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Introduction

§1. Graded structures on commutative rings.
§2. Types of orderings on 2",

§3. Distinguished bases.

§4. Double structures and Hilbert functions.

INTRODUCTION

Typical objects in commutative algebra are the graded rings
associated to ideals, since they are suitable to describe
algebraic geometric objects such as tancgent and normal cones.
A graded ring GI(A) is by definition the ring associated
to the filtration on the commutative ring A given by
{In}nEIQ and if the Krull intersection theorem applies to A ,
for instance in the local case, there is a well-defined
function which associates to every element a€ A-{0} the
integer vI(a) = max{n/aE:In} ; then one deduces a function

' . _vpla) wvi(a)+?
F : A —> GI(A) which is defined by PFla) = a¢€l /I
and F(C) =0 .

*) This work was done while the author was visiting the MPI
(Max~Planck-Institut fir Mathematik) in Bonn, during the
winter-semester 1984-85.
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If J is an ideal contained in I , then the kernel F(J)

of the surjective homomorphism GI(A) -—> G (A/J}) is the

I/J3
homogeneous ideal generated by {F(a)/a€J} . Now, if A

is noetherian also GI(A) is noetherian, hence F(J) is
finitely generated and a set {f1""fr} of elements of J
such that F({J) = (F(f1)""'F(fr)) is termed an I-standard
base of J . Sometimes GI(A) is known; for instance if
{A,m,k) is a local regular ring of dimension d and I =m ,

then GI(A):zk[x .,xd} . 80 that the knowledge of

1re
GI/J(A/J) is equivalent to that of an I-standard base of J .

Standard bases arose in [ 4] as a tool in the process of
desingularizing an algebraic variety, but only much later
some attempts were made to get control on their explicit
computation. For instance in [ 7] and [ 8] criteria for

both detecting and computing standard bases were given, based
on the fact that {f1""’fr} is an I-standard base of J

if and only if the homogeneous syzygies of F(f1),...,F(fr)

can be lifted to syzygies of f1""fr .

It was in the middle sixties that Hironaka used for the first
time that notion and it was more or less at the same time
that Buchberger introduced in his Ph.D. thesis the

concept of Grdbner base (G-base); the purpose was to give

an explicit algorithm for computing a base of the k-vector-
space A/I , where A = k[x1,...,xn] and I is an ideal

of height n . But it was only in the late seventies that,
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together with the strong development of computer algebra,
the notion of G-base started playing a pivotal role in the
most essential computations on the polynomial rings (see

{ 1] for more informations on this aspect and for a wide
bibliography). Let me recall the definition of G-base.

Given A = k{x1,...,xn} and a total ordering < on z"
such that (Z", <) is a totally ordered group, if we denote
by T the set of terms (i.e. monomials with coefficients 1)
of A , then the natural injection of T into z" endows
T with a structure of totally ordered semigroup; if more-
over every element of T-{0} is positive, then < 1is
called a term-ordering. Once such a term-ordering is given,
to every polynomial £f£€A we may associate its maximum
term M(f) and a G-base of an ideal J with respect to the
given ordering is a set {f1,...,fr} of nonzero elements

of J such that every element £ o0f J can be written as
£ = Ziaifi with either a; = 0 or M(f)':M(ai)M(fi) . This
property turns out to be equivalent to: for every element

f of J, M{f) is multiple of some M(fi) ;, equivalently
the ideal generated by {M(f)/f€I} is also generated by

{M(f1) P .,M(fr)} .

Here we see an analogy with the concept of standard base;
moreover all the technigues for constructing G-bases are
based on the notion of "critical pairs" which enables to
construct the syzygies of the maximum terms, and this is a

second analogy. It should also be mentioned that in recent
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works (see [ 61) Mora could successfully use similar
techniques to those of G-bases to construct algorithms for

computing some standard bases.

Taking these analogies as a leading theme, the present
paper is aimed to providing a unified frame for both the
theories which underlie the notions of standard bases and
G-bases. This is achieved by introducing the concept of
graded structure on a commutative ring, the category of
"modules" over a graded structure and the notion of
distinguished base of a module. All the results given in
this general setup specialize to old and new results
concerning graded rings associated to ideals and the poly-
nomial ring so that a link is constructed between known
results on one theory and new results on the other one

(a typical example of that is Corollary 3.12) and of course
they have a wider range of applications; moreover our theory
provides a theoretic background for many ideas which are
developing nowadays in computer algebra and it also gives
new tools to work with, for instance in connection to the

given classification of all the term-orderings (see Section 2).

Now let me put the accent on aﬁother important remark. For
the purpose of computing invariants and operations of ideals
in the polynomial ring, the notion of term-ordering and of
G-base are so important since among the possible graduations

on the polynomial ring A , those ones associated to



term—orderings are extremal in the sense that they split

A into a direct sum of one-dimensional vector spaces. This
fact has the disadvantage of producing G-bases with a
possibly large number of elements, but on the other hand it
has the great advantage of allowing to work with syzygies of

terms, which are certainly the most trivial to be computed.

The remark that term—orderings give rise to the most refined
graduations, which are therefore suitable to be compared to
other graduations, inspires the definition of double struc-
tures and of “modules" over a double structure. It turns out
that under mild assumptions the two graded objects associated
to a module over a double structure have the "same" Hilbert
functions; this fact of course specializes again to new and
old results and among these it should be mentioned the famous

theorem of Macaulay (see [ 51]).

We turn now to a description of the contents of the four

sections, with some highlights on their main features.

Section 1 starts with the definition of graded structure
over a commutative ring A ; modules over a graded structure
and morphisms are defined in such a way that a suitable
category is constructed. Then we define the v-filtered
structures on A , the category of modules on them and we
prove the equivalence of the two categories (Theorem 1.2).

Some basic examples are discussed and it is shown that an
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assumption of noetherianity implies that the ordered group
over which the graded obijects are graded has to be isomorphic
to =" . Finally the technical but fundamental notion of
Krull module is discussed; it allows to define quotients and
it will be very essential in the following. After the

proof that the ordered groups associated to noetherian
structures are isomorphic to z" it is natural to look for

a description of the orderings on z" and this is achieved
in section 2 (Theorem 2.5). This should be suitable for
applications in computer algebra and it has as a first
consequence the fact that all the finite modules over a
noetherian structure are Krull modules if moreover T°

is positive ; here T° denotes the semigroup of the elements
yE:Zn such that the graded object associated to the structure

is nonzero at vy .

The last two sections are the heart of the work. In section 3
it is introduced the notion of d-base, which specializes

to standard bases, G-bases, Macaulay bases and so on, and

it is shown that over Krull modules the notion of d-base

is equivalent to another important notion, which allows to
compute eqguations in the graded objects. As a consequence

it is shown that finite Krull modules over noetherian
structures have free resolutions in their category (Theorem
3.5) and then the connection between d-bases and syzygies

is analized (Theorem 3.6 and its corollaries). As an

application at the end of section 3 it is investigated the
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relationship between d-bases and regular sequences;
Corollary 3.12 specializes to the main result of {9 1 and

also to new results, when applied to other d-bases.

The fourth and final section is devoted to the study of
double structures on a ring A and of modules over a double
structure. It is shown that the d~bases behave vexry well in
double structures (Proposition 4.6} and it is proved as a
main result (Theorem 4.9) that the two associated graded
objects to a module over a double structure have the same

component of degree 0 , say G, ; moreover they can be

0
given a graduation over the same group A in such a way
that for every 6&€ A the two homogeneous components of

degree § have the same image in the Grothendieck groups

of finitely generated Ggp-modules.

Of course the main application is to Hilbert functions
and this is illustrated by the description of two typical

situations.

It is a pleasure for me to express my gratitude to G. Valla,
T. Mora and in particular to U. Orbanz for valuable con-
versations on the subject of the present paper, and to the
Max-Planck-Institut for the hospitality while this work

was in progress.



§1. GRADED STRUCTURES ON COMMUTATIVE RINGS

et A be a commutative ring with 1; let I be a
totally ordered group, whose ordering is denoted by < ; let
G be a T-graded commutative ring with 1. Then let
v : A-{0} —> ' be a function such that T is generated by
Im(v) ; let F : A —> G be a function and assume that

the following properties hold

a1 F(a) EGv(a) for every a # 0
A2 F(a) = 0 if and only if a = 0
A3 In(F) =\__/G
YeT Y
24 vi{ab) sv{a)+v(b) for every a,b such that ab # 0
A5 v(ab) = v{a)+v(b) = F(ab) = F(a)F(b) for every a,b
such that ab # 0 .
A6 v(ab) <v{a)+v(b) =» F{a)F(b) = 0 for every a,b

such that ab # 0 ; ab = 0 = F{a)F(b) = 0

A7 v{a-b) s Max(v(a),v(b)) for every a,b such that
a#0,b#0,a#b

A8 v{a~b) = v(a) = v(b) =» F{a-b) = F({a)-F(b) for every
a,b such that a#0 , b#0 , a#b

A9 v{a~b) <v{a) = v(b) =» F(a) = F(b} for every a,b
such that ~a #0 , b#0 , a # b.

Moreover, if A and G aré. k-algebras over a field k , assume



A10 v(a) = 0 and F(a) = a for every ack-{0}.

DEFINITION 1: The quintuple (A.,T.v,G,F} with the properties

aAt,...,A9 (A1,...,A10) is denoted by A and called a
graded structure {(a graded k-structure) on A . If

A= (A, T,v,G,F), A' = (A,T,v,G',F') are graded structures
on A , they are said to be equivalent if there exists a

I'-graded isomorphism o : G —> G' such that goF = F' .

REMARK 1. Iet zq be the characteristic ring of A and
denote by (zq)* the group of the invertible elements of
zq . Then properties Al,...,A9 already imply that v{(a) = 0

and F(a) = a~1G for every ac€ (zq)* .

Namely by A3 there exists u€A such that F(u) = 1G ;

then 0 # F(1A) = 1G-F(1A) = F(u)'F(1A) = F(u-1,) =1 (we

G

used A5 and A6 ). So F(TA) = 1, and since 1,€6G

G
v(1A) = 0 . Now every element ats(xq)* is a sum of Tis p
hence v(a) 0 by A7 ; but if wv(a) <0 then

0 = v(1,) = vi(a.a~ ")y s vi(a)+v(a 1) <0 a contradiction. So

v(a) = 0 and by A8 we get F(a) = afF(1A) = a*1, .

REMARK 2. As before it is easy to see that properties
Al,...,A10 imply that wv(ca) = v(a) and F(ca) = cF(a)

for every a # 0 and every ce€k-{0}.



REMARK 3. In A5,A6,A8,A9 also « holds. It is an easy
checking; let us check « in A5 . By A4

v(ab) sv{a) + v(b) , but if v{(ab) <v(a} + v(b} then
F(a): F(b) = 0 by a6 ; but F(ab) = Fla) - F(b) by

assumption, hence ab = 0 by A2 a contradiction.

REMARK 4. Properties A1l,...,A9 imply that

v{a) <v(b) = vi{b-a) = v(b) and F(b-a) = F(b) for every
a,b such that ab # 0 .

Namely wvib~a) sv(b) Dby A7 , but if vi{b-a) <vi{b) then
vib) = v(b-a+a) § Max(v({b-a), v{a)) <vi{b) , a contradiction.

Now use A9,

EXAMPLE 1. Let (R,m) be a local ring, I an ideal and

consider the order function wv._ with respect to I , i.e.

I
if X€R, x # 0 , v (x) = n if xe1®-1™1 | 1et =1z,

vix) = -v_(x) , G= e (gr_(R))__ where
I neN T n
(gr (R))_ = In/In+‘i and define F : R —> G by the

n+1

following rule: F(0) =0 , F(x) = X€ /1 where -n = v{x).

Then (R,%,v,G,F) is a graded structure on R .

EXAMPLE 2, Let A = k[x1,...,xn] . et T =2 , G=A graded
by the total degree, where deg(x i) = q; € '  and consider

d : A~-{0} —> Z , the "total degree" function. Now, if f<a
£f = fd1+,..+fdn where fdi is a homogeneous nonzero

polynomial of degree di and d1<"<dn  then let F(f) = fd .
n



Then (A,Z,4,A,F) is a graded structure on A.

EXAMPLE 3. As before let A = k[x1,...,xn] . We give an order
< to the group 2? in such a way that (zn,<) is an ordered
group (we shall see later a classification of all such

orderings; see Theorem 2.5} . Let T = (zn,<) . Now, given

1 *n
se e X , we put v(M) = (rT,...,r JET

a monomial M = c*x n

1
and, given a polynomial £ , we may write it as a sum of
nonzero monomials £ = M1+"‘+Mr in such a way that
V(MT)'<"' <v(Mr} . So we get a I'-graded ring structure on A
and now let v(F) = V(Mr) and define F : A —> A Dby
F(f) = Mr .

Then (aA,I'yv,A,F) 1is a graded structure on A.

EXAMPLE 4. Let A = k{x,y,y—1} . We give an order to the

group zz in the following way: (a,b)>0eyZa+b>0 ; so

(22,<) is an ordered group (see the remark after Corollary 2.6).
If M= c~xayb we put V(M)=(é,b) and going on as in Example 3,
we get a graded structure on A . Here, of course, Im(v)

is the half-plane a 20 and we want to remark that in A it

is possible to find a sequence of monomials {M _} such

n" neEN
that Mn # 0 for every n and inf V(Mn) =0 .

Namely, it is possible to choose integers an,bn with an:>0

and lim Eﬂ = -/2 (see for instance Hardy-Wright "The theory
Dre 1 a b

of numbers"Thm. 36 p. 30) and then we put Moo= X By B,



If we allow "negative" valuations on "positive"” monomials
the same phenomenon can occur also on k[x,y] . Namely define

(a;,b) >0e/Za-b>0 and go on as before.

et now A = (A,I',v,G,F) be a graded structure and let M
be an A-module, T a I'-graded G-module. Then let
w: M-{0} —> T and ¢ : M —> T be functions and assume

that the following properties hold

M1 #(m) € Tw(m)

M2 #(m) = 0 if and only if m = 0

M3 Im(f) A_/T
vy ET Y

M4 wiam) £v(a)+w(m) f£for every a,m such that am # 0

for every m # 0

M5 w(am) = v(a)+w(m) =» g(am) = F(a) - §(m}) for every a,m
such that am # 0

M6 w(am) <v(a)+w(n) = F(a) - d(m) = 0 for every a,m such
that am # 0 ; am.= 0 =» F(a)g{m) = O

M7 w(m-n) £ Max(w(n), w{n)) for every m,n such that
m#0, n#0, m#n

M8 w(m-n) = w(h) = w(n) = g(m-n) = g(m) - g(n) for every
m,n such that m # 0, n # 0, m # n

M9 wi{m—-n) <w{m) = w(n) »'ﬂtm) = @#{n) for every m,n such
that m# 0, n # 0, m # n.

DEFINITION 2. The quintuple (M,I',w,T,#) with the properties

M1,...,M9 4is denoted by M and called an A-module. With
the same meaning we say that on the A-module M there is

a graded A-structure. The notion of equivalence given for



the graded structures on A easily extends to modules.

REMARK. It is clear that Remarks 2,3,4 after the definition

of A have analogous ones with respect to M .

DEFINITION 3. et A and M be as before and let NcH

be a submodule; let (B(N)) denote the sub G -module of T ,
which is defined by (#(N)) = o g(N) where
Y
Q(N)Y = {g(n)/win) = y, neN}u {0} . Then N = (N,I,w',(#(N)).,8"),
¥ o= i = i -
where w wiN—{O} and @' ¢[N ;, is a graded A-structure
on N , which is called the induced structure on N or the

spubmodule of M associated to N .

DEFINITION 4. Let M = (M,T,w,Tg), M' = (M',T,w)T',8') be

A-modules, A : M —> M' an A~homomorphism and A : T —> T!
a graded G-homomorphism such that w'{(A(m)) sw(m}) for every m
such that i(m) # ¢ . Moreover assume that
Fam) if w' (A(m) = w(m)
A(g({m)) =
0 1f w'{(A{m)) < wi{m)

Then (A,A) is said to be an A-morphism.

Of course this notion is suitable to define a notion of
A-morphism between two equivalence classes of A-modules,
according to Definition 1. Therefore, given a graded structure

A , we have described a category.



DEFINITION 5. We denote by € A the category whose objects

are the equivalence classes of A-modules and whose maps are

equivalence classes of A-morphisms.

At this point we are going to define another category.

DEFINITION 6. Let A be a commutative ring with 1 ; let

I' be a totally ordered group, whose ordering is denoted by
< ; let FA = {FYA}yel‘ be a set of additive subgroups of

A with the following properties

a FAcCF ,A if <y!

) Y=ty LAk

b FA+F ,ACF A

) , Y YT yry!

c) For every ac€iA, a # 0 , there exists a minimum vy

such that aEFyA (If A is a k-algebra over a field
k , then for every c¢€k~{0} the minimum is 0 by

definition).

Then FA is said to be a valued filtration of groups on A
and the triple (A,I‘,FA) is denoted by A* and called a

v-filtered structure on A .

DEFINITION 7. Let now A* = (A,P,FA} be a v-filtered structure

on A ; let M be an A-module and let FM ={FYM}Y€? be a

set of additive subgroups of M with the following properties

a') FYM_C_:FYM if y<y'
b! FAF MCF M .
) y v HEF
c') For every mEM , m # 0 , there exists a minimum vy
such that me¢ Fybl .



Then FM is said to be a valued A-filtration of groups on

M and the triple (M,F,FM) is denoted by M* and called an

A*-module or a v-filtered A-structure on M .

REMARK. The property c') implies that n FYM = 0 and
Y

UF.M =M.

Yy Y

DEFINITION 8. Let M* = (M,T,F ), M'* = (M',I,Fy,,)} be
A*-modules and let A : M —> M' be an A-homomorphism such

that A(FyM)gngn' . Then A 1is said to be an A*-morphism.

DEFINITION 9. We denote by GA* the category whose objects

are the A*-modules and whose maps are the A*-morphisms.

LEMMA 1.1. Let A and T©' be as before; then every graded

structure A on A gives rise to a v-filtered structure

A* on A . Conversely every v-filtered structure A' on

A gives rise to a graded structure (A')., on A . Moreover

a) ((A')g)* = A?

b) (A*), is equivalent to A .

PROOF. Let A = (A,l,v,G,F} and define

FYA = {a€A/v(a) sy} U {0} ; then it is easily seen that

FA = {FYA}yEP is a valued filtration on A , therefore
A* = (A,r,ﬁk) is a v-filtered structure on A . Let now
$ = = -
A (A,P,fa) . where Fh {FYA}YEP , be a v-filtered structure

on- A and if a # 0 let us denote by v{(a) the minimum vy



such that a€ FyA . We denote now by F;A =\;TZ;F7.A and

we put ng(A) = $ FyA/F;A . By using a),b) it is easy to see
that grp{(A) is a I'-graded ring. Now, if a€ A we put

in(a) = 0 if a =0 and in(a) = ac¢€ Foaf/Foa® i @ #0
and then it is easy to check that (A'), = (A,F,V,ng(A), in)
is a graded structure on A . Now a) is straightforward;

let us prove b} ; we have to produce an isomorphism

o ng(A) —> G such that oein = F . If we are given

a homogeneous element in ng(A) ; then either it is zero
and then o sends it to zero, or.it is of type in(a)

where v(a) = y. Then oa(in(a)) = F(a) and we extend it

by linearity. To see that it is well-defined one uses A9;

to see that it is a group homomorphism one uses A8; to see
that it is a ring homomorphism one uses A5, A6; to see that
it is surijective one uses A3; to see that it is injective one
uses AZ and to see that it is graded one uses Al. Moreover
A10 takes care of the situation when we are dealing with

k-algebras.

THEOREM 1.2. ILet A and T be as before and let be given

a graded structure A on A and a v-filtered structure

A* on A , which correspond each other according to Lemma 1.1.

Let now GA denote as before the category of equivalence

classes of A-modules and GA* the category of A*-modules.

Then G, and GA* are isomorphic.
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PROOF, We define two functors F : GA —_— GA* '

F*:GA*""‘"> GA-

DEFINITION of F : given an A-module M , we define F (M)

to be {(M,F,FM) where FM = {Fyn}yer and
FTM = {fmeM/wim) sylu {0} . If (A,A) : M —> M' 1is a mor-
phism of A-modules then ) is easily seen to define a

morphism of A*-modules between F(M) and FIM') .

DEFINITION of F*: given an A*-module M*, the definition of

F*M§* is parallel to the definition of (A'), in the proof
of Lemma 1.1, If X : M* —> M'* is an A*~-morphism, then we
have to define A : grp (M) —> ng.(M') and we do it in

the following way; A(0) = 0 and if xe:(qu(M))Y x#0
then x = m with 1n€FQM ; then we put

A(x) = A(m) in Fyu/F;M . To conclude it is now a matter of

easy checking.

In the following we feel free of interchanging the roles of

G and G

A and we use only the symbol 6

A* A"

EXAMPLE 5. Let A = k{XT""'xn} , P =% and FA = {F_pA}

91 s

where F__A = {f(x1,...,xn)/f(x1 ,...,xnniei(x1,...,xn)p}

P
where Q = (q1,....qn) is a fixed n-uple of positive integers.

Then (A,Z,FA) is a v-filtered structure on A .
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EXAMPLE 6. Let A = k[x,vy}, T =% , Fa

A = (x,yp) . Here ¢} fails, hence this is not a

= {F A where
(F_,A}
F
-p
valued filtration.

EXAMPILE 7. Let A = (A,7,v,G,F) be a graded structure,

let Yy €r and let A(-y) denote the guintuple
(A,r,vy,G(-y},Fy) where VY is defined by vy(a) = vi{a)+y,
G(~y) 1is the graded G-module defined by Gl»y)y, = GY"Y
and Fyta) = F{a} . Then A{-y) is an A-module for every
YET . Moreover if a€ A is different from zero, then the
multiplication by a is an A-wmorphism of A(~-y) in

A{-y+v{a)) (here we used the terminology of v-filtered

structures).

BASIC EXAMPLE 8. Let A = (a,I',v,G,F) be a graded structure

and M = (M,T',w,T,8) an A-module. Let us choose

{m1,.2.,mr} to be a set of nonzero elements of M ; let

A; be the free module of rank r over A , whose canonical
base we denote by (e1,...,er) . Let w, = w(mi) and let

w' : A¥-{0} —> I' be defined in the following way

w+(a1,...;ar) = max {v{ai) + wi}
ai#O
To w+ we associate a filtration on A¥ as in the definition
of F (see the proof of Theorem 1.2); this turns out to

be a valued filtration. Then we get an associated graded



- 12 -

r

G-module, which turns out to be ® G(—wi) and a map
i=1

+

r
F' : A" —> © G(-w,) which is defined by F'(a,,...,a ) =
i=1* T
= (ﬁ(aT);-..,?(ar)) where

+
Fla.) = 0 if ai = 0 or v(ai) + wi< ] (a1,...,ar)
i R _ o+
F(ai) if v(ai) + w, =w (a1,...,ar)

r v
We denote by L(w1,...,wr) or by e A(—wi)) the A-module

i=1
r
(A;,P,w+, o G(~wi),F+) . Then the A-homomorphism
i=1
A : AT —> M defined by A(ei) = my is an A-morphism of

L(w1,...,wr) in M and the corresponding graded G-homomor-

x

phism A : o

i=1 .

{hexre (e1,...,er) is the canonical base of ® G(~wi)) .
, i=1

This morphism (A,A) : L(WT""’wr) —~>M will be refered

G(*Wi) —> T is defined by Afe;) = ¢(mi)

to as the canonical morphism associated to my,...,m. .

DEFINITION 10. An A-module [ is said to be finite free

if it is isomorphic to an A-module of type L(WT""'Wr)-

DEFINITION 11. A graded structure A = (A,TI,v,G,F) is

called noetherian if A and G are noetherian. An A-module
M= (M T,w,T,§) is called finite if M is a finite A-module

and T a finite graded G-module.

Henceforth, given a graded structure A = (A,I',v,G,F) ,

we shall denote by T°(A) = Imv = {yE€ T/GY # 0} , so that
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'°(A) is a generating subset of I'' as we stated at the

very beginning. In the same way, if M is an A-module,
we define T°(M) . Of course, if T 1is a finitely generated
group and T'° is a subsemigroup, T° need not be finitely

generated; however we get

PROPOSITION 1.3. Iet A= (A,T,v,G,F) be a noetherian

structure. Then

a) T®{A) generates a finitely generated semigroup

b) If moreover G 1is an integral domain, then T°(A)

is a finitely generated semigroup.

c) ' is a finitely generated torsion—free group, hence

isomorphic to z® for a suitable n .

PROOF. By [ 31 G is a finitely generated Gy-algebra.

So let G = GO{X1....,xrl where x; 1is homogeneous of
degree Yy and different from zero. Then clearly

I'° (A) S < Yqreer Y > (Here <...> denotes the semigroup
generated by ... ) and if G 1is an integral domain

T?(A) = <Yqr++-s¥p>. Now T is also generated by
{Y1""'Yr} and since it is totally ordered, it is torsion-

free.

We observe that if A is noetherian and TI'° is finitely
generated, then G need not be noetherian as the following

example shows.
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EXAMPLE 9., Let A = kiIx,y,z] , T = !2 ordered by

(a;b) >0 if either atb>0 or a+b 0 and b>0 ,

#

and consider the following filtration:

Fp,qA=0 if either p<0 or g<0

FO,OA = k

Fp,qA = k-vector space generated by {xaybzc/a+b+c‘sp+q ’
bsqgl if g>0, p20

Fp’qA = k-vector space generated by {xaybzc/a+b+c P,

atbsp-1} if q =0, p>0 .

Then we get a valued filtration on A and TI° =:N2

generated by {(0,1),(1,0)}, but the associated graded ring
is not noetherian. Namely v(x) = (0,1),v(x2) = (1,1} ,.0.s
v(xn) = (n-1,1) hence the initial forms of " are part

of a minimal set of generators of G as a k-algebra.

In the next section we shall describe the orderings on 7z ’
but now let us investigate another fundamental aspect of the

theory.

If A 1is a graded structure, M = (M,P,FM) an A-module
and N = (N,P,FN) a sub A-module of M , then

= {FYN} where FYN = Fynf\N and the natural filtration

FN YeT

on M/N is FM/N = {Fy(M/N)} where Fy(M/N) = (Fyan)/N ?

YET
however this need not be a valued filtration, as the

following easy example shows.
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EXAMPLE 10. Let A = k[x], I' = 2, v(a) = “Vix) (3

(see Ex 1). This gives a valued filtration on A , hence
a graded structure on A . Let I = (X*Xz) , A = A/I and
on A we consider the induced filtration as we explained
before. It is clear that X€A/I belongs to Fﬁi

for n<0 ; hence FK is not a valued filtration.

In order to overcome this difficulty and for many other
purposes, which will become clear later on, we introduce

the following

DEFINITION 12. Let A Dbe a noetherian structure and M

a finite A-module on M . Assume that for every finite free
A-module L = (L,...) , every morphism X : L —> M,

every FYL with Y €T U{~=} (here we use the convention:
F_ L = (0)) , every strictly decreasing sequence {Yn}nenl
of elements of TI°(M) and every submodule N of M,

we have

7 NGFEL) + N+ F M) = \(FL) +N .
n€N Y Yn Y

Then M is said to be a Krull module. Moreover a noetherian
structure A such that every finite free A-module is a

Krull A-module is said to be a strong Krull structure.

We are going to use the symbol M/N for the triple

{M/N,T,F as decribed before.

M/N
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PROPOSITION 1.4. Iet A be a noetherian structure,

M a Krull A-module and let N be a submodule of M .

Then

1) N is a Krull module .

2) The filtration induced on M/N is wvalued, hence

M/N is an A-module and T°(M/N) <T°(M)
3) M/N is a Krull A-module.

4) If A 1is a strong Krull structure and I a sub-

module of A , then A/I is a strong Krull structure.

PROOF. 1) Obvious

2) Iet x€M-N and let Yy = w{x) ; then XGFY1M+N .

If x ¢ F;1M+N then w(x) = Yy i if xEZF;1M+N then

X = X,*n with Yy = w(x2)<-y1 and so on. If this

procedure does not stop, we get a strictly decreasing sequence
{Yn} of elements of T° (M) such that xEﬁg(N+Fng) =N ,

a contradiction. Therefore the procedure stops after a

finite number of steps and it yields the valuation of X .

let now vy = wW(X) ; then Xx€ (FYM+N) - (F;M’fN) hence

Xx = ytn with w(y) = vy and this proves that TI°(M/N) TI'°(M).

3) Let L= (L,...) be a finite free module, let

A: L —> M/N be a morphism and let {yn} be a strictly

nelN
decreasing sequence of elements of TI'°(M/N) , which is
contained in TI°(M) by 2). Let p : M —> M/N be the
projection and let o : L —> M, be such that X = pe°a

(this is possible since 1L 4is free). Finally let N' be
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a submodule of M such that NcN' . We get

oo Jon

(A(FyL) + N'/N + Fyn(M/N)) =

fl ' =
0 (P(a(FYL)) + p(N') + p(FYnM))

n v - ¥
p(n(a(FyL) + N' + FYnM)) p(Q(FyL) + N')

i

i

A(FyI;) + N'/N .

4) Every finite free module over A/I is a gquotients

of a finite free module over A , so we can apply 3}.

PROPOSITION 1.5. et A= (A, I',v,G,F} be a Krull-module

over itself and assume that G is noetherian. Then A

is noetherian.

PROOF. Let I be an ideal of A ; then there exist
a1,...,ar€I such that F(I) is generated by
{F(a,'l),...,F(ar)} . Let J = (a1,...,ar)51 and let

X€I with v(x) = vy . Then F(x) = XRiF{ai) with

Ri = 0 or Ri = F(ri) with v(ri) + v(ai) =y .

Then by A8,A9 we get F(x)=F(er_ai) , hence

V(X-Xriai) = Yy <Y - Now we replace x by x-»Zriai and
we go on with this procedure: If we get 0 after a finite
number of steps, we are done. Otherwise we get a strictly

decreasing sequence of elements of TI'®°(A) such

{Yn}n+m

that x¢€ MJ+FY A) , so that x€J by the Krull-assumption.
n n
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LEMMA 1.6. et A be a graded structure and M an

A-module. Assume that T°(A) 0 ; then

a) FyA is an ideal for every vye€eTl .

b} FYM is a submodule of M for every Y€T .

PROOF. It is straightforward.

PROPOSITION 1.7. let A = (A,T,v,G,F) be a graded

n

structure with A local noetherian, T°{A) = -N, F_nA =1,
where I 1is an ideal. Then
a) Every finite A-module M = (M,...) such that FM is
' o= = TP ;
cofinal to Fy {F—pM}pEIi where F M=TM, is a Krull

module.,

b) A 1is a strong Krull structure.

n+1 , which is well-

PROOF. We have seen that Guo IM/1
known to be noetherian. Moreove? the Krull property for A
is nothing but the standard Krull intersection property for
ideals of A (use Lemma 1.6). The same argument extends to

modules with the given property, in particular to finite

free modules and we get also b).
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§2. TYPES OF ORDERINGS ON 2Z" .

Within this section we adopt the convention that,
given a group G, an "ordering < on G " means a "total

ordering < on G such that (G,<) is an ordered group".

DEFINITION 1. An ordering on a group G is said to be

continuous with respect to a given topology on G , if for
every pE€G such that there exists a neighborhood (nbh.)}

U, with %gﬁ,tanei and the same for G .

In this section we consider zn,mn,nfi as additive groups
and topological properties are understood as properties of

the euclidean topology.

LEMMA 2.1. a) Every ordering on 2?  extends uniguely to

an ordering on mn .

b) Every ordering on @ is such that (G}n)+ and (Qn}-

are convex sets; in particular it is continuous.

PROOF. a) 1If pEG}n we take an m in 3N+ such that
mpffzn and of course we say that p is positive (negative)
if mp is positive (negative).

b) If p,q €@ ¥ and p<gq , then the segment pg is
given by p+{1-t)(g-p) 0s5ts<1, t€@ , hence, again by
clearing positive denominators, we see that it is contained

in (@7 .
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REMARK. On nf‘ there are many noncontinuous orderings.
For instance let us take n = 1 and consider a base

E of IR as a Q-vector space; then we give a total order
to E and if reR r = Eikiei only a finite number

of eis is involved, hence we may associate to r the

"first" nonzero coordinate; call it A(r}) and say that

r>0 iff A(xr) >0 .

DEFINITION 2. Given an ordering on mn ;, we denote by V(Qn)

or simply by V the set of points pE:Rn s.t. for every nbh.
Up of p , both Up!}(mn)+ and Up(](mn)~ are nonempty.
LEMMA 2,2, V 1is a subvectorspace of R® of dimension

n-1.

PROOF. To show that V is a subvectorspace is an easy
excercise. Now let us consider the function

8 : RP-v —> {~1,1} defined by s(p) = 1 if there exists
anbh, U, of p such that U,N @’ ;o sp) = -1

if there exists a nbh. Up of lp such that Upr!@nc:(Qn)" .
Now s is continuous if we endow {-1,1} with the discrete

topology. If dimV<n~-1 , then ®R" -V  is connected hence

Im{s)

]

{1} say. This implies that in o" we can find
antipodal points inside (mn)+ , & contradiction. If

dimV =n , then VvV = R" ; however if {e1,...,en} is
the canonical base of R" and e* denotes the vector of

i

the set {ei,—ei} which is in (Qn)+ . then e?,...,eg
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generate an n-dimensional polyhedron which is in (Qn)+

by Lemma 2.1 b}, a contradiction.

PROPOSITION 2.3. Every ordering on @ extends to a

continuous ordering on r" {The extension is not

necessarily unique).

PROOF. Given an ordering on o we get the set V of
definition 2, which is a subvectorspace of Rr" by Lemma 2.2,

hence we may choose a vector v, € R® which is orthogonal

1
to V and inside s {1} (see the proof of Lemma 2.2).
Now the extension of the ordering to R -V is uniquely
determined by the requirement that it is continuous and
it can be expressed by saying that for every vE€ R® -v

v>0 iff vev, >0, where "." Jdenotes the usual scalar

product. We denote by V the sub-@~vectorspace V0 Q}n

@
of @ and observe that dimm Vﬂ} $dimp V = n-1 .
If d:i.mv(D = n-1 then we are exactiy in the same situation
as before, but with dimension one less.
If dim VQ = d<n-1 , then we denote by —\?Q - the R ~-vector-

space generated by V and we choose an orthogonal base

@

o 4 n_
{VZ'f”'Vn—d} of the space Vp AV . Of course (V VQ) nE =g

hence we can say that for every vEVJ\'iQ , v>0 1iff the

first nonzero coordinate of the vector (v~v2,.. .,v-vn_d)
is positive. Now we have to extend the ordering to "?Q
and we are exactly in the same situation as at the beginning,

but with dimension n - 4 less.
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Therefore this procedure ends after at most n steps and
clearly gives a continuous ordering on r" . which extends
the given-gne on @7 . It is also clear by the construction

that every time we meet a situation where dime <dimV ,

we loose the unicity of the extension.

EXAMPLE 1. ILet us consider the Example 4 of the first section.

There v, = (¥2,1) and V = {(x,y)//2x+y = 0} hence
Vm = {(0,0)} ; if we take a vector v in nﬁz—v then

v>0 iff v-v1 >0 , but i1f we take vEV then we have

two choices. Namely, let vy, = (1,-/5) ;: then we can say

that if veEV ,v>0 iff vev,>0 or v>0 iff v'(—v2)>0;

2
both extend continuously the ordering on m2 ., which is

obtained by extending the given ordering on z2 .

DEFINITION 3. The ordering on Efl(mn,zn) defined by the

rule: (a1,...,an):>0 iff the first nonzero coordinate

is positive is called lexicographic and denoted by lex.

PROPOSITION 2.4. Let < be a continuous ordering on R .
Then there exists an ordered isomorphism

a s (R?,<) — (R%,1ex) .

PROOF. Of course < induces an ordering on mn , hence we
get a vector space V of dimension n—~1 (lemma 2.2) hence

a vector v, orthogonal to V and such that if v¢€ r" -v ,

1
v>0 iff v.v,>0 (see the proof of Proposition 2.3.)
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Let {w1,..., } be a base of V and denote by V

wn—1

the set Qw1+...+mw which is a @-vectorspace of dimen-

n-1
sion n-1 . Now we repeat the same argument for the couple
V,? as wé did for Iﬁl,mn . Bventually we get {v1,...,vn}
which is an orthogonal base of ®R"Y  with the property that
v>0 iff the first nonzero coordinate of the vector
(v-v1,...,v-vn) is positive. To conclude it is sufficient
to put oa(v) = (v-v1,...,v-vn) .

n

THEOREM 2.5. Let < be an ordering on @ . Then there

exists an integer s with 1s$ssn and an ordered inijective

homomorphism o : (@%,<) —> (R®,lex) .

PROOF. Let v, be chosen as we did in the proof of Propo-

sition 2.3 ; we give it the new name u1 . Looking again at
the proof of Proposition 2.3, we see that Vore--Vy_ g @are
orthogonal to V@ , hence if veu, = 0 then vev; = 0

i=2,...,n~d . 50 the next vector which is relevant to

the ordering of mn is ; we give it the new name

Vh-d+1

4, . Going on in this way we eventually get a subarray

(u1,...,us} of (v1,...,vn) where u, = v, . Now we consider
the homomorphism o : (mn,<) —_— (Efs,lex) given by
alv) = (v‘uv,..,,v.us) and we get that o is injective

since v'lﬁ =0, i=1,...8 implies v-vj =0, 3= 1,.0.,4n

and it is ordered just because of the given description.
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DEFINRITION 4. Let < Dbean ordering on z™ (") . Then, the
minimum number s such that there exists an injective

homomorphism a like in Theorem 2.5 is denoted by s(<). We

say that < 1is of lexicographic type if s(<) = n.
REMARK. Of course < 1is archimedean iff s{<) =1 .

EXAMPLE 2. Let A = k{x1,...,xn} where deg(xi) = 1 for
i=1...,m and let T Dbe the free group generated by
{x1,...,xn} . In many problems arizing in computer algebra
the following total ordering on [' is considered: if

are terms i.e. monomials with coefficient 1 .

if either degM

M, /M,

then M1 < M2

= deg Mz and M1 <M2

<...<x . If we identify T with z"

< deg M or

1 2

deg M in the lexicographic ordering

1

generated by X,
we see that the above given ordering is of lexicographic
type and the vectors u1""un are

U1 = (1,1;..-,1); Uz =' ("n+1,1'...'1), u3 = (0,"'1’1*’2,1,...,1)...

cee Uy 4 = (0;e..,0,-2,1,1), uy, = (0,...,0,-1,1) .

REMARK. In computer algebra the most important orderings

on the set T of the terms of A = k[x1,...,xn] are the
so-called "term—~orderings®. A term-ordering is defined to

be a total ordering on T such that a) For every ME€T,M # 1
then 1<M and b) If N<M and M'€T then NM'<MM' .
But this simply means that the free group I denerated by

{x1,...,xn} is given a total ordering such that it becomes
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an ordered group and Tz 0 . So our description gives a

full classification of all the term-orderings on A .

(for some more details see Robbiano, L.: Term orderings on
the polynomial ring. Preprint).

n

COROLLARY 2.6 Iet < be an ordering on Z , let

u1,...,ut be elements of Zn and FT"”’Ft be finitely

generated non negative (i.e. contained in (2™)7 v {0}

(ui+Fi) is well~-ordered.

t
sub-semigroups of z". Then E = U
i=

1
PROOF. We may assume t = 1 , hence that E itself is

a finitely generated non-negative semigroup of 2" . We
extend the ordering < to @™ and we consider the injective
ordered homomorphism o : (mn,<)-~> tms,lex) of Theorem
2.5, so that we may assume that E is a finitely generated
non-negative subsemigroup of {IRs,lex) . Let us take a

subset FCE,F # § . We may consider the integer ¢t ,

1stss such that every element of F has the first &-1
cooxrdinates zero, and there exists an element in F having
the tth-coordinate different from zero. If we denote by

m the projection of R® to the tth~factor, since R°
is ordered lexicographically, we are reduced to prove that
m{F) has a first element. On the other hand = (E} turns
out to be a finitely generated non-negative semigroup

of TR with the usual ordering. If r <€ E it is therefore

sufficient to prove that {r'€E/r'sr} is finite and this is

clear since R with the usual ordering is archimedean.
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REMARK. Let us consider again the Example 4 of the first

section. The map o of Theorem 2.5 is given by
@ : (22,<) —> (R,<) alx,y) = /2 x+y

so that < is archimedean. Again by using Thecrem 36 p. 30
of Hardy-Wright “The teory of numbers”, we can find a

. 1
sequence (xn,yn) with x >0 and 0c< ﬁ?xn-fyn< ;; .
)+

This implies that with respect to this ordering (xz is

not a finitely generatedsubsemigroup.

THEOREM 2.7. Let A be a graded noetherian structure,

such that T°(A) 20 . Then every finite A-module is a

Krull-A-module; in particular A is a strong Krull-structure.

PROOF. Let M = (M,T,w,T,8) ; then there is a surjective
graded homomorphism giG(”Yi) ~—~> T , hence

r° (M) S—'.E(-—yi-tr"(A))1 and T'°{A) generates a finitely
generat;é1subsemigroup of T (see Proposition 1.3). Since
r°(A) 20 we get from Corollary 2.6 that T°(M) is
well—~ordered so that in T1°(M) there are no strictly

decreasing sequences and we are done.
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§3. DISTINGUISHED BASES .

We start this section with the following fundamental

DEFINITION 1.  Let A = (A,T,v,G,F) be a graded ncetherian

strxucture, let M = (M, T,w,T,8) be a finite A-module and
let LTS be nonzero elements of M . We say that
{mj,...mr} is a distinguished base (d-base) of M if every
nonzero element m of M can be written in the following

way:

r
m = Z;am, where a, €A and for every ic¢ {1,...,x} such
PR i

that a; # 0 , wim) Zv(ai) + w(mi)

REMARK 1. By using the axioms M4,M7 it is clear that
the condition w(mT;:v(ai) + w(mi) can be replaced by:
wim) = Max(v(ai) + w(mi)) where the maximum is taken over

the set of indexes i such that a, #F 0 .
REMARK 2, When we say that {m1,...,mr} is a d-base,
we mean that it is a d-base of the induced structure on

the submodule generated by {mj,...,mr} .

THEOREM 3.1. Let A:M,m1,...,mr be as before and let

us consider the following conditions

i) {m1,...,mr} is a d-base of M .

ii) {ﬁ(m1),....ﬂ(mr)} is a base of T as a G-module,.
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Then 1) implies ii) and if M is a Krull-module they are

equivalent.

PROOF. i) = 1ii) Let h€T be a nonzero homogeneous

element of degree vy ; then h = @#(m) where w(m) = v .

We write m = I:aimi .according to definition 1 and we let

I be the subset of {1,...,r} of the indexes 3j's such that

w(m) = V(aj)+w(mj) . By using the axioms we get

g (m)

L Fla,)f(m.)
JET J J

Now we assume M +o be a Krull-module and we prove ii}=1i).
We consider the following subgroups of M

m_ . Of course U SF M

U .
FY—W(mr) o Y° v

Y o Fy—w(m1).m1+“'+

and we are done if we prove that equality holds for every
YET . For, we take the finite free module L(w(m1),...,w(mr))

(see Example 8 and Definition 10 of the first section) and

we consider the homomorphism A : AY —> M defined by

A(a1,...,ar) = Xaimi , which gives rise to a morphism

- S r =
A s L(w(m1),...,w(mr)) > M . Now X(FyA ) UY and

since M 1is assumed to be a Krull-module, it will suffice

to show that F _MS N(U_+F_ M) for a suitable decreasing
Y n ¥ Y

sequence ,YnEZF°(M) . S0 let m be a nonzero

{Yn}nEN
element of M such that wi(m) sy ; we know that

x
g(m) = I R, ¢(mi) where either R, =0 or
i=1 *

degRy = w(m) - w(m;) . The nonzero R}s are of the form
F(ai) with v(ai) = w{m) - w(mi) ; therefore

g(m) = ﬁ(!:aimi) where the summation is taken over the
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set of indexes 1i's such that Ri # 0 . Therefore
Y4 = wim—-Za,m,) <w{m) , whence me€yU + F M . Now
i Yq
we apply our argument to m »Z:aimi and so on, so that

we get the required decreasing sequence and we are done.

As a straichtforward consequence of this theorem we get

COROLLARY 3.2. If A 1is a noetherian graded structure,

then every finite Krull-A-module has d-bases.

REMARK 3. If we look at Definition 3 of section 1 and at
Proposition 1.4, it turns out that Theorem 3.1 yields a
criterion for "computing" the quotients of the

Krull modules. See also Proposition 4.6 of the last section.

LEMMA 3.3. Let M = (M,T,w,T,8), M' = (M',T,w',T',8")

be two modules over a noetherian graded structure A . Let

(A,A) : M' —> M be a morphism and let K be the induced

structure on ker XA . Consider the following conditions

i For b FM') =F M.,

i) or every y€F;A(Y) y

ii) M'/K is a v-filtered structure on M'/Ker (i) and
{A,A) induces an isomorphism (N,R) ¢ M'/k —> M .

iii) A is surijective

Then i) e ii) =iii) .

PROOF. Condition 1ii) is equivalent to the condition: - A

induces isomorphisms XY : FyM’/(FyM'flKer(A)) — FYM
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whence i},1i) are clearly equivalent, while the impli-

cation i) =1iii) follows directly from the axioms.

REMARK 4. Of course conditions i),ii) c¢an be expressed

in categorical language by saying that (A,A) is an

epimocrphism.

EXAMPLE 1. A =(A,Z,FA) be the v-filtered structure on
= _ - - n

A = kix] , where FA {F_nA}nEz F_nA {x) and let

J Dbe the induced structure on (x) . The A-homomorphism

At A—> A defined by (1) = x—x2 extends to a morphism

(A,A) : A(+1) —> J . Now the associated graded module in
A(+1) 1is isomorphic to A(+1) (where A is graded by
deg(x) = -1) and the associated graded module in J is
isomorphic to (x} . Then it turns out that

A : A(+1) —> (x) 1is defined by A(1) = x , hence A is
surjective, but FOA = A, Fo(x) = (x) and A(FOA}c:FO(x).
So in general iii) does not imply i) in Lemma 3.3. However

we have:

LEMMA 3.4. Let A be a noetherian graded structure, let

M be a finite Krull A-module, let Mypese My be elements
of M and put w, = w(mi) i=1,..0.yr . Let (Xx,A) be

the canonical morphism from L(w1,...,wr) to M associated

to my,...,r_ (see Section 1 Ex. 8). Then i),ii) ,iii) of

Lemma 3.3 are equivalent to the condition

iv) {m1,...,mr} is a d~-base.




- 31 -

PROOF. iii) = i) Let m€M , m#¥ 0 and put vy = wim).
Since #(m) = ¢ (1) for a suitable 1€A" , we get

AT (1)) = #(A(1)) and w'(1) = wim) = y . Therefore,
if m, denotes m—-A{(l) , then w(m1) <y . Now either
m

1 T 0 and we are done or we repeat the same argument

for m, and we get 1 € A¥ such that w+(11) = w(mT} <y .

1
Therefore wi(m-A(1+1,)) <w+(m1) <y and w (1+1,) = w(l) =y .

Going on in this way we get a strictly decreasing seguence

{Yn}nEIQ such that Y, € T°(M) and

n

r
meN(A(FA) + F M
n( { ¥ ) y )

A (F. a5
n Y

where the last equality follows from the Krull-type assump-

tionon M.

Now the equivalence between iii) and iv) follows from the

definition of ) and from Theorem 3.1.

THEOREM 3.5. If A 1is a noetherian graded structure and

M is a finite Krull A-module, then M has a free resolution.

PROOF. Since every submodule of a finite Krull A-module is
also finite Krull, the proof is done if we can show that for
every finite Krull A-module N there exists a finite free
module L and an epimorphism (A,A) : L —> N , because
then we replace N with K , the induced structure on
Ker A , and so on.

Now N has a d-base by Corollary 3.2, herce we are done

by using Lemma 3.4.
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THEOREM 3.6. Let M = (M,T,w,T,¥), M' = (M',T,w',T',8")

be two finite Krull—-modules over a noetherian graded

structure A and let (A,A): M' —> M be a morphism.

Then the following conditions are equivalent

1) (A,A) is an epimorphism.
2) A 1is surjective
3) A 1s surijective and for every homogeneous nonzero

element o € Ker{(A) , there exists an element

s € Ker(A) such that @g'(s) = o .
4) A is surjective and there exist a homogeneous base

{ogreses0.} of Ker(A) and elements s,,...,S

of Ker(i) such that ﬁ’(si) =0, 01 =1t

PROOF. 1) =»3) It is clear that X is surjective. Let

now ¢ be a homogeneous nonzero element in Ker(A) . Then
o =¢'(m') for a suitable m' , and A¢g'(m') = 0 . So
either A(m') = 0 and we are done, or w{ix(m'})) <w'{m'} .
By assumption A(m') = A{m") with w'{m") = wi{A({m")) =

= w{A{m')) <w'(m') . Therefore m'-m" € Ker{\) and

ﬂl (ml,_m“) - gl (ml) = g .

3) =»2) Let t be a nonzero homogeneous element in T
of degree y . Then t = @g(A(m')) for some m'€eM' . If
w'{m') =y then #(A(m')) = Ag'(m') and we are done.

If w'(m')>y then Af'(m') = 0 , hence @#'(m') € Ker(A) ;
let m€ Ker{)) be such that w'(m) = w'{m') >y and

g'(m) = #'(m') . We put m, = m'-m so that we have
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t = ﬂ(k(mT)) with vy, = w'(m;) <w'(m') . After a finite
number of steps like this we get Y5 2 Y . otherwise we
could construct a strictly decreasing sequence

{Yn}nefﬁ r Y, €T°(M') such that

m' eg(Ker(k) + FYnM') = Ker(r) , since M' 1is a Krull-
module; but then we get t = g(A(m')) = 0 a contradiction.

2) »1) The proof of this implication would be exactly the

same as the proof of 1iii)=1i) in Lemma 3.4 if we knew that

A(X({(FP M') + P M) = 3{(F M")
for every vy €T U{-=} and every strictly decreasing sequence
o
{Yn}nE:N of elements of T°(M} .

Now M' is a Krull-module, hence it has a d-base, say

{m;,...,m;} by Corollary 3.2.

Let Wy = w' (m;_) s L = 1,40..,r and consider the canonical
morphism (§,4) : L(w,',...,wr) —> M! associated to the

elements m.‘l PR ,m__;. . We get

' @ : r M (2) r (3) F M
g(l(FyM ) o+ FYnM) n(;\(a(FyA )y o+ FYn ) A(cS(FyA }) A ( v )

where (1) and (3) follow from Lemma 3.4 applied to Mf

and (2) follows from the fact that M is a XKrull-module.

3) > 4) Obvious

4) > 3) Let o be a homogeneous nonzero element in Kex{A)



- 34 -

of degree +y . Then we can write ¢ = zgioi where

0 # giEIG are homogeneous, deg 94 + deg o, =Y and

the cis are among the elements of the base {01,...,at}
of Ker(A) . But then it follows directly from the axioms

- ¥ =
that o g (Xaisi) where 95 F(ai) ¢ 9y

= G'(si) .

COROLLARY 3.7. With the same assumption as in Theorem 3.6.,

let mT,...,mr be elements of M such that

{ﬁ(m1),...,¢(mr)} is a base of Im(A). Then all

the conditions of Theorem 3.6 are equivalent to

5) {mT,...,mr} is a d~base of M.

PROOF. Since {¢(m1),...,¢(mr)} generates Im(A) , Theorem
3.1 tells us that {m1,...,mr} is a d~-base of M if and
only if Im(A) = T i.e. if and only if condition 2} of

Theorem 3.6 holds.

COROLLARY 3.8. Let A be a strong Krull structure. Let

M= (M,T,w,T,8) be a finite Krull A-module and Mgy eee M

be nonzero elements which generate M . Let w, = w(mi),
i=1,.0.,r and let (A,A) : L(w1,...,wr) —> M Dbe the

canonical morphism associated to Myreee M, . Then the

following conditions are equivalent

1) (A,A) is an epimorphism

2) A is suriective




- 35 -

3) For every homogeneous nonzero element g £ Rer(A) ,

there exists an element s €XKer()) such that ¢+(s) = g

4) There exists a homogeneous base {01""'Gt} of

Ker{A) and elements 51,...,stEEKer(x) such that

+ .
ﬁ (Si) :di I l=1"‘u(t »

5) {m1,...,mr} is a d-base.

PROOQF, It is a consequence of Corollary 3.7 and Theorem
3.6, since the conditions "{¢(m1),...,¢(mr)} is a base of
Im(A)" and " ) is surjective" are fulfilled by the very

definition of (A,A) .

EXAMPLE 2. Let A = k[x,y,2z] , I = (f1,f2) where

£,= x-y' , £, = 2%xy® , 1 =%, V() = deg(f) . We get

a graded structure A = (A,r',v,G,F) on A , where T°(A) = WN
G = A , F(f) = H(f) , where H{(f) is the form of £ of
maximal degree (see Ex. 2 of section 1). Let J be the

induced structure on I and let (x,A) : L{4,4) —> J

be the canonical map associated to fT,f2 . Let

f = z4—x3y2 = --xzyza‘:',l + (zz+xy3)f2 and

g=yf = yz4—x3y3 = ~x2y3f1 + (y22+xy4)f2 . We have

Flg) = —x3y3 = sz(fz) = A(O,xz) . Since f£,,f, is a regular

sequence , g c¢an be written as a combination of f1,f2,

only in the following way g = (rf2~x2y3)f1 + (yzz+xy4~rf3)f2 ,

r€A . Therefore g = Mrfz—xzyB, y22+xy4»rf}),rEA .

Claim: for every choice of r €A we have

w+(rf2—x2y3,yzz+xy4—rf1)> vig) .
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For, it is sufficient to show that for every choice of reAaA ,
deg(rfz-x2y3):>2 ; it is clear that the minimum is attained

when r = -x and it is 3 .

Now the morphism (A,A) certainly satisfies the hypotheses
of Theorem 3.6 , hence the conditions Y (x,A) is an epi-
morphism" and " A is surjective” are equivalent. However

F(g) € Im(a) , v(g) = 6 but gE¢ A(F7A2) - A(F6A2) .

Another remark is that a d-base in this example is

2 4 3 2
f5 = xsy-z6 . So we may consider the canonical map
(6,A) + L(4,4,3,5,6) —> J associated to f1,f2,f3,f4,f5 .

Then A is surjective by Corollary 3.8 and

g = 6(0,0,0,y,0) € 5(F6A5) .

EXAMPLE 3. ILet A = (aA,r,v,G,F) where A = k[x], T =% ,
v{f) = deg(f) and consider the induced morphism

A{(-1) —> A by the identity map A —> A . Then A =0

and {1} 4is a d-base of A , but the conclusions of Corollary
3.7 cannot be applied to this situation, since

F(1) € Im(A) .

Let now A be a graded structure, M = (M,T,w,T,#) a finite

A-module.

DEFINITION 2 - Let m1 ¥ A I ] 'mr € M . We Say that (m.] A g Imr)

is a stepwise d-base if {m1}, {m1,m2} peens {m1,...,mr}
are d-bases. We say that {m1,...,mr} is a strong d-base if

every subset of {m1,...,mr} is a d-base.
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In the following, if A = (A,I',v,G,F) is a graded structure
and x1,...,xr€EA ; we denote by x the sequence

XpreoorX by {x} the set {X1""’Xr} , by (x) the
ideal generated by {x} and by F(x) the sequence

F(x1),...,F(xr) .

THEOREM 3.9. Let A = (A,7,v,G,F) be a strong Krull

structure and let x1,...,erEA . Then the following conditions

are egquivalent

1) X is a regular sequence and a stepwise d-base.

2) F(x) is a regular sequence.
r-1
PROOF. 1) =2} Let g.F(xr) = I igiF(xi) where

1
9r9yreerr9,._4 are homogeneous , g # 0 and

deg{9g) +'v(xr) = deg(gi) + v(xi) for those i's such that

9; f 0 . This implies that (91,...,gr_1,-g} is a homogeneous
syzygy of F(x1),...,F(xr) , hence it can be lifted to
(a,,...,a) such that Za;x, = 0 and w (a;,...,a.) =

= deg(g1,...,gr_1,—g) = degl(g) + v(xr) by means of

Corollary 3.8.

Now a. # 0 and arez(x1,...,x ) since X 1is a regular

r-1

seguence; moreover {XT""'X } is a d-base, hence
r-1

a, = ? ibixi with v(ar) = M?x(v(bi) + v(xi)) . Therefore

g = F(ar)EZ(F(x1),...,F(xr~1)) .

r-1

Of course the other steps in the proof that Fi(x} is a.

regular sequence can be proved in the same way by the very
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nature of the assumptions.

2) »>1) We prove that {x} 1is a d-base . The syzygies of
F(x1),...,F(xr) are generated by the trivial ones, which
can be lifted to the corresponding trivial syzygies of

L INERRYE Wy hence we are done by Corollary 3.8. Of course
the same remark as before shows that

{xl}' {x1,x2}....,{x1,...,x } are also d-bases. Now

r-1

we prove that arer'(x1,...,x ) implies a. € (xq,...,xr) .

r—1
We know already that x1,...,xr_1 is a d-base hence
r—-1
ax, = f 135%, with v(arxr) = M?x(v(ai) + v(xi))
If v(arxr)< v(ar) + v(xr) then F(ar)F(xr) = 0 ; if
v(arxr) = v(ar)+v(xr) then F(ar)F(xr) = XgiF(xi) where the

sum is taken over the set of the 4i's such that

V(ai)+v(xi) is the maximum . In both cases we get that

F(ar) = ZhiF(xi) = ZF(bi)F(xi)  whence v(ar—Zbixi)‘<v(ar) .
Going on in.this way, we get a strictly decreasing sequence

)

{Yn}nEIi‘ such that arEIg((x1,...,x } o+ FY A) = (x1,...,x

n
by the Krull-type assumption. Of course again the other steps

r-1 r-1

have the same proof.

LEMMA 3.10, Let A and x be as in the Theorem 3.9.

Assume that T°(A)20 (or T°(A) £0), that x is a regqular

sequence and {5 } is a d-base. Moreover assume that for every

Xy such that v(xi) =0 , F(xi) is in the Jacobson radical

of Gy, . Then {x} is a stepwise d-base.

PROOF. Let E = {X€ (xgy/.e0sx _)/F(x) € (Flxy),...,Flx, )}

r-1



- 39 -

We want to show that E 1is empty. Suppose not, then for every

r-1
XEE , we have x # 0 and x = f 135%5 + a.x. with
V(X} Zv(ai) + v(xi) and v(x) = v(ar) + v(xr) : so that

r—1
Fix) = I igiF(xi) + F(ar)F(xr) .
1

Let us consider the ring G = G/(F(x,),-..,Fl{x__,)) and in

r-1
it the principal ideal generated by F(x) . Since G is

noetherian, we get
Q(F“""(xr‘)”‘)t = {ge (F(x_J)/ 3 B with (1+BF(x))3 = 0} .

Now, if vi(x ) # 0 we get fé(m;))t = 0 by using the
assumption T°(A) 20 and the given description of the
intersection; if v(xr) =0, then 1 + h m;) is
invertible by assumption, hence we get again Q(Wk';))t = 0 .
Therefore for every x€ (x) it is well-defined the number

t(x) = max{n/F(x) € (F(xﬂ,...,F(x }) o+ (forn“} . Let

r-1
Yy €E be such that t{y) is minimum in E ; then again

r-1
y = }1‘, ibixi + b x  where viy) = v(br) + v(xr) and

r=1
F(y) = %:igiF(xi) + F(br)F(xr) . But vyE€ (x1,...,xr_1)

and XyseesrX is a regular sequence, hence

r—-1

brE (x1,...,x ; since tl(y) >t(br) we deduce that

r_1)
br ¢ E , therefore F(br) € (F(xﬁ,...,f‘(xr_.!)) whence
F(y) € (F(xy),...,F(x__q)) a contradiction. The other

steps have the same proof.
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THEOREM 3.11. Let A = (A,l',v,G,F) be a strong Krull

structure such that T°(A)20 (or T°(A) =0 ) and let

X = x1,...,xr be a sequence of elements of A such that for

every xi with v(x,) = 0 then F(x,) is in the Jacobson

radical of G0 . Then the following conditions are equivalent

1) x is a reqular sequence and {x} 1is a d-base

2) F(x) 1is a regular sequence.

PROOF. After Theorem 3.9 we need only proving 1) =2} . But

this is an immediate consequence of Theorem 3.9 and Lemma 3.10.

COROLLARY 3.12. With the same assumptions as in Theorem

3.11, the following conditions are eguivalent

1) x is a permutable reqular sequence and {x} is a d-base

2) F(x) is a permutable regular sequence.

EXAMPLE 4., Iet A = klx,yl , T =%Z v(f) = -v (£f)
pruvindteZondutoivedesed O (le)
(see Ex. 1 of section 1) . Let X, = x{x-1) X, = yi{x-1) .

Then F(xT), F(xz) is a regular sequence and Xq X is not .

This happens because A 1is noetherian but not Krull.
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§4. DOUBLE STRUCTURES AND HILBERT FUNCTIONS.

Let A = (A,T,FA) = (A,I',v,G,F} and

B = (B,A, Fy) = (B,A,w,H,#) be two v-filtered (graded) structures.

DEFINITION 1. A morphism of A in B is a couple ({a,)\)

where o : T —> A 1is an ordered homomorphism (i.e. a
homomorphism such that O0<vy implies O0s<af{y)) and
A : A—>B is a ring-homomorphism such that

A(FyA) cF B or, equivalently, wi{i(a)) $alv(a)) for

a(y)
every a€A - Ker(A) .

REMARK 1. Let A be a graded Krull structure and I an
ideal of A ; then there is an obvious canonical morphism

A —>A/J where J 1is the structure induced on I ; it is
clear that in this case it may happen that

wi{i(a)) <alvia)) .

REMARK 2. Let us consider the following example; on Zz we

put the ordering < given by wu, = (1,1), u, = (-1,1)

1
(see section 2); we let A = ki{x,y] and we consider the

fgnction v : A~ {0} —> %2

which to every polynomial
associates the couple of exponents of the maximal monomial
(with respect to < ) ; this gives us a graded structure A .
Let now w: A - {0} —> Z be the function which to every
polynomial associates its degree; this yields another graded

structure, say B , on A .
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Let now a : Zz —> % be defined by af{a,b) = atb and

A : A—> A be the identity map. Then it is easy to check
that (a,A) is a morphism; moreover we have
w(i(a)) = alv(a)) for every a # 0 . Since (1,1} < (0,2) ,

o . . — o =
xyE.F(o'z)A ; but  xi{xy) = xy(EFZA F2A , where 2 a(0,2}) .

This shows that there is no hope in general to deduce from
a morphism (a,A) a homomorphism between the two graded

ocbjects G,H .

DEFINITION 2., Given a morphism (a,A) as before, we denote
A

by G the A-graded ring defined by

= A _ A A _ -1 ~1 <}
G- = sgAGé where G6 = A (FéB)/k (FSB)

We denote by GA the A-graded ring defined by

Cp = 580G, 5 WheT® G) 5 = 4 ($=¢Cy

A

LEMMA 4.1. G is the graded ring associated to a

v-filtered structure if and only if A 1is injective.

PROOF. If X is not injective, then @Aﬁ1£F6B)53Ker(A)
hence the elements of Ker(A) have no valuation. Con-
versely assume that A is injective and let a€adA , a # 0 ;
let & = w(i(a)) . Then aeEA-T(FGB) and a ¢ A-1(F§B) , SO

we see that the filtration {A—1(F6B)} is valued.
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LEMMA 4.2. Given a morphism (a,)) as before, there

are two canonical homomorphisms

]

where i(g) g for every g€ G (but it changes the degrees)

and A is defined through A and it is an injective

A-homogeneous homomorphism.

PROOF. Obvious.

LEMMA 4.3. Given a morphism (a,A) , if a is injective

(equivalently strictly ordered) then there is a canonical map

GA — GA , hence a canonical map A : G —> H ,

PROOF. Obvious.

At this point we can say that, given a morphism
{a,2) : A —> B , there are circumstances where it induces

amap A : G—> H (see Lemma 4.3), while in general this

i

does not happen. So the question is to get informations

about the relation between GA and GA .

are going to consider a special situation, which nevertheless

Henceforth we

will be general enough for several applications. Essentially
we are going to consider the case when A = B and

u(vr(a)) = vA{a) for every a # 0 .
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DEFINITION 3. We denote by Aa the triple (AF’A 2} where

A

h
t

n

p = (TR L) = (A,T,v, G, Fp)

o
n

114

A (AIAIFA’A) (AlAlvAiG(A)IFA)

are graded structures over the ring A and a r —> A

.

it

is an ordered homomorphism such that a(vF(a))

Aa will be called

VA(a) for
every a # 0 (hence FF,Y [= FA,a(y)) .
a "double structure on A ".

We denote by ® the couple (MF’MA) where

=
L}

L1

11 (Ml rf FI"M)
)

(erlwrlT(F) !gr)

=
n

M, A, F

13

AM (MIAIW :T(A} IGA)

are modules over AF'A respectively. If o has the property

A
that a(wP{m)) = WA(m) for every m # 0 , we say that 1
is an Aa—module {fon M ). An example of double structure

is that one described in Remark 2.

DEFINITION 4. We say that Aa is noetherian (Krull,...)
if AP and AA are noetherian (Krull,...} . We say

that # is finite (Krull,...) if MF is finite (Krull,...)
over Ar and MA is finite (Krull,...) over A

A

DEFINITION 5. As in definition 2, we put
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1}

G(I‘)A égAG(T}A,ﬁ where G(F)A,S = a($)=6G(r)y

T(T)A = 68AT(P)A,6 where T(T)A'5 T(I’)Y

¢
aiy)=§
We observe that, being A = id , the corresponding G(I‘)A

is nothing but G(A) and 'I'(I‘)A = T(A)

Therefore, in this situation the question is to get infor-
mations about the relation between G(I), and G(4) ,

more generally between T(I‘)A and T(A}

LEMMA 4.4. Iet Ad = (AP,AA;G) be a double structure and

mn = (MP'MA) a module on it; then

a) The map o restricts to a map F°(MF) —3 A°(MA)

which is surijective.

b) The map o is surjective, hence Ker(oa) 1is an isolated

subgroup of T .

PROOF. a) Let 6EZA°(MA) ; then § = WA(m} = a(wr(m}) .
b} It follows from a), since T and A are generated by
FO(AT) and A°(AA) respectively (see section 1, after

definition 11).

PROPOSITION 4.5. Let Aa = (AP,AA,Q) be a double structure

and assume that o is _inijective; then

al o is an isomorphism

b) After identifving I with A via o , for every 'Aa”

module

= (MP'MA) there is a canonical identification

m
Lof MF with MA .
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c) The categories of Aa—modules and Ar—modules are

equivalent.

PROOF. a) Follows from ILemma 4.4.

b) We have wr(m)S'y iff a(wr(m))5<m(7) ;7 but

a(wr(m)) = WA(m) s whence FF,YM = FA,a(y)M = FA,YM where
the last equality depends on the identification of T

with A .

¢} Follows from b).

Let now Aa = (AF,AA,a) be a strong Krull double structure
on A and @ = (M ,M,) a finite A -module . Let N be a
submodule of M and - I = AnnA(M/N) ; let Sa denote the
"ideal” of Aa given by (JP'JA) , where JP,JA are the
structures induced on I by AP}AA respectively. Let XN
denote the "submodule” of W given by (NT'NA) , where
NT’NA are the structures induced on N by MF’MA
respectively. Finally let us denote by Aa/gu the triple

(AP/JF'AA/JA'a) and by #/N the couple (MT/NF’MA/NA)

PROPOSITION 4.6. With these assumptions and notations, we

have

a) Aa/Ja‘ is a strong Krull double structure.

b) # /XN 4is an Aa/Ja -~ module

c) If {n1,...,nr} is a d-base of NP , then it is also

a d-base of N, .
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PROOF., a) AF/JP and AA/JA are structures on A/I by
Proposition 1.4. Let now a€A/I , a # 0 ; then

v.{a) = min v_(x) ; so what we have to show is that
r X—-acl r

a{min vr(x)) = min VA(X) and this is true, because
x~acl x~a€l

a(vr(x)) = v,(x] for every x # 0 . So now we know that
Aa/Ja is a double structure and to show that it is strong

Krull, we may use again Proposition 1.4.

b) Same arguments as in a).
c) Every nonzero element n of N can be written as

r

n = L.,a.n., where a, €A anf for every i such that
117171 i

a, #0 , wr(nJZ*vF(ai) + wr(mi) . By using the properties

cf o , we get also wA(n) avA(ai) + wA(mi) .

REMARK 3. If Aa = (AP,AA,a) is a double structure on A
and AA is noetherian, then AF need not being noetherian,
as the following example shows.

ILet us consider the structure AT of the Example 9 of the
first section, where T = zz , A = kix,y,z] and G(T) turns
out to be non noetherian. Let us consider A = Z ,

v,(f) = deg(f) and o : E° —> % , ala,b) = a+b . Tken

G{A) = kix,y,z] ; moreover A® = N , T° = n° and

a(vr(f)) = deg(f) = v'A(f) .

QUESTION. I do not know whether AP noetherian implies
Ah noetherian. However it should be noted that the answer

is negative if we drop the assumption that
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a(vr(a)) = vA(a) (so we do not have a double structure).
Namely we put A = 32 and as AA the structure described
in the Example 9 of the first section. Then we put

r =z, vr(f) = deg{(f) and a : X —> Z2 , afn) = (n,0) .

Then G(F) = k[x,y,2z] , but of course a(vr(f))g'va(f) and

the strict inequality occurs.

PROPOSITION 4.7. Let Aa = (AP,AA,a) be a double structure
on A and let MF be an AP-module . Then

LI _wWe putc = we getc an A,~mogule
a) If we put FA,éM ;T?T:SFF'YM we get an AA module ,

which we denote by Ma(F) « such that (MP’Ma(F)) is an

A -module.
s ]

b) Conversely, if W = (MT’MA) is an Aa—module , then

M, = M

A all) °
c) If moreover o is not inijective, and M = (MF’MA)

is an A -module , then F? M = //~\\ F M for every 6§ .

C! A’G — Fl

afly)=48

PROOF. a) By Lemma 4.4 we know that o is an ordered
surjective homomorphism, so that it is easy to see that the
given one is a valued filtration on M . Moreover if meM
is such that wr(m) = vy then wA(m) = g{y) by definition.
by If m = (MF,MA) is an Aa—module, then clearly

FA,6M53 Fr' M ; on the other hand if wA(m) = § ,

aly)=6
then a(wr(m)) = § and of ccurse mﬁirwr(m)M ; 1f

wA(m) <§d and afly) = 6 , then wr(nw Sy , hence m € FyM .
¢y Let m be such that wA(m)< § and let vy Dbe such that

aly) = § . We get a(wr(m)) = wA(m)< 8§ = afly) hence
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wplm) <y and the inclusion "c" is proved.

Let now Ineé:;?;SFP'YM , m# 0 ; since wrum Sy implies
a(wr(m)) fa(y) = 6§ and we have to show that

a(wr(m))< 8 , we have only to exclude that u(wr{m)) = § .
Suppose, for contradiction, that a(wr(m)) = & ; then

3—1{6} = WT(m) + Ker(a) ; let vy' RKer(a) be such that
v' <0 (such a vy' exists since ZXKer(a) is nontrivial).
Then " = wr(m) + Y"<wr(m) and m ¢ FF,y"M . @& contra-

diction.

PROPOSITION 4.8. Let A;x = (AI.,AA,a) be a noetherian

double structure on A ; let 8 be the semigroup generated

by TI°(A;) and assume that Rer(a) NS = {0} . Then

a) Tor every finite Aa-moaule n = iMF,Mﬁ) and every

8€ A , the set ah1{6}11F°(Mr) is finite. If we assume

in addition that T°(AF) is either positive or negative then

b) For every finite A, -module @ = (MP’MA) » Af M, is

a Krull module, also MF is a Krull module

c) - If AA is a strong Krull structure, also AF is a

strong XKrull structure.

PROOF. a) Arguing as in the proof of Theorem 2.7, we know
that F°(MF) is contained in a finite union of subsets of
the type vy + P°(AP) . Since

a'1{6}r1(y+r°(AF) [ y+(a” ' {6-a(y)} NS) , it is enough to

show that o '{6}nS is finite for every & . By Proposition

1.3 we know that § 1is a finitely generated semigroup; let
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us identify T with 2" and embed it into R" ; moreover

let P be the polyhedron (finite intersection of closed
half-spaces) spanned by S . Being $ finitely generated,
we get Ker(o) NP = {0} , so that the linear space

n

generated by a~1{6} in R intexrsects P in a compact

region and we are done.
Of course there is nothing to prove in b) and c) if
P°(Ar)2() because then every finite A_.-module is Krull

r

by Theorem 2.7. Moreover if LP is a finite free Ar—module

then erzL(Y1,...,yr) and it is easy to see that
Lu(r)csL(a(y1),...,a(y2)) . Now we know from Lemma 4.7 a)
that (LF'La(F)) is an Aa—module, hence ¢} is a consequence
of b).
So we have only to prove b) under the assumptions that

o - . —— i

I°(Ap) s0 . If Ly = L(Y1:--~:Yr) A Lp > M, is a

morphism, then M(FP. L) = F ‘m,+...+F Aem where
P f ( v Y”Y1A 1 Y=Y, r
Myseea,m_€M ; but F A 1is an ideal of A by Lemma 1.6,
1 r Y-Y5
hence A(FyL) is a submodule of M .

Therefore, to show that MF is a Krull module, it is

sufficient to show that, given a submodule N on M and

a strictly decreasing sequence {Yn}neN of elements of
F°(Mr) . then Q(N+FY M) = N . On the other hand

n
g(N+FYnM) < R(N+Fa(yn)m) and we know that M, 1is a Krull

module,
To conclude it is sufficient to show that {G(Yn}}neli has

a strictly decreasing subsequence.
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P ition 4.7 that F = \\xNT,,//, F M
For, we know by .Proposition 7 a Araly) r,y’

v'€a {a(y)}
and we know from a) that a"1{a(y)}{1F°(Mr) is finite,

so that in the sequence {u(yn}} , we have

neEWN
#f{n'/n'2n , a(n') = a(n)} is finite for every n .

QUESTION. I do not know if b) and c) are still valid if we
drop the extra-condition that F°(AF) is positive or

negative,
Now we come to the main result of this section; we keep the

notations introduced in Definition 3,

THEOREM 4.9. Let Aa be a noetherian double structure on

A ; let S be the semigroup generated by F°€Ar) and

assume that Ker(o) NS = {0} ; let M be a finite Aa~modu1e.

Then

1} 3(?)0 = G(A)0 and we shall denote it by G0 .

2) If [...] denotes the image in the Grothendieck group

of finitely generated G,-modules, then

0

[T(F)A,G} = {T(A}G} for every G€A°(M$} .

PROOF. If o is injective, we use Proposition 4.5 and there
is nothing to prove. So let us assume that o is not in-

jective; we first prove the following

CLAYM: If yvy>0 , v € Ker{a) then vy >y' for every
Y'€EKer{a) . If y<0 , vy € Ker{a}) , then y<y' for every

Y' € Ker(a) . Namely, suppose that y >0 and there exists y'€Ker{a)
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such that y<y' ; then -y'<-y<y<y' , whence y€ZKer(o)
(being Ker(a) an isolated subgroup), a contradiction; of
course the same proof works for vy<0 .

Now we come to the proof of 1).

By the assumption and the fact that 0€ FO(AF) (see Remark 1
of section 1) we get Ker(a)f\P°(Ar)= {0} ; this means

that {aEA/vr(a) € Rer(a) - {0}} is empty, hence F

Iyy

for evexry Y20 , vy€Ker({a) , and all the F A

T,y
are equal for every vy<0 , vy Xer(o) , hence they are

equal to FFGA by the claim.

¥
So we conclude by Proposition 4.7 applied to Aa considered
as a module over itself.

2) We know that T(I) =

o T(T) and Lemma 4.7
s YEo T{6} Y

tells us that {F M} is a filtration such that

Ty yEa—1{6}
F2 =/~1\ Fp M and F, M= " F, M ; moreover
! yeo {8} 'Y ! v€a {8} ‘'Y
= o . ; s s
TA,G FA,GM/FA,5M , hence to concluée it is sufficient to
know that in the filtration {F, M} only a finite

Try y€a~1{6}
number of strict inequalities occur. And this follows from

Proposition 4.8. a).

I want to conclude by showing two different applications
of Theorem 4.9.
Iet us consider A = k[xj,...,xn] ;s I = z” and let < be

an ordering on z" such that u

1t

(q1,...,qn) where
inZN+ s 1=1,...,n (see Theorem 2.5) . Then we consider

the graded structure on A described in Example 3 of section 1;
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as a consequence of Theorem 2.7 we get that it is a strong
Krull structure; we denote it by AP .

Now if o : Zn e 3> Zm is an ordered nonzero homomorphism,
Ker(o) is an isolated subgroup, hence it has to be ortho-
gonal to u, .
Let m =1 and consider the usual ordering on Z ; then

o : 2% —> Z has to be defined by
n
a(a1""’an) = %iaiqi . Let us consider Qqre--eq, as

weights of the wvariables x ,...xn and then let us consider

1
the graded structure on A described in Example 2 of section 1;
also this structure, which we denote by AZ is a strong

Krull structure and it is clear that A, = (AF,AZ,G) is a
strong Krull double structure on A . Since I‘°(AI,) = nN'

the hypotheses of Theorem 4.9 are satisfied.

Let now I be an ideal of A and let Ju = (JF’JZ) be

the induced double structure on I . By Proposition 4.6

we know that Aa/Ja is a strong Krull double structure on

A/I and that if {f1""'fr} is a d-base of JF , then

it is also a d-base of J , and the hypotheses of Theorem

4.9 are satysfied. If we abply Theorem 4.9 to AG/JOc we get

the following

COROLLARY 4.10 Iet A = k[x1,...,xn} r I an ideal of A .

Let M(I) denote the ideal generated by the maximal monomials

of the elements of I , with respect to an ordering on z"

with w = (qqr...sq) o qiem+ and let F(I) denote

the ideal generated by the forms of maximum degree of the
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elements of I , where degxi = qi s 1= 1,...,n . Let

A/M(I) and A/F(I) be considered as graded over N by

the graduations induced by the graduation on A defined

by the total degree, where deg>%_ =q, s TF 1,/0ee, o

Finally let H(A/M(I)) , H(A/F(I)) be the Hilbert functions.

Then HA/M(T)) = H(A/F(I)) .

In particular we get

COROLLARY 4.11. (Macaulay, see [ 5]) With the same nota-

tions as before, let us assume that u1 = {1,1,...,1} and

that I is homogeneous with respect to the usual total

degree. Then H(A/M(I)) = H{(A/I) .

REMARK. Let us consider the ring $§S = k[xo,...,xn] graded

by the total degree, where degxo =1, degxi==qi '

i=1,...,n; let us denote by hI the ideal generated by

all the hf , £€1I , where hf is the homogenization of

f with respect to x, . With the notations of Corollary

0

4.10, it is clear that (hI,xo) = (F(I), x As before

0) .
we denote by H(...) the Hilbert function and by H1(...)

the function defined by H1(...,n) = %iiﬂ...,i) . Since x
h

0

is a nonzerodivisor modulo I , homogeneous of degree 1,

ve get H'(a/M(I)) = RU(A/F(I)) = H'(S/(F(D),x,)) =

= #'(8/(1,x,)) = #(S/P1) . Hence we deduce that
H(S/(M(I)-8)) = Iﬂs/hl) . On the other hand it is easily seen
that if {f1,...,fr} is a d-base of Jr (this is usually

called a Grdbner-base of I with resp=ct to the given



- 55 -~

ordering) then not only M(I) = (M(£,),...,M(£)) but

h

h
also D1 = (f1,...,hfr) )

Therefore the knowledge of such a base allows to "compute®
the equations and the Hilbert function of the compacti-
fication of Spec(A/I) in the weighted projective space
I’(1,q?,...,qr) = Proj(S) .

The second application is dealing

with the local ring R = k[[x .,xnﬂ of power series.

g7
We consider on it the noetherian structure AZ described

in Example 1 of section 1. Let now T = z" and let < be
an ordering on it such that u1 = (~1,~1,.+.,~1) . To every
serie we associate its maximum moromial (it exists, because
the maximum monomial with respect to the given ordering is
among those of minimum degree) and we get again a noetherian
graded structure AP on R , since the associated graded

ring is clearly isomorphic to k[x1,...,x 1.

n
n
Let now o : 2" —> Z be defined by a(a1,...,a y=—% .a, .
n ;i
It is an ordered homomorphism and Ker(a)tlr°(Ar) = {0} .

1

1

In this case P°(AF) I , hence it is already a

semigroup; moreover PO(AP) £ 0 (remember that

u1 = ("'1,"1,-»-'—1)) 7 AZ

Proposition 1.7 and Aa = (AF,Az,a) is clearly a double

is a strong Krull structure by

structure on R . So we may use Lemma 4.8 and we get
that AF is strong Krull.

Let now I be an ideal of R and let Ja = {JF,J%) be
the induced double structure on I . By Proposition 4.6

we know that Aa/Ja is a strong Krull double structure
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on R/I and that if {fl""'fr} is a d-base of JF
(it exists, since Ar is strong Krull), then it is also
a d-base of Jz (which is usually called a standard base
of I with respect to the maximal ideal of R (see [ 7]
and [ 81])) . Moreover, by using Theorem 4.9 we see again
that the computation of the Hilbert function of the
tangent cone to Spec(R/I) at the origin can be

computed by means of a monomial ideal. An algorithm

which shows the effectiveness of such a computation is
discussed in [ 6 ], while the study of graded structures
on R {(and on the ring of convergent power series) such

as AP was in some sense started by Hironaka and Grauert

and developed by Galligo (see [ 2]) and others.
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