Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces

Lothar Göttsche

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany
.

Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces

Lothar Göttsche

Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-53225 Bonn, Germany

0 . Introduction

Let S be a smooth projective surface over the complex numbers, $c_{1} \in \operatorname{Pic}(S)$ and $c_{2} \in H^{4}(S, \mathbb{Z})$. If L is an ample divisor on S we can study the moduli space $M_{L}\left(c_{1}, c_{2}\right)$ of L-semistable torsion free sheaves \mathcal{E} on S of rank 2 with $\operatorname{det}(\mathcal{E})=c_{1}$ and $c_{2}(\mathcal{E})=c_{2}$ and the open subscheme $M_{L}^{0}\left(c_{1}, c_{2}\right) \subset M_{L}\left(c_{1}, c_{2}\right)$ parametrizing locally free sheaves. In [Q1]-[Q3] Qin studies the change of $M_{L}^{0}\left(c_{1}, c_{2}\right)$ when L varies and partially also that of $M_{L}\left(c_{1}, c_{2}\right)$ and gives a number of applications. It turns out that the ample cone of S has a chamber structure such that $M_{L}\left(c_{1}, c_{2}\right)$ only depends on the chamber of L, and the change of $M_{L}\left(c_{1}, c_{2}\right)$, when L passes through the wall between two chambers, can be controlled. In particular in [Q2] these results are used to determine the Picard group of $M_{L}\left(\sigma, c_{2}\right)$ for S a ruled surface with effective anticanonical bundle and σ the section with σ^{2} minimal.

We first extend the approach of Qin to torsion free sheaves. We also look at the connection to the moduli space $\operatorname{Spl}\left(c_{1}, c_{2}\right)$ of simple sheaves and its possible non-separated structure. Then we apply our results to the Hodge numbers of $M_{L}\left(c_{1}, c_{2}\right)$ for S a surface with $-K_{S}$ effective, c_{1} not divisible by 2 in $\operatorname{Num}(S)$ and L not lying on a wall (then $M_{L}\left(c_{1}, c_{2}\right)$ is smooth and projective of dimension $4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$ or empty). Our tool for computing the Hodge numbers are virtual Hodge polynomials (see e.g. [Ch]). We first obtain a simple formula for the change of the Hodge numbers of $M_{L}\left(c_{1}, c_{2}\right)$ when L passes through a wall (thm. 3.4). For a $K 3$-surface or an abelian surface it follows that they are independent of the chamber of L.

Finally, if S is a ruled surface with $-K_{S}$ effective and $c_{1} \cdot f$ is odd for a fibre f, we compute the Hodge numbers of $M_{L}\left(c_{1}, c_{2}\right)$ (thm. 4.4). While the precise formula is quite complicated, for c_{2} big enough about $3 / 8$ of the Hodge numbers are independent of c_{2} and L and given by a quite simple power series (thm. 4.5).

1. Background material

(a) Notation and generalities

In this paper let S be a projective surface over \mathbb{C}. We denote by $N S(S)$ the NeronSeveri group of S, i.e. the image of $\operatorname{Pic}(S) \rightarrow H^{2}(S, \mathbb{Z})$ and by $\operatorname{Pic}^{0}(S)$ its kernel. Let $\operatorname{Num}(S):=\operatorname{Pic}(S) / \equiv$ where \equiv denotes numerical equivalence.

Proposition 1.1. (Serre duality and Hirzebruch-Riemann-Roch for extension groups) ([Mu2], see prop. 1.7 in [Q2]). Let \mathcal{F}_{1} and \mathcal{F}_{2} be torsion free sheaves on S. Then
(1) $\operatorname{Ext}^{i}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is canonically dual to $\operatorname{Ext}^{2-i}\left(\mathcal{F}_{2}, \mathcal{F}_{1} \otimes K_{S}\right)$
(2) $\sum_{i}(-1)^{i} \operatorname{Ext}^{i}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is the part in $H^{4}(X, \mathbb{Z})$ of $\operatorname{ch}\left(\mathcal{F}_{1}\right)^{*} \operatorname{ch}\left(\mathcal{F}_{2}\right) t d\left(T_{S}\right)$ where * acts on $H^{2 i}(S, \mathbb{Z})$ by multiplication with $(-1)^{i}$.

Let $c_{1} \in \operatorname{Pic}(S), c_{2} \in \mathbb{Z}$ (which we identify with $H^{4}(X, \mathbb{Z})$). Let $\operatorname{Spl}\left(c_{1}, c_{2}\right)$ be the moduli space of simple torsion-free sheaves \mathcal{E} on S of rank 2 with $\operatorname{det}(\mathcal{E})=c_{1}$ and $c_{2}(\mathcal{E})=c_{2}$. This is a locally Hausdorff analytic space of finite dimension ([K-O], [No]). In general it is however not separated and not neccessarily a scheme. Let L be a polarization of S. We mostly consider stability and semistability in the sense of Gieseker and Maruyama. So we write L-(semi)stable instead of Gieseker (semi)stable with respect L and L-slope (semi)stable instead of (semi)stable with respect to L in the sense of Mumford-Takemoto. Let $M_{L}\left(c_{1}, c_{2}\right)$ be the moduli space of L-semistable torsion-free sheaves \mathcal{E} on S of rank 2 with $\operatorname{det}(\mathcal{E})=c_{1}$ and $c_{2}(\mathcal{E})=c_{2}$ and $M_{L}^{g}\left(c_{1}, c_{2}\right)$ its open subscheme of stable sheaves, which is also an open subscheme of $\operatorname{Spl}\left(c_{1}, c_{2}\right)$.

(b) Hodge numbers of Hilbert schemes

For a scheme X over \mathbb{C} let $h^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$ and

$$
h(X: x, y)=\sum_{p, q}(-1)^{p+q} h^{p, q}(X) x^{p} y^{q}
$$

the Hodge polynomial. Let $H_{i l b^{n}}(S)$ be the Hilbert scheme of zero-dimensional subschemes of length n on S. In [Gö1] its Betti numbers were computed and in [G-S] its Hodge numbers using perverse sheaves and mixed Hodge modules. The result is

$$
\sum_{n \geq 0} h\left(H i l b^{n}(S): x, y\right) t^{n}=\prod_{k=1}^{\infty} \prod_{p, q=0}^{2}\left(1-x^{p+k} y^{q+k}\right)^{(-1)^{p+q+1} h^{p, q}(S)}
$$

Using virtual Hodge polynomials (see below) this was proven independently in [Ch] together with a formula for the Hodge numbers of the variety of pairs of subschemes $Z_{n} \subset Z_{n+1}$ of lengths n and $n+1$.
(c) Virtual Hodge polynomials

Virtual Hodge polynomials were introduced in [D-K] and brought to my attention by Cheah ([Ch]). They can be viewed as a tool for computing the Hodge numbers of smooth projective varieties by reducing to simpler varieties. I review some of the results and notations about virtual Hodge polynomials from pages 2-3 of [Ch].

Definition 1.2. Let X be a complex variety. Then by [De] the cohomology $H_{c}^{k}(X, \mathbb{Q})$ with compact support carries a natural mixed Hodge structure. If X is smooth and projective this Hodge structure coincides with the classical one. Following [Ch] we put

$$
\begin{aligned}
e^{p, q}(X) & :=\sum_{k}(-1)^{k} h^{p, q}\left(H_{c}^{k}(X, \mathbb{Q})\right), \\
e(X: x, y) & :=\sum_{p, q} e^{p, q}(X) x^{p} y^{q} .
\end{aligned}
$$

By [D-K] and Ch] these virtual Hodge polynomials have the following properties:
(1) If X is a smooth projective variety, then $e(X: x, y)=h(X: x, y)$.
(2) For $Y \subset X$ Zariski-closed and $U=X \backslash Y, e(X: x, y)=e(U: x, y)+e(Y: x, y)$.
(3) For $f: Y \longrightarrow X$ a Zariski-locally trivial fibre bundle with fibre $F, e(Y: x, y)=$ $e(X: x, y) e(F: x, y)$.
(4) If $f: X \longrightarrow Y$ is a bijective morphism, then $e(X: x, y)=e(Y: x, y)$.

2. Walls and Chambers for torsion-free sheaves

In this section we review and extend some results of Qin about the change of moduli spaces of torsion-free sheaves when the polarization varies.

Definition 2.1. (see [Q3] Def 1.2.1.5) Let C_{S} be the ample cone in $N u m(S) \otimes \mathbb{R}$. For $\xi \in \operatorname{Num}(S)$ let

$$
W^{\xi}:=C_{S} \cap\{x \in N u m(S) \otimes \mathbb{R} \mid x \cdot \xi=0\} .
$$

W^{ξ} is called the wall of type $\left(c_{1}, c_{2}\right)$ determined by ξ if and only if there exists $G \in$ $\operatorname{Pic}(S)$ with $G \equiv \xi$ such that $G+c_{1}$ is divisible by 2 in $\operatorname{Pic}(S)$ and $c_{1}^{2}-4 c_{2} \leq G^{2}<0$. W^{ξ} is nonempty if there is a polarisation L with $L \xi=0$. Let $W\left(c_{1}, c_{2}\right)$ be the union
of the walls of type $\left(c_{1}, c_{2}\right)$. A chamber of type $\left(c_{1}, c_{2}\right)$ is a connected component of $C_{S} \backslash W\left(c_{1}, c_{2}\right)$. In future we dwrite wall and chamber instead of wall and chamber of type $\left(c_{1}, c_{2}\right)$. We say that W^{ξ} is a face of a chamber \mathcal{C} if the closure $\overline{\mathcal{C}}$ contains a nonempty open subset of W^{ξ}. It is clear that two different chambers $\mathcal{C}_{1}, \mathcal{C}_{2}$ can have at most one common face.

Lemma 2.2. Let \mathcal{E} be a torsion free sheaf of rank 2 on S with $\operatorname{det}(\mathcal{E})=c_{1}, c_{2}(\mathcal{E})=c_{2}$, which is L_{1}-semistable and L_{2}-unstable for two polarizations L_{1}, L_{2} not on a wall.
(1) \mathcal{E} is L_{1}-slope stable and L_{2}-slope unstable.
(2) There is a nontrivial extension

$$
\begin{equation*}
0 \longrightarrow \mathcal{I}_{Z_{1}}(F) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{Z_{2}}\left(c_{1}-F\right) \longrightarrow 0 \tag{*}
\end{equation*}
$$

where $\xi \equiv\left(2 F-c_{1}\right)$ determines a nonempty wall with $\xi L_{1}<0<\xi L_{2}$ and $Z_{1} \in \operatorname{Hilb}^{n}(S), Z_{2} \in H_{i l b^{m}}(S)$ with $n+m=\left(4 c_{2}-c_{1}^{2}+\xi^{2}\right)$.

Proof. This result is essentially shown in the proof of ([Q2] lemma 2.1) for S a ruled surface and c_{1} the class of a section. The proof only uses that c_{1} is not divisible by 2 in $N u m(S)$ in order to exclude $F \equiv c_{1}-F$. We assume therefore $F \equiv c_{1}-F$. As \mathcal{E} is L_{1}-semistable and L_{2}-unstable, it also sits in an extension

$$
0 \longrightarrow \mathcal{I}_{W_{1}}(F+G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_{2}}\left(c_{1}-F-G\right) \longrightarrow 0
$$

with $L_{1} G \leq 0<L_{2} G$. One of the induced maps $\mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{I}_{W_{1}}(F+G), \mathcal{I}_{Z_{1}}(F) \rightarrow$ $\mathcal{I}_{W_{2}}\left(c_{1}-F-G\right)$ has to be injective, so either G or $c_{1}-2 F-G$ is effective, a contradiction to $L_{1} G \leq 0<L_{2} G$ and $c_{1}-2 F \equiv 0$.

For the rest of section 2 and section 3 we assume that $\xi \equiv 2 F-c_{1}$ determines a nonempty wall of type $\left(c_{1}, c_{2}\right)$

Lemma 2.3. Let \mathcal{E} be given by a non-trivial extension (*). Then
(1) $\operatorname{Hom}\left(\mathcal{I}_{Z_{1}}(F), \mathcal{E}\right)=\mathbb{C}$.
(2) \mathcal{E} is simple.
(3) $\mathcal{I}_{Z_{1}}(F)$ is the unique subsheaf of \mathcal{E} of the form $\mathcal{I}_{W_{1}}(G)$ with torsion-free quotient and $2 G-c_{1} \equiv \xi$.

Proof. As $\left(2 F-c_{1}\right)^{2}<0$ and $L\left(2 F-c_{1}\right)=0$ for some polarization L, neither $2 F-c_{1}$ nor $c_{1}-2 F$ can be effective. Thus $\operatorname{Hom}\left(\mathcal{I}_{Z_{1}}(F), \mathcal{I}_{Z_{2}}\left(c_{1}-F\right)\right)=0$,
$\operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Z_{1}}(F)\right)=0$. So (1) follows by applying $\operatorname{Hom}\left(\mathcal{I}_{Z_{1}}(F), \cdot\right)$ to (*). By applying $\operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \cdot\right)$ to $(*)$ and using that the extension $(*)$ is nontrivial, we get $\operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{E}\right)=0$. So \mathcal{E} is simple by the sequence $0 \rightarrow \operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{E}\right) \rightarrow$ $\operatorname{Hom}(\mathcal{E}, \mathcal{E}) \rightarrow \operatorname{Hom}\left(\mathcal{I}_{Z_{1}}(F), \mathcal{E}\right)$.
(3) Assume we have a sequence

$$
0 \longrightarrow \mathcal{I}_{W_{1}}(G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{Z_{2}}\left(c_{1}-G\right) \longrightarrow 0
$$

where $2 G-c_{1} \equiv \xi$. As there are polarizations L_{1}, L_{2} with $L_{1} \xi<0<L_{2} \xi$, neither $c_{1}-F-G$ nor $F+G-c_{1}$ can be effective. Therefore the induced maps $\mathcal{I}_{W_{1}}(G) \rightarrow$ $\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{I}_{W_{2}}\left(c_{1}-G\right)$ are zero. So $\mathcal{I}_{W_{1}}(G) \rightarrow \mathcal{I}_{Z_{1}}(F)$ and $\mathcal{I}_{Z_{1}}(F) \rightarrow$ $\mathcal{I}_{W_{1}}(G)$ are injective and $F=G, W_{1}=Z_{1}$.

Definition 2.4. Let $E_{\xi}^{n, m}$ be the set of sheaves lying in nontrivial extensions (*) with $\operatorname{len}\left(Z_{1}\right)=n, \operatorname{len}\left(Z_{2}\right)=m$, where $m+n=c_{2}-\left(c_{1}^{2}-\xi^{2}\right) / 4$. By Lemma 2.3, $E_{\xi}^{n, m}$ is a subset of $S p l\left(c_{1}, c_{2}\right)$. We put $E_{\xi}=\bigcup_{n+m=c_{2}-\left(c_{1}^{2}-\xi^{2}\right) / 4} E_{\xi}^{n, m}$. By lemma 2.3 this is a disjoint union.

For the rest of sections 2 and 3 when writing L_{1}, L_{2} we will always assume that L_{1}, L_{2} are polarizations in chambers with W^{ξ} as common face and $\xi L_{1}<0<\xi L_{2}$.

Proposition 2.5. Let $\mathcal{E} \in E_{\xi}^{n, m}$. Then \mathcal{E} is L_{2}-slope unstable, and the following are equivalent:
(1) \mathcal{E} is not L_{1}-slope stable.
(2) \mathcal{E} is L-slope unstable with respect to any polarization $L \notin W^{\xi}$.
(3) The extension class of $(*)$ lies in the kernel of the natural map $\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-\right.\right.$ $\left.F), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{O}(F)\right)$.
(4) $\mathcal{E} \in E_{-\xi}^{n+m-r, r}$ for some $r<n$.

Proof. The L_{2}-slope unstability and the implications (4) $\Rightarrow(2) \Rightarrow(1)$ are obvious. $(1) \Rightarrow(4)$: Assume \mathcal{E} is not L_{1}-slope stable. Then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{I}_{W_{1}}(G) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_{2}}\left(c_{1}-G\right) \longrightarrow 0 \tag{**}
\end{equation*}
$$

with $L_{1} G \geq L_{1}\left(c_{1}-G\right)$. If the induced map $\mathcal{I}_{W_{1}}(G) \rightarrow \mathcal{I}_{Z_{1}}(F)$ was an injection, we would get the contradiction $L_{1} G \leq L_{1} F<L_{1}\left(c_{1}-F\right) \leq L_{1}\left(c_{1}-G\right)$. So $\mathcal{I}_{W_{1}}(G) \rightarrow$ $\mathcal{I}_{Z_{2}}\left(c_{1}-F\right)$ is an injection, and $c_{1}-F-G$ is effective. Assume $c_{1}-F-G$ is strictly
effective, and let L be a polarization with $L \xi=0$. Then $0<L\left(c_{1}-F-G\right)=L c_{1} / 2-L G$, so $L\left(2 G-c_{1}\right)<0 \leq L_{1}\left(2 G-c_{1}\right)$. By (**) we have $\left(2 G-c_{1}\right)^{2} \geq c_{1}^{2}-4 c_{2}$. By $L\left(2 G-c_{1}\right)<0 \leq\left(2 G-c_{1}\right) L_{1}$ there is a polarization M with $M\left(2 G-c_{1}\right)=0$. Thus by the Hodge index theorem and using $L\left(2 G-c_{1}\right)<0$, we get $\left(2 G-c_{1}\right)^{2}<0$. So $\eta \equiv 2 G-c_{1}$ defines a nonempty wall. As L_{1} does not lie on a wall, W^{η} lies strictly between L_{1} and L, a contradiction. So $G=c_{1}-F$, and we have a diagram

As $c_{1}-2 F$ is neither effective nor anti-effective, α and β are injective. As \mathcal{E} is simple, the vertical extension cannot be split. Furthermore $\operatorname{len}\left(Z_{1}\right)+\operatorname{len}\left(Z_{2}\right)=\operatorname{len}\left(W_{1}\right)+\operatorname{len}\left(W_{2}\right)$ and, by the injectivity of α (and the fact that (*) is not split), $\operatorname{len}\left(W_{2}\right)<\operatorname{len}\left(Z_{1}\right)$.
(4) $\Rightarrow(3)$: Let $\overline{\mathcal{E}}:=\left(\mathcal{E} \oplus \mathcal{I}_{W_{2}}(F)\right) / \mathcal{I}_{Z_{1}}(F)$ (the embedding $\mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{E} \oplus \mathcal{I}_{W_{2}}(F)$ is given by $(*)$ and the standard injection $\left.\mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{I}_{W_{2}}(F)\right)$. Then the projection $\mathcal{E} \rightarrow \mathcal{I}_{W_{2}}(F)$ and the identity on $\mathcal{I}_{W_{2}}(F)$ give a map $\overline{\mathcal{E}} \rightarrow \mathcal{I}_{W_{2}}(F)$ splitting the sequence

$$
0 \longrightarrow \mathcal{I}_{W_{2}}(F) \longrightarrow \overline{\mathcal{E}} \longrightarrow \mathcal{I}_{Z_{2}}\left(c_{1}-F\right) \longrightarrow 0
$$

induced from (*). Therefore the extension class of (*) lies in $\operatorname{ker}\left[\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-\right.\right.\right.$ $\left.\left.F), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{W_{2}}(F)\right)\right]$, and (3) follows.
$(3) \Rightarrow(4):$ Assume $(\mathcal{E} \oplus \mathcal{O}(F)) / \mathcal{I}_{Z_{1}}(F)=\mathcal{O}(F) \oplus \mathcal{I}_{Z_{2}}\left(c_{1}-F\right)$. Let $\mathcal{I}_{W_{2}}(F)$ and $\mathcal{I}_{W_{1}}\left(c_{1}-F\right)$ be image and kernel of the composition $\mathcal{E} \rightarrow \mathcal{O}(F) \oplus \mathcal{I}_{Z_{2}}\left(c_{1}-F\right) \rightarrow \mathcal{O}(F)$. Then

$$
0 \longrightarrow \mathcal{I}_{W_{1}}\left(c_{1}-F\right) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_{W_{2}}(F) \longrightarrow 0
$$

does not split because \mathcal{E} is simple.
Remark 2.6. Every $\mathcal{E} \in E_{\xi}^{0, m}$ (in particular each locally free sheaf in E_{ξ}) is L_{1}-slope stable and L_{2}-slope unstable. If $E_{\xi}^{n, m} \neq \emptyset$ for $n>0$, then $E_{\xi}^{n, m} \cap E_{\xi}^{n+m-r, r} \neq \emptyset$ for
each $r<n$. In particular there are $\mathcal{E} \in E_{\xi}^{n, m}$, which are L-slope unstable for every $L \notin W^{\xi}$. So prop. 2.5 shows an important difference between locally free sheaves and torsion free sheaves.

Proof. The first sentence is obvious. Let $\mathcal{E} \in E_{\xi}^{n, m}$ be given by an extension (*), where Z_{1} does not intersect Z_{2}. Let $Y_{1} \varsubsetneqq Z_{1}$ be a subscheme of length r. By the proof of proposition 2.5, $\mathcal{E} \in E_{\xi}^{n+m-r_{1} r}$ if the extension class of $(*)$ lies in $\operatorname{ker}\left[\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-\right.\right.\right.$ $\left.\left.F), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Y_{1}}(F)\right)\right]$ and not in $\operatorname{ker}\left[\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow\right.$ $\left.\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Y_{2}}(F)\right)\right]$ for any scheme Y_{2} with $Y_{1} \varsubsetneqq Y_{2} \varsubsetneqq Z_{1}$. By the sequence $0 \longrightarrow \mathcal{I}_{Z_{1}}(F) \longrightarrow \mathcal{I}_{Y_{i}}(F) \longrightarrow \mathcal{I}_{Y_{i} / Z_{1}}(F) \longrightarrow 0$ and the fact that $2 F-c_{1}$ is not effective these kernels are isomorphic to $\operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Y_{i} / Z_{1}}(F)\right) \simeq \mathbb{C}^{n-\operatorname{len}\left(Y_{i}\right)}$.

Definition 2.7. Let $V_{\xi}^{n, m} \subset E_{\xi}^{n, m}$ be the set of all torsion free sheaves \mathcal{E} sitting in extensions (*) whose extension class does not lie in $\operatorname{ker}\left[\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow\right.$ $\left.\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{W_{1}}(F)\right)\right]$. We put $V_{\xi}=\bigcup_{n+m=\left(4 c_{2}-c_{1}^{2}+\xi^{2}\right) / 4} V_{\xi}^{n, m}$.

Lemma 2.8. Assume ξ, η define the same wall and $V_{\xi}^{n, m} \cap V_{\eta}^{l, s} \neq \emptyset$. Then $\xi=\eta$ and $n=l$.

Proof. Let $\mathcal{E} \in V_{\xi}^{n, m} \cap V_{\eta}^{l, s}$. Let L be a polarization in a chamber having W^{ξ} as a face with $L \xi<0$. Then by proposition $2.5, \mathcal{E}$ is L-slope stable and therefore $\eta L<0$. \mathcal{E} fits into sequences $(*),(* *)$ with $\left(2 F-c_{1}\right) \equiv \xi,\left(2 G-c_{1}\right) \equiv \eta$. Then, as in the proof of ([Q3] prop. II.1.2.5), $c_{1}-F-G$ cannot be effective. Therefore the sequences $(*),(* *)$ induce injections $\mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{I}_{W_{1}}(G), \mathcal{I}_{W_{1}}(G) \rightarrow \mathcal{I}_{Z_{1}}(F)$.

Theorem 2.9.

(1) For L not on a wall, $M_{L}\left(c_{1}, c_{2}\right)$ only depends on the chamber of L, and $M_{L}\left(c_{1}, c_{2}\right) \backslash M_{L}^{s}\left(c_{1}, c_{2}\right)$ is independent of L.
(2) As subsets of $\operatorname{Spl}\left(c_{1}, c_{2}\right)$ we have a decomposition

$$
M_{L_{1}}^{s}\left(c_{1}, c_{2}\right)=\left(M_{L_{2}}^{s}\left(c_{1}, c_{2}\right) \backslash\left(\coprod_{\eta} \coprod_{n, m} V_{-\eta}^{n, m}\right)\right) \sqcup\left(\coprod_{\eta} \coprod_{n, m} V_{\eta}^{n, m}\right),
$$

where η runs over the classes in $N u m(S)$ with $\eta L_{1}<0$ defining the wall $W^{\eta}=$ W^{ξ} and $n+m=\left(4 c_{2}-c_{1}^{2}+\eta^{2}\right) / 4$. Furthermore $V_{\eta}^{n, m}=E_{\eta}^{n, m} \backslash E_{\eta}^{n, m} \cap E_{-\eta}$, $V_{-\eta}^{n, m}=E_{-\eta}^{n, m} \backslash E_{-\eta}^{n, m} \cap E_{\eta}$.

Proof. (1) and (2) follow from lemma 2.2. The decomposition follows from lemma 2.2, lemma 2.3 and proposition 2.5. Lemma 2.8 implies that the union is disjoint. The identity $V_{\eta}^{n, m}=E_{\eta}^{n, m} \backslash E_{\eta}^{n, m} \cap E_{-\eta}$ follows from proposition 2.5.

Remark 2.10. We see from theorem 2.9 and remark 2.6 that theorem 2.6 and corollary 2.7 of [Q2] are imprecise. With $S, L, L_{0}, \sigma, \zeta_{1}$ as in [Q2] the correct result for thm. 2.6 is $M_{L}\left(\sigma, c_{2}\right)=\left(M_{L_{0}}\left(\sigma, c_{2}\right) \backslash E_{-\zeta_{1}}^{0, \mathrm{t}}\right) \cup E_{\zeta_{1}}^{0,1} \sqcup\left(E_{\zeta_{1}}^{1,0} \backslash E_{-\zeta_{1}}^{1,0}\right)$.

Assume now that the Picard number $\rho(S)$ of S is at least 2.

Proposition 2.11.

(1) There is a integer k such that for each $c_{2}>k$ there exists a component M of Spl $\left(c_{1}, c_{2}\right)$ containing L_{1}-slope stable sheaves \mathcal{E} for L_{1} lying in one chamber and sheaves \mathcal{F} which are L-slope unstable for each L not lying on a wall.
(2) In particular for $c_{2}>k$ and c_{1} not divisible by 2 in $\operatorname{Num}(S), \operatorname{Spl}\left(c_{1}, c_{2}\right)$ is not separated.

Proof. (1) By $\rho(S) \geq 2$ we find $F \in \operatorname{Pic}(S)$ with $2 F-c_{1} \not \equiv 0$ and $\left(2 F-c_{1}\right) L=0$ for an ample divisor L. Let $\xi \equiv 2 F-c_{1}$, and $l:=\left(4 c_{2}-c_{1}^{2}+\xi^{2}\right) / 4$ and choose c_{2} big enough, such that $l \geq h^{0}\left(S, c_{1}-2 F+K_{S}\right)+2$. Then ξ defines a nonempty wall. Let $Z_{2} \in \operatorname{Hilb}^{l-1}(S)$, then $H^{1}\left(S, \mathcal{I}_{Z_{2}}\left(c_{1}+K_{S}-2 F\right)\right)=\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{O}(F)\right)^{*} \neq 0$ by the cohomology sequence of

$$
0 \rightarrow \mathcal{I}_{Z_{2}}\left(c_{1}+K_{S}-2 F\right) \rightarrow \mathcal{O}\left(c_{1}+K_{S}-2 F\right) \rightarrow \mathcal{O}_{Z_{2}}\left(c_{1}+K_{S}-2 F\right) \rightarrow 0
$$

Let $x \in S \backslash Z_{2}$. Applying $\operatorname{Hom}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \cdot\right)$ to $0 \rightarrow \mathcal{I}_{x}(F) \rightarrow \mathcal{O}(F) \rightarrow \mathcal{O}_{x}(F) \rightarrow 0$, we see that $\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), I_{x}(F)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{O}(F)\right)$ is surjective but not injective. Thus (1) follows by prop. 2.5 for M the component of $\operatorname{Spl}\left(c_{1}, c_{2}\right)$ containing $E_{\xi}^{1, l-1}$.
(2) If c_{1} is not divisible by 2 in $\operatorname{Num}(S), M_{L_{1}}^{s}\left(c_{1}, c_{2}\right)=M_{L_{1}}\left(c_{1}, c_{2}\right)$ is an open and projective subscheme of $\operatorname{Spl}\left(c_{1}, c_{2}\right)$, intersecting M; so if M were separated it would contain M, which contradicts (1).

3. The case of effective anticanonical divisor

Now let S be a surface with $-K_{S}$ effective. For a simple torsion free sheaf \mathcal{E} on S we have $\operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E})_{0}=0$, where the index 0 refers to the derived functor of the trace-free
homomorphisms. Thus $M_{L}^{*}\left(c_{1}, c_{2}\right)$ is smooth of dimension $4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$ or empty for each polarisation L.

Definition 3.1. Let $T_{n, m}:=\operatorname{Pic}^{0}(S) \times H i l b^{n}(S) \times H i l b^{n}(S)$ and let \mathcal{P} be the pullback of the Poincare line bundle from $S \times \operatorname{Pic}^{0}(S)$ to $S \times T_{n, m}$. Let $\mathcal{I}_{Z_{n}(S)}$ be the ideal sheaf of the universal subscheme $Z_{n}(S)$ in $S \times \operatorname{Hilb}^{n}(S)$. Let π, p_{S}, q_{1}, q_{2} be the projections of $S \times T_{n, m}$ to $T_{n, m}, S, S \times H i l b^{n}(S)$ and $S \times H i l b^{m}(S)$ respectively. Let $\mathcal{V}_{1}:=q_{1}^{*}\left(\mathcal{I}_{Z_{n}(S)}\right) \otimes$ $p_{S}^{*}(F) \otimes \mathcal{P}^{\otimes 2}$ and $\mathcal{V}_{2}:=q_{2}^{*}\left(\mathcal{I}_{Z_{m}(S)}\right) \otimes p_{S}^{*}\left(c_{1}-F\right)$. We put $\mathcal{E}_{\xi}^{n, m}:=\operatorname{Ext}_{\pi}^{1}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)$, where $\operatorname{Ext}_{\pi}^{i}\left(\mathcal{V}_{2}, \cdot\right)$ is the right derived functor of $\operatorname{Hom}_{\pi}\left(\mathcal{V}_{2}, \cdot\right):=\pi_{*} \mathcal{H o m}\left(\mathcal{V}_{2}, \cdot\right)$.

Lemma 3.2.

(1) There is an isomorphism $\operatorname{Ext}^{1}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right) \simeq H^{0}\left(S \times T_{n, m}, \mathcal{E}_{\xi}^{n, m}\right)$.
(2) $\mathcal{E}_{\xi}^{n, m}$ is locally free of rank $-\xi\left(\xi-K_{S}\right) / 2+n+m-\chi\left(\mathcal{O}_{S}\right)$.
(3) Over $S \times \mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right)$ we have a tautological extension

$$
0 \longrightarrow p^{*}\left(\mathcal{V}_{1}\right) \longrightarrow \mathcal{V} \longrightarrow p^{*}\left(\mathcal{V}_{2}\right) \otimes \mathcal{O}_{\mathbb{R}\left(\varepsilon_{\varepsilon}^{n, m}\right)}(-1) \longrightarrow 0
$$

where $p: S \times \mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right) \rightarrow S \times T_{n, m}$ is the projection, such that for each $t \in \mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right)$ the restriction to $S \times\{t\}$ is isomorphic to the extension corresponding to t.
(4) There is a natural bijective morphism $\nu_{\xi, n, m}: \mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right) \longrightarrow E_{\xi}^{n, m}$.

Proof. For $t \in T$ the fibres $\left(\mathcal{V}_{2}\right)_{t},\left(\mathcal{V}_{1}\right)_{t}$ are $\mathcal{I}_{Z_{2}}\left(c_{1}-G\right), \mathcal{I}_{Z_{1}}(G)$ for suitable $G \in \operatorname{Pic}(S)$ with $2 G-c_{1} \equiv \xi$. As $2 G-c_{1}$ is not effective, $\operatorname{Hom}\left(\left(\mathcal{V}_{2}\right)_{t},\left(\mathcal{V}_{1}\right)_{t}\right)=0$ and as $-K_{S}$ is effective and $c_{1}-2 G$ is not effective, $\operatorname{Ext}^{2}\left(\left(\mathcal{V}_{2}\right)_{t},\left(\mathcal{V}_{1}\right)_{t}\right)=0$ by Serre duality. So $\operatorname{Hom}_{\pi}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)=0, \operatorname{Ext}_{\pi}^{1}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)$ is locally free and its rank is given by Riemann Roch (prop. 1.1). (1) and (3) now follow from the degeneration of the spectral sequence $H^{i}\left(\operatorname{Ext}_{\pi}^{j}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)\right) \Rightarrow \operatorname{Ext}^{i+j}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)$ see $([\mathrm{H}-\mathrm{S}],[\mathrm{Q} 2],[\mathrm{OG}])$.
(4) By Kodaira classification surfaces S with $-K_{S}$ effective have torsion-free $H^{2}(S, \mathbb{Z})$. Therefore $N u m(S)=N S(S)$, and by (3) there is a natural surjective morphism $\nu_{\xi, n, m}: \mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right) \rightarrow E_{\xi}^{n, m}$. By lemma 2.3 it is also injective.

Remark 3.9. Let $u: T_{n, m} \rightarrow T_{0, m}$ be the projection. Then there is a natural map $\mathcal{E}_{\xi}^{n, m} \rightarrow u^{*}\left(\mathcal{E}_{\xi}^{0, m}\right)$ (which fibrewise is the natural map $\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{I}_{Z_{1}}(F)\right) \rightarrow$ $\operatorname{Ext}^{1}\left(\mathcal{I}_{Z_{2}}\left(c_{1}-F\right), \mathcal{O}(F)\right)$). It gives a section s of $u^{*}\left(\mathcal{E}_{\xi}^{0, m}\right) \otimes \mathcal{O}_{\mathbb{P}\left(\mathcal{E}_{\xi}^{n, m}\right)}(1)$ whose zero locus is $\nu_{\xi, n, m}^{-1}\left(E_{\xi}^{n, m} \cap E_{-\xi}\right)$ by proposition 2.5. In particular this is a closed subscheme.

Theorem 3.4.

(1) $e\left(M_{L_{1}}\left(c_{1}, c_{2}\right): x, y\right)=e\left(M_{L_{2}}\left(c_{1}, c_{2}\right): x, y\right)+((1-x)(1-y))^{q(S)}$

$$
\left(\sum_{\eta} h\left(H i l b^{\left[l_{\eta}\right]}(S \sqcup S): x, y\right)(x y)^{l_{\eta}-\eta\left(\eta+K_{s}\right) / 2-x\left(\mathcal{O}_{s}\right)} \frac{1-(x y)^{\eta K_{s}}}{1-x y}\right)
$$

where η runs over the classes in $N u m(S)$ determining the wall $W^{\eta}=W^{\xi}$ with $\eta L_{1}<0$ and $l_{\eta}:=\left(4 c_{2}-c_{1}^{2}+\eta^{2}\right) / 4$.
(2) If c_{1} is not divisible by 2 in $\operatorname{Num}(S)$ (or more generally if $M_{L_{1}}\left(c_{1}, c_{2}\right)$ and $M_{L_{2}}\left(c_{1}, c_{2}\right)$ are smooth $)$, then the same holds for $h\left(M_{L_{1}}\left(c_{1}, c_{2}\right): x, y\right)$ and $h\left(M_{L_{2}}\left(c_{1}, c_{2}\right): x, y\right)$ instead of $e\left(M_{L_{1}}\left(c_{1}, c_{2}\right): x, y\right)$ and $e\left(M_{L_{2}}\left(c_{1}, c_{2}\right): x, y\right)$.

Proof. If c_{1} is not divisible by 2 in $N u m(S)$, then for L not lying on a wall $M_{L}\left(c_{1}, c_{2}\right)=$ $M_{L}^{s}\left(c_{1}, c_{2}\right)$ is smooth and projective, so (2) follows from (1).

Property (2) of the virtual Hodge polynomials and thm. 2.9 give

$$
e\left(M_{L_{1}}\left(c_{1}, c_{2}\right): x, y\right)=e\left(M_{L_{0}}\left(c_{1}, c_{2}\right): x, y\right)+\sum_{\eta}\left(e\left(V_{\eta}: x, y\right)-e\left(V_{-\eta}: x, y\right)\right)
$$

By remark $3.3 E_{\eta} \cap E_{-\eta}$ is a closed subscheme of E_{η}, so

$$
\begin{aligned}
e\left(V_{\eta}: x, y\right) & -e\left(V_{-\eta}: x, y\right)-\left(e\left(E_{\eta}: x, y\right)-e\left(E_{-\eta}: x, y\right)\right) \\
& =e\left(E_{\eta} \cap E_{-\eta}: x, y\right)-e\left(E_{\eta} \cap E_{-\eta}: x, y\right)=0 .
\end{aligned}
$$

By lemma 2.3 $E_{\eta}=\coprod_{n+m=l_{\eta}} E_{\eta}^{n, m}$, and using also properties (2),(3) and (4) we get

$$
e\left(E_{\eta}^{n, m}: x, y\right)=h\left(E_{\eta}^{n, m}: x, y\right)=h\left(\operatorname{Pic}^{0}(S) \times \operatorname{Hilb}^{n}(S) \times \operatorname{Hilb}^{m}(S) \times \mathbb{P}_{w}: x, y\right)
$$

where $w+1=-\eta\left(\eta-K_{S}\right) / 2+l_{\eta}-\chi\left(\mathcal{O}_{S}\right)$ is the rank of $\operatorname{Ext}_{\pi}^{1}\left(\mathcal{V}_{2}, \mathcal{V}_{1}\right)$. We see that

$$
\sum_{n+m=l_{\eta}} h\left(\operatorname{Hilb}^{n}(S): x, y\right) h\left(\operatorname{Hilb}^{m}(S): x, y\right)=h\left(\operatorname{Hilb}^{l_{n}}(S \sqcup S): x, y\right)
$$

So (2) follows by thm 2.9 .
Corollary 3.5. If S is a $K 3$ surface or an abelian surface, and c_{1} is not divisible by 2 in $N S(S)$, then the Hodge numbers of $M_{L}\left(c_{1}, c_{2}\right)$ are independent of the polarization L as long as L does not lie on a wall.

Proof. As K_{S} is trivial in this case, this follows immediately from theorem 3.4.

4. Hodge numbers of moduli spaces of stable sheaves on ruled surfaces

Let S be a ruled surface with $-\Pi_{S}$ effective over a curve C of genus g with projection $p: S \longrightarrow C$. Let f be a fibre of p and σ the section with σ^{2} minimal. We put $e=-\sigma^{2}$; then $K_{S} \equiv-2 \sigma+(2 g-2-e) f$. Let $c_{1} \in \operatorname{Pic}(S)$ with $c_{1} \cdot f$ odd. By normalizing we assume in future that $c_{1} \equiv \sigma+\epsilon f$ with $\epsilon \in\{0,1\}$. We want to compute the Hodge numbers of $M_{L}\left(c_{1}, c_{2}\right)$ for a polarization L not lying on a wall. In the case $c_{1}=\sigma$ the Picard group $\operatorname{Pic}\left(M_{L}\left(c_{1}, c_{2}\right)\right)$ was determined in [Q2] and in the case $c_{1} f$ odd and $g=0$ it was determined in [Na .

Remark 4.1. It is well-known that $N S(S)$ is a free abelian group generated by the classes of σ and f. If $A \equiv \alpha \sigma+\beta f$ is an effective divisor, then $\alpha \geq 0, \beta \geq 0$ if $e \geq 0$ and $-e \alpha+2 \beta \geq 0$ if $e<0$. So the effectiveness of $-K_{S}$ implies $e \geq 0$ and $2 g-2 \leq e$ or $g=-e=1$ (see [Q2]).

For $L \equiv \alpha \sigma+\beta f$ we put $r_{L}=\beta / \alpha$ following [Q2]. Then L is ample if and only if $\alpha>0$ and $r_{L}>e$ in case $e \geq 0$ or $\alpha>0$ and $r_{L}>e / 2$ in case $e<0$. We also see that $L \cdot M=0$ if and only if $r_{L}+r_{M}=e$.

Remark 4.2. A wall of type $\left(c_{1}, c_{2}\right)$ is W^{ξ} for $\xi \equiv(2 \alpha+1) \sigma+(2 \beta+\epsilon) f$, where α and β are integers such that $-4 c_{2}+c_{1}^{2} \leq \xi^{2}<0$. We can assume that $\alpha \geq 0$; then this is equivalent to
(1) $\beta<0$ if $e \geq 0,-(2 \beta+\epsilon)>\alpha+1 / 2$ if $e<0$ (and therefore $e=-1$).
(2) $l_{\alpha, \beta}:=c_{2}-\alpha(\alpha+1) e+(2 \alpha+1) \beta+\alpha \epsilon \geq 0$.

Lemma 4.3. (see [Q2] prop.2.3) $M_{L}\left(c_{1}, c_{2}\right)=\emptyset$ for $r_{L}>2 c_{2}+e-\epsilon$.
Theorem 4.4. Let L be a polarization not lying on a wall; let

$$
\begin{aligned}
W(L) & :=\left\{(\alpha, \beta) \in \mathbb{Z}^{2} \mid \alpha \geq 0, e-r_{L}>\frac{2 \beta+\epsilon}{2 \alpha+1}\right\} \\
f_{L}(x, y, t):= & \sum_{(\alpha, \beta) \in W(L)}\left((x y)^{\alpha\left((2 \alpha+1) e-4 \beta-2 \epsilon+2 \chi\left(\mathcal{O}_{S}\right)\right)}\right. \\
& \left.-(x y)^{\left.(\alpha+1)(2 \alpha+1) e-4 \beta-2 \epsilon-2 \chi\left(\mathcal{O}_{s}\right)\right)}\right) t^{\left(\alpha^{2}+\alpha\right) e-(2 \alpha+1) \beta-\epsilon \alpha} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{m} h\left(M_{L}\left(c_{1}, m\right) t^{m}=\right. & \frac{f_{L, c_{1}}(x, y, t)}{(1-x)^{g}(1-y)^{g}(1-x y)} \\
& \cdot \prod_{k>0} \frac{\left(1-x^{2 k-2} y^{2 k-1} t^{k}\right)^{2 g}\left(1-x^{2 k-1} y^{2 k-2} t^{k}\right)^{2 g}}{\left(1-x^{2 k-1} y^{2 k-1} t^{k}\right)^{2}\left(1-x^{2 k} y^{2 k} t^{k}\right)^{2}\left(1-x^{2 k+1} y^{2 k+1} t^{k}\right)^{2}}
\end{aligned}
$$

Proof. As $M_{L_{0}}\left(c_{1}, c_{2}\right)=\emptyset$ for $r_{L_{0}}>2 c_{2}+e-\epsilon$, we can compute $h\left(M_{L}\left(c_{1}, c_{2}\right): x, y\right)$ by summing up the changes for all walls betweem L_{0} and L, i.e. for all $\xi:=(2 \alpha+1) \sigma+$ $(2 \beta+\epsilon) f$ with $\alpha>0, e-r_{L}>\frac{2 \beta+\epsilon}{2 \alpha+1} \geq-2 c_{2}+\epsilon$ and $l_{\alpha, \beta} \geq 0$.

We first want to see that $l_{\alpha, \beta} \geq 0$ implies $2 \beta+\epsilon \geq\left(-2 c_{2}+\epsilon\right)(2 \alpha+1)$. Using

$$
2 \beta+\epsilon \leq \begin{cases}-1 & \text { if } e \geq 0 \\ -(\alpha+1) & \text { if } e=-1\end{cases}
$$

(see remark 4.1), $l_{\alpha, \beta} \geq 0$ implies $c_{2}>0$. Now assume $2 \beta+\epsilon<\left(-2 c_{2}+\epsilon\right)(2 \alpha+1)$. If $\alpha=$ 0 , then $l_{\alpha, \beta} \leq c_{2}+\beta<0$; and if $\alpha>0$, then $l_{\alpha, \beta}<c_{2}-\alpha(\alpha+1) e-\alpha(2 \alpha+1)\left(2 c_{2}-\epsilon\right)+\beta$, and by $c_{2} \geq 1, \beta<0, e \geq-1$ this is <0. By

$$
\begin{aligned}
& -\xi\left(\xi+K_{S}\right)-\chi\left(\mathcal{O}_{S}\right)=\alpha\left((2 \alpha+1) e-(4 \beta+2 \epsilon)+2 \chi\left(\mathcal{O}_{S}\right)\right) \\
& -\xi\left(\xi-K_{S}\right)-\chi\left(\mathcal{O}_{S}\right)=(\alpha+1)\left((2 \alpha+1) e-(4 \beta+2 \epsilon)-2 \chi\left(\mathcal{O}_{S}\right)\right)
\end{aligned}
$$

theorem 3.4 and remark 4.2 we get

$$
\begin{aligned}
& h\left(M_{L}\left(c_{1}, c_{2}\right): x, y\right)=\frac{(1-x)^{g}(1-y)^{g}}{1-x y} \sum_{(\alpha, \beta)}\left((x y)^{\alpha\left((2 \alpha+1) c-4 \beta-2 \epsilon+2 \chi\left(\mathcal{O}_{s}\right)\right)}\right. \\
& \left.\quad-(x y)^{(\alpha+1)\left((2 \alpha+1) e-4 \beta-2 \epsilon-2 \chi\left(\mathcal{O}_{s}\right)\right)}\right) h\left(H i l b^{\left[l_{\alpha, \beta}\right]}(S \sqcup S): x, y\right)(x y)^{l_{\alpha, \beta}}
\end{aligned}
$$

where (α, β) runs over the set $\left\{(\alpha, \beta) \in W(L) \mid l_{\alpha \beta} \geq 0\right\}$.
By rem. 4.2(2) we can express c_{2} in terms of $\alpha, \beta, l_{\alpha, \beta}$ and see that, given $(\alpha, \beta) \in$ $W(L)$, letting c_{2} run through all possible values is equivalent to letting $l_{\alpha, \beta}$ run through all nonnegative integers. Finally we use the formula

$$
\begin{aligned}
& \sum_{m \geq 0} h\left(H i l b^{m}(S \sqcup S): x, y\right)(x y t)^{m}=\left(\sum_{n \geq 0} h\left(H i l b^{n}(S): x, y\right)(x y t)^{n}\right)^{2} \\
&=\prod_{k>0} \frac{\left(1-x^{2 k-1} y^{2 k} t^{k}\right)^{2 g}\left(1-x^{2 k} y^{2 k-1} t^{k}\right)^{2 g}}{\left(1-x^{2 k-1} y^{2 k-1} t^{k}\right)^{2}\left(1-x^{2 k} y^{2 k} t^{k}\right)^{2}\left(1-x^{2 k+2} y^{2 k+2} t^{k}\right)^{2}}
\end{aligned}
$$

Unfortunately the formula for the Hodge numbers of $M_{L}\left(c_{1}, c_{1}\right)$ is not very simple. However it turns out that for c_{2} large enough about the first $3 / 8$ of the Hodge numbers are independent of L and given by a quite simple formula.

Theorem 4.5.

$$
h\left(M_{L}\left(c_{1}, c_{2}\right): x, y\right) \equiv \frac{1-x y}{(1-x)^{g}(1-y)^{g}} \prod_{k \geq 1} \frac{\left(1-x^{2 k-2} y^{2 k-1}\right)^{2 g}\left(1-x^{2 k-1} y^{2 k-2}\right)^{2 g}}{\left(1-x^{k} y^{k}\right)^{4}}
$$

modulo $(x y)^{c_{2}-w}$, where

$$
w= \begin{cases}{\left[1 /\left(2 r_{L}\right)+1\right]} & \text { if } S=\mathbb{P}_{1} \times \mathbb{P}_{1}, \epsilon=1 \text { and } r_{L} \leq 1 / 3 \\ {\left[r_{L}+\epsilon-e / 2\right]} & \text { otherwise },\end{cases}
$$

and $[a]$ denotes the largest integer $\leq a$.
Proof. Let f_{m} be the coefficient of t^{m} in $f_{L}(x, y, t)$.
Claim: $f_{m} \equiv 1$ modulo $(x y)^{m-w}$.
Proof of the Claim: Let $(\alpha, \beta) \in W(L)$. For $\alpha=0$ we get

$$
(x y)^{\alpha\left((2 \alpha+1) e-4 \beta-2 \epsilon+2 \chi\left(\mathcal{O}_{s}\right)\right)} t^{\left(\alpha^{2}+\alpha\right) e-(2 \alpha+1) \beta-\epsilon \alpha}=t^{-\beta}
$$

where $-\beta$ can run over all integers bigger then $r_{L}+\epsilon-e / 2$. Therefore by thm. 4.4 it is enough to prove
(1) If $\alpha>0$ then $g_{1}(\alpha, \beta):=\alpha^{2} e-(2 \alpha-1) \beta-\alpha \epsilon+2 \alpha \chi\left(\mathcal{O}_{S}\right) \geq-w$,
(2) $g_{2}(\alpha, \beta):=(\alpha+1)^{2} e-(2 \alpha+3) \beta-(\alpha+2) \epsilon-(2 \alpha+2) \chi\left(\mathcal{O}_{S}\right) \geq-w$.
(1) If $e \geq 0$, then $e \geq-2 \chi\left(\mathcal{O}_{S}\right)$ (rem. 4.1), therefore $g_{1}(\alpha, \beta) \geq-(2 \alpha-1) \beta-\alpha \epsilon>0$. If $e<0$, then $e=-1, \chi\left(\mathcal{O}_{S}\right)=0$ and $-2 \beta \geq(\alpha+1)+\epsilon$, therefore

$$
g_{1}(\alpha, \beta) \geq-\alpha^{2}+(\alpha-1 / 2)(\alpha+1)-\epsilon / 2>-1
$$

(2) If $e>0$ or $\chi\left(\mathcal{O}_{S}\right) \geq 0$ or $\epsilon=0$, then

$$
g_{2}(\alpha, \beta) \geq(\alpha+1)^{2} e+(2 \alpha+3)-(\alpha+2) \epsilon-(2 \alpha+2) \chi\left(\mathcal{O}_{S}\right) \geq 0
$$

If $e=-1$, then $g_{2}(\alpha, \beta) \geq-(\alpha+1)^{2}+(\alpha+3 / 2)(\alpha+1)-\epsilon / 2 \geq 0$. If $e=0$ and $\chi\left(\mathcal{O}_{S}\right)=-1$ and $\epsilon=1$, then $g_{2}(\alpha, \beta)=-(2 \alpha+3) \beta-(3 \alpha+4)$. So if $\beta<-1$, then $g_{2}(\alpha, \beta)>0$, and if $\beta=-1$, then $g_{2}(\alpha, \beta)=-(\alpha+1)$ and $r_{L}=1 /(2 \alpha+1)$. So the claim follows.

By thm. $4.4 h\left(M_{L}\left(c_{1}, c_{2}\right): x, y\right)$ is the coefficient of $t^{c_{2}}$ of $k(x, y, x y t) f_{L}(x, y, t)$, for a power series $k(x, y, z)=\sum k_{n}(x, y) z^{n}$. So we get

$$
\begin{aligned}
h\left(M_{L}\left(c_{1}, c_{2}\right): x, y\right) & =\sum_{m \leq c_{2}} f_{c_{2}-m} k_{m}(x, y)(x y)^{m} \\
& \equiv \sum_{m \leq c_{2}}(x y)^{m} k_{m}(x, y) \text { modulo }(x y)^{c_{2}-w} \\
& \equiv k(x, y, x y) \text { modulo }(x y)^{c_{2}+1} .
\end{aligned}
$$

So we obtain our result by replacing $f_{L}(x, y)$ by 1 , putting $t=1$ in the formula of thm. 4.4 and an easy calculation.

Instead of fixing the determinant $\operatorname{det}(\mathcal{E})$ we can also consider $M_{L}\left(C_{1}, c_{2}\right)$ the moduli space of torsion free sheaves with topological first Chern class $C_{1} \in N S(S)$. For ξ determining a wall of type $\left(c_{1}, c_{2}\right)$ (where the cohomology class of c_{1} is C_{1}) let $\widetilde{E}_{\xi}^{n, m}$ be the set of sheaves lying in extensions

$$
0 \rightarrow \mathcal{I}_{Z_{1}}(F) \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z_{2}}\left(c_{1}-G\right) \rightarrow 0
$$

with $\operatorname{len}\left(Z_{1}\right)=n, \operatorname{len}\left(Z_{2}\right)=m, F+G-c_{1} \equiv \xi$ and $F-G \equiv 0$ and let $\widetilde{V}_{\xi}^{n, m}$ be the subset of $\widetilde{E}_{\xi}^{n, m}$ where $(\mathcal{E} \oplus \mathcal{O}(F)) / \mathcal{I}_{Z_{1}}(F) \neq \mathcal{O}(F) \oplus \mathcal{I}_{Z_{2}}\left(c_{1}-G\right)$. Then, after making the obvious changes, the results of chapters 2 and 3 all hold with $M_{L}\left(c_{1}, c_{2}\right), E_{\xi}^{n, m}$ and $V_{\xi}^{n, m}$ replaced by $M_{L}\left(C_{1}, c_{2}\right), \widetilde{E}_{\xi}^{n, m}$ and $\widetilde{V}_{\xi}^{n, m}$. In the modification of lemma 3.2 $\widetilde{E}_{\xi}^{n, m}$ is bijective to a projective bundle over $\operatorname{Pic}^{0}(S) \times \operatorname{Pic}^{0}(S) \times H i l b^{n}(S) \times H i l b^{m}(S)$, and therefore in thm 3.4 the factor $((1-x)(1-y))^{q(S)}$ is replaced by $((1-x)(1-y))^{2 q(S)}$. So the formulas of thm. 4.4 and thm. 4.5 hold for $M_{L}\left(C_{1}, c_{2}\right)$ without the factor $(1-x)^{g}(1-y)^{g}$ in the denominator.

By [E-S2] and [B] under the assumptions of thm 4.4 the cohomology ring $H^{*}\left(M_{L}\left(C_{1}, c_{2}\right), \mathbb{Q}\right)$ is generated by the Künneth components $c_{i}(\mathcal{F}) / 1, c_{i}(\mathcal{F}) / f, c_{i}(\mathcal{F}) / \sigma$, $c_{i}(\mathcal{F}) / p t$ of the Chern classes of any universal sheaf \mathcal{F} over $S \times M_{L}\left(C_{1}, c_{2}\right)(p t$ is the class of a point). If M is the pullback of a line bundle on $M_{L}\left(C_{1}, c_{2}\right)$, then also $\mathcal{F} \otimes M$ is a universal sheaf, and its Künneth components generate $H^{*}\left(M_{L}\left(C_{1}, c_{2}\right), \mathbb{Q}\right)$. So $c_{1}(\mathcal{F}) / 1$ lies in the space generated by $c_{1}(\mathcal{F}) / 1+2 c_{1}(M), c_{2}(\mathcal{F}) / \sigma+c_{1}(M), c_{2}(\mathcal{F}) / f+c_{1}(M)$, $c_{3}(\mathcal{F}) / p t$ for all $M \in \operatorname{Pic}\left(M_{L}\left(c_{1}, c_{2}\right)\right)$, and thus for all $M \in \operatorname{Pic}\left(M_{L}\left(c_{1}, c_{2}\right)\right) \otimes \mathbb{Q}$. So we can put $M=-\frac{1}{2}(\operatorname{det}(\mathcal{F}) / 1)$ and see that the generator $c_{1}(\mathcal{F}) / 1$ is redundant. Then thm. 4.5 can be reformulated:

Corollary 4.6. There is no relation between the (graded commutative) generators $c_{j_{1}}(\mathcal{F}) / 1, c_{j_{2}}(\mathcal{F}) / f, c_{j_{3}}(\mathcal{F}) / \sigma, c_{j_{4}}(\mathcal{F}) / p t\left(j_{i} \geq 2\right.$ for $\left.i=1, \ldots, 4\right)$ in dimension lower then $2 c_{2}-2 w$

References

[B] Beauville, A., Sur la cohomologie de certaines espaces de modules de fibrés vectoriels, Bombay Conference "Geometry and Analysis", submitted.
[Ch] Cheah, J., The Hodge numbers of smooth nests of Hilbert schemes of points on a smooth projective surface, preprint (1993).
[D-K] Danilov, V.I., Khovanskii, A.G., Newton polyhedra and an algorithrn for computing HodgeDeligne numbers, Math. USSR Izvestiya 29 no. 2, 279-298 (1987).
[De] Deligne, P., Théorie de Hodge III, Inst. Hautes Et. Sci. Publ. Math. 44, 5-77 (1974).
[E-S1] Ellingsrud, G., Strømme S.A., On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87, 343-352 (1987).
[E-S2] Ellingsrud, G., Strømme S.A., Towards the Chow ring of the Hilbert scheme of \mathbb{P}^{2}, J. reine angew. Math. 441, 33-44 (1993).
[Gi] Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. Math. 106, 45-60 (1977).
[Göl] Göttsche, L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286, 193-207 (1990).
[Gö2] Göttsche, L., Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lect. Notes Math. vol. 1572, Berlin Heidelberg New York: Springer 1993.
[G-S] Göttsche, L., Soergel, W., Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296, 235-245 (1993).
[H-S] Hoppe, H.S. ,Spindler H., Modulräume stabiler 2-Bündel auf Regelfächen, Math. Ann. 249, 127-140 (1980).
[K-O] Kosarew, S., Okonek, C., Global moduli spaces and simple holomorphic bundles, Publ. R.I.M.S., Kyoto Univ. 25, 1-19 (1989).
[M1] Maruyama, M., Moduli of stable sheaves I, J. Math. Kyoto Univ. 17, 91-126 (1977).
[M2] Maruyama, M., Moduli of stable sheaves I, J. Math. Kyoto Univ. 18, 557-614 (1978).
[Mu1] Mukai, S., Simplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77, 101-116 (1984).
[Mu2] Mukai, S., On the moduli space of bundles on K3 surfaces I, Vector bundles on Algebraic varieties, Proc. Bombay 1984, Oxford U. Press, pp. 241-413 (1987).
$[\mathrm{Na}]$ Nakashima, T, On the moduli space of stable vector bundles on a Hirzebruch surface, Math. Z. 212, 211-222 (1993).
[No] Norton, V.A., Analytic moduli of complex vector bundles, Indiana Univ. Math. J. 28, 365-387 (1979).
[OG] O'Grady, K., Relations among Donaldson polynomials of certain algebraic surfaces, preprint (1993).
[Q1] Qin, Z., Modulo of stable rank-2 bundles on ruled surfaces, Invent. math. 110, 615-626 (1992).
[Q2] Qin, Z., Moduli of stable sheaves on ruled surfaces and their Picard groups, J. reine angew. Math. 433, 201-219 (1992).
[Q3] Qin, Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Diff. Geom. 37, 397-413 (1993).

