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Abstract. We consider all the transcendental meromorphic functions from the class S
whose Julia set is a Jordan curve. We show that then the Julia set is either a straight line

or its Hausdorff dimension is strictly larger than 1.

1. Introduction

Suppose f : C→ Ĉ is a meromorphic function and that f is a Jordan curve. In 1919 Fatou
proved in [3] that if f is rational then either it is a circle/line or it has no tangents on a dense
subset. Later on it has been proved ([2], [9], comp. [8]) that the second alternative in the
hyperbolic case is much stronger: the Hausdorff dimension of J(f) is strictly larger than 1
(thus by the topological exactness every non-empty open subset of J(f) has Hausdorff dimen-
sion larger that 1. The case when parabolic point is allowed was covered in [10]. Relaxing
the Jordan curve hypothesis further results have been obtained in [8], [10], [11] and [4]. All
of this in the rational case. In the landscape of transcendental functions an analogous result
have been proved in [5]. For the class S it gives our result under additional assumption that
there are no rationally indifferent periodic points. In the current paper we prove the straight
line/fractal dichotomy in its fullest strength for the whole class S. We do not consider cases.
We do not use either any knowledge about the dynamics of inner functions. Instead, we
associate to our transcendental map a conformal iterated function system, in the sense of [6]
and [7], and apply the results proved there. Beyond the class S the theorem in general fails.
D. Hamilton in [4] has constructed meromorphic functions that are not in the class B, whose
Julia sets are rectifiable Jordan curves, but do not form straight lines.

Acknowledgment: I am very indebted to Walter Bergweiler for stimulating and encouraging
discussions about the subject of this paper.

2. The Theorem

Theorem 2.1. Suppose f : C → Ĉ is a transcendental meromorphic function in class S. If
the Julia set J(f) of f is a Jordan curve, then it is either a straight line or its Hausdorff
dimension is strictly larger than 1.
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Proof. Let A0 and A1 be the two connected components of Ĉ \ J(f). Since our function
is in the class S for each i = 0, 1 there exists ai ∈ Ai \ {∞} such that f2(ai) = ai and
either ai is an attracting fixed point for f2 or ai is a rationally indifferent fixed point for f2

and Ai is its basin of immediate attraction. In order to work with Euclidean derivatives we
change the system of coordinates by a Möbius transformation so that ∞ is sent to a finite
point and, moreover, the image of the whole Julia set is contained in the complex plane C.
If one of the points a0 or a1 is a parabolic point, denote it by ω. Otherwise, let ω be an
arbitrary periodic point in J(f). Let A be one (arbitrary) of the sets A0 or A1. Replaceing
f by its sufficiently high iterate, we may assume without loss of generality that f(ω) = ω
and f(A) = A. For every k ≥ 1 denote by γ̂k the only arc in J(f) containing ω and with
endpoints in f−k(ω) \ {ω}. Fix k ≥ 1 so large that

(2.1)
∞⋂
j=0

f−j(γ̂k) = {ω}.

Set
γ = J(f) \ γ̂k.

It follows from our assumptions and Theorem (ii) in [1] that there exists a closed topological
disk X contained in C with the following properties:

(a) γ ⊂ X
(b) The boundary of X is a piecewise smooth Jordan curve without cusps containing both

endpoints of γ.
(c) There exists an open simply connected set V disjoint from the postcritical set of f .
(d) If f−n∗ is a holomorphic inverse branch of fn defined on V such that f−n∗ (X)∩IntX 6=
∅, then f−n∗ (X) ⊂ X and f−n∗ (V ) ⊂ V .

We now form an iterated function system in the sense of [7]. It is defined to consist of all
holomorphic inverse branches f−n∗ : V → C such that f−n∗ (X)∩ IntX 6= ∅ and fk(f−n∗ (X))∩
IntX 6= ∅ for all k = 1, 2, . . . , n−1. We parameterize all such inverse branches by a countable
alphabet I and denote them by φi, i ∈ I. It follows immediately from this definition that
φi(IntX) ∩ φj(IntX) = ∅ whenever i 6= j. Along with properties (a)-(d) this implies that
S = {φi : X → X}i∈I is a conformal iterated function system in the sense of [7]. Let J∗ be
the limit set of S. Using (2.1) note that

J∗ = γ \
∞⋃
n=0

f−n({ω} ∪ E),

where E is the countable set of essential singularities of f (for original f the set E is a
singleton, say e, but for an iterate fk, the entire set {e}∪f−1({e})∪f−2({e})∪ . . . f−(k−1)(e)
consists of essential singularities of fk). In particular

HD(J∗) = HD(γ) = HD(J(f) := h.

Now suppose that HD(J(f) = 1. So, HD(J∗) = 1, and it follows from Theorem 4.5.1 and
Theorem 4.5.11 in [7] that H1(J∗) < +∞. Since H1(J∗) = H1(γ) > 0, it follows from
Theorem 4.5.10 in [7] (with d = 1 and X replaced by γ) that m := (H1(γ))−1H1|γ is a
1-conformal measure for the system S, meaning that

m(φi(A) =
∫
A

|φ′i|dm
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for every Borel set A ⊂ γ and
m(φi(γ) ∩ φj(γ)) = 0

whenever i 6= j. Theorem 4.4.7 in [7] yields then (it is in fact much stronger than we need)
the existence of a unique Borel probability measure µ on γ with the following properties:

(e) µ(J∗) = 1,
(f) µ and m are equivalent with positive and continuous Radon-Nikodym derivatives.
(g) (invariance) For every Borel set A ⊂ γ,

∑
i∈I µ(φi(A)) = µ(A).

Now consider two Riemann mappings R0 : D1 → A0 and R1 : Ĉ \ D1 → {A1} such that
R0(1) = R1(1) = ω (since J(f) is a Jordan curve, R0 and R1 are uniquely defined respectively
on the on closed disks D1 and Ĉ\D1 due to Caratheodeory’s theorem). Define two continuous
maps

g0 := R−1
0 ◦ f ◦R0 : D1 \R−1

0 (E)→ D1 and g1 := R−1
1 ◦ f ◦R1 : (Ĉ \D1) \R−1

1 (E)→ Ĉ \D1.

Thus, the Schwartz Reflection Principle allows us to extend g0 and g1 respectively to C \
R−1

0 (E) and C \R−1
1 (E). Then the iterated function system S lifts up to the two respective

systems S0 = {φ0
i }i∈I and S1 = {φ1

i }i∈I formed by respective inverse branches of iterates
of g0 and g1. Fix j ∈ {0, 1}. Note that the normalized Lebesgue measure λj on R−1

j (γ) is
a conformal measure for the system Sj . Again, by Theorem 4.4.7 in [7], this system has a
unique invariant measure µj equivalent to λj . But µ ◦ Rj is also Sj-invariant and, by Riesz
Theorem, is equivalent to λj . Thus, µj = µ ◦Rj . Hence,

(2.2) µ1 = µ ◦R1 = µ ◦R0 ◦ (R−1
0 ◦R1) = µ0 ◦R−1

0 ◦R1 = µ0 ◦ (R−1
1 ◦R0)−1.

For evry z ∈ S1 put

Dj(z) =
dµi
dλ

(z).

In view of Theorem 6.1.3 from [7] the function z 7→ Dj(z) has a real-analytic extension onto
a neighborhood of R−1

j (γ) in C. Let

Fj(z) =
∫ z

1

Dj(t)dλ(t),

where the integration is taken along the unit circle arc from 1 to z against the Lebesgue
measure λ on S1. Formula (2.2) and R−1

1 ◦R0(1) = 1 then give for every z ∈ R−1
1 (γ) that

F0(z) = F1(R−1
1 ◦R0(z)).

Since both functions F1 and F0 are invertible (as Dj is positive on R−1
j (γ)), we conclude that

R−1
1 ◦R0 = F−1

1 ◦F0 is real analytic on R−1
0 (γ). Thus, R−1

1 ◦R0 has a holomorphic extension
ψ on an open neighborhood U of R−1

0 (γ) in C. The formula

T (z) =

{
R0(z) if z ∈ D1 ∩ U

if z ∈ (Ĉ \ D1) ∩ U

thus defines a holomorphic map from U into C mapping R−1
0 (γ) onto γ. Therefore, γ is a

real-analytic curve, and topological exactness of f : J(f)→ J(f) implies that J(f) itself is a
real-analytic curve. So, by the Schwartz Reflection Principle R0 extends to an entire bijective
map of C onto C. Thus, R0 is an affine map (z 7→ az + b), and J(f) = R0(S1) is a geometric
circle. We are done. �
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Note that because of Theorem in [1] (where the hypothesis of having two completely invariant
domains can be weakened by requiring that the second iterate has two completely invariant
domains) our assumption that the Julia set J(f) is a Jordan curve is equivalent to require
that f2 has two completely invariant domains.
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