# GEOMETRIC RIGIDITY FOR THE CLASS $\mathcal{S}$ <br> OF <br> TRANSCENDENTAL MEROMORPHIC FUNCTIONS 

MARIUSZ URBAŃSKI


#### Abstract

We consider all the transcendental meromorphic functions from the class $\mathcal{S}$ whose Julia set is a Jordan curve. We show that then the Julia set is either a straight line or its Hausdorff dimension is strictly larger than 1.


## 1. Introduction

Suppose $f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ is a meromorphic function and that $f$ is a Jordan curve. In 1919 Fatou proved in [3] that if $f$ is rational then either it is a circle/line or it has no tangents on a dense subset. Later on it has been proved ([2], [9], comp. [8]) that the second alternative in the hyperbolic case is much stronger: the Hausdorff dimension of $J(f)$ is strictly larger than 1 (thus by the topological exactness every non-empty open subset of $J(f)$ has Hausdorff dimension larger that 1. The case when parabolic point is allowed was covered in [10]. Relaxing the Jordan curve hypothesis further results have been obtained in [8], [10], [11] and [4]. All of this in the rational case. In the landscape of transcendental functions an analogous result have been proved in [5]. For the class $\mathcal{S}$ it gives our result under additional assumption that there are no rationally indifferent periodic points. In the current paper we prove the straight line/fractal dichotomy in its fullest strength for the whole class $\mathcal{S}$. We do not consider cases. We do not use either any knowledge about the dynamics of inner functions. Instead, we associate to our transcendental map a conformal iterated function system, in the sense of [6] and $[7]$, and apply the results proved there. Beyond the class $\mathcal{S}$ the theorem in general fails. D. Hamilton in [4] has constructed meromorphic functions that are not in the class $\mathcal{B}$, whose Julia sets are rectifiable Jordan curves, but do not form straight lines.

Acknowledgment: I am very indebted to Walter Bergweiler for stimulating and encouraging discussions about the subject of this paper.

## 2. The Theorem

Theorem 2.1. Suppose $f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ is a transcendental meromorphic function in class $\mathcal{S}$. If the Julia set $J(f)$ of $f$ is a Jordan curve, then it is either a straight line or its Hausdorff dimension is strictly larger than 1.

[^0]Proof. Let $A_{0}$ and $A_{1}$ be the two connected components of $\widehat{\mathbb{C}} \backslash J(f)$. Since our function is in the class $\mathcal{S}$ for each $i=0,1$ there exists $a_{i} \in \bar{A}_{i} \backslash\{\infty\}$ such that $f^{2}\left(a_{i}\right)=a_{i}$ and either $a_{i}$ is an attracting fixed point for $f^{2}$ or $a_{i}$ is a rationally indifferent fixed point for $f^{2}$ and $A_{i}$ is its basin of immediate attraction. In order to work with Euclidean derivatives we change the system of coordinates by a Möbius transformation so that $\infty$ is sent to a finite point and, moreover, the image of the whole Julia set is contained in the complex plane $\mathbb{C}$. If one of the points $a_{0}$ or $a_{1}$ is a parabolic point, denote it by $\omega$. Otherwise, let $\omega$ be an arbitrary periodic point in $J(f)$. Let $A$ be one (arbitrary) of the sets $A_{0}$ or $A_{1}$. Replaceing $f$ by its sufficiently high iterate, we may assume without loss of generality that $f(\omega)=\omega$ and $f(A)=A$. For every $k \geq 1$ denote by $\hat{\gamma}_{k}$ the only arc in $J(f)$ containing $\omega$ and with endpoints in $f^{-k}(\omega) \backslash\{\omega\}$. Fix $k \geq 1$ so large that

$$
\begin{equation*}
\bigcap_{j=0}^{\infty} f^{-j}\left(\hat{\gamma}_{k}\right)=\{\omega\} . \tag{2.1}
\end{equation*}
$$

Set

$$
\gamma=\overline{J(f) \backslash \hat{\gamma}_{k}}
$$

It follows from our assumptions and Theorem (ii) in [1] that there exists a closed topological disk $X$ contained in $\mathbb{C}$ with the following properties:
(a) $\gamma \subset X$
(b) The boundary of $X$ is a piecewise smooth Jordan curve without cusps containing both endpoints of $\gamma$.
(c) There exists an open simply connected set $V$ disjoint from the postcritical set of $f$.
(d) If $f_{*}^{-n}$ is a holomorphic inverse branch of $f^{n}$ defined on $V$ such that $f_{*}^{-n}(X) \cap \operatorname{Int} X \neq$ $\emptyset$, then $f_{*}^{-n}(X) \subset X$ and $f_{*}^{-n}(V) \subset V$.
We now form an iterated function system in the sense of [7]. It is defined to consist of all holomorphic inverse branches $f_{*}^{-n}: V \rightarrow \mathbb{C}$ such that $f_{*}^{-n}(X) \cap \operatorname{Int} X \neq \emptyset$ and $f^{k}\left(f_{*}^{-n}(X)\right) \cap$ $\operatorname{Int} X \neq \emptyset$ for all $k=1,2, \ldots, n-1$. We parameterize all such inverse branches by a countable alphabet $I$ and denote them by $\phi_{i}, i \in I$. It follows immediately from this definition that $\phi_{i}(\operatorname{Int} X) \cap \phi_{j}(\operatorname{Int} X)=\emptyset$ whenever $i \neq j$. Along with properties (a)-(d) this implies that $S=\left\{\phi_{i}: X \rightarrow X\right\}_{i \in I}$ is a conformal iterated function system in the sense of [7]. Let $J^{*}$ be the limit set of $S$. Using (2.1) note that

$$
J^{*}=\gamma \backslash \bigcup_{n=0}^{\infty} f^{-n}(\{\omega\} \cup E)
$$

where $E$ is the countable set of essential singularities of $f$ (for original $f$ the set $E$ is a singleton, say $e$, but for an iterate $f^{k}$, the entire set $\{e\} \cup f^{-1}(\{e\}) \cup f^{-2}(\{e\}) \cup \ldots f^{-(k-1)}(e)$ consists of essential singularities of $f^{k}$ ). In particular

$$
\operatorname{HD}\left(J^{*}\right)=\operatorname{HD}(\gamma)=\operatorname{HD}(J(f):=h .
$$

Now suppose that $\operatorname{HD}\left(J(f)=1\right.$. So, $\operatorname{HD}\left(J^{*}\right)=1$, and it follows from Theorem 4.5.1 and Theorem 4.5.11 in [7] that $\mathrm{H}^{1}\left(J^{*}\right)<+\infty$. Since $\mathrm{H}^{1}\left(J^{*}\right)=\mathrm{H}^{1}(\gamma)>0$, it follows from Theorem 4.5.10 in [7] (with $d=1$ and $X$ replaced by $\gamma$ ) that $m:=\left.\left(\mathrm{H}^{1}(\gamma)\right)^{-1} \mathrm{H}^{1}\right|_{\gamma}$ is a 1-conformal measure for the system $S$, meaning that

$$
m\left(\phi_{i}(A)=\int_{A}\left|\phi_{i}^{\prime}\right| d m\right.
$$

for every Borel set $A \subset \gamma$ and

$$
m\left(\phi_{i}(\gamma) \cap \phi_{j}(\gamma)\right)=0
$$

whenever $i \neq j$. Theorem 4.4.7 in [7] yields then (it is in fact much stronger than we need) the existence of a unique Borel probability measure $\mu$ on $\gamma$ with the following properties:
(e) $\mu\left(J^{*}\right)=1$,
(f) $\mu$ and $m$ are equivalent with positive and continuous Radon-Nikodym derivatives.
(g) (invariance) For every Borel set $A \subset \gamma, \sum_{i \in I} \mu\left(\phi_{i}(A)\right)=\mu(A)$.

Now consider two Riemann mappings $R_{0}: \overline{\mathbb{D}^{1}} \rightarrow \overline{A_{0}}$ and $R_{1}: \hat{\mathbb{C}} \backslash \mathbb{D}^{1} \rightarrow\left\{A_{1}\right\}$ such that $R_{0}(1)=R_{1}(1)=\omega$ (since $J(f)$ is a Jordan curve, $R_{0}$ and $R_{1}$ are uniquely defined respectively on the on closed disks $\overline{\mathbb{D}^{1}}$ and $\widehat{\mathbb{C}} \backslash \mathbb{D}^{1}$ due to Caratheodeory's theorem). Define two continuous maps
$g_{0}:=R_{0}^{-1} \circ f \circ R_{0}: \overline{\mathbb{D}^{1}} \backslash R_{0}^{-1}(E) \rightarrow \overline{\mathbb{D}^{1}}$ and $g_{1}:=R_{1}^{-1} \circ f \circ R_{1}:\left(\hat{\mathbb{C}} \backslash \mathbb{D}^{1}\right) \backslash R_{1}^{-1}(E) \rightarrow \hat{\mathbb{C}} \backslash \mathbb{D}^{1}$.
Thus, the Schwartz Reflection Principle allows us to extend $g_{0}$ and $g_{1}$ respectively to $\mathbb{C} \backslash$ $R_{0}^{-1}(E)$ and $\mathbb{C} \backslash R_{1}^{-1}(E)$. Then the iterated function system $S$ lifts up to the two respective systems $S_{0}=\left\{\phi_{i}^{0}\right\}_{i \in I}$ and $S_{1}=\left\{\phi_{i}^{1}\right\}_{i \in I}$ formed by respective inverse branches of iterates of $g_{0}$ and $g_{1}$. Fix $j \in\{0,1\}$. Note that the normalized Lebesgue measure $\lambda_{j}$ on $R_{j}^{-1}(\gamma)$ is a conformal measure for the system $S_{j}$. Again, by Theorem 4.4.7 in [7], this system has a unique invariant measure $\mu_{j}$ equivalent to $\lambda_{j}$. But $\mu \circ R_{j}$ is also $S_{j}$-invariant and, by Riesz Theorem, is equivalent to $\lambda_{j}$. Thus, $\mu_{j}=\mu \circ R_{j}$. Hence,

$$
\begin{equation*}
\mu_{1}=\mu \circ R_{1}=\mu \circ R_{0} \circ\left(R_{0}^{-1} \circ R_{1}\right)=\mu_{0} \circ R_{0}^{-1} \circ R_{1}=\mu_{0} \circ\left(R_{1}^{-1} \circ R_{0}\right)^{-1} . \tag{2.2}
\end{equation*}
$$

For evry $z \in S^{1}$ put

$$
D_{j}(z)=\frac{d \mu_{i}}{d \lambda}(z)
$$

In view of Theorem 6.1.3 from [7] the function $z \mapsto D_{j}(z)$ has a real-analytic extension onto a neighborhood of $R_{j}^{-1}(\gamma)$ in $\mathbb{C}$. Let

$$
F_{j}(z)=\int_{1}^{z} D_{j}(t) d \lambda(t)
$$

where the integration is taken along the unit circle arc from 1 to $z$ against the Lebesgue measure $\lambda$ on $S^{1}$. Formula (2.2) and $R_{1}^{-1} \circ R_{0}(1)=1$ then give for every $z \in R_{1}^{-1}(\gamma)$ that

$$
F_{0}(z)=F_{1}\left(R_{1}^{-1} \circ R_{0}(z)\right) .
$$

Since both functions $F_{1}$ and $F_{0}$ are invertible (as $D_{j}$ is positive on $R_{j}^{-1}(\gamma)$ ), we conclude that $R_{1}^{-1} \circ R_{0}=F_{1}^{-1} \circ F_{0}$ is real analytic on $R_{0}^{-1}(\gamma)$. Thus, $R_{1}^{-1} \circ R_{0}$ has a holomorphic extension $\psi$ on an open neighborhood $U$ of $R_{0}^{-1}(\gamma)$ in $\mathbb{C}$. The formula

$$
T(z)= \begin{cases}R_{0}(z) & \text { if } z \in \overline{\mathbb{D}^{1}} \cap U \\ & \text { if } z \in\left(\widehat{\mathbb{C}} \backslash \mathbb{D}^{1}\right) \cap U\end{cases}
$$

thus defines a holomorphic map from $U$ into $\mathbb{C}$ mapping $R_{0}^{-1}(\gamma)$ onto $\gamma$. Therefore, $\gamma$ is a real-analytic curve, and topological exactness of $f: J(f) \rightarrow J(f)$ implies that $J(f)$ itself is a real-analytic curve. So, by the Schwartz Reflection Principle $R_{0}$ extends to an entire bijective map of $\mathbb{C}$ onto $\mathbb{C}$. Thus, $R_{0}$ is an affine map $(z \mapsto a z+b)$, and $J(f)=R_{0}\left(S^{1}\right)$ is a geometric circle. We are done.

Note that because of Theorem in [1] (where the hypothesis of having two completely invariant domains can be weakened by requiring that the second iterate has two completely invariant domains) our assumption that the Julia set $J(f)$ is a Jordan curve is equivalent to require that $f^{2}$ has two completely invariant domains.

## References

[1] W. Bergweiler, A. Eremenko, Meromorphic functions with two completely invariant domains, Transcendental Dynamics and Complex Analysis, edited by P. J. Rippon \& G. M. Stallard, Cambridge University Press LMS Lecture Note Series 348 (2008).
[2] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES, 50 (1980), 11-25.
[3] P. Fatou, Sur le equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271.
[4] D. H. Hamilton, Rectifiable Julia curves, J. London Math. Soc. (2) 54 (1996), 530-540.
[5] J. Kotus, M. Urbański, Geometric rigidity of transcendental meromorphic functions, Math. Zeit. 253 (2006), 227-233.
[6] R. D. Mauldin, M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996) 105-154.
[7] D. Mauldin, M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Univ. Press (2003).
[8] F. Przytycki, M. Urbański, A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I, Ann. of Math. 130 (1989), 1-40.
[9] D. Sullivan, Conformal dynamical systems. In: Geometric dynamics, Lect. Notes in Math. 1007 (1983), 725-752, Springer Verlag.
[10] M. Urbański, On Hausdorff dimension of Julia set with a rationally indifferent periodic point, Studia Math. 97 (1991), 167-188.
[11] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649.

Mariusz Urbański,
Department of Mathematics,
University of North Texas,
P.O. Box 311430,

Denton, TX 76203-1430,
USA
E-mail address: urbanski@unt.edu
Web: www.math.unt.edu/~urbanski


[^0]:    Date: August 14, 2008.
    1991 Mathematics Subject Classification. Primary: 30D05; Secondary:
    Key words and phrases. Holomorphic dynamics, Hausdorff dimension, Meromorphic functions.
    Research supported in part by the NSF Grant DMS 0700831. A part of the work has been done while the author was visiting the Max Planck Institute in Bonn, Germany. He wishes to thank the institute for support.

