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O. INTRODUCTION

Let S be a smooth projective surface over the complex numbers, Cl E Pic(S) and

C2 E H4(S, 7l). If L is an alnple divisor on S we can study the moduli space ML (Cl, C2)

of L-semistable torsion free sheaves E on S of rank 2 with det(E) = Cl and c2(E) = C2

and the open subscheme lvJ2 (Cl, C2) c M L ( Cl , C2) parametrizing locally free sheaves. In

[Ql]-[Q3] Qin studies the change of M2(CI, C2) when L varies and partially also that of

ML( Cl, C2) and gives a number of applications. It turns out that the ample cone of S

has achamber structure such that ML(CI, C2) only depends on the chamber of L, and

the change of M L(Cl , C2), when L passes through the wall between two chambers, can

be controlled. In particular in [Q2] these results are used to determine the Picard group

of ML(a, C2) for S a ruled surface with effective anticanonical bundle and (1 the section

with (12 minimal.

We first extend the approach of Qin to torsion free sheaves. We also look at the con­

nection to the moduli space Spl(Cl, C2) of simple sheaves and its possible non-separated

structure. Then we apply our results to the Hodge numbers of ML(CI, C2) for S a surface

with -[(5 effective, Cl not divisible by 2 in Num(S) and L not lying on a wall (then

M L(Cl, C2) is smooth and projective of dimension 4C2 - ci - 3X(0 5) or empty). Dur tool

for computing the Hodge numbers are virtual Hodge polynomials (see e.g. [Ch]). We

first obtain a simple fonllula for the change of the Hodge numbers of ML(Cl' C2) when

L passes through a wall (thln. 3.4). For a J(3-surface or an abelian surface it follows

that they are independent of the chamber of L.

Finally, if S is a ruled surface with -[(s effective and Cl . / is odd for a fibre /, we

compute the Hodge numbers of ML(Ct, C2) (thm. 4.4). While the precise formula is

quite COlllplicated, for C2 big enough about 3/8 of the Hodge numbers are independent

of C2 and Land given by a quite simple power series (thm. 4.5).

Typeset by AJvtS- '1'FX
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1. BACKGROUND MATERIAL

(a) Notation and gencralities

In this paper let S be a projective surface aver C. We denote by lVS(S) the Neron­

Severi group of S, i. e. the image of Pi C(S) -+ HZ (S1 Z) and by Pi cO ( S) its kernel. Let

Num(S) := Pic(S)J; where _ denotes numerical equivalence.

Proposition 1.1. (Serre duality and Hirzebruch-Riemann-Roch for extension groups)

([Mu2j, see prop. 1.7 in [Q2j). Let F I and Fz be torsion free sheaves on S. Then

(1) Ext i (F1 , F z) is canonically dual to ExtZ
-i (Fz, FI 0 K s)

(2) L:i(-l)iExt i (Fl,..'Fz) is the part in H4(X,Z) of ch(Fd*ch(Fz)td(Ts) where *
acts on HZ i ( S, Z) by m ultiplication with (-1) i .

Let Cl E Pic(S), C2 E Z (which we identify with H 4 (X, Z)). Let Spl(cl, cz) be

the moduli space of simple torsion-free sheaves E on S of rank 2 with det( E) = Cl

and Cz (E) = C2. This is a locally Hausdorff analytic space of finite dimension ([1(-0],

[N0]). In general it is however not separated and not neccessarily ascheme. Let L

be a polarization of S. We mostly consider stability and semistability in the sense of

Gieseker and Maruyarna. So we write L-(semi)stahle instead of Gieseker (senli)stable

with respect Land L-slope (senü)stable instead of (semi)stable with respect to L in

the sense of Muruford-Takernoto. Let ML(Cl, C2) be the moduli space of L-semistable

torsion-free sheaves E on S of rank 2 with det(E) = Cl aIld cz(E) = C2 and A1j)Cl l C2)

its open subscheme of stahle sheaves, which is also an open subscheme of Spl(Cl, C2)'

(b) Hodge numbers of Hilbert schemes

For aschenle X over C let hP,q(..y) = dimHq(X, n~\) anel

h( ..Y : x, y) = L( -l)p+qhP,q(X)xPyq
p,q

the Hodge polynolllial. Let Hilbn(S) be the Hilbert scheme of zero-dimensional sub­

schemes of length n on S. In [Gö1] its Betti numbers were computed and in [G-S] its

Hodge numbers using perverse sheaves and mixed Hodge modules. The result is

00 2L h( Hilb71 (S) : x, y)t 71 = TI TI (1 - xp+kyq+k)( _l)P+q+l hP,q (5).

n?:O k=l p,q=O
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Using virtual Hodge polynomials (see below) this was proven independently in [eh]

together with a fornnlla for the Hodge nUlnbers of the variety of pairs of subschemes

Zn C Zn+l of lengths n and n + 1.

(c) Virtual Hodge polynomials

Virtual Hodge polynolllials were introduced in [D-I<] and hrought to IUY attention

by Cheah ([eh]). They can be viewed as a tool for computing the Hodge numbers of

smooth projective varieties by reducing to silupler varieties. I review SOlne of the results

anel notations about virtual Hodge polynomials from pages 2-3 of [eh].

Definition. 1.2. Let X be a complex variety. Then by [De] the cohomology H~ (X, Q)

with compact support carries a natural luixed Hodge structure. If X is SlllOOth and

projective this Hodge structure coincides with the classical one. Following [eh] we put

eP,q(.i\) := L(_l)k hP,q(H; (X, Q!)),
k

e(X : X, Y) := L eP,q(X)xPyq.
p,q

By [D-I<] and eh] these virtual Hodge polynolnials have the following properties:

(1) If X is a smooth projective variety, then e(X: x,y) = h(X : x,y).

(2) For Y cX Zariski-closed anel U = X \ Y, e(X : x,y) = e(U: .7:,V) +e(Y: x,y).

(3) For f : y~ --+ )( a Zariski-locally trivial fihre hundle with fihre F, e(Y~ : x, y) =
e(X : x, y)e(F : x, V).

(4) If f; X --+ Y is a bijective 1110rphism, then e(X: x,y) = e(Y: x,y).

2. WALLS AND CHAMBERS FOR TORSION-FREE SHEAVES

In this section we review anel extenel same results of Qin ahout the change of lnoduli

spaces of torsion-free sheaves when the polarization varies.

Definition 2.1. (see [Q3] Def 1.2.1.5) Let Cs be the alupie cone in IVu17~(S) @ IR. For

eE Num(S) let

lV'; := Cs n {x E Nu Tri, (S) ($ IR. ! x . e= O}.

we is called the wall of type (Cl, C2) detennined by ~ if and only if there exists G E

Pic(S) with G == esuch that G + Cl is divisible by 2 in Pic(S) and ci - 4C2 :s; G2 < o.
we is nonempty if there is a polarisation L with L~ = O. Let W (Cl, C2) be the union
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of the walls of type (Cl, C2)' Achamber of type (Cl, cz) is a connected component of

es \ W(CI, cz). In future we dwrite wall anel chaInber instead of wall anel chaIllber

of type (cJ , C2)' We say that Weis a face of a chambel' C if the closure Ccantains a

nonempty open subset of We. It is clear that two different chambers Cl, C2 can have at

most one COffill1on face.

Lemma 2.2. Let E be a torsion /ree sheaf 0/ rank 2 on S with det( E) = Cl, C2( E) = C2,

which is LI -semistable and L 2 -unstable tor two polarizations LI, L 2 not on a wall.

(1) E is LI -slope stable and L 2 -slope unstable.

(2) There is a nontrivial extension

where ~ =(2F - Cl) determines a nonempty wall with ~Ll < 0 < ~L2 and

Zl E Hilbn(S), Zz E Hilbm(S) with n +m = (4cz - ci + ~Z).

Proof. This result is essentially shown in the proof of ([Q2) lemma 2.1) for S a ruled

surface and Cl the class of a section. The proof only uses that Cl is not divisible by 2

in Num(S) in order to exclude F == Cl - F. We assume therefore F =Cl - F. As E is

LI-semistable anel Lz-unstable, it also sits in an extension

with LI G ::; 0 < LzG. One of the ineluceel maps IZ 1 (F) --+ IW1 (F + G), IZ1 (F) --+
IW:;/(CI -F-G) has to be injective, so either G 01' Cl -2F-G is effective, a contradiction

to LI G ::; 0 < L zG and Cl - 2F == O. 0

For the rest of section 2 ffild section 3 we aSSUlue that ~ =2F - Cl eletermines a

nonempty wall of type (Cl) cz)

Lemma 2.3. Let E be given by a non-trivial extension (*). Then

(1) Hom(Iz1 (F), E) = C.

(2) E is simple.

(3) IZ
1
(F) is the unique subsheaf 0/ E 0/ the form IW1 (G) with torsion-free quotient

and 2G - Cl =~.

Proof. As (2F - CI)Z < 0 anel L(2F - cd = 0 for -some polarization L, nel­

ther 2F - Cl nor Cl - 2F can be effective. Thus Hom(Iz1 (F),Iz2 (CI - F)) = 0,
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Hom(Iz2 (CI - F),Iz1 (F)) = O. So (1) follows by applying Hom(Iz1 (F), .) to (*). By

applying Hom(Iz2 (Cl - F), . ) to (*) and using that the extension (*) is nontrivial, we get

Hom(Iz2 (c.1 - F), E) = O. So E is simple by the sequence 0 -7 Hom(Iz2 (cl - F), E) -+

Hom(E, E) -7 Hom(Iz1 (F), E).

(3) Assume we have a sequence

o-t I Vv1 (G) ----t E -;--7 IZ2 (Cl - G) ----t 0,

where 2G - Cl - e. As there are polaJ:izations LI, L z wi th L.1 e< 0 < L ze, neither

Cl - F - G nor F + G - Cl can be effective. Therefore the induced Iuaps I W1 (G) -7

I Z2 (Cl - F), I Z1 (F) -+ I lV2 (Cl - G) are zero. So I W1 (G) -+ IZ1(F) and IZ1(F) -+
I W1 (G) are injective and F = G, W I = Z,. D

Definition 2.4. Let E;,m be the set of sheaves lying in nontrivial extensions (*) with

len(Zd = n,len(Zz) = 1n, where m + n = Cz - (ci - e2 )/4. By Lemma 2.3, Eel,m is

a subset of Spl(Cl, C2)' We put Ee= Un+m=c2-(ci-e)/4 Ee,m. By lelulua 2.3 this is a

disjoint union.

For the rest of sections 2 and 3 when writing LI, Lz we will always assume that LI,

Lz are polarizations in chambers with Hre as COlumon face and eL I < 0 < eLz.

Proposition 2.5. Let E E E;,m. Then E is Lz·slope u11;stable, and the jollowing are

equivalent:

(1) E is not LI -slope stable.

(2) E is L-slopc unstable with respect to any polarization L ~ We.

(3) The extension class 0/ (*) lies in the kernel 0/ the natural map Ext l (Iz2 (Cl ­

F),Iz1 (F)) -+ Ext l (Iz2 (CI - F),CJ(F)).

(4) C E n +m - r r f"E -e 'jor some T < n.

Proof. The L2-slope unstability and the iluplications (4)::::}(2)::::}(1) are obvious.

( I)::::} (4): Assume E is not LI -slope stable. Then we have an exact sequcnce

with LI G 2:: LI (Cl - G). If the induced map IWl (G) -+ I Zl (F) was an injection, we

would get the contradiction LI G ~ LI F < LI (Cl - F) :S LI (Cl - G). So IW1 (G) -+

IZ
2

(Cl - F) is an injection, anel Cl - F - G is effective. AssUlue Cl - F - G is strictly
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effective, and let L be apolarization with L~ = O. Then 0 < L(CI-F-G) = LCI/2-LG,

so L(2G - cd < 0 ::; LI (2G - Cl)' By (**) we have (2G - Cl? ~ ci - 4C2. By

L(2G - Cl) < 0 ::; (2G - cI)LI there is a polarization At[ with A!f(2G - Cl) = O. Thus

by the Hodge index theorem and using L(2G - cd < 0, we get (2G - CI)2 < O. So

11 - 2G - Cl defines a nonempty wall. As LI does not lie on a wall, vf!71 lies strictl)'

between LI and L, a contradiction. So G = Cl - F, and we have a diagram

o
-!-

Lw} (Cl - F)

-!-

o --+ Lz} (F) --+ E

~a -!-

Iw2 (F)

-!-
O.

As Cl - 2F is neither effective nor anti-effective, 0' and ß are injective. As E is simple, the

vertical extension cannot be split. Furthermore Ien(Zl ) +Ien(Zz) = Ien(W1 ) + Ien(Wz)

and, by the injectivity of a (ancl the fact that (*) is not split), len(W2 ) < len(ZI)'

(4)=}(3): Let t := (E ffiIw2(F))/Iz1 (F) (the embedding IZ1(F) ~ EffiI~V2(F) is given

by (*) and the standard injection LZ1 (F) ~ I Vv2 (F)). Then the projection E~ IW2 (F)

and the identity on Iw2 (F) give a lnap t ~ LVv2 (F) splitting the sequence

o-t I W2 (F) -t t -t IZ2(CI - F) -t 0

induced frorll (*). Therefore the extension dass of (*) lies in ker [Ext l (Iz2 (Cl ­

F), IZ1 (F)) ~ Ext l (Iz2 (Cl - F), LW2 (F))], and (3) follows.

(3)=}(4); Assume (EffiO(F))/Iz1(F) = O(F)ffiIz2 (CI-F). Let IW2 (F) and LW1(cI-F)

be image and kernel of the C0l11positian E~ CJ(F) EB IZ2 (CI - F) ~ CJ(F). Then

o-t I Vv1 (Cl - F) --+ E ---+ Lw2 (F) ---+ 0,

daes not split beeause E is silnple. o

Remark 2.6. Every E E E~,m (in partieular each Iaeally free sheaf in Ee) is Lrslape

stahle anel Lz-slope unstable. If E;,m =f. (/) far n > 0, then E;,m n E;+m-r,r =f. (/) far



7

each r < n. In particular there are E E Eel m
, which are L-slope unstable for every

L rt W e. So prop. 2.5 shows an ilnportant difference between locally free sheaves and

torsion free sheaves.

Proof. The first sentence is obvious. Let E E Ee,m be·given by an extension (*), where

Zl does not intersect Z2. Let Y1 ~ Zl be a subscheme of length r. By the proof of

proposition 2.5, E E Ee+m-r,r if the extension dass of (*) lies in ke1' [Ext l (IZ2 (Cl ­

F),Izl (F)) -4 Ext1 (IZ2 (Cl - F), I Y1 (F))] and not in ker [Ext1 (Iz2 (Cl - F), IZ 1 (F)) -4

Ext l (Iz2 (CI - F),Iy2(F))] for any scheIne 1/2 with 1/1 ~ Y2 ~ Z). By the sequence

o---+ I Z1 (F) -t IYj (F) ---+ I Yi / ZI (F) -t 0 and the fact that 2F - Cl is not effective

these kerneis are isomorphie to HOIn(Iz2 ( Cl - F), I Yi /Zl (F)) c::: cn-1en(Y;}. D

Definition 2.7. Let 'It,m C E;,m be the set of all torsion free sheaves E sitting in

extensions (*) whose extension dass does not lie in ker[Ext 1(Iz2 (C1 - F),Iz 1 (F)) -4

Ext 1 (Iz2 (Cl - F),Iw1 (F))]. vVe put Ve = Un+m=(4c2- ci+e2 )/4 vt,m.
Lemma 2.8. Assume~, 11 define the same wall and vt,m n V~,.9 f:. 0. Then ~ = 1] and

n=1.

Proof. Let E E 'It,m n 1/~,". Let L be a polarization in achamber having W e as a face

with L~ < O. Then by proposition 2.5, E is L-slope stable and therefore 11L < O. E fits

into sequences (*), (**) with (2F - cd _ ~, (2G - cd - 11. Then, as in the proof of

([Q3] prop. 11.1.2.5), Cl - F - G cannot be effective. Therefore thc sequcnces (*), (**)

induce injections IZ1 (F) -4 I~VI (G), I~VI (G) -4 IZ1 (F). 0

TheorelTI 2.9.

(1) For L not on a wall, lv[L (Cl, C2) only depends on the chamber of L} and

AlL (Cl, C2) \ A1i (Cl, C2) is independent of L.

(2) As subsets of Spl( Cl, C2) we have adecomposition

where 11 run.'! over the classes in N um.( S) with ryL 1 < 0 defining the wall W
f1 =

Hle and n+ 171 = (4C2 - ci +1]2)/4. Furthermore Vf1n,m = E;,m \ E;,m n E_ 111

Vn,m = En,m \ En,m n E .
-f1 -f1 -f1 11



8

Proof. (1) and (2) follow from lemma 2.2. The decomposition follows from lemma 2.2,

lemma 2.3 and proposition 2.5. Lemma 2.8 iluplies that the union is disjoint. The

identity V1]n,m = E;,m \ E;, m n E_ f1 follows from proposition 2.5. 0

Remark 2.10. Vve see from theorem 2.9 and renlark 2.6 that theorem 2.6 and corollary

2.7 of [Q2] are imprecise. \Vith S, L, La, a, (1 as in [Q2] the correct result for thlU. 2.6

is ML(a, cz) = (MLo(a, cz) \ E~!~I) U E~~l u (E~;a \ E~l~l)'

AssurDe now that the Picard nUlnber p(S) of S is at least 2.

Proposition 2.11.

(1) There is a integer k such that /or each cz > k there exists a component M 0/
Spl(cl, cz) containing L1-slope stahle sheaves E /or LI lying in one chamber and

sheaves :F which are L-slope unstable /or each L not lying on a wall.

(2) In particular /or cz > k and Cl not divisible by 2 in Nurn(S), Spl(c] , cz) is not

separated.

Proo/. (1) By p( S) 2: 2 we find F E Pic(S) with 2F - Cl t °and (2F - cI)L = °for

an ample divisor L. Let ~ == 2F - Cl, and 1 := (4cz - ci + ~Z)/4 and choose c2 big

enough, such that 1 2: hO(S, Cl - 2F + ](5) + 2. Then ~ defines a nonempty wall. Let

Zz E Hilb'-1(S), then H I (S,Iz2(Cl + ](5 - 2F)) = Ext 1(Iz2(Cl - F), V(F))* f= °by

the cohomology sequence of

Let x E S \ Zz. Applying Hom(Iz2 (cl - F), . ) to 0 -+ Ix(F) -+ V(F) -+ V:l;(F) -+ 0,

we see that Exe (Iz2(Cl - F), ]x(F)) -+ Ext 1(Iz2(Cl - F), V(F)) is surjective hut not

injective. Thus (1) follows by prop. 2.5 for Ai the COIllponent of S pl (cl, cz) cont aining
EI,I-1

e
(2) If Cl is not divisible by 2 in lVum(S), lvIiI (Cl, cz) = MLI (Cl, cz) is an open and

projective subscheme of Spl( Cl, cz), intersecting M; so if M were separated it would

contain M, which contradicts (1). 0

3. THE CASE OF EFFECTIVE ANTICANONICAL DIVISOR

Now let S be a surface with -](s effective. For a simple torsion free sheaf E on S we

have ExtZ(E, E)o = 0, wherc the index 0 refers to the derived functor of the tracc-frce



homolnorphisms. Thus Ml(CI, C2) is slllooth of diInension 4C2 - ci - 3X(Os) or empty

for each polarisation L.

Definition 9.1. Let Tn,m := PicO(S) x Hilbn(S) x Hilbn(S) and let P be the pullback

of the Poincare line bundle from S x PicO(S) to S x Tn,m. Let IZn(s) be the ideal sheaf

of the universal subscheIne Zn (S) in S x Hilbn(S). Let 1f, ps, ql, q2 be the projections of

SxTn,m to Tn,m, S, SxHilbn(S) and SxHilbm(S) respectively. Let VI := q;(IZn (s))0

Ps(F) ® p02 and V2 := qz(IZm(s)) ® PS(CI - F). We put E;,m := EXt;(V2l VI), where

EXt~(V2' . ) is the right derived functor of HOln1t (V2, . ) := '7f* tlo1n(V2, . ).

Lemilla 3.2.

(1) There is an isomorphism Ext l (V2 , VI) ~ HO(S x Tn,m, E;,m).

(2) E;,m is locally /ree 0/ rank -e(~ - [(s)/2 + n + m - X(Os).

(3) Over S x IP( E;,m) we have a tautological extension

where p : SxIP(E;,m) --+ SxTn,m is the projeetion, such thai/or eaeh t E IP(Ee,m)

ihe restriction to S x {t} is isomorphie to the extension corresponding to t.

(4) There is a natural bijective morphism Ve,n,m : IP( E;'l,m) ---+ Ee,m.

Proof. For t E T the fibres (V2 )t, (VI)t are IZ2 (Cl - G) l IZ1 (G) for suitable G E Pic( S)

with 2G - Cl == e. As 2G - Cl is not effective, Hom((V2 )tl (Vdd = 0 and as -[(s

is effective and Cl - 2G is not effective, Ext2((V2h, (VI)d = °by Serre duality. So

HOffi1t (V2,VI) = 0, Ext;(V2,Vd is locally free and its rank is given by Riemann Roch

(prop. 1.1). (1) and (3) now follow from the degeneration of the spectral sequence

Hi(Ext~(V2'VI)) => Ext i+j (V2,VI) see ([H-S],[Q2], [OG]).

(4) By I<odaira classification surfaces S with -[(s effective have torsion-free

H 2 (S, Z). Therefore Num(S) = NS(S), alld by (3) there is a natural surjective mor­

phism ve,n,m : IP(E;,m) --+ Ee,m. By len1ma 2.3 it is also injective. 0

Remark 9.3. Let u : Tn,m --+ TO,m be the projection. Then there is a natural map

E;,m --+ u*(E~,m) (which fibrewise is the natural map Ext 1 (Iz2 (Cl - F),Izl (F)) --+

Ext l (Lz
2

(Cl - F), O(F))). It gives a seetion s of u *(t1,m) ® Ofil(t:F' m) (1) whose zero

locus is V;l (E;l,m nE_c) by proposition 2.5. In particular this is a closed subscheme.... ,n,m... ...
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Theorelll 3.4.

(1) e(A1L 1 (CI, C2) : x, y) = e(.iVIL2 (Cl, C2) : x, y) + ((1 - x)(1 _ y))q(S)

.(L h (Hilb!l.] (8 U 8) : x, y) (xy)'.-q(q+Ks)/2-x(Os) 1 - (xy)qKS ) ,
1- xyTJ

where 7] 1'1[,ns ouer the dass es in fl 'U m (S) determi71ing the wall Uf TJ = Ufe with

7]L 1 < 0 and lTJ := (4C2 - ci + 7]2)/4.

(2) I/ Cl is not divisible by 2 in N um(S) (or more generally i/ !vILI (Cl, C2) and

!vIL2 (Cl, C2) are smooth), then the same holds tor h(MLl (CI, C2) : x, y) and

h(ML2 (Cl,C2): X,V) instead ofe(ML1 (Cl,C2): x,y) and e(ML2 (Cl l C2): X,V).

Proof. H Cl is not divisible by 2 in Num(S), then for L not lying on a wall ML(Cl, C2) =
Mi (CI, C2) is smooth anel projective, so (2) follows from (1).

Property (2) of the virtual Hoclge polynomials and thm. 2.9 give

e(ML l (CI, C2) : x,y) = e(A1Lo (cl,C2): x,y) +L (e(VTJ: x,y) - e(11_ 71 : x,y)).
71

By remark 3.3 E 71 n E_ 71 is a closed subscheme of E 71 , so

e(V71 : x,y) - e(1f_ 71 : x,y) - (e(E71 : x,y) - e(E_ 71 : x,y))

= e(E71 n E- 71 : x, y) - e(E71 n E_ 71 : x, y) = O.

By leluma 2.3 E 71 = lln+m=ltJ E;,m, and using also properties (2),(3) and (4) we get

where w + 1 = -7](7] - ](s)/2 + l71 - X(tJs) is the rank of Ext;(V2 , VI). \~le see that

L h(Hilbn(S): x,y)h(Hilbm(S): x,V) = h(Hilb1tJ(S U S): x,V).
n+m=ltJ

So (2) follows by thm 2.9. o

Corollary 3.5. 1/ S is a ]{3 sur/ace or an abelian sur/ace, and Cl is not divisible by 2

in N S (S), then the Hodge numbers 0/ lVIL (Cl, C2) are independent 0/ the polanzation L

as long as L does not lie on a wall.

Proof. As fis is trivial in this case, this follows immediately from theorem 3.4. D
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4. HODGE NUMBERS OF MODULI SPACES OF STABLE SHEAVES ON RULED SURFACES

Let S be a ruled surface with -1(s effective over a curve C of genus 9 with projection

p : S --+ C. Let I be a fihre of p and a the section with a 2 minimal. vVe put e = _az ;

then Ks - -2a + (29 - 2 - e)f. Let Cl E Pic(S) with Cl . f odd. By normalizing we

assume in future that Cl _ a + EI with € E {O, I}. We want to compute the Hoelge

nUlnbers of M L (Cl, cz) for a polarization L not lying on a wall. In the case Cl = a the

Picarel group Pic(ML(Cl, Cz)) was determined in [Q2] and in the case Cl! odd and 9 = 0

it was determined in [Na].

Remark 4.1. It is well-known that lV S (S) isa free abelian group generated by the classes

of a anel f. If A == aa + ßf is an effective divisor, thcn a 2: 0, ß 2: 0 if e ~ 0 anel

-ea + 2ß 2: 0 if e < O. So the effectiveness of -I{s implies e ~ 0 anel 29 - 2 ::; e or

9 = -e = 1 (see [Q2]).

For L =aa + ßf we put T'L = ß/a following [Q2]. Then L is ample if and only if

a > °and T'L > e in case e 2: 0 01' 0' > 0 and TL > e/2 in case e < O. We also see that

L . M = 0 if and only if 7' L + r M = e.

Remark 4,2. A wall of type (Cl, C2) is lVe for ~ == (20: + l)a + (2ß + €)!, where 0: and

ß are integers such that -4C2 + ci ::; ~z < O. '""Te can assume that a 2: 0; then this is

equivalent to

(1) ß < 0 if e 2: 0, -(2ß + E) > a + 1/2 if e < 0 (and thcrefore e = -1).

(2) la,ß:= Cz - a(a + l)e + (20' + l)ß +Ct€ 2: O.

Lenllna 4.3. (see [Q2) prop.2. 3) AiL(cl, C2) = 0 for 1'L > 2C2 + e - E.

TheorelTI 4.4. Let L be a polarization not lying on a wall; let

{ I
2ß + E}

Hf(L) := (a , ß) E 71} 0: 2: 0, e - T' L > 20: + 1 '

fL(X, y, t) := L ((xyrr((2a+1)e-4ß-2E+2X(Os»

(a ,ß) E rV( L)

_ (xy)( a+ 1)(2a+1 )e-4ß-2E-2x(Os»)t( Q2+ a )e-(2a+1 )ß-Ea.

Then



12

Proof. As M Lo ( Cl, C2) = 0 for ILo > 2C2 + e - f, we can compute h(ML(Cl, C2) : X, y) by

summing up the changes for all walls betweem Lo and L, i.e. for all ~ := (20: + 1)0" +
(2ß + f)[ with 0: > 0, e - TL > ~~~~ 2:: -2C2 + € and ln,ß 2:: 0.

vVe first want to see that ln,ß 2:: °implies 2ß + € 2:: (-2C2 + €)(2a +1). Using

{
-I

2ß + € <
- -(0:+1)

if e 2:: 0,

if e = -1

(see remark 4.1), la,ß 2:: °iInplies C2 > 0. Now assume 2ß + € < (-2c2+€)(2o:+1). If a =
0, then la,ß ::S C2 +ß < 0; and if 0: > 0, then ln,ß < C2 -0:(0'+ 1)e-a(2a+ 1)(2c2- €) +ß,

and by C2 2:: 1, ß< 0, e 2:: -1 this is < 0. By

-~(~ + [(s) - X(Os) = a((20' + l)e - (4ß + 2€) +2X(Os)),

-~(~ - [(s) - X(Os) = (0' + 1)((20: + l)e - (4ß + 2€) - 2X(Os)),

theorem 3.4 and remark 4.2 we get

h(ML(Cl,CZ) : x,y) = (1 - ~)9(1 - y)9 L ((xy)a((Za+l)e-4ß-z,+Zx(Os))
- xy

(niß)

- (xy)(n+I)((2n+l)e-4ß-2€-2x(Os»)h(Hilb(la,td(S U S) : x,y)(xy)la'ß,

where (0:, ß) runs over the set {(ü, ß) E vV(L) I laß 2:: O}.
By rem. 4.2(2) we can express C2 in terms of 0', ß, la,ß and see that, given (a, ß) E

W(L), letting Cz run through all possible values is equivalent to letting ln,ß run through

all nonnegative integers. Finally we use the fonnula

L h(Hilbffi(SUS) : x, y) (xyt)ffi = (L h(Hilb"(S) : x, y)(xyt)"r
m2:0 n:;:::O

(1 - x2k-Iy2ktk)29(1 _ x2ky2k-Itk)29

= II (1 _ x2k-Iy2k-ltk)2(1 - x2ky2ktk)2(1- x Zk+2y2k+2tk)2'
k>O

D

Unfortunately the fOTIllula for the Hodge numbers of ML( Cl, cd is not very simple.

However it turns out that for C2 large enough about the first 3/8 of the Hodge numbers

are independent of Land given by a quite simple formula.

Theorem 4.5.



10 = { [1/(2TL) + 1)
[TL + € - e/2]

i/ S = Pt X Pt, € = 1 and TL ~ 1/3;

otherwise,

13

and [al denotes the largest integer ~ a.

Proof. Let Im be the coefficient of tm in f L(x, y, t).

Claim: Im =1 modulo (xy)m-w.

Proo/ 0/ the Claim: Let (Q, ß) E H/(L). For a = °we get

where -ß can run over all integers bigger then rL + € - e/2. Therefore by thln. 4.4 it

is enough to prove

(1) If a > °then 91(a,ß) := aZe - (20: -1)ß - a€ + 2O'x(Os) 2:: -10,

(2) 9z(a,ß) ;= (0' + 1)Ze - (20' + 3)ß - (0' + 2)€ - (20 + 2)x(Os) 2:: -10.

(1) If e 2:: 0, then e 2:: -2X(tJs) (rem. 4.1), therefore 91(a,ß) 2:: -(20: -1)ß - a€ > 0.

If e < 0, then e = -1, X(Vs) = °and -2ß 2:: (0' + 1) + €, therefore

!JI(O',ß) 2:: _aZ + (0: - 1/2)(0' + 1) - €/2 > -1.

(2) If e > °01' X(CJs) 2:: °or € = 0, then

9Z(0:,ß) 2:: (0' + l?e + (20: + 3) - (0' + 2)€ - (20' + 2)X(Vs) 2:: O.

If e = -1, thell 9z(O',ß) 2:: -(0: + 1? + (0: + 3/2)(0' + 1) - €/2 2:: 0. If e = °and

X(Os) = -1 and € = 1, thell 92(0:,ß) = -(20: + 3)ß - (3a + 4). So if ß < -1, then

9z(a,ß) > 0, and if ß = -1, then g2(a,ß) = -(0' + 1) and rL = 1/(20' + 1). So the

claim follows.

By thul. 4.4 h(lv[L(CI,C2) : x,y) is the coefficient of tC2 of k(x,y,xyt)IL(X,y,t), for

apower series k(x, y, z) = 2: kn(x, y)zn. So we get

h(lvIL(Cl, C2) : x, y) = L fC2-mkm (x, y)(xy)m
m:S;c2

=L (xy)mkm(x,y) lnodulo (xyt 2
-

W

m::;c2

== k(x, y, XV) modulo (xyt 2 +1
•
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So we obtain our result by replacing f L (x, y) by 1, putting t = 1 in the formula of thm.

4.4 and an easy calculation. 0

Instead of fixing the determinant det (E) we can also consider M L ( Cl, C2) the moduli

space of torsion free sheaves with topological first ehern dass Cl E N 5(5). For ~

determining a wall of type (Cl, C2) (where the COhOIllOlogy dass of Cl is Cd let E;'m be

the set of sheaves lying in extensions

with len(ZI) = n, len(Z2) = 1n, F + G - Cl == ~ and F - G - 0 and let vt,m be the

subset of E;,m where (E EB O(F))/Iz1 (F) # O(F) EB IZ2 (Cl - G). Then, after making

the obvious changes, the results of chapters 2 and 3 a11 hold with ML(CI, C2), Ee,m and

vt,m replaced by M L (Cl ,C2), E;,m and vt,m. In the modification oflelnma 3.2 E;,m
is bijective to a projective bandie over PicO(S) x PicO(5) x Hilbn (5) x Hilbm (5), and

therefore in thln 3.4 the factor (( 1 - x)( 1 - y) )q(S) is replacecl by (( 1 - x) (1 _ y) )2 q(S) .

So the formulas of thnl. 4.4 and thln. 4.5 hold for M L( Cl, C2) without the factor

(1 - x)9(1 - y)9 in the denominator.

By (E-S2] and [B] under the assulllptions of thm 4.4 the cohomology flng

H* (AifL (Cl, C2), Q) is generated by the Künneth conlponents ci(F)/1, ci(F)/f, ci(F)/O",

Ci (F) / pt of the ehern classes of any universal sheaf F over 5 x M L(C1, C2) (pt is thc dass

of a point). If M is the pu11back of a line bundle on IvIL (Cl, C2), then also F 0 IvI is a

universal sheaf, and its Künneth components generate H *(M L ( C1, C2), Q). SO Cl (F) /1

lies in the space generated by Cl (F)/1 + 2CI (M), C2(F)/a + Cl (M), C2(F)/ f + Cl (M),

c3(F)/pt for a11 IvI E Pic(j\lL(Cl, C2)), and thus for a11 !vI E Pic(A1L(Cl, C2)) ® Q. SO

we can put M = -~(det(F)/1) and see that the generator Cl (F)/1 is redundant. Then

thm. 4.5 can be reformulated:

Corollary 4.6. There is no relation between thc (gmdcd commutative) generators

ch (F)/1, cj2(F)/f, Cj3 (F)/ O"J ci4 (F)/pt ( ji ~ 2 for i = 1, ... ,4) in dimension lower

then 2C2 - 2w
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