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O.Introduction

Let G be the group of real points of a reductive algebraic

group which is defined over m and satisfies the sarne"assumptions .-"_-

as in [H, I] .. Let r be an ari thmetic subgroup of

Rr the right regular representation of G

theory of Eisenstein series [L1] imp1ies that

an orthogonal decomposition

G and denote by

in L2 ( r\G). The

L2 ( r\G) adrni ts

where L~ ( r\G) is the direct surn of allsubspaces of L2(r\G)

that correspond to i rreducible subrepresentations of Rrand

L~(r\G) is the subspace of L2(r\G) where Rr deeornposes con

tinuous ly. Denote by R~ the restrietion of Rr to "":~~.( r\GJ.

Le-t 'K be? maximal compact subgroup of G. Suggested by Se 1

berg' 5 work on the trac.e formula [S] i t is natural to conj ec

ture that for each K-finite fEC;CG), the operator

R~(f) = I f(g)R~(g)dg
G

is of the trace class. This is the so-called trace e1ass conjec-

ture. To estab1ish the trace c1ass property for the operators

R~ ( f ) i s, 0 f cour 5 e, t he f i r s t s tep t 0 ward a t raee formu1a in

the spirit of Selberg. The ease G=SL(2,m) was treated by Sel-

berg and the trace class property in this ease was first estab

lished by hirn (e.f. ~J). The proof is essentially the same for

all real rank one groups. For groups G of.m-rank one the trace

class conjeeture has been proved by Donne1ly [D2J and Langlands.

The purpose of this paper is to prove the trace class conjec

ture in general. In our approach, the trace class conjecture is
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a eonsequenee of an estimate of the numbeT of'~igenvalues "of

the Casimir operator acting on a"fixed K-typea

Before we ean state the precise result we have to introduce

some notation. First observe that, by passing to a subgroup of

finite index, we may assume that r aets without fixed points

on the symmetrie space X = G/K. Let 0: K--+-GL(V) be an irre

ducible unitary representation of K and let E be the asso

ciated locally homogeneous vector bundle over r\Xa The Casimir

element of G induces an elliptic second order differential

operator h. acting in C~C r\x, E). 6 isessentially selfadjoint

in L2cr\X,E) and therefore, has a unique selfadjoint extension

6 to an unbounded operator in L 2 ( r\x, E) a Our main resul t is

the followi:ng:

Theorem 0 a 1 Let N( A) be the number of linearly independent

eigenfunctions of 6. with eigenvalue less than A • There exists

a constant C>O such that

for A ~ 0 "and n:: dirn X a

The Paley-Wiener theorem of Clozel and Delorme [C-D] implies

then:

Corollary Oa2 For each K-finite fEC~CG), the operator R~(f)

is of the traee class.

Even more is true. It follows from Theorem 0.' that R~(f) is

of the trace class for each K-finite fES'(G) where S'(G) is

Harish-Chandra's Schwartz spaee of integrable rapidly decreasing
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functions on G. It is also very conceivab1e that the .K-finite-

ness assumption ean be removed by making use of an improved ver-

sion of Theorem 0.1 whieh ine1udes the dependenee on oE,K. We

think that the fo11owing estimation ho1ds

....
with C>O and ke~ independent of oeK. One only has to im-

prove Proposition 3.17. We sha11 discuss this point e1sewhere.

Another observation is that Coro11ary 0.2 imp1ies the corres

ponding resu1t for the ad~lie case Cc.f.§8).

We shall now describe the content of this paper and

the main steps of the proof of Theorem 0.1. First we observe

that the discrete spectrum has a further decomposition

into the direet surn of the space of cusp forms L~us Cr \G) and
2the res idual speet ruin Lres Cr \ G). For cuspidal e igenfunet ions

the estimation claimed in Theorem 0.1 is true by Donnelly's re

sults [D1]. Therefore, it remains to investigate the residual

spectrum. It fol1aw's, fram Langlands ' theory of Eisenstein sys

tems that L;escr\G) is spanned by "iterated residues" of cus

pida1 Eisenstein series Ce.f. [L1 ,§7] ). This statement will be

made more preeise in §8. Using this description of the residual

spectrum, the proof of Theorem 0.1 ean be redueed to the fol-

lowing problem: For a given euspidal Eisenstein series, we have

to estimate the number of its singular hyperplanes which are

real and intersect a fixed compact set containing the origin.

But the singularities of a cuspidal Eisenstein series are essen-
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tially the same as the singularities of the corresponding inter

twining operator. Using the factorization property of the inter-

twining operators, one can reduce everything to cuspidal Eisen-

stein series .associated to rank one ~-parabolic subgroups of the

Levi components of ~-parabolic subgroups of G_ 'Thus, we only

have to consider rank one cuspidal Eisenstein series. This

is the first step.

Let. P be a class of associate rank one parabolic subgroups

of Gwhich are def ined over ~. The theory of Eisenste in se-

riesassociates to P a sequence of intertwining operators

C(s) : E (0,0)----...1 E (0,0)cus cus

where Ecus ( 0, 0) is a f ini te-dimens ional space pf automorphic

forms and C(s) is alinear ope rator which is a meromorphic

function of seI: (e.f. §3). The problem is now to estimate the

number of poles, eounted to multiplicity, of detC(s) in a fi

nite interval of the real line. In §3 we consider those poles of

det C(s) which a Te eontained in the half-p lane ·Re ( 5 ) >O. Le t

tEm. Using the analytic properties of C(S), it follows that the

number of poles of det C(s) in Re(s»O i5 bounded by the di-

mension of E
CU5

(0,0)

that

(0.3)

times the number of points S e:m.+ such
o

for some non-zero <%l.-EEeus ( a, 0). Sinee E (0 0)' eons ists ofeus '
cusp forms on the Levi components of a fini te number of para

bo I ic subgroups in P , we can U5e Donne lly' 5 resul ts [D 1] to

estimate the dimen5'-ion .of E ( 0,0 ). On 'the other 'hand, eaehcus
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~EEcuS(o,O) gives rise to a rank one cuspidal Eisenstein series

E(~,s), se[. It is known that the constant term of E(~,s) along

any rational parabolic subgroup of G, whieh is not in P , van

ishes. Furthermore, the constant term of E(~ ,5) along any

pep is deseribed by C(s). Let ATE(~,s) be the Eisenstein se-
o

ries E(~,so) truneated at level t (e.f. §3). If (0.3) is satis-

f i ed t hen ATE( ~ , 5 0 ) bel 0 ng5 tothe Sobolev 5 pace H1( r \X , E)

and all its constant terms vanish in a neighborhood of infinity.

On the space of all these sections of E we introduce an auxi

liary selfadjoint operator ßT which has pure point speetrum.

In the two-dimensional ease this operator was first introdueed

by Lax and Phillips [L-P] and has been employed by Colin de Ver

diere in [CoJ. Under the assumption that (0.3) is satisfied, the

truncated Eisenstein se ries ATE(efl,so) is an eigenfunction of

ßT. Then we generalize the method of Donnelly [D1J to get an

estimate on the growth of the number of eigenvalues of ßT. Com

bining these results gives the desired estimation for the numher

of poles of det C(S) in Re(s»O.

The next step is to show that detC(s) ean be written as

(0 . 4)
F 1 (5)

det C(s) C FZ(s)

where F1(5) and FZ(s) are entire functions of finite order.

In the ease of SL(Z,lR) this result is due t,o Selb~rg lc.f. [He,Ch.. yI,

§ 11 J for a complete proof). Dur proof of this resul t is based

on §4 where we develop a new method of analytic continuation of

rank one cuspidal Eisenstein series. This method is essentially

an 'extension of the method employed by Colin de Verdiere [Co]

in the case of SL( 2, lR). In the higher rank case, the geometry
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of r\x is much more complicated so that several technical dif

ficulties arise. In §5 we employ the results of §4 to establish

( 0 . 4 ) .

Using (0.4) together with Hadamard's factorization theorem,

we obtain in §6 the following product formula

(0.5) det C(s)
1 5+0.

c det C(O) qS. TI ........J.
5-0.

j = 1 J

TI s+n
s-nn

+Here °" ... ,°1EIR are the poles of det C(s) in the ha.lf~plane

Re(s) '= 0 and n runs over all poles of det C(s) in Re(s) < O.

q is a certain constant which satisfies log(q) S C dirn Ecus(a,O)

and C is a constant which depends on1y on P • For SL( 2 ,lR..)

this p!oduct formula is also due to Se1berg (c.f.[He,Ch.VI,§12]).

In §7 we first estimate the integral

(0.6)
A cl

:.~ crs log det C( i).)d).

in terms of A and the orbit type ° . Let PeP with Langlands

decomposition P = NAM. M is the group of real points of a re-

ductive algebraic group defined over mand rM = Nr n M is an

arithmetic subgroup of M. The orbit type 0 determines an eigen-

value lJ of the Casimir operator nM acting on seetions of the

loeally homogeneous veetor bundle EM over fM\M/Kn M associa-

ted to o Ix n M. Using facts estab1ished in § 3 , we show that the

integral (0.6) is bounded from above by the number of eigenva-

lues less than A2
+ lJ + I Pp 1

2 of the operator ßT times the

dimension of Ecus ( 0,0). This enab1es us to estimate (0.6) by

C(1 + An + lJn), n :: dimX. Now we ean use (0.5) to compute the

logarithmic derivative of detC(s). The formula we obtain shows



E, is the surn over all poles in Re(s) < 0

that

where

d/ds log det C(i)') i sessent i all y 0 f t he form

E, (resp. ~) is negative (resp.

mate the integral of 1:z over

also estimate the integral of E,

of real poles of det C(s) in a fini te interval [-C,oJ, c>O.

This completes the estimation of the number of real poles of

det C(s)· in a finite interval.

Finally, in §8 we prove Theorem 0.'. We also ~ndicate briefly

how the ad~lic version of Corollary 0.2 ean be dedueed from

Corol1ary 0.2.

Dur method to prove the trace e1ass conjecture has also other

applieations. It yields, for examp1e, estimates for. the number

of zeros of principal L-funetions for GL(n). This will be dis

cussed elsewhere. It is also an interesting question to under

stand to what extent in the ease of the Laplaee operator the

loca11y symmetrie strueture of r\X is relevant fo.r Theorem 0.'

to hold.

The author is very grateful to A.Borel, W.Casselman, R.Lang

lands and P. Ringseth for helpful conversations. Most of this

work has been done during a visi t of the author at "The Insti

tute for Advance Study" in Princeton. He wants to thank the

Insti tute for i ts hospi tali ty and the very stimulating atmo

sphere.
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1.Preliminaries

1.1 Let G be the group of real points of a reductive algebraic

group G defined over mwhich satisfies the same assumptions as

in [H,I,§l J. r will denote an arithmetic subgroup of G. We fix a

maximal compact subgroup K of G and set X c G/K. Throughout
this paper we shal.l assume tha~ r aets without fixed_poi~ts on X.
By e we shall denote the Cartan involution of G wi th respect to K.

1 .2 The Lie algebra of a Lie group G, H, . .. is denoted by the

corresponding l.c. German letter 9 , h , •• ~ By U( 9 ) we shall

denote the universal envelopind algebra of the complexified Lie

algebra g0a: and by Z(g) the center of U(g). Z(g) contains

the Casimir element nG (or simply n ) of G with respect to an

admissible real valued bilinear form F on g (e.f. [B-GJ).

1.3. Let P be a parabolic subgroup of G defined over ~. The

group P of real points of p. is called a ~-parabolic subgroup

of G. We may decompose P as

( 1 . 1 )

(or just NAM, if there is DO danger of confusion) where Np is

the unipotent radieal of P, ApMp is the unique Levi subgroup cf

P stahle under e and Ap is the identi ty component of the

group of real points of the maximal 8-stable torus cf the ~

split radieal of P. The decomposition (1.1) is called Langlands

deeomposition of P. Ap is called special split component of P.

The rank of P

group of Ap

r M c Nr n M, KM C

We have G =

is defined to be tbe dimension of Ap . The Weyl

is W(A p ) = NG(Ap)/ZG(Ap ) .. Furthermore , we set

K nM and XM = M/KM. Ob s erve that K nM = K n p .

PK. Therefore, any element xEG has a decompo-
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sition

x c namk

with kEK) meM) aEA) nEN. The factor a is uniquely determined

by x. Set

Hp(X) clog a .

The roots of (P)A) will be denoted by ~p and ~p will denote

the set of simple roots of (P)A). For ße~p) let

Then

As usual1y) let

Pp c ~ I dirn ( "ß) ß
ßE4>p

For a giyen subset F c:: 'fp we denote by PF

group of G associated to F. Note that

algebra aF of the spli t component of

H€a such that aCH) = 0 for all aEF.

the ~-parabolic sub

p c:: PFand the Lie

PF consists of all

Let P = NAM be a rank one ~-parabo1ic subgroup of G. Choose

Hea such that ]IHI! =', and aCH) > 0) aE'fp • There exists a

unique selfadjoint element nMEZ(m) such that

( 1 • 2 ) 2n
G

= H - 2p(H)H + ~ Cmod nZ(g))

( c . f . [H ) I ) §6 ] ). I f ~ i 5 de f ine d by t he a dmiss i b 1e b i 1ine ar

form F on g ) then ~ is defined by the restrietion of F
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to m x m •

1.4 Let P be a m-parabolic subgroup of G with unipotent rad

ieal Np. Let f be a eomplex valued loeally bounded measurable

function on r\ G. The eonstant term fP of f along P is

defined as

f p ex ) = J f enx )dn

r n Np\Np

where the measure dn is normalized by the eondition that the

volume of r n Np\ Np equals

sisting of all f satisfying

1. The subspaee of L2cr\G) eon

fP = 0 for all ~-parabolic sub-

groups P 'I- G is denoted by L~us e r\ G). This is the space of

cusp forms in L2er\G). Given a finite-dimensional unitary re

presentation 0: K--.. GLeV) of K, put

Let f be the homogeneous veetor bundle over X associated to

o and put E = r\E. Then L2er\G,o) can be identified with the

space L2er\X,E) of square integrable sections of E. Set

This is the space of cusp forms
2Leus e r\G, 0 ) wi th a stibspace of
2Lcuser\X,E). Similarly we define

2in L e r\G, 0). We may identify

L2er\X,E) which we denote by

This space can be identified with Cooer\X,E) - the space of Coo_

sections of "E.
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'2. Eisenstein series and wave packets

For the eonvenienee of the reader we shall reeall in this

seetion some basie facts eoneerning Eisenstein series and wave

paekets. For all detai 15 we refer to [H], [L1]. Sinee we are

working wi th f\G in plaee of G/f we have to change same

signs and inequalities in the statements we are using from [H].

It will be elear from the eontext what has to be changed.

Let P be a m-parabolic subgroup of G with special split

component A and Langlands decomposition P c NAM. Let (o,V)

be a unitary representation of K. in a finite dimensional Hil-

bert space V. Let X: Z(m)----+[ be a character of ,Z(m) and

let 0M: KM -----+ GL(V) be the restriction of 0 to KM c K n M.

Set

2It is known that Lcus ( fM\M,o,X) is a finite dimensional Hil-

bert space of automorphic forms with inner produet induced from

2 \ 2the inner product in L (fM M,oM). Let ~€Lcus(fM\M,o,X). We ex-

tend cl> to a funet ion cf! : (r n P) Np\G ----+V by

( 2 . 1 ) -14>{namk) c oCk) cl>(m).

Let a* be the dual Lie algebra cf a and let

( a*)· c { A€a* <A, a> > 0 for all CtElfp } .

• Then the EisensteinLet Aea* be sueh that Re (A) E pp. ( a*) .([

series attaehed to ct> is defined as
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The Eisenstein series is absolutely and uniformly convergent on

compact subsets of (pp+(a*)++1="f a*) x G. Let Pi ,i:c' ,Z, be two

~-parabolic subgroups of G with special split components A.
1

and Lang lands decompos i'tion P. = N. A. M. , i=', Z. (P, ,A, ) and
1 1 1 1

(Pz"Az) are said to _be associate if there -exists- XEG~ such

that Ad(x)a, = a Z. The set of all such isomorphisms is denoted

by W(a"az). Set W(a) m W(a,a). Let xeZ(m,), $ELZ
(rM\M"a,x)cus ,

and Aea;,a: with Re(A)ep,+(.a'i)+. If (P"A,) and (Pz,Az) are

not associate and rank Pz ;a rank P" then

Pz I -E CP, A, ,4>,A) - o.

If (P, ,A,) and

of E(p,I.f\"tfl ,A)

(PZ,AZ) are associate, then the constant term

along Pz is given by

(z.z)
(WA+PZ)(HZ(X))( ( . ) )( )e cp lp w.A 4> x

Z ,
weW(a, ,aZ)

where Pz = Pp , HZ = Hp and
Z Z

cp Ip (w: A)
Z 1

is a linear operator which is holomorphic for Re(A)EP1+(·a~)+.

This operator is -calIed intertwining operator.
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Lemma 2.3 There exist C > 0 and H1E a, such that'

(Re(A)+P1)(H,)
Ilcp lp (w:A)11 s C _e _

2 , TI <Re(A)+p"n>
aelfp

For the proof see Lemma 38 in [H,II].

The Eisenstein series E(P IA,~,A) and the intertwining ope

rators cp Ip (w:A) have ana1ytic continuations to meromorphic
2 ,

functions of A E ~:a: whpse singularities 1ie alang hyperplanes

and they satisfy a system af functional equations.

For a given ~-parapolic subgroup P c NAM of G we set

Given xeZ(m), denote by

eCC
( (r np)N\G,a) spanned

= f(exp(Hp(x))~(x) where

~EHcus(p,a,x) set

HCUS(P,a,x) the subspaee of

by all functions of the form <p(x)::

CI) 2 \fEC e (A) and cI>ELcus ( r M M, a , X). For

E( q> IP) (x) c I <p ( yx )

r np\r

The proofs of the fo11owing Lemmas can be found in [H,II] .

Lemma 2.4 The series E(<p[P) converges abso1ute1y and uniformly

on compact subsets of r\G. Moreover, for any ~EHcus(p,a,x),

one has E(q>!p)EL 2(r\G,a).
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Lemma 2.5 Let ~EHcus(p,a,x) and assume that ~ECOO(r\G,a) is

slowly increasing. Then

I (E ( cp 1 p) (x) , ~ (xJ -) dx
r\G

Lemma 2.6 Let P1 and Pz be two ~-parabolic subgroups of G,

xi€Z(m p .) and tpiEHcus(Pi,a,x i ), i=1,2. !f P, and Pz are
~

not associate then

For each tpEHcus{P,a,x), define its Fourier transform by

Then one has

( Z• 7 ) E(cplp);: I E(pIA,C$(A),A) dA!

Re (A) I:: Ao

where +A Ep+{a*)o and AI c Im(A).

Lemma 2.8

groups of

Let P1 and

G, X. e Z(mp )
1 .

1

and

be two associate ~-parabolic sub-

cp. E H ( P . ,0 , X . ), i =1 , 2. Then
1 cus ~ 1

=

where A = AR + iAr and AR€P p +(ap )+
1 1
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3.The Tank one spectrum

The main purpose of this section is to estimate the number of

poles of rank one cuspidal Eisenstein series in the half-plane

Re(s) >"0. Residues of rank one cuspidal Eisenstein series at

poles in Re(s) > 0 form one part of the residual spectrum. We

call the subspace cf L;esCr\G) spanned by all these residues

the rank one spectrum.

To begin with we reca11 some facts from [H,IV]. Let (er,V)

be an irreducible unitary representation of K. Fix a class P

of associate rank one ~-parabolic subgroups of G. Let PEP with

Langlands decomposition paNAM. The Weyl group W(A) of A

acts on the characters Z(rn). For a given orbit OeZ(m)/W(A), put

L
2

( fM\M , 0 , 0 ) = Ee L
2
cu s' (fM\M, er , X) •

cus X€O

Let P1 ,Pz€ P with Langlands decomposition P. = N.A.M., i=1,2.
1 111

Then the orbit spaces Z(m1)/W(A1) and Z(mz)/W(A2) are in ca

nonica1 one-to-one correspondence. Corresponding orbits are said

to be associate.

Let PEP , P = NAM. Since rank(P) = 1, any element cf P

is conjugate either to P or to the opposite group P = N-AM.

Moreover, P and P are conjugate if and on1y if -1EW(A).

Let P1, ... ,Pr be a set of representatives for P/G\1l. Thus r=1
r

or 2. Let Pi = {gP i g- 1
1 geGm } i=1,2. Then P c U "P .• Let

~ i= 1 1

Pi 1 ' 1= 1 , · · · , Ti' be aset 0 f Te pres enta t i ve 5 f 0 r Pi / r . TheTI

is a set of representatives for p/r. Let YileK be such that
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If special split components are taken, then

-1= Y·lA·Y·l
~ 1 1

Let Pi c NiAiMi and Pil :: NilAilMil

Langlands decompositions'O Let

the corresponding

....
be a set of associate orbits with 0ilE'Z(mil)/W(Ail)'O Set

Let O. and
1

O. be sets of associate orbi ts, 1 ~ i, j ~ r'O Let
J

WEw(a.,a.) and A.Ea~~'O Define
J 1 1 1,ll.

C.. (w:A.)
J-1 1

to be the matrix

(
-1 Yil )

'C p IP ( Y. kWY • 1 : A. )
jk il J 1 .1

1 ~ 1 ~ r i , 1::;;; k::;;; r j .. Cji(w:A i ) maps Ecus(a,Oi). to Ecus(o,OjJ ..

Now let Oe { 0il 11 ::;;; i ~ r, 1 ~ 1 :$ r i } be a set of associate or

bits. Set

Let a.
1

be the unique simple root of CP.,A.) , i=1, ... ,r, and
1 1
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is denoted by IpD.
If rcl, then W(A l ) = {±l}. Define

C(S) = C11 (-1:SA,), SE«:.

If r=Z, then W(A.) E: {1} (i c "l,Z). Define
1

where se[ and w is the unique element of w(a"aZ).

In either case

is a linear transformation that is a meromorphic function o.f se«:.

C(S) satisfies the following properties

( 3 . 1 ) C(s)C(-s) = Id, C(s)·= C(s), s€[ .

The poles of C(s) in the half-plane Re(s) ~ 0 are all simple and

contained in the interval (0, IpI].

Let ~€ Ecus ( 0,0), ~ c {~il 11 ::il i ::il r, 1 ::il 1 ::il r i}. Define

E(4),s) =
r r.

1 Y'l
L L E(P'IIA'I'~'I'S( 1 A.)),

i=l 1=1 1. 1. 1. 1.
se«:.

The functional equation satisfied by Eisenstein series is in

this ease

E(C(s)~,-s) c E(~,s).

The poles of E( ~,s) coineide with the poles of C(s) (e.f. (H,IV,

Theorem 7 J) .
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Set

1 Si Sr, 1 :illSr i . It follows from (2.2) that the constant term

of E(~,s) along Pil is given by

POl
E 1. (~,s,x) =

(3 . 2 )

Here (C(s) ~) 01 denotes t·he component ··of· C(s)~ .wi th respect to
1. .

the orthogonal projection E (0,0) ~L2 (fM \Mol,o,Ool)'
cus cus il 1. 1.

Let üileZ(mil ) be the Casimir element. Choose XilEOilo Then

- XiI (nil) is independent of i, land the representative of 0il.

Call the common value .1.J • It follows from formula (1.2) that

(3 ° 3)

Dur purpose is to estimate the number of poles of C(s) in the

half-plane Re(s) > o. Given t€lR, set

The poles of C(s) and Ct(s) coincide. Ta begin with we shall in

·vestigate the spectral decomposition of Ct(s) in a neighborhood

+ *of lR . By (3.1) we have Ct(u) = Ct(u) for uelR,i.e.', Ct(u) is

selfadjoint. Therefore, we can apply Rellich 1 s theorem (c.f.[Ba,

p . 142 J, [K , I I , § 6] ). Le t 5 0 E lR+ andassume t hat So i s not apo 1e

of C(s). Let the spectral representation of Ct(so) be given by
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A. P.
1 1

where Pi are the eigenprojections of Ct(so). There exists a

punetured dise o < ls-s I < 0o whieh eonsists only of simple

points of Ct(s) and the spectral representation of Ct(s) takes

the form

q i
Ct (s) c L L

i=1 j=1
A•• (s)P .. (s),

1) 1J

The eigenvalues Aij(S) and the eigenprojeetions Pij(S) are ho

lomorphie in ls-so 1< 0 a In particular,eaeh eigenvalue Aij (5)

has an expansion of the form

co

A•. (s) C A. + L
1J ]. k=1

A~~)(S-S )k
1 J 0'

Is-s I<oao

Nowas s ume t hat S E ( 0, Ipi]
0·'

simple pole of Ct(s). Let

is a pole of Ct(S)a Then So is a

B = Res Ct(S).
5=5 o

Lemma 3. 5 Bis pos i t i v e 5 e mi de f in i te i ae ., ( B4> ,cl» ~ 0 f 0 r a 11

q,EEeus(o,O).

Proof. We have B z: e- 2sot IP IRes C(s). It is well-known that
5=5 o

in the m-rank one ease Res _ C(s) is positive·semidefinite (e.f.
5-50

[A 1 J, [W, § 2] ). The proof extends wi thout diffieul ties to our

case. Q.E.D.
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Put

Then B(s) is holomorphic at sc:so and B(so)c:B .. For UEIR, B(u) is

again selfadjoint and we can apply Rellich's theorem to B(s) in

the same manner as above. It follows that there is a punctured

disc o<ls-s l<öo such that each eigenvalue A(S) of et(s) has

an expansion of the form

(Xl

A(5) c: -~- + L a.(s-s)~ , 0<15-501< ö ,s-s J 0o jc:o

with ~ an eigenvalue of B. In view of Lemma 3.5, the eigenvalues

of B are non-negative. Summarizing we have proved

Proposition 3.6 Let u1 , ... ,UmE(O, Ipj ] be the poles of C(s) in

the half-plane Re(s) ~ 0 and let d = dim Ecus(a ,0). There exist
+real valued real analytic functions A1(U), ... ,Ad (U) on ~ -

- {u1 , ... ,um} with the following properties

1) F0 r e ach U E lR+ - { u1 ' . . . , um}' A1(u) , . . . , Ad (u ) are t he e i gen

values of Ct(u).

2) There exists 0 > 0 such that, in the punctured neighborhood

o<lu-u.] <0, A.(U) has an expansion of the form
1 J

(3. 7) = -..-21 +u-u.
1

CD

L a~k(u-u.)k,
k=O J 1

with ll .. '0, j=1, ... ,d, i:c:1, ... ,m.
)1

Assume that u < u < ..• < u are the poles of C(s) in the half12m
plane Re(5) > 0 and set
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Bi = Re s Ct ( s ) , i cl, .•. , m.
s=u.

1

Consider the coefficients lJ .. , i c l, ... ,m, j=l, ... ,d, in the ex
J1

pansion (3.7) and set

j c l, ... ,d. Now observe that for each i (1 SiS ro), lJ1i , ... ,lJdi

are the eigenvalues of Bi. Since by Lemma 3.5, each Bi is posi

tive semidefinite, it follows that

rank(B.) = #{lJ .. I ~ .. ~ 0, j=l, ... ,d} .
1 J 1 J 1

Thus

m

m ~ L
i=l

rank(B.)
1

= #{l..l..lll .. ~ 0,
] 1 J 1

i=l, ... ,m, j=1, ... ,d} =

(3 .8)
d

= L
j=l

n. S d max n.
J j J

Assume that n k = rnax n. for some k (1 S k S cl). If nkS 1 then
j J

c dirn Ecus(o ,0) which ean be estimated using [D1]. Now sup-

that n k > 1 and { l.lk· I llk· ~ 0, i cl, ... , m} c {]..I k . , ... , lJ k . }
1 1 1 1 1 p

with i 1 < i 2 < •.. < i p ' P > 1. By Proposition 3.6, \(u) is real

analytie in eaeh interval (u. ,u. ), 1 SI Sp, and
1 1 1 1+ 1

pose

mSd

lim Ak(U)::: ±oo
u~ u. ±O

1 1

Let wem be given. Using the observations above it follows that

eaeh interval (u. ,u. ), 1 SI Sp, eontains at least one point
1 1 1 1+ 1
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t l such that Ak(t l ) C w • Let N(t) be tbe number of points

VE (0, IpI] where Ct (v) has at least one eigenvalue equal to -1.

Then it follows from (3.8) that

(3.9) m :s; d N(t) .

Thus our problem is reduced to the estimation of N(t).

At this stage we need.the truncation ~perator (c.f. [A2],[O-W]).

We recall its definition. Let P = NAM be a ~-parabolic subgroup
...

of G. Let 'f p denote the dua 1 bas is of the 5 imp le roots 'Pp of

(P,A). Thus

Set

Denote by Xp the characteristic function of +ac a • Let V be a

finite dimensional Hilbert space and <p: r\G----+-v a·.iocally

bounded measurab le function. Giyen HE +a, set

~<p(x) = I Xp(H p ( yx) - H) <pP (yx).

r n p\r

Let P1' ••. 'P L be a set of representatives for the r-conjugacy

classes of rank one ~-parabolic subgroups of G. Assume that the

Pil' i=1, ... ,r, 1= 1 , ... , r., are among the P1' ... ' P . Let A. be
1 . L J

the special split component of Pjo Put
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For each ~-parabolic subgroup P of G with special split compo-

nent Ap there is a linear map

which is defined as follows: Let Pa ' ae'p' be the standar'd rank

one ~-parabolic subgroup of G associated to F c 'p- {al. If Aa is

the special split component of Pa then

da = n ker(ß).
ß;ia

For each ae'p , there exists

that

'YaEr and j(a) (1Sj(a)Sl.) such

aE'p' the element defined by <Ha,H> c aCH),

Hed . Then, for Teao '

Given Tedo ' set

Let Q1' ..• ,Ql be a set of representatives for the r-conjugacy

classes of ~-parabolic subgroups of G. Set

(3.10)

1

ATcp= L
i=1

To explain some of the properties of the truncation operator AT,
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we have to introduce a partial ordering on ao.Let Q" ... ,Qq be a

set of representatives for the r-conjugacy classes of minimal

(Q-parabolic subgroups of G. For each i (, S i S q) there exists

-,
giEG~ such that Qi c giQ,gi · Given T"TZ€ao ' write

+if there exists H EaQ such thato ,

Now we ean state the basic properties of the truncation operator.

1) There exists ToEao such that, fOT T »To ' AToAT
c AT.

Z) For T »T and any ~-parabolic subgroup P = NAM of Go

and ~ is as above.

3) AT transforms sufficiently smooth slowly increasing functions

into rapidly decreasing functions.

4) If T ».T then AT extends to an orthogonal projection ono

L2 ( r \G ) (g) V•

(see [A2J, [O-wJ for the proof·of these facts).

2 T 2Le t T »T0 • I f liJE L (r\ G, 0 ) t h e n 11. cP EL (r\G , 0)

an orthogonal projection on L2 cr\G,o)*

and AT induces

Next we introduce certain auxiliary operators Lir , T € ao '

act ing in a Hi lbert space HT' Let E be the homogeneous vector

bundle over X associated to 0: K~GLCV) and let E = r\E. Denote

by ~ the connection on E which is obtained by pushing down the
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eanonical invariant connection on E. Given Teao ' introduee the

following subspace of the Sobolev space H'cr\X,E):

Let Hy be the closure of Hi( r\X,E) in L2 ( r\X,E). Consider

the quadratic form

Sinee HiC r\X,E) is a elosed subspace of H' cr\X,E), q has an .
.....

associated selfadjoint operator ~T acting in HT. Let

be the differential operator which is induced by - nG where

nGEZCg) is the Casimir element. Sinee (o,V) is irreducible,

there exists AoE~ such that

(3.11) *6 :: -tJ 'Q + A Id
°

Cc.f. Proposition '.1 in [M]). Set

C3.'2)

Now we can'continue with the estimation of

be the element whose i-th component equals

p. under the eanonieal identifieation of
1·

beas in 2). Then there exists t o such that

N( t). Le t Tp E a 0

the image of
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t T » T , i f t ~ tP 0 o·

Giyen PEP, P ::: NAM, set Ap 1: 1a p 1- 1apwhere a p iS',"the simple

root of (P,A). Observe that Jpp l is independent of PeP (c.f. [H,

Lemma 81]). Call i ts common value 1 pi. Choose t ~ t o . Let

4>E E (a, 0) and SoE«: such thatcus

Then it follows from (3.2) that

where

p.. tH
E 1JC41,so,e ijm) 1:: 0, i c 1, ••• ,T, }=1", ••. ,r i '

H.. = H and mE M..•
1J Pij 1J

TLemma 3. 14 Let T c tT P • Put cp E A EC4J, so). Then Cf> jt o. Moreover

Cf> belo~gs to the domain of ß r and satisfies

where II is defined by (3.3).

Poof. Let Q be a ~-parabolic subgroup of G. Then EQ(4),Se) = 0

unless Qep (c.f. §2). Hence

Furthermore, it fellows from (3.13) that

p ..
Xp (log(a .. ) - tH .. )E 1J (4),s ,a .. m.. )

ij 1J 1) 0 1) 1)
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tH ..
is smooth on (A .. - {e" 1J}) x fM \M. 0 and eontinuous on

1J o. 1J
T 1J 1

Ao. x fM \Mo .• Hence Ap E( 4>,s) belongs to Hloc ( r\X,E) and
1J ij 1J ij 0

therefore, ATEC4>,So) is in HioeCr\X,E) too. But property 3)

of the truneation operator implies that ATE(~,So) is square inte-

T 1grable. Henee A E(c1>,SO)EH cr\X,E). Furthermore, by property 2)

Tsatisfied by A ,

T 1 \i=1, ... ,L • This shows that A ECc1>,SO)EHTCr X,E). Next we have

to show that ATECt,so) is inthe domain of ~T. The domain of ~T

ean be characterized as fellows: Let H- 1 cr\X,E) denote the spaee

of "all distributions in p'(r\X,E) that extend to a continuous

linear function~l on H1 (r\X,E). The domain of ~T consists of all

~EH~( r\X,E) such there exists a distribution DEH- 1 Cf\X,E) which

is orthogonal to Hi(r\x, E) and sat is fies ~W - DE Hr. D is unique Iy

determined and 6..r W = ~W - D . Choose He a
i such that IIHII = 1

and Ai(H) > O. Set a u = exp(uH), ueIR. Given ~€cC)cr\X,E), put

ueIR, meM i . Then

Let ftlEC;(f\'x,E). EmpIoying (1.2), we obtain



= f I X (H (yx)
f\G f np \r Pi Pi

1

P.
tHp.)(E l(~,So,YX),-n~(x))dx=

1

28

P.
= f Xp (Hp (x) - tH )(E l(~,SO,x),-n~(x)) dx =

rnp\G i i Pi
1

.e-( 1 p 1 -1 )ududm

= (ATp 6E ( 4> , s ), CI') +
. 0
1

Define the distribution DE v'(r\x,E) by

I 1
2 L d P. p

D( qJ ) = e- t P I I (auE 1 ( ~ , so' (u , m) ) ,CI' i ( aum) ) I dm
i=1 fM\M. u=tlol

. 1
1

Then and D vanishes on 1HT(r\X,E). Moreover

Employing again property 3) of AT, it follows that AT bE(4),So)

is square integrable and hence, in fLr. Thus ATE(efl,So) belongs

to the domain of 6T and

Employing (3.3), we obtain .
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Finally) we observe that a direc.t computation shows that D ~ O.

This implies that ATE(~,So)~ O. Q.E.D.

Corollary 3.15 Let Nr(A) be the number of linearly independent

eigenfunctions of ~r with eigenvalue less than A. Then

~EE (0,0),
CUS

the Corollary follows from Lemma 3.14. Q.E.D.

Proof. Let So'E (0, Ipi] and assume that C (s )~. c - 4l for somet 0

~ ~o. Then condition (3.13) holds for E($,so) and

It remains to estimate NT(~). FOT this purpose ·we shall use a

covering of r\x by special neighborhoods constructed in [B-SJ.

We start wi th the description of these neighborhoods. For de

tails we refer to [B-S], [ZJ. Let P ·be a ~-parabolic subgroup

of G with special split component A and corresponding Lang

lands decompos i t ion P = NAM. There is a canonical isomorphism

lJp : N x XM x A -=::::.... X

where XM = M/KM. The map up commutes with P where the action

of P on N x XM x A is defined by

-1 -1p.(n"z,a 1 ) = (nman,a m ,mz,aa1 )

where p c nms, aeA, IDEM, DEN. Set

e ( P) c N x X
M

and e ' (P) = r nP\ e ( P) .
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There is a canonical fibration

wi th fibre rn N\N. Giyen TE:d.,put

ATe {aEAla(loga»a("r), aElfp}.

If Y is an open subset of e(P) and "rEd, put

Now assume that Yce'(P) is an open subset and Y its inverse

image under the canonical projection e(P) --+e'(P). Then W(Y,T)

is rnp-invariant and we put

W(Y , T) ern P\w (Y , T) •

Lemma 3.16 Let Y be a relatively compact open subset of e'(P).

Then if TEa is sufficiently large, the equivalence relations

defined on W(Y,"r ) by rand rn P are the same. For such "r, we

have W( Y, T) = 1T (W(Y,"r)) where 1T: X --+ r\X is the canonical

projection and ~p induces an isomorphism

The proof of this Lemma follows from a modification of (10.3) in

[B-SJ.

An open set in r\x of the form W(Yp,T p ) with Ypc e'(P) a re

latively compact open subset and "rp E d p is called a special

neighborhood. Note that for P=G, W(Yp ' "rp)=Y p is a relatively
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pact open subset and put
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r\x. Let tLMl:: rM\XM be a reIativeIy com
-1

Y = TIP (w M). Then Y = r n p \ (N x rM~)

and W(Y,T) is N-invariant. Therefore, the cuspidal condition

makes sense on W(Y,T). Indeed, let

Then U is invariant under Ieft muItip1ication by rnp and right

roul tiplication by KM and W(Y, T) ern P\U/KM. Thus, any see

tion of E over W(Y,T) ean be identified with a map cp:U-+V

satisfying qJ(yxk) c o(k)-1<p(x), yern P, kEKM" Given F c:: 'Pp and

2cpeL (W(Y,T),E);

is weIl defined and belongs to

set

. 2
L (W(Y,T),E). Let W=W(Y,T) and

L2 (W , E) C { qJEL 2 (W , E) I cpPF = 0 f 0 r all F l:: 'P P } •cus

Let 6W be the selfadjoint operator in L2 (W,E) which is asso

ciated to the quadratie form cp --+ IlvqJI1 2 acting in the Sobolev

1space H (W,E). In other words, ~W is the selfadjoint extension

of 'iJ* V acting on C~(W, E)

mann boundary conditions on

an invariant subspace for

which is obtained by imposing Neu

aw. It is elear that L2 (W,E) iscus

~. Furthermore, we have
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Proposition 3.17 1) Aw has pure point spectrum in L~us(W,E) and

a cornpact resolvent when restricted to this subspace.

2) Let NW(A) denote the number of linearly independent cuspidal

eigenfu~ctions of ~W with eigenvalue less than A. There exists

a constant C > 0 such that

whe re TI c dirn X.

Proof. In the ease when P is a minimal ~-parabolic subgroup of

G and ~ = rM\XM, this is Corollary 7.6 'in [:01]. A straight

forward extension of his method gives the proof in general.Q.E.D.

Next we shall construct a covering of r\x by special neigh

borhoods and apply modified Neumann bracketing to reduce the

estimation of NT(X) to Proposition 3.17. As above, let Q.cN.A.M.
1 111

(1 S i :s 1) be a set of representatives for the r-conjugacy. clas-

ses of (Q-parabo 1ic subgroups of G. Furthermore, if W=W (Yp ' Tp )

is a special neighborhood with respect to some (Q-parabilic sub

group P of G, we set

where H'(W,E) denotes the Sobolev space.

WM. c: rM~ XM.' , :s i S 1,
111

the fol1owing conditions are satisfied:

:c lTQ-
1

(WM ). Then the canonical map W(Y., l. ) ---+- r\x is
. . 1 1
1 1

and {W(Y"l.) I i=l, ... ,l} is a covering of r\X.
1 1

1) Let Y.
1

injective

such that

Proposition 3. 18 Let T=tT E a wi th t ~ t as above. There exist
po' 0

T.Ea. and relative1y compact open subsets
1 1
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2) Set W.=W(Y.,T.), i=l, ... ,l. The map cp Il----+-. (CPIW1~ ••• ,cpIWl)
1. 1. 1

defines an embedding

Proof. Let P=NAM be any'm-parabolic subgroup of G with special

split component A. Given a€~p' let Pa= NaAaMa denote the rank

one (Q-parabolic subgroup of G associated to ~p-{a}. There

exists yer and i (1 Si i Si .1,.) such that

(3.19)

Let cp e Hi (r\X, E). 'Then

-1
Hp. (y x)

1.

p C Yp ..
a 1.

p P. 1
cp a(x) = cp l(y- x). Now observe that

By assumption -1Hp. (y x) > tH . Hence
1. Pi

(3.20) Pa() 0 1· f H () H H ()<p x = P x >t + p,y
a Pa a

Now let F c::: 'i'p be any subset wi th aEF and denote by PF c::: P the

(Q-parabolic subgroup of G associated to 'i'p-P. Let PF=NpAFMF be

the Langlands decomposition. Then

Now observe that nF
c na E) n~ and n~ c::: ma • Therefore any n€NF ean

be written as D~D,n2 with D,ENa and D2EMa . This implies

Hp (nx) = Hp (x) for neNF .
a a
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Thus, by (3.20),

(3.21) cpPF(x) :: 0 if Hp (x) > tHp + Hp (y) .
a a a

For each aE~p' let Ya be determined by (3.19). Furthermore, ob

serve that

:: n ker(ß).
ß;ta

Let 'TpE a.p be the e lemen t whose componen t in aa is

Then, for any Fe ~p' it follows from (3.17) that

(3.22)

Set R = {Q" •••.,Ql }. For each Q€ R we sha11 denote by 'TQ€aQ the

element constructed above. Now we construct a covering

{-W(YQ,'T
Q

) lQeR} of r\X recursively as in [Z,(3.·6)]. Moreover, we

can assume that for each QER, 'T Q is such that

a( 'TQ) > aC 'TQ) for all aE~Q.

Employing (3.22), it follows that this covering satisfies 1) and

2). Q.E.D.

Now we are ready to prove our main result

Theorem 3.23. Let T :: tTp with t~ t o as above.

1) Ar has a compact resolvente

2) Let n=dim X. There exists a constant C > 0 such that
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Proof. Let {W i I i c 1, ... ,1} be a covering of r\X by special neigh

borhoods satisfying 2) of Proposition 3.18. By Proposition 3.17,

each embedding

(1 S i :s' 1) i 5 C ompact. Emp 10Ying Propos i t ion 3. 18, 2), i t f 0 110ws

that the embedding

is compact. Therefore the reso1vent of ~T is compact which

proves 1).

By (3.12), it is sufficient to estimate the number of eigen

values of 6r . Let Aj denote the j-th eigenva1ue of 6T. We apply

the mini-max princip1e in the form

where V runs over all subspaces of H~(r\X,E) of dimension j (c;f.

[F-SJ). Now- observe that there is a constant C >0 such that

1

L II,vCPlw.112

~i=1 1

(3.24) :;; C
1 11 cp 112

I Ilcp!w.1l 2

i=1 1

for all

rator

CPEH~( r\x,E). Let ~j be the j-th eigenvalue of the ope-

6. @. •• e 6. • Then
W

1
W1
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L l1vcp.1l 2

- i=1 1
A. = min max

1J - (qJ.)EVV
L 11 CPil121

i=1

- 1 1
where V runs now over all subspaces of @ H (W.,E) of

i=1 cus 1-sion j. Put V= J(V) where

36

dimen-

J 1 1 1
Hr ( r\x, E) ----+ e> H (W. , E)

. 1 cus 11=

-is the map cp I I ( cp lw 1 ' ••• , cp Iw1). Then V is an j -dimens ional
1 1

subspace of e Hcus(Wi,E) and employing (3.24), we get .
i c 1

X. S CA .•
J J

Combined with Proposition 3.17, this implies

1

L NW.(A-A
O

) S C,(1 + An / 2 ) •
i c 1 1

Q.E.D.

COTollary 3.25 Let m(o,O) be the number of poles of the inteT

twining operator C(s) : Ecus(o,O)~ Ecus(o,O) in tbe half-plane

Re (s) > o. There exists a constant C > 0 independent of ° such

that

m(o,O) :s C(, + lJn)

where n=dim x.
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Proof. Using (3.9), Lemma 3.15 and Theorem 3.23, it follows that

m(a , 0) S C d im ( Eeu 5 (a , 0) ) (1 + ~n / 2 ) •

Employing Theorem 9.1 of [D1] , we ean estimate dirn Ee (0,0) byus

C(1 + ~n/2). This implies our result. Q.E.D.

Corollary 3.26 The number of poles, eounted to multiplicity, of

det C(s) in Re(5) > 0 is bounded by

C (1 + 113n/2)
1

where C1 > 0 is independent of 0 .

Proof. Let so' Re(so) > 0, be a pole of ,det C(s). Then So is a

pole of C(s). Since So is a simple ·pole of C(s), the order of

det C( s) at So does not exceed d=dim E ( a ,0 ). Applying againcus

The 0 rem 9. 1 0 f [D 1] t 0 es timated, wege t t he des ire d res u 1t .

Q.E.D.
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4.Analytic continuation of rank one cuspidal Eisenstein series

In this section we develop a new method of analytic continu

ation of rank one cuspidal Eisenstein series. This method is an

extension of the method used by Colin de Verdiere [Co] in the

case of SL(2,lR).

Let (o,V) be a fixed irreducible unitary representation of K

and P=NAM a rank one ~-parabolic subgroup of G with special

spli t component A. We employ the notation of §3. Let a be the

simple root of (P,A) and put A = a/lal. We identify a with m

via the map A: a ~m. Fix u ~m sufficiently large and chooseo
CD

fec (lR) such that f(u)=O for u ~ U o and f(u)=1 for u ~ uo+1. Let

~EL2 (rM\M,o,x) and put llcX(Q...-). For SE«:, putcus --M

(4. 1 ) '8 ( ttJ, s ,x) = L f (H (yx)) e ( s A+p) (HP(yx ) ) ttJ ( yx) .
rn I\r p

Lemma 4.2 FOT each XEG, the sum (4.1) is finite.

Proof. This follows from the analogous statement of Lemma 4.2 in

[ Q-WJ •

In particular, for each xeG, e(ttJ,s,x) is an entire function of

se«:. In the following two Lemmas we establish some elementary

properties of 8(~,S) that we need for the first step of the ana-

lytic continuation.

Lemma 4.3 FOT each se«:,

is square integrable.
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PToof. By Lemma 4.2, we can switch differentiation and summation

in (4.1). If we use (1.2), it follows that

(4.4)

= h(Hp(x))e(SA+P)(Hp(x))~(x).

with hE~OO(lR)'and supphc:(uo ,uo+1). The Lemma now follows from

Lemma 2.4 Q.E.D.

LeDllla ,4.5 Let Re (s) '> IpI. Then

e(~,s) - E(pIA,~,s)

is square integrable.

PToof. Se.t ·.~="'1~:f. Then g(u)-=.O"~for .u ~ u o'+.1 ',and·,gl.u)=1 "fOT U"~Uo".

Set

E(1)(4>,s,X):: L geH (yx))e CSA + p )(Hp(YX))4>(yx).
rnp\r . p

Then

8(4),s,x) - E(~,s,x) = E(1)(~,s,x) .

For Re(s) >Ipl , the series converges absolutely and uniformlyon

compact sets. This follows from Lemma 24 in ~,II,§2J. Choose a

sequence {gn} ne lN'C: C~( lR) wi th gn.n ..... 00· g in the COO-topology. Put

E( 1 ) (4) s x) = \' g (H (yx)) e (SA +p ) (H P ( yx) ) ~ (yx) .
n " r nLp \ r n P
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Lemma 2.4 implies that E~l)(~,s) is square integrable. For ze[

let

We may regard W(a) as a subset of {±1}. Employing Lemma 2.8, we

get

c+i oo

C L I. &n (s , -wz ) gn (s , z ) ( cl> , C(w: z) eil) r \M d Iz I
WEW(a) C-1°O M

where c > [ pI. By Lemma 2.3, there exists C > 0 such that

Ilc(w:z)[[ SC

for Re(z )cc > IpI. Hence

(4.6)

where C2 is independent of n. I t is easy to see tha t for each

XE G E ( 1 ) (ct> s x) I E ( 1 ) (4) 5 x) as n --+ 00 Comb ine cl wi th'n " , ,

(4.6), it follows from Fatou's Lemma that E(l)(eIl,s) is square

integrable. Q.E.O.

Let E and h have the same meaning as in §3. If we consider ö

as an operator in L2 (r\X, E) wi th ,domain C~( r\X, E) then ß is sym

metrie and therefore, essentially selfadjoint (e.f. Corollary 1.2

in [Mo]). Let ß denote the unique selfadjoint extension of 6.



41

in L2(f\X,E). It follows from (3.12) that 8 is bounded from be

low. Therefore, the spectrum Spec(Z) of 6 is eontained in a half

I ine [e , co ), e > - (X) • BY Lemrna 4. 3, (8 - (- s 2+ 1p I 2+ 11) )8 ( eil , s ) i s

square integrable and therefore, we ean apply to it the resol

vent CE - Ald)-1. The first step in the analytic eontinuation of

rank one cuspidal Eisenstein series is the following

Proposition 4.7 Let ~EL~us(rM\M,a,x) and assume that S~[ is such

that -s2+!pI2+ lJ $Spee(Z). Then

(4.8)

Proof. Denote the right hand side by E(~,s). By definition, it

satisfies (A - (-s2+1pl+11))E(~,s)cO. By (3.3), EcpIA,~,s) satis-

fies the same differential equation. On the other hand, by

Lemma 4.5, EcpIA,~,s) - E(~,s) is square integrable for Re(s) >

>Ipl . Since Z is selfadjoint, it follows that E(pIA,~,s) c

E(~,s) for Re(s) >jpl . The Lemma follows by uniqueness of ana

lytic continuation. Q.E.D.

Befor we ean continue we have to modify the operator 8 r in

troduced in §3. Let P be that elass of associate rank one ~-paT-

abo 1 ic subgroup of Gwhich

i=1 , ... ,r, j=1 , ... ,r i , be a

contains P. As in §3, let P .. ,
1)

set of representatives for the

r-conjugacy classes in P and let 0 = { 0.. 11 :s; i :::a r, 1 ~ j sr.}
1) 1

be a set of assoeiate orbits. Given tE~, let



42

be the subspace consisting of all ~EH1(r\X,E) satisfying:

1) If Q is a ~-parabolic subgroup of G and Q~P , then ~Q=O.

p. . 2 '
2) For all aeA .. , ~ 1J(a·)EL (fM \M .. ,a,O .. ), i c 1, ... ,r,

1J cus ij 1J 1J
j=1, ... ,r i ·

3) F0 r a 11 mE M. ., ~p i j (am) =0 i f log ( a) > t Hp.. ' i = 1 , . _. , r ,
1J 1J

j=1, ... ,r i ·

Denote by Ht(O) the elosure in L2 cr\X,E) of H~(r\X,E;OJ;..The '.

quadratic form

is closed and therefore, it has an associated selfadjoint oper

ator ~t aeting in Ht(O). Set

where Aa is determined by (3.11). Let t ~to and T::tT p (e.f. §3).

S inee Hi ( r\x, E; 0) c:: H~ ( r\J:, E), the proof of Theorem 3. 1 9 extends

to fit and g1ves

Lemma 4.9 1) 6t has a compaet resolvent.

2) Let Nt(A) denote the number of linearly independent eigen

functions of 6 t with eigenvalue less than A. There exists a con

stant C >0 such that

n :: dirn X.
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The next step is to replace 6 by 6t in (4.8). This is justi

fied by the following Lemma:

Lemma 4 .. 10 There exists t ·E lR such thato -

Proof .. Let heCcoClR) be determined by (4.4). Then.supphr=(uo ,uo+1).

Let

~ (x) = h(H (x))e(SA+P)(Hp(x))~(x)
5 p .

Then ~ EH (P, 0, X) and
5 CUS

(4.11)

Hy Lemma 2.4, E(~slp) is square integrable. Furthermore, if. Q is

any ~-parabolic subgroup of G then (2.7) and the description of

the constant terms of Eisenstein series (see §2) gives

Now.set p'ep .. for some i,j (1SiSr, 1SjSr.). Let At
1) 1

, d' '"be the special split component of P an P = N A M the correspon-

ding Langlands decomposition. Set 0'= 0 ... It follows fram (2.7)
1)

that

E(~ Ip) I:

S

where c >]pl and h(w) =

c+ico
I h(z-s)E(pIA,~,z) dlzl

c-ico
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Ernp10ying (2.Z), we obtain

EP'('f' !P)(a'm') =
5

c I
'w€W (a, a' )

e + i co - ( Z (w A) + p' ) (log a ' )r h ( z - s ) e ( eP '. [ p{ w:·z ) ~) (m ' ) d I z I-

e-1 CO

Hence for a'EA fixed, EP'('f'sIP)(a'.) belongs to L~us(rMI\M1,a,.o').

To establish eondition 3) we shall eompute EP ' ( 'i' sI P) along 1ines

similar to [H,II,§5]. Reeal1 that p' is eonjugate either to P or

P :: N-AM - the opposite group to P. Assume that p':Yp, y€G~. The

other ease is similar. Using eomputations similar to [H,II,§4]

and Lemma 33 in [H,II], it follows that

EP'('l'slp)(x) = I 4> (x)
rn p\r /rnN I S, Y

with

~s (x ) = J 'f' (yn' x ) dn'
, y 1 s

N' ny- N \ N'

Let Po=NoAoMo be a minimal ~-parabolie subgroup of G with special

-1 -1
split component Ao such that P =>Po ' Ao=:J A. Write y y ::nowpo

whe re n ENm' WE N (A ) m and PEP m' Then N nWp c· ~ ando o,~ 0 ~ 0 o,~

~ (x) =s,y
J 'i' (yynonx) dn.

s
Nn tLN\N

, 1 yn -1 -1 -1 -1
Moreover, for a'EA , ro'eM , y 0na'm' = Po w nno ay m'

-1
a=y a'yeA. Let no=n,n Z with fi,E Mn No,~' nZEN(Q" Then

where



41 (a'm') =s,y

Now observe that

J -1 -1 -1 -1
~s(po w nn1 ay ro') dn

N n ~\N

45

- 1 - 1 - 1 - 1 (w- 1) - 1 - 1 (a - 1) - 1 - 1
Po w nn 1 ay m'E N apo w nn 1 y m'.

Set x(a) :: detnnwn\n (Ad(a)). Then

(4.12)

FurtherInore, m' = -1 . -1, -1ymy wi th mE M, 1.. e .., y m _c my .

Let *Q1, ... ,*Qq be a set of represeritatives for the rM-conju

gacy classes of minimal ~-parabolic subgroups of M. Denote by

Qi cp the associated ~-parabolic subgroups of G. Then Qi' 1:;;; i:;;; q,

are minimal (Q-parabolic subgroups of G. Let *Q.c*N.*A.*M.
1. 1. 1. 1.

be the Langlands decomposition with respect to the special split

component *Ai of *Qi. Then Qi=NiAiMi with Mi=*Mi' Ai=*AiA and

Ni=*NiN is the Langlands decomposition of Qi. Let *Si be a Siegel

domain in M with respect to *Qi. Then *Si is contained in a Sie

gel domain Si in G with respeet to Qi. Now observe that results

analogous to TI, § 1 in [H] are true in our ease. We only have to

replace inf by sup, -00 by 00 and reverse inequalities. In particu

lar, Corollary 2 to Lemma 21 in [H] implies in our ease that

-1 -1sup A(Hp (kn 1 my )) < 00

rn €* S.
1.
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There exist Siegel domains ·Si' i=1, ... ,q, so that

Therefore, if S c= M is a fundamental domain for rM, we get

-1 -1sup A(H p (kn 1 my ))
meS

<CD

-1 -1
Now consider Hpepo wn). Let G be the reductive algebraic

group so that G(m)=G. We may assume that ·G is connected. It fol

lows from §12 in [B-T] ,that for same "multiple A=qA (qe2Z, qj;:l),

there exists a finite-dimensional irreducible rational represen

tation (n" V) of G wi th the following properties: There exists a

non-zero VEV(Q with n(p)vcv for PENoMo and n(a)v=eA(log a)v for

aE Ao . Choose a scalar product on V so that the operators TI (a) ,

ae Ao ' are se lfadj oint. Since G=KP, there exist constants Cz j;: Cl

> 0 such that

(4.13)

.- 1 - 1 - 1 - 1 -1. - 1 - 1Put x=po w n. Then x =n 1y w wlth n 1=n D
O

E No Since No is

defined over ~, there exists a basis vl, ... ,vhEV~ such that

(4.14) n(n)v. - v. E I lRv. , neNo '
1 1 j>i J

(c.f. Corollary 15.5 in [B2]). Let Lc=Vmbe the lattice generated

by v 1 , ... ,vh . By Proposition 10.13 of [R] , there exists a sub

group f 1 of GZZ of finite index such that TI( r 1)L=L. Since r is

commensurable with r 1 and YEGm, there exists beW such that

n(y-1) TI( r)L c= b- 1L. Therefore, by (4.14) it follows that there

exists a constant C3 > 0 such that
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for nENo and yef. Combined with (4.13), we get

for all neNo and YEf.

Putting our resul ts together, i t follows that there exists

C > 0 and a fundamental domain S' t= M' for r MI such tha t

(4.15) ( -1 -1 -1 -1 ')
Hp Po w nnl y m ::;;; C

for m'e S', n€N' and yer . The rest riet ion of w to A be longs to

W(A). Thus wlA = ±1. Assume that wlA = 1. Then P' = y-l py and

IPs,y(x)='l's(yx). This shows that 4ls ,y(a'm 1):0 if log(a') > C. Note

that there is a single class yErnp\r/rnN with P'=y- 1py . Now

assume that wlA = -1. Then Hp ( Wa) ~ - CI:I if log(a) --+- CI:I • Then

(4.12) together with (4.15) implies that there exists Cl with

4J (alm' )c:Q for rn 1E S', yer and A(log a l ) > Cl. The definition ofs,)'

4l implies that this holds for rn'EM'. Q.E.D.s,y

Choose t ~ t o as in Lemma 4:10. Given 4lEL 2 (fM\M,a,x) and sEIL,cus

put

F( 4>,5) c e(lP,s) -

(4.16)
2 I 1 2 -1 2 1 j2 ,- (ßt - (-5 + P +~)) ((ß-(-s + P +~))a(~,s)).

By Lemma 4.10, the right hand side is well-defined. Moreover,

Lemma 4.9 shows that F(4l,s) is a meromorphie function of SE[. We

shall now investigate the properties of F( ~ ,5). By definition,
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F(4),s) - 8(4),S)ELZ
C r\X,E)·. This fact implies that F(4),s) is a

distributional section of E. Now observe that the description of

the domain of ~t is similar to that of ~T. In particular, it im

plies that

2 2
(~ - (-5 +Ipl +~))F(4),s) s: S

where SEH-
1 (r\X,E) an,d S is orthogonal to HiCT\X,E).

Lemma ,4.17 Let Q=NQAQMQ be a ~-parabolic subgroup of G, XQE

z(mQ) and.cpEH·" (Q,a,x
Q

). Assume that eithe;r Q~P or Q=P .. for"samecus 1J

i,j (1 Si S r, 1:;;; j Sr.) and XQ~O ..• Then S(E(cpIQ))co.
1 1J

Proof. Using (4.11) and a simple approximation argument, we get

If Q~P , the right hand side vanishes by Lemma"Z.6. If Q=P .. for
1J

same i,j (1 Si Sr, 1 S j.Sr.), the right hand sid~ vanishes by
1

Lemma 2.8 and tbe assumption on cp • Put $=F(41 ,5) - 8(41,5). Then

$EHt(O). In parti~ular, $Q(a.) is square integrable for all Q and

Lemma 2.5 gives

If Qtp we have $QcO and the right hand side vanishes. If Q=P ij'

then wQ(a.) .l H (Q,a'XQ) and the right hand side vanishes tao.eus

Q.E.D.



49

Let Hi(r\X,E;O) be the subspace of H1 (r\X,E) consisting of all ~

which satisfy the first two of the conditions defining H~(r\X,E;O)~

It remains to determine S on . H'{r\X,E;O). For this purpose we

modify the truncation operator AT. Let ~€Cco(lR) be such that ~ {u)c:

=1 for u ~ ° and ~(u)=o for u S -1. Let P1' ... ,Pb be a set of re

presentatives for tbe r-conjugacy elasses in P. Given cpeL 2 (r\X,E)

and t!IR, set

~.,c-cp{x) c: L ~(Ap (Hp (yX)) - tlp\)crli(yx),
1 ~ rn P. \r i i

1

i =1 , •.. ,h. Le t

h

L
i=1

Lemma ·4. 18 There exists t 1e IR such that for t.;;: t, and

~EH1 ( r \X , E ; 0 ) ,

1Proof. Let T=tT
p

' t ,to (e.f. §3) and <pEH (I\X.,E;··O). ,We may as-

surne that cp is smooth. We have

h

A~cp = nTcp - L
i=1

where ~ ~ ~ -X[o co) and A~. c- cp is defined in the same manner as
o , l' \:>0

A~.,~CP . T is chosen so that ATcp is square integrable. Now con
1

sinder A~. r cp • Note that suppe ~o) c::: (-1,0). Let {~n} nEW c:::
l' \:>0

C~((-l,o)) be a sequence with ~n(U) ~·~(u) for all ue(-l,O) and

11 ~ - ~ 11 2 -+ ° as n ~ co. Let i (1 S i Sb) be fixed and set
n 0 L
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By definition of H1 (r\.X,E;O), we have cpPi(a')EL2 (rM\M.,o,O.)cus . 1 1
1

for aEA. fixed. Hence 'Y E E!> H (P.,o,X). By Lemma 2.4, E('Y Ip.)
1 n XE O. cus 1 . n 1

1

EL 2 ( r\x,E) and, using Lemma 2.8, it fellows that 1I E(qs I P.)]] :I C. n 1

independent ef n. Furthermore , for any compact set w c: G, there

are only finitely many yernPi\r such that Hp. (yx) > tH p . for
1 1

XEw. This is simply the analogous statement of Lemma 4.2 in [O-W]

t 2 \A~CPEL (fX,E).

t 1 \XAf;~EH (f ,E). Next consider the constant

{gn} C:C~( lR) be a sequence wi th gn --+ ~ in

this fact, it fellows that E('i' lp.)(x)--+
n 1

. t 2
for all XEG. Therefore Ap . ~ ~EL (r\X,E) by

1'''0

The same argument shows that

t 2 \xVA~~EL (r ,E). Thus

t
terms of Ap.,~cp. Let

1
the COO-topology. Set

in our case. Us ing

t
Ap . f; cp (x) as n --+ ce

l' 0

Fatou's Lemma. Hence

As above, we have ~ E G> He (P., 0, X). Using Lemma 2.4, (2.7)
n XE Oi US 1

and (2.2), it follows that E(4) Ip.)EH'(r\X,E;O). On the other
n 1

hand, employing again the analogous statement of Lemma 4.2 in

[O-W], we see that E(4) Ip.)(x) --+ A!. ~~(x) as n ~co, uniformlyn 1 --P1, ~

on compact subsets of G. Hence A1~EH1(r\X,E;O). Furthermore, by

property 2) satisfied by the truncation operator and the choice

of T, we have

( AT Cf» P i ( x) :: 0 i f Ap . (Hp. (x)) > tl pI, i =, ,... ,h .
1 1

Finally, employing arguments similar to those of the proof of

Lemma 4.' 0 combined with a simple approximation argument, it
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fo llows that there exi s ts t 'e IR such that for t ~ t' ,

t p.(AP. r- ep) J(x) :: 0
1. ' ';,,0

i f Ap . (HP . (x)) > t Ipi, i, j :: 1 , • • • , h •
J J

(4.19)

t 1 \t o and t' are independent of cp • Hence A~CPEHt( r X,E; 0). Q.E.D.

Let t z = max {to,t,} and t ~ t Z. Let epEH' (r\X,E;O). Since S is or

thogonal to H~(r\X,E;O), it follows from Lemma 4.18 that

h

S(ep) = I
i=1

Next we investigate the constant term FPi(~,s), i=l, ... ,h. It

follows from the definition of F(~,s) that for aEA. fixed,.1.
p p.

the section F i(~,s,(a,.)) - e 1.(~,s,(a,·)) belongs to

ZLc s(rM\M.,o,O.). Furthermore, let zelt with Re(z) > Re(s). Thenu . 1. 1.
1

·f(u)e(s-z)u is a rapidly decreasing function-- of uElR. Then

(4.Z0)
c+iOj

e( ~ , s) = J f (z - s) E(P IA, ~, z) d Iz I
c-iOj

with c >Re(s). The proof is similar to the proof of Lemma Z8 in

[H,ll,§3] . Using this formula combined with (2.2), we obtain

p. ~ 2 \e 1(~,s,(a·1ELc s(rM M.,o,X·). Henceu . 1. 1
1

(4.21) FPi(~,s,Ca.))ELZ crM\M.,o,O.), i=1, ... ,h.
cus . 1. 1.

1

Let gECooClR) with suppgc(t-l,t) and let 'YEL~us(rM\Mi,o'Xi)'
1

X·EO .• Set
1. 1.

w(x) :: g(Hp.(x))'Y(x).
1
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It follows in the same way as above that E(*IPi)EH~(r\X,E;O).

Hence S(E($IPi))=o, i.e.,

In view of (4.21), we can apply Lemma 2.5 which implies

· dm da .

Let HE d i such that Ai (H) > ° and IIHII = 1. Set

Using (1.2), (4.22) and elliptic regularity, it follows that

gi (s,u) is a smooth function of UE(t-1 ,t) .and satisfies

Hence

and C1(s), C2(s) are meromorphic functions of SE[. This implies

that there exist linear operators

·which are meromorphic functions of SE[ such that
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p.
F l(4),S,X) I::

where H1·(x)cHp (x) and A.(H.(x))E(t-l,t). Denote by F.(ctJ,s) the
. 1 1 1
1

element in COO(rnPi\G,o) which is defined by the right hand side
-

of (4.23)". Let t ~t2 and put

G(~,s,x) c F(4),s,x) - A~F(4),s)(x) +

h

+ I I f; (Ap (Hp (yx)) - t Ipi) Fi ( 4>, s , yx) , XE G•
i=l rnp.\r i i

1

G(~,s) is a meromorphic function of SE[. Moreover we have

Proposition 4.25 G(~,s) belangs to Coo
( r\X,E) and it satisfie5

2 2
(ß - (-5 +lpl +~))G(~,s) = O.

Proof. Let QCNQAQMQ be a ~-parabolic subgroup of G, XQEZ(mQ) and

and cpEH (P,o,XQ). If Q~P or Q=P. for some i (1 SiS l?-) andcus 1

XQ~Oi' then it follows fram Lemma 4.17 and (4.23) that

Now assume that Q=P j for _.some j (1 ~ j :;; h) and XQE 0j. Let W=

=E(~IQ). Then ~EH1(r\X,E;O). Furthermore, set

~i(X) c ~(Ap.(Hp.(x)) - tipI), i=l, ... ,h.
1 1

If we apply (4.19) and Lemma 2.5, we obtain
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(G(efl,s),(6 - (_5 2+ Ip!2+ lJ))lV) =

h
\ J -2p(logai) J (Pi [] Pi
L e F ( ~ , s , a . m. ), 6, ~. lV ( a •m . ) ) dm . da.

i= 1 . A. rM \ M. 1 1 1 1 1 1 1
1 i 1

h

I
i::l

J -2p(loga.) { (( ) [ ] Pie ))elF. efl, s , a .m . , 6, ~. lV a . m. dm . da. •
A. r M. 1 1 1 1 1 1 1 1

1 M. 1
1

Now ohserve that [6,~.JlVPi(a.m.)=O unless A.(log"a.)e(t-l,t). But
1 1 1 1 1

p.
F l(eJl,s,a.m.) = F.(eJl,s,a.m.) for )...(loga.)E(t-l,t). Thus

11 1 11 1 1

But it follows from Theorem 4.6 of [Ca] that each lVEC~(r\X,E)

can be approximated in the COO-topology by linear combinations of

wave packets E(cpIQ). Hence (6 - (_s2+ IpI2+lJ))G(~ ,s)=O in the

sense of distributions. Then elliptic regularity implies that

G(eJl,s) is a smooth section of E. Q.E.D.

Given an orbit OEZ(m)/W(A) and 2 defineeflELcus(TM\M,o,O) we

G(eJI,s) in the obvious way. Let eflEEcus(o,O) wi th eJI:: { 4> •• I 1 ~i:sr,
1)

1 S j S T.} and 2 Set4> •• EL (fM \M . . ,0,0 . . ).
1 1) cus .. 1) 1)

1)

r r.
1

G(efl,s) = L L
i=l j=l

G(efl .. ,s) .
1J

G(4),s) is a meromorphic function of SE[. For each se[

not a pole, G(4),s)EC OO (r\X,E) and it satisfies

which is

(4.26)
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Concerning the constamt terms, we have

Lemma 4.27 Let Q be a ~-parabo lic ·subgroup of G.

1) If Q~P then GQ(~,s) = o.
2) There exist linear operators A(s),B(s) : Eeus(cr,O)~

Ecus(o, O) which are meromorphic functions of se[ such that

p ..
G 1)(4l,S,x) ;::

i=1,:. .. ,r, j=1, ... ,r., in the notation of §3.
1

Proof. 1) follows immediately from the definition of G(~,s) and

the properties of F(~,s). To prove 2), we observe that by defi
p ..

nition, G 1 J (4l,S,a.)EEcus (a,0) and it satisfies

Using (1.2), the result follows. Q.E.D.

Lemma 4 .28 The operator A( s) : Eeus ( 0,0) -+ Ecus (0,0) is in

vertible as a meromorphic function.

Proof. Assume that det(A(s)) :0. Thus, for each SE[ which is not

a pole af A(s), there exists ~EE (0,0), ~ ~ 0, such thatcus

A(s)~=O. Assume that Re(s) >101 • We claim that G(ct>,s) is square

integrable. Ta see this consider G(~ .. ,s). Using (4.24) and the
1)

definition of F(4lij ,s), it fellows that

G(4l .. ,5) zr G1(~' .,s') + G2 (4)· .,s)1) 1) 1)
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where G2(~' .,s) is square integrable and G1(~' .,s) is smooth and
1J 1J

satisfies the following ·property: There exists rEm such that for

all DEU(g), DG 1 (4)· .,s) is slowly increasing with exponent of
1J

growth r. Let T=tTp with t~ t o ' Then ATG1($ij'S) is rapidly de-

creasing (c.f. Theorem 5.2 of [O-W]) and therefore square inte

grable. Since AT extends to an orthogonal projection of

L2
( r\x ,E1 ., ATG1 ( 4> i j , 5 ) issqua re integrab1e t 00. Thu s ATG(4) , 5 )

is square integrable. On the other hand, by Lemma 4.27, G(~,s) 

- ATG( e:>, 5 ) isthe s um 0 f

J~

(4.29) I
p ..

X (H (yx) - tHp .. ) G 1J (~ ,5, yx)
rn P \r Po. P ..

ij 1J 1J 1J

j =1 , .•. , r i' Us ing again Lemma 4. 2.7, ,we have

GPi j ( ~, 5 , x) c e ( - 5 + IpI) t i j (·X) (B ( s ) $ ) .. (x)
- 1J

If we apply Lemma 2.8 and a simple ~pproximation argument, it

follows that the terms (4.29) are square integrable for Re(s) >

>Ipl. Since !J. is selfadjoint, it follows from (4.26) that

G(4) ,5)=0 for Re(s) > Ipi, s # s. By analytic continuation this

holds for all s. Let

F($,s) = L
i,j

F(e:> .. ,s) .
1J

It follows from the definition of G(4),s) that

G(lfl,s) I:: ATF(4),s) + L R.. (lfl,s)
i, j 1J

where
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R.. ( ~, 5) C L xp (A .. (Hp (yx) - t Ipi) F .. (~ ,5, yX)
1J rnp .. \r ij 1] ij 1J

1) .

and F.:(4),s) is defined in the same way as F.(4),s) above. Emplo-
1) , 1

ying Lemma 2.5, we get

T T(A F(4),s),1I. R
ij

(4),s)) =

Hence

T(11. F(41,s),R .. (41,S)) = o.
1J

Tand therefore, 11. F(4),s) = O. Set

9(~,S) c I 9(4)ij's).
i,j

In view of (4.16), we get ATeC4>,s)cO. Let 5 be fixed and chose

c > Re ( 5 ). By (4. 20)

c+i 00
TAT

A 8(~,S) c J f(z-s)A E(~,z) dlzl.
c-ic:o

If we make use of the scalar product formula for truncated Eisen

stein series in [L1,p.135], we get

=
c + i 00 c + i 00 A .... '

J. J. f ( z 1- s ) f ( z2- s )
C-1°O C-1°O

(e (z 1+ Z2) tl p I 1141112 _

z1+ z2
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+

Using Lemma 2.3, it follows that the right hand side is non-zero

if t is sufficiently large. But the right hand side is real ana

lytic in t and therefore, it vanishes at most at a discrete' set

of points. ~oreover, if Ti=tiTp ' i c 1,2, and t 1 > t 2 then

IIAT18(~,s)11 ~IIAT28(4),s)11. Thus ATS(4l,s) ~ 0 unless 4l cO. This is

a contradiction to Dur assumption that det(A(s)) :: O•.Q.E.D.

We can now state the main result 'of this section.

Theorem 4.30 Let 4>EEcus (cr,O). Then

E(4),s) c G(A(s)-l 4l ,s)

as mer~morphic functions of se[. The intertwining operator C(s)

is given by

Proof. Put

-1C(s) = B(s)A(s) .

-1R(4l,s) = E(4l,s) - G(A(s) 4>,s) .

Let Re(s) >Ipl . We claim that R(4),s) is square integrable. This

can be seen as folIows. In the proof of Lemma 4.28 we observed

that ATG(A(s)-l~,s) is square integrable. ATE(~,s) is also square

integrable. -Hence ATR(41,s) is square integTable ..Emplo.ying the

description of the constant terms of E(41 ,5) (c.f. §2) combined

with Lemma 4.27, we get

L
i,J

R.. (~,s)
1.)
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where

R.. (~,s)
1J

. p ..
= L X (H (yx) - tH )R 1J(~,S. x).

rn P ..\r P.. P.. PiJ·1J 1J 1J .

If we make use ef (3.3), Lemma 4.27 and Lemma 2.8, i t fellows

that R.. (~,s) is square integrable for Re(s»lpl , i=l, ... ,r,1J
ja1, ... ,ri. This shows that R(~,s} is s~:uare integrable for

Re(s»]pl . Now observe that ßR(~,s) 1:11 (-s2+lpI2+11)R(~,s). Since

~ is selfadjoint-, we get R(~,s)=O for Re(s»!p! . Since R(~,s)

is a meromorphic function of se[, it vanishes for all SE~. This

gives the equation claimed in the Theorem. If we compare the

constant terms of both sides of this equation and usa Lemma 4.2"7,

we get C(s)=B(s)A(s)-l. Q.E.D.

Re_ark. Theorem 4-.30 gives a new construction of the analytic

continuation of rank one cuspidal Eisenstein series.
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5 . The ordeT of gTowth of det C(s)

The main purpose of this section is to prove that the determi

nant of the intertwining operator C(s) is a meromorphic function

of order ~ n+2 where n=dim X.

Let Al ~ A
2

:si •••. be the eigenvalues of the selfadjoint ope-

rator ß
t

introduced in §4. For simplicity we shall assume that

zero is not an eigenvalue of ß t . According to Lemma 4.9 we have

for some constant C > 0 and n=dim X. This implies that

( 5 . 1 ) L
j =1

< co

for k> n/Z. As usually, for peJN, let

Z
E(u,p) = (l-u)exp(u + ~ + •••

Put pa [ni Z] . Then the infinite product

co

- zP(z) • TI E(I. ,p)
j -1 J

uP
+ p-) , ue a:.

converges uniformlyon compact subs ets of a: and P(z) is an en-

tire function of order nlZ

[Bo,pp.18-19] ). For sEt put

whose zeros are A1 ,AZ' ••• (c.f.

- 2 I 1 2pes) = P(-s + p +~).

Now observe that in view of Lemma 4.9, (ß
t

- zId)-l is a meromor

phic function of zel[ with simple poles at z= A" Az,· ..
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Let ~€Ecus(a,O). Using (4.16) and (4.24), it follows that

P(s)G(4>,S"x) is an entire function of se«:. Therefore, 'P(s)A(s)~
I

and P(s)B(s)t are also entire functions of se[ and we shall now

estimate the order of growth of ]p(s)lllACs)11 and Ip(s)111B(s)11 .

First we need an auxiliary Lemma. For each jE~, put

p. (z) c TI ECt-,p) .
J k;t j k

Lemma 5.2 There exists a constant C > 0 such that

PToof .. We have

clzl n / 2+ 1
~ e

log I, p. (z) I =
J

( L + I ) log IE(f,p)! = 51 + 52·
1Ak !~ zl·z 1 1Ak I> 21 z 1 ,k

k;tj k;tj

To estimate 51 observe' that 1z 1/ 1Ak I ii:: 1/2 and therefore

and

Hence

(5 • 3)
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Let E > 0 and P1cn/2. Using (5.3), we get

;$ C( E) lz ln/2+€

where C(€) depends on E and p. Now consider 52' In this case

Iz 1/IAkl < 1/2. Using 2.6.3 in [Bo], we get

I
z IP+

1
S 2 -A •k

If p a n/2, this irnplies

52 ::i 2Iz!p+1 L IA
k

l-p - 1 .; ·C 1 lzl~/2+1 .

21 zl < IAk I

If p=(n-1)/2, we get 5 2 ::l czl z I(n+1)/2. Thus log IF
j

(z)! ::l

I In/2+1 .C Z , zEII, JElN. Q.E.D.

Let cf>EEcus(o,O), 114>11 =1 , and set

Lemma 5.5 There exist constants C1 'C 2 > 0 such that for

CPEL 2(f\X,E) and sEII,

. Proof. First we observe that by Lemma 4.10, 6H(4),S)EHt (O). Hence

H(~,s)EHi(r\X,E;O). From the description of the domain of 6t it



63

follows then that H(~,s) belongs to the domain of fit and

fitH(~,s) = fiH(~,s). Iterating this argument it follows that for

each lE~, H(4),s) is in the domain of ~ and ~H( 4> ,s):: ~lH(4) ,s).

Now let {4>j}jE~ be an orthonormal basis of eigenfunctions of ~t

corresponding to the eigenvalues ~ ~ AZ S ... Using the obser

vation above, we get

(5.6) 1 1A. (H ( 4J, s ) , cf! .) c (~ H( 4l, 5 ) , ~J') , j, 1E~ .
J J

Let ~EL2(r\X,E). Then by (5.6),

ce

((~t - (-s2+lp12+lJ))-1(H(4l,s)),~) :: I
j=l

Employing Lemma 5.2 and (5.1) it follows that the right hand

side, mUltiplied by pes), can be estimated by

Now apply (1.2) to estimate II~nH(41,s) I1 and the result foliows.

Q.E.D.

Let 'fEL 2 (TM \M . . ,a, 0.. ) (1 S iST, 1 S j S Tl.)' 11'f'll c 1, and let
cus ij lJ lJ

gECCC(rn.) with suppgc:(t-1,t). Set

w(x) :: g (Hp .. (x)) 'f'(x) .
lJ

Lemma 5.7 There exist constants C1 ,C2 > 0 such that

i=l, ... ,r,l=l, ... ,r ..
1
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Proof. If we use Lemma 2.S together with (4.20) and (2.2), we

obtain

c+im
c I f. f (z - s) g(-wi + Ipi) (c p . IP. (w: z) 4> "k' 'l') d Iz I

wE W( a j k' a i 1) C-1 ~ 11 J k J

where c is any rea 1 number wi th c > Re (5). Us ing Lemma 2. 3, one

can estima,te the right hand s ide by C3exp ( C4 15 I) Ilhll 2 • Thus
L

(4.16) together with Lemma S.S imp1ies

foor SE a:.- Making use of Lemma 2. 8 and Lemma 2. 3 i t is easy to see

that ]IE(wI P i1 )]1 S csllhllL2 . Furthermore, if we app1y Lemma 2.5,

then it fo11ows fram (4.24) that

Q.E.D.

Using again Lemma 2.5 combined with Lemma 4.27, we obtain

( 5 . 8 )
c J e(s-Ipl)ug(u)du ((A(S)4»"l''l') +

m 1

+ J e(-s-]ol)ug(u)du ((B(s)et» "1''l') •
m 1
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Now we make a particular choice for g. Let heCOO(m) with supph

contained in (t-l,t) and set g(u)~e(S+ Ipl)u~(e-2Suh(U)). Then

the second integral involving g vanishes and the first one

e qua 1s Z5 J h ( u ) du . Furthermore, 11 g 11 Z .~ Ce cis
I (11 h 11 z + !1h 1 11 Z).m L L L

Assume that hia 0, h 7-0. Using Lemma .5.7 together with (5.8) we

get an estimate for IP(s)II((A(S)cf!)il,'P)I. In the same way one can

es t imat e !P ( S ) 1 I( (B ( s ) 4J) i 1 ' 'P ) I . Summa T i z ing 0 ur re s u 1t S, wehave

seen that there exist constants C,C > 0 such that for all cf! ,'r

EE (0,0) with 1~11::' ,II'PII c" we havecus

lp(s) 11 (A(s)~, '1') I :SI CexpCc Is In +Z)

(5.9)

I P( s) I I (B ( 5 )- 4J, '1') I s Ce xp (c I s 1n + Z)

for se[. This implies the following

Theorem 5.10 Let C(s) : Ecus(cr,O)~ Ecus(o,O) be the intertwi

ning operator. There exist entire functions F,(s) and FZ(s) of

order :s n+2 such that

F,(s)
det C(s) 1:: , sEI!.

Fz(s)

Proof. By··The-G).rem 4;30, we have det C(s) 1:: det B(s) (det A(s))-'.

Set F, (5) 1:: p(s)n det B(s) and Fz(s) 1:: p(s)n det A(s). It follows

from (5.9) that F, (s) and Fz(s) are entire functions of order

Sn+2. Q.E.D.
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6.Factorization of det C(s)

We keep the notation of the" previous sections. In view of Theo

rem 5.10 we can app1y Hadamard's factorization theorem to facto

rize det C(s). This however, needs some additional preparation.

Lemma 6. ·1
2(to+l)d

Let dcdim Ecus~o,O) and set Q1Cle . . Then

1im q~Oldet C(O+iT) 1 = 0
0+ 00

for all 'rEm..

Proof. According to Proposition 4.7,

follow the proof of Lemma 4.10, then we see that there exists

t E rn. independen t 0 f the orb i tOsuch tha to

for cflEE (0,0) and Hp (x) > toH p ,i=1, ... ,T, 1=1, ... ,r ..
cus i1 i1 "1

Us ing this fact together wi th (3.2), we see by comparing the

constant terms that

isthe con 5 t an t term 0 f (2 - (- 5 2+ 1 p 1 2+lJ ) ) - 1 (H (cfl ,5)) a 10 ng Pi 1

for Hp (x) >t Hp . Now observe that
i1 0 i1

2 2 1 2 2 - -1
ll(~ - (-5 +Ipl +lJ))- 11 c dist(-s +Ipl +lJ,Spec(~)}
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(e.f. [K,V,§3.8]). But Spee(~)c:[e,oo), e>-~. Henee for

Re (s) ~ Cl'

for some eonstants C" Cz. Using -(.4.1'), Lemma 2.8 and Lemma 2.3,

a simple estimation gives

(6.3)

Let gEC""(IR) with suppg c:::(t o ,to+l) and 'I'€L~US(rMi;Mi1,a,Oi1).

Set ~(x)=g(Hp (x)) 'f(x). Using the observation above concerning
il _ 2 2 _1 .

the constant term of (~ - (-s +lpl +~)) (H(cll,s)), it follows

fram Lemma 2.5, combined with (6.2) and (6.3) that -

= 1((6 - (-s2+lpI2+~))-1(H(cll,s)),E(wlPil)) I S

~ C4 I5 1- 1e ( U o + 1) Re ( 5) 11 E( 1/11 Pil) 11

Re(s) ~ C,. ~e may assume that to~ uo. Let lfIEEcus(o,O), II'fll=1.

Then this inequality implies that

Hence

!det C(s) I s C
6

15 r d e 2d (to +1 )Re(s), Re(s) ~ C
1

.

This implies the Lemma. Q.E.D.
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Let 01 , ... , 0le"CO, IpI] be the poles of det CCs) in ReCs) ~ ° and

let q1 be as"in Lemma 6.1. Set

C6.4)
1 (5-0.)

~(s) c q-S TI l. det C(s) .
1 . 1 (s+o.)

l.= 1.

Then ~Cs) has the following properties:

1) ~Cs)~C-s) c 1, SE[.

2) I~ (5) I I: 1 f 0 r Re ( 5 ) ::°.
3) ~(s) is holomorphic in the half-plane Re(s» 0 and satisfies

I c;: ( s) I ~ 1 f 0 r Re ( s ) ~ O.

1) and 2) follow from (3.1). 3) is "a consequence of 2), Lemma 6.1

and the maximum principle. Consider the series

\ (6.5) L Re Cn)

n~

wJlere n runs over all zeros, counted to multiplicity, of ~(s) in

the half-p lane Re (s) > O. Then we have

Lemma 6.6 The series (6.5) converge5.

~iroof. By 3), E;(5) i5 analytic in the half-plane Re(5) > Oand is

continuous and bounded in the half-plane Re (5) ;;: o. The conver

gence follows from Carleman's theorem [T,§3.71J . Q.E.D.

Now observe that by Theorem 5.10,

where H
1

(s) and HZ (s) are entiTe functions of order S n+2. Le,t
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n be a zero of ~(s). Then it follows from (3.1) that Ti is a

zero and -n , -n are poles of ~(s). By Hadamard's factorization

theorem we get

(6.7)

II E(~,n+2) E(~,n+2)
~(s) = eP(s) --:.,T"J _

II E(~,n+2)E(~,n+2)
n -n -n

where n runs over half the zeros of ~(s) in Re(s) > 0 and we have

chosen one representative for each pair {n,n} of zeros. pes) is

a polynomial in s of order ~n+2. Now consider the expression

1=
~k

1
+ -- --kn

1

for 1 S k;S n+2, n€[. If k is even then Ik=O. Assume that k is odd.
".aPut n = 1nle 1

. Then

4
I k =~ cos(k-&) ·

FOT k odd there exists a constant C(k) such that !cos(k-&) 1 ~

:i C( k) 1c 0 s .a. I. Hen c e b y Lemrna 6. 6 ,

= C1 (k) L Re ( n)
n In?

< co •

Therefore, the exponential factoTs in (6.7) ean be combined to

give

~(s) = eQ(s) ]s-n)(s-n)
~ ~ Cs+n) (S+fi) ·

Q(s) is a polynomial of degree $n+2. The infinite product ean

be rewritten as
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TI (1 4 Re (n) )
n - s ( 5 + n) (5 + Ti )

and by Lemma 6.6 t this produet 'is absolutely convergent.

Naw eonsider Q(s). The equation ~(iA)~(-iA)=ltAERt implies

Q(iA) + Q(-iA) = 2nil for same lEZl. Thus

[n;2]

Q(s) = L a
k

s 2k + 1 + nil .
k=o

Moreover by (3.1)t. f;(s) = f;(s). Therefore akER. Let k o be the

largest k such that a k ~ O. Assume that ko > O. If a
ko

> 0t we get

2k +1f;(o) ~ exp(ak 0 0 )
o

for aE.lR. and ° ---.. ce • This contrdicts the fact that If;(s) I :;j 1 in

Re (s) ~ O. Now assume that a k < O. Then we ean choose s in the
o

hal~-~lane Re(s) >0 so that Re(s2ko+') < 0 and tends to -ce as

5 ---.. ce. Again t we get IE;(s)! ---.. ce Thus Q(s)=as + nil t aelR t a < O.

Using (6.4)t we obtain

Theorem 6.8 Let O,t ... t01E(Ot IplJ denote the poles of detC(s)

in the half-plane Re(s)~ 0 and let n run over all polest counted

to multiplieitYt of det C(s) in the half-plane Re(s) < o. FinallYt

alet q=q,e . Then

1 5+0. s+-
det C(s) = det C(O) qS TI -:........-l TI _n t se«: .

j=1 S-Oj n s-n
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Using Theorem 6.8 we can compute the logarithmic derivative of

det C(s):

d·crs log det C(s)

1 20.
= log q - I J

j =: 1 s 2- 0.
2

J

.2Re (n)
I (s-n)(s+n) .n

Now put sc iA , AElR. Then

1

.. e&- log det C(iA) clog q + L
j e 1

(6.9)

20 .
. J

2 2A +0.
J

+

+ I
n

2Re (n)
2 2Re ( n) -+ ( A- Im ( n) )
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7.Estimation of the number of poles of detC(s)

Let the notation be the same as in §3. Dur purpose in this sec-

tion is to obtain an estimate, which is uniform with respect to

,0 , of the number of poles of det C(s) in a· finite region.

As above J let· ~~'l-i~( 0.) be the common e igenvalue

i=1, ... ,r, lc1, ... ,ri. First we prove

- xe f2
M ) ,
il

Theorem 7. 1 There exists a constant C > 0 which is independent

of 0 such that

A dJ crs log det C(iA) dA
-A

Proof. Let t o be as in §4 and t ~to. Set

In view of (3.1), Ct(s) is unitary for Re(s)=O and henc~, can be

diagona 1ized. Moreover, Ct (s) is ho lomorphic in a ne ighborhood .

of Re(s)=O. Therefore we can apply Rellichts theorem [Ba,p.142 ]

which implies that there exist real valued real analytic func

tions ß1(X) , ... , 8d (A) of A€lR such that e i 81 (A) , ... , e i ßd( A) are

the eigenvalues of Ct(i A). Each 8j (A) is only determined up to
2

2TI~. Moreover, the functional equation (3.1) implies Ct(O) =Id.

Hence ß.(O)cTIl, lEZl, j=1, ... ,d. Put
J

__ co

S.CA) c J B~Cu) du, j=1, ... ,d.
J 0 J

-Then we can choese either ß.=ß· er ß.=ß.+TI and we get
J J J J
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d

:s; 2 I Iß. (A) I ~ 2d max IB.(A) 1•
j=l J j J

iß.(w)
Let nj(A) be the number of points we[O,A] such that e J =-1,

i.e., ßj (w)c(2k+1)n for some kE~. Obviously, we have

Let n(A) be the number of points we[O,A] such that Ct(iw) has at

least one eigenvalue equal to -1. Then n j (A) ~ n(A), j=l, •.. ,d,

and by (7.2), it is suffieient to estimate n(A). Let wE[O,A] and

4>EE
eus

(a,O), $"1- 0, and assurne that C
t

(iw)4J=-t1>, i.e., C(s)t1>=

=_e 2 iwt IP I $ . Set T=tTp ' Us ing Lemma 3. 14 and Theorem 3.23, we

obtain

Furthe rmore, d=dim E (a ,0) ean be es t ima ted by Theorem 9. 1 ofeus

[Dl]. Then (7,.2) implies our result. Q.E.D.

Now we ean estimate the number of poles of det C(s) in the

half-plane Re(s) < 0. First we eonsider poles on the real line.

+Observe that for aEm ,

00 1
J :-:-! dA •

-00 1+A

•

In Theorem 7.1 we put A= 1 and then insert (6.9). I f we make use

of Corollary 3.26, we get
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1

2 log q + J I 2Re (n) dA S C(1 + 1l3n/ 2)
- 1 n Re ( n) 2+ ( A- Im ( n) ) 2
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with C independent of 0 . We distinguish two cases:

a) q ii: 1. By defini ton of q, we have

°S log q S 2 ( t 0 + 1 ) d im Ecus ( a , 0 ) ·

'Using Theorem 9.1 in [D1], it follows that

wi th C, independent of 0 . Since Re (D) < 0, (7.3) imp1ies

(7.4)

b) q < 1. Th~n log q < o. On the other hand, all terms in the se-·

ries on the 1eft hand side of (7.3)' are negative. Hence we get

(7.4) in this case too.

Let c >0 and denote by N(c,O) the number of poles, counted to

multiplicity, of det C(s) in [-c,O). Then

1/ c 1
N(c,O) f --2dA S

-1/c 1+X
I

-csx< 0
a pole

1
f

-1

Using (7.4) and Corollary 3.25, we get
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heOTes 7.5 Let c > O. There exists C > 0 independent of 0 'such

hat the number of poles, counted to multiplicity, af detC(s) in

[-c, 10lJ is baunded by C(l + lJ3n / Z).

Chaose an orthanormal basis ~l' .. "~d in Ecus(o,O) and set

Cij (5) = (C(s)~i' ~j). Let So be a pole of C(s) and let "ij (so) be

the order of Cij(S) in so' Set

v( so) = max v. . ( s ) .
i,j 1J 0

If So is not a pole of C(s) we set v(so)=O.

COTollary 7.6 Let c > O. There exists C > 0 independent of 0 such

that

L v( 5 0) s C(1 + lJ 3n / 2 ) •
-csso:$lpj

Proof. We write

Since ",(so) :$ 1 for So ~ 0, the second sum equals the number of

poles of C(s) in [0, Ipl] which can be estimated by Corallary 3.25

Now assume that 5 with Re(s ) < 0 is a pole of C(s). We distin-o 0

guish twa cases:

a) C(s) is holomorphic at -5 o·

By (3.1) we have

( 7 . 7) C(5) = C( - 5) -1 = (de t C( - 5) ) -1 D( - 5 )
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nd D(-s) is obtained from C(-s) via Kramer's rule. Then D(-s)

·s holomorphic at so. Hence detC(-s) has to have a zero of order

~ v(so) at so. Again, by (3.1),

( 7 • 8)
-1det C(s) = (det C(-s))

) -so is a pole of·C(s).

nd therefore, det C(5) has a pole of order ~ v (-s· ). at s .o 0

i t follows that -so € (0, 1 p IJ and v( -so) ::;; 1 • Hence

(1 ::;; i,j S d) has at most a pole of order d-l at

he same method can be used to estimate the number of poles of

et C(s) in a circle of radius A . If we repeat the arguments

bove with the integral over [-l,lJ replaced by the integralover

-211.,2/1. ] , we get

inee Re ( - s oJ > 0,

ach (D(s)cf>.,cf>.)
1 J

-s o. As sume tha t v( so) ~ d. By (7. 7), i t fo llows that det C(-5) has
I

o have a zero of order ~ v(so)-d+l at so. By (7.8), det C(s) has i

pole of order ~ v(so)-d+l at so. Dur result follows now from

heorem 7.S, Corollary 3.25 and Theorem 9.1 of ~lJ. Q.E.D.

heorem 7.9 There exists a constant C > 0 which is independent of

o such that

L 1 ,::; C(1 + An + ~3n / 2 ) , /I. ~ 0 ,

i nl.::;;1I.

rhere n runs through the poles, counted to mul tiplici ty, of

et C(s).
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.The trace class conjecture

e shall now prove Theorem 0.' of the introduction. The proof

ill follow from Theorem 7.5 and the deseription of the residual

pectrum by Langlands [L'J.

As mentioned in the introduction, the diserete spectrum

~(r\G,o) decomposes in the direct sum of the spaee of cuspforms

C
z s(r\G,o) and its orthogonal complement LZ (r\G,o) - the re-u . res

idual spectrum and, in view of [D' ] , i t is suffic ient to prove

Zheorem 0.' for eigenfunctions in Lres ( r\G,o). For this purpose

e have to reeall the description of L;es(r\G,o) obtained by

anglands in [L',Ch.7J. It follows from his theory of Eisensteinl
I

ystems that LZ (r\G,o) is spanned by "iterated residues" of!. res

uspidal Eisenstein series. We shall now explain this in more

etail.

Let P=NAM be a ~-parabolic subgroup of G. If aE~p' denate by

ä= 2H-/a(H ) the co-root associated to Cl • Given aE~p and CE~,
Cl Cl

e set

H(a,c) = { AEd[ I A(o)cc} .

affine subspace HCd[ is called admissible if H is the inter

ection of such hyperplanes . Suppose that H, ~ HZ are two admis

ible affine subspaces of a[ and HZ is of codimension one in H,.

et F(A) be a meromorphic function on H, whose singularities lie

lang hyperplanes which are admissible as subspaces of d[. Choose

real unit vector 11.
0

in H, normal to HZ' Then we can define a

m romorphi fun t on Re H on HZ by
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. f 0 is );0 sma:ll that F('A + .zAo) has no singula~ities for 0 < Iz I
<ZO. The singularities of Res H F lie on the intersections with

Z
HZ of the singular hyperplanes of F different from Hze Now con-

ider a complete flag

f affine admissible subspaces of a: and let A.EH. be a realunit
\Lo 1 1

ector ·which is normal to Hi - 1 , ic:1,. e. ,po We call F = {H i,Ai }

n admissible flag. Let F be a meromorphic function on ai whose

ingularities lie along admissible hyperplanes of a[. Then we de

ine inductively F. by
1

FP = F, Fi c Res HiFi + l' i=o, .. e , p-1 ·

et

ow let XE,Z(m) and 4>EL 2 (rM\M,cr,X)e The singularities of thecus
isenstein series E(pIA,4>,A) lie along hyperplanes of ~[which

re defined by equations of the form A(a) = w, we[, aE~p. Let

( a. , c. ), i=o,. e . , p-l, be a set of real singular hyperplanes Of~
1 1

(P IA, <1> , A) wi t h n H( CL. , C • ) ={ A }. Set H. ~ n H( a
J
• , C J' ), i =0 , . . . , p- "

i' '"]. 1 0 1 j ~i

nd Hpca.a:. Choose real unit vectors AiE Hi normal to Hi - 1eThen

= { H. , A.} is an admis 5 i b le flag. Furthermore , let cpe C
C
OO

( a) and
1 1

let ~(A) be its Fourier transform. ~(A) is holomorphic on d[.
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ut

( 8 . 1 )

t is elear that W depends only on the derivatives of iP at A .
o

et C(a*) be the positive cone in a* spanned by the simple roots

f (P,A). If AoE C( a*) then ljJ is square integrable and satisfies

I
is spanned by all the Wobtained in this way where;es ( r\G, 0)

runs over a set of representatives of the r-conjugacy classes

f ~-parabolic subgroups of G. For a given P, X runs over ZCmp), i
nd ~ 0 ver L~us Cr Mp\ MP, 0 , X). Fur t he rm0 re, if ljJ EL;es Cr \ G, 0) i s deJ

1ined by CB. 1) then 11 Ao 11
2 ::: 11 Pp 11

2 . Finally, observe that the di- I

ension of L2
(fM \Mp'o, X) can be estimated by Theorem 9.1 in Icus P

D1J. Therefore, the proof of Theorem 0.1 is reduced to the fol- i
1

owing problem: For a given cuspidal Eisenstein series E(PIA,~,A1

e have to estimate the number of its singular hyperplanes, coun J

Ied to multiplieity, whieh are real and intersect a given corn-
I

act set containing the origin. Using the scalar product for- j

ula for truncate.d Eisenstein series ([L2,§9],[O-W,p.487J), it

ollows that it is sufficient to estimate the corresponding num- I

er of singular hyperplanes of the intertwining operators I '
p Ip (w:A), wEW(ap ,ap ), for any pair P1 ,P Z cf associate ~-para-

I 2 1 1 2·

r
Olie subgroups of G. .

To proceed we have to recall seme facts from [H,V]. Let P be

a class of associate ~-parabolic subgroups of G. Let pcNAM be

kny element in P . Denote by C the set of Weyl chambers in a..
I
There is a ODe-ta-ODe carrespandence between P/G(Q and C/W(A)
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Ce.f. [H,V,§4]). To eaeh CEe one ean associate a unique PCEP

ith PCE:NCAM. Let CE: {C 1 , ... ,Cr } and set PicPe., i=1, ... ,r. This
1

set eontains a set of representatives fOT P/G(Q. For each conju-

acy class Pic {gpi g- 1 I gEG(Q} we ehoose a set of repTesentative

ik (1 s k ::ii Ti) fOT the r-conjugacy elasses in Pi and ehoose Yik

in Gm such that P·kcY·kPoY:k1. Let A. be a split component of P.,
I."<: 1 111 1 1

1 ::ii i ;:;Ir, and Ao k=Y·kA' Y:k1 . Then A' k is a split component of P. k .
1 1 1 1 1 1

Let PikE:NikAikMik be the corTesponding Langlands decomposition.

Let 0:: { 0ik I i e 1, ... ,T, kc 1, ... ,Ti} be a set of associate OT

its wheTe 0ikEZ(mik)/W(Aik). Set

iven.weW(a.,a.) and A€a~ a:' the intertwining opeTator
1 J 1,

e .. (W:A):L. ----+- L.
J1 1 J

L. =
1

T.
1

e L' kk=1 1

I
I

,1

I
I
I
I
i
j

is defined by

(w,c .. (w:A)CP)L
J 1 .

1

for ~ELik' ~ELjl'

As explained in V,§4 of [H), the functional equation implies

that there exists k (1 :s k S r) such that

and Cki(w:A) is entire. Hence it is sufficient to consider

C.. ( 1 : A). Fu r t he rm0 re, bY Lemma 117 i TI [H , V, § 4 ] t he Te ex ist 5 a
J1

1 :i i :s r, such tha t the chambers e.
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nd C. are adjacent for all 1~1 , ... ,p-' and
1 1+ 1

( 8 ° 2 )

11. =o I

I,
I
I
)

ence our problem is reduced to the investigation of Cj '
i

(1:A)

or adjaeent ehambers Ci and Cjo This is done in the proof of

emma '16 in [H,V,§4] _ We reeall the main facts_ Assurne that

'c, and j=2o Since C, and C2 are adjacent, there exists a ~-pa

abolic subgroup (P',A') of Gwhich dominates (P"A) and (PZ,A)

nd whose rank equals rank(P,)-l. Set (Pik,A~k) a Y1k(p' ,A') and

(P;1,AZ1 ) c: YZl(p ' ,A') (1 S k S Tl' , S 1 ~ TZ). We may assurne that

here exists YEf such that P~k = Yp;l- OtheTwise one has

( -1 Y'k ) 1 yu , I
P

z1
1P

lk
YZIY'k: A =0. Let u€(NZl)~ be such that AZ1 = Alk·

-1
et wEW(a'k,aZ1 ) be given by w=Ad(YZIY,k) on alk and let

Y1k A ° Then

rhere Ty is defined by (T ~)(x)a~(yx). Let (*P *A) =Y , , 1

= (Mik n Plk,M~k nA'k) and (*Pz,*Az ) = (MJkn yUPZl,M~kn YUAZl )'

f ·P.=*N.*A.*M. is the Langlands decomposition of *P. with re-
1 1 1 1 1

pect to *Ai , i=1,Z, then *M,cM'k and *MZc uMZlo Moreover, alke

aik @ *a l · Let wo=yuw. Then wo=l on aik- Denote by ·wo the re

trietion of Wo to *a, and by *Ao the restrietion of Ao to *a,_
i

hen

(8 . 4)
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OW observe that *P1 and *P2 are ~-parabolic subgroups of M1k of

ank one. Therefore we can apply Corollary 7.6 to estimate the

eal poles of the right hand side in a finite interval [-c, [plJ.

hen (8.2) together with (8.3) and (8.4) leads to

roposition 8.5 Let BR c ai,[ be the ball of radius R with cen

er at the origin and let Nji(R,O) be the number of singular hy

erplanes, counted to multiplicity, of C.. (1:A) which are real
J1

nd intersect BR. There exists a constant C > 0 which is indepen
t

ent of 0 such that

N.. (R, 0) :si C(1 + A2n) .
J1

his completes the proof of Theorem 0.1.

At the end of this section we shall explain how one

he adelic version of Corollary 0.2 from our results.

can derivJ

I
I

Let G now denote a reductive linear algebraic group defined

ver ~. For a given place v of ~ we shall write G(~v) for the·

roup cf ~v-rational points of G. In particular, G(m) is now the

eductive Lie group which we denoted by G before.Let A be the rin

fadeIes of (Q and let G(A) be the corresponding adele-valued

group. If f stands for the set of finite places of (Q and Af is
I
the corresponding ring cf finite adeles, then
I

I G(A) = G( rn.) G(Af ) .

tet Po be a fixed minimal parabolic subgroup of G, defined over

~. At any finite place v, define K to be G(~ ) if G(~ )=
I v v v
lPo(~v)G(~v)' In this case K is a maximal compact subgroup of
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((Qy)' This covers almost all v. For the remaining v let Kv be

ny open compact subgroup of G(~v) such that G(~ )cp (~ )K • Ifv 0 v v

C Oj , we let K be a maximal compact subgroup of G(IR) such that

he Lie algebras of K and Ap ( IR) are orthogonal under the Killin

orm. Then

K = TI K
vy

is a maximal compact subgroup of G(A).

Let Kf be any open compact subgroup of G(Af ). It follows from

[E1 ,§5] that G(A) is the disjoint union of finitely many

osets G(~) x i G(lR) K
f , 1 ~ i ::a 1. Put

hen ri is an arithmetic ·subgroup of G(IR) and

double I

I
i

i
i

I

(8.6)
1

= U (r.\G(lR))x. ·
i=1 1 1

his allows us to apply our results to the adelic case.

Let Z be the center of G and Z(IR) 0 the connected component

f 1 in Z(lR). It follows from (8.6) that

as G(lR)-modules. Furtherrnare, if L~(Z(lRJoG((Q)\G(A)) is the dis

crete spectrum of the right regular representation R of G(A) on

L2(Z(m)oG(~)\G(A)) then
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(8.7)

as G(m)-modules. Let

e a function on G(A) which satisfies the following properties:

) h E C~ ( G( m) )

) For v finite, hy is local1y constant with compact support.

) For almost all places v, hy is the characteristic function of

G(2Z v ) ·

orol1ary 8.8 For each K-finite function hEC~(G(A)), the opera

or RdCh) is of the trace class.

RdCh) is of the trace class
X

R is the right regular re
X

eharacter X ·ular representation twisted by the

n the same way one ean prove that

or any character X of Z(lR) o. Here

combinations of these functions are usual1y denoted

y C~(G(A)). Assume in addition that h is K-finite. Then there I

xists an open compact subgroup Kf of G(Af ) such that h is in- 1

1ariant under Kf . Hence R(h)maps L2(Z(~)OG(~)\G~A)) into the

ubspace cf Kf-invariant functions. Let Rd(h) be the restriction

f R(h) to the discrete spectrum. It follows from (8.7) that on

he Kf-invariant subspace, Rd(h) corresponds under the isomor-

() 1 d ( )hism 8.7 to @ i=1 Rr . h oo • Using Corollary 0.2, we get
1
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