Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces

~

.

Lothar Göttsche

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn Germany

,

Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces

Lothar Göttsche

Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-53225 Bonn, Germany

0. INTRODUCTION

Let S be a smooth projective surface over the complex numbers, $c_1 \in Pic(S)$ and $c_2 \in H^4(S, \mathbb{Z})$. If L is an ample divisor on S we can study the moduli space $M_L(c_1, c_2)$ of L-semistable torsion free sheaves \mathcal{E} on S of rank 2 with $det(\mathcal{E}) = c_1$ and $c_2(\mathcal{E}) = c_2$ and the open subscheme $M_L^0(c_1, c_2) \subset M_L(c_1, c_2)$ parametrizing locally free sheaves. In [Q1]-[Q3] Qin studies the change of $M_L^0(c_1, c_2)$ when L varies and partially also that of $M_L(c_1, c_2)$ and gives a number of applications. It turns out that the ample cone of S has a chamber structure such that $M_L(c_1, c_2)$ only depends on the chamber of L, and the change of $M_L(c_1, c_2)$, when L passes through the wall between two chambers, can be controlled. In particular in [Q2] these results are used to determine the Picard group of $M_L(\sigma, c_2)$ for S a ruled surface with effective anticanonical bundle and σ the section with σ^2 minimal.

We first extend the approach of Qin to torsion free sheaves. We also look at the connection to the moduli space $Spl(c_1, c_2)$ of simple sheaves and its possible non-separated structure. Then we apply our results to the Hodge numbers of $M_L(c_1, c_2)$ for S a surface with $-K_S$ effective, c_1 not divisible by 2 in Num(S) and L not lying on a wall (then $M_L(c_1, c_2)$ is smooth and projective of dimension $4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ or empty). Our tool for computing the Hodge numbers are virtual Hodge polynomials (see e.g. [Ch]). We first obtain a simple formula for the change of the Hodge numbers of $M_L(c_1, c_2)$ when L passes through a wall (thm. 3.4). For a K3-surface or an abelian surface it follows that they are independent of the chamber of L.

Finally, if S is a ruled surface with $-K_S$ effective and $c_1 \cdot f$ is odd for a fibre f, we compute the Hodge numbers of $M_L(c_1, c_2)$ (thm. 4.4). While the precise formula is quite complicated, for c_2 big enough about 3/8 of the Hodge numbers are independent of c_2 and L and given by a quite simple power series (thm. 4.5).

1. BACKGROUND MATERIAL

(a) Notation and generalities

In this paper let S be a projective surface over \mathbb{C} . We denote by NS(S) the Neron-Severi group of S, i.e. the image of $Pic(S) \to H^2(S,\mathbb{Z})$ and by $Pic^0(S)$ its kernel. Let $Num(S) := Pic(S)/\equiv$ where \equiv denotes numerical equivalence.

Proposition 1.1. (Serre duality and Hirzebruch-Riemann-Roch for extension groups) ([Mu2], see prop. 1.7 in [Q2]). Let \mathcal{F}_1 and \mathcal{F}_2 be torsion free sheaves on S. Then

- (1) $\operatorname{Ext}^{i}(\mathcal{F}_{1}, \mathcal{F}_{2})$ is canonically dual to $\operatorname{Ext}^{2-i}(\mathcal{F}_{2}, \mathcal{F}_{1} \otimes K_{S})$
- (2) $\sum_{i}(-1)^{i}\operatorname{Ext}^{i}(\mathcal{F}_{1},\mathcal{F}_{2})$ is the part in $H^{4}(X,\mathbb{Z})$ of $ch(\mathcal{F}_{1})^{*}ch(\mathcal{F}_{2})td(T_{S})$ where * acts on $H^{2i}(S,\mathbb{Z})$ by multiplication with $(-1)^{i}$.

Let $c_1 \in Pic(S)$, $c_2 \in \mathbb{Z}$ (which we identify with $H^4(X,\mathbb{Z})$). Let $Spl(c_1, c_2)$ be the moduli space of simple torsion-free sheaves \mathcal{E} on S of rank 2 with $det(\mathcal{E}) = c_1$ and $c_2(\mathcal{E}) = c_2$. This is a locally Hausdorff analytic space of finite dimension ([K-O], [No]). In general it is however not separated and not neccessarily a scheme. Let Lbe a polarization of S. We mostly consider stability and semistability in the sense of Gieseker and Maruyama. So we write L-(semi)stable instead of Gieseker (semi)stable with respect L and L-slope (semi)stable instead of (semi)stable with respect to L in the sense of Mumford-Takemoto. Let $M_L(c_1, c_2)$ be the moduli space of L-semistable torsion-free sheaves \mathcal{E} on S of rank 2 with $det(\mathcal{E}) = c_1$ and $c_2(\mathcal{E}) = c_2$ and $M_L^s(c_1, c_2)$ its open subscheme of stable sheaves, which is also an open subscheme of $Spl(c_1, c_2)$.

(b) Hodge numbers of Hilbert schemes

For a scheme X over \mathbb{C} let $h^{p,q}(X) = dim H^q(X, \Omega^p_X)$ and

$$h(X:x,y) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X) x^p y^q$$

the Hodge polynomial. Let $Hilb^n(S)$ be the Hilbert scheme of zero-dimensional subschemes of length n on S. In [Gö1] its Betti numbers were computed and in [G-S] its Hodge numbers using perverse sheaves and mixed Hodge modules. The result is

$$\sum_{n \ge 0} h(Hilb^n(S): x, y)t^n = \prod_{k=1}^{\infty} \prod_{p,q=0}^2 (1 - x^{p+k}y^{q+k})^{(-1)^{p+q+1}h^{p,q}(S)}$$

Using virtual Hodge polynomials (see below) this was proven independently in [Ch] together with a formula for the Hodge numbers of the variety of pairs of subschemes $Z_n \subset Z_{n+1}$ of lengths n and n+1.

(c) Virtual Hodge polynomials

Virtual Hodge polynomials were introduced in [D-K] and brought to my attention by Cheah ([Ch]). They can be viewed as a tool for computing the Hodge numbers of smooth projective varieties by reducing to simpler varieties. I review some of the results and notations about virtual Hodge polynomials from pages 2-3 of [Ch].

Definition 1.2. Let X be a complex variety. Then by [De] the cohomology $H_c^k(X, \mathbb{Q})$ with compact support carries a natural mixed Hodge structure. If X is smooth and projective this Hodge structure coincides with the classical one. Following [Ch] we put

$$e^{p,q}(X) := \sum_{k} (-1)^{k} h^{p,q}(H^{k}_{c}(X, \mathbb{Q})),$$
$$e(X : x, y) := \sum_{p,q} e^{p,q}(X) x^{p} y^{q}.$$

By [D-K] and Ch] these virtual Hodge polynomials have the following properties:

- (1) If X is a smooth projective variety, then e(X : x, y) = h(X : x, y).
- (2) For $Y \subset X$ Zariski-closed and $U = X \setminus Y$, e(X : x, y) = e(U : x, y) + e(Y : x, y).
- (3) For $f: Y \longrightarrow X$ a Zariski-locally trivial fibre bundle with fibre F, e(Y: x, y) = e(X: x, y)e(F: x, y).
- (4) If $f: X \longrightarrow Y$ is a bijective morphism, then e(X: x, y) = e(Y: x, y).

2. WALLS AND CHAMBERS FOR TORSION-FREE SHEAVES

In this section we review and extend some results of Qin about the change of moduli spaces of torsion-free sheaves when the polarization varies.

Definition 2.1. (see [Q3] Def I.2.1.5) Let C_S be the ample cone in $Num(S) \otimes \mathbb{R}$. For $\xi \in Num(S)$ let

$$W^{\xi} := C_S \cap \{ x \in Num(S) \otimes \mathbb{R} \mid x \cdot \xi = 0 \}.$$

 W^{ξ} is called the wall of type (c_1, c_2) determined by ξ if and only if there exists $G \in Pic(S)$ with $G \equiv \xi$ such that $G + c_1$ is divisible by 2 in Pic(S) and $c_1^2 - 4c_2 \leq G^2 < 0$. W^{ξ} is nonempty if there is a polarisation L with $L\xi = 0$. Let $W(c_1, c_2)$ be the union of the walls of type (c_1, c_2) . A chamber of type (c_1, c_2) is a connected component of $C_S \setminus W(c_1, c_2)$. In future we dwrite wall and chamber instead of wall and chamber of type (c_1, c_2) . We say that W^{ξ} is a face of a chamber C if the closure \overline{C} contains a nonempty open subset of W^{ξ} . It is clear that two different chambers C_1 , C_2 can have at most one common face.

Lemma 2.2. Let \mathcal{E} be a torsion free sheaf of rank 2 on S with $det(\mathcal{E}) = c_1$, $c_2(\mathcal{E}) = c_2$, which is L_1 -semistable and L_2 -unstable for two polarizations L_1 , L_2 not on a wall.

- (1) \mathcal{E} is L_1 -slope stable and L_2 -slope unstable.
- (2) There is a nontrivial extension

$$0 \longrightarrow \mathcal{I}_{Z_1}(F) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{Z_2}(c_1 - F) \longrightarrow 0, \qquad (*)$$

where $\xi \equiv (2F - c_1)$ determines a nonempty wall with $\xi L_1 < 0 < \xi L_2$ and $Z_1 \in Hilb^n(S), Z_2 \in Hilb^m(S)$ with $n + m = (4c_2 - c_1^2 + \xi^2)$.

Proof. This result is essentially shown in the proof of ([Q2] lemma 2.1) for S a ruled surface and c_1 the class of a section. The proof only uses that c_1 is not divisible by 2 in Num(S) in order to exclude $F \equiv c_1 - F$. We assume therefore $F \equiv c_1 - F$. As \mathcal{E} is L_1 -semistable and L_2 -unstable, it also sits in an extension

$$0 \longrightarrow \mathcal{I}_{W_1}(F+G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_2}(c_1 - F - G) \longrightarrow 0,$$

with $L_1G \leq 0 < L_2G$. One of the induced maps $\mathcal{I}_{Z_1}(F) \to \mathcal{I}_{W_1}(F+G), \mathcal{I}_{Z_1}(F) \to \mathcal{I}_{W_2}(c_1-F-G)$ has to be injective, so either G or c_1-2F-G is effective, a contradiction to $L_1G \leq 0 < L_2G$ and $c_1-2F \equiv 0$.

For the rest of section 2 and section 3 we assume that $\xi \equiv 2F - c_1$ determines a nonempty wall of type (c_1, c_2)

Lemma 2.3. Let \mathcal{E} be given by a non-trivial extension (*). Then

- (1) $\operatorname{Hom}(\mathcal{I}_{Z_1}(F), \mathcal{E}) = \mathbb{C}.$
- (2) \mathcal{E} is simple.
- (3) $\mathcal{I}_{Z_1}(F)$ is the unique subsheaf of \mathcal{E} of the form $\mathcal{I}_{W_1}(G)$ with torsion-free quotient and $2G - c_1 \equiv \xi$.

Proof. As $(2F - c_1)^2 < 0$ and $L(2F - c_1) = 0$ for some polarization L, neither $2F - c_1$ nor $c_1 - 2F$ can be effective. Thus $\operatorname{Hom}(\mathcal{I}_{Z_1}(F), \mathcal{I}_{Z_2}(c_1 - F)) = 0$,

 $\operatorname{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Z_1}(F)) = 0. \text{ So (1) follows by applying } \operatorname{Hom}(\mathcal{I}_{Z_1}(F), \cdot) \text{ to (*). By}$ applying $\operatorname{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \cdot) \text{ to (*) and using that the extension (*) is nontrivial, we get}$ $\operatorname{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{E}) = 0. \text{ So } \mathcal{E} \text{ is simple by the sequence } 0 \to \operatorname{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{E}) \to \operatorname{Hom}(\mathcal{E}, \mathcal{E}) \to \operatorname{Hom}(\mathcal{I}_{Z_1}(F), \mathcal{E}).$

(3) Assume we have a sequence

$$0 \longrightarrow \mathcal{I}_{W_1}(G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{Z_2}(c_1 - G) \longrightarrow 0,$$

where $2G - c_1 \equiv \xi$. As there are polarizations L_1, L_2 with $L_1\xi < 0 < L_2\xi$, neither $c_1 - F - G$ nor $F + G - c_1$ can be effective. Therefore the induced maps $\mathcal{I}_{W_1}(G) \rightarrow \mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Z_1}(F) \rightarrow \mathcal{I}_{W_2}(c_1 - G)$ are zero. So $\mathcal{I}_{W_1}(G) \rightarrow \mathcal{I}_{Z_1}(F)$ and $\mathcal{I}_{Z_1}(F) \rightarrow \mathcal{I}_{W_1}(G)$ are injective and $F = G, W_1 = Z_1$.

Definition 2.4. Let $E_{\xi}^{n,m}$ be the set of sheaves lying in nontrivial extensions (*) with $len(Z_1) = n, len(Z_2) = m$, where $m + n = c_2 - (c_1^2 - \xi^2)/4$. By Lemma 2.3, $E_{\xi}^{n,m}$ is a subset of $Spl(c_1, c_2)$. We put $E_{\xi} = \bigcup_{n+m=c_2-(c_1^2-\xi^2)/4} E_{\xi}^{n,m}$. By lemma 2.3 this is a disjoint union.

For the rest of sections 2 and 3 when writing L_1 , L_2 we will always assume that L_1 , L_2 are polarizations in chambers with W^{ξ} as common face and $\xi L_1 < 0 < \xi L_2$.

Proposition 2.5. Let $\mathcal{E} \in E_{\xi}^{n,m}$. Then \mathcal{E} is L_2 -slope unstable, and the following are equivalent:

- (1) \mathcal{E} is not L_1 -slope stable.
- (2) \mathcal{E} is L-slope unstable with respect to any polarization $L \notin W^{\xi}$.
- (3) The extension class of (*) lies in the kernel of the natural map Ext¹(I_{Z₂}(c₁ F), I_{Z₁}(F)) → Ext¹(I_{Z₂}(c₁ F), O(F)).
 (4) E ∈ E^{n+m-r,r}_{-ε} for some r < n.

Proof. The L_2 -slope unstability and the implications $(4) \Rightarrow (2) \Rightarrow (1)$ are obvious. (1) \Rightarrow (4): Assume \mathcal{E} is not L_1 -slope stable. Then we have an exact sequence

$$0 \longrightarrow \mathcal{I}_{W_1}(G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_2}(c_1 - G) \longrightarrow 0$$
(**)

with $L_1G \geq L_1(c_1 - G)$. If the induced map $\mathcal{I}_{W_1}(G) \to \mathcal{I}_{Z_1}(F)$ was an injection, we would get the contradiction $L_1G \leq L_1F < L_1(c_1 - F) \leq L_1(c_1 - G)$. So $\mathcal{I}_{W_1}(G) \to \mathcal{I}_{Z_2}(c_1 - F)$ is an injection, and $c_1 - F - G$ is effective. Assume $c_1 - F - G$ is strictly

6

effective, and let L be a polarization with $L\xi = 0$. Then $0 < L(c_1 - F - G) = Lc_1/2 - LG$, so $L(2G - c_1) < 0 \leq L_1(2G - c_1)$. By (**) we have $(2G - c_1)^2 \geq c_1^2 - 4c_2$. By $L(2G - c_1) < 0 \leq (2G - c_1)L_1$ there is a polarization M with $M(2G - c_1) = 0$. Thus by the Hodge index theorem and using $L(2G - c_1) < 0$, we get $(2G - c_1)^2 < 0$. So $\eta \equiv 2G - c_1$ defines a nonempty wall. As L_1 does not lie on a wall, W^{η} lies strictly between L_1 and L, a contradiction. So $G = c_1 - F$, and we have a diagram

As $c_1 - 2F$ is neither effective nor anti-effective, α and β are injective. As \mathcal{E} is simple, the vertical extension cannot be split. Furthermore $len(Z_1) + len(Z_2) = len(W_1) + len(W_2)$ and, by the injectivity of α (and the fact that (*) is not split), $len(W_2) < len(Z_1)$. (4) \Rightarrow (3): Let $\overline{\mathcal{E}} := (\mathcal{E} \oplus \mathcal{I}_{W_2}(F))/\mathcal{I}_{Z_1}(F)$ (the embedding $\mathcal{I}_{Z_1}(F) \to \mathcal{E} \oplus \mathcal{I}_{W_2}(F)$ is given by (*) and the standard injection $\mathcal{I}_{Z_1}(F) \to \mathcal{I}_{W_2}(F)$). Then the projection $\mathcal{E} \to \mathcal{I}_{W_2}(F)$ and the identity on $\mathcal{I}_{W_2}(F)$ give a map $\overline{\mathcal{E}} \to \mathcal{I}_{W_2}(F)$ splitting the sequence

$$0 \longrightarrow \mathcal{I}_{W_2}(F) \longrightarrow \bar{\mathcal{E}} \longrightarrow \mathcal{I}_{Z_2}(c_1 - F) \longrightarrow 0$$

induced from (*). Therefore the extension class of (*) lies in $ker[\text{Ext}^{1}(\mathcal{I}_{Z_{2}}(c_{1} - F), \mathcal{I}_{Z_{1}}(F)) \rightarrow \text{Ext}^{1}(\mathcal{I}_{Z_{2}}(c_{1} - F), \mathcal{I}_{W_{2}}(F))]$, and (3) follows. (3) \Rightarrow (4): Assume $(\mathcal{E}\oplus \mathcal{O}(F))/\mathcal{I}_{Z_{1}}(F) = \mathcal{O}(F)\oplus \mathcal{I}_{Z_{2}}(c_{1} - F)$. Let $\mathcal{I}_{W_{2}}(F)$ and $\mathcal{I}_{W_{1}}(c_{1} - F)$ be image and kernel of the composition $\mathcal{E} \rightarrow \mathcal{O}(F) \oplus \mathcal{I}_{Z_{2}}(c_{1} - F) \rightarrow \mathcal{O}(F)$. Then

$$0 \longrightarrow \mathcal{I}_{W_1}(c_1 - F) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_2}(F) \longrightarrow 0,$$

does not split because \mathcal{E} is simple.

Remark 2.6. Every $\mathcal{E} \in E_{\xi}^{0,m}$ (in particular each locally free sheaf in E_{ξ}) is L_1 -slope stable and L_2 -slope unstable. If $E_{\xi}^{n,m} \neq \emptyset$ for n > 0, then $E_{\xi}^{n,m} \cap E_{\xi}^{n+m-r,r} \neq \emptyset$ for

each r < n. In particular there are $\mathcal{E} \in E_{\xi}^{n,m}$, which are *L*-slope unstable for every $L \notin W^{\xi}$. So prop. 2.5 shows an important difference between locally free sheaves and torsion free sheaves.

Proof. The first sentence is obvious. Let $\mathcal{E} \in E_{\xi}^{n,m}$ be given by an extension (*), where Z_1 does not intersect Z_2 . Let $Y_1 \subsetneq Z_1$ be a subscheme of length r. By the proof of proposition 2.5, $\mathcal{E} \in E_{\xi}^{n+m-r,r}$ if the extension class of (*) lies in $ker[\text{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Z_1}(F)) \to \text{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Y_1}(F))]$ and not in $ker[\text{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Z_1}(F)) \to \text{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Y_1}(F))]$ for any scheme Y_2 with $Y_1 \subsetneq Y_2 \subsetneqq Z_1$. By the sequence $0 \longrightarrow \mathcal{I}_{Z_1}(F) \longrightarrow \mathcal{I}_{Y_i}(F) \longrightarrow \mathcal{I}_{Y_i/Z_1}(F) \longrightarrow 0$ and the fact that $2F - c_1$ is not effective these kernels are isomorphic to $\text{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{I}_{Y_i/Z_1}(F)) \simeq \mathbb{C}^{n-len(Y_i)}$.

Definition 2.7. Let $V_{\xi}^{n,m} \subset E_{\xi}^{n,m}$ be the set of all torsion free sheaves \mathcal{E} sitting in extensions (*) whose extension class does not lie in $ker[\text{Ext}^{1}(\mathcal{I}_{Z_{2}}(c_{1}-F),\mathcal{I}_{Z_{1}}(F)) \rightarrow \text{Ext}^{1}(\mathcal{I}_{Z_{2}}(c_{1}-F),\mathcal{I}_{W_{1}}(F))]$. We put $V_{\xi} = \bigcup_{n+m=(4c_{2}-c_{1}^{2}+\xi^{2})/4} V_{\xi}^{n,m}$.

Lemma 2.8. Assume ξ , η define the same wall and $V_{\xi}^{n,m} \cap V_{\eta}^{l,s} \neq \emptyset$. Then $\xi = \eta$ and n = l.

Proof. Let $\mathcal{E} \in V_{\xi}^{n,m} \cap V_{\eta}^{l,s}$. Let L be a polarization in a chamber having W^{ξ} as a face with $L\xi < 0$. Then by proposition 2.5, \mathcal{E} is L-slope stable and therefore $\eta L < 0$. \mathcal{E} fits into sequences (*), (**) with $(2F - c_1) \equiv \xi$, $(2G - c_1) \equiv \eta$. Then, as in the proof of $([Q3] \text{ prop. II.1.2.5}), c_1 - F - G$ cannot be effective. Therefore the sequences (*), (**)induce injections $\mathcal{I}_{Z_1}(F) \to \mathcal{I}_{W_1}(G), \mathcal{I}_{W_1}(G) \to \mathcal{I}_{Z_1}(F).$

Theorem 2.9.

- (1) For L not on a wall, $M_L(c_1, c_2)$ only depends on the chamber of L, and $M_L(c_1, c_2) \setminus M_L^s(c_1, c_2)$ is independent of L.
- (2) As subsets of $Spl(c_1, c_2)$ we have a decomposition

$$M_{L_1}^s(c_1,c_2) = \left(M_{L_2}^s(c_1,c_2) \setminus \left(\prod_{\eta} \prod_{n,m} V_{-\eta}^{n,m} \right) \right) \sqcup \left(\prod_{\eta} \prod_{n,m} V_{\eta}^{n,m} \right),$$

where η runs over the classes in Num(S) with $\eta L_1 < 0$ defining the wall $W^{\eta} = W^{\xi}$ and $n + m = (4c_2 - c_1^2 + \eta^2)/4$. Furthermore $V_{\eta}^{n,m} = E_{\eta}^{n,m} \setminus E_{\eta}^{n,m} \cap E_{-\eta}$, $V_{-\eta}^{n,m} = E_{-\eta}^{n,m} \setminus E_{-\eta}^{n,m} \cap E_{\eta}$.

Proof. (1) and (2) follow from lemma 2.2. The decomposition follows from lemma 2.2, lemma 2.3 and proposition 2.5. Lemma 2.8 implies that the union is disjoint. The identity $V_{\eta}^{n,m} = E_{\eta}^{n,m} \setminus E_{\eta}^{n,m} \cap E_{-\eta}$ follows from proposition 2.5.

Remark 2.10. We see from theorem 2.9 and remark 2.6 that theorem 2.6 and corollary 2.7 of [Q2] are imprecise. With $S, L, L_0, \sigma, \zeta_1$ as in [Q2] the correct result for thm. 2.6 is $M_L(\sigma, c_2) = (M_{L_0}(\sigma, c_2) \setminus E_{-\zeta_1}^{0,1}) \sqcup E_{\zeta_1}^{0,1} \sqcup (E_{\zeta_1}^{1,0} \setminus E_{-\zeta_1}^{1,0}).$

Assume now that the Picard number $\rho(S)$ of S is at least 2.

Proposition 2.11.

- (1) There is a integer k such that for each $c_2 > k$ there exists a component M of $Spl(c_1, c_2)$ containing L_1 -slope stable sheaves \mathcal{E} for L_1 lying in one chamber and sheaves \mathcal{F} which are L-slope unstable for each L not lying on a wall.
- (2) In particular for $c_2 > k$ and c_1 not divisible by 2 in Num(S), $Spl(c_1, c_2)$ is not separated.

Proof. (1) By $\rho(S) \geq 2$ we find $F \in Pic(S)$ with $2F - c_1 \neq 0$ and $(2F - c_1)L = 0$ for an ample divisor L. Let $\xi \equiv 2F - c_1$, and $l := (4c_2 - c_1^2 + \xi^2)/4$ and choose c_2 big enough, such that $l \geq h^0(S, c_1 - 2F + K_S) + 2$. Then ξ defines a nonempty wall. Let $Z_2 \in Hilb^{l-1}(S)$, then $H^1(S, \mathcal{I}_{Z_2}(c_1 + K_S - 2F)) = \text{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{O}(F))^* \neq 0$ by the cohomology sequence of

$$0 \to \mathcal{I}_{Z_2}(c_1 + K_S - 2F) \to \mathcal{O}(c_1 + K_S - 2F) \to \mathcal{O}_{Z_2}(c_1 + K_S - 2F) \to 0.$$

Let $x \in S \setminus Z_2$. Applying $\operatorname{Hom}(\mathcal{I}_{Z_2}(c_1 - F), \cdot)$ to $0 \to \mathcal{I}_x(F) \to \mathcal{O}(F) \to \mathcal{O}_x(F) \to 0$, we see that $\operatorname{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), I_x(F)) \to \operatorname{Ext}^1(\mathcal{I}_{Z_2}(c_1 - F), \mathcal{O}(F))$ is surjective but not injective. Thus (1) follows by prop. 2.5 for M the component of $Spl(c_1, c_2)$ containing $E_{\xi}^{1,l-1}$.

(2) If c_1 is not divisible by 2 in Num(S), $M^s_{L_1}(c_1, c_2) = M_{L_1}(c_1, c_2)$ is an open and projective subscheme of $Spl(c_1, c_2)$, intersecting M; so if M were separated it would contain M, which contradicts (1).

3. The case of effective anticanonical divisor

Now let S be a surface with $-K_S$ effective. For a simple torsion free sheaf \mathcal{E} on S we have $\operatorname{Ext}^2(\mathcal{E}, \mathcal{E})_0 = 0$, where the index 0 refers to the derived functor of the trace-free

homomorphisms. Thus $M_L^{\mathfrak{s}}(c_1, c_2)$ is smooth of dimension $4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ or empty for each polarisation L.

Definition 3.1. Let $T_{n,m} := Pic^{0}(S) \times Hilb^{n}(S) \times Hilb^{n}(S)$ and let \mathcal{P} be the pullback of the Poincaré line bundle from $S \times Pic^{0}(S)$ to $S \times T_{n,m}$. Let $\mathcal{I}_{Z_{n}(S)}$ be the ideal sheaf of the universal subscheme $Z_{n}(S)$ in $S \times Hilb^{n}(S)$. Let π, p_{S}, q_{1}, q_{2} be the projections of $S \times T_{n,m}$ to $T_{n,m}, S, S \times Hilb^{n}(S)$ and $S \times Hilb^{m}(S)$ respectively. Let $\mathcal{V}_{1} := q_{1}^{*}(\mathcal{I}_{Z_{n}(S)}) \otimes$ $p_{S}^{*}(F) \otimes \mathcal{P}^{\otimes 2}$ and $\mathcal{V}_{2} := q_{2}^{*}(\mathcal{I}_{Z_{m}(S)}) \otimes p_{S}^{*}(c_{1} - F)$. We put $\mathcal{E}_{\xi}^{n,m} := \operatorname{Ext}_{\pi}^{1}(\mathcal{V}_{2}, \mathcal{V}_{1})$, where $\operatorname{Ext}_{\pi}^{i}(\mathcal{V}_{2}, \cdot)$ is the right derived functor of $\operatorname{Hom}_{\pi}(\mathcal{V}_{2}, \cdot) := \pi_{*}\mathcal{Hom}(\mathcal{V}_{2}, \cdot)$.

Lemma 3.2.

- (1) There is an isomorphism $\operatorname{Ext}^1(\mathcal{V}_2,\mathcal{V}_1) \simeq H^0(S \times T_{n,m},\mathcal{E}_{\xi}^{n,m}).$
- (2) $\mathcal{E}_{\xi}^{n,m}$ is locally free of rank $-\xi(\xi K_S)/2 + n + m \chi(\mathcal{O}_S)$.
- (3) Over $S \times \mathbb{P}(\mathcal{E}_{\xi}^{n,m})$ we have a tautological extension

$$0 \longrightarrow p^*(\mathcal{V}_1) \longrightarrow \mathcal{V} \longrightarrow p^*(\mathcal{V}_2) \otimes \mathcal{O}_{\mathbb{P}(\mathcal{E}_{\ell}^{n,m})}(-1) \longrightarrow 0,$$

where $p: S \times \mathbb{P}(\mathcal{E}_{\xi}^{n,m}) \to S \times T_{n,m}$ is the projection, such that for each $t \in \mathbb{P}(\mathcal{E}_{\xi}^{n,m})$ the restriction to $S \times \{t\}$ is isomorphic to the extension corresponding to t.

(4) There is a natural bijective morphism $\nu_{\xi,n,m}: \mathbb{P}(\mathcal{E}^{n,m}_{\xi}) \longrightarrow E^{n,m}_{\xi}$.

Proof. For $t \in T$ the fibres $(\mathcal{V}_2)_t$, $(\mathcal{V}_1)_t$ are $\mathcal{I}_{Z_2}(c_1 - G)$, $\mathcal{I}_{Z_1}(G)$ for suitable $G \in Pic(S)$ with $2G - c_1 \equiv \xi$. As $2G - c_1$ is not effective, $\operatorname{Hom}((\mathcal{V}_2)_t, (\mathcal{V}_1)_t) = 0$ and as $-K_S$ is effective and $c_1 - 2G$ is not effective, $\operatorname{Ext}^2((\mathcal{V}_2)_t, (\mathcal{V}_1)_t) = 0$ by Serre duality. So $\operatorname{Hom}_{\pi}(\mathcal{V}_2, \mathcal{V}_1) = 0$, $\operatorname{Ext}^1_{\pi}(\mathcal{V}_2, \mathcal{V}_1)$ is locally free and its rank is given by Riemann Roch (prop. 1.1). (1) and (3) now follow from the degeneration of the spectral sequence $H^i(\operatorname{Ext}^j_{\pi}(\mathcal{V}_2, \mathcal{V}_1)) \Rightarrow \operatorname{Ext}^{i+j}(\mathcal{V}_2, \mathcal{V}_1)$ see ([H-S],[Q2], [OG]).

(4) By Kodaira classification surfaces S with $-K_S$ effective have torsion-free $H^2(S,\mathbb{Z})$. Therefore Num(S) = NS(S), and by (3) there is a natural surjective morphism $\nu_{\xi,n,m} : \mathbb{P}(\mathcal{E}_{\xi}^{n,m}) \to E_{\xi}^{n,m}$. By lemma 2.3 it is also injective.

Remark 3.3. Let $u: T_{n,m} \to T_{0,m}$ be the projection. Then there is a natural map $\mathcal{E}_{\xi}^{n,m} \to u^*(\mathcal{E}_{\xi}^{0,m})$ (which fibrewise is the natural map $\operatorname{Ext}^1(\mathcal{I}_{Z_2}(c_1-F),\mathcal{I}_{Z_1}(F)) \to \operatorname{Ext}^1(\mathcal{I}_{Z_2}(c_1-F),\mathcal{O}(F)))$. It gives a section s of $u^*(\mathcal{E}_{\xi}^{0,m}) \otimes \mathcal{O}_{\mathbb{P}(\mathcal{E}_{\xi}^{n,m})}(1)$ whose zero locus is $\nu_{\xi,n,m}^{-1}(E_{\xi}^{n,m} \cap E_{-\xi})$ by proposition 2.5. In particular this is a closed subscheme.

Theorem 3.4.

(1)
$$e(M_{L_1}(c_1, c_2) : x, y) = e(M_{L_2}(c_1, c_2) : x, y) + ((1 - x)(1 - y))^{q(S)}$$

 $\cdot \left(\sum_{\eta} h(Hilb^{[l_\eta]}(S \sqcup S) : x, y)(xy)^{l_\eta - \eta(\eta + K_S)/2 - \chi(\mathcal{O}_S)} \frac{1 - (xy)^{\eta K_S}}{1 - xy}\right),$

where η runs over the classes in Num(S) determining the wall $W^{\eta} = W^{\xi}$ with $\eta L_1 < 0$ and $l_{\eta} := (4c_2 - c_1^2 + \eta^2)/4$.

(2) If c_1 is not divisible by 2 in Num(S) (or more generally if $M_{L_1}(c_1, c_2)$ and $M_{L_2}(c_1, c_2)$ are smooth), then the same holds for $h(M_{L_1}(c_1, c_2) : x, y)$ and $h(M_{L_2}(c_1, c_2) : x, y)$ instead of $e(M_{L_1}(c_1, c_2) : x, y)$ and $e(M_{L_2}(c_1, c_2) : x, y)$.

Proof. If c_1 is not divisible by 2 in Num(S), then for L not lying on a wall $M_L(c_1, c_2) = M_L^s(c_1, c_2)$ is smooth and projective, so (2) follows from (1).

Property (2) of the virtual Hodge polynomials and thm. 2.9 give

$$e(M_{L_1}(c_1,c_2):x,y) = e(M_{L_0}(c_1,c_2):x,y) + \sum_{\eta} (e(V_{\eta}:x,y) - e(V_{-\eta}:x,y)).$$

By remark 3.3 $E_{\eta} \cap E_{-\eta}$ is a closed subscheme of E_{η} , so

$$e(V_{\eta}:x,y) - e(V_{-\eta}:x,y) - (e(E_{\eta}:x,y) - e(E_{-\eta}:x,y))$$

= $e(E_{\eta} \cap E_{-\eta}:x,y) - e(E_{\eta} \cap E_{-\eta}:x,y) = 0.$

By lemma 2.3 $E_{\eta} = \prod_{n+m=l_{\eta}} E_{\eta}^{n,m}$, and using also properties (2),(3) and (4) we get

$$e(E_{\eta}^{n,m}:x,y) = h(E_{\eta}^{n,m}:x,y) = h(Pic^{0}(S) \times Hilb^{n}(S) \times Hilb^{m}(S) \times \mathbb{P}_{w}:x,y),$$

where $w + 1 = -\eta(\eta - K_S)/2 + l_\eta - \chi(\mathcal{O}_S)$ is the rank of $\operatorname{Ext}^1_{\pi}(\mathcal{V}_2, \mathcal{V}_1)$. We see that

$$\sum_{n+m=l_{\eta}} h(Hilb^{n}(S):x,y)h(Hilb^{m}(S):x,y) = h(Hilb^{l_{\eta}}(S \sqcup S):x,y).$$

So (2) follows by thm 2.9.

Corollary 3.5. If S is a K3 surface or an abelian surface, and c_1 is not divisible by 2 in NS(S), then the Hodge numbers of $M_L(c_1, c_2)$ are independent of the polarization L as long as L does not lie on a wall.

Proof. As K_S is trivial in this case, this follows immediately from theorem 3.4. \Box

4. HODGE NUMBERS OF MODULI SPACES OF STABLE SHEAVES ON RULED SURFACES

Let S be a ruled surface with $-K_S$ effective over a curve C of genus g with projection $p: S \longrightarrow C$. Let f be a fibre of p and σ the section with σ^2 minimal. We put $e = -\sigma^2$; then $K_S \equiv -2\sigma + (2g - 2 - e)f$. Let $c_1 \in Pic(S)$ with $c_1 \cdot f$ odd. By normalizing we assume in future that $c_1 \equiv \sigma + \epsilon f$ with $\epsilon \in \{0, 1\}$. We want to compute the Hodge numbers of $M_L(c_1, c_2)$ for a polarization L not lying on a wall. In the case $c_1 = \sigma$ the Picard group $Pic(M_L(c_1, c_2))$ was determined in [Q2] and in the case $c_1 f$ odd and g = 0it was determined in [Na].

Remark 4.1. It is well-known that NS(S) is a free abelian group generated by the classes of σ and f. If $A \equiv \alpha \sigma + \beta f$ is an effective divisor, then $\alpha \ge 0$, $\beta \ge 0$ if $e \ge 0$ and $-e\alpha + 2\beta \ge 0$ if e < 0. So the effectiveness of $-K_S$ implies $e \ge 0$ and $2g - 2 \le e$ or g = -e = 1 (see [Q2]).

For $L \equiv \alpha \sigma + \beta f$ we put $r_L = \beta/\alpha$ following [Q2]. Then L is ample if and only if $\alpha > 0$ and $r_L > e$ in case $e \ge 0$ or $\alpha > 0$ and $r_L > e/2$ in case e < 0. We also see that $L \cdot M = 0$ if and only if $r_L + r_M = e$.

Remark 4.2. A wall of type (c_1, c_2) is W^{ξ} for $\xi \equiv (2\alpha + 1)\sigma + (2\beta + \epsilon)f$, where α and β are integers such that $-4c_2 + c_1^2 \leq \xi^2 < 0$. We can assume that $\alpha \geq 0$; then this is equivalent to

- (1) $\beta < 0$ if $e \ge 0$, $-(2\beta + \epsilon) > \alpha + 1/2$ if e < 0 (and therefore e = -1).
- (2) $l_{\alpha,\beta} := c_2 \alpha(\alpha+1)e + (2\alpha+1)\beta + \alpha\epsilon \ge 0.$

Lemma 4.3. (see [Q2] prop.2.3) $M_L(c_1, c_2) = \emptyset$ for $r_L > 2c_2 + e - \epsilon$.

Theorem 4.4. Let L be a polarization not lying on a wall; let

$$W(L) := \left\{ (\alpha, \beta) \in \mathbb{Z}^2 \mid \alpha \ge 0, e - r_L > \frac{2\beta + \epsilon}{2\alpha + 1} \right\},$$
$$f_L(x, y, t) := \sum_{(\alpha, \beta) \in W(L)} \left((xy)^{\alpha((2\alpha+1)e - 4\beta - 2\epsilon + 2\chi(\mathcal{O}_S))} - (xy)^{(\alpha+1)(2\alpha+1)e - 4\beta - 2\epsilon - 2\chi(\mathcal{O}_S))} \right) t^{(\alpha^2 + \alpha)e - (2\alpha+1)\beta - \epsilon\alpha}$$

Then

$$\sum_{m} h(M_L(c_1, m)t^m = \frac{f_{L,c_1}(x, y, t)}{(1-x)^g (1-y)^g (1-xy)} \\ \cdot \prod_{k>0} \frac{(1-x^{2k-2}y^{2k-1}t^k)^{2g} (1-x^{2k-1}y^{2k-2}t^k)^{2g}}{(1-x^{2k-1}y^{2k-1}t^k)^2 (1-x^{2k}y^{2k}t^k)^2 (1-x^{2k+1}y^{2k+1}t^k)^2}$$

Proof. As $M_{L_0}(c_1, c_2) = \emptyset$ for $r_{L_0} > 2c_2 + e - \epsilon$, we can compute $h(M_L(c_1, c_2) : x, y)$ by summing up the changes for all walls between L_0 and L, i.e. for all $\xi := (2\alpha + 1)\sigma + (2\beta + \epsilon)f$ with $\alpha > 0$, $e - r_L > \frac{2\beta + \epsilon}{2\alpha + 1} \ge -2c_2 + \epsilon$ and $l_{\alpha,\beta} \ge 0$.

We first want to see that $l_{\alpha,\beta} \ge 0$ implies $2\beta + \epsilon \ge (-2c_2 + \epsilon)(2\alpha + 1)$. Using

$$2\beta + \epsilon \le \begin{cases} -1 & \text{if } e \ge 0, \\ -(\alpha + 1) & \text{if } e = -1 \end{cases}$$

(see remark 4.1), $l_{\alpha,\beta} \ge 0$ implies $c_2 > 0$. Now assume $2\beta + \epsilon < (-2c_2+\epsilon)(2\alpha+1)$. If $\alpha = 0$, then $l_{\alpha,\beta} \le c_2 + \beta < 0$; and if $\alpha > 0$, then $l_{\alpha,\beta} < c_2 - \alpha(\alpha+1)e - \alpha(2\alpha+1)(2c_2-\epsilon) + \beta$, and by $c_2 \ge 1$, $\beta < 0$, $e \ge -1$ this is < 0. By

$$-\xi(\xi + K_S) - \chi(\mathcal{O}_S) = \alpha \big((2\alpha + 1)e - (4\beta + 2\epsilon) + 2\chi(\mathcal{O}_S) \big),$$

$$-\xi(\xi - K_S) - \chi(\mathcal{O}_S) = (\alpha + 1) \big((2\alpha + 1)e - (4\beta + 2\epsilon) - 2\chi(\mathcal{O}_S) \big),$$

theorem 3.4 and remark 4.2 we get

$$h(M_L(c_1,c_2):x,y) = \frac{(1-x)^g(1-y)^g}{1-xy} \sum_{(\alpha,\beta)} ((xy)^{\alpha((2\alpha+1)e-4\beta-2\epsilon+2\chi(\mathcal{O}_S))} - (xy)^{(\alpha+1)((2\alpha+1)e-4\beta-2\epsilon-2\chi(\mathcal{O}_S))})h(Hilb^{[l_{\alpha,\beta}]}(S \sqcup S):x,y)(xy)^{l_{\alpha,\beta}},$$

where (α, β) runs over the set $\{(\alpha, \beta) \in W(L) \mid l_{\alpha\beta} \geq 0\}$.

By rem. 4.2(2) we can express c_2 in terms of α , β , $l_{\alpha,\beta}$ and see that, given $(\alpha,\beta) \in W(L)$, letting c_2 run through all possible values is equivalent to letting $l_{\alpha,\beta}$ run through all nonnegative integers. Finally we use the formula

$$\sum_{m \ge 0} h \left(Hilb^m (S \sqcup S) : x, y \right) (xyt)^m = \left(\sum_{n \ge 0} h (Hilb^n (S) : x, y) (xyt)^n \right)^2$$
$$= \prod_{k>0} \frac{(1 - x^{2k-1}y^{2k}t^k)^{2g}(1 - x^{2k}y^{2k-1}t^k)^{2g}}{(1 - x^{2k-1}y^{2k-1}t^k)^2(1 - x^{2k}y^{2k}t^k)^2(1 - x^{2k+2}y^{2k+2}t^k)^2}.$$

Unfortunately the formula for the Hodge numbers of $M_L(c_1, c_1)$ is not very simple. However it turns out that for c_2 large enough about the first 3/8 of the Hodge numbers are independent of L and given by a quite simple formula.

Theorem 4.5.

$$h(M_L(c_1, c_2) : x, y) \equiv \frac{1 - xy}{(1 - x)^g (1 - y)^g} \prod_{k \ge 1} \frac{(1 - x^{2k-2}y^{2k-1})^{2g} (1 - x^{2k-1}y^{2k-2})^{2g}}{(1 - x^k y^k)^4}$$

modulo $(xy)^{c_2-w}$, where

$$w = \begin{cases} [1/(2r_L) + 1] & \text{if } S = \mathbb{P}_1 \times \mathbb{P}_1, \ \epsilon = 1 \text{ and } r_L \leq 1/3; \\ [r_L + \epsilon - e/2] & \text{otherwise,} \end{cases}$$

and [a] denotes the largest integer $\leq a$.

Proof. Let f_m be the coefficient of t^m in $f_L(x, y, t)$. Claim: $f_m \equiv 1 \mod (xy)^{m-w}$. Proof of the Claim: Let $(\alpha, \beta) \in W(L)$. For $\alpha = 0$ we get

$$(xy)^{\alpha((2\alpha+1)e-4\beta-2\epsilon+2\chi(\mathcal{O}_S))}t^{(\alpha^2+\alpha)e-(2\alpha+1)\beta-\epsilon\alpha} = t^{-\beta},$$

where $-\beta$ can run over all integers bigger than $r_L + \epsilon - e/2$. Therefore by thm. 4.4 it is enough to prove

- (1) If $\alpha > 0$ then $g_1(\alpha, \beta) := \alpha^2 e (2\alpha 1)\beta \alpha \epsilon + 2\alpha \chi(\mathcal{O}_S) \ge -w$,
- (2) $g_2(\alpha,\beta) := (\alpha+1)^2 e (2\alpha+3)\beta (\alpha+2)\epsilon (2\alpha+2)\chi(\mathcal{O}_S) \ge -w.$

(1) If $e \ge 0$, then $e \ge -2\chi(\mathcal{O}_S)$ (rem. 4.1), therefore $g_1(\alpha,\beta) \ge -(2\alpha-1)\beta - \alpha\epsilon > 0$. If e < 0, then e = -1, $\chi(\mathcal{O}_S) = 0$ and $-2\beta \ge (\alpha+1) + \epsilon$, therefore

$$g_1(\alpha,\beta) \ge -\alpha^2 + (\alpha - 1/2)(\alpha + 1) - \epsilon/2 > -1.$$

(2) If e > 0 or $\chi(\mathcal{O}_S) \ge 0$ or $\epsilon = 0$, then

$$g_2(\alpha,\beta) \ge (\alpha+1)^2 e + (2\alpha+3) - (\alpha+2)\epsilon - (2\alpha+2)\chi(\mathcal{O}_S) \ge 0.$$

If e = -1, then $g_2(\alpha, \beta) \ge -(\alpha + 1)^2 + (\alpha + 3/2)(\alpha + 1) - \epsilon/2 \ge 0$. If e = 0 and $\chi(\mathcal{O}_S) = -1$ and $\epsilon = 1$, then $g_2(\alpha, \beta) = -(2\alpha + 3)\beta - (3\alpha + 4)$. So if $\beta < -1$, then $g_2(\alpha, \beta) > 0$, and if $\beta = -1$, then $g_2(\alpha, \beta) = -(\alpha + 1)$ and $r_L = 1/(2\alpha + 1)$. So the claim follows.

By thm. 4.4 $h(M_L(c_1, c_2) : x, y)$ is the coefficient of t^{c_2} of $k(x, y, xyt)f_L(x, y, t)$, for a power series $k(x, y, z) = \sum k_n(x, y)z^n$. So we get

$$h(M_L(c_1, c_2) : x, y) = \sum_{m \le c_2} f_{c_2 - m} k_m(x, y) (xy)^m$$
$$\equiv \sum_{m \le c_2} (xy)^m k_m(x, y) \mod (xy)^{c_2 - w}$$
$$\equiv k(x, y, xy) \mod (xy)^{c_2 + 1}.$$

So we obtain our result by replacing $f_L(x, y)$ by 1, putting t = 1 in the formula of thm. 4.4 and an easy calculation.

Instead of fixing the determinant $det(\mathcal{E})$ we can also consider $M_L(C_1, c_2)$ the moduli space of torsion free sheaves with topological first Chern class $C_1 \in NS(S)$. For ξ determining a wall of type (c_1, c_2) (where the cohomology class of c_1 is C_1) let $\widetilde{E}_{\xi}^{n,m}$ be the set of sheaves lying in extensions

$$0 \to \mathcal{I}_{Z_1}(F) \to \mathcal{E} \to \mathcal{I}_{Z_2}(c_1 - G) \to 0,$$

with $len(Z_1) = n$, $len(Z_2) = m$, $F + G - c_1 \equiv \xi$ and $F - G \equiv 0$ and let $\widetilde{V}_{\xi}^{n,m}$ be the subset of $\widetilde{E}_{\xi}^{n,m}$ where $(\mathcal{E} \oplus \mathcal{O}(F))/\mathcal{I}_{Z_1}(F) \neq \mathcal{O}(F) \oplus \mathcal{I}_{Z_2}(c_1 - G)$. Then, after making the obvious changes, the results of chapters 2 and 3 all hold with $M_L(c_1, c_2)$, $E_{\xi}^{n,m}$ and $V_{\xi}^{n,m}$ replaced by $M_L(C_1, c_2)$, $\widetilde{E}_{\xi}^{n,m}$ and $\widetilde{V}_{\xi}^{n,m}$. In the modification of lemma 3.2 $\widetilde{E}_{\xi}^{n,m}$ is bijective to a projective bundle over $Pic^0(S) \times Pic^0(S) \times Hilb^n(S) \times Hilb^m(S)$, and therefore in thm 3.4 the factor $((1-x)(1-y))^{q(S)}$ is replaced by $((1-x)(1-y))^{2q(S)}$. So the formulas of thm. 4.4 and thm. 4.5 hold for $M_L(C_1, c_2)$ without the factor $(1-x)^g(1-y)^g$ in the denominator.

By [E-S2] and [B] under the assumptions of thm 4.4 the cohomology ring $H^*(M_L(C_1, c_2), \mathbb{Q})$ is generated by the Künneth components $c_i(\mathcal{F})/1$, $c_i(\mathcal{F})/f$, $c_i(\mathcal{F})/\sigma$, $c_i(\mathcal{F})/pt$ of the Chern classes of any universal sheaf \mathcal{F} over $S \times M_L(C_1, c_2)$ (pt is the class of a point). If M is the pullback of a line bundle on $M_L(C_1, c_2)$, then also $\mathcal{F} \otimes M$ is a universal sheaf, and its Künneth components generate $H^*(M_L(C_1, c_2), \mathbb{Q})$. So $c_1(\mathcal{F})/1$ lies in the space generated by $c_1(\mathcal{F})/1 + 2c_1(M)$, $c_2(\mathcal{F})/\sigma + c_1(M)$, $c_2(\mathcal{F})/f + c_1(M)$, $c_3(\mathcal{F})/pt$ for all $M \in Pic(M_L(c_1, c_2))$, and thus for all $M \in Pic(M_L(c_1, c_2)) \otimes \mathbb{Q}$. So we can put $M = -\frac{1}{2}(det(\mathcal{F})/1)$ and see that the generator $c_1(\mathcal{F})/1$ is redundant. Then thm. 4.5 can be reformulated:

Corollary 4.6. There is no relation between the (graded commutative) generators $c_{j_1}(\mathcal{F})/1$, $c_{j_2}(\mathcal{F})/f$, $c_{j_3}(\mathcal{F})/\sigma$, $c_{j_4}(\mathcal{F})/pt$ ($j_i \geq 2$ for i = 1, ..., 4) in dimension lower then $2c_2 - 2w$

References

- [B] Beauville, A., Sur la cohomologie de certaines espaces de modules de fibrés vectoriels, Bombay Conference "Geometry and Analysis", submitted.
- [Ch] Cheah, J., The Hodge numbers of smooth nests of Hilbert schemes of points on a smooth projective surface, preprint (1993).

- [D-K] Danilov, V.I., Khovanskii, A.G., Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. USSR Izvestiya 29 no. 2, 279-298 (1987).
- [De] Deligne, P., Théorie de Hodge III, Inst. Hautes Et. Sci. Publ. Math. 44, 5-77 (1974).
- [E-S1] Ellingsrud, G., Strømme S.A., On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87, 343-352 (1987).
- [E-S2] Ellingsrud, G., Strømme S.A., Towards the Chow ring of the Hilbert scheme of P², J. reine angew. Math. 441, 33-44 (1993).
- [Gi] Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. Math. 106, 45-60 (1977).
- [Gö1] Göttsche, L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286, 193-207 (1990).
- [Gö2] Göttsche, L., Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lect. Notes Math. vol. 1572, Berlin Heidelberg New York: Springer 1993.
- [G-S] Göttsche, L., Soergel, W., Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296, 235-245 (1993).
- [H-S] Hoppe, H.S. ,Spindler H., Modulräume stabiler 2-Bündel auf Regelflächen, Math. Ann. 249, 127-140 (1980).
- [K-O] Kosarew, S., Okonek, C., Global moduli spaces and simple holomorphic bundles, Publ. R.I.M.S., Kyoto Univ. 25, 1-19 (1989).
- [M1] Maruyama, M., Moduli of stable sheaves I, J. Math. Kyoto Univ. 17, 91-126 (1977).
- [M2] Maruyama, M., Moduli of stable sheaves II, J. Math. Kyoto Univ. 18, 557-614 (1978).
- [Mu1] Mukai, S., Simplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77, 101-116 (1984).
- [Mu2] Mukai, S., On the moduli space of bundles on K3 surfaces I, Vector bundles on Algebraic varieties, Proc. Bombay 1984, Oxford U. Press, pp. 241-413 (1987).
- [Na] Nakashima, T., On the moduli space of stable vector bundles on a Hirzebruch surface, Math.
 Z. 212, 211-222 (1993).
- [No] Norton, V.A., Analytic moduli of complex vector bundles, Indiana Univ. Math. J. 28, 365-387 (1979).
- [OG] O'Grady, K., Relations among Donaldson polynomials of certain algebraic surfaces, preprint (1993).
- [Q1] Qin, Z., Modulo of stable rank-2 bundles on ruled surfaces, Invent. math. 110, 615-626 (1992).
- [Q2] Qin, Z., Moduli of stable sheaves on ruled surfaces and their Picard groups, J. reine angew. Math. 433, 201-219 (1992).
- [Q3] Qin, Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Diff. Geom. 37, 397-413 (1993).