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O. INTRODUCTION

Let S be a smooth projective surface over the complex numbers, Cl E Pic(S) and

C2 E H4(S, 7l). If L is an alnple divisor on S we can study the moduli space ML (Cl, C2)

of L-semistable torsion free sheaves E on S of rank 2 with det(E) = Cl and c2(E) = C2

and the open subscheme lvJ2 (Cl, C2) c M L ( Cl , C2) parametrizing locally free sheaves. In

[Ql]-[Q3] Qin studies the change of M2(CI, C2) when L varies and partially also that of

ML( Cl, C2) and gives a number of applications. It turns out that the ample cone of S

has achamber structure such that ML(CI, C2) only depends on the chamber of L, and

the change of M L(Cl , C2), when L passes through the wall between two chambers, can

be controlled. In particular in [Q2] these results are used to determine the Picard group

of ML(a, C2) for S a ruled surface with effective anticanonical bundle and (1 the section

with (12 minimal.

We first extend the approach of Qin to torsion free sheaves. We also look at the con

nection to the moduli space Spl(Cl, C2) of simple sheaves and its possible non-separated

structure. Then we apply our results to the Hodge numbers of ML(CI, C2) for S a surface

with -[(5 effective, Cl not divisible by 2 in Num(S) and L not lying on a wall (then

M L(Cl, C2) is smooth and projective of dimension 4C2 - ci - 3X(0 5) or empty). Dur tool

for computing the Hodge numbers are virtual Hodge polynomials (see e.g. [Ch]). We

first obtain a simple fonllula for the change of the Hodge numbers of ML(Cl' C2) when

L passes through a wall (thln. 3.4). For a J(3-surface or an abelian surface it follows

that they are independent of the chamber of L.

Finally, if S is a ruled surface with -[(s effective and Cl . / is odd for a fibre /, we

compute the Hodge numbers of ML(Ct, C2) (thm. 4.4). While the precise formula is

quite COlllplicated, for C2 big enough about 3/8 of the Hodge numbers are independent

of C2 and Land given by a quite simple power series (thm. 4.5).

Typeset by AJvtS- '1'FX
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1. BACKGROUND MATERIAL

(a) Notation and gencralities

In this paper let S be a projective surface aver C. We denote by lVS(S) the Neron

Severi group of S, i. e. the image of Pi C(S) -+ HZ (S1 Z) and by Pi cO ( S) its kernel. Let

Num(S) := Pic(S)J; where _ denotes numerical equivalence.

Proposition 1.1. (Serre duality and Hirzebruch-Riemann-Roch for extension groups)

([Mu2j, see prop. 1.7 in [Q2j). Let F I and Fz be torsion free sheaves on S. Then

(1) Ext i (F1 , F z) is canonically dual to ExtZ
-i (Fz, FI 0 K s)

(2) L:i(-l)iExt i (Fl,..'Fz) is the part in H4(X,Z) of ch(Fd*ch(Fz)td(Ts) where *
acts on HZ i ( S, Z) by m ultiplication with (-1) i .

Let Cl E Pic(S), C2 E Z (which we identify with H 4 (X, Z)). Let Spl(cl, cz) be

the moduli space of simple torsion-free sheaves E on S of rank 2 with det( E) = Cl

and Cz (E) = C2. This is a locally Hausdorff analytic space of finite dimension ([1(-0],

[N0]). In general it is however not separated and not neccessarily ascheme. Let L

be a polarization of S. We mostly consider stability and semistability in the sense of

Gieseker and Maruyarna. So we write L-(semi)stahle instead of Gieseker (senli)stable

with respect Land L-slope (senü)stable instead of (semi)stable with respect to L in

the sense of Muruford-Takernoto. Let ML(Cl, C2) be the moduli space of L-semistable

torsion-free sheaves E on S of rank 2 with det(E) = Cl aIld cz(E) = C2 and A1j)Cl l C2)

its open subscheme of stahle sheaves, which is also an open subscheme of Spl(Cl, C2)'

(b) Hodge numbers of Hilbert schemes

For aschenle X over C let hP,q(..y) = dimHq(X, n~\) anel

h( ..Y : x, y) = L( -l)p+qhP,q(X)xPyq
p,q

the Hodge polynolllial. Let Hilbn(S) be the Hilbert scheme of zero-dimensional sub

schemes of length n on S. In [Gö1] its Betti numbers were computed and in [G-S] its

Hodge numbers using perverse sheaves and mixed Hodge modules. The result is

00 2L h( Hilb71 (S) : x, y)t 71 = TI TI (1 - xp+kyq+k)( _l)P+q+l hP,q (5).

n?:O k=l p,q=O
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Using virtual Hodge polynomials (see below) this was proven independently in [eh]

together with a fornnlla for the Hodge nUlnbers of the variety of pairs of subschemes

Zn C Zn+l of lengths n and n + 1.

(c) Virtual Hodge polynomials

Virtual Hodge polynolllials were introduced in [D-I<] and hrought to IUY attention

by Cheah ([eh]). They can be viewed as a tool for computing the Hodge numbers of

smooth projective varieties by reducing to silupler varieties. I review SOlne of the results

anel notations about virtual Hodge polynomials from pages 2-3 of [eh].

Definition. 1.2. Let X be a complex variety. Then by [De] the cohomology H~ (X, Q)

with compact support carries a natural luixed Hodge structure. If X is SlllOOth and

projective this Hodge structure coincides with the classical one. Following [eh] we put

eP,q(.i\) := L(_l)k hP,q(H; (X, Q!)),
k

e(X : X, Y) := L eP,q(X)xPyq.
p,q

By [D-I<] and eh] these virtual Hodge polynolnials have the following properties:

(1) If X is a smooth projective variety, then e(X: x,y) = h(X : x,y).

(2) For Y cX Zariski-closed anel U = X \ Y, e(X : x,y) = e(U: .7:,V) +e(Y: x,y).

(3) For f : y~ --+ )( a Zariski-locally trivial fihre hundle with fihre F, e(Y~ : x, y) =
e(X : x, y)e(F : x, V).

(4) If f; X --+ Y is a bijective 1110rphism, then e(X: x,y) = e(Y: x,y).

2. WALLS AND CHAMBERS FOR TORSION-FREE SHEAVES

In this section we review anel extenel same results of Qin ahout the change of lnoduli

spaces of torsion-free sheaves when the polarization varies.

Definition 2.1. (see [Q3] Def 1.2.1.5) Let Cs be the alupie cone in IVu17~(S) @ IR. For

eE Num(S) let

lV'; := Cs n {x E Nu Tri, (S) ($ IR. ! x . e= O}.

we is called the wall of type (Cl, C2) detennined by ~ if and only if there exists G E

Pic(S) with G == esuch that G + Cl is divisible by 2 in Pic(S) and ci - 4C2 :s; G2 < o.
we is nonempty if there is a polarisation L with L~ = O. Let W (Cl, C2) be the union
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of the walls of type (Cl, C2)' Achamber of type (Cl, cz) is a connected component of

es \ W(CI, cz). In future we dwrite wall anel chaInber instead of wall anel chaIllber

of type (cJ , C2)' We say that Weis a face of a chambel' C if the closure Ccantains a

nonempty open subset of We. It is clear that two different chambers Cl, C2 can have at

most one COffill1on face.

Lemma 2.2. Let E be a torsion /ree sheaf 0/ rank 2 on S with det( E) = Cl, C2( E) = C2,

which is LI -semistable and L 2 -unstable tor two polarizations LI, L 2 not on a wall.

(1) E is LI -slope stable and L 2 -slope unstable.

(2) There is a nontrivial extension

where ~ =(2F - Cl) determines a nonempty wall with ~Ll < 0 < ~L2 and

Zl E Hilbn(S), Zz E Hilbm(S) with n +m = (4cz - ci + ~Z).

Proof. This result is essentially shown in the proof of ([Q2) lemma 2.1) for S a ruled

surface and Cl the class of a section. The proof only uses that Cl is not divisible by 2

in Num(S) in order to exclude F == Cl - F. We assume therefore F =Cl - F. As E is

LI-semistable anel Lz-unstable, it also sits in an extension

with LI G ::; 0 < LzG. One of the ineluceel maps IZ 1 (F) --+ IW1 (F + G), IZ1 (F) --+
IW:;/(CI -F-G) has to be injective, so either G 01' Cl -2F-G is effective, a contradiction

to LI G ::; 0 < L zG and Cl - 2F == O. 0

For the rest of section 2 ffild section 3 we aSSUlue that ~ =2F - Cl eletermines a

nonempty wall of type (Cl) cz)

Lemma 2.3. Let E be given by a non-trivial extension (*). Then

(1) Hom(Iz1 (F), E) = C.

(2) E is simple.

(3) IZ
1
(F) is the unique subsheaf 0/ E 0/ the form IW1 (G) with torsion-free quotient

and 2G - Cl =~.

Proof. As (2F - CI)Z < 0 anel L(2F - cd = 0 for -some polarization L, nel

ther 2F - Cl nor Cl - 2F can be effective. Thus Hom(Iz1 (F),Iz2 (CI - F)) = 0,
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Hom(Iz2 (CI - F),Iz1 (F)) = O. So (1) follows by applying Hom(Iz1 (F), .) to (*). By

applying Hom(Iz2 (Cl - F), . ) to (*) and using that the extension (*) is nontrivial, we get

Hom(Iz2 (c.1 - F), E) = O. So E is simple by the sequence 0 -7 Hom(Iz2 (cl - F), E) -+

Hom(E, E) -7 Hom(Iz1 (F), E).

(3) Assume we have a sequence

o-t I Vv1 (G) ----t E -;--7 IZ2 (Cl - G) ----t 0,

where 2G - Cl - e. As there are polaJ:izations LI, L z wi th L.1 e< 0 < L ze, neither

Cl - F - G nor F + G - Cl can be effective. Therefore the induced Iuaps I W1 (G) -7

I Z2 (Cl - F), I Z1 (F) -+ I lV2 (Cl - G) are zero. So I W1 (G) -+ IZ1(F) and IZ1(F) -+
I W1 (G) are injective and F = G, W I = Z,. D

Definition 2.4. Let E;,m be the set of sheaves lying in nontrivial extensions (*) with

len(Zd = n,len(Zz) = 1n, where m + n = Cz - (ci - e2 )/4. By Lemma 2.3, Eel,m is

a subset of Spl(Cl, C2)' We put Ee= Un+m=c2-(ci-e)/4 Ee,m. By lelulua 2.3 this is a

disjoint union.

For the rest of sections 2 and 3 when writing LI, Lz we will always assume that LI,

Lz are polarizations in chambers with Hre as COlumon face and eL I < 0 < eLz.

Proposition 2.5. Let E E E;,m. Then E is Lz·slope u11;stable, and the jollowing are

equivalent:

(1) E is not LI -slope stable.

(2) E is L-slopc unstable with respect to any polarization L ~ We.

(3) The extension class 0/ (*) lies in the kernel 0/ the natural map Ext l (Iz2 (Cl 

F),Iz1 (F)) -+ Ext l (Iz2 (CI - F),CJ(F)).

(4) C E n +m - r r f"E -e 'jor some T < n.

Proof. The L2-slope unstability and the iluplications (4)::::}(2)::::}(1) are obvious.

( I)::::} (4): Assume E is not LI -slope stable. Then we have an exact sequcnce

with LI G 2:: LI (Cl - G). If the induced map IWl (G) -+ I Zl (F) was an injection, we

would get the contradiction LI G ~ LI F < LI (Cl - F) :S LI (Cl - G). So IW1 (G) -+

IZ
2

(Cl - F) is an injection, anel Cl - F - G is effective. AssUlue Cl - F - G is strictly
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effective, and let L be apolarization with L~ = O. Then 0 < L(CI-F-G) = LCI/2-LG,

so L(2G - cd < 0 ::; LI (2G - Cl)' By (**) we have (2G - Cl? ~ ci - 4C2. By

L(2G - Cl) < 0 ::; (2G - cI)LI there is a polarization At[ with A!f(2G - Cl) = O. Thus

by the Hodge index theorem and using L(2G - cd < 0, we get (2G - CI)2 < O. So

11 - 2G - Cl defines a nonempty wall. As LI does not lie on a wall, vf!71 lies strictl)'

between LI and L, a contradiction. So G = Cl - F, and we have a diagram

o
-!-

Lw} (Cl - F)

-!-

o --+ Lz} (F) --+ E

~a -!-

Iw2 (F)

-!-
O.

As Cl - 2F is neither effective nor anti-effective, 0' and ß are injective. As E is simple, the

vertical extension cannot be split. Furthermore Ien(Zl ) +Ien(Zz) = Ien(W1 ) + Ien(Wz)

and, by the injectivity of a (ancl the fact that (*) is not split), len(W2 ) < len(ZI)'

(4)=}(3): Let t := (E ffiIw2(F))/Iz1 (F) (the embedding IZ1(F) ~ EffiI~V2(F) is given

by (*) and the standard injection LZ1 (F) ~ I Vv2 (F)). Then the projection E~ IW2 (F)

and the identity on Iw2 (F) give a lnap t ~ LVv2 (F) splitting the sequence

o-t I W2 (F) -t t -t IZ2(CI - F) -t 0

induced frorll (*). Therefore the extension dass of (*) lies in ker [Ext l (Iz2 (Cl 

F), IZ1 (F)) ~ Ext l (Iz2 (Cl - F), LW2 (F))], and (3) follows.

(3)=}(4); Assume (EffiO(F))/Iz1(F) = O(F)ffiIz2 (CI-F). Let IW2 (F) and LW1(cI-F)

be image and kernel of the C0l11positian E~ CJ(F) EB IZ2 (CI - F) ~ CJ(F). Then

o-t I Vv1 (Cl - F) --+ E ---+ Lw2 (F) ---+ 0,

daes not split beeause E is silnple. o

Remark 2.6. Every E E E~,m (in partieular each Iaeally free sheaf in Ee) is Lrslape

stahle anel Lz-slope unstable. If E;,m =f. (/) far n > 0, then E;,m n E;+m-r,r =f. (/) far
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each r < n. In particular there are E E Eel m
, which are L-slope unstable for every

L rt W e. So prop. 2.5 shows an ilnportant difference between locally free sheaves and

torsion free sheaves.

Proof. The first sentence is obvious. Let E E Ee,m be·given by an extension (*), where

Zl does not intersect Z2. Let Y1 ~ Zl be a subscheme of length r. By the proof of

proposition 2.5, E E Ee+m-r,r if the extension dass of (*) lies in ke1' [Ext l (IZ2 (Cl 

F),Izl (F)) -4 Ext1 (IZ2 (Cl - F), I Y1 (F))] and not in ker [Ext1 (Iz2 (Cl - F), IZ 1 (F)) -4

Ext l (Iz2 (CI - F),Iy2(F))] for any scheIne 1/2 with 1/1 ~ Y2 ~ Z). By the sequence

o---+ I Z1 (F) -t IYj (F) ---+ I Yi / ZI (F) -t 0 and the fact that 2F - Cl is not effective

these kerneis are isomorphie to HOIn(Iz2 ( Cl - F), I Yi /Zl (F)) c::: cn-1en(Y;}. D

Definition 2.7. Let 'It,m C E;,m be the set of all torsion free sheaves E sitting in

extensions (*) whose extension dass does not lie in ker[Ext 1(Iz2 (C1 - F),Iz 1 (F)) -4

Ext 1 (Iz2 (Cl - F),Iw1 (F))]. vVe put Ve = Un+m=(4c2- ci+e2 )/4 vt,m.
Lemma 2.8. Assume~, 11 define the same wall and vt,m n V~,.9 f:. 0. Then ~ = 1] and

n=1.

Proof. Let E E 'It,m n 1/~,". Let L be a polarization in achamber having W e as a face

with L~ < O. Then by proposition 2.5, E is L-slope stable and therefore 11L < O. E fits

into sequences (*), (**) with (2F - cd _ ~, (2G - cd - 11. Then, as in the proof of

([Q3] prop. 11.1.2.5), Cl - F - G cannot be effective. Therefore thc sequcnces (*), (**)

induce injections IZ1 (F) -4 I~VI (G), I~VI (G) -4 IZ1 (F). 0

TheorelTI 2.9.

(1) For L not on a wall, lv[L (Cl, C2) only depends on the chamber of L} and

AlL (Cl, C2) \ A1i (Cl, C2) is independent of L.

(2) As subsets of Spl( Cl, C2) we have adecomposition

where 11 run.'! over the classes in N um.( S) with ryL 1 < 0 defining the wall W
f1 =

Hle and n+ 171 = (4C2 - ci +1]2)/4. Furthermore Vf1n,m = E;,m \ E;,m n E_ 111

Vn,m = En,m \ En,m n E .
-f1 -f1 -f1 11
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Proof. (1) and (2) follow from lemma 2.2. The decomposition follows from lemma 2.2,

lemma 2.3 and proposition 2.5. Lemma 2.8 iluplies that the union is disjoint. The

identity V1]n,m = E;,m \ E;, m n E_ f1 follows from proposition 2.5. 0

Remark 2.10. Vve see from theorem 2.9 and renlark 2.6 that theorem 2.6 and corollary

2.7 of [Q2] are imprecise. \Vith S, L, La, a, (1 as in [Q2] the correct result for thlU. 2.6

is ML(a, cz) = (MLo(a, cz) \ E~!~I) U E~~l u (E~;a \ E~l~l)'

AssurDe now that the Picard nUlnber p(S) of S is at least 2.

Proposition 2.11.

(1) There is a integer k such that /or each cz > k there exists a component M 0/
Spl(cl, cz) containing L1-slope stahle sheaves E /or LI lying in one chamber and

sheaves :F which are L-slope unstable /or each L not lying on a wall.

(2) In particular /or cz > k and Cl not divisible by 2 in Nurn(S), Spl(c] , cz) is not

separated.

Proo/. (1) By p( S) 2: 2 we find F E Pic(S) with 2F - Cl t °and (2F - cI)L = °for

an ample divisor L. Let ~ == 2F - Cl, and 1 := (4cz - ci + ~Z)/4 and choose c2 big

enough, such that 1 2: hO(S, Cl - 2F + ](5) + 2. Then ~ defines a nonempty wall. Let

Zz E Hilb'-1(S), then H I (S,Iz2(Cl + ](5 - 2F)) = Ext 1(Iz2(Cl - F), V(F))* f= °by

the cohomology sequence of

Let x E S \ Zz. Applying Hom(Iz2 (cl - F), . ) to 0 -+ Ix(F) -+ V(F) -+ V:l;(F) -+ 0,

we see that Exe (Iz2(Cl - F), ]x(F)) -+ Ext 1(Iz2(Cl - F), V(F)) is surjective hut not

injective. Thus (1) follows by prop. 2.5 for Ai the COIllponent of S pl (cl, cz) cont aining
EI,I-1

e
(2) If Cl is not divisible by 2 in lVum(S), lvIiI (Cl, cz) = MLI (Cl, cz) is an open and

projective subscheme of Spl( Cl, cz), intersecting M; so if M were separated it would

contain M, which contradicts (1). 0

3. THE CASE OF EFFECTIVE ANTICANONICAL DIVISOR

Now let S be a surface with -](s effective. For a simple torsion free sheaf E on S we

have ExtZ(E, E)o = 0, wherc the index 0 refers to the derived functor of the tracc-frce



homolnorphisms. Thus Ml(CI, C2) is slllooth of diInension 4C2 - ci - 3X(Os) or empty

for each polarisation L.

Definition 9.1. Let Tn,m := PicO(S) x Hilbn(S) x Hilbn(S) and let P be the pullback

of the Poincare line bundle from S x PicO(S) to S x Tn,m. Let IZn(s) be the ideal sheaf

of the universal subscheIne Zn (S) in S x Hilbn(S). Let 1f, ps, ql, q2 be the projections of

SxTn,m to Tn,m, S, SxHilbn(S) and SxHilbm(S) respectively. Let VI := q;(IZn (s))0

Ps(F) ® p02 and V2 := qz(IZm(s)) ® PS(CI - F). We put E;,m := EXt;(V2l VI), where

EXt~(V2' . ) is the right derived functor of HOln1t (V2, . ) := '7f* tlo1n(V2, . ).

Lemilla 3.2.

(1) There is an isomorphism Ext l (V2 , VI) ~ HO(S x Tn,m, E;,m).

(2) E;,m is locally /ree 0/ rank -e(~ - [(s)/2 + n + m - X(Os).

(3) Over S x IP( E;,m) we have a tautological extension

where p : SxIP(E;,m) --+ SxTn,m is the projeetion, such thai/or eaeh t E IP(Ee,m)

ihe restriction to S x {t} is isomorphie to the extension corresponding to t.

(4) There is a natural bijective morphism Ve,n,m : IP( E;'l,m) ---+ Ee,m.

Proof. For t E T the fibres (V2 )t, (VI)t are IZ2 (Cl - G) l IZ1 (G) for suitable G E Pic( S)

with 2G - Cl == e. As 2G - Cl is not effective, Hom((V2 )tl (Vdd = 0 and as -[(s

is effective and Cl - 2G is not effective, Ext2((V2h, (VI)d = °by Serre duality. So

HOffi1t (V2,VI) = 0, Ext;(V2,Vd is locally free and its rank is given by Riemann Roch

(prop. 1.1). (1) and (3) now follow from the degeneration of the spectral sequence

Hi(Ext~(V2'VI)) => Ext i+j (V2,VI) see ([H-S],[Q2], [OG]).

(4) By I<odaira classification surfaces S with -[(s effective have torsion-free

H 2 (S, Z). Therefore Num(S) = NS(S), alld by (3) there is a natural surjective mor

phism ve,n,m : IP(E;,m) --+ Ee,m. By len1ma 2.3 it is also injective. 0

Remark 9.3. Let u : Tn,m --+ TO,m be the projection. Then there is a natural map

E;,m --+ u*(E~,m) (which fibrewise is the natural map Ext 1 (Iz2 (Cl - F),Izl (F)) --+

Ext l (Lz
2

(Cl - F), O(F))). It gives a seetion s of u *(t1,m) ® Ofil(t:F' m) (1) whose zero

locus is V;l (E;l,m nE_c) by proposition 2.5. In particular this is a closed subscheme.... ,n,m... ...
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Theorelll 3.4.

(1) e(A1L 1 (CI, C2) : x, y) = e(.iVIL2 (Cl, C2) : x, y) + ((1 - x)(1 _ y))q(S)

.(L h (Hilb!l.] (8 U 8) : x, y) (xy)'.-q(q+Ks)/2-x(Os) 1 - (xy)qKS ) ,
1- xyTJ

where 7] 1'1[,ns ouer the dass es in fl 'U m (S) determi71ing the wall Uf TJ = Ufe with

7]L 1 < 0 and lTJ := (4C2 - ci + 7]2)/4.

(2) I/ Cl is not divisible by 2 in N um(S) (or more generally i/ !vILI (Cl, C2) and

!vIL2 (Cl, C2) are smooth), then the same holds tor h(MLl (CI, C2) : x, y) and

h(ML2 (Cl,C2): X,V) instead ofe(ML1 (Cl,C2): x,y) and e(ML2 (Cl l C2): X,V).

Proof. H Cl is not divisible by 2 in Num(S), then for L not lying on a wall ML(Cl, C2) =
Mi (CI, C2) is smooth anel projective, so (2) follows from (1).

Property (2) of the virtual Hoclge polynomials and thm. 2.9 give

e(ML l (CI, C2) : x,y) = e(A1Lo (cl,C2): x,y) +L (e(VTJ: x,y) - e(11_ 71 : x,y)).
71

By remark 3.3 E 71 n E_ 71 is a closed subscheme of E 71 , so

e(V71 : x,y) - e(1f_ 71 : x,y) - (e(E71 : x,y) - e(E_ 71 : x,y))

= e(E71 n E- 71 : x, y) - e(E71 n E_ 71 : x, y) = O.

By leluma 2.3 E 71 = lln+m=ltJ E;,m, and using also properties (2),(3) and (4) we get

where w + 1 = -7](7] - ](s)/2 + l71 - X(tJs) is the rank of Ext;(V2 , VI). \~le see that

L h(Hilbn(S): x,y)h(Hilbm(S): x,V) = h(Hilb1tJ(S U S): x,V).
n+m=ltJ

So (2) follows by thm 2.9. o

Corollary 3.5. 1/ S is a ]{3 sur/ace or an abelian sur/ace, and Cl is not divisible by 2

in N S (S), then the Hodge numbers 0/ lVIL (Cl, C2) are independent 0/ the polanzation L

as long as L does not lie on a wall.

Proof. As fis is trivial in this case, this follows immediately from theorem 3.4. D
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4. HODGE NUMBERS OF MODULI SPACES OF STABLE SHEAVES ON RULED SURFACES

Let S be a ruled surface with -1(s effective over a curve C of genus 9 with projection

p : S --+ C. Let I be a fihre of p and a the section with a 2 minimal. vVe put e = _az ;

then Ks - -2a + (29 - 2 - e)f. Let Cl E Pic(S) with Cl . f odd. By normalizing we

assume in future that Cl _ a + EI with € E {O, I}. We want to compute the Hoelge

nUlnbers of M L (Cl, cz) for a polarization L not lying on a wall. In the case Cl = a the

Picarel group Pic(ML(Cl, Cz)) was determined in [Q2] and in the case Cl! odd and 9 = 0

it was determined in [Na].

Remark 4.1. It is well-known that lV S (S) isa free abelian group generated by the classes

of a anel f. If A == aa + ßf is an effective divisor, thcn a 2: 0, ß 2: 0 if e ~ 0 anel

-ea + 2ß 2: 0 if e < O. So the effectiveness of -I{s implies e ~ 0 anel 29 - 2 ::; e or

9 = -e = 1 (see [Q2]).

For L =aa + ßf we put T'L = ß/a following [Q2]. Then L is ample if and only if

a > °and T'L > e in case e 2: 0 01' 0' > 0 and TL > e/2 in case e < O. We also see that

L . M = 0 if and only if 7' L + r M = e.

Remark 4,2. A wall of type (Cl, C2) is lVe for ~ == (20: + l)a + (2ß + €)!, where 0: and

ß are integers such that -4C2 + ci ::; ~z < O. '""Te can assume that a 2: 0; then this is

equivalent to

(1) ß < 0 if e 2: 0, -(2ß + E) > a + 1/2 if e < 0 (and thcrefore e = -1).

(2) la,ß:= Cz - a(a + l)e + (20' + l)ß +Ct€ 2: O.

Lenllna 4.3. (see [Q2) prop.2. 3) AiL(cl, C2) = 0 for 1'L > 2C2 + e - E.

TheorelTI 4.4. Let L be a polarization not lying on a wall; let

{ I
2ß + E}

Hf(L) := (a , ß) E 71} 0: 2: 0, e - T' L > 20: + 1 '

fL(X, y, t) := L ((xyrr((2a+1)e-4ß-2E+2X(Os»

(a ,ß) E rV( L)

_ (xy)( a+ 1)(2a+1 )e-4ß-2E-2x(Os»)t( Q2+ a )e-(2a+1 )ß-Ea.

Then
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Proof. As M Lo ( Cl, C2) = 0 for ILo > 2C2 + e - f, we can compute h(ML(Cl, C2) : X, y) by

summing up the changes for all walls betweem Lo and L, i.e. for all ~ := (20: + 1)0" +
(2ß + f)[ with 0: > 0, e - TL > ~~~~ 2:: -2C2 + € and ln,ß 2:: 0.

vVe first want to see that ln,ß 2:: °implies 2ß + € 2:: (-2C2 + €)(2a +1). Using

{
-I

2ß + € <
- -(0:+1)

if e 2:: 0,

if e = -1

(see remark 4.1), la,ß 2:: °iInplies C2 > 0. Now assume 2ß + € < (-2c2+€)(2o:+1). If a =
0, then la,ß ::S C2 +ß < 0; and if 0: > 0, then ln,ß < C2 -0:(0'+ 1)e-a(2a+ 1)(2c2- €) +ß,

and by C2 2:: 1, ß< 0, e 2:: -1 this is < 0. By

-~(~ + [(s) - X(Os) = a((20' + l)e - (4ß + 2€) +2X(Os)),

-~(~ - [(s) - X(Os) = (0' + 1)((20: + l)e - (4ß + 2€) - 2X(Os)),

theorem 3.4 and remark 4.2 we get

h(ML(Cl,CZ) : x,y) = (1 - ~)9(1 - y)9 L ((xy)a((Za+l)e-4ß-z,+Zx(Os))
- xy

(niß)

- (xy)(n+I)((2n+l)e-4ß-2€-2x(Os»)h(Hilb(la,td(S U S) : x,y)(xy)la'ß,

where (0:, ß) runs over the set {(ü, ß) E vV(L) I laß 2:: O}.
By rem. 4.2(2) we can express C2 in terms of 0', ß, la,ß and see that, given (a, ß) E

W(L), letting Cz run through all possible values is equivalent to letting ln,ß run through

all nonnegative integers. Finally we use the fonnula

L h(Hilbffi(SUS) : x, y) (xyt)ffi = (L h(Hilb"(S) : x, y)(xyt)"r
m2:0 n:;:::O

(1 - x2k-Iy2ktk)29(1 _ x2ky2k-Itk)29

= II (1 _ x2k-Iy2k-ltk)2(1 - x2ky2ktk)2(1- x Zk+2y2k+2tk)2'
k>O

D

Unfortunately the fOTIllula for the Hodge numbers of ML( Cl, cd is not very simple.

However it turns out that for C2 large enough about the first 3/8 of the Hodge numbers

are independent of Land given by a quite simple formula.

Theorem 4.5.



10 = { [1/(2TL) + 1)
[TL + € - e/2]

i/ S = Pt X Pt, € = 1 and TL ~ 1/3;

otherwise,
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and [al denotes the largest integer ~ a.

Proof. Let Im be the coefficient of tm in f L(x, y, t).

Claim: Im =1 modulo (xy)m-w.

Proo/ 0/ the Claim: Let (Q, ß) E H/(L). For a = °we get

where -ß can run over all integers bigger then rL + € - e/2. Therefore by thln. 4.4 it

is enough to prove

(1) If a > °then 91(a,ß) := aZe - (20: -1)ß - a€ + 2O'x(Os) 2:: -10,

(2) 9z(a,ß) ;= (0' + 1)Ze - (20' + 3)ß - (0' + 2)€ - (20 + 2)x(Os) 2:: -10.

(1) If e 2:: 0, then e 2:: -2X(tJs) (rem. 4.1), therefore 91(a,ß) 2:: -(20: -1)ß - a€ > 0.

If e < 0, then e = -1, X(Vs) = °and -2ß 2:: (0' + 1) + €, therefore

!JI(O',ß) 2:: _aZ + (0: - 1/2)(0' + 1) - €/2 > -1.

(2) If e > °01' X(CJs) 2:: °or € = 0, then

9Z(0:,ß) 2:: (0' + l?e + (20: + 3) - (0' + 2)€ - (20' + 2)X(Vs) 2:: O.

If e = -1, thell 9z(O',ß) 2:: -(0: + 1? + (0: + 3/2)(0' + 1) - €/2 2:: 0. If e = °and

X(Os) = -1 and € = 1, thell 92(0:,ß) = -(20: + 3)ß - (3a + 4). So if ß < -1, then

9z(a,ß) > 0, and if ß = -1, then g2(a,ß) = -(0' + 1) and rL = 1/(20' + 1). So the

claim follows.

By thul. 4.4 h(lv[L(CI,C2) : x,y) is the coefficient of tC2 of k(x,y,xyt)IL(X,y,t), for

apower series k(x, y, z) = 2: kn(x, y)zn. So we get

h(lvIL(Cl, C2) : x, y) = L fC2-mkm (x, y)(xy)m
m:S;c2

=L (xy)mkm(x,y) lnodulo (xyt 2
-

W

m::;c2

== k(x, y, XV) modulo (xyt 2 +1
•
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So we obtain our result by replacing f L (x, y) by 1, putting t = 1 in the formula of thm.

4.4 and an easy calculation. 0

Instead of fixing the determinant det (E) we can also consider M L ( Cl, C2) the moduli

space of torsion free sheaves with topological first ehern dass Cl E N 5(5). For ~

determining a wall of type (Cl, C2) (where the COhOIllOlogy dass of Cl is Cd let E;'m be

the set of sheaves lying in extensions

with len(ZI) = n, len(Z2) = 1n, F + G - Cl == ~ and F - G - 0 and let vt,m be the

subset of E;,m where (E EB O(F))/Iz1 (F) # O(F) EB IZ2 (Cl - G). Then, after making

the obvious changes, the results of chapters 2 and 3 a11 hold with ML(CI, C2), Ee,m and

vt,m replaced by M L (Cl ,C2), E;,m and vt,m. In the modification oflelnma 3.2 E;,m
is bijective to a projective bandie over PicO(S) x PicO(5) x Hilbn (5) x Hilbm (5), and

therefore in thln 3.4 the factor (( 1 - x)( 1 - y) )q(S) is replacecl by (( 1 - x) (1 _ y) )2 q(S) .

So the formulas of thnl. 4.4 and thln. 4.5 hold for M L( Cl, C2) without the factor

(1 - x)9(1 - y)9 in the denominator.

By (E-S2] and [B] under the assulllptions of thm 4.4 the cohomology flng

H* (AifL (Cl, C2), Q) is generated by the Künneth conlponents ci(F)/1, ci(F)/f, ci(F)/O",

Ci (F) / pt of the ehern classes of any universal sheaf F over 5 x M L(C1, C2) (pt is thc dass

of a point). If M is the pu11back of a line bundle on IvIL (Cl, C2), then also F 0 IvI is a

universal sheaf, and its Künneth components generate H *(M L ( C1, C2), Q). SO Cl (F) /1

lies in the space generated by Cl (F)/1 + 2CI (M), C2(F)/a + Cl (M), C2(F)/ f + Cl (M),

c3(F)/pt for a11 IvI E Pic(j\lL(Cl, C2)), and thus for a11 !vI E Pic(A1L(Cl, C2)) ® Q. SO

we can put M = -~(det(F)/1) and see that the generator Cl (F)/1 is redundant. Then

thm. 4.5 can be reformulated:

Corollary 4.6. There is no relation between thc (gmdcd commutative) generators

ch (F)/1, cj2(F)/f, Cj3 (F)/ O"J ci4 (F)/pt ( ji ~ 2 for i = 1, ... ,4) in dimension lower

then 2C2 - 2w
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