'(P) is an open subset and Y its inverse
image under the canonical projection e(P) —e'(P). Then W(Y,T)

is TnP-invariant and we put

W(Y,t) = I'nP\W(Y, 1)

Lemma 3.16 Let Y be a relatively compact open subset of e'(P).
Then if 1€a is sufficiently large, the equivalence relations
defined on W(Y,t) by T and TANP are the same. For such v, we
have W(Y,T1) = n(ﬁ(?,'r)) where 7: X— I'\X 1is the canonical

projection and Hp induces an isomorphism

Hp ¢ Y x AL = W(Y,T1).

The proof of this Lemma follows from a modification of (10.3) in

[B-S].

An open set in TI'\X of the form W(Yp,Tp) with Yo e'(P) a re-
latively compact open subset and Tp€ap is called a special

neighborhood. Note that for P=G, W(YP,TP)=YP is a relatively
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compact open subset of TI'\X. Let mMc:rﬁ\XM be a relatively com-
pact open subset and put Y = ﬂ;1(wm). Then Y = TI'nP\(N x Typay)
and W(Y,t) is N-invariant. Therefore, the cuspidal condition

makes sense on W(Y,t). Indeed, let

U= NxA_ x(FMmMKM).

Then U is invariant under left multiplication by I'NP and right

mﬁltiplication by Ky and W(Y,T1) = PnP\U/KM. Thus, any sec-

tion of E over W(Y,t) can be identified with a map ¢:U—V
satisfying o(yxk) = c(k)'1¢(x), YyeT'n P, keKM, Given F = ¥p and
peLZ(W(Y,1),E),

¢PF(x) = [ o¢(nx)dn
FnNF\NP

is well defined and belongs to LZ(W(Y,T),E). Let W=W(Y,t) and

set

2 2 PE
Liys(W,E) =1 9el“(W,E) | 9 F = 0 for all Foy,}.

Let A, be the selfadjoint operator in LZ(W,E) which is asso-
ciated to the quadratic form ¢ sl acting in the Sobolev
space H1(W,E). In other words, 4, is the selfadjoint extension
of V'V acting on C:(W,E) which is obtained by imposing Neu-
mann boundary conditions on dW. It is clear that Lius(w,E) is
an invariant subspace for Aw. Furthermore, we have '
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Proposition 3.17 1) &, has pure point spectrum in L (W E) and
a compact resolvent when restricted to this subspace.
2) Let NW(A) denote the number of linearly independent cuspidal
eigenfunctions of A, with eigenvalue less than X. There exists

a constant C>0 such that
NyOD s €1+ A2y y e o,
where n = dim X.

Proof. In the case when P is a minimal Q-parabolic subgroup of
6 and  «, = T\y\X,, this is Corollary 7.6 ‘in [D1]. A straight

forward extension of his method gives the proof in general.Q.E.D.

Next we shall construct a covering of T\X by special neigh-
borhoods and apply modified Neumann bracketing to Tteduce the
estimation of NT(k) to Proposition 3.17. As above, let Q N1A1M1
(1s1is1) be a set of representatives for the I'-~conjugacy. clas-
ses of Q-parabolic subgroups of G. Furthermore, if W=W(YP,TP)
is a special neighborhood with respect to some Q-parabilic sub-

group P of G, we set
cus(w E) = cus(w E)N H (W,E)

where H1(W,E) denotes the Sobolev space.

Proposition 3.18 Let T=tTpeaO with t 2t as above. There exist
TiEQ, and relatively compact open subsets lecer\‘XM , 181381,
such that the following conditions are satisfied:

1) Let Yi = n51(mM ). Then the canonical map W(Yi,Ti)-——>F\X is

injective and {W(Yi,Ti)I i=1,...,1} is a covering of T\X.
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2) Set W.=W(Y;,7;), i=1,...,1. The map ¢ — (¢|w1;...,¢|w1)

defines an embedding

1
cus

1
HL.(T\X,E) = @ Heus (W,E)
Proof. Let P=NAM be any Q-parabolic subgroup of G with special
split component A. Given aewp, let Pa= NyAgM, denote the rank
one Q-parabolic subgroup of G associated to ?P-{a} . There

exists yvel' and 1 (1s$is +) such that

=Y
(3.19) P P,-

P P, |
Let ¢6H}(T\X,E).‘Then o *(x) = ¢ *(y" 'x). Now observe that

Hp (v71x) = Ad(Y"DIHy () + 8, (v71).
1 1 1

By assumption mpi(y_1x) = 0 if HP.(Y-1X) >th. . Hence
i i

Par v _ - .
(3.20) o *(x) = 0 if Hpa(x) >tH) o+ Hp&(y)

a
Now 1let Fc ?P be any subset with «a€F and denote by PF<=P the
Q-parabolic subgroup of G associated to !@—F. Let PF=NFAFMF be
the Langlands decomposition. Then '

9 F(x) = f o C(Ex) AT .
(NF n F)NQ\NF

Now observe that ng=n © ny and né: mg . Therefore any neéNp can

be writtgn as n=n,n, with n1€Na and nZEMa. This implies

H, (nx) = H, (x) for neN..
Py P, F
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Thus, by (3.20),

P )
(3.21) o F(x) = 0 if Hpa(x) > tha + Hpa(y)

For each aeY,, let v, be determined by (3.19). Furthermore, ob-

serve that

a = a a = N k .
p epa, a =N, er(8)

Let Tpeap be the element whose component in a is tH, + HPQ(Y3)°

a
Then, for any P::?P, it follows from (3.17) that

(3.22) o F(x) = 0 if exp(Hp(x))eA

Set R = {Q1,...;Q1}. For each Q€R we shall denote by TgeaQ the
element constructed above. Now we construct a covering
{W(Yq,TQ)IQeR} of I'\X recursively as in [ 2,(3.6)]. Moreover, we

can assume that for each QE€R, TQ is such that
G(TQ) > 0(13) for all ae?Q.

Employing (3.22), it follows that this covering satisfies 1) and
2). Q.E.D.

Now we are ready to prove our main result

Theorem 3.23. Let T = tTp with t2 to'as above.
1) AT has a compact resolvent.

2) Let n=dim X. There exists a constant C > 0 such that

Np(A) s (1 + A2y e 0.
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Proof. Let {Wi| i=1,...,1} be a covering of T'\X by special neigh-
borhoods satisfying 2) of Proposition 3.18. By Proposition 3.17,

each embedding

1 .2
He,o (Wi, E) L (W, ,E)

(1 sis1) is compact. Employing Proposition 3.18, 2), it follows

that the embedding

H}(r\x,ﬁ)————+L2(r\x,E)

is cdmpact. rherefore the resolvent of ZT is compact which
proves 1).

By (3.12), it is sufficient to estimate the number of eigen-
values of ET' Let Aj denote the j-th eigenvalue of ET' We apply

the mini-max principle in the form

2
v
Ai = min max|| Q”
V eV {lo]

where V runs over all subspaces of H}(F\X,E) of dimenmsion j (c.f.

[F-S]). Now observe that there is a constant C >0 such that

2
Ve [w, |l

[
—

¢ ¢ lvelf

(3.24) 2
loll

2
W, |

Mg =1 =
—

[y

for all ¢€H%(T\X,E). Let Kj be the j-th eigenvalue of the ope-

rator AW1 ® @ Awl. Then
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1
1 llvg,li2
T . i=1
A. = min max 1
' eV
OV T g,112
i=1
~ 1 .
where V runs now over all subspaces of @ chs(wi,E) of dimen-
i=1
sion j. Put V= J(V) where
7t BMINGE) —— @ B (W, ,E)
T ’ cus - i’

i=1

is the mép ¢ — (¢|W1,...,¢|Wl). Then V is an j-dimensional

1
subspace of &aH‘l (W.,E) and employing (3.24), we get
j=1 CUS 1

>

s Cx

Combined with Proposition 3.17, this implies

1

Np(X) -Z

n/2
. Nwi(x-xc) 5 61(1 + A )

1

Q.E.D.

Corollary 3.25 Let m(0,0) be the number of poles of the inter-
twining operator C(s) : Ecus(c,OJ-—*-Ecus(c,OJ in the half-plane
Re{s) > 0. There exists a constant C >0 independent of 0 such

that

m(o,0) s C(1 + u™)

where n=dimX.
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Proof. Using (3.9), Lemma 3.15 and Theorem 3.23, it follows that

m(o,0) s Cdin(E_, (0,0)(1 + WP/ 2y

Employing Theorem 9.1 of [D1] , we can estimate dim Ecus(o;O) by

C(1 + un/z). This implies our result. Q.E.D.

Corollary 3.26 The number of poles, counted to multiplicity, of

det C(s)} in Re(s) >0 is bounded by

C,(1 + u3n/2)

where C, >0 is independent of 0 .

Proof. Let s, Re(so) >0, be a pole of .det C(s). Then s, is a

pole of C(s). Since So is a simple pole of C(s), the order of
det C(s) at Se does not exceed d=din1£cus(c ,0). Applying again
Theorem 9.1 of [D1] to estimate d, we get the desired result.

Q.E.D.
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4 Analytic continuation of rank one cuspidal Eisenstein series

In this section we develop a new method of analytic continu-
ation of rank one cuspidal Eisenstein series. This method is an
extension of the method used by Colin de Verdiere [Co] in the
case of SL(2,R).

Let (o,V) be a fixed irreducible unitary representation of K
and P=NAM a rank one Q-parabolic subgroup of G with special
split component A. We employ the notation of §3. Let o be the
simple root of (P,A) and put X = a/la|. We identify a with R
via the map X:a — R. Fix uoem. sufficiently large and choose
f€C (R) such that f(u)=0 for us u, and f(u)=1 for uzu +1. Let

2

QGLcus(rM\M’U’X) and put u=x(®,). For sel, put

(4.1)  e(8,s5,x) = I £(Hp(yx))e SHPIHRO) g0y,
TNRP\T
Lemma 4.2 For each xeG, the sum (4.1) is finite.

Proof. This follows from the analogous statement of Lemma 4.2 in

[ O-W].

In particular, for each x¢G, ©(¢,s,x) is an entire function of
s€C. In the following two Lemmas we establish some elementary
properties of e(¢,s) that we need for the first step of the ana-

lytic continuation.

Lemma 4.3 For each seC,

(2 + (-s2 +[pl%+W)e(s,s,x)

is square integrable.
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Proof. By Lemma 4.2, we can switch differentiation and summation

in (4.1). If we use (1.2), it follows that

(2+ (-s%+ [pfPen)) (£(Hp(x))e (SAHP) HPO ) g5y 0
(4.4) |
= R(Hp(x))e 5A*P) (Hp(X) ) gy

with heC™(IR)and suppllc(uo,uo+1). The Lemma now follows from

Lemma 2.4 Q.E.D.

Lemma 4.5 Let Re(s)>|p] . Then

8(¢,5) - E(P|A3¢’S)
is square integrable.

Proof. Set -g=1=f. Then g(u)=0. -for u: udﬁlxandwg(u)=1 for usu,.

Set

(M e,s,x) = 7 g(HP(YXJ)e(S'\”p)(HP(YX))‘I’(YX).
rnp\r .

Then

e(¢,s,x) - E(¢,s,x) = E(l)(¢,s,x)

For Re(s) >|p|, the series converges absolutely and uniformly on
compact sets. This follows from Lemma 24 in [H,II1,§2]. Choose a
sequence {gn} ‘C'c:(mj with g ——g in the C*-topology. Put

n -+ ™

nelN

(1)
E (¢,s,x) = . )

np\rsn(Hp(Yx))e(s‘*p)(“P(YX33¢ch).
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Lemma 2.4 implies that E£1)(¢,s) is square integrable. For ze¢C
let
- _ (s-z)u
gy(s,z) = [ g (ue du.
R
We may regard W(a) as a subset of {t1}. Employing Lemma 2.8, we

get

B D o, I -

C+ie
= ] g (s,-wz)g (s,z)(®,C(w:z)¢) d
vewt a2 C:Emgn s,-wz)g (s,z Wiz I bz ]

where ¢ >|p|. By Lemma 2.3, there exists C >0 such that

He(w:z)]] s €

for Re(z)=c>|p| . Hence

C, w
”Ei1)(¢,5)”2 s ¢y g (% = 4 .ngn(u)FeZRe(s)“du

(4.6)
s C,

where C, is independent of n. It is easy to see that for each
xeG, E£1)(¢,s,x)-———* E(1)(¢,s,x) as n—+ © ., (Combined with
(4.6), it follows from Fatou's Lemma that E(1)(¢,s) is square

integrable. Q.E.D.

Let E and A have the same meaning as in §3. If we consider A
as an operator in LZ(T\X,E) with domain C:(P\X,E) then A is sym-
metric and therefore, essentially selfadjoint (c.f. Corollary 1.2

in [Mo}). Let B denote the unique selfadjoint extension of A
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in LZ(F\X,E). It follows from (3.12) that A is bounded from be-
low. Therefore, the spectrum Spec(Z) of A is contained in a half
line [c,»), ¢ >-« , By Lemma 4.3, (A - (-sz+|p|2+u))9(¢,s) is
square integrable and therefore, we can apply to it the resol-
vent (A - kId)_1. The first step in the analytic continuation of

rank one cuspidal Eisenstein series is the following

Proposition 4.7 Let ¢€L§US(FM\M,U,X) and assume that sel is such

that -sZ+ lo|%+ne Spec(2). Then

E(P|A,®,s) = 8(d,s) -

(4.8)
- (B - (~s2+]ol%+w) T (a-(~s2+]p|%+u))e8(0,s).

Proof. Denote the right hand side b} E(0¢,s). By definition, it
satisfies (4o - (-sZ+|p|+u))E(¢,s)=0. By (3.3), E(PJA,%,s) satis-
fies the same differential equation. On the other hand, by
Lemma 4.5, E(PlA,%,s) - E(¢,s) is square integrable for Re(s) >
>|p| . Since 3 is selfadjoint, it follows that E(P|A,%,s) =
v§(¢,s) for Re(s) >|{p| . The Lemma follows by uniqueness of ana-

lytic continuation. Q.E.D.

Befor we can continue we have to modify the operator Ao in-
troduced in §3. Let P be that class of associate rank one Q-par-
abolic subgroup of G which contains P. As in §3, let Pij’
i=1,...,rT, j=1,...,ri, be a set of representatives for the

T-conjugacy classes in P and let 0 = { Oij|1 sisT, 153 $ri}

be a set of associate orbits. Given telR, let
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H,(I'\X,E;0) = H' (T\X,E)

be the subspace consisting of all ¢eH1(r\x,E) satisfying:
1) If Q is a Q-parabolic subgroup of G and Q4¢P , then ¢Q=0.

P 2 ' j =
2) For all aeAij, o J(a-)ELCUS(TMi;\Mij,o,Oij), i=1,...,T,

j=1’..0,ri.

3) For all meM. ., ¢Pij(am)=0 if log(a) > tH , i=1,...,r,
, 1) pij
j=1,...,ri.

Denote by Ht(O} the closure in LZ(F\X,E) of Hl(r\x,E;Oi;,The :

quadratic form
2 1 .
ale) = lIell® , 9eH (T\X,E;0),

is closed and therefore, it has an associated selfadjoint oper-

ator Zt acting in Ht(O). Set

At = At + AOId

where X, is determined by (3.11). Let t 2t  and T=tT, (c.f. §3).
Since Hl(T\X,E;0)== H%(T\X,E), the proof of Theorem 3.19 extends

to .‘1\.t and gives

"Lemma 4.9 1) At has a compact resolvent.
2) Let Nt(k) denote the number of linearly independent eigen-
functions of by with eigenvalue less than A . There exists a con-

stant C >0 such that

N,(A) s C(1 A2y a2 o0,

n = dim X.
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The next step is to replace & by A, in (4.8). This is justi-

T
fied by the following Lemma:

Lemma 4.10 There exists tdem.such that

(a- (—sz+ lp|2+p))e(¢,s)e Ht(o)

for t zto.

Proof. Let heC”(R) be determined by (4.4). Then-supp}1c(uo,uo+1L

Let

Y () = h(HP(x))e(5A+p)(HP(X])@(x).
Then WSEHCUS(P,o,x) and
(4.11) (a - (-52+lo|2+u))e(¢,s) = E(wslp).

By lLemma 2.4, E(TSIP) is square integrable. Furthermore, if Q 1is
any Q-parabolic subgroup of G then (2.7) and the description of

the constant terms of Eisenstein series (see §2) gives
EQ¥ [P) = 0 if Q4P.

Now.set P'=Pij for some i,j (1sisr, 153 Sri). Let A’
be the special split component of P'and P'= N'A'M' the correspon-
ding Langlands decomposition. Set 0'= 035+ It follows from (2.7)

that

c+imA
E(Y,IP) = [ h(z-s)E(P[A,¢,2) dlz]
C-lw

where ¢ >|p| and h(w) = | h(u)e "Ydu, wel.
R
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Employing (2.2), we obtain

P (v [P (amm') -

C+im

) ) i h(z-s)e(z(WA)+p)(loga’) (.

plwiz)e) (m')d|z |-
‘weW(a,a') c-i= PP

Hence for a'eA fixed, EP'(?SIP)(a'-) belongs to Lgus(rM:\M',o,O').
To establish condition 3) we shall compute EP'(?SlP) along lines
similar to [H,I1,§5). Recall that P' is conjugate either to P or
P” = N"AM - the opposite group to P. Assume that P'=YP, yeGq- The
other case is similar. Using computations similar to [H,II,§4]

and Lemma 33 in [H,II], it follows that

P!
ET (Y _|P)(x) = Y ¢ (x)
s rnp\r/r'nN'S’Y
with
¢S,Y(x) = -1j Ts(yn'x) dn'
N'nY N \N'

Let PO=NOA°MO be a2 minimal Q-parabolic subgroup of G with special

split component A_ such that P 2P _, A = A. Write y'1y'1=nowpo

where noeNo,Q’ wEN(Ao)Q and poePo’Q. Then NN®P = “N and

= . ynO
¢5’Y(x) f ¥ (y’"onx) dn.
N N “N\N
' ' yn vy - o=t =1 =1 =1,
Moreover, for a'¢eA' , m'eM , v "Ona'm' = P, w mn ay m where

-1 .
a=y a'yeA. let n, =n,n, with n1eMI1NO’Q, nzeNQ. Then
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’ ¥ ? '1 -1 "1 "1
S’Y(a m') = S Ts(po w nnq ay m') dn
N n “N\N

Now observe that

‘0 -1-1(a'0 -1

-1 -1._-1 1y o

p;1w nn, ay m'GN(w
Set u(a) = detnnwn\n(Ad(a)). Then

-1
(4.12) ¢ (a'm') =wu(a) [. ¥ (( )ap o 'nn 1y Ta') dn .
S»7 N 0 ONNC

Choose k€K so that p;1w'1nk-1eP. Then

-1 -1

-1 -1, -1 1 -1
Hp(py '@ 'mny'y 'm') = Hp(kn,'y 'm') + Hp(p 'w 'n)

Furthermore, m' = )’my-‘I with meM, i.e., y-1m',= my-i.

Let *Q1,...,*Qq be a set of representatives for the TM-conju-
gacy classes of minimal Q-parabolic subgroups of M. Denote by
Qit=P the associated Q-parabolic subgroups of G. Then Qi’ 1sisaq,
are minimal Q-parabolic subgroups of G. Let *Qir*Ni'Ai*Mi
»be the Langlands decomposition with respect to the special split
component *Ai of *Qi. Then Q =N.A.M. with Mi=*Mi, Ai=*AiA and

i1
N.=*NiN is the Langlands decomposition of Qi' Let *Si be a Siegel

i

domain in M with respect to *Qi. Then "'Si is contained in a Sie-
gel domain Si in G with rTespect to Qi' Now observe that results
analogous to 1I,§1 in [H] are true in our case. We only have to
replace inf by sup, -« by = and reverse inequalities. In particu-
lar, Corollary 2 to Lemma 21 in [H] implies in our case that

sup A(H (kn1 my 1) < =,
me* S1
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There exist Siegel domains *Si, i=1,...,q, so that

Therefore, if S=M is a fundamental domain for PM’ we get

sup A(Hp(kn]'my™1)) <= .
meS

. -1 -1
Now consider Hp(po w

n). Let G be the reductive algebraic
group so that G(R)=G. We may assume that G is connected. It fol-
lows from §12 in [B-T] that for some multiple A=q) (qeZ, q21),

there exists a finite-dimensional irreducible rational represen-
“tation ( ™V) of G with the following properties: There exists a

GA( 108 a)V for

non-z€ro veVQ with 7(p)v=v for peN M  and m(a)v=
aer. Choose a scalar product on V so that the operators 7(a),
aer, are selfadjoint. Since G=KP, there exist constants ¢,z C,

>0 such that
(4.13) cte‘A(HP(")) s imtx"Dv s cze“"(HP(x)), x€G.

1 1 -1

=n1y_ w = with n1=n_1

1

=1 =1 - - ; ,
Put x=p 'w 'n. Then X n, € Nj. Since N is

defined over @, there exists a basis v1,...,vheVQ such that
(4.14) | m(n)v, - v, € 'Z.IRVJ- , neN_,
j>i

(c.f. Corollary 15.5 in [B2]). Let LCZVQ be the lattice generated
by v,,...,vy. By Proposition 10.13 of [R] , there exists a sub-
group T, of G, of finite index such that m(r,)L=L. Since T is
commensurable with P1 and yeGQ, there exists belN such that
n(y"1)n(r)L c b L. Therefore, by (4.14) it follows that there

exists a constant C3> 0 such that
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Ity ' YIvl 2 4
for neN, and v€T. Combined with (4.13), we get
Hp(yyn) s C,

for all neN0 and veTl.
Putting our results together, it follows that there exists

C>0 and a fundamental domain S'cM' for TM' such that

1

(4.15) HP(p;1uf nn?‘y-1m') s C

for m'eS', neN' and vyel' . The restriction of w to A belongs to

W(A). Thus w|A = *1. Assume that w|A = 1. Then P' = Y'1Py and
o  _(x)=Y_(yx). This shows that & _(a'm')=0 if log(a') > C. Note
S, Y S S»Y

that there is a single class YeTNP\T/TAN with P'=Y-1PY . Now
assume that wlA = -1. Then HP(wa)——*-w if log(a) — = ., Then

(4.12) together with (4.15) implies that there exists C, with

¢ Y(a'm')=0 for m'€¢S', yel' and i(loga') > C,. The definition of
I

¢ y implies that this holds for m'eM'. Q.E.D.
. . . 2
Choose t2t as in Lemma 4.10. Given ¢eLcus(FM\M,o,x) and seC,
put
F(¢,$) = 9(@,5) =
(4.16)

- (8, - (=sPelolTa) TN ((a- (s p] Feu) )8l e, 5)).

By Lemma 4.10, the rtight hand side is well-defined. Moreover,
Lemma 4.9 shows that F(¢,s) is a meromorphic function of sel. We

shall now investigate the properties of F(¢,s). By definition,
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F(%,s) - e(¢,s)€L2( I'\X,E). This fact implies that F(4,s) is a
distributional section of E. Now observe that the description of
the domain of b, is similar to that of Ap. In particular, it im-

plies that

(8 - (-s2+|p|2+u))F(0,s) = S

where SGH“1(P\X,E) and S is orthogonal to Hl(P\X,E).

Lemma 4.17 Let Q=NQAQMQ be a Q-parabolic subgroup of G, XQE
i(mQ) andeHéus(Q,O,xQ). Assume that either QéP or Q=Pij for some
1,j (1 sisr, 1sjsr,) and XQ¢oij' Then S(E(9|Q))=0.

Proof. Using (4.11) and a simple approximation argument, we get

(8(¢,s), (s - (-8%+|o|®+w)E(9lQ)) = (EC¥,|P),E(p]Q)).

If Q4¢P , the right hand side vanishes by Lemma 2.6. If Q=Pij for
some i,j (1 sisT, 153§ ri), the right hand side vanishes by
Lemma 2.8 and the assumption on ¢ . Put ¢=F(¢,s) - e(¢,s). Then
wth(O). In particular, wQ(a-) is square integrable for all Q and

Lemma 2.5 gives
(v, (8 = (-8%+|p|%+1))E(0]Q)) =

= - [ e7?plloga) { (Q(an), (2 + (-52+]p!2+1))0(am)) dmda .
A T M '
MQ Q

If QéP we have ¢Q=0 and the right hand side vanishes. If Q=Pij,
then wQ(a-) L HCUS(Q,O,XQ) and the right hand side vanishes too.
Q.E.D.
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Let HT(T\X,E;O) be the subspace of H1(F\X,E) consisting of all ¢
which satisfy the first two of the conditions defining Hl(P\X,E;O).
It remains to determine S on .HT(F\X,E;O). For this purpose we
modify the truncation operator A, Let geC”(R) be such that E(u)=
=1 for u 20 and §(u)=0 for u s -1. Let Py Py be a set of re-
presentatives for the T-conjugacy classes in P. Given ¢eL2(F\X,E)

and t€R, set

t : < P
(x) = I E(xy (Hp (¥X)) - thl)e i(vx),
AP1'5¢ * rn Pi Py i

P\
i=1,...,h. Let
h
t
=g - A
Aew = @ 121 P.,g?

Lemma 4.18 There exists t1EIR such that for t2t, and

v (I\X,E;0)

1

t 1 .
NgoeH (T\X,E; 0)

Proof. Let T=tTp, t et (c.f. §3) and QGHT(ﬁd,E;O). We may as-
sume that ¢ is smooth. We have ‘
h

Agp = ATo - ]

1=

t
A 9
1 Pi’go

where ¢ = E-X[O,m) and A; Eom is defined in the same manner as

i’
A; g9 - T is chosen so that AT¢ is square integrable. Now con-
i)
sinder A; ¢ 9 - Note that supp(f )e (-1,0). Let {En}nem =
i’>o

C:((-1,0)) be a sequence with £ (u) —&(u) for all ue(-1,0) and

HCn - EOH 2'—-“*0 as n —®, Let i (15ish) be fixed and set
L
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v (x) = g (Hp (x))q i(x)
1

By definition of H (I\X,E;0), we have ¢ Pi(a. )ELcus(rM>\Mi’°’oi)

i
for aeA; fixed. Hence VY ¢ E%)chs(Pi’c’X)' By Lemma 2.4, E(?ani)

€L( I'\X,E) and, using Lemma 2.8, it follows thatlIE(Wnlpi)H s C
independent of n. Furthermore, for any compact set w <G, there
are only finitely many yeFﬂPi\T such that Hpi(yx) > thi for
x€¢w. This is simply the analogous statement of Lemma 4.2 in [0-W]
in our case. Using this fact, it follows that E(?HIPi)(x)'——+

P 5 ¢(x) as n — = for all xeG. Therefore AP eLz(T\X E) by

BT
i
Fatou s Lemma. Hence E:tprL (T\X,E). The same argument shows that
Vﬁt¢eL (I'\X,E). Thus Eq9€H (I\X,E). Next consider the constant
terms of A ¥ Let {gn} CCC(]R) be a sequence with g — £ in

the C“-topology Set

o (x) = gn(Hpi(x))¢Pi(x)

As above, we have ¢_¢€ €> H (P.,o,x) Using Lemma 2.4, (2.7)

and (2.2), it follows that E(¢ |P )EH (I'\X,E;0). On the other

hand, employing again the analogous statement of Lemma 4.2 in
t .

[0-W], we see that E(¢’n|Pi)(x)-—-+ APi,EQ(x) as n — o, uniformly

on compact subsets of G. Hence AéweH1(T\X,E;0). Furthermore, by

property 2) satisfied by the truncation operator and the choice

of T, we have

(FToPicx) = 0 if Ay (Hp (x)) > tlol, i=1,...,h.
1 1

Finally, employing arguments similar to those of the proof of

Lemma 4.10 combined with a simple approximation argument, it
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follows that there exists t'€¢ R such that for t21t',

t P, . L
(Api’€0¢) x) = 0 if Apj(HPj(x)) > tlpl, i,j=1,...,h.

to and t' are independent of ¢ . Hence AE@EHL(F\\X,E;O). Q.E.D.

Let t, = max{to,t1} and t =2 tz. Let ¢eH1(T\X,E;0). Since S is or-
thogonal to Hl(T\X,E;O), it follows from Lemma 4.18 that

h

(4.19) S(g) = I S{A

t (P)
i=1 PirE

Next we investigate the constant tern Fpi(¢,s), i=1,...,h. It
follows from the definition of F(¢,s) that for a€A, fixed,

the section Fpi(¢,s,(a,-)) - 9P1(¢,s,(a,')) belongs to

2

Lcus

(TMf\Mi,o,Oi). Furthermore, let zeC with Re(z) > Re(s). Then
i
'f(u)e(s‘-z)u is a rapidly decreasing function of ueR. Then

CH+im
(4.20) 8(¢,s) = [ f(z-s)E(P|A,d,2) d|z}
c-i=

with ¢ >Re(s). The proof is similar to the proof of Lemma 28 in

[H,O,§3] . Using this formula combined with (2.2), we obtain
P 2

8 1(¢,s,(a-DGLCUS(TM;\Mi,O,xi). Hence

(4.21)  FYi(e,s,(a-))EL?

cus(rMi\r.ii,c,oi), i=1,...,h.

® . 2
Let geC (R) with suppge(t-1,t) and let WéLcus(TM;\Mi,c,xi),

xieoi. Set

W(x) = g(Hp (x))¥(x).
i
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It follows in the same way as above that E(¢|Pi)€Hl(P\X,E;OJ._
Hence S(E(¢[Pi))=0, i.e.,

(F(8,5),(a- (-5% [pf+WIEWIP)) = 0.

In view of (4.21), we can apply Lemma 2.5 which implies

0= f e 2p(loga) 1 (gPi(p ¢ am), (R + (~5%+]p|2+u))v(am)).

Ay rMi\ M,

(4.22) -dm da .

Let Hea; such that X, (H) > 0 and lIH|| = 1. Set

gi(s,u) = i {hd (FPi(e,s,e"m), ¥(m)) dm .

M. M '
1

Using (1.2), (4.22) and elliptic regularity, it follows that
1

gi(s,u) is a smooth function of ue(t-1,t) .and satisfies

(— diz + lela%)gi(s,u) = (‘52+Ip|2)gi(5’u)

Hence

g (s,u) = Cy(e)elst 1P L g (yem (oD yeean,u,
and C1(s), Cz(s) are meromorphic functions of sef. This implies

that there exist linear operators

2

.12
APiIP(s)’ Bpilp(s) : LCUS(TM\M,o,x)———+ LCus

(rM;\Mi’G’Oi)

"which are meromorphic functions of sel such that
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PPi(¢,s,x) = ' ' (4.23)

L (5hi+0) (Hy (X)) (-sh;+py) (Hy (x))

(s)®)(x) + e

1

where Hi(x)=HP (x) and Ai(Hi(x))E(t-1,t). Denote by Fi(¢,s) the
i
element in Cm(PI1Pi\G,0) which is defined by the right hand side

of (4.23). Let t 2t, and put

G(®,s,x) = F(o,s,x) - AEF(¢,S)(X) +
(4.24) h

+ 1 EChp, (Hp

(yx)) - tIpI)Fi(¢,s,Yx), xeG.
i=1 TnPi\T

1

G(¢,s) is a meromorphic function of sel. Moreover we have

Proposition 4.25 G(¢,s) belongs to C”(TI\X,E) and it satisfies

(a - (-52+|p|2+u))6(¢,s) = 0.

Proof. Let QnNQAQMQ be a Q-parabolic subgroup of G, xQez(mQ) and
and Q&chs(P,o,xQ). If Q4P or Q=Pi for some i (1 §is h) and

XQ¢0i, then it follows from Lemma 4.17 and (4.23) that
2 2 -
(G(e,s),(a = (=3°+]p|“+u))E(p|Q)) = O .

Now assume that Q=Pj for some j (1 <3jsh) and XQeoj. Let ¢ =
=E(9|Q). Then ¢6H1(T\X,E;O). Furthermore, set

£,(x) = £y (Hp (x)) - tlp]), i=1,...,h.
1 1

If we apply (4.19) and Lemma 2.5, we obtain
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(6(8,s),(a - (-5%+|pl2+w)y) =
h
. ! e-Zp(log aj) ]

1 A. PMQM

P; Pj

i
.(F (¢,s,aimi),[ﬁ,€i]¢ t(agm;))dm;da,
i

-20(1 . .
N R ogal)r {b‘(Fi(¢,s,aimi),[A,gijwpl(aimi))dmidai
M. 1

i=1 A,
1 i

Now observe that [A,Ei]wpi(aimi)=0 unless Ai(logai)e(t-1,t). But

P o
F 1(¢,s,aimi) = Fi(¢,s,aimi) for Ai(logai)e(t-1,t). Thus

(6(®,s),(a - (-5%+]pl2+w))¥) = 0.

But it follows from Theorem 4.6 of [Ca] that each weC:(T\X,E)
can be approximated in the C®™-topology by linear combinations of
wave packets E(9|Q). Hence (A - (-52+]p|2+u))G(¢,s)=D in the
sense of distributions. Then elliptic regularity implies that

G(¢,s) is a smooth section of E. Q.E.D.

2

Given an orbit Oei(m)/W(A) and QeLcus

(TM\M,U,O) , we define

G(®,s) in the obvious way. Let ¢efcus(c,0) with &= {¢ij| 1<€isr,
2

15 SIi] and ¢ijeLcus(rMi;\Mij’°’oij)‘ Set
T T.l
G(¢,s) = ) ) G(¢, .,s)
i=1 j=1 J

G(%,s) is a meromorphic function of sel. For each sel which is

not a pole, G(%,s)eC™(I'\X,E) and it satisfies

(4.26) (a- (-s%+|pl%+w))G(0,s) = 0.
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Concerning the constamt terms, we have

Lemma 4.27 Let Q be a Q-parabolic subgroup of G.
1) If QéP then 63(¢,s) = 0.
2) There exist linear operators A(s),B(s) : Ecus(o,O}-——*

Ecus(o,O) which are‘meromorphic functions of sel such that

cTiie,s,x) =

. e(‘s"'lpl)tij(x)

S L YO TSNS (B(s)9)35(x)

i=1,...,T, j=1,...,ri, in the notation of §3.

Proof. 1) follows immediately from the definition of G(¢,s) and
the properties of F(®,s). To prove 2), we observe that by defi-

nition, Gpij(¢,s,a-)€Ecus(o,0) and it satisfies
2 2 P .-

(8 - (-s“+]p|“+u))G 1I(e,s) = 0.
Using (1.2), the result follows. Q.E.D.

Lemma 4.28 The operator A(s) : Ecus(o,O) — Ecus(o,o) is in-

vertible as a meromorphic function.

Proof. Assume that det(A(s)) =0. Thus, for each sef which is not
a pole of A(s), there exists ¢€Ecus(c,0), % #0, such that
A(s)®=0. Assume that Re(s) >|p| . We claim that G(¢,s) is square

integrable. To see this consider G(¢,.,s). Using (4.24) and the

J
definition of F(Qij,s), it follows that

G(¢ij,s] = G1(¢ij,s) + Gz(®ij,s)
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where G2(¢ij,s) is square.integrable and GI(¢ij’5) is smooth and
satisfies the following property: There exists réR such that for
all DeU(g), DG1(¢ij,s) is slowly increasing with exponent of
growth 1. Let T=tﬂ) with tz to- Then ATG1(¢ij,s) is rapidly de-
creasing (c.f. Theorem 5.2 of [0-W]) and therefore square inte-
grable. Since AT extends to an orthogonal projection of
LZ(P\X,El , ATG1(¢ij,s) is square integrable too. Thus ﬂTG(¢,s)
is square integrable. On the other hand, by Lemma 4.27, G(¢,s) -
- ATG(¢,5) is the sum of

(4.29) Xp. (Hp (yx) - tH, )G 13(8,5,vx)

rnPij\r ij ij ij

i=1,...,T, j=1,...,ri. Using again Lemma 4.27, we have

(-s+|01)tij6x3

6 i3(e,s,x) = e (B(s)0);;(x)

If we apply Lemma 2.8 and a simple approximation argument, it
follows that the terms (4.29) are square integrable for Re(s) >
>|pl . Since A is selfadjoint, it follows from (4.26) that
G(¢,s)=0 for ﬁe(s)>]p| , s#5 . By analytic continuation this

holds for all s. Let

F(Q’,S) =.z_ F(Qij,s)
1,)

It follows from the definition of G(¢,s) that

G(d,s) = ATF(¢,5) + ] Ri.(¢,s)
i,j

where
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R;.(¢,s) = I Xp (O (Hp (¥x) - t|pl)F..(®,s,yx)
1] TNPy\T Fig 137 Py 1]

and Fij(Q,s) is defined in the same way as Fi(¢,s) above. Emplo-

ying Lemma 2.5, we get
(ATF(¢,s),ATRij(¢,s)) = (ATF(¢,S),Rij(¢,S)) = 0.

Hence

1ATECe, )12 = (aTR(e,5),6(0,8)) =0
and therefore, ATF(¢,5) = 0. Set

9(4’,5) = 9(@--,5)-
i§5 )

In view of (4.16), we get AT8(¢,53=0. Let s be fixed and chose
c¢> Re(s). By (4.20)

T c+i® . T
rNele,s) = [ f£(z-s)AE(s,2) d|z].
c-iw

If we make use of the scalar product formula for truncated Eisen-

stein series in [L1,p.135], we get

I]ATG(Q,S)HZ =

C+im c+i® .

pe (z,+Z,)tlp]
= I £(z,-5)£(z,-s) 1_ (e 1 72 ||¢H2 -
c-iw c-je 4%z,

i e-(z1+iz)t|o|

(C(z,)0,C(z,)8)) +
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e(z1-22)t|p| Z,-2,)t]p]

(¢,C(2,)¢) - e( 2

(C(z1)¢,¢)) dz,dz,.

Using Lemma 2.3, it follows that the right hand side is non-zero
if t is sufficiently large. But the right hand side is real ana-
lytic in t and therefore, it vanishes at most at a discrete set
i=1,2, and t then

of points. Moreover, if Ti=tiT >t

p? 1 2
T T
1A 1e(e,s)|| 2||A 26(9,s))| . Thus ATe(o,s) # 0 unless &=0. This is

a contradiction to our assumption that det(A(s)) =0. Q.E.D.

We can now state the main result of this section.

Theorem 4.30 Let ¢€Ecus(0,0). Then

E(9,s) = G(A(s) 'o,s)

as meromorphic functions of sel. The intertwining operator C(s)

is given by C(s) = B(s)A(s)™ .

Proof. Put

R(®,s) = E(d,s) - G(A(s) 'o,s)

Let Re(s) >|p] . We claim that R(®,s) is square integrable. This
can be seen as follows. In the proof of Lemma 4.28 we observed
that ATG(A(s) 'e,s) is square integrable. ATE(e,s) is also square
integrable. Hence ATR(¢,5) is square integrable. -Employing the
description of the constant terms of E(¢,s) (c.f. §2) combined

with Lemma 4.27, we get

R(6,s) - A'R(®,s) = 1 ﬁij(¢,5)
1,j)
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where

~ . - . P-.
R..(d,s) = I X (H, (yx) - tH IR 1J(¢,s. x).
1j D IAN: Py Pig e

If we make use of (3.3), Lemma 4.2fiapd Lemma 2.8, it foilows
that iij(¢,s) is square integrable for Re(s)>|p| , i=1,...,T,
j-T,...,ri. This shows that R(¢,s) is square integrable for
Re(s)>|p| . Now observe that AR(%,s) = (-52+|p[2+u)R(¢,s). Since
B is selfadjoint, we get R(¢,s)=0 for Ré(s)>|p| . Since R(9,s)

is a meromorphic function of sef, it vanishes for all s€f. This
gives the equation claimed in the Theorem. If we compare the
constant terms of both sides of this equation and use Lemma-4.27,

we get C(s)=B(s)A(s)-1. Q.E.D.

Remark. Theorem 4.30 gives a new construction of the analytic

continuation of rank one cuspidal Eisenstein series.
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5S.The order of growth of det C(s)

The main purpose of this section is to prove that the determi-
nant of the intertwining operator C(s) is a meromorphic function
of order § n+2 where n=dimX.

Let k1 S kz § +--. be the eigenvalues of the selfadjoint ope-
rator A, introduced in §4. For simplicity we shall assume that
zero is not an eigenvalue of A, . According to Lemma 4.9 we have

RSPV Y s cl1+ %)y a2,

for some constant C >0 and n=dim X. This implies that

yt~—1 8

(5.1) lle‘k < @

j=1

for k> n/2. As usually, for peN, let

2
u _li_)

E(u,p) = (1-u)exp(u + St 4+ , uel.

Put p=[n/2] . Then the infinite product

=]

P(z) = T E(f,p)
j=1 J

converges uniformly on compact subsets of T and P(z) is an en-

tire function of order n/2 whose zetos are A ,X,,... (c.f.

[Bo,pp.18-19] ). For sel put
P(s) = B(-s2+]p|%+n).

Now observe that in view of Lemma 4.9, (At - zId)-1 is a meromor-

phic function of zel with simple poles at z=X, A,...
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Let ercus(o,O). Using (4.16) and (4.24), it follows that
P(s)G(¢,s,x) is an entire function of sel. Therefore, P(s)A(s)9o
and P(s)B(s)¢ are also entire functions of seC and we shall now
estimate the order of growth of |P(s)|||A(s)|| and |P(s)|||B(s)|} .
First we need an auxiliary Lemma. For each jeN, put

P.(z) = I E(fL,p)
J k#j k

Lemma 5.2 There exists a constant C> 0 such that

- n/2+1
IPj(z)I s eClzl * zel, jeN.
Proqf. We have
loglP.(z)| = ¢ J + 7 Y 1loglE(E,p)| =5, +5,.
! A ds2lz] A 1>2)z] A P2
k#j k #j

To estimate S, observe that |z|/|Ak| 21/2 and therefore

(I"-')l S zp”l(-lil)p , 0S1$p

A | I Ak |
and
loglt - 22— 1.+,JLH5 1+ 2P"(m)p '
: Ak Ak B
Hence

P
(5.3) log|E(Z,p)]| s P+ 121V
Ak |Kk[
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Let € >0 and p1=n/2. Using (5.3), we get

s 2P P T AP s c™re 7 yTPiTE g

S
k k
I\ 15212 kalszlzl

1

SC(e) |z |P/2*¢

where C(e) depends on e and p. Now consider S,. In this case

lz{/|x | <1/2. Using 2.6.3 in [Bol, we get
k

+1
log |E(Z,p)| s z‘ii P
Ak Ak

If p=n/2, this implies

s, s 202P0 T Iy TP =g 122
2lzl <[ |

(n+1)/2

If p=(n-1)/2, we get S, s C2|z| . Thus 1og|§j(zﬂ S

Clz|®/2*1 eC, jeN. Q.E.D.
Let ¢€Ecus(o,0),||¢H =1 , and set

(5.4) H(®,s) = (& - (-sé+]p|%+u))e8(0,s), seC.

Lemma 5.5 There exist constants C1,C2> 0 such that for

o€ L2(I\X,E) and seC,

PCs) ] 10Ca, - (-s%+ o] 2417 (H(0,5)),0) | 5 Ciexp(C,ls|™*2) [|q]]

. Proof. First we observe that by Lemma 4.10, AH(¢,s)€Ht(0). Hence

H(¢,s)€Hl(T\X,E;0). From the description of the domain of by it
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follows then that H(¢,s) belongs to the domain of Ay and
AtH(¢,s) = AH(¢®,s). Iterating this argument it follows that for
each 1€ N, H{%,s) is in the domain of A% and A%H(¢ ,8)= AlH(¢,s).
Now let {¢j}jém be an orthonormal basis of eigenfunctions of A,
corresponding to the eigenvalues M £ X, 8 --- Using the obser-

vation above, we get

(5.6) x}(H(¢,s),¢jJ - (AlH(¢,S),¢j) , j,1€N.

Let ¢eL2(F\X,E). Then by (5.6), l

n
] (A H(d’,SJ,‘bj)(q)j:cP)

je1 ARy - (-s%+]p]%+1))

(8, - (-s%+1ol2+) T (H(0,5)),0) =

Employing Lemma 5.2 and (5.1) it follows that the right hand

side, multiplied by P(s), can be estimated by

¢, l18™1ce, )l ollexp(c, s P*?)

Now apply (1.2) to estimate ||A™H(¢,s)|| and the result follows.

Q.E.D.

2

Let ?eLcu

(r,, \M..
S Mij ij

geC™(R) with suppge(t-1,t). Set

,o‘,oij) (1sisr, 15jsry),ll¥[l=1, and let
Wx) = g(Hp  (x))¥(x).
1]
Lemma 5.7 There exist constants C1,C2> 0 such that

|P(s) | KG(¢,S),E(¢|Pi1))| s C1exp(C2!s|n+zJ|Ih||L2 ,s€C .
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Proof. If we use Lemma 2.5 together with (4.20) and (2.2), we

obtain

(e(¢Jk’s)’E(‘blpil)) =

C+ie —~
- ) I f(z-s)g(-wZ+|o)(cp |p,

(w:z)ij,W) d|z]|
weW(ajk,ail) c-ie i1' " jk

where ¢ is any real number with ¢ >Re(s). Using Lemma 2.3, one
can estimate the right hand side by Csexp(C4|s|)HhH , - Thus
' L

(4.16) together with Lemma 5.5 implies
[P(s) | I(F(8,s),E(¥|P 1)) ] s C1exP(C2|51n+z)(Hh“L2 + [lECv I, 1D,

for seC. Making use of Lemma 2.8 and Lemma 2.3 it is easy to see

that HE(¢|P11)H s CS”h|k2 . Furthermore, if we apply Lemma 2.5,

then it follows from (4.24) that

(F(¢,s),E(y|P,4)) = (G(o,s),E(y[P;1]).
Q.E.D.
Using again Lemma 2.5 combined with Lemma 4.27, we obtain
(G(,5),E(y|P;;)) =

- = etsmleugiuyau ccacs)o
. IR

i10¥)

+ e('s'Ipl)ug(u)du((B(s)¢)il,W)
R .
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Now we make a particular choice for g. Let heC®(R) with supph
contained in (t-1,t) and set g(u)=e(5+|p')u3%(e'25uh(u)). Then
the second integral involving g vanishes and the first one

equals 2s [ h(u)du. Furthermore, HgHLZ s Ceclsl(HhHLz + Hh'HLz).
R

Assume that h2 0, h#0. Using Lemma 5.7 together with (5.8) we
get an estimate for |P(s)|I(fA(s)¢)i1,?N. In the same way one can
estimate |P(s)|K(B(s)¢)il,W)|. Summarizing our results, we have
seen that there exist constants C,c > 0 such that for all ¢,v¥

GECus(o’o) with [Bll=1 ,||¥]] =1, we have

IP(s) | 1(A(s)0,¥) | s Cexplcls|®*?)
(5.9)

CP(s) |1 (B(s)®,¥) | s Cexplcls|™?)

for seC. This implies the following

Theorem 5.10 Let C(s) : Ecus(o,o)——» Ecus(g,o) be the intertwi-
ning operator. There exist entire functions F1(s) and Fz(s) of
order S n+2 such that

F,(s)
F,(s)

det C(s) = seC.

Proof. By Theeorem 4.30, we have det C(s) = detB(s)(detA(s))'1.
Set F1(s) = P(s)" det B(s) and Fz(s) = P(s)" det A(s). It follows

from (5.9) that F1(s) and Fz(s) are entire functions of order

sn+2., Q.E.D.
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6.Factorization of det C(s)

We keep the notation of the previous sections. In view of Theo-
rem 5.10 we can apply Hadamard's factorization theorem to facto-
rize det C(s). This however, needs some additional preparation.
2(t0+1)d.

Lemma 6.1 Let d=dim Ecus(o,O) and set q=e Then

lim q?oldet C(o+it)| = 0
. g+ ®

for all telR.

Proof. According to Proposition 4.7,
, - 2 2 -1
E(¢,5) = ©(2,s) - (B - (-s“+|p|“+u))7 "(H(0,s))

for -sz+|pl2+u¢ Spec(A). Here H(%,s) is defined by (5.4). If we
follow the proof of Lemma 4.10, then we see that there exists

t,€R independent of the orbit 0 such that

e(s+lp|)til(x)

P.
e ll(q’,S,XJ = ¢il(x)

for ¢€E_ (0,0) and H (x) >t H , i=1,...,1, 1=1,...,r..

Piq 0 Piq i

Using this fact together with (3.2), we see by comparing the

constant terms that

-e('5*|°|)t11FX)(c(s)¢)i1(x)

is the constant term of (A& - (-52+|p|2+u))-1(H(¢,5)) along P.q

for H (x) >toHp . Now observe that

P i1

il

H(E - (-s2+]oP+u))7 1| = dist(-s?+|pP+u,Spec(3))”
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(c.f. [K,V,§3.8]). But Spec(A)=[c,»), ¢>-=, Hence for

Re(s) ZC1,

(6.2)  |I(F ~ (=s%+ol*+)) T (He,s)) || s C,ls| 2 HCo, )

for some constants C1, CZ' Using (4.11), Lemma 2.8 and Lemma 2.3,
a simple estimation gives

’
(6.3) ||H(®,s)|| s C3|s!e(u0+ JRe(s) , seC.

o : | 2
Let geC”(R) with suppg C(to,to+1) and weLcus(rMi;\Mil’o’oil)'
Set w(x)=g(HP (x)) ¥(x). Using the observation above concerning
il ‘
the constant term of (3 - (-sZ+|p|%+u))” '(H(®,s)), it follows

from Lemma 2.5, combined with (6.2) and (6.3) that

| glwe (5t 1P Dvay ((cesren, 0] =
R

= 1B - (-sPelolZeu) TN (H(0, ), BP0 s

5] 1e (Mot TIRE(S) | gy 1p.

s C
i

. ol

Re(s) 2 C;. We may assume that t_2 u_. Let ?eEcus(c,O),llWH=T.

Then this inequality implies that

(Cls)e, 0| s Cgls| le2(ForIRELS) pe(sya .
Hence

ldet C(s) | scﬁlsl'deZd(t0+1)Re(s), Re(s) 2 C,.

This implies the Lemma. Q.E.D.
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Let o .,cﬁe(0,|p[] be the poles of det C(s) in Re(s) 2 0 and

10+
let a4 be as in Lemma 6.1. Set

(s-o.
S

1 )
(6.4) £(s) = q;° T T———AT det C(s)
1oy (s¥0y

1

Then £(s) has the following properties: -
1) £(s)E(-s) = 1, sel.
2) |g(s)| = 1 for Re(s)=0.
3) £(s) is holomorphic in the half-plane Re(s)> 0 and satisfies

|E(s)| s 1 for Re(s)z 0.

1) and 2) follow from (3.1). 3) is a consequence of 2), Lemma 6.1

and the maximum principle. Consider the series

Re
(6.5) _ Z———F—(n)
n n
where n runs over all zeros, counted to multiplicity, of &(s) in

the half-plane Re(s) > 0. Then we have

Lemma 6.6 The series (6.5) converges.

Proof. By 3), &(s) is analytic in the half-plane Re(s) >0 and is
continuous and bounded in the half-plane Re(s) 2 0. The conver-

gence follows from Carleman's theorem [T,§3.71] . Q.E.D.

Now observe that by Theorem 5.10,

H1(s)

H, (s

£(s) =
,(s)

, SeEC

where H1(s) and Hz(s) are entire functions of order S n+2. Let
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n be a zero of E(s). Then it follows from (3.1) that 1 is a
zero and -n , -n are poles of E(s). By Hadamard's factorization

theorem we get

i E(%,n+2)£(£,n+2)
P(s) N n

(6.7) £(s) = e
I E(=,n+2)E(=,n+2)
n°n =N

where n runs over half the zeros of IL(s) in Re{(s) > 0 and we have
chosen one representative for each pair {n,ﬁ} of zeros. P(s) is

a polynomial in s of order &sn+2. Now consider the expression

1 1 1
L(n) = L + — - -
k" k kK~ Cmk  (omEK

n

for 1 sk sn+2, neC. If k is even then Ik=0. Assume that k is odd.

Put11=|rﬂei& . Then

4

Ik = W COS(kS)

For k odd there exists a constant C(k) such that |cos(k$)]| s

s C(k) |lcos 8|. Hence by Lemma 6.6,

1,(n)| 8 C, (k) Il1,(m = c, (k) § Reln) .o
% k() | 1 - n 1 ‘ Y

Therefore, the exponential factors in (6.7} can be combined to

give

Q(s) ; (s-n){(s-7)
n (s+n)(s+f)

g(s) = ¢

Q(s) is a polynomial of degree s$n+2. The infinite product can

be rewritten as
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- Re(n)
O -4 oy tsem

and by Lemma 6.6, this product is absolutely convergent.
Now consider Q(s). The equation E(iXx)E(~-iA)=1,XxéR, implies
Q(irx) + Q(~ix) = 27il for some 1leZ. Thus

[232]

Q(s) = ] akszk+1 + mil
k=0
Moreover by (3.1), E(s) = E(s). Therefore a,eR. Let ko be the

largest k such that ay #0. Assume that ko >0. If ay > 0, we get
0

gE(o) ~ exp(ak002k°+1)

for ceR. and 0 — = ; This contrdicts the fact that [&(s)| S 1 in
Re(s) 2 0. Now assume that ak'o <0. Then we can choose s in the
half-plane Re(s) >0 so that Re(52k°+1)< 0 and tends to -= as

s — ®, Again, we get |E(s)] — «. Thus Q(s)=as + 7il, aeR, a <0.
Using (6.4), we obtain

Theorem 6.8 Let 01,...,016(0,[p|] denote the poles of det C(s)
in the half-plane Re(s)2 0 and let n run over all poles, counted
to multiplicity, of det C(s) in the half-plane Re(s) < 0. Finally,

let q=q1ea. Then

=
St

s+0,
, SE€C
-0

3 op &
S ns-

det C(s) = det C(0)q° T
i '=1 j

J

=
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Using Theorem 6.8 we can compute the logarithmic derivative of

det C(s):

1
N o o5 2Re(n)
s log det C(s) = logq- JET R _02 E (s-n)(s+7)
J

Now put s=iX , AeR. Then

a—logdetC(lk) = logq + 2 —Z_LZ_ *

j=1 A +o
(6.9)

2Re(n)
n Re(n)?+(A-Im(n))?
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7.Estimation of the number of poles of det C(s)

Let the notation be the same as in §3. Our purpose in this sec-
tion is to obtain an estimate, which is uniform with respect to
0 , of the number of poles of det C(s) ina finite region.

As above, let p=u(0) be thecommon eigenvalue -x(®y ), xe0

3 2
i1 il

i=1,...,1, 1=1,...,ri. First we prove

Theorem 7.1 There exists a constant C > 0 which is independent

of 0 such that

A
f 3% log det C(iA) dx | s C(1+(A2+|p|2+u)n/2)(1+un/2), AeR.
-A

Proof. Let t  be as in §4 and t 2t . Set

—25t|o|

. Ct(s) = e C(s).

In view of (3.1), Ct(s) is unitary for Re(s)=0 and hence, can be
diagonalized. Moreover, Ct(s) is holomorphic in a neighborhood.
of Re(s)=0. Therefore we can apply Rellich's theorem [Ba,p.142]
which implies that there exist real valued real analytic func-
tions 81(A),...,Bd(l} of *R such that ei81(l),...,ei8d(l) are

the eigenvalues of Ct(il). Each Bj(k) is only determined up to
2nZ. Moreover, the functional equation (3.1) implies Ct(0)2=1d.

Hence Bj(0)=ﬂ1, leZ, j=1,...,d. Put
B.(A) = [ B!(u) du, j=1,...,d.
j o I

Then we can choose either 8j=§j or Bj=§j+n and we get
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d .
A -~ ~
(7.2) [ S logdetc (ir) axr [s2 ] B ()] s 2dmax B, (1)].
-A j=1 j J
. ' iB.(w)
Let nj(A) be the number of points we[0,A] such that e J =-1,

i.e., Bj(w)=(2k+1)n for some kéZ. Obviously, we have

|Bj(A)] 3 41Tnj(A) , j=1.,...,d .

Let n(A) be the number of points we[0,A] such that C,(iw) has at
least one eigenvalue equal to -1. Then nj(A)S n{A), j=1,...,d,
and by (7.2), it is sufficient to estimate n{A). Let welO,A] and

¢6Ecus(°’o)’ $ #0, and assume that Ct(iw)¢=-¢, i.e., C(s)o=

=-eZIWt|pl¢ Set T=tﬁ). Using Lemma 3.14 and Theorem 3.23, we

obtain

n(A) s NT(A2+|p]2+u) s CO1+(a%+]p) %+ )™ %)

Furthermore, d=dhnEcus(c,0) can be estimated by Theorem 9.1 of

[D1]. Then (7.2) implies our result. Q.E.D.

Now we can estimate the number of polés of det C(s) in the

half-plane Re(s) <0. First we consider poles on the real line.

Observe that for oemf, .
oy as f1,
dx s dXx
-1 0"+ - T+

In Theorem 7.1 we put A=1 and then insert (6.9). If we make use

of Corollary 3.26, we get
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1
(7.3) 2logq + [ 1 gRe(n) > di | § C(1+u3n/2)
-1 n Re(n)®+(x=-Im(n))

with C independent of 0 . We distinguish two cases:

a) qe 1. By definiton of q, we have

0$logqs 2(t0+1 )dim Ecus(c,O)

+Using Theorem 9.1 in [D1], it follows that
log q s C1(1+un/z)

with C, independent of 0 . Since Re(n) <0, (7.3) implies

' 1
(7.4) [l “;e(n” - dh 5 C, (147
-1 n Re(n)“+{(x~Im(n))

b) q <1. Then logq <0. On the other hand, all terms in the se-
ries on the left hand side of (7.3) are negative. Hence we get

(7.4) in this case too.

Let ¢ >0 and denote by N(c,0) the number of poles, counted to

multiplicity, of det C(s) in [-c,0). Then

N(c, 0) %c l_daxr s } —z-—z|°' dA
c, s
-17¢c 142% -csi<o =1 o+
¢ pole
1 )
-1 n Re(n)®+(x=-Im(n))

Using (7.4) and Corollary 3.25, we get
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Theorem 7.5 Let ¢ >0. There exists C > 0 independent of 0 such
that the number of poles, counted to multiplicity, of det C(s) in
[-c,|pl) is bounded by C(1 + u3n/2).

Choose an orthonormal basis ¢yy..., 05 in Ecus(c,o) and set
Cij(s) = (C(s)¢i,¢j). Let s  beapole of C(s) and let vij(so) be

Set

the order of Cij(s) in Se-

vis ) = max v..(s.)
0 i3 ij*7o

If s, is not a pole of C(s) we set v(s )=0.

Corollary 7.6 Let c>0. There exists C >0 independent of 0 such|

that
) V(s ) s C(1 + p3n/2y
-choslpI
Proof. We write
Tow(s)) = T vis ) + 7 ov(s)
—choS[p| ° -css 50 ° oSsOs|p| °

Since v(so) $1 for s 20, the second sum equals the number of
poles of C(s) in [0,]p|] which can be estimated by Corollary 3.25
Now assume that s  with Re(so) <0 is a pole of C{s). We distin-
guish two cases:

a) C(s) is holomorphic at S,

By (3.1) we have

(7.7) C(s) = C(-s)~ ' = (det C(-s)) " "D(-s)
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and D{-s) is obtained from C(-s) via Kramer's rule. Then D(-s)
is holomorphic at S, - Hence det C{(-s) has to have a zero of order

2 v(so) at s_. Again, by (3.1),
(7.8) det C(s) = (det C(-s))"

and therefore, det C(s) has a pole of order Zv(sgjlat So-

b) -s_ is a pole of . C(s).

Bince Re(-so)> 0, it follows that -506(0,|D|]and v(-so) < 1. Hence
each (D(s)¢i,d>j) (1 $i,j sd) has at most a pole of order d-1 at
-5, .Assume that v(so) 2d. By (7.7), it follows that det C(-s) has
to have a zero of order Zv(so)-d+1 at s_. By (7.8), det C(s) has
h pole of order 2 v(so)-d+1 at s . Our result follows now from

Theorem 7.5, Corollary 3.25 and Theorem 9.1 of [D1]. Q.E.D.

The same method can be used to estimate the number of poles of
EetC(s)'in a circle of radius A . If we repeat the arguments
hbove with the integral over [-1,1] replaced by the integral over

[-2A,2A ], we get

Theorem 7.9 There exists a constant C> 0 which is independent of

0 such that

71 sC(1 + A" 4 u3n/2)
In| SA

, hzo,

vhere n runs through the poles, counted to multiplicity, of
det C(s).
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8.The trace class conjecture

We shall now prove Theorem 0.1 of the introduction. The proof
will follow from Theorem 7.5 and the description of the residual
spectrum by Laﬂglands (L1].

As mentioned in the introduction, the discrete spectrum
Lg(T\G,o) decomposes in the direct sum of the space of cusp forms

L2

cus(r\ch) and its orthogonal complement Lies(P\G,o) - the re-

sidual spectrum and, in view of [D1],it is sufficient to prove

Theorem 0.1 for eigenfunctions in % ( I'\G,0). For this purpose

Tes

we have to recall the description of Lies(P\G,o) obtained by

Langlands in [L1,Ch.7]. It follows from his theory of Eisenstein
2

systems that L (T\G,0) is spanned by "iterated residues" of

Tes
cuspidal Eisenstein series. We shall now explain this in more
detail.

Let P=NAM be a Q-parabolic subgroup of G. If a€dy, denote by
a= ZHd/a(Ha) the co-root associated to o . Given aedy and ;eR,

we set

H(a,c) = {Aeaal Al&)=c}

Pn affine éubspace H ca& is called admissible if H is the inter-
section of such hyperplanes. Suppose that H = H2 are two admis-
sible affine subspaces of ag and H, is of codimension one in Hy
Let F(A) be a meromorphic function on H1 whose singularities lie
klong hyperplanes which are admissible as subspaces of a&.Choose
B real unit vector A, in H1 normal to H2‘ Then we can define a

meromorphic function Res F on H2 by
2
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1 . .
- _8 2nig 2nid
RestF(A) T g F( A+ Ge A,) dle )

if § is so small that F(‘A+ zA ) has no singularities for 0 <|z]

<28 . The singularities of Res, F lie on the intersections with
2

H, of the singular hyperplanes of F different from H,. Now con-

sider a complete flag

of affine admissible subspaces of aE and let AiGHi be a realunit

vector which is normal to H,

j-1» i=1,...,p. We call F = [H.,A. )}

i1
an admissible flag. Let F be a meromorphic function on a& whose

singularities lie along admissible hyperplanes of ag. Then we de-

fine inductively Fi by

F_ = F, Fi = ResH F i=0,...,p-1.

P g 1+17
Set

ResFP = FO

2

Now let yeZ(m) and $€L s

(TM\M,U,X). The singularities of the
Eisenstein series E(P|A,®,A) lie along hyperplanes of ag which

are defined by equations of the form A{&) = w, weC, agdp. Let

H[ai,ci), i=o,...,p-1, be a set of real singular hyperplanes of

i ' = = . . i=0,...,p-1
E(P|A,9,A) with 2 H(oy,cy) {Ao}. Set Hi_jgiH(aJ,cJ), i=0, sp-1,
and Hpna&. Choose real unit vectors AiEHi normal to H, .. Then

i’Ai} is an admissible flag. Furthermore, let ¢eCZ(a) and

let $(A) be its Fourier transform. $(A) is holomorphic on ap.

F={ H
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Put

-

(8.1 v= Res:[E(P|A,0,0)5(A)] .

It is clear that ¢y depends only on the derivatives of § at Ay
Let C(a*) be the positive cone in a* spanned by the simple roots

pf (P,A). If AOGC(a‘) then ¥ is square integrable and satisfies
‘ 2 2
ap=Clla 19 - [lopll® + x(2))¥

2

Lres

(T\G,0) is spanned by all the ¢ obtained in this way where
P runs over a set of representatives of the T'-conjugacy classes
bf @-parabolic subgroups of G. For a given P, x runs over E(mp),,

2 . 2 .
and ¢ over Lcus(rMP\MP,o,x). Furthermore, if weLreS(r\G,o) is de-
fined by (8.1) then HAOIF < prlﬁ. Finally, observe that the di-

hension of L% (r,, \My,0,%x) can be estimated by Theorem 9.1 in
cus MP P

{D1]. Therefore, the proof of Theorem 0.1 is reduced to the fol-|

|
lowing problem: For a given cuspidal Eisenstein series E(P|A,d,A)

e have to estimate the number of its singular hyperplanes, coun-
ed to multiplicity, which are real and intersect a given com-
act set containing the origin. Using the scalar product for-
mula for truncated Eisenstein series ( [L2,§9),[0-W,p.487]), it
follows that it is sufficient to estimate the corresponding num-
ber of singular hyperplanes of the intertwining operators

:P2|P1(w:A), weW(aP ,apz){ for any pair P,,P, of associate Q-para

1
bolic subgroups of G.

To proceed we have to recall some facts from [H,V]. Let P be

r class of associate Q-parabolic subgroups of G. Let P=NAM be
a

| .
Dmle_ls_a_ang;m;anmuespundame_hemean_uﬁm_m_ﬂmm—

ny element in P . Denote by C the set of Weyl chambers in a .
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(c.f. [H,V,§4]1). To each CEC one can associate a unique P-€P

with Po=NCAM. Let c= {C c,’ i=1,...,r. This

set contains a set of representatives for P/GQ. For each conju-

1""’Cr} and set P.=P

gacy class P;= {gPig'1| geGQ} we choose a set of representatives

Pik (1 sk Sri) for the I'~conjugacy classes in Pi and choose Yik

. -1 X

in G02 such that Pix=YikPiYix- Let A, be a split component of Pi’
. -1 . .

151 sr, and Aik=yikAiyik’ Then A; is a split component of Pik‘

Let pikzNikAikMik be the corresponding Langlands decomposition.

Let 0 =] 044 li=1,...,T, k=1,...,ri} be a set of associate or-

bits where Oikez(mik)/W(Aik). Set

T.
1

L. = © L. (Iy \M,,,0,x), L., = @@L, .
ik X€04 Cus™ M. ik i k=1 ik

Given.weW(ai,aj) and A€al o, the intertwining operator
2

Cji(w:A):Li ——-Lj

is defined by

Yik
(v,C..(w:M)o), = (v,c (yoqwy. .t T A)o)
ql Li le‘Pik j177ik le !
for pel s wele.
As explained in V,§4 of [H], the functional equation implies

that there exists k {1 Sk s71) such that
Cji(w:A) = Cjk(1:wA)Cki(w:A)

and Cki(wzh) is entire. Hence it is sufficient to consider

C..(1:A). Furthermore, by Lemma 117 in [H,V,§4] there exists a

ji
sequence i=i,,...,i =j, 1si,sT, such that the chambers C.

1
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and Cy are adjacent for all 1=1,...,p-1 and
1+1

(8.2) Cji(1:A) =C, 5 (:A)---Cy

. {1:p8)C.
pip-1 312 L

. (1:A).

21

Hence our problem is reduced to the investigation of Cji(1:A)

for adjacent chambers Ci and Cj. This is done in the proof of

Lemma 116 in ([H,V,§4] . We recall the main facts. Assume that

i=1 and j=2. Since C1 and C2 are adjacent, there exists a Q-pa-

rabolic subgroup (P',A') of G which dominates (P1,A) and (PZ,A)

and whose rank equals rank(P1)-1. Set (P;k;A;k) = y1k(P',A') and
y

(Pél’Aél) = “21(p' A') (15ks T,, 1s1s7r,). We may assume that

there exists yel' such that P;k = YPél. Otherwise one has

1.1k 2 , vu
K:P21|P.”((y21)’11<° A)=0. Let ue(N21)Q be such that '“A

t

21
. -1
Let wew(a1k,421) be given by w=Ad(y21y1k) on a, and let A =

]
= Aqye

=Y1kA . Then

: Y21 - -1 :
(8.3) cp (wing)=exp(= “7(A+p,) (Hy (¥ T, cYPZII.Pw(YuwcAO)

211P1x.

where T is defined by (Tyw)(x)ﬂw(yx). Let (*P,,*A)) =

' Yu
]kn P21’

If *Pi=*Ni*Ai*Mi is the Langlands decomposition of Py with re-

= ' ! * * = 1 Yu .
(M1knP1k,M1knA1kJ’and (*P,,*A)) = (M My, N YR ).

* i= *M.= *:u =
spect to Ai, i=1,2, then M1 MTk and. Mz MZI‘ Moreover, aqx
_n? * = ' * -
aly ® a,. Let W s Yuw. Then w0=1 on ajy. Denote by LA the re
striction of w, to 'a1 and by *AO the restriction of Ao to *a1.
Then

(8.4) cy (yaw: A ) = c, e (*W_ %A ).
Pyq Py o P2|P1 o' "o




82

|

Now observe that *P, and *Pz are Q-parabolic subgroups of M;k of
rank one. Therefore we can apply Corollary 7.6 to estimate the
real poles of the right hand side in a finite interval [-c,|p]l

Then (8.2) together with (8.3) and (8.4) leads to

Proposition 8.5 Let Bp = a; ¢ be the ball of radius R with cen-
ter at the origin and let Nji(R’o) be the number of singular hy-
perplanes, counted to multiplicity, of Cji(1:A) which are real

and intersect BR' There exists a constant C>0 which is indepen-
3

9
.

Hent of 0 such that

2n
Nij (R, 0 s CO1 o+ A%,

This completes the proof of Theorem 0.1.

At the end of this section we shall explain how one can derive
the adélic version of Corollary 0.2 from our results.

Let G now denote a reductive linear algebraic group defined
pver Q. For a given place v of @ we shall write G(Qv} for the-

group of Q -rational points of G. In particular, G(IR) is now the

of adéles of Q and let G(A) be the corresponding adéle-valued

group. If f stands for the set of finite places of @ and af is

~the corresponding ring of finite adéles, then

G(A) = G(R)G(AD).

et P, be a fixed minimal parabolic subgroup of G, defined over

. At any finite place v, define K, to be G(Zv) if G(QV)=

PO(QV)G(EV). In this case K, is a maximal compact subgroup of

_"_,e_,rt_wm__ —_—

teductive Lie group which we denoted by G before.lLet A be the ring

b .
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G(QV). This covers almost all v. For the remaining v let K, be
any open compact subgroup of G(Qv) such that G(QVJ=PO(QV)KV. If
v=e . we let X be a maximal compact subgroup of G({R) such that
the Lie algebras of K and AP(RJ are orthogonal under the Killing

form. Then

is a maximal compact subgroup of G(A).

f). It follows from

Let Kf be any open compact subgroup of G(A
[B1,§5] that G(A) is the disjoint union of finitely many double

Cosets G(Q)xiG(]R)Kf, 1$is1. Put

-1 .
ry = G(Q)nxiG(IR)foi L i=1,...,1 .

Then T, is an arithmetic subgroup of G(RR) and

=

(8.6) GLONG(A) /KT = || (TNG(R))x,

1=1

This allows us to apply our results to the adélic case.
Let Z be the center of G and Z(R)® the connected component

of 1 in Z(R). It follows from (8.6) that

£ 1
L2(2(R)°G(QNG(A)Y = ° L2(2(R)°T\G(R))
i=

as G(IR)-modules. Furthermore, if Lg(z(mJ°G(mT\G(A)) is the dis-
crete spectrum of the right regular representation R of G(A) on

L2 (Z(R)°G(QNG(A)) then
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f

1
(8.7)  LAZ(W°@N\6(ANY = @ LICZ(RI°T\G(R))

i=1

as G({IR)-modules. Let

be a function on G(A) which satisfies the following properties:
1) he C(G(R))

) For v finite, h_ is locally constant with compact support.

v
) For almost all places v, h, is the characteristic function of

6(Z).

The linear combinations of these functions are usually denoted
by c:(G(A)). Assume in addition that h is K-finite. Then there
exists an open compact subgroup Kf of G(Af) squ that h is in-
variant under Kf. Hence R(h)'maps LZ(Z(RJOG(Q)\G(A)) into the

subspace of kf-invariant functions. Let Rd(h) be the restriction
of R(h) to the discrete spectrum. It follows from (8.7) that on
the Kf-invariant subspace, Rd(h) corresponds under the isomor-

phism (8.7) to €>1;1 R?_(hm). Using Corollary 0.2, we get
1

Corollary 8.8 For each K-finite function hGCz(G(A)), the opera-

tor Rd(h) is of the trace class.

In the same way one can prove that Ri(h) is of the trace class

For any character x of Z{R)®. Here RX is the right regular re-

fular representation twisted by the character ¥
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