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§ 0 Introduction

The purpose of this paper is to investigate the phenomena that

a sequence of Riemannian manifolds M; converges to one

lower dimension, N, with respect to the Hausdorff distance,

which is introduced in [11]. We have studied this phenomena

in [7] and proved there that My is a fibre bundle over N

with infranilmanifold fibre. In this paper, we study which fibre
bundle is it, and give a necessary and sufficient condition, which

are stated as Theorems 0-1 and 0-7.

Theorem 0-1 Let M, be a sequence of n+m-dimensional compact

i

Kkiemannian manifolds and N be an n-dimensional compact Riemannian

manifold. Assume

(0=-2-1) M; converges to N with respect to the Hausdorﬁf

distance,

(0-2-2) |sectional curvature of M;| 51 .

Then, for sufficientiy large i, there exists a map miM —> N

such that the following holds.

(0-3-1) un is a fibre bundle.

(0-3-2) n;1(p) = G/T', where G 1is a nilpotent Lie group and

' is a discrete group of affine transformations of G satis-

fying ([r:GNT]<=. Here we put the (unique) connection on G

which makes all right invariant vector field parallel, and G

is regarded to be a group of affine transformations on G by

right multiplication.




(0-3-3) The structure group of L is contained in the skew

product of C(G)/(C(G) nI') and Aut I', where .C(G) denotes the

center of G.

Remark 0-4 Statements (0-3-1) and (0-3-2) were proved in [7].

Remark 0-5 [7, 0-1-3] also holds. Namely L is an almost

Riemannian submersion in the sence stated there.

Remark 0-6 It is well known that the group nk(Diff(G/F)) is

not finitely generated in general, but nk(G(G)/(C(G)f1f)°<Aut r)
is always finitely generated. Therefore, there exist a lot of
fibre bundles which satisfy (0-3-1) (0-3-2) but do not satisfy

(0-3-3).

Theorem 0-7 Let M be an n+m-dimensional manifold, N an

n-dimensional complete Riemannian manifold with bounded sectional

curvature, and m:M —> N be a smooth map. Suppose that

satisfies (0-3-1), (0-3-2) and (0-3-3). Then, there exists

a family of Riemannian metrics ge on M such that the following

holds.

(0-8-1) The sequence of Riemannian manifolds (M,ge) converges to

the Riemannian manifold N, with respect to the Hausdorff distance.

(0-8-2) The exists a constant C independent of € such that

| sectional curvature of (M,gE){ sC.

Theorems 0-1 and 0-7, combined with [9, Theorem 0-6], imply

the following:



Theorem 0-9 For each m and D, there exists a positive

constant ¢(n,D) such that the following holds. Suppose an

m-dimensional Riemannian manifold M satisfies

(0-10-1) vVolume of M § ¢(m,D),

(0-10-2) Diameter of . M3 D,

(0-10-3) |sectional curvature of M| s1 ,

(M) =1, for k22

(0-10-4) Ty

Then, Minvol M = 0, where Minvol M is defined in [10] .

Theorem 0-9 is a partial answer to the following

Problem 0-11 Does there exists €mn such that Minvol biSenl implies

Minvoel M = 0 ?

If we can remove the condition (0-10-2) and (0-10-4), we will

have the affirmative answer.

The organization of this paper is as follows. § 1,..., § 5 is
devéted to the proof of Theorem 0-1. The outline of these sections
is in § 1. In the course of the proof, we shall prove some results
on eigenfunctions of Laplace operator, which improve one of [6].
These results may have an independent interest. In § 6, we shall
nrove Theorem 0-7. The proof of Theorem 0-9 is in § 7. In § 8, we
add some remarks concerning the case when the limit space is not

a manifold.

The author would like to thank Max-Planck-Institut flr

Mathematik where this work is done.



Notation

For a Riemannian manifold M, Vol M dentoes the volume of M,
Diam M denotes the diameter of M. For a metric space X and

X €X we put
Bp(x,X) = {y€X | d(x,y) <D} .

B(C) stands for -BC(Oﬁmn). For two metric spaces X,Y,
dH(X,Y) denotes the Hausdorff distance between them which is

defined in [11], . lim X, = X means 1lim 4. (X,X.) = 0.
i>® i . H 1

R

H



§ 1 OQutline of the oroof

Our main Theorem 0-1 is a consequence of the following:

Theorem 1-1 Let M; and N be as in Theorem 0-1. Then,

for each sufficiently large i, there exists a fibration

ni:Mi —> N such that the following holds.

(1-2-1) For each pé€EN, there exists a flat connection on

n;1(p), which depends smoothly on p.

(1-2-2) There exists a nilpotent Lie group G and a group of

affine transformations I of G such that w11(p) is affinely

diffeomorphic to G/T and that [T:TNG] <=,

Theorem 1-1 is a generalization of Ruh's result [14], which

corresponds to the case when N is a point.

Theorem 0-1 is a corollary of Theorem 1-1. In fact, let
ﬁi:Mi'——> N be as in Theorem 1-1. Then, by (1-2-1) and (1-2-2),

we can find (u.,¥, .) such that
J 1,3

(1-3-1) Uj’ j=12,... is an open covering of N.

(1-3-2) Uy is a diffeomorphism between n;1

1]

(Uj) and UirtG/T.

(1-3-3) the restriction of Y, , to each fibre gives an affine

14

diffeomorphism between n;1(p) and {pl x G/T.

By (1-3-3), the transition function of Ty with respect to the

chart (Uj,tpi j) is contained Aff(G/T}, the group of affine
!

diffeomorphism of G/I'. On the other hand, we have the following:



Lemma 1-4 There exists an exact sequence

1 —> G/FnC(G) —> Aff(G/T) — Autl —> 1

BEere C(G) denotes the center of G.

We omit the proof, which is straightforward. Let 'Aff'(G/T) be

the subgroup of Aff(G/I') generated by C(G)/TNC(G) and Aut T.
Then we have Aff(G/T)/Aff'(G/T) =Rk. Therefore the structure group
of the Aff(G/I') bundle Wi:Mi —> N qaﬁ_be reduced to Aff'(G/T).
And Aff'(G/T) 1is an extension of C(G)/TNC(G) by Aut I'. This

implies Theorem 0-1.

The proof of Theorem 1-1 occupies §§ 2,3,4 and 5. Since it is
long, we shall give an outline first. The proof uses a parametrized
version of Ruh's argument in [14]. To apply it, we have to improve
the result of [7] and to prove that the fibres .of the fibre bundles
fi:Mi‘ﬁ_? N obtained there are~almost.flat. ([7,0-1-2]1 1implies
that fibres are diffeomorphic to almost flat manifolds. But, in
[7], we did not obtain the estimate of the curvatures of the

fibres.) Namely we shall prove Lemma 1-6 below. As will be remarked

at the beginning of § 5, we can assume, without loss of generality,

that
(1-5) 17*R(M,) | < C
i k*
Here R(M;) is a curvature tensor, [| the c®-norm, and C, a

constant independent of i. For Xx€EM, , we let exp :B(r) —> M,

X, T
denote the exponential map at x. We fix a coordinate system
m

<
U.,y. : U.=1R", 2 U, —
( j wj) ; ,wj 5 > N



Lemma 1-6 Let Mi and N be as in Theorem 0-1. Assume that

M, satisfies (1-5). Then, for sufficiently large 1, there exists

a fibration Tri:Mi —> N such that

jal
(1=-7) 3 (wjanicexpx'r) ¢ c
G, a o
ax1 .. OX

holds for each multiindex «. Here Ca denotes a constant independent-

of 1.

(1 -7) implies that the sectional curvatures of the fibres of Ty
are uniformly bounded. Hence, the fibres are almost flat for
sufficiently large i. Therefore, [14] shows that there exists a flat
connection on each fibre satisfying (1-2-2). A little more argument

is required to obtain a connection on ﬂ;1(p) depending smoothly on

p. This is done in § 5.

The proof of Lemma 1-6 is performed in §§ 2,3 and 4. Recall
that in [7] we used embeddings Mi,NCL—bimz in order to construct
the fibration Mi —> N. The embeddings there were constructed by
making use of the distance function. from a point. To obtain an
embedding satisfying (1-7), we have to apprqximate this embedding
by one with bounded higher derivatives. The.approximation we used
in {7] is not appropriate for this purpose, because it is not of
Cz-class. In this paper, we use another embedding constructed by
making use of eigenfunctions of Laplace operator. This embedding is
appropriate for our purpose since eigenfunctions enjoy uniform
estimate of higher derivatives. In order to apply the argument of

[7, §§81,2] to our embedding, we need to study the convergence of



eigenfunctions. In [6], we introduce a notion, measured Haus-
dorff topology and proved that the k-th eigenvalue of the Laplace

operator on Mi converges to that of the operator de-

P,
fined in [6, §0}], if M, converges to (N,u) with respect to the
measured Hausdorff topology. We also proved a."Lz-convergence"
there. But, for our purpose, Lz-convergence is not suffice. We

1

have to prove a "C -convergence". (Precise statement will be given

as Theorem 3-1.) For this purpose, we shall begin with proving

that eigenfunctions of P( ) are smooth. [6, Theorem 0.6]

N,
implies that the measure p 1is a multiple of the volume element
QN by a continuous function Xy If XN is of C1-class, our

operator P ) is written as

(N, n

(1.8) P(N’p)w = b0 - <dw,aXN>/XN

Therefore, to prove that the eigenfunctions of P are smooth,

(N,p)
it suffices to show that Xy is smooth. This is done in § 2.
In § 3, we shall prove the "C1-convergence". The proof of Lemma 1-6

is completed in § 4.

Remark In 1984, S. Gallot proposed to embedd Riemannian manifolds
using heat kernels, in order to study Hausdorff convergence. The

embedding we use in this paper 1is essentially the same as Gallot's,
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§ 2 Smoothing density functions

Lemma 2-1 Let Mi be a sequence of n+m-dimensional compact

Riemannian manifolds satisfying {0-2-2) and (1-5), and X be

a metric space, u a provability measure on it. Suppose MiT

converges to (X,n) with respect to the measured Hausdorff

topology defined in [6, 0.2 B]. Then there exists a function

X¢ on X such that

(2-2-1) BT Xy X (the volume element of X),
(2=-2-2) Xy is of c”-class,

(2=2~-3) XX satisfies [6, 0.7.1 and 0.7.3].

Proof In {6, 0;6], we have already proved (2-2-7) and (2—2~3).

By the axguﬁentrip [6, §3], it suffices to

show (2-2-2) in the case when X 1is a combdctmkiemanniéh ménifbiém
N . Put V, = Vol M,, by, = QMi/Vi' where QMi denotes the volume
element of M- By the definition of measured Hausdorff topology,
we can take ei-Hausdorff approximation fi:Mi——* N such that
(fﬁ)i(uﬁl) converges to u with respect to the weak* topology.
(Here gi —> 0. The definition of the Hausdorff approximation is
in [}1].) In view of (7], we may assume that fi is a fibration.
Then, by [6, §3], the functions p'l— Vol(fIT(p))/Vi i=1,2,...
on N converge, with respect to the Co-norm, to a continuous

function Xy satisfying (2-2-1) and (2-2-3). We shall prove that

] m k] ] +
Xy 1s of C -class. Choose (not necessarily continuous) section wi.
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N —> M, to fi' Take an arbitrary point Py of N and put
Py = wi(po). We shall prove that Xy is of c -class at Pg -

Put B = B(1). Let Exp;:B —> My be the composition of an
origin preserving isometry B —> Tpi(Mi) and the exponential
map T (Mi )= Mi‘ let gi denote the Riemannian metric on B
induceé byl Exp, from the metric on M. In view of (1-5), we
may assume, by taking a subsequence if necessary, that g5
converges to a metric 99 with respect to the Cm-topology. Now,

recall the argument in [8, §3], where we constructed a sequence

of local groups Gi converging to a Lie group germ G , such that

(2-3-1) Gi acts by isometry on the pointed metric space
((B,go),o),
(2=-3-2) ((B,gi),O)/Gi is isometric to a neighorhood of < in M; .

(2-3-3) G acts by isometry on ((B,go),O) '
(2-3-4) ((B,go),O)/G is isometric to a neighborhood of Py in N.

Let Pi:(B;gi) —> M., P:(B,go) —» N denote natural projections.
(In fact, pi==Expi.) In our case, since N 1is a manifold, the
action of G on B 1is free. Let g denote the Lie algebra of
G. Choose a basis X1""'xm of g. We can regard Xi as a

Killing vector field on (B,go). For x € B, we put
(2-4) X(x) = [X (A AKX (x)].

Since Xi, i=1,...,m are G-invariant, there exists a function ¥
on a neighborhood of Py such that xop = ¥. Clearly ¥ is of
Cm-class. Hence, to prove Lemma 2-1, it suffices to show the

following:
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Lemma 2-5 XN/X is a constant function on a neighborhood of Pg-

Proof Put

{

, 1
(2-6-1) G! {yeg, |d(G'g')(Y(0),0)<'§}

1

(2-6-2) G'

{vec |d )(y(O),0)<-%}

(G,q,

There exists a neighborhood U of Py in N and a Cm-map

s:U — B such that
(2-7-2) Pos = identity,

(2=-7-3) d(B,go)(s(q),O) = dN(q,pO) holds for g€ N.

Put

(2-8-1) E;(q,8) = {x€B| there exists Y€ G; such that
d(B’gi)(x;rs(q)) < 8},

(2~8-2) Eo(q,é) = {x€B | there exists Yy €G' such that

d(G’gO)(x,Ys(q)) <8} .

Sublemma 2-~9 There exists a positive number C independent of

g such that

lim lim = —7 -
§+0 i-§ #Gi'G -V'ol(fi (q))

Ci =20 .

The proof of the sublemma will be given at i the end of this

section. Next we see that
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Vol (E, (q,8))
(2=-10) lim sup = — - 1| =0
i+ g€uU Vbl(Eo(q,G))

holds for each ¢ >0. Thirdly, we put

G'(q) = {ys(q) | yeG'}.

Then, clearly we have

(2-11)  1lim Vol ((E.(g,8))/8" = w_vol(G'(q)) ,
50 0 n

(2-12) Vol (G'(q) _ Vol(G:(q'))
x (a) x{(g")

’

for q,q'€ U, Here n = dim N , W_ = Vol B" (1)
(2-11) and (2-12) imply

VOl(EO(q.S))-x(q')

2-1 =
eI A o CUP R RrT CI

From Sublemma 2-9, Formula (2-10), (2-13), we conclude

Vol(£] (a))x(q")
lim =7 = 1
i+eo Vol(fi (g"))x({a)

On the other hand, we have

e
lim sup VOI(fi (q)'XN(q')

i-o qgq,q'eN

-1
VOl(f1 (q'))xN{q)



_14_
Therefore,

xN(q)x(q')
Xy (") x (a)

This implies Lemma 2-5,

Proof of Sublemma 2-9 Put s, = P, °s:U0—>M Choose an

i i-
open subset Vi(ﬁl of B such that the following holds.

{(2-14-1) If y € G , vy # 1 , then YVi(ﬁ) n Vi(G) = ¢

(2-14-2) Pi(Vi(G)) is a dense subset of Batsi(q), Mi)

(2-14-3) vi(5) c,BG(s(q), (B,gi}) and if x € Vi(é) ¢ Y € G

i r

then d(y(x), s{q)) 2 d(x, s(q)) .

Put E!(qg,8) = {y(x)[y € G , x € V;(§)} . Then, by the definition

of V,(8) and E,;(q,8) , we have El(q,§) = E, (q,8) . Hence, by
{(2-14-1), we have

Vol(Ei(q,G))
(2-16) Vol(Vi(G)) =

#G§

On the other hand, put

c. = sup d(s, (p), p.)
i pEU i i’
di = sup Diam f;1(p) .
pEU
Then, limc, = 1limd, = 0 . It is easy to see

i+ isw
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-1
(2:171) £ (354 o (a0 W)
[ BG(Si(Q)' Mi)

-1
< £, (B (g, N)) ,
i 6+di+ci

(2-15, (2-16), and (2-17) imply

1. -1 -
#Gj IpeBG(q,N)VOl(fi (P))- 2y

(2-18) 1lim = 1
ioo Vol(Ei(q,ﬁ))

where QN is the volume element of N . Since the family of

functions p +—> log(Voi(fI1(p))) i

1,2,... is equicontinuous

([6; Lemma 3.2]), it follows that

-1
f Vol (£, (p))*Q
(2-19) lim sup p€B; (q,N) i N

§+0 i=1,2,...

o — -1 =0 .
§ W, Vol(fi (q))

4

The sublemma follows immediately from (2-18) and (2-19).
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§ 3 C1—convergence of eigenfunctions

Theorem 3-1 Let Mi and (X,u) be as in Lemma 2-1. Then, there

exists smooth maps fi : Mi —> X such that the following holds.

(3-2-1) fi satisfies [17, (0-1-1), (0-1-2), (0-1-3)] .

topology, where

) converges to u with respect to the weak*

! = Q,, /Vol(M.) .
Mi Mi i

(3-2-3) Let ®; x be a k-th eigenfunction of the Laplace operator
’

on M, satisfying sup|e, ,(x)[=1. Then there exist ..
X ’

xEM
functions o' on Xlusuch that

i,k

(a) ¢; x is a k-th eigenfunction of P(X,u) '

(b) for each Py € Mi , we have

|‘°i,k(Pi) -0 (PN < g (k)
(c) for each vector Vi € T(Mi) , we have
(Vi og 3) = (£5), (Vyd oy )] < e (k) -]vy ],

where ei(k) denotes positive numbers depending only on

i and k and satisfying 1lim Ei(k) =0

i+

Remark In the case when X is a manifold, (3-2-~1) means that

fi is a fibration with infranilmanifold fibre.
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First, we shall prove Co-convergence, (b) . We begin with
the following Ascoli-Alzera type Lemma.

Lemma 3-3 Let Xi and X be compact metric spaces, wi : xi —> X

ei-Hausdorff approximation, lim ey = 0 , and @5 be continuocus

functions on Xi . Assume

(3-4—1) (-Di r i

i}

1,2,3... are uniformly bounded

(3-4-2) @ i 1,2,3... are equi-uniformly continuous. Namely,

for each ¢ > 0 , there exists § > 0 independent of

i,x and y such that d(x,y) < &, x,y € X

i implies
lwi(x) - wi(y)l < € .

Then, there exists a subsequence ij and a continuous function

® on X such that
lim sup |o(x) - @; ° ¥, (x)| =0 .
o x€X b ]

’

" The proof is an obvious analogue of that of Ascoli-Alzera's Theorem,

and hence is omitted. Next we need the following:

Lemma 3-5 wi X i=1,2,3... 1is equi-uniformly continuous for each
I

k -

Proof By [6, 4.3], we have

1/2
vl lle |l 5/ vortu ™/

|Vie, )| < k-
ik i,k L.

for each V € T(Mi) . The lemma follows immediately.
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Now we shall prove (3-2-1)}, (3-2-2) and (3-2-3) (a) and (b).
We constructed, in [7, Theorem 0-1], the map fi satisfying
{3-2-1) and (3~2-2). Suppose that we can not find fi satisf¥ying
(3-2-3) (a) and (b). Then, there exist ©0 > 0 and a subsequence
ij such that

(3-6) sup Iwi;,k(X) - wofy (x¥| > 0
x+Mi J 3

s

J

holds for each j and each k-th eigenfunction ¢ of P{X u) *
f

On the other hand, Lemma 3-3 and 3-5 imply that we may assume, by
taking a subsequence if necessary, the existence of a continuous

function v, on X such that

(3-7) 1lim sup |wi k(%) =0 of; (x)]| =0
jow xEM, 13" 3
i,
J
Moreover, [6, Theorem 0.4] implies that the Lz-distance between

0
P(X,u) converges to 0, where

wj t X —> M, is a measurable map satisfying fi owj = identity.
] J

J
Therefore, (3-7) implies that ¢_ 1is a k-th eigenfunction of

0, °wj and the k-th eigenspace of
J

P(X,u) This contradicts (3-6).

Remark We have not yet used Assumption 1-5.

To prove (3-2-3) (c), we first remark the following elementary

inequality.

Lemma 3-8 Let ¢ : (a-e¢, b+e) —> R be a C2-function satisfying
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;
(7N
@

sup
tela,pl| dt

[ 9]

Then we have

_eb) - ola)
b - a

do . (-
EE(a) < C*(b-a) .

Secondly, [6, 4.3.2] implies the following.

Lemma 3-9 There exists a constant Ck independent i such that

the following holds. Let § : [0,1] —> My be a gecdesic with unit

speed. Then

2
" {0y 4 0l)

at?

sup
te[0,1]

By a method similar to (6, § 7], we may assume that X is a mani-

fold, N . Then, since the k-th eigenspace of is finite

P
(N,u)
dimensional and consists of smooth functions, it follows that

a% (0] ot
(3-10) sup —————é——— < Ci
t€[0,1] - dt
holds for each geodesic 1 : (0,1] ——> N with unit speed.

Now let v, € T(Mi) be a unit vector. We put
Li(E) = ext(t-vy) , 2i(E) = ext(t-(£;), (V) /[(£),(V,)|) . Then,
by [7, § 41, we have

(3-11)  1im sup  d(£.4.(€), L1(t)) =0 ,
iow te[0,1] T % a

(3-12)  1lim |(fi)*(vi)| =1 .

3 0
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Let 6 be an arbitrary small positive number., Lemmae 3-8 and

3-9 imply

(3-13) ‘Vi(wi

On the other hand, by Lemma 3-8, Formulae (3-10),

(3-14) 1lim sup

i+

Furthermore (3

(3-15) 1lim sup

i»reo t€

From Formulae (3-13),

lim |V

i+

-2-3)

_ %5,k d

) _ 2
(8) ®; o i(0) s

e

[0,1]

s Ck

W, Lol (8) = 0! o
' _ _i,k°"i i,k
l(fi)*(vi)(wi,k) L ;
(b) and (3-11) imply
2 - ' 2 =

(3-14), (3-15), we conclude

(£) (Vi) (0] ()] 5 (G + Cp)é

{3-12}, we have

)
S Ck
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§ 4 Estimating derivatives. of the fibration

In this section we shall prove Lemma 1-6. Let My and N be as

in Theorem 0-1. By [1], we obtain, for each ¢§ > 0 , metrics 9i s

on Mi such that
(4=-1-1) ]gi s - giI < 1(8) ,

k
(4-1-2) |V R(Mi,gi Y| < Ctk,8) .

,6

Here 95 denotes the original Riemannian metric on M, and

T(8), C(k,8) are positive numbers independent of i and satisfying

lim t(8) = 0 . By taking a subsequence if necessary, we may assume

§-+0

(Mi,"gi <5) i1 =1,2,... converge to a metric space Ns with respect
, ;

to the Hausdorff distance. Then, [8, Lemma 2-3] implies that N6

is diffeomorphic to N and

(4-2) lim 4_(N,N_.} = 0 ,
5+0 L S

where dL denotes the Lipschitz distance defined in [11]. Therefore,

it suffices to show Lemma 1-6 for Mi 5 and N6 . Hereafter we
r

i and N 1in place of Mi,G and NG . Thus, we

verified that we can assume (1-5) while proving Lemma 1-6.

shall write M

By 16, Corollary 2-11], we may assume, by taking a subsequence
if necessary, that M; converges to (N, XNQN) with respect to
the measured Hausdorff topology. Then, Lemma 2-1 implies that Xy

is smooth. Hence the operator Q) is elliptic with smooth
N

P
(NI XN
coefficient. It follows the following:
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Lemma 4-3 There exists J such that the map I0 : N ——>ZRJ
defined by I,(P) = (w1(P), cen ,wJ(P)) is a smooth embedding.
Here R denotes a k-th eigenfunction of P(N, XNQN)

Next, we apply Theorem 3-1 to obtain eigenfunctions @0k
and ! satisfying (3-2-3).

i,k
Put
. L] -
Ij(x) = (toiJ(X), ----- ,wi’J(x)) .

Then, there exists a sequence of isometries Li of :mq such that

Li°Ii converges to IO with respect to the C1—topology. We have

the following:

Lemma 4~-4 There exists smooth maps Ii ¢ Mi ——>ZRJ, I0 : N ——>IRJ
such that
(4-5-1) I, is an embedding,
(4-5-2) 1lim sup lIi(x) - I0°fi(x)| =0 ,
i+ XEM,
i
(4-5-3) 1lim sup |(1i)*(v> - (Ioofi)*(v)\ =0,
1-+c V€T(Mi)
k k
(4-5-4) [a71,| s cir | .

Here fi : Mi —> N 1s a fibration of § 3, and C 1is a constant

independent of i1 and k

Proof Put Ii = LioIl . We have already proved (4-5-1},...,(4-5-3).

Formula (4-5-4) follows from the definition of Ii and the estimate
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of the eigenfunctions of Laplace operators (see [6]).

Now, put

B N(N) = (p,u) e R’ | tul < 6, u is 1

perpendicular to (IO)*(TP(N)). J

Let E : BGN(N) ——>ZRJ denote the map E(p,u) = Iotp) + u . Then,
by (4-5-1), we can choose § such that E : BGN(N) ——oimq is a
diffeomorphism to its image. Then, by (4-5-2), we see that, for
suffigiently largé i , we have Ii(Mi) < E(BSN(N)) . Thus, the

L= POE_1°Ii is well defined, (P : E(B,N(N)) —> N is

map T
defined by P(p,u) = p). As in [7, § 2], the fact (4-5-3) implies
that ., 1s a fibration. Facts (4-5-4) and (4-1-2) imply that

un satisfies (1-7). The proof of Lemma 1-6 is now completé.
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§ 5 The construction of a smocoth family of connections

In this section, we shall complete the proof of Theorem 1-1. Then,

Lemma 1-6 implies the following:

Lemma 5-1 Let m,o Mi —> N be as in Lemma 1-6. Then, there

exists a constant C independent of i , such that

|the second fundamental form of w11(p)| <C .

On the other hand, we have

(5-2) lim sup Diam(m, (p)) =0 .
i+o pEN -

Henée, by [14], we can construct, for each i1 and p € N , a flat

connection on L (p) such that w;1(p) is affinely diffeomorphic
to G/T , where G and T are as in Theorem 1-1. Hence it suffices
to modify these connections so that they depends smcocothly on p .
If the flat connection constructed in [14] was canonical, then
there would be nothing to show. But, unfortunately, the connection
there depends on the choice of the base point on an almost flat
manifold. Therefore, we should check carefully the construction
there. In [14], the construction of the connection is devided into
three steps. In the first step, a flat connection V' with small
torsion tensor is constructed. The connection V' is used, in the
second step, to construct a flat connectién with parallel torsion
tensor. In the third step, it is shown that almost flat manifolds

equipped with a flat connection with parallel torsion tensor is

affinely diffeomorphic to G/TI' . Roughly speaking, we do not have
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to modify the arguments in the second.and the third steps, because
connections constructed there depends smoothly on the deta given
in the first step.

| Now, we shall present the parametrized version of the first
step. First we change the normalization of the metric of the fibres.
(Our normalization so far was |curvature| < 1, Diameter —> 0

The normalization in [14] was Diameter = 1, |curvature| —> 0 .)

Lemma 5-3 Let mLoE Mi —> N be as in Lemma 1-6. Then, there

exists a smooth family of Riemannian metrics g,(p) on ﬂ;1(P)

such that
(5-4-1) Diam (n;1(p), g, (@) =1,
(5-4-2) |7°R(g, (p))] 5 ¢

93 i,k !
where 1lim e, k - 0o .
R

Secondly, we introduce the Ck-norm on ﬂIij) as follows. Take

X € WI1(p) and let Exp, : B(100) —> wIT(p) be the exponential

map. Let A be a tensor on f;1(p) . We define |A| , to be the
Ck—norm of the coefficients of 0 E*(A) . This definitgon is independent

0f x modulo constant multiple. Then (5-4-2) implies
(5-4-3) |R(gi(p))|ck Se -

Thirdly we put p. € N, V. = Bu(Pj’N)’ Uj = sz(pj,N) , where yu

J J
is the one third of the injectivity radius of N . Assume LIVj =N .
et s, ., : U, —> M. be smooth sections to w, . Then, using
i,3 j 1 . 1

s j(p) as a base point of w;1(p) ; we can follow the argument
14
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of [14, P5, P6] and obtain the following:

Lemma 5-5 For each i and Jj , there exists a smooth family of

connections V(i'j)(p) on ﬂ11(p) (p € Uj) such that
(5-6-1) v 13 (p) is flat,

(5-6-2) |T(i’j)(p)| Kk < i K where T(i'j)(p) is the torsion
C ’
(i,3)

tensor of V (p)

(5-6-3) V(i’j)(p) is a metric connection with respect to the

metric g, (p)

Fourthly, we shall estimate the tensor V(i’j)(p) - V(l'j )(p) '

and prove

(5-6-4) |70y - 9BV @) o<ey

By the construction of V(l’j)(p) (which is presented in [14, P5, P6]},

it suffices to estimate the parallel transform. (Sublemma 5-7). Let

Qa2

i j(p) be the metric on B(100) induced by the exponential map
r

Exp : T

s 1(p)) _ n;1(p) . For x € B(100) , we
i

S

(p) 5P L7}

i,J
identify R" and TX(B(1OO)) in an obvious way. Then, for

X,y € B(100) , the parallel translation along the shortest geodesic
i,3.p ,

P : T_(B(100)) —> T (B(100)) with respect to the metric
"X,y X Y
Ei j(p) , can be regarded as an element of Gl(n, R) . Put
r
Qi:j:P(Z) = Pifjrp - Pirj:P
XY X,2 Y:2
Q;';'p is a matrix valued function. Now, (5-6-4}) follows from the

following:
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Sublemma 5-7 There exists ek(é) independent of 1i,j,p such that

»

if |x-y| < & then \Qi:g'P(Z)Ek < (8 . Here lim g (§) = 0
>

Proof If sublemma does not hold, there exist Xor Yy ng; € B(100),

il’ jl’ 6 > 0 and a multiindex o such that

(5-8-1) a'“l(pll'31> a|a|(pll'jl>

X2 Y A
1 _ 1’ >0,
a o o d
dz 1 9z n 9z 1 3z n
1 -9z, g e+-92g (0)

Z = 2(2’)
(5-8-2) lim d(x,,y,) =0 .

Qoo

By taking a subsequence, we may assume that lim X, = lim Yo = W,

(0) _ _(0) ~

lim Zig) = 2 and g, . (p) converges to g_ with respect to

the ‘Cw-topology. Then we have

i,3
(5-9) glalp 27t
xz,z
lim 3
£+ 1 n
321 .-.azn z’= Z(O)
(2)
plolpe
- W,Z
0L1 0‘n
821 . azn l 0)
zZ = z
Slaiyterde
YR'Z
= lim
Lo 1 n
9Z. ...0Z
1 n 2 = z(0) '

(%)
where P denotes the parallel translation with respect to g_

(5~-9) contradicts (5-8-1).
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Thus, we have verified (5-6-4). Finally we shall prove the

following:

Lemma 5-10 There exists a smooth family of connections Vi(p) on

ﬂ111p) (p € N) such that

(5-11~1) Vi(p) is flat,

- — t ] : .
(5-11-2) |Ti(p)|ck s Ei,k , where Ti(p) is the torsion tensor

]
of Vi(p) ,

(5-11-3) Vi(p) is a metric connection with respect to the metric

g; (P)

Proof For simplicity, we assume V1 U V2 = N . First we shall find

a gauge transformation 0p i such that

’

V(i’1)(p) = O;ji°v(i’2)(p)°op,i holds for P ¢ U1 n U2 . Here Op,i
is a section of the fibre bundle Aut(F(an(p))) = F(wl1(p))xAdO(m) '
where F(ﬂ;1(p)) is the frame bundle and m = dim w;1(p) . We have
two monodromy representations 31(9'1), Ez(p’i)

[ —> O(Ts (p)(n;1(p))) with respect to the flat connections
V(i’T)(p) ié;d V(i'z)(p) , respectively. (Here we recall

n;1(p) = G/T . And O(Tsi’1(p)(“;1(p))) denotes the set of linear
isometries of T_ (p)(vz1{p))) . By the construction of V(i’j)(p)
presented in [14,1§;, P6] we see pr'i)(r neG) = Eép’i)(r naeG) =1.
Hence there exist a projecfion P: T —> A to a finite group A
andArepresentations p{p,i)' pép,i) : A —> O(TSi 1(p)(ﬂ:!(P)))

such that pfp’i)oP = E:p'i), pép’i}op = Eép'i) . Then, since

# A < » and p}p'i) and pép’i) are close to each other, there
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exists o, (p) € O(T (WT1(p))) depending smoothly on p such
i si’1(p) i

that pép’i)(y) = ai(p)—1‘p{p’i)(y)-ai(p) , and ai(p) converges

to identity with respect to the Cm-topology when 1 tends to « .

. -1 -1
Now we define Op,i{X) : Tx(ﬂi (p)) > Tx(TTi (p)) , for
x € w11(p) , as follows. Let & : [0,1] —> W11(P) be an arbitrary
curve connecting x to s l(p) , and
r
_ -1 -1
P,r Pyt Tx(Tri (p))y —> Tsi g(p)(ni (p)) denote the parallel

translations along ¢ with respect to the connections V(l'T)(p)

and V(i’z)(p) , respectively. We put

o, ;) (V) =27 (o (p) 7

o, -P1(V)°ai(p)) .

"1 ~ (pri) .

. . ~ (p:i)
Us%ng a, (p) Py

ai(p} =0, , it is easy to verify that
Op i(x) does not depend on the choice of & . The equality
r

(i,1) _ (i,2) -1
v (p} = Op,i°v (p)°op,i

By construction, Op i cohverges to the identity with respect to
!

i1s also obvious from the definition.

the Cm-topology. Therefore, the section 1log © of

o
F(w;1(p)) xad a(m) is well defined, (where o (m) is the Lie algebra

r

of O(m) and m = dim wz1(p)} , and log Op i satisfies

(5-13) |log op’i|Ck s e, (k) .

Take a smooth function ¢ : N —> [0,1] such that 9 a 1 on a

neighborhood of v N, and that ¢y s 0 on a neighborhood of

V,NU, . Put Oé,i = exp(y(p)log Op,i) . for p € U, NU We

1 1 2 -
define Vi(p) by
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' ‘ - |-‘I (ifz) 1

Vi) (P)_J = Op'ioV (P)oOp’i pevu,ny,
s plin2) g o€V,
= v PEV, .

(5-12) implies that Vi(p) depends smoothly on p . (5-13) implies
(5-11-2) . Facts (5-11-1) and (5-11-3) are obvious from the con-
struction.
Q.E.D.
Thus we have proved the parametrised version of the first step
in [14]. The rest of the argument is completely parallel to [14].
We use Newton's method to obtain a sequence of flat connections

V!

(p) and a connection V, (p) such that
i,k i

(5-14-1) Vi’o(p) = Vi(p) ’

(5-14-2) 1lim |vi (P} - Vi(p)|C2 =0,

k= ’
{5-14-3) Vi(p)(Ti(p)) = 0 , where Ti{p) is the torsion tensor
of Vi(p)

(In [14] the convergence of Vi’k(p) to Vi is the Co—convergence.
But, in our case, we can proof the Ck—convergence for an arbitrary
k , thanks to (5-11-3).) By (5-14-2) v.(p) is a c®-family of
connections. It is easy to modify it to a Cm-family. Then (5-14-3)

implies, as in [14P13], that Vi(p) is the connection we have been

looking for. The proof of Theorem 1-1 is now completed.
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§ 6 The construction of a collapsing family of metrics

In this section, we shall prove Theorem 0-7. Let T : M —> N

be a fibre bundle satisfying (0-3-1), (0-3-2), (0-3-~3). T denotes
the structure group of the fibration = . Then T 1is an extension
of a torus T0 by a discrete group A contained in Aut I' , where
' and G are as in (0-3-2) . Choose a T connection of = . It
gives a decomposition of Tx(M) to its horizontal subspace Hx(M)

and vertical subspace V_(M) = Tx(w'1ﬂ(x)) . We put

(6-1-1) g (V,W) = gulm, (V), m, (W) , if V,W € H (M) .

(6-1-2) g_(V,W)

0, if Vv € Hx(M), W € Vx(M) .

Here denotes the Riemannian metric of N . We shall define

IN
gE(V,W) for V,W € Vx(M) .

Let T P1 —> N be the principal T-bundle associated to
T , and Ty k P2 —> N be the principal A-bundle induced from

(Namely P, = P1/T0 .) Let g be the Lie algebra of G . Put

—
.

8y =9 + 8g,.q = (82,8l , and g, =gy + (center of g ) if gy # 0
8, =0 if g = 0 . We have [g,gk] S Byyq - And if g, =0 ,

gK‘1 # 0 then 8g-1 = center of g . Since A < aut T , Malcev's

rigidity Theorem (see [13, P34]) implies A < Aut G . Hence A acts

on g by isometry. It follows that A preserves the filtration

8 =83 28,2 ...2 8, = 0 . Put E = PZXAQ,... Ek = P2 A-gk . Then
Ty = E—> N, T ¢ Ek —> N are vector bundles. Fix a metric h1
on E and let F, be the intersection of E,_q @and the ortho-
gonal complement of Ek . Then, Fk k =1,2... are orthogonal to

each other and & Fk = E . We define h€ by

!
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)
(6-2)  h_(v,W = ()% (v, W) ,

for VEFR , WETF . Let Ui c N, vy

k k' h i
a coordinate chart and S5 j(p) €ET (p € u; n Uj) be the transition
4

. -
) (U1) > U XG/F be
function. Namely, if wi(p) = (p,g) then wj(p) = (p,sj i(p)'g) .
Let wi : "aq(Ui) —> U, X g be a coordinate chart. By definition
we can take wi so that the transition function of this chart is
P(si j) , where P : T —> A = T/T0 is the natural projection.

r

Namely

(6=3) pi(a) = (p,P(si'j(p))'a), if wa(u) = (p,a)

For V,WE g, p k& Ui , we put

1

- v =1
hE,l(p) (V,w) = he(wi (p,v), wl (p,W))

The quadratic form h_ i(p) gives a right invariant metric g (p)
!

g,1
on G . Hence it induces a Riemannian metric on G/(G n T) . By

Lemma 1-4, I'/{(G N I') 1is a finite subgroup of Aut(G) . Therefore,

we can choose h1 so that he i(p) is preserved by

’

/(G nr) < Aut(g) . Then, EE i(p) induces a Riemannian metric on
I
{p} XG/I' . This metric, together with (6-1-1) and (6-1~2), determines

2 Riemannian metric g on Ui}(G/F . Then, using (6-3) and the

e,1

fact that TO is contained in the center of G , we can easily

verify that ge,i can be patched together and gives a Riemannian
metric g. on M . The equality iigH(M, gE) = N is obvious. Thus,
we are only to show that the sectional curvatures of 9. have an
upper and a lower bound independent of ¢ . Since the problem is local,

we have only to study Ui}(G/F , and alsc it suffices to obtain

an estimate of sectional curvatures of (Ui}(G ' Es .) . (Hereafter
’
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we omit the index i .). Now, let e',...,eA be an orthonormal
frame of.vector fields on U , and RN denote their
hqrizontal lifts to U X G . Choose an orthonormal basis
x1(p),...,xm(p) of (g, h1{p)) , such that there exists a
nondecreasing map O : {1,...,m} —> 2" satisfying Xi(p) € FO(i)(p)

where Fk(p) denotes the orthogonal complement of 8y in

(gk_1, h1(p)) . We may assume that Xi(p) depends smoothly on
p . These elements xi(p) determine, through the right action of

G , a vector field on {p} X G . Thus, we obtain a vector field

£f. on U X G . Then, (e1,...,e

i ' f1,...,fm) is an orthonormal

n

frame of vector fields on (U X G, 31) and T e
-p0(1) -0 (m)

(e1,...,e , € f1,...,e fm[ is one on (U X G, EE)

n

We shall calculate commutators of those vector fields. First,

since our connection of 7 1is a T-connection, it follows that

k k '
ay e * Y b, .f. ,

(6_4-1) [e.',e.] = .

J k

N e~13

1

k . k
where ai . ‘and bi

are functions on U . Secondly, since
’ .

’

[gk,g] S By,q ¢ We have

- ko
(6-4-2) [£ ,£f.] = Y o £

37 ox)so(i) 13
O(k)>0(3)

k r.

where C?,j are functions on U . Next we shall é;lculate
Ifi,ej] . Let Y1,...,Ym be a basis of g . The element Yi of g .,
through the right action of G , induces a vector fields fI on

U X G . Since our connection of © is a T-connection hence in

particular is a G-connection, it follows that the horizontal 1lift

is invariant by the right action of G . Therefore
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(6=5) [ei,fgl = 0 .
On the other hand there exist functions ai 3 on U such that
(6-6) £.(p,g) = ) a, .(p) - £X(p,g) .

: o(3)z0(i) 77 ;

We regard U as an open subset of r"® , and put

3
(p) = .
37 5T

Then, (6-5), (6-6) and (6-7) imply

. n
(6-7) e!lp) = jz18i

aq,
L
e.;f. = . ——il’—f* r
le; J](p,g) 1S}E<Sn 33,}:(9) o) 2(p,9)
0(2)20(41)
Therefore, we have
(6-4-3) [e;,£,] = ] a sE
O (k) 20(1) !
where d? ., are functions on U .
r
1 n 1 m '
’ Now, let e ,...,e , fe""’fe € A'(U X G) Dbe the dual base
_20(1) _2O(m)
of (e1,...,en ; € f1,...,€ fm) . Then, by (6-4-1),

(6-4-2), (6-4-3), we have
(6-8-1) del = J al &3 aeF,

(6-8-2) 1if o0O(i) # O(m) , then

,0(1) _,0(3) _,0(k)

ast = ct . ¢ . g) oy £X
€ o(i)zo(j) Ik e e
0(1)>0(k)
. 0(i) 0(k) .
i 2 -2 J k
+ z djk € e’ A fE ’

0(i) 20(k)
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(6-8-3) if O(i) = O(m) , then

. . 0(i) _,0(3j) _,0(k)
aft = cl.k-e2 2 2 . £ A £5
0(i)>0(3) 3 . €
0(1)>0(k)
0(i) _,0(k)
boop o ab P
o(i)zo(k) J €
: 0(i)
i 2 k
+ 3 bjk . € . ej A e
i i 2O(i)_O(j)_ZO(k)
We see that the coefficients ajk' cjk'e !
i 00 _,0(3)  ,  ,0(4)
djk°e ' bjks" are bounded, with respect to the

Ck—norm, while ¢ tends to 0 . Therefore, we can prove that the
sectional curvatures of g. are uniformly bounded thanks to the
well known formula which expresses the curvature tensor in terms

of these coefficients. The proof of Theorem 0-7 is now complete.
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§ 7 An application

In this section we shall prove Theorem 0-9, by contradiction. We

assume that there exists a sequence of n-dimensional Riemannian

‘manifolds Mi such that
(7-1-1) Diam Mi <D,

(7-1=2) Vol M, < 1/1i ,

i

(7-1-3)  |sectional curvature of M;{ s 1,
(7-1-4) Minvol M, 2 e > 0,

where o is independent of 1 . Using (9, Theorem 0-6], we can

find a subsequence Mk r and an aspherical Riemannian orbifold
i

X/T such that

(7-1-5)  limg M = X/T ,
ivet K4 _

where an aspherical Riemannian orbifold stands for the gquentient X/T
of a contractible Riemannian manifold X by a properly discontinuous
action of a group I consisting of isometries of X . By a modi-
fication of the argument in §§ 1 ... S5, we can generalize Theorem

0-1 to the case when the limit space is an orbifold. Hence we

obtain a fibrat;on wpi: Mki —> X/T whose fibre is G/I' and

whose structure group is the extension of C(G)/(C(G) ATy by

Aut ' , where G and T are as in (0-3-2). Hence, Theorem 0—7

(more precisely its generalization to orbifold case) implies that

there exist metrics g. on Mk such that
i
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(7-2-1) 1lim_( /g ) = X/T
s+§H Mki €

(7-2-2) |sectional curvature of g_ | s C,

where C 1is a number independent of ¢ . On the other hand,

(7-1-2) "and [11, 8.30] imply dim X/T $ dim Mk . Hence, by
i
(7-2-1) we have

(7=-2-3) 1lim Vol( /g ) =0,
e=+0 Mki €

(7-2-2) and (7-2-3) contradict (7-1-4).,
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§ 8 The case when the limit space is not a manifold

So far, we have studied sequences of Riemannian manifolds converging
to a manifold. In [8] we have studied more general situation. The
method of this paper can be joined with one in [8] to prove the

following:

Thecorem 8-1 Let Mi be a sequence of n+m-dimensional Riemannian

manifold satisfvying (0-2-2) which converges to a metric space X

with respect to the Hausdorff distance. Then, there exists a

Cj’a-manifold Y and mod FMi —> Y , such that the following

holds. {Here FMi denotes the frame bundle.)

(8=2-1) Of(n+m) acts by isometry to Y ., We have X = Y/O(n+m) .

(8-2-2) ?r’i satisfies (0-3-1), (1-2-1), (1=-2=2).

(8-2-3) ?i is an O(m+n)-map, and the diagram

~

FM, —————>

commutes.

(8-2-4) Let g € O(n+m), p € Y . Then the map g : ?;1(p) —_— ?;1(g(p))

preserves affine structures.

We omit the proof.

Unfortunately, our method in § 6 does not give the converse to

Theorem 8-1. In other words, it seems that (8-2-1),...,(8=-2-4) is
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not a sufficient condition for the existence of a family of
metrics gE on Mi and that iigH(Mi'gE) = X and that
| sectional curvatures of g€| < C

In [2] and [3], Cheeger and Gromov developed another approach

to study collapsing. They introduced the notion , F-structure

there. Our Theorem 8-1 implies the following:

Corollary 8-3 There exists a positive number e{(n,D) such that

the following holds. Suppose an n-dimensional Riemannian manifold

M satisfies

(8-4-1) Vol(M) s e(n,D) ,

{8-4-2) Diam(M) s D ,

(8-4-3) |sectional curvature of M| £ |

Then M admits a pure P-structure of positive dimension.

Remark 8-5 The assumption of Cheeger and Gromov in [3] is less

restrictuve than ours in the point that they do not assume the
uniform bound of the diameter. Our conclusion is a little stronger.

(In [3], the existence of F-structure is proved.)

Remark 8-6 The converse to Theorem 8-3 is false. A counter example

is given in [2, Example 1.9].

Proof of Corollary 8-3 We prove by contradiction. Assume Mi

satisfies (8-4-2), (8-4-3) and 1lim VOl(Mi) = 0 , but Mi does
i-+0 :
not admit pure F-structure of positive dimension. By taking a

subsequence if necessary, we may assume that M, converges to a
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metric space X with respect to the Hausdorff distance. Therefore,

by Theorem 8-1, we have Y, ?i' Ty satisfying (8-2-1),...,(8-2-4).
Let G/T = Fi(P} . Then C(G)/ [ 4 ((g)) &cts on each fibre. In

view of (0-3-3), this action determines a pure {(polarized) F-structure
on FMi . Then, (8-2-4) implies that this F-structure induces a
pure F-structure on Mi . We shall prove that Fhis F-structure is
of positive dimension. Remark that we can assume (1-5). Let

x € X, p; € n;1(x) S M; . We recall the argument in [8, § 3]. We

have metrics gys 9, o©n B = B(1) , local groups Hy o and a Lie

group germ H ‘such that

(8=-7-1) H; acts by isometry on the pointed metric space

((B'gi)’o) 7
(8=-7-2) (B,gi)/Hi is isometric to a neighborhood of p; on Mi ’

(8-7-3) H acts by isometry on the printed metric space

((B,g_),0) ,

/

(8-7-4) (B,gm)/H is isometric to a neighborhood of x in X ,
(8-7-5) 95 converges to g with respect to the Cw-topology.

Let C(Hi) and C(H) denote the centers of Hi and H ,
respectively. By construction, the dimension of the orbit through

Py of our F-structure on My is equal to the dimension of the

orbit C(H) (0) . We shall prove dim C(H) (0) 2 0 . If 0 is not a
fixed point of C(H) , there is nothing to show. We assume that
there exists <y € C(H)~{1} such that y(0) = 0 . Take Yy € C(Hi)

such that 1lim Y; =Y . We have
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(8-8) lim d(Yi(O),O) 0

j <o
Let § be an arbitrary small positive number. Then (8-8) and the

fact that the action of Hi is free imply the existence of ng
such that

nj
(8-9) & 2 lim d(y; (0),0)

1-=c0

; 0

We can take a subsequence k{i) such that 1lim Yzﬁii) converges
i

to an element y' of C(H) . Then by (8-9) we have
(8-10) & =2 d(y'(0),0) 2 0 .

Since ¢ 1is arbitrary small, (8-10) implies dim (C(H) (0)) 0 .

>

*
Thus we have constructed a pure F-structure on Mi for a

sufficiently large i . This contradicts our choice of Mi

Q.E.D.



[1]

(2]

(3]

(4]

(6]

(7]

(8]

(9]

(10]

-42-

References

Bemelmans, J., Min-0o and Ruh, E.A., Smoothing Riemannian
metrics, Math. 2., 188 (1984), 69 - 74.

Cheeger, J. and Gromov, M., Collapsing Riemannian manifolds
while keeping their curvatures bounded I, J. Diff. Geometry.23:
(1986) .309-346.

Cheeger, J. and Gromov, M., Collapsing Riemannian manifolds
while keeping their curvatures bounded II, in preparation.

Fukaya, K., Theory  of convergence for Riemannian orbifolds,
Japanese J. Math. 12 (1986), 121-160.

Fukaya, K., On a compactification of the set of Riemannian
manifolds with bounded curvatures and diameters, Lecture note
in Math. 1201, Springer-Verlag, 89-107 (1986).

Fukaya, K., Collapsing of Riemannian manifolds and eigen-
values of Laplace operator, Invent. Math. 87 (1987), 517-547.

Fukaya, K., Collapsing Riemannian manifolds to ones with
lower dimension, J. Diff. Geometry 25 (1987).

Fukaya, K., A boundary of the set of the Riemannian manifolds
with bounded curvatures and diameters, preprint.

Fukaya, K., Acompactness theorem of a set of aspherical
Riemannian orbifolds, to appear in "Foliation and topology
of manifolds", Academic press.

Gromov, M., Volume and bounded cochomology, Publ. I.H.E.S. 56
(1983), 213-307.



(11]

[12]

[13]

(14]

-43-

Gromov, M., (with Lafontaine and Pansu), Structure métrique

pour les variétés riemannienne,Cedic Fernand/Nathan (1981).

Pansu, P., Effondrement des variétés riemanniennes [d'aprés

J. Cheeger et M. Gromov], Seminar Bourbaki 36° Année 1983/84
n® 618.

Raghunathan, Discrete subgroup of Lie groups, Springer-Verlag
(1972).

Ruh, E., Almost flat manifolds, J. Diff. Geometry 17 (1982),
1-14,



