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0. INTRODUCTION

Let S be a smooth projective surface over the complex numbers, ¢; € Pic(S) and
c2 € H*(S,Z). If L is an ample divisor on S we can study the moduli space M, (ci1,c2)
of L-semistable torsion free sheaves £ on S of rank 2 with det(£) = ¢; and ¢2(€) = cq
and the open subscheme M’E(c] ,C2) C M (c1,¢2) parametrizing locally free sheaves. In
[Q1]-[Q3] Qin studies the change of M?(c1,c2) when L varies and partially also that of
My (cy,c2) and gives a number of applications. It turns out that the ample cone of §
has a chamber structure such that My (ci1,c2) only depends on the chamber of L, and
the change of M, (c1,c2), when L passes through the wall between two chambers, can
be controlled. In particular in [Q2] these results are used to determine the Picard group
of My (o,c2) for S a ruled surface with effective anticanonical bundle and ¢ the section
with % minimal,

We first extend the approach of Qin to torsion free sheaves. We also look at the con-
nection to the moduli space Spl(e1,¢z) of simple sheaves and its possible non-separated
structure. Then we apply our results to the Hodge numbers of M, (¢, c2) for S a surface
with — g effective, ¢; not divisible by 2 in Num(S) and L not lying on a wall (then
M (c1,c2) is smooth and projective of dimension 4ce — ¢ —3x(Og) or empty). Our ool
for computing the Hodge numbers are virtual Hodge polynomials (see e.g. [Ch]). We
first obtain a simple formula for the change of the Hodge numbers of My (c1,c2) when
L passes through a wall (thm. 3.4). For a K3-surface or an abelian surface it follows
that they are independent of the chamber of L.

Finally, if S is a ruled surface with —Kg effective and ¢; - f is odd for a fibre f, we
compute the Hodge numbers of Mr(c1,¢) (thm. 4.4). While the precise formula is
quite complicated, for ¢, big enough about 3/8 of the Hodge numbers are independent

of co and L and given by a quite simple power series (thm. 4.5).

Typeset by AasS-TEX



1. BACKGROUND MATERIAL

(a) Notation and generalities
In this paper let S be a projective surface over C. We denote by NS(S) the Neron-
Severi group of S, i.e. the image of Pic(S) — H?(S,Z) and by Pic%(S) its kernel. Let

Num(S) := Pic(S)/= where = denotes numerical equivalence.

Proposition 1.1. (Serre duality and Hirzebruch-Riemann-Roch for eztension groups)
([Mu2], see prop. 1.7 in [Q2]). Let F, and Fy be torsion free sheaves on S. Then

(1) Ext'(F1,F2) is canonically dual to Ext*™'(Fy, F1 @ Ks)
(2) .(=1)'Ext'(F1,F2) is the part tn HY(X,Z) of ch(F)*ch(F2)td(Ts) where *
acts on H*(S,Z) by multiplication with (—1)*.

Let ¢ € Pic(S), co € Z (which we identify with H*(X,Z)). Let Spl{cy,cz) be
the moduli space of simple torsion-free sheaves £ on § of rank 2 with det(€) = ¢
and c(€) = co. This is a locally Hausdorff analytic space of finite dimension ([IK-0],
[No]). In general it is however not separated and not neccessarily a scheme. Let L
be a polarization of S. We mostly consider stability and semistability in the sense of
Gieseker and Maruyama. So we write L-(semi)stable instead of Gieseker (semi)stable
with respect L and L-slope (semi)stable instead of (semi)stable with respect to L in
the sense of Mumford-Takemoto. Let M (e1,c2) be the moduli space of L-semistable
torsion-free sheaves £ on S of rank 2 with det(€) = ¢; and ¢3(€) = ¢z and M} (c1,c2)

its open subscheme of stable sheaves, which is also an open subscheme of Spl(c;, ca).

(b) Hodge numbers of Hilbert schemes
For a scheme X over C let h?9(X) = dimH7(X, Q%) and

MY 1 2,9) = 3 (~ 1R (X )Py
P
the Hodge polynomial. Let Hilb*(S) be the Hilbert scheme of zero-dimensional sub-
schemes of length n on S. In [G61] its Betti numbers were computed and in [G-S} its

Hodge numbers using perverse sheaves and mixed Hodge modules. The result is

so 2
Z R(Hb™(S) : z,y)t" = H (1— $p+kyq+k)(—1)”+"+1h”"’(3)_

nz0 k=1p,q=0
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Using virtual Hodge polynomials (see below) this was proven independently in [Ch]
together with a formula for the Hodge numbers of the variety of pairs of subschemes

Zn C Zpy of lengths n and n + 1.

(¢) Virtual Hodge polynomials

Virtual Hodge polynomials were introduced in [D-K] and brought to my attention
by Cheah ([Ch]). They can be viewed as a tool for computing the Hodge numbers of
smooth projective varieties by reducing to simpler varieties. I review some of the results

and notations about virtual Hodge polynomials from pages 2-3 of [Ch].

Definition 1.2. Let X be a complex variety. Then by [De] the cohomology HY(X,Q)
with compact support carries a natural mixed Hodge structure. If X is smooth and

projective this Hodge structure coincides with the classical one. Following [Ch] we put
e?I(X) =Y (-1)*RPI(HE(X,Q)),
k

e(X :z,y) = Z eM (X )aPyt.
P

By [D-K] and Ch] these virtual Hodge polynomials have the following properties:

(1) If X is a smooth projective variety, then e(X : z,y) = h(X : z,y).

(2) For Y C X Zariski-closed and U = X \Y, (X : z,y) = e(U : z,y) +e(Y : 2,y).

(3) For f:Y — X a Zariski-locally trivial fibre bundle with fibre F, e(Y : z,y) =
e(X :z,y)e(F : z,y).

(4) If f: X — Y is a bijective morphism, then e(X : z,y) = e(Y : z,y).

2. WALLS AND CHAMBERS FOR TORSION-FREE SHEAVES

In this section we review and extend some results of Qin about the change of moduli

spaces of torsion-free sheaves when the polarization varies.

Definition 2.1. (see [Q3] Def 1.2.1.5) Let Cs be the ample cone in Num(S) @ R. For
£ € Num(S) let
Wé=Csn{z € Num(S)@]RI z-€=0}.

W€ is called the wall of type (c1,c2) determined by ¢ if and only if there exists G €
Pic(S) with G = € such that G + ¢ is divisible by 2 in Pic(S) and ¢ — 4¢c; < G? < 0.
W¢ is nonempty if there is a polarisation L with L& = 0. Let W(cy,¢z) be the union
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of the walls of type (c1,c2). A chamber of type (¢1,¢2) is a connected component of
Cs \ W(c1,c2). In future we dwrite wall and chamber instead of wall and chamber
of type (c1,cz2). We say that W¢ is a face of a chamber C if the closure C contains a
nonempty open subset of W&, It is clear that two different chambers C;, Cz can have at

most one common face.

Lemma 2.2. Let £ be a torsion free sheaf of rank 2 on S with det(€) = ¢1, c2(€) = ¢,
which 1s Ly-semistable and Lqo-unstable for two polarizations Ly, L, not on a wall.

(1) &€ 3 Ly-slope stable and Ly-slope unstable.

(2) There is a nontrivial extension
0 — Iz (F)— & —1Iz,(cit—F)—0, (%)

where £ = (2F — ¢1) determines a nonempty wall with (L < 0 < ¢Ly and
Zy € Hilb"(S), Z, € Hilb™(S) withn +m = (dcz — ¢ + £2).

Proof. This result is essentially shown in the proof of ([Q2] lemma 2.1) for S a ruled
surface and ¢; the class of a section. The proof only uses that ¢; is not divisible by 2
in Num(S) in order to exclude F = ¢; — F. We assume therefore F =¢; — F. As € is

Li-semistable and Lq-unstable, it also sits in an extension
00— Iw(F+G)— & — Iw,(cn - F-G) — 0,

with L1G < 0 < L;G. One of the induced maps Zz, (F) = Iw,(F + G), Iz,(F) —
Tw,(c1 —F —G@G) has to be injective, so either G or ¢; —2F — G is effective, a contradiction
tOL]GSO<L2G&I’1d61—2FEO O

For the rest of section 2 and section 3 we assume that £ = 2F — ¢; determines a

nonempty wall of type (c1,¢2)

Lemma 2.3. Let € be given by a non-trivial eztension (x). Then
(1) Hom(Zz,(F),&) =C.
(2) & is simple.
(3) Iz, (F) is the unique subsheaf of € of the form Tw, (G) with torsion-free quotient
and 2G —c; = €.

Proof. As (2F — ¢1)* < 0 and L(2F — ¢;) = 0 for -some polarization L, nei-
ther 2F — ¢; nor ¢; — 2F can be effective. Thus Hom(Zz, (F),Zz,(ci — F)) = 0,
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Hom(Zz,(c1 — F),Iz,(F)) = 0. So (1) follows by applying Hom(Zz, (F), ) to (x). By
applying Hom(Zz,(c; —F), - ) to (*) and using that the extension (*) is nontrivial, we get
Hom(Zz,(c; — F),&) = 0. So £ is simple by the sequence 0 — Hom(Zz,(c1 — F),€) —
Hom(¢, &) = Hom(Zz, (F),¢£).

(3) Assume we have a sequence
0 — Iw, (G) — & — Iz,(ch — G) — 0,

where 2G — ¢; = €. As there are polarizations Ly, Ly with L1§ < 0 < Lq&, neither
¢t —F — G nor F 4 G — ¢; can be effective. Therefore the induced maps Zw, (G) —
Iz,(c1 — F), Iz,(F) = Zw,(c1 — G) are zero. So Iw,(G) — Iz (F) and Iz (F) —
Iw, (G) are injective and F = G, W, = Z,. m)

Definition 2.4. Let Eg "™ be the set of sheaves lying in nontrivial extensions (*) with
len(Zy) = n,len(Z;) = m, where m +n = ¢z — (cf — £*)/4. By Lemma 2.3, ES'™ is
a subset of Spl(cy,cz). We put E¢ = Un+m=c2_(c3_£2)/4 Eg’m. By lemma 2.3 this is a
disjoint union.

For the rest of sections 2 and 3 when writing L,, L, we will always assume that L,

L, are polarizations in chambers with W?¢ as common face and £L, < 0 < £L,.

Proposition 2.5. Let £ € E'g'm. Then & 1s Ly-slope unstable, and the following are

equivalent:
(1) € is not Ly-slope stable. ‘
(2) € is L-slope unstable with respect to any polarization L ¢ W¥.
(3) The extension class of (*) lies in the kernel of the natural map Ext'(Zz,(c; —
F), Iz (F)) = Ext'(Iz,(c, — F), O(F)).
(4) €€ Efgm—r'r for some r < n.

Proof. The Lj-slope unstability and the implications (4)=>(2)=-(1) are obvious.

(1)=(4): Assume & is not L;-slope stable. Then we have an exact sequence
0 —Iw,(G) — & — Iw,(c1 —G) — 0 (%)

with L1G > Li(c; — G). If the induced map Iw, (G) — Iz, (F) was an injection, we
would get the contradiction 11 G < L1 F < Li(ey — F) £ Li(e1 — G). So Iw, (G) —

Zz,(c1 — F) is an injection, and ¢; — F — G is effective. Assume ¢y — F — G is strictly
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effective, and let L be a polarization with L{ = 0. Then 0 < L{¢cy—F—G) = Le¢p /2—- LG,
so L(2G — ¢1) < 0 £ L1(2G — c1). By (xx) we have (2G — ¢1)? > ¢ — 4c;. By
L(2G — ¢1) < 0 < (2G — ¢1)L, there is a polarization M with M(2G — ¢;) = 0. Thus
by the Hodge index theorem and using L(2G — ¢;) < 0, we get (2G — ¢1)® < 0. So
7 = 2G — ¢; defines a nonempty wall. As L, does not lie on a wall, W lies strictly

between L; and L, a contradiction. So G = ¢; — F, and we have a diagram

0
l
Iw,(c1 — F)
\J N\ A
0 - Iz, (F) - £ - Iz, (i =F) = 0
N J
Iw,(F)

!
0.

As ¢y —2F is neither effective nor anti-effective, v and § are injective. As £ is simple, the
vertical extension cannot be split. Furthermore len(Z;) +len(Z;) = len(W1) + len(W;)
and, by the injectivity of a (and the fact that (%) is not split), len(W3) < len(Z;).
(4)=(3): Let £ := (EBIw,(F))/Zz,(F) (the embedding Iz, (F) — € ®ZIw,(F) is given
by (*) and the standard injection Iz, (F') = Zw,(F)). Then the projection & — Ty, (F')
and the identity on T, (F) give a map & — Tw, (F) splitting the sequence

0 — Iw,(F) — € —Iz,(ci—F)—0

induced from (). Therefore the extension class of (%) lies in ker[Ext'(Zz,(ci —
F), Iz, (F)) = Ext'(Zz,(c1 — F),Iw,(F))], and (3) follows.

(3)=>(4): Assume (EBO(F))/Iz,(F) = O(F)®Iz,(c1—F). Let Ty, (F) and Iw, (¢; - F)
be image and kernel of the composition & =+ O(F) & Zz,(¢c; — F) — O(F'). Then

0 — Iw,(cy — F) — & — Iw,(F) — 0,

does not split because £ is simple. a

Remark 2.6. Every £ € Eg’m (in particular each locally free sheaf in Eg) is Ly-slope
stable and Lp-slope unstable. If E;™ # § for n > 0, then E;"™ N E?+m_r’r # @ for
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each 7 < n. In particular there are £ € E?’m, which are L-slope unstable for every
L ¢ W&, So prop. 2.5 shows an important difference between locally free sheaves and

torsion free sheaves.

Proof. The first sentence is obvious. Let £ € Eg’m be-given by an extension (*), where
Z1 does not intersect Z,. Let Y] ;Ct Z; be a subscheme of length r. By the proof of
proposition 2.5, £ € E?+m_r’r if the extension class of () lies in ker[Ext'(Zz,(c1 —
F),Iz,(F)) = Ext'(Zz,(c\—F),Iv,(F))] and not in ker [Ext' (Zz,(c; — F), Iz, (F)) —
Ext!(Zz,(c1 — F),Iy,(F))] for any scheme Y, with Y1 & Y2 & Z;. By the sequence
0 — Iz, (F) — Iy,(F) — Iy, /z,(F) — 0 and the fact that 2F — ¢; is not effective
these kernels are isomorphic to Hom(Zz,(c1 — F), Ty, /z, (F)) ~ C*~ten(¥), O

Definition 2.7. Let VE"’"l C E;'m be the set of all torsion free sheaves £ sitting in
extensions (*) whose extension class does not lie in ker [Ext'(Zz,(ci — F),Zz, (F)) —
Ext!(Zz,(c1 — F),Iw, (F))] We put Ve = Un+m:(4c2—cf+£2)/4 V?'m-

Lemma 2.8. Assume £, 1 define the same wall and VEn‘m NV #0. Then & =1y and

n =I.

Proof. Let £ € an,m N V,:”. Let L be a polarization in a chamber having W*¢ as a face
with L& < 0. Then by proposition 2.5, £ 1s L-slope stable and therefore nL < 0. & fits
into sequences (*), (xx) with (2F — ¢;) = €, (2G — ¢;) = 1. Then, as in the proof of
([Q3] prop. I1.1.2.5), ¢; — F — G cannot be effective. Therefore the sequences (), (#x)
induce injections Tz, (F} = Iw, (G), Tw, (G) = Iz, (F). m

Theorem 2.9.

(1) For L not on a wall, Mp(c1,c2) only depends on the chamber of L, and
My (c1,e2) \ M}(c1,¢2) is independent of L.
(2) As subsets of Spl(ci,c2) we have a decomposition

M} (c1yc2) = (Mg?(cl,@)\ (H 11 v_“;;")) u (]_[ I V,;W) ,

n n,m n n,m

where 17 runs over the classes in Num(S) with nLy < 0 defining the wall W' =
W¢ and n+ m = (4c; — ¢} + 1?)/4. Furthermore V'™ = Ep™ \ Ep™ N E_,,

Vi =ELT\ELTNE,
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Proof. (1) and (2) follow from lemma 2.2. The decomposition follows from lemma 2.2,
lemma 2.3 and proposition 2.5. Lemma 2.8 implies that the union is disjoint. The

identity V;»™ = E;™ \ ER™ N E_,, follows from proposition 2.5. ‘ O

Remark 2.10. We see from theorem 2.9 and remark 2.6 that theorem 2.6 and corollary
2.7 of [Q2] are imprecise. With S, L, Lo, o, (; as in [Q2] the correct result for thm. 2.6
is Mp(o,c2) = (Mpo(o,c2) \ B2 U EZ U (B \ ELY).

Assume now that the Picard number p(S) of S is at least 2.

Proposition 2.11.

(1) There is a integer k such that for each co; > k there exists a component M of
Spl(cy, c2) containing Ly-slope stable sheaves € for Ly lying in one chamber and
sheaves F which are L-slope unstable for each L not lying on a wall,

(2) In particular for c; > k and ¢; not divisible by 2 in Num(S), Spl(cy, c2) is not
separated.

Proof. (1) By p(S) > 2 we find F € Pic(S) with 2F — ¢; # 0 and (2F — ¢;)L = 0 for
an ample divisor L. Let £ = 2F — ¢;, and [ := (4cy — ¢} + £?)/4 and choose c2 big
enough, such that [ > h%(S,¢; — 2F + Kg) + 2. Then ¢ defines a nonempty wall. Let
Zy € Hilb'"(S), then HY(S,Iz,(c; + Ks — 2F)) = Ext' (Zz,(c; — F),O(F))* # 0 by

the cohomology sequence of
0— 122(61 + Kg — QF) — 0(01 4+ Kg — 2F) — Oz;,(cl + K¢ — QF) — 0.

Let z € S\ Z3. Applying Hom(Zz,(c1 — F), -) to 0 = I,(F) = O(F) = O,(F) — 0,
we see that Ext'(Zz,(c; — F), I.(F)) = Ext'(Zz,(c; — F),O(F)) is surjective but not
injective. Thus (1) follows by prop. 2.5 for M the component of Spl(cy,cz) containing
By

(2) If ¢; is not divisible by 2 in Num(S), M; (c1,¢2) = M, (c1,c2) is an open and
projective subscheme of Spl(ci,cz2), intersecting M; so if M were separated it would
contain M, which contradicts (1). a

3. THE CASE OF EFFECTIVE ANTICANONICAL DIVISOR

Now let S be a surface with —Kg effective. For a simple torsion free sheaf £ on § we

have Ext?(&,£)o = 0, where the index 0 refers to the derived functor of the trace-free
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homomorphisms. Thus M7} (c1, cz) is smooth of dimension 4c; — ¢ — 3x(Os) or empty

for each polarisation L.

Definition 3.1. Let Ty, ,n := Pic®(S) x Hilb™(S) x Hilb"(S) and let P be the pullback
of the Poincaré line bundle from S x Pic®(S) to S x Ty m. Let 1z, (s) be the ideal sheaf
of the universal subscheme Z,(S) in S x Hilb"(S). Let 7, ps, q1, g2 be the projections of
SxTnm to Tnm, S, S Hilb"(S) and § x Hilb™ (S) respectively. Let Vi := ¢;(Z2,(5))®
P5(F) ® P®* and Vz := ¢3(Zz,.(s)) @ p5(c1 — F). We put £'™ := Extr(Vy, V1), where
Ext; (V2, -) is the right derived functor of Homg(Vz, - ) := m,Hom(Vs, - ).

Lemma 3.2.

(1) There is an isomorphism Ext'(V, V1) = HO(S X Tn m, E™).
(2) €™ is locally free of rank —€(£ — Ks)/2 4+ n +m — x(Os).
3 ver S X ") we have a tautological extension

Quer § x P(E™ h logical )

0—p*'WV) —V—p"(V2)® OHE;.m)(—l) — 0,

where p 1 SXP(E]™) = §xTn,m is the projection, such that for eacht € P(E;"™)
the restriction to S x {t} is isomorphic to the extension corresponding to t.
(4) There is a natural bijective morphism vg nm @ P(E™) — BT,
Proof. For t € T the fibres (Va)¢, (V1): are Iz,(c1 — G), Zz,(G) for suitable G € Pic(S)
with 2G —¢; = £. As 2G — ¢ is not effective, Hom((V2)¢,(V1):) = 0 and as —Kg
is effective and ¢; — 2G' is not effective, Ext®((V2)y, (V1)¢) = 0 by Serre duality. So
Hom(V, V1) = 0, Extl(V,, V) is locally free and its rank is given by Riemann Roch
(prop. 1.1). (1) and (3) now follow from the degeneration of the spectral sequence
Hi(Bxt? (V, V1)) = Ext™(Vq, V1) see ([H-S],[Q2], [OG]).
(4) By Kodaira classification surfaces S with —Kg effective have torsion-free
H?*(S,Z). Therefore Num(S) = NS(S), and by (3) there is a natural surjective mor-
phism vg nm : P(E™) = E™. By lemma 2.3 it is also injective. a

Remark 8.8. Let v : Tphm — To,m be the projection. Then there is a natural map
Sg'm — u"‘(f,'g’m) (which fibrewise is the natural map Ext'(Zz,(ci — F), Iz (F)) -
Ext!(Zz,(c1 — F),O(F))). It gives a section s of u*(gg’m) ® Oﬁgg.m)(l) whose zero

locus is ugi’m(Eé"m N E_¢) by proposition 2.5. In particular this is a closed subscheme.
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Theorem 3.4.

(1) e(My,(c1,2) : 7,y) = e(Mpy(er, e2) 1 7,9) + (1 = 2)(1 — )1

. (Zh(HIlb[lq](S L S) : ’E,y) (my)ln_’?(TJ+K5-)/2_’\-(OS)_]__—:-(Ey_)ZE-)
1-— Ty )
n

where 1 runs over the classes in Num(S) determining the wall W7 = W¢ with
nLy <0 and I, := (de2 ~ ¢ +71%)/4.

(2) If ¢1 1s not divisible by 2 in Num(S) (or more generally if My, (c1,¢2) and
My, (c1,¢2) are smooth), then the same holds for h(Mp,(c1,¢2) : z,y) and
h(Mp,(c1,¢2) @ &,y) instead of (M, (¢1,¢2) : x,y) and e(M,(cy,c2) : 3,y).

Proof. If ¢; 1s not divisible by 2 in Num(S), then for L not lying on a wall My, (c1,¢) =
M (c1,¢2) is smooth and projective, so (2) follows from (1).

Property (2) of the virtual Hodge polynomials and thm. 2.9 give
e(Mp,(c1,¢2) : 2,y) = e(Mpo(cr,e2) 1 m,y) + > (e(Vy : 2,y) — e(Voy 1 7,7)).
7

By remark 3.3 E, N E_, is a closed subscheme of E,, so
e(Vy s z,y) —e(Voy 1 2,y) — (e(E,T cz,y) —e(Eoy 1 2,))
=e(E,NE_,:z,y)—e(E,NE_,:z,y) =0

By lemma 2.3 Ey = [[,4 =y, £y, and using also properties (2),(3) and (4) we get
e(E}™ s z,y) = h(E}™ : 2,y) = h(Pic®(S) x Hilb"™(S) x Hilb™(S) x Py : z,y),
where w + 1 = —n(n — K5)/2 4 1, — x(Os) is the rank of Ext}(Vz, Vi). We see that

> h(Hilb™(S) : z,y)h(Hilb™(S) : 2,y) = h(Hilb"(SUS) : z,y).
n+m=l,

So (2) follows by thm 2.9. O

Corollary 3.5. If S is a K3 surface or an abelian surface, and ¢, 18 not divisible by 2
in NS(S), then the Hodge numbers of My(cy,ce) are independent of the polarization L

as long as L does not lie on a wall.

Proof. As Kg is trivial in this case, this follows immediately from theorem 3.4. m|
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4. HODGE NUMBERS OF MODULI SPACES OF STABLE SHEAVES ON RULED SURFACES

Let S be a ruled surface with — g effective over a curve C' of genus g with projection
p:S — C. Let f be a fibre of p and o the section with ¢? minimal. We put ¢ = —o?;
then Kg = —20 + (29 — 2 — ¢)f. Let ¢; € Pic(S) with ¢; - f odd. By normalizing we
assume in future that ¢; = o + ¢f with € € {0,1}. We want to compute the Hodge
numbers of M (c;,¢q) for a polarization L not lying on a wall. In the case ¢; = o the
Picard group Pic(M(cy,c2)) was determined in [Q2] and in the case ¢; f odd and g = 0

it was determined in [Na].

Remark 4.1. It is well-known that N S(S) is a free abelian group generated by the classes
of o and f. If A = ao + Bf is an effective divisor, then a« > 0, 8 > 0if e > 0 and
—ea + 20 > 0if e < 0. So the effectiveness of —Kg implies ¢ > 0 and 29 — 2 < e or
g=—e=1 (see [Q2]).

For L = ao + Bf we put rp = §/« following [Q2]. Then L is ample if and only if
a>0andr, >eincase e > 0or o >0 and r;, > e/2 in case e < 0. We also see that
L - M=0ifandonly ifry +rpy =e.

Remark 4.2. A wall of type (c1,co) is W for £ = (2a + 1)o + (28 + ¢) f, where a and
B are integers such that —dc, + ¢? < ¢ < 0. We can assume that o > 0; then this is
equivalent to

(1) 8<0ife>0,—(268+¢€)>a+1/2if e <0 (and therefore e = —1).

(2) lagi=co—ala+1)e+ (2a+1)8 + ac > 0.

Lemma 4.3. (see [Q2] prop.2.8) Mr(c1,c2) =0 for v, >2c2+e—e.

Theorem 4.4. Let L be a polarization not lying on a wall; let

2
w«mn=ﬂaﬁ)eﬁﬂazoﬁ‘rb>251;}

fr(z,y,t) = Z ((ay)o(2a+D)e=48=2¢42x(05))
(a,$YEW(L)
— (my)(ﬁ+1)(20+1)6—45—2E—Qx(Og)))t(02+a)e—(2a+1)ﬁ_ea.

Then

c 3 5t
3" h(Mp (e, m)t™ fLei(2,9,)

S (L-w)(l-y)o(1 —ay)
(1 _ $2k—2y2k—ltk)2g(1 _ $2k—ly2k—2tk)2g

' H (1 — g2k—1y2k=13F)2(1 — g2k 2kek)2(1 — g2h+1y2k+1gk)2”
k>0
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Proof. As Mp,(c1,c2) =0 for rp, > 2¢co + e~ ¢, we can compute h(M(c1,c2) : @,y) by
summing up the changes for all walls betweem Lg and L, i.e. for all £ := (2a + 1) +
(26 +¢)f witha>0,e~7r > %(%;— > —2¢c; +eandlyp 2 0.

We first want to see that I, g > 0 implies 28 + € > (—2¢2 + €)(2c + 1). Using

-1 ife>0,

20+ ¢ <
& _{—(a+1) ife=-1

(seeremark 4.1), 1o g 2 0implies ¢c; > 0. Now assume 25 + € < (—2¢a+€)(2a+1). Ifa =
0,thenla g < c2+8 < 0;andifa > 0, thenly g < c2—a(a+1)e—a(2a+1)(2¢c, —€)+ 3,
and by ¢c2 2 1, <0, e> —1 thisis < 0. By

—€(&+ Ks) = x(0s) = a((2a + 1)e — (40 + 2¢) + 2x(0s)),

—€(6 — Ks) — x(0Os) = (a + 1)((2a + 1)e — (46 + 2¢) — 2x(Os)),

theorem 3.4 and remark 4.2 we get

h(ML(Cl Cz) —_ y) — (1 — m)g(l - y)g Z ((my)a((20+1)c—4ﬂ—26+2x(05))
o SR oo
o,

- (my)(0+1)((20+1)e—4ﬂ—2e—2x(os)))h(Hz'lb[fa.a](g US):azy) (zy)'e?,
where (o, ) runs over the set {(a,ﬁ) € W(L) | lag 2 0}.
By rem. 4.2(2) we can express ¢, in terms of a, 83, o g and see that, given (o, 3) €

W (L), letting c2 run through all possible values is equivalent to letting {4 g run through

all nonnegative integers. Finally we use the formula

S A(Hib™(SUS) : 2,y) (ayt)™ = (3 h(Hl(S) : 2, 3)(zvt)")

m>0 n>0
(1 = a2k=1y2hgky20(1 — g2k 2h=14ky2g
- H (1 - 2%~ 1 SRRy (1 _mzkyzktx) (1 — gek+2y2hrzghye”

k>0

O

Unfortunately the formula for the Hodge numbers of M (¢1,¢1) is not very simple.
However it turns out that for ¢; large enough about the first 3/8 of the Hodge numbers

are independent of L and given by a quite simple formula.

Theorem 4.5.

1— Ty (1 _ x2k—2y2k—-l)29(1 - $2k—ly2k—2)2g

(1 =2)9(l—y)7 22 (1 — zkyk)t

h(ML(c1,c2) 2, y) =
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modulo (zy)®2~", where

__{ (1/(2r;) + 1) ifS=P xPy, e=1andr;, <1/3;
T\ [rL+e—e/2] otherwise,

and [a] denotes the largest integer < a.

Proof. Let f, be the coeflicient of t™ in fr(z,y,t).
Claim: f, =1 modulo (zy)™ ™.
Proof of the Claim: Let (a,3) € W(L). For o = 0 we get

(:cy)a((20+l)e—4ﬂ—2e+2,\'(05))t(a2+a)e—(2a+1),3—ea — t—ﬁ

]

where —f can run over all integers bigger then ry, + ¢ — ¢/2. Therefore by thm. 4.4 it
is enough to prove

(1) If @ > 0 then g1(e, B) := a?e — (20 — 1) — ce + 2ax(0s) > —w,

(2) g2(e, B) = (e + 1)’ = (20 + 3)8 — (a + 2)e — (20 + 2)x(Vs) = —w.
(1) If € > 0, then e > —2x(Og) (rem. 4.1), therefore g1(, ) > —(2a — 1) — ae > 0.
If e < 0, then e = -1, x(Og) = 0 and —28 > (a + 1) + ¢, therefore

g1(e,B) > —a* + (@ —1/2)(a+ 1) —¢/2 > —1.
(2)If e >0 or x(Os) > 0or e =0, then
g2, B) 2 (e +1)%e + (20 + 3) — (@ +2)e — (20 + 2)x(Os) 2 0.

If e = —1, then go(a,8) > —(a+ 1)  + (@ +3/2)(a+1)—¢/2>0. If e = 0 and
x(0Os) = =1 and ¢ = 1, then g;(e,8) = —(2a + 3)F — (3a +4). So if < —1, then
g2(a,8) > 0, and if 8 = —1, then g2(e, ) = —(a + 1) and r;, = 1/(2a+1). So the
claim follows.

By thm. 4.4 h(Mp(ci,c2) : z,y) is the coefficient of £ of k(z,y, zyt) fr(z,y,t), for

a power series k(z,y,z) = D ka(z,y)2". So we get

h(Mr(ci,c2) s z,y) = Z fepmmbm(z,y)(zy)™

m<ca

Z (zy)"km(z,y) modulo (zy)2~"

m<ca

= k(z,y,zy) modulo (zy)®=t.
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So we obtain our result by replacing fr(z,y) by 1, putting ¢ = 1 in the formula of thm.
4.4 and an easy calculation. ]

Instead of fixing the determinant det(€) we can also consider My (Cy,cq) the moduli
space of torsion free sheaves with topological first Chern class C; € NS(S). For ¢
determining a wall of type (¢1,c2) (where the cohomology class of ¢; is Cy) let Eg'm be

the set of sheaves lying in extensions
0—- Izl(F) &= 132(61 —G) — 0,

with len(Z1) = n, len(Z2) =m, F+ G—cy =€ and F — G =0 and let T?en’m be the
subset of E.'™ where (€ @ O(F))/Iz,(F) # O(F) @ Iz,(c1 — G). Then, after making
the obvious changes, the results of chapters 2 and 3 all hold with M (¢, ¢2), E?’m and
V™ replaced by M(Ci,¢z), ES™ and V"™, In the modification of lemma 3.2 E"™
is bijective to a projective bundle over Pic?(S) x Pic®(S) x Hilb™(S) x Hilb™(S), and
therefore in thm 3.4 the factor ((1 — z)(1 — y))%*) is replaced by ((1 — z)(1 —y))?%%).
So the formulas of thm. 4.4 and thm. 4.5 hold for My (C,c2) without the factor
(1 —z)9(1 — y)? in the denominator.

By [E-S2] and [B] under the assumptions of thm 4.4 the cohomology ring -
H*(M(C,c2),Q) is generated by the Kiinneth components ¢;(F)/1, ¢i(F)/f, ci(F)/o,
ci(F)/pt of the Chern classes of any universal sheaf F over S x My,(Cy, ¢z) (pt is the class
of a point). If M is the pullback of a line bundle on My (Cy,cz2), then also F @ M is a
universal sheaf, and its Kiinneth components generate H*(M(Cy,c2),Q). So ¢1(F)/1
lies in the space generated by ¢ (F)/1 + 2¢1(M), co2(F)/o + c1(M), co(F)/ f 4 ¢1 (M),
c3(F)/pt for all M € Pic(My(c1,c2)), and thus for all M € Pic(Mp(c1,¢2)) @ Q. So
we can put M = —1(det(F)/1) and see that the generator ¢;(F)/1 is redundant. Then

thm. 4.5 can be reformulated:

Corollary 4.6. There is no relation between the (graded commutative) generators
ci (FYL, ciu(F)Y f, cia(F) o, ¢j(F)/pt (§i 22 fori=1,...,4) in dimension lower
then 2¢q — 2w
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