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Introduction 

§1. Graded structures on commutative rings. 

§2. Types of orderings on zn. 

§3. Distinguished bases. 

§4. Double structures and Hilbert functions. 

INTRODUCTION 

Typical objects in commutative algebra are the graded rings 

associated to ideals, since they are suitable to describe 

algebraic geometric objects such as tanqent and normal cones. 

A graded ring GI(A) is by definition the ring associated 

to the filtration on the commutative ring A given by 

{In}nE~ and if the Krull intersection theorem applies to A , 

for instance in the local case, there is a well-defined 

function which associates to every element a E A-{O} the 

integer vI (a) 

F : A -> GI(A) 

and F(O) = 0 • 

= max{n/a E In} i then one deduces a function 
_ vICa) v I (a)+1 

which is defined by F (a) = a E I II 

*) This work was done while the author was visiting the MPI 
(Max-Planck-Institut fUr Mathematik) in Bonn, during the 
winter-semester 1984-85. 
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If J is an ideal contained in I , then the kernel F(J) 

of the surjective homomorphism GI(A) --> GI/J(A/J) is the 

homogeneous ideal generated by {F (a) /a E J} . Now, if A 

is noetherian also GI(A) is noetherian, hence F(J) is 

finitely generated and a set {f1 , •.• f r } of elements of J 

such that F(J) = (F(f1), ... ,F(fr » is termed an I-standard 

base of J. Sometimes Gr(A) is known; for instance if 

(A,m,k) is a local regular ring of dimension d and r = m , 

then G
1 

(A) c.! k[x1 , .. , ,xd ] , so that the knowledge of 

Gr/J(A/J) is equivalent to that of an I-standard base of J. 

Standard bases arose in [ 4) as a tool in the process of 

desingularizing an algebraic variety, but only much later 

some attempts were made to get control on their explicit 

computation. For instance in ( 7 J and [ 8 J criteria for 

both detecting and computing standard bases were given, based 

on the fact that {f 1 , ... ,fr } is an I-standard base of J 

if and only if the homogeneous syzygies of F(f1), ••• ,F(fr ) 

can be lifted to syzygies of f 1 , ••. f r . 

It was in the middle sixties that Hironaka used for the first 

time that notion and it was more or less at the same time 

that Buchberger introduced in his Ph.D. thesis the 

concept of Gr5bner base (G-base); the purpose was to give 

an explicit algorithm for computing a base of the k-vector

space A/I I where A = k[x , ••• ,x) and I is an ideal 
1 n 

of height n . But it was only in the late seventies that, 
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together with the strong development of computer algebra, 

the notion of G-base started playing a pivotal role in the 

most essential computations on the polynomial rinqs (see 

[ 1 J for more informations on this aspect and for a wide 

bibliography). Let me recall the definition of G-base. 

Given and a total ordering < on ;tn 

such that (~n, <) is a totally ordered group, if we denote 

by T the set of terms (i.e. monomials with coefficients 1) 

of A I then the natural injection of T into ~ endows 

T with a structure of totally ordered semigrouPi if more-

over every element of T-{O} is positive, then < is 

called a term-ordering. Once such a term-ordering is given, 

to every polynomial f E A we may associate its maximum 

term M(f) and a G-base of an ideal J with respect to the 

given ordering is a set {f
1

, ••• ,fr } of nonzero elements 

of J such that every element f of J can be written as 

with either a. ::: 0 
~ 

or M(f) '; 1-1(a. )M(f.) • This 
~ ~ 

property turns out to be equivalent to: for every element 

f of J, M(f) is multiple of some ~(fi) , equivalently 

the ideal generated by {M (f) If E I} is also generated by 

Here we see an analogy with the concept of standard basei 

moreover all the techniques for constructing G-bases are 

based on the notion of "critical pairs" which enables to 

construct the syzygies of the maximum terms, and this is a 

second analogy. It should also be mentioned that in recent 
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works (see [6]) Mora could successfully use similar 

techniques to those of G-bases to construct algorithms for 

computing some standard bases. 

Taking these analogies as a leading theme, the present 

paper is aimed to providing a unified frame for both the 

theories which underlie the notions of ~tandard bases and 

G-bases. This is achieved by introducing the concept of 

graded structure on a commutative ring, the category of 

"modules" over a graded structure and the notion of 

distinguished base of a module. All the results given in 

this general setup specialize to old and new results 

concerning graded rings associated to ideals and the poly

nomial ring so that a link is constructed between known 

results on one theory and new results on the other one 

(a typical example of that is Corollary 3.12) and of course 

they have a wider range of applicationsi moreover our theory 

provides a theoretic background for many ideas which are 

developing nowadays in computer algebra and it also gives 

new tools to work with, for instance in connection to the 

given classification· of all the term-orderings (see Section 2). 

Now let me put the accent on another important remark. For 

the purpose of computing invariants and operations of ideals 

in the polynomial ring, the notion of term-ordering and of 

G-base are so important since among the possible graduations 

on the polynomial ring A, those ones associated to 
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term-orderings are extremal in the sense that they split 

A into a direct sum of one-dimensional vector spaces. This 

fact has the disadvantage of producing G-bases with a 

possibly large number of e'lements I but on the other hand it 

has the great advantage of allowing to work with syzygies of 

terms, which are certainly the most trivial to be computed. 

The remark that term-orderings give rise to the most refined 

graduations, which are therefore suitable to be compared to 

other graduations, inspires the definition of double struc

tures and of "modules" over a double structure. It turns out 

that under mild assumptions the two graded objects associated 

to a module over a double structure have the "same" Hilbert 

functions; this fact of course specializes again to new and 

old results and among these it should be mentioned the famous 

theorem of Macaulay (see [ 5 ]) • 

We turn now to a description of the contents of the four 

sections, with some highlights on their main features. 

Section 1 starts with the definition of graded structure 

over a commutative ring A; modules over a graded structure 

and morphisms are defined in such a way that a suitable 

category is constructed. Then we define the v-filtered 

structures on A, the category of modules on them an~ we 

prove the equivalence of the two categories (Theorem 1.2). 

Some basic examples are discussed and it is shown that an 
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assumption of noetherianity implies that the ordered group 

over which the graded objects are graded has to be isomorphic 

to zn . Finally the technical but fundamental notion of 

Krull module is discussed; it allows to define quotients and 

it will be very essential in the following. After the 

proof that the ordered groups associated to noetherian 

structures are isomorphic to Xn it is natural to look for 

a description of the orderings on Zn and this is achieved 

in section 2 (Theorem 2.5). This should be suitable for 

applications in computer algebra and it has as a first 

consequence the fact that all the finite modules over a 

noetherian structure are Krull modules if moreover ro 
is positive i here rO denotes the semigroup of the elements 

YEXn such that the graded object associated to the structure 

is nonzero at y. 

The last two sections are the heart of the work. In section 3 

it is introduced the notion of d-base, which specializes 

to standard bases, G-bases, Macaulay bases and so on, and 

it is shown that over Krull modules the notion of d-base 

is equivalent to another important notion, which allows to 

compute equations in the graded objects. As a consequence 

it is shown that finite Krull modules over noetherian 

structures have free resolutions in their category (Theorem 

3.5) and then the connection between d-bases and syzygies 

is analized (Theorem 3.6 and its corollaries). As an 

application at the end of section 3 it is investigated the 
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relationship between d-bases and regular sequencesi 

Corollary 3.12 specializes to the main result of [9 ] and 

also to new results, when applied to other d-bases. 

The fourth and final section is devoted to the study of 

double structures on a ring A and of modules over a double 

structure. It is shown that the d-bases behave very well in 

double structures (Proposition 4.6) and it is proved as a 

main result (Theorem 4.9) that the two associated graded 

objects to a module over a double structure have the same 

component of degree 0, say GO ; moreover they can be 

given a graduation over the same group 6 in such a way 

that for every 0 € 6 the two homogeneous components of 

degree 0 have the same image in the Grothendieck qroups . -
of finitely generated GO-modules. 

Of course the main application is to Hilbert functions 

and this is illustrated by the description of two typical 

situations. 

It is a pleasure for me to express my gratitude to G. Valla, 

T. Mora and in particular to U. Orbanz for valuable con

versations on the subject of the present paper, and to the 

Max-Planck-Institut for the hospitality while this work 

was in progress. 
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§1. GRADED STRUCTURES ON COMMUTATIVE RINGS 

Let A be a commutative ring with 1; let r be a 

totally ordered group, whose ordering is denoted by <; let 

G be a f-graded commutative ring with 1. Then let 

v : ~{O} --> r be a function such that r is generated by 

Im{v} ; let F: A --> G be a fUnction and assume that 

the following properties hold 

A 1 F(a) E Gv ta) for every a:l 0 

A2 F(a) = 0 if and only if a = 0 

A3 Im(F) =\...JG 
yEf Y 

A4 v(ab) ::; v(a)+v(b) for every a,b such that ab f: 0 

AS v(ab) = v(a)+v(b) ~ F(ab) = F(a)F(b) for every a,b 

such that ab f: 0 • 

A6 v(ab) <v(a)+v(b) ... F(a)F(b) = 0 for every a,b 

such that ab f: 0 ; ab = 0 ... F(a)F(b) = 0 

A7 v(a-b) ::; Max (v (a) ,v(b» for every a,b such that 

a f: 0 I b :I 0 , a f: b 

A8 v (a-b) = v(a) = v(b) ... F(a-b) = F(a)-F(b) for every 

a,b such that a:l 0 I b :I 0 , a:l b 

A9 v (a-b) < v (a) = v(b) ... F (a) = F (b) for every a, b 

such that . a f: 0 , b f: 0 , a :I b. 

Moreover, if A and G are k-algebras over a field k I assume 
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Al0 v(a) = 0 and F(a) == a for every a E k-{O} • 

DEFINITION 1: The quintuple (A,r.v,G,F) with the properties 

A1, ••• ,A9 (A1, ••• ,A10) is denoted by A and called a 

graded structure (a graded k-structure) on A. If 

A = (A,f,v,G,F), A' = (A,r,v,G',F ' ) are graded structures 

on A, they are said to be equivalent if there exists a 

r-graded isomorphism ().: G -> G' such that (). 0 F = FI • 

REMARK 1. 

denote by 

Let Z be the characteristic ring of A and q 

(Z ) * . q 
the group of the invertible elements of 

Zq • Then properties Al, ••• ,A9 already imply that v(a) = 0 

and F(a) = a.1
G 

forevery aE(Zql*. 

Namely by A3 there exists u E A such that F (u) = 1 G 

then 0'; F ( 1 A) = 1 G' F ( 1 A) = F (u) • F {1 A} == F (u· 1 A) = 1 G (we 

used AS and A6). So F (1 A) = 1 G and since 1 G E GO 

v (1 A) = 0 • Now every element a E (Zq) * is a sum of 

hence v (a) S 0 by A7 ; but if v (a) < 0 then 

-1 -1 o = V(1 A) = v(a.a } ~ v(a)+v(a ) < 0 a contradiction. So 

veal = 0 and by AS we get F(a) = a-F(1Al = a.1 G • 

REMARK 2. As before it is easy to see that properties 

Al , ••• ,Al0 imply that v(ca) = veal and F(ca) = eFta) 

for every a'; 0 and every c E k-{O}. 
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REMARK 3. In AS,A6,A8,A9 also .. holds. It is an easy 

checking; let us check .. in AS . By A4 

v(ab) ~ yea) + v(b) I but if v(ab) < v(a) + v(b) then 

F(a)- FCb) = 0 by A6 ; but F{ab) = F(a) • F(b) by 

assumption, hence ab = 0 by A2 a contradiction. 

REMARK 4. Properties Al, ••• ,A9 imply that 

v (a) < v (b) .. v (b-a) = v (b) and F (b-a) = F (b) for every 

a,b such that ab # 0 • 

Namely v(b-a) ~ v{b) by A7 , but if v{b-a) < v(b) then 

v (b) = v (b-a+a) ~ Max (v (b-a), v (a» < v (b) I a contradiction. 

Now use A9. 

EXAMPLE 1. Let (R,m) be a local ring, I an ideal and 

consider the order function VI with respect to I I i.e. 

if x E R, x 1- 0 , vr (x) = n. if x E In_In + 1 • Let r = Z I 

vex) = -vr(X} , G = ~ (grr(R»_n where 
nEJN 

(gr (R» = I n /ln +1 and define F: R --> G by the 
I -n 

following rule: F(O) = 0 , F{x) = x E I n /ln
+

1 where -n = v{x). 

Then (R,Z,v,G,F) is a graded structure on R 

EXAMPLE 2. Let A = k[x1 ,···,xn ) . Let r = z I G = A graded 

by the total degree, where deg(xi ) = qi E IN 
+ and consider 

d . A-{O} -> Z the "total degree" function. Now, if fo:A . , 

f = fd + ••• +fd where 
1 n 

is a homogeneous nonzero 

polynomial of degree 
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Then (A,Z,d,A,F) is a graded structure on A. 

EXAMPLE 3. As before let A = k[x1 , ••• ,xn ] • We give an order 

< to the group Zn in such a way that (Zn,<) is an ordered 

group (we shall see later a classification of all such 

orderings; see Theorem 2.5) . Let r = (Zn, <) . Now, given 

a monomial M = 
r 1 rn 

put v(M) (r 1 ,···,rn ) E r c o x
1 

••• xn 
, we = 

and, given a polynomial f, we may write it as a sum of 

nonzero monomials f = M
1

+ ••• +Mr in such a way that 

V(M1} < .0. < v(Mr ) • So we get a r-graded ring structure on A 

and now let v(F) = V(Mr ) and define F: A --> A by 

F(f) = M r 

Then (A,r,v,A,F) is a graded structure on A. 

EXAMPLE 4. Let -1 A = k[x,y,y ] • We give an order to the 

group z2 in the following way: (a,b) > 0 .. 1'1 a +b > 0 i so 

(Z2,<) is an ordered group (see the remark after Corollary 2.6). 

If M = c.xayb we put v(M)=(a,b) and going on as in Example 3, 

we get a graded structure on A. Here, of course, Im(v) 

is the half-plane a ~ 0 . and we want to remark that in A it 

is possible to find a sequence of monomials {Mn}n€E such 

that Mn ~ 0 for every nand inf V(Mn ) = 0 • 

Namely, it is possible to choose integers an,bn bn 
and lim -- = -/! (see for instance Hardy-Wright 

n+«» an 

of numbers"Thm. 36 p. 30) and then we put 

with a > 0 n 

"The theory 
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If we allow "negative" valuations on Itpositive" monomials 

the same phenomenon can occur also on k[x,yJ • Namely define 

(a,b) > 0 ~ I! a -b > 0 and go on as before. 

Let now A = (A,r,v,G,F) be a graded structure and let M 

be an A-module, Tar-graded G-module. Then let 

w : M-{O} --> r and ~ : M --> T be functions and assume 

that the following properties hold 

M1 

M2 

M3 

M4 

{iJ (m) € Tw (m) for every m 'f 0 

{iJ (m) = 0 if and only if m = 0 

Im(~) ='...-IT 
'Y €r 'Y 

w (am) :$ v(a) +w(m) for every a,m such that am 'f 0 

MS w(am) = v(a)+w(m) ~ ~(am) = F(a) • {iJ(m} for every a,m 

such that am # 0 

M6 w(am) <v(a)+w(m) .. F(a} • ~(m) = 0 for every a,m such 

that am 'f 0 i am·= 0 .. F(a)~(m) = 0 

M7 w(m-n):$ Max (w (m), w (n» for every m,n such that 
m 'f 0, n 'f 0, m 'f n 

MS w(m-n) = w(m) = w(n) .. ~(m-n) = ~(m) - ~(n) for every 

m,n such that m 'f 0, n 'f 0, m 'f n 

M9 w(m-n) <'w(m) = wen) ~ ~(m) = ~(n) for every m,n such 

that m 'f 0, n 'f 0, m 'f n. 

DEFInITION 2. The quintuple (M,r,w,T,{iJ) with the properties 

M1, ••• ,M9 is denoted by M and called an A-module. With 

the same meaning we say that on the A-module M there is 

a graded A-structure. The notion of equivalence given for 
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the graded structures on A easily extends to modules. 

REMARK. It is clear that Remarks 2,3,4 after the definition 

of A have analogous ones with respect to M. 

DEFINITION 3. Let A and M be as before and let N eM 

be a submodule; let (f' (N) denote the sub G -module of T, 

which is defined by = d> "(N) y y 
(~ (N) ) where 

~(N)y = {~(n)/w(n) = y, nEN}U{O!. Then N = (N,r,w',("{N»/~f), 

where w· = wIN-{o} and ~' = ~IN ' is a graded A-structure 

on N, which is called the induced structure on N or the 

spbmodule of M associated to N. 

DEFINITION 4. Let M = (M,r,w,~~), M' = (M',r,w;T'/~') be 

A-modules, A: M --> M' an A-homomorphism and A : T --> T' 

a graded G-homomorphism such that w, (A (m» S w(m) for every m 

such that A(m) r ° . Moreover assume that 

__ ~r6'oo~ (m» 
A UHm» t 

if Wi (A (m» = w(m) 

if w, fA (m» < lil (m) 

Then (A,A) is said to be an A-morphism. 

Of course this notion is suitable to define a notion of 

A-morphism between two equivalence classes of A-modules, 

according to Definition 1. Therefore, given a graded structure 

A , we have described a category. 
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DEFINITION 5. We denote by GA the category whose objects 

are the equivalence classes of A-modules and whose maps are 

equivalence classes of A-morphisms. 

At this point we are going to define another category. 

DEFINITION 6. Let A be a commutative ring with 1 ; let 

r be a totally ordered group, whose ordering is denoted by 

< ; let ~ = {FyA1YEr be a set of additive subgroups of 

A with the following properties 

a) 

b) 

c) 

F Ac:F ,A 
Y - Y 

if 

F A.F ,AC:F + .A 
Y Y.- Y Y 

y<y' 

For every a € At a ':I 0 , there exists a minimum y 

such that a E F A JIf A is a k-algebra over a field 
Y 

k , then for every c E k- { 0 } the minimum is 0 by 

definition) • 

Then FA is said to be a valued filtration of groups on A 

and the triple (A,r,FA) is denoted by A* and called a 

v-filtered structure on A. 

DEFINITION 7. Let now A* = (A,r,FA) be a v-filtered structure 

onA ; let M be an A-module and let fM ={FyM}YEr be a 

set of additive subgroups of M with the following properties 

a I) 

b l ) 

c' ) 

F yM oS Fyi M if Y < Y I 

F A-F ,McF 1M Y y - y+y 
For every m € M , m ;. 0 , there exists a minimum 'Y 

such that m € F M • 
'Y 
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Then fM is said to be a valued A-filtration of groups on 

M and the triple (M,r,fM) is denoted by M* and called an 

A*-module or a v-filtered A-structure on M. 

REMARK. The property c') implies that n F M :: 0 and 
y y 

UFM=M. 
Y Y 

DEFINITION 8. Let M* = (M,r,fM), M'* = (M',r,FM,) be 

A*-modules and let A: M --> MI be an A-homomorphism such 

that A (F M) c F MI • Then 
y - y is said to be an A*-morphism. 

DEFINITION 9. We denote by GA* the category whose objects 

are the A*-modules and whose maps are the A*-morphisms. 

LEMMA 1.1. Let A and r be as before; then every graded 

structure A on A gives rise to a v-filtered structure 

A* on A. Conversely every v-filtered structure A' on 

A gives rise to a graded structure (AI)o on A • Moreover 

a) «A') 0)* = A' 

b) (A*) 0 is equivalent to A. 

PROOF. Let A:: (A,r,v,G,F) and define 

PyA = {a € A/v(a) ~ y} U {OJ ; then it is easily seen that 

FA = {FyAly€r is a valued filtration on A, therefore 

A* = (A, r I fA) is a v-filtered structure on A • Let now 

At :: (Air, FA) , where f = {PyAly€r lbe a v-filtered structure A - -
on- A and if a ;. 0 let us denote by v(a) the minimum y 
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such that a E FA. We denote now by FO A = \...J F A and y y y I <y Y I 

we put grF(A} = ~ F A/FoA ; By using a) ,b} it is easy to see 
y y y 

that gr F(A) is a r-graded ring. Now, if a E A we put 

in(a) = 0 if a = 0 and in(a) = aE Fv(af/F;(a)A if a -:f 0 

and then it is easy to check that (A')o ~ (A,f,v,grF(A) I in) 

is a graded structure on A. Now a) is straightforward; 

let us prove b); we have to produce an isomorphism 

0. : grF(A) -> G such that 0.0 in = F . If we are given 

a homogeneous element in grF(A) , then either it is zero 

and then a sends it to zero, or.it is of type in(a) 

where v(a) = y. Then a(in(a» = F(a) and we extend it 

by linearity. To see that it is well-defined one uses A9; 

to see that it is a group homomorphism one uses AS; to see 

that it is a ring homomorphism one uses AS, A6; to see that 

it is surjective one uses A3; to see that it is injective one 

uses A2 and to see that it is graded one uses A1. Moreover 

A10 takes care of the situation when we are dealing with 

k-algehras. 

THEOREM 1.2. Let A and r be as before and let be given 

a graded structure A on A and a v-filtered structure 

A* on A, which correspond each other according to Lemma 1.1. 

Let now GA denote as before the category of equivalence 

classes of A-modules and GA* the catesory of A*-modules. 

~ GA and GA* are isomorphic. 
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PROOF. We define two functors F GA -> GA* , 

DEFINITION of F : given an A-module M , we define f (M) 

to be {(M,r,FH) where F = M {FyM}yEr and 

F H = hn E z,i/w (m) ::i y} u {O} . If (A, A) . M -> M' is a mor-. y 
phism of A-modules then A is easily seen to define a 

morphism of A*-modules between F(M) and f(M') • 

DEFINITION of f*: given an A*-module M*, the definition of 

f*M* is parallel to the definition of (Ar)o in the proof 

A . 1.4* -> 1.4'* is an A*-morphism, then we . of Lemma 1.1. If 

have to define A gr F (H) -> gr F, (H') and we do it in 

the following way; A(O) = 0 and if x€ (gr F (M)) y x 1 0 

then x = m with mE F M i then we put 
y 

A(x) = A(m) in F M/FoM . To conclude it is now a matter of y y 

easy checking. 

In the following we feel free of interchanging the roles of 

GA and GA* and we use only the symbol GA. 

EXAMPLE 5. Let A = k[x1, ••• ,x ] I r = Z and FA = {F A} n -p 
_ { / <:t, qn p where F _pA - f (x1 ' ••• ,xn ) f (x1 I ••• ,xn ) E (x1,.·. ,xn) } 

where Q = (Q1, ••• ,qn) is a fixed n-uple of positive integers. 

Then (A,S,FA) is a v-filtered structure on A. 
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EXAMPLE 6. Let A = k[x,y], r :::: Z , fA = {F A} where -p 

F A = (x,yp) • Here c) fails, hence this is not a -p 

valu~d filtration. 

EXAMPLE 7. Let A = (A,r,v,G,F) be a graded structure, 

let y € f and let A(-y) denote the quintuple 

(A,f,v ,G(-y) ,F) where Vv 
y y I 

is defined by v (a) :::: v{a)+y, 
y 

G(-y) is the graded G-module defined by G(-y)y. = Gy'_y 

and Fy(a) :::: F(a) • Then A(-y) is an A-module for every 

y € r • Moreover if a € A is different from zero, then the 

multiplication by a is an A-morphism of A(-y) in 

A(-y+v(a) (here we used the terminology of v-filtered 

structures) • 

BASIC EXA)WLE 8. Let A:::: (A,r,v,G,F) be a graded structure 

and M:::: (M,r,w,T,~) an A-module. Let us choose 

{m
1
,.:.,mr } to be a set of nonzero elements of M i let 

Ar be the free module of rank r over A I whose canonical 

base we denote by w. :::: w(m.) 
~ ~ 

and let 

w+ : Ar_{O} --> r be defined in the following way 

+ w (a
1

, ••• ,ar ) :::: max {v(a.) +w.} 
~ ~ 

aiFO 

To + w we assoc~ate a filtration on as in the definition 

of f (see the proof of Theorem 1.2); this turns out to 

be a valued filtration. Then we get an associated graded 
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r 
G-module, which turns out to be ct G (-w. ) 

i=1 ~ 
and a map 

F+ : Ar 
--> ~ G(-w.) which is defined by 

i=1 ~ 

+ 
F (a 1 ' ••• I a r ) = 

= ('(a1), ••• ,'(ar » where 

= 0 or 
+ v{a.) + W.< W (a

1
, ••• ,a ) 

~ ~ r 
+ w. = w (a" ••• fa ) 

~ r 

r 
We denote by L(w

1
, .•• ,wr ) or by ct A(-w.» the A-module 

i=1 ~ 
r + r + 

(A ,f,w , ct G(-W~},F ) . Then the A-homomorphism 
i=1 

r A : A --> M defined by A(ei ) = mi is an A-morphism of 

L(w1 , ••• ,wr ) in M and the corresponding graded G-homomor
r 

phism A: ct G(-w.) --> T is defined by ACei ) = ~(mi) 
i=1 . ~ 

r 
(here (e l , ... ,er ) is the canonical base of ~ G(-w.) • 

i=1 ~ 
This morphism (A,A) : L(w1 , ••• ,wr ) -->M will be refered 

to as the canonical mqrphism·associated to m1 , ••• ,mr 
--------DEFINITION 10. An A-module ~ is said to be finite free 

if it is isomorphic to an A-module of type L(w w ) 
1'··" r . 

DEFINITION 11. A graded structure A = (A,f,v,G,F) is 

called noetherian if A and G are noetherian. An A-module 

M = (M,r,w,T,~) is called finite if M is a finite A-module 

and T a finite graded G-module. 

Henceforth, given a graded structure A = (A,f,v,G,F) , 

we shall denote by fO(A) = Imv = {y€ fiG '1 O} 
y 

, so that 
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rO(A) is a generating subset of r as we stated at the 

very beginning. In the same way, if M is an A-module, 

we define rO(M) • Of course, if r is a finitely generated 

group and ro is a subsemigroup, r a need not be finitely 

generated; however we get 

PROPOSITION 1.3. Let A = (A,r,v,G,F) be a noetherian 

structure. Then 

a) rO{A) generates a finitely generated semigroue 

b) If moreover G is an integral domain, then rO(A) 

is a finitely generated semigroup. 

c) r is a finitely'generated torsion-free group, hence 

isomorehic to ~n for a suitable n. 

PROOF. By [ 3] G is a finitely generated Go-algebra. 

So let G = GO[X1""'xr ] Nhere xi is homo~eneous of 

degree Yi and different from zero. Then clearly 

ro (A) s;, < Y l' ... ,y r > , (Here < ••• > denotes the semigroup 

generated by ••. ) and if G is an integral domain 

rO tA) = <Y 1 ' ••• ,y r >. Now r is also generat,ed by 

{Y1"'.'Yr } and since it is totally ordered, it is torsion

free. 

We observe that if A is noetherian and r a is finitely 

generated, then G need not be noetherian as the following 

example shows. 
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EXAMPLE 9. Let A = k[x/y/zl I r::: Z2 ordered by 

(a,b) > 0 if either a+b> 0 or a+b::: 0 and b> 0 , 

and consider the following filtration: 

F A ::: ° if either p<o or q<O p,q 

FO/OA ::: k 

F A p/q 
::: k-vector space generated by {xaybzc la+b+c ~ p+q 

b S q} if q > ° I p~O 
Fp,qA ::: k-vector space generated by {xaybzc la+b+c ~ P, 

a+b ;S p-1} if q ::: 0, p>O . 

, 

Then we get a valued filtration on A and r o
::: ~2 

generated by {(0,1),(1,O)}, but the associated graded ring 
2 is not noetherian. Namely v(x) ~ (O,1),v(x ) ::: (1,1), ••• , 

v(xn) ::: (n-1,1) hence the initial forms of xn are part 

of a minimal set of generators of G as a k-algebra. 

In the next section we shall describe the orderings on ~n I 

but now let us invest.igate another fundamental aspect of the 

theory. 

If 

and 

A is a graded structure, M::: (M,r,FM) an A-module 

N ::: (N,r,FN) a sub A-module of M, then 

FN ::: {F N} €r where F N ::: F M n N and the natural filtration y y y Y 
on MIN is FM/ N ::: {Fy(M/N)}y€r where Fy(M/N} ::: {PyM+N)/N 1 

however this need not be a valued filtration, as the 

following easy example shows. 
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EXAMPLE 10. Let A = k[x] I r = Z, v (a) :::; -v (x) (a) 

(see Ex 1). This gives a valued filtration on A I hence 

a graded structure on A. Let I = (x-x2) I A = A/I and 

on A we consider the induced filtration as we explained 

before. It is clear that 'X E A/I belongs to FnA 

for n < 0 ; hence FA is not a valued filtration. 

In order to overcome this difficulty and for many other 

pu~oses, which will become clear later on, we introduce 

the following 

DEFINITION 12. Let A be a noetherian structure and M 

a finite A-module on M. Assume that for every finite free 

A-module L = (L, ••• ) I every morphism A: L --> M I 

every F yL wi th y E r u {-oo l (here we use the convention: 

F_ooL = (0» , every strictly decreasing sequence {yn}nE~ 

of elements of rO(M) and every submodule N of M I 

we have 

n (A (F L) + N + F M) :::; A (FyL) + N 
n€:N y Yn 

Then M is said to be a Krull module. Moreover a noetherian 

structure A such that every finite free A-module is a 

Krull A-module is said to be a strong Krull structure. 

We are going to use the symbol M/N for the triple 

(M/N,r,FM/ N) as decribed before. 
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PROPOSITION 1.4. Let A be a noetherian structure, 

M a Krull A-module and let N be a submodule of M. 

Then -
1) N is a Krull module. 

2) The filtration induced on MIN is valued, hence 

MIN is an A-module and ro (MIN) ::ro (M) 

3) MIN is a Krull A-module. 

4) If A is a strong Krull structure and 1 a sub-

module of A, then A/I is a strono Krull structure. 
" 

PROOF. 1 ) Obvious 

2) Let x E M-N and let 11 = w(x) . then xEP M+N • I 

Y1 
If x f po M+N then w(x) = Y ; if x E FO M+N then 

11 1 11 
x = x2+n with 12 = w(x2) < 11 and so on. If this 

procedure does not stop, we get a strictly decreasing sequence 

of elements of N , such that x E n (N+F M) = 
n Yn 

a contradiction. Therefore the procedure stops after a 

-finite number of steps and it yields the valuation of x • 

Let now 1 = w(x) ; then x E (F M+N) - (FoM+N) 
Y Y 

hence 

x = y+n with w(y) = y and this proves that rO(MIN) ~rO(M). 

3) Let L = (L, ••• ) be a finite free module, let 

A : L -> MIN be a morphism and let {Yn}nE:N be a strictly 

decreasing sequence of elements of rO(MIN} , which is 

contained in rO(M) by 2}. Let p: M --> M/N be the 

projection and let a: L ->.M be such that A = P ° a 

(this is possible since L is free). Finally let N' be 
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a submodule of M such that N eN' • We get 

R (A (FyL) + N'/N + Fy (MIN» = 
n 

= 0 (p(a(F L) + p(N') + p(F M» = 
n Y Yn 

= p{O(a(F L) + N' + F M» = p(a(F L) + N') = 
·n Y Yn Y 

= A(FyL) + Nf/N • 

4) Every finite free module over AI1 is a quotients 

of a finite free module over A, so we can apply 3}. 

PROPOSITION 1.5. Let A = (A,r,v,G,F) be a Krull-module 

over itself and assume that G is noetherian. Then A 

is noetherian. 

PROOF. Let I be an ideal of A; then there exist 

a 1 , • • • I ar € I such that F (I) is generated by 

{F(a1), ... ,F(ar )} • Let J = (a1, ••. ,ar)~I and let 

X€I with v(x) = y • Then F(x} = ZR.F(a.) 
J. J. 

with 

Ri = 0 or R = F(r.) with v(r.) + v(a.) = y i J. J. J. 

Then by A8,A9 we get F(x)=F(Zriai ) I hence 

v (x-tria i ) = Y2 < Y • Now we replace x by x-Zriai and 

we go on with this procedure: If we get 0 after a finite 

number of steps, we are done. Otherwise.we get a strictly 

decreasing sequence {yn}n+~ of elements of rOtA) such 

that x€O(J+F A) , so that x€J 
n )In 

by the Krull-assumpt.ion. 
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LEMMA 1.6. Let A be a 9!aded structure and M an 

A-module. Assume that ro (A) :ii 0 . then I 

a) FA r is an ideal for every rEr . 
b) F M is a submodule of r M for every r Er . 

PROOF. It is straightforward. 

PROPOSITION 1.7. Let A = (A1r,v,G,F) be a graded 

structure with A local noetherian, r 0 (A) = 

where I is an ideal. Then 

a) Every finite A-module M = (M, ••• ) such that FM is 

cofinal to where F M = IPM is a Krull -p , 

module. 

b) A is a strong Krull structure. 

PROOF. We have seen that GDt~: I n/In+1 , which is well-
n 

known to be noetherian. Moreover the Krull property for A 

is nothing but the standard Krull intersection property for 

ideals of A (use Lemma 1.6). The same argument extends to 

modules with the given property, in particular to finite 

free modules and we get also b). 
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§2. TYPES OF ORDERINGS ON Zn. 

Within this section we adopt the convention that, 

given a group G, an "ordering < on G ft means a "total 

ordering < on G such that (G, <) is an ordered group". 

DEFINITION 1. An ordering on a group G is said to be 

continuous with respect to a given topology on G I if for 

every pEG such that there exists a neighborhood (nbh.) 

U with U c: G+ , then p € G+ and the same for G p p-

In this section we consider Zn,Wn,JRn as additive groups 

and topological properties are understood as properties of 

the euclidean topology. 

LEMMA 2.1. a) Every ordering on zn extends uniquely to 

an ordering on Wn . 

b) Every ordering on Wn is such that (Wn)+ and (Wn )-

are convex sets; in particular it is continuous. 

PROOF. a) If p € (On we take an m in :IN + such that 

mp € zn and of course we say that p is positive (negative) 

if mp is positive (negative). 

b) If p,q € BOn) + and p < q , then the segment pq is 

given by p+ (1-t) (q-p) 0 s t ~ 1, t € Ol , hence, again by 

clearing positive denominators, we see that it is contai"ned 

in HUn) + • 
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REMARK. On ~n there are many noncontinuous orderings. 

For instance let us take n = 1 and consider a base 

E of lR as a W-vector space; then we give a total order 

to E and if r € lR r = Ii Aiei only a finite number 

of e's 
i is involved, hence we may associate to r the 

"first" nonzero coordinate; call it )..(r) and say that 

r > 0 iff A (r) > 0 . 

DEFINITION 2. Given an ordering on W
n 

I we denote by V «On) 

Qr simply by V the set of points p e: JRn s.t. for every nbh. 

U of p , both u n «Dn) + and U n (Q2n)- are nonempty. p p p 

LEMMA 2.2. V is a subvectorspace of lRn of dimension 

n-1. 

PROOF. To show that V is a subvectorspace is an easy 

excercise. Now let us consider the function 

s : ~n .... V -> {-1,1}' defined by s (p) = 1 if there exists 

a nbh. Up of p such that Up n ;n c: «Dn ) + ; s (p) = -1 

if there exists a nbh. Up of p such that Up n CDn 
c (<D

n ) - • 

Now s is continuous if we endow {-1,l} with the discrete 

topology. If dim V< n-1 , then :mn -V is connected hence 

Im(s) = {1} say. This implies that in Wn we can find 

antipodal pOints inside (Wn)+, a contradiction. If 

dim V = n , then V = :mn ; however if {e l ,···,en } is 

the canonical base of :mn and e* i 
denotes the vector of 

the set {ei,-ei } which is in trDn) + I then el,···,e~ 
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generate an n-dimensional polyhedron which is in <mn)+ 

by Lemma 2.1 b), a contradiction. 

PROPOSITION 2.3. Every ordering on (l}n extends to a 

continuous ordering on mn (The extension is not 

necessarily unique). 

PROOF. Given an ordering on Ol
n we get the set V of 

definition 2, which is a subvectorspace of JRn by Lemma 2.2, 

hence we may choose a vector v1 € JR 
n which is orthogonal 

to V and inside s-1{1} (see the proof of Lemma 2.2) • 

Now the extension of the ordering to lRn -V is uniquely 

determined by the requirement that it is continuous and 

it can be expressed by saying that for every n 
v E JR -v 

v>o iff v-v1 > 0 , where II " . denotes the usual scalar 

product. We denote by. V I,Q the sub-!l)-vectorspace V n mn 

of Oln and observe that dimQ} Vm :ii dimJR V = n-1 • 

If dim VOl = n-1 then we are exactly in the same situation 

as before, but with dimension one less. 

If dim VIl} = d < n-1 , then we denote by "ID.' the JR -vector

space generated by VOl and we choose an orthogonal base 

of the space -.L V
lD 

n V • Of course 

hence we can say that for every v E V-V m 1 v > 0 iff the 

first nonzero coordinate of the vector (vo v2 , ••• ,v-vn_d ) 

is positive. Now we have to extend the ordering to VQ 

and we are exactly in the same situation as at the beginning, 

but with dimension n - d less. 
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Therefore this procedure ends after at most n steps and 

clearly gives a continuous ordering on En , which extends 

the given one on mn. It is also clear by the construction 
I 

that every time we meet a situation where dim V(j) < dim V , 

we loose the unicity of the extension. 

EXAMPLE ,. Let us consider the Example 4 of the first section. 

There v, = (/2,1) and V = {(x,y)/l2x+y = O} hence 

V = Q) 
{(O,O)} ; if we take a vector v in lR2 _V then 

'V> 0 iff v-v, > 0 I but if we take v€V then we have 

two choices. Namely, let v 2 = (1,-12) ; then we can say 

that if v € V I v> 0 iff v-v2 > 0 or v> 0 iff V· (-v2 ) > 0 i 

both extend continuously the ordering on m2 
I which is 

obtained by extending the given ordering on z2 • 

DEFINITION 3. The ordering on ~n (G)n ,Zn) defined by the 

rule: (a l , ... ,an) > 0 iff the first nonzero coordinate 

is positive is called lexicographic and denoted by lex. 

PROPOSITION 2.4. l&.:t < be a continuous ordering 9 n :m.n • 

Then there exists an ordered isomorphism 

a : (]Rn, <) -> (]Rn ,lex) • 

PROOF. Of course < induces an ordering on mn I hence we 

get a vector space V of dimension n-1 (lemma 2.2) hence 

a vector v 1 orthogonal to V and such that if 
n v € lR -v , 

v> 0 iff v-v 1 > 0 (see the proof of Proposition 2.3.) 
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Let {w
1

, ••• ,wn _
1

} be a base of V and denote by V 

the set (Dw1 + ..• +Wwn_
1 

which is a W-vectorspace of dimen

sion n-1 . Now we repeat the same argument for the couple 

V, V as we did for ]Rn,!Un • Eventually we get {v 1 ' •• 0 ,v n} 

which is an orthogonal base of ~n with the property that 

v> 0 iff the first nonzero coordinate of the vector 

(v o v 1 , ••• ,v o vn ) is positive. To conclude it is sufficient 

to put a (v) = (v· v 1 ' ••• , v • v n ) • 

THEOREM 2.5. Let < be an ordering on mn. Then there 

exists an integer s ill!!. 1 ~ s ~ n and an ordered injective 

homomorphism a : n s (en ,<) -> (:IR ,lex) . 

PROOF. Let be chosen as we did in the proof of Propo-

sition 2.3 i we give it the new name u 1 . Looking again at 

the proof of Proposition 2.3, we see that v 2 , ..• vn_d are 

orthogonal to V
W

' hence if v o u
1 

= 0 then v·v. = 0 
1. 

i = 2, .•. ,n-d • So the next vector which is relevant to 

the ordering of enn is vn - d +1 i we give it the new name 

u2 0 Going on in this way we eventually get a subarray 

(U1 ' 0 •• , us) of 

the homomorphism 

(v1 ' ••• ,vn ) where u1 = v 1 . Now we consider 

n s a : (en , <) -> (JR ,lex) given by 

a(v) = (v o u1 , •.• ,v o us ) and we get that a is injective 

since voui = 0, i = 1, ••• s implies V·V. = 0 , j = 1, •• "n 
J 

and it is ordered just because of the given description. 
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DEFINITION 4. Let < bean ordering on Zn«Dn ). Then, the 

minimum number s such that there exists an injective 

homomorphism a like in Theorem 2.5 is denoted by s«}. We 

say that < is of lexicographic type if s«) :; n. 

REMARK. Of course < is archimedean iff s«) = 1 . 

EXAMPLE 2. Let A = k[x1 , ••• ,xn ] where deg{x.) = 1 
1. 

for 

i = l, •.• ,n and let r be the free group generated by 

{x1 ' .•• ,xn } . In many problems arizing in computer algebra 

the following total ordering on r is considered: if 

M1 ,M2 are terms i.e. monomials with coefficient 1, 

then Ml < M2 if either deg Ml < deg M2 or 

deg Ml = deg M2 and Ml < M2 in the lexicographic ordering 

generated by xl < ••• < xn • If we identify r with xn 

we see that the above given ordering is of lexicographic 

type and the vectors u
l

, ••• un are 

u 1 = (1,1, ••• ,1), u 2 = (-n+1,1, ••• ,1), u
3 

= (0,-n+2,1, ... ,l) .•. 

••• un-l = (0, ••• ,0,-2,1,1), un = (0, ••• ,0,-1,1) 

REMARK. In computer algebra the most important orderings 

on the set T of the terms of A = k[x1 , .•. ,xn ] are the 

so-called "term-orderings". A term-ordering is defined to 

be a total ordering on T such that a) For every MET ,t>1 1- 1 

then 1 <M and b) If N<M and M' €T then NM' <l>1M1 • 

But this simply means that the free group r generated by 

{x1 ' ••• ,xn } is given a total ordering such that it becomes 
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an ordered group and T ~ 0 0 So our description gives a 

full classification of all the term-orderinqs on A. 

(for some more details see ·Robbiano, L.: Term orderings on 

the polynomial ring. Preprint). 

COROLLARY 2.6 Let < be an ordering on Zn I let 

u.1 ' •• ° ,u t be elements of Zn and r 1" •. I r t be finitely 

_g_e_n_e_r_a_t_e_d_n_o_n __ n_e...,g_a_t_i_v_e_.;...( i_. e....;...o _c_o_n_t_a_i_n_e_d_~_' n (:;£n) + U {O}} 

t 
sub-semigroups of Zn. Then E = U (u.+f.) is well-ordered. 

i= 1 ~ ~ 

PROOF. We may assume t = 1 , hence that E itself is 

a finitely generated non-negative semigroup of zn. We 

extend the ordering < to Wn and we consider the injective 

ordered homomorphism n s 
IX : (ID , <) -> (lR ,lex) of Theorem 

2.5, so that we may assume that E is a finitely generated 

non-negative subsemigroup of (:IRs ,lex) • Let us take a 

subset FeE IFf. ¢ • We may consider the integer t, 

1 ~ t ~ s such that every element of F has the first t-1 

coordinates zero, and there exists an element in F having 

the tth-coordinate different from zero. If we denote by 

1f the projection of ::IRs to the t th-factor, since lRs 

is ordered lexicographically, we are reduced to prove that 

1f(F) has a first element. On the other hand ~(E) turns 

out to be a finitely generated non-negative semigroup 

of lR with the usual ordering. If r € E it is therefore 

sufficient to prove that {r I € E/rt S r} is finite and this is 

clear since lR with the usual ordering is archimedean: 
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REMARK. Let us consider again the Example 4 of the first 

section. The map a of Theorem 2.5 is given by 

(Z2,<) -> OR ,<) IX (X,y) = 12 x+y 

so that < is archimedean." Again by using Theorem 36 p. 30 

of Hardy-Wright liThe teory of numbers", we can find a 

sequence (x y) with x > 0 and 0 < 12 x + y < _1_ 
n' n n n n xn 

This implies that with respect to this ordering (Z2)+ is 

not a finitely generatedsubsemigroup. 

THEOREM 2. 7 • Let A be a graded noetherian structure, 

such that r ° (A) ~ 0 . Then every finite A-module is a 

Krull-A-modulei in particular A is a stron9 Krull-structure. 

PROOF. Let M = (M,r,w,T,~) i then there is a surjective 
t 

graded homomorphism ~.G(-y.) --> T , hence 
t 1~ ~ 

rO(M) ~ u (-y.+rO(A» and rO(A) generates a finitely 
i=1 ~ 

generated subsemigroup of r (see Proposition 1.3). Since 

rO (A) t! 0 we get from Corollary 2.6 that r ° (M) is 

well-ordered so that in rO(M) there are no strictly 

decreasing sequences and we are done. 



- 27 -

§3. DISTINGUISHED BASES. 

We start this section with the following fundamental 

DEFINITION 1. Let A = (A,f,v,G,F) be a graded noetherian 

structure, let M = (M,f,w,T,~) be a finite A-module and 

let m, , •.• mr be nonzero' elements of M. We say that 

{m1 , ••. mr } is a distinguished base (d-base) of Ai if every 

nonzero element m of M can be written in the following 

way: 

r 
m = Eta.m. 

1 ~ ~ 
where a i € A and for every i€{1, .•. ,r} such 

that a i '1 o , w (m) ~ v (a.) + w (m.) • 
~ ~ 

REMARK 1. By using the axioms M4 ,M7 it is clear that 

the condi tton w (m)' ~ v (a.) + w (m. ) can be replaced by: 
~ ~ 

w(m) = Max(v(a.) + w(m.» where the maximum is taken over 
~ ~ 

the set of indexes i such that a. '1 0 • 
1 

REMARK 2. When we say that {m
1

, ••• ,mr } is ad-base, 

we mean that it is a d-base of the induced structure on 

the submodule generated by {m1 , ••. ,mr } . 

THEOREM 3. 1 • Let A,M,m1 , ••• ,mr be as before and let 

us consider the followins conditions 

i) {m
1

, ••• ,mr } is a d-base of AI. 

ii) {~(m1), ••• ,~(mr)} is a base of T as a G-module. 
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Then i) implies ii) and if M is a Krull-module they are 

equivalent. 

PROOF. i) ... ii) Let hE T be a nonzero homogeneous 

element of degree y; then h = ~(m) where w(m) = y 

We write m = t aimi .according to definition 1 and we let 

I be the subset of {1, ••• ,r} of the indexes j's such that 

w(m) = v (a
j 

) +w (m
j 

) . 

1: F ( a . ) ~ (m . ) 

By using the axioms we get 

~(m) = 
JEI J J 

Now we assume M to be a Krull-module and we prove ii) ... i) . 

We consider the following subgroups of M 

Uy = F ( ) .m1 + ••• +F ( )·m • Of course U S F N y-w m 1 y-w mr r y y 

and we are done if we prove that equality holds for every 

yEr. For, we take the finite free module L(w(m1 ), ••• ,w(mr » 

(see Exam~le 8 and Definition 10 of the first section) and 

we consider the homomorphism A: Ar --> M defined by 

A(a1, ••• ,ar ) = taimi ' which gives rise to a morphism 

A : L (w (m1 ) I • •• , w (m
r

» -> M • Now 

since M is assumed to be a Krull-module, it will suffice 

to show that F MS ncu +F M) for a suitable decreasing 
y n Y Yn 

sequence {Yn}nE:N 'Yn E ro (M) • So let m be a nonzero 

element of M such that w(m) ~Y ; we know that 
r 

~(m) = I R. ~(mi) 
i=1 J. 

where either R = 0 i or 

deg Ri = w (m) - w (mi ) • The nonzero Ri s are of the form 

F(ai ) with v(ai ) = w(m) - w(m
i

} , therefore 

~ (m) = ~ ( t a i mi ) where the summation is taken over the 



- 29 -

set of indexes its such that Ri to. Therefore 

mE U + F M. Now 
Y Y1 

we apply our argument to m - 1: aimi and so on, so that 

we get the required decreasing sequence and we are done. 

As a straightforward consequence of this theorem ~e get 

COROLLARY 3.2. If A is a noetherian ~raded structure, 

then every finite Krull-A-module has d-bases. 

REMARK 3. If we look at Definition 3 of section 1 and at 

Proposition 1.4, it turns out that Theorem 3.1 yields a 

criterion for "computing" the quotients of the 

Krull modules. See also Proposition 4.6 of the last section. 

LEMMA 3.3. Let M = (M,r,w,T,~), M' = (M',r/W',T',~') 

be two modules over a noetherian graded structure A. Let 

(A,A) : M' -> M be a morphism and let K be the induced 

structure on ker A • Consider the following conditions 

i) For every yEr, A(FM') = FM. 
Y Y 

ii) M' /1<. is a v-filtered structure on HI /Ker (A) and. 

(A,A) induces an isomorphism (~,7\) : II.\'/K. -> M • 

iii) A is surjective 

Then i) .. 1i) .. iii) • 

PROOF. Condition ii) is equivalent to the condition: . A 
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whence i),ii) are clearly equivalent, while the impli-

cation i)::;' iii) follows directly from the axioms. 

REMARK 4. Of course conditions i),ii) can be expressed 

in categorical language by saying that (A,A) is an 

epimorphism. 

EXAMPLE 1. A =(A,Z,FA) be the v-filtered structure on 

A = k[x] , where FA = {F-nA}nEz F_nA:.: (x)n and let 

J be the induced structure on (x) • The A-homomorphism 

A : A -> A defined by A (1 ) = x-x 2 extends to a morphism 

(AlA) : A(+l) --> J • Now the associated graded module in 

A(+l) is isomorphic to A(+l) (where A is graded by 

deg(x) = -1) and the associated graded module in J is 

isomorphic to (x) . Then it turns out that 

A : A(+l) --> (x) is defined by A(l) = x ,hence A is 

surjective, but FOA = A I FO (x) = (x) and A (FOA) c: FO (x) • 

So in general iii) does not imply i) in Lemma 3.3. However 

we have: 

LEMMA 3.4. Let A be a noetherian graded structure, let 

M be a finite Krull A-module, let rn1, ••. ,mr be elements 

of M and put wi = w(mi ) i = 1, ••• ,r • Let (A,A) be 

the canonical morphism from L (w" ••• ,W r) to M associated 

to rn1 I ••• , Il" r (see Section 1 Ex. 8). Then i),ii),iii) of 

Lemma 3.3 are equivalent to the condition 

is a d-~. 
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PROOF. iii) ~ i) Let m EM, m:f 0 and put y = w (m) • 

Since !if (m) = jil+ (1) for a suitable 1 f Ar 
I we get 

A(~+(l» = ~(A(l» and w+(l) = w{m) = y • Therefore, 

if denotes m-A (1) I then w(m
1

) <: y • Now either 

m1 - 0 and we are done or we repeat the same argument 

for 

Therefore 

and we get 11 EAr such that 

+ w (m- A (1 + 11» < w (m1) < y and 

+ w (11) = w (m1) < y • 

+ w (1+l1) = w(l) = y. 

Going on in this way we get a strictly decreasing sequence 

where the last equality follows from the Krull-type assump-

tion on M. 

Now the equivalence between iii) and iv) follows from the 

definition of A and from Theorem 3.1. 

THEOREM 3.5. If A is a noetherian ~raded structure and 

M is a finite Krull A-module, then H has a free resolution. 

PROOF. Since every submodule of a finite Krull A-module is 

also finite Krull, the proof is done if we can show that for 

every finite Krull A-module N there exists a finite free 

module L and an epimorphism (AlA) : L --> N , because 

then we replace N with K , the induced structure on 

Ker A , and so on. 

Now N has a d-base by Corollary 3.2, hepce we are done 

by using Lemma 3.4. 
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THEOREM 3,6. Let M = (M,r,w,T,Il), M' ;: (t-l' ,r,w' IT' ,~') 

be two finite Krull-modules over a noetherian graded 

structure A and let (A, A) : M' -> AI be a morph i sm. 

Then the following conditions are equivalent 

1) (A,A) is an epimorphism. 

2) A is surjective 

3) A is surjective and for every homogeneous nonzero 

element ° E Ker (A) , there exists an element 

s E Ker (A) such that ~'(s) = 0 • 

4) A is surjective and there exist a homogeneous base 

{o1, ••• ,Ot} of Ker(A) and elements s1,·.·,St 

of Ker(A) such that ~'(si) = 0i ' i = l"",t. 

PROOF. 1)~3) It is clear that A is surjective. Let 

now ° be a homogeneous nonzero element in Ker(A) . Then 

o = 11' (m') for a suitable m' , and A~' (ml) ~ 0 . So 

either A (m') = 0 and we are done, or w(A (m'» < Wi (m') 

Byassumption A(m') ::: A(m") with vI' (mil) ::: wP.(m"» = 

= w(A(m ' » <WI (m') • Therefore m'-m" EKer(A) and 

~I (ml-mn
) = ~' (m') = a • 

3) .. 2) Let t be a nonzero homogeneous element in T 

of degree y. Then t = ~ (A (mt}) for some ro' EM' . If 

w, (m') = y then ~(A(m'» = A~I (m') and we are done. 

If w' (m') > y then A~' (m') = 0 , hence fjl (m') E Ker(A) i 

let m € Ker (A) be such that Wi (m) ::: w' (m') > y and 

~'(m) = ~'(m') • We put m = m'-m 1 
so that we have 
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t = ~(>.(m,» with Y, = Wi (m1 ) <w' (m') • After a finite 

nuniber of steps like this we get y- = y , otherwise we n 

could construct a strictly decreasing sequence 

m 'EO (Ker (A ) + F M I) = 
n Yn 

Ker(>.) since M' is a Krull-

module; but then we get t = ~(>.(ml») = 0 a contradiction. 

2) 091) The proof of this implication would be exactly the 

same as the proof of iii) => i) in Lemma 3.4 if we knew that 

O(>.(F M') + F M) = A(F M') 
n Y Yn Y 

for every y € r u {-co} and every strictly decreasing sequence 

of elements of rO(M) 

Now M' is a Krull-module, hence it has a d-base, say 

{m;, ••• ,m~} by Corollary 3.2. 

Let wi = w' (mi) , i = 1, ••• ,r and consider the canonical 

morphism (<S,id : L(w
1

, ••• ,w
r

, -> M' 

elements m' , l' ... ,mr • We get 

associated to the 

where (1) and (3) follow from Lemma 3.4 applied to M' 

and (2) follows from the fact that M is a Krull-module. 

3) ~ 4) Obvious 

4) ~ 3) Let (J be a homogeneous nonzero element in Ker (II.) 
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of degree y. Then we can write ° = tgio i where 

o #- gi € G are homogeneous, deg gi + deg 0i = y and 

the GiS are among the elements of the base {01, ... ,a t } 

of Ker(A} • But then it follows directly from the axioms 

that ° = ~'(l:a.s.) 
~ ~ 

where g. = F(a.) I o. == !'II (s.) . 
111 1 

COROLLARY 3.7. With the same assumption as in Theorem 3.6" 

let m1 , ••• ,mr be elements of M such that 

is a base of Im(A). Then all 

the conditions of Theorem 3.6 are equivalent to 

5) {m1 , ••• ,mr } is a d-base of M. 

PROOF. Since {~(m1), ••• ,~(mr)} generates Im(A) I Theorem 

3.1 tells us that {m1 , •.• ,mr } is a d-base of M if and 

only if Im(A) = T i.e. if and only if condition 2) of 

Theorem 3.6 holds. 

COROLLARY 3.8. Let A be a strong Krull structure. Let 

M = (M,r,w,T,~) be a finite Krull A-module and m1 , ... ,mr 

be nonzero elements which generate M • Let w. = w(m ), 
1 i 

i = 1, ••• ,r and let (A,A) : L(w1 , ••• ,wr ) -> M be the 

canonical morphism associated to m1 , ••• ,mr • Then the 

following conditions are equivalent 

1) (A,A) is an epimorEhism 

2) A is surjective 
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3) For every homogeneous nonzero element (J € Ker (A) I 

there exists an element s E Ker (;\) such that !3+(s) = 

4) There exists a homogeneous base {o1,oo-t°t} of 

Ker (A) and elements s 1 t • • • , s t E Ke r ( A ) such that 
+ 

13 (si) :::: cr. t i = 1, ••. , t 
~ 

5} {m1, •.• ,mr } is a d-base. 

PROOF. It is a consequence of Corollary 3.7 and Theorem 

3.6, since the conditions "{!3(m1),."/~(mr)} is a base of 

Im(A)" and "h is surjective ll are fulfilled by the very 

definition of (A,A) • 

EXAMPLE 2. Let A = kUx,y,z] ,I = (f1,f2) where 

4 2 3 f1 = x-y , f2 = Z -xy I r = Z , v(f) = deg(f} . We get 

(J 

a graded structure A = (A,r,v,G,F) on A I where rO(A) = W 

G = A I F(f) = H(f) , where H(f) is the form of f of 

maximal degree (see Ex. 2 of section 1). Let J be the 

induced structure on I and let (A,A) : L(4,4) --> J 

be the canonical map associated to f 1,f2 . Let 

4322223 f = Z -x y = -x y f1 + (z +xy )f2 and 

4332324 g = yf = yz -x y :::; -x y f1 + (yz +xv )f2 . We have 
3 3 2 2 F(g) = -x y = x F(f2 ) = A(O,x) Since f 1,f2 is a regular 

sequence, g can be written as a combination of f 1 ,f2 , 

2 3 2 4 only in the following way g = {rf2-x y )f1 + (yz +xy -rf1'f2 ' 
2 3 2 4 rEA • Therefore g:::; )..{rf2-x y I yz +xy -rf 1),r E A 

Claim: for every choice of rEA we have 

2 3 2 4 ' w+(rf2-X y ,yz +xy -rf
1
» v(g) • 
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For lit is sufficient to show that for every choice of rEA, 

deg (rf2-x
2y 3) > 2 ; it is clear that the minimum is attained 

when r = -x and it is 3. 

Now the morphism (A,A) certainly satisfies the hypotheses 

of Theorem 3.6 I hence the conditions "(A,A) is an epi-

morphism" and " A is surjective" are equivalent. However 

F (g) E 1m (A) , v (g) = 6 but 

Another remark is that a d-base in this example is 

2 2 432 
{f1,f2,f3,f4,fS} where f3 = x -yz , f4 = f = z -x Y 

fS = x5y_ z 6 • So we may consider the canonical map 

(o/A) : L(4,4,3,S,6)--> J associated to f"f 2 ,f
3
,f4 ,fS • 

Then A is surjective by Corollary 3.8 and 

5 g = Ci (0 , 0 , 0 I Y , O) E 15 (F 6A ) • 

EXAMPLE 3. Let A = (A,r,v,G,F) where A = k[x], r = ~ , 
v(f) = deg(f) and consider the induced morphism 

A(-1) -> A by the identity map A -> A . Then A = 0 

and {1} is a d-base of A, but the conclusions of Corollary 

3.7 cannot be applied to this situation, since 

F ( 1) f 1m ( A ) • 

Let now A be a graded structure, M = (M,r,w,T,~) a finite 

A-module. 

DEFINITION 2. Let m1 , •.. ,mr € M • We say that (m1 ' .•• ,mr ) 

is a stepwise d-base if {m
1

}, {m
1

,m2 } , ••• , {m1 , •.• ,mr } 

are d-bases. We say that {m
1

, ••• ,m
r

} is a strong d-base if 

every subset of {m11""~} is ad-base. 
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In the following, if A = (A,f,v,G,F) is a graded structure 

and x 1 , ••. , xr E A , we denote by x the sequence 

X1 "."Xr I by {~} the set {x1, •.. ,xr }, by (~) the 

ideal generated by {~} and by F(~) the sequence 

F(x1),···,F(xr ) . 

THEOREM 3.9. Let A = (A,f,v,G,F) be a strong Krull 

structure and let x" ••• ,xr EA. Then the following conditions 

are equivalent 

1) x is a regular sequence and a stepwise d-base. 

2) F(~) is a regular sequence. 

r-1 
PROOF. 1) .. 2 } Let g.F(x) = t .g.F(x.) where 

r 1 ~ ~ ~ 

are homogeneous , 9 f 0 and 

deg(g) + vex ) = deg(g.) + v(x4 ) for those i1s such that 
r ~ ... 

g. f 0 
~ . This implies that (g1, •.. ,gr-1,-g) is a homogeneous 

syzygy of F (x,) , ., • IF (X
r

) I hence it can be lifted to 

(a1 , ••• ,ar ) such that taixi = 0 and 

= deg(g1, ••• ,gr_1,-g) = deg(g) + v(xr ) 

Corollary 3.8. 

+ w (a 1 I ••• , a r ) = 

by means of 

Now a r f 0 and a r E (x1 ' ••• ,xr - 1) since x is a regular 

sequence; moreover {X
1

' ••• ,Xr _,} is a d-base, hence 
r-1 

a = t .b.x. with v(a) = Max(v(b.) + v(x.)} . Therefore 
r 1 ~ ~ ~ r i ~ ~ 

g = F(a
r

) E (F(X
1
), ••• ,F(Xr _ 1 » 

Of course the other steps in the proof that F(~) is a. 

regular sequence can be proved in the same way by the very 
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nature of the assumptions. 

2) :::;> 1) We prove that {~} is ad-base . The syzygies of 

F(x
1
), ••• ,F(X

r
) are generated by the trivial ones, which 

can be lifted to the corresponding trivial syzygies of 

x 1 , ••• ,xr ' hence we are done by Corollary 3.8. Of course 

the same remark as before shows that 

{x,}, {x1,x2}, ••• ,{x1, .•. ,xr_1} are also d-bases. Now 

we prove that arxr E (x1 ' ••• ,xr - 1 ) implies a r E (x 1 '··· ,xr ) . 

We know already that 
r-1 

arxr = E ia.x. with 
1 ~ ~ 

is a d-base hence 

v(a x ) = Max(v(a.) + v(x.» 
r r i 1 1 

If vCarxr ) < v(ar ) + v(x
r

) then F(ar)F(Xr ) = 0 ; if 

v(a x ) = v(a )+v(x} then FCa )F(x ) = Eg.F(x.) where the 
r r r r r r 1 1 

sum is taken over the set of the its such that 

v(a.)+v{x.) is the maximum. In both cases we get that 
1 1 

F(a) = Eh.F(x.) = EF(b.)F(x.} , whence v(a -Eb.x.) <v(a ) • r 1 1 1 1 r 1 1 r 

GOing on in. this way, we get a strictly decreasing sequence 

{Yn}nE::N' such that a E: n «x1 ' ••• ,Xr - 1 ) + Fy A) = (x1 '··· ,xr - 1 ) 
r n n 

by the Krull-type assumption. Of course again the other steps 

have the same proof. 

LEMMA 3.10. Let A and x be as in the Theorem 3.9. 

Assume that ro (A) ~ 0 (2.E ro CA) ~ 0), that x is a regular 

sequence and { ~} is ad-base. ~loreover assume that for every 

xi such that v(x
i

) = 0 , F(X
i

) is in the Jacobson radical 

of GO' Then {~} is a stepwise d-base. 

PROOF. Let E = {x E ex1 , ••• ,x
r

-
1

) IF (x) f (F ex 1 ) , ••. ,F (xr - 1 ) ) } 
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We want to show that E is empty. Suppose not, theI! for every 
r-1 

xEE , we have x # 0 and x = I .a.x. + a x with 
1 ~ J. J. r r 

vex) ;:: v(a.) 
. J. 

+ v (x.) and 
1. 

vex) = year) + v(xr ) I so that 
r-1 

F(x) = E . g. F (x. ) + F(ar)F(Xr ) . 
1 J. 1. 1. 

Let us consider the ring G = G/(F{X1) , .•. ,F(Xr _1» and in 

it the principal ideal generated by F(Xr ) . Since G is 

noetherian, we get 

Now, if we get t n (F (x )) = 0 
t r 

by using the 

assumption rO (A) ~ 0 and the given description of the 

intersection; if v(xr ) = 0 , then 1 + h F(Xr ) is 

invertible by assumption, hence we get again Q(F(Xr»t = 0 . 

Therefore for every x E (.!) it is well-defined the number 

t(x) =max{n/F(X)E(F{X
1
), ••• ,F(Xr _,» + (F(Xr»n} • Let 

y E E be such that t (y) is minimum in E i then again 
r-1 

y = t ibixi + brxr where v(y) = v(br ) + v(Xr ) and 

r-1 
F{y) = r igiF(xi } + F(br)F(Xr ) • But yE (X1 '· .• ,Xr _1) 

and is a regular sequence, hence 

br E (x1 ' ••• ,xr - 1 ) ; since t (y) > t (br ) we deduce that 

br fE, therefore F(br ) E (F(X,), ••. ,F{Xr _,» whence 

F(y) E (F(x,), ••• ,F(xr _,» a contradiction. The other 

steps have the same proof. 
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THEOREM 3.11. Let A = (A,r,v,G,F) be a strong Krull 

structure such that ro (A) ~ 0 (££ fO (A) ~ 0 and let 

~ = x 1 , ••• ,xr be a sequence of elements of A such that for 

every xi with v(x.) = 0 
~ 

then is in the Jacobson 

radical of GO' Then the following conditions are equivalent 

1) x is a regular sequence and {~} is ad-base 

2) F(~) is a regular seguence. 

PROOF. After Theorem 3.9 we need only proving 1) ~ 2) . But 

this is an immediate consequence of Theorem 3.9 and Lemma 3.10. 

COROLLARY 3.12. With the same assumptions as in Theorem 

3.11, the following conditions are equivalent 

1) x is a Eermutable regular sequence and {~} is ad-base 

2) F(~) is a permutable regular sequence. 

EXAMPLE 4. Let A = k{x,y] , r = ~ v(f) = -v(x,y) (f) 

(see Ex. 1 of section 1) • Let X
1 

= x(x-1) x 2 = y(x-1) • 

Then F(x,), F(X2 ) is a regular sequence and x 1 ,x2 is not 

This happens because A is noetherian but not Krull. 



- 41 -

§4. DOUBLE STRUCTURES AND HILBERT FUNCTIONS. 

Let A = (A,r, fA) ~ (A,r,v,G,F) and 

B = (B,ll, fB) ~ (B,ll,w,H,{il) be two v-filtered (graded) structures. 

DEFINITION 1. A morphism of A in B is a couple (~,A) 

where ~: r --> II is an ordered homomorphism (i.e. a 

homomorphism such that a ~ y implies a:;,; ~(y» and 

X : A --> B is a ring-homomorphism such that 

X(F A) cF ()B or, equivalently, w(>'(a» ~ ~(v(a» for 
y - ~ y 

every a € A - Ker (A) • 

REMARK 1. Let A be a graded Krull structure and I an 

ideal of A; then there is an obvious canonical morphism 

A -->A/J where J is the structure induced on I i it is 

clear that in this case it may happen that 

w(A (a» < ~(v{a» • 

REMARK 2. Let us consider the following example; on z2 we 

put the ordering < given by u1 = {lin, U2 = (-1,1) 

(see section 2); we let A = k[x,y] and we consider the 

function v . A - {a} _> ~2 which to every polynomial . 
associates the couple of exponents of the maximal monomial 

(with respect to <) i this gives us a graded structure A 

Let now w: A - {a} -> II be the function which to every 

polynomial associates its degree; this yields another graded 

structure, say B, on A • 
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Let now a : be defined by a(a,b) = a+b and 

A : A --> A be the identity map. Then it is easy to check 

that (a,A) is a morphism; moreover we have 

w(A(a» :::: a(v(a» for every a:f 0 • Since (1,1) < (0,2) I 

xy€ F(O,2)A , but ).(xy) = xy€'F2A - F2A ,where 2 = cdO,2) • 

This shows that there is no hope in general to deduce from 

a morphism (a,).} a homomorphism between the two graded 

objects G,H. 

DEFINITION 2. Given a morphism (a,A) as before, we denote 

by G~ the A-graded ring defined by 

where 

We denote by G
A 

the A-graded ring defined by 

LEMMA 4.1. 

where ~ G 
a(y)=o y 

GA is the graded ring associated to a 

v-filtered structure if and only if A is injective. 

PROOF. If A is not injective, then 9). -1 (F oB) ~ Ker (A) 

hence the elements of Ker().) have no valuation. Con-

versely assume that A is injective and let a € A , a :f 0 ; 

let 0 = w(ft. (a}) • Then a € A -1 (FoB) and 

we see that the filtration {).-1(FoB)} is valued. 

, so 
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LEMMA 4.2. Given a morphism (a,A) as before, there 

are two canonical homomorphisms 

i G -> G 
t:. 

Gt:. -> H 

where i (g) = g for every 9 E G (but it changes the degrees) 

and I is defined through A and it is an injective 

t:.-homogeneous homomorphism. 

PROOF. Obvious. 

LEMMA 4.3. Given a morphism (a,A) 1 if a is injective 

(equivalently strictly ordered) then there is a canonical map 

Gt:. --> Gt:. , hence a canonical map A : G --> H • 

PROOF. Obvious. 

At this point we can say that, given a morphism 

(a, A) A --> B 1 there are circumstances where it induces 

a map A: G --> H (see Lemma 4.3) I while in general this 

does not happen. So the question is to get informations 

about the relation between Gt:. and Gti • Henceforth we 

are going to consider a special situation, which nevertheless 

will be general enough for several applications. Essentially 

we are going to consider the case when A = Band 
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DEFINITION 3. We denote by Au the triple (Ar,A~,a) where 

Ar = (A,r, Fr,A) - (A,r,vr,G(r) ,Fr) 

A~ = (A,~,F~,A) ~ (A,~,V~,G(~},F~) 

are graded structures over the ring A and a r -> ~ 

is an ordered homomorphism such that u(vr(a» = v~(a) for 

A will be called 
a 

every a I- 0 (hence Fr,y c F~,a(y» • 

A n a "double structure on 

We denote by m the couple (Mr,M~) where 

Mr = (M,r,Fr,M) ;: (M,r,wr,T(f) '~r) 

M~ = (M,~, F~,M) ;: (M,~,w~,T(~) ,~~) 

are modules over Ar,A~ respectively. If a. 

that cdwr (m» = w~ (m) for every m :f. 0 , we 

has the property 

say that m 

is an A -module (on M ) . An example of double structure 
u 

is that one described in Remark 2. 

DEFINITION 4. We say that Au is noetherian (Krull, ..• ) 

if Ar and A~ are noetherian (Krull, .•. ) . We say 

that m is finite (Krull, ••• ) if Mr is finite (Krull, •.• ) 

over Ar and M~ is finite (Krull, ••. ) over A~. 

DEFINITION 5. As in definition 2, we put 
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T(r)~ = O~~T(r)~,O 
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where 

where 

G(r}~/O = a(~)=oG(r)y 
T(r)~,O = a(~)=OT(r)y 

We observe that, being A = id , the corresponding G(r}~ 

is nothing but G(6) and T(r)~ = T(~) . 

Therefore, in this situation the question is to get in for-

mations about the relation between G{r)~ and G(~) , 

more generally between T(r)~ and T(6} . 

LEMMA 4.4. Let Aci = (Ar,A~,a) be a double structure and 

m = (Mr,M~) a module on it; then 

a) The map a restricts to a map rO(M
r

) -> ~O(M~) 

which is surjective. 

b) The map a is surjective, hence Ker(a) is an isolated 

subgroup of r. 

PROOF. a) Let 0 € ~ 0 (M ~) ; then 0 = w;;.. (m) = a (w r (m)) • 

b) It follows from a}, since r and A are generated by 

rO(A
r

) and 6°(A
6

) respectively (see section 1, after 

definition 11). 

PROPOSITION 4.5. Let Aa = (A r ,A6 ,a) be a double structure 

and assume that a is injective; then 

a) a is an isomorphism 

b} ,After identifying 

module m = (Mr,M~) 

..2f Mr .with M ~ • 

r with ~ ~ a, ~or every .!a 
there is a canonical identification 
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c) The categories of A -modules and a. --........;;.--~ 

equivalent. 

PROOF. a) Follows from Lemma 4.4. 

b) We have wr (m) :;; y iff a. (Wr (m» :;; a. (y) i but 

a.(wr(m» = w~(m) , whence Fr,yM = F~,a.(y)M = F6 ,yM where 

the last equality depends on the identification of r 

with 6. 

c) Follows from b). 

Let now Aa. = (Ar,A~Ia.) be a strong Krull double structure 

on A and 111 = (Mr ,M6 ) a finite la-module. Let N be a 

submodule of M and I = AnnA{M/N) i let J denote the 
a 

"ideal" of Aa given by (J r,J A) , where J r' J 6 are the 

structures induced on I by Ar~A6 respectively. Let N 

denote the " submodule" of III given by (N r ,N6 ) , where 

Nr ,N6 are the structures induced on N by 

respectively. Finally let us denote by A IJ the triple 
a. a. 

(M r/N r ,Al
6

/N
6

) • 

PROPOSITION 4.6. With these assumptions and notations, we 

have 

a) Aa/Ja. is a strong Krull double structure. 

b) m IN is an Aa/J(J. - module 

c) If {n1 ' ••• ,nr } is a d-base of Nr , then it is also 

a d-base of N~ . 
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PROOF. a) Ar/Jr and A8/18 are structures on A/I by 

Proposition 1.4. Let now a E A/I I a f:. 0 ; then 

vr(a) = min v (x) i so what we have to show is that 
x-a€I r 

a(min vr(x» = min V6 (x) and this is true, because 
x-aEI x-aEI 

a(vr(x)} = v6 (x) for every x f:. 0 . So now we know that 

A /J is a double structure and to show that it is strong a a 

Krull, we may use again Proposition 1.4. 

b) Same arguments as in a). 

c) Every nonzero element n of N can be written as 
r 

n = t, a, n, where a 1.' E A anf for every i such that 
11. 1. l. 

ai:f; 0 I wr(n) ~vr(ai) + wr(mi ) • By using the properties 

of a, we get also w 6 (n) ~ v 6 (a i ) + w 6 (mi ) . 

REMARK 3. If Aa = (A r ,A
6

,a) is a double structure on A 

and A6 is noetherian, then Ar need not being noetherian, 

as the following example shows. 

Let us consider the structure Ar of the Exa~?le 9 of the 

first section, where r = z2 , A = k[x,y,z] and G(r) turns 

out to be non noetherian. Let us consider e = Z , 

v6 {f) = deg(f) and 2 a : Z --> Z , u(a,b) = a+b Then 

G(6) = k[x,y, z) ; moreover 6° = IN , ro = JN2 and 

QUESTION. I do not know \'lhether Ar noetherian implies 

A~ noetherian. However it should be noted that the answer 

is negative if we drop the assum~tion that 
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a(vr(a» = v~(a) (so we do not have a double structure). 

Namely we put 6 =:2 and as A6 the structure described 

in the Example 9 of the first section. Then we put 

r = z , vr(f) = deg(f) and a : Z --> z2 , a(n) = (n,O) • 

Then G(r) = k[x,y,z] , but of course a(vr (f» S v6 (f) and 

the strict inequality occurs. 

PROPOSITION 4.7. 

Qn A and let Mr be an Ar-module • Then 

a) If we put F M = "--./ F M we get an A
6
-module I 

6,0 aCy)=o r/y 
which we denote by Ma(r) t such that (Mr,~la(r» is an 

A -module. 
a 

b) Conversely, if m = (M
r

,M
6

) is an A -module then 
a 

M~ = Ma (r) . 
c) If moreover a is not injective, and m = (M r ,M

6
) 

is an A -module l then 
a F O M = ;-\ Fr M for every 0 6,0 a(y)=6 ,y 

PROOF. a) By Lemma 4.4 we know that a is an ordered 

surjective homomorphism, so that it is easy to see that the 

given one is a valued filtration on M. Moreover if mE: M 

is such that wr(m) = y 

b) If m = (Mr ,M6 ) 

then w
6

(m) = aCyl by definition. 

is an A -module, then clearly 
a 

F M:::> \.. ~ F M 
~,6 - afY)=o r,y 

i on the other hand if w6 (m) = {5 , 

then a (w r (m» = 0 and of course mEr ()M; if 
wr m 

w~(m) <0 and aCyl = <5, then wr(m):sy, hence mE: fyM. 

. 

0) Let m be such that w ~ (m) < 0 and let y be such that 

aCyl = 0 • We get a(wr(rn» = wA(m) < 0 = aCyl hence 
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Wr (m) < y and the inclusion "c" is proved. 

Let now mE ("\ Fr M, m:f 0 since wr (m) :i y 
a(y)=o ,y 

a (Wr em) ) :i a (y) = 0 and we have to show that 

implies 

a (wr (m» < 0 I we have only to exclude that a (wr (m) = 0 • 

Suppose, for contradiction, that a(wr(m» = 6 ; then 

u-1 {o} = wr(m) + Ker(a) ; let yl Ker(a) be such that 

y' < 0 (such a y' exists since Ker (a) is nontrivial). 

Then y" = wr (m) + y' < wr (m) 

diction. 

and m t Fr 11M I a contra
IY 

PROPOSITION 4.8. 

double structure on A; ~ S be the semigroup generated 

£l rO (Ar) and assume that Ker (a) n S = {O} • Then 

a) For every finite la-module m = (Mr,ML\) and every 

o E /). , the set a -1 un 0 r o (M
r

) is finite. If we assume 

in addition that rO(A
r
> is either positive or negative then 

b) For every finite Aa-module m = Ofr,Alt.) 

a Krull module, also Mr is a Krull module 

if Me. is 

c) . If A/). is a strong Krull structure, also Ar is a 

strong Krull structure. 

PROOF. a) Arguing as in the proof of Theorem 2.7, we know 

that rO(Mr ) is contained in a finite union of subsets of 

the type y + rO(Ar ) • Since 

a-1{o} 0 (y+rO(A
r

) == y+(a- 1{o-a(y)} OS) I it is enough to 

show that a- 1{o} oS is finite for every 0 . By Proposition 

1.3 we know that S is a finitely generated semigroupi let 
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us identify r with Zn and embed it into ~n i moreover 

let P be the polyhedron (finite intersection of closed 

half-spaces) spanned by S. Being S finitely generated, 

we get Ker (a) n p = {O} , so that the linear space 

generated by a -1 {<5} in En intersects P in a compact 

region and we are done. 

Of course there is nothing to prove in b) and c) if 

ro (Ar) ~ 0 because then every finite Ar-module is Krull 

by Theorem 2.7. Moreover if Lr is a finite free Ar-module 

then Lr-Clt L (Y 1' .•. ,y r) and it is easy to see that 

La(r) c::.:L(a(y 1 ), ••• ,a(Y2» • Now we know from Lemma 4.7 a) 

that (Lr,La(r» is an Aa-module, hence c) is a consequence 

of b). 

So we have only to prove b) under the assumptions that 

ro (Ar) SO. If Lr = L (Y 1'" • ,Yr ) A: Lr -> Mr is a 

morphism, then A(F L) = F A-m
1

+ •.• +F A-m where 
Y Y-Y 1 Y-Yr r 

m1 , ••• ,mr EM; but F A is an ideal of A by Lemma 1.6, 
Y-Yi 

hence A (FyL) is a submodule of M. 

Therefore, to show that Mr is a Krull module, it l~ 

sufficient to show that, given a submodule N on M and 

a strictly decreasing sequence {Yn}nEN of elements of 

ro (Mr ) , then n (N+F M) 
n Yn 

= N • On the other hand 

n(N+F M) = RtN+Fa(y )M) and we know that Alb is a Krull 
n Yn n 
module. 

To conclude it is sufficient to show that {o(Yn}}nEN has 

a strictly decreasing subsequence. 
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For I we know by . Proposition 4.7 that F () = \... ../ F r 1M 
8,0. Y Y I(~y)} ,y 

and we know from a) that 0.-1{a(Y)}nr O (M
r

) is finite, 

so that in the sequence {a (y n } } nE IN 1 we have 

IHn'/n' ~n , o.(nf) = o.{n)} is finite for every n. 

QUESTION. I do pot know if b) and c) are still valid if we 

drop the extra-condition that rO(A r ) is positive or 

negative. 

Now we come to the main result of this section; we keep the 

notations introduced in Definition 3. 

THEOREM 4.9. ~ Ao. be a noetherian double structure on 

A ; let S be the semigroup generated by rO(A r ) and 

assume that Ker (a) n s = {O} ; let m be a finite Aa -module. 

Then -
1} ~(r)o = G(A)O and we shall denote it by GO . 

2) If [ ••• ] denotes the image in the Grothendieck grou£ 

of finitely generated GO-modules, then 

for every 

PROOF. If 0. is injective, we use Proposition 4.5 and there 

is nothing to prove. So let us assume that 0. is not in-

jective; we first prove the following 

CLAIM: If Y > 0 , y f/. Ker (0.) then y > y f for every 

y' E Ker (ex) • If Y < 0 I Y f/. Ker (0.) I then y < 'I f for every 

y' € Ker (ex) • Namely I suppose that y > 0 and there exists y I €Ker (0.) 
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such that y < y' i then -y' < -y < y < y' ,whence y E Ker (a) 

(being Ker(a) an isolated subgroup), a contradiction; of 

course the same proof works for y < 0 • 

Now we come to the proof of 1). 

By the assumption and the fact that 0 E ro (Ar) (see Remark 1 

of section 1) we get Ker(a) nrO(A r )= {OJ i this means 

that {aEA/vr{a) EKer(a) - {OJ} is empty, hence Fr,yA = Fr,oA 

for every y;:: 0 , Y E Ker (a) , and all the Fr A ,y 

are equal for every y < 0 I Y Ker (a) , hence they are 

equal to F~OA by the claim. 

So we conclude by Proposition 4.7 applied to A considered 
a 

as a module over itself. 

2) We know that T(r)8 I O = YE:- 1{O}T(r)y and Lemma 4.7 

tells us that {Fr M} -1 is a filtration such that 
,y yEa {oJ ~ ) 

Ft.,o =~ Fr M and FI::, oZ.1 = ~Fr !·1 i moreover 
yEa {oJ ,y , yEa to} ,y 

T8 ,O = F8,oM/Ft.loM , hence to conclude it is sufficient to 

know that in th~ filtration {F M} only a finite 
r,y yEa-1{o} 

number of strict inequalities occur. And this follows from 

Proposition 4.8. a). 

I want to conclude by showing two different applications 

of Theorem 4.9. 

Let us consider and let < be 

an ordering on Zn such that u = (q1"" ,qn) where 

+ qi E :N , i = 1, ••• ,n (see Theorem 2.5) • Then we consider 

the graded structure on A described in Example 3 of section 1; 
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as a consequence of Theorem 2.7 we get that it is a strong 

Krull structure; we denote it by Ar . 

Now if n m a : ~ --> Z is an ordered nonzero homomorphism, 

Ker(a) is an isolated subgroup, hence it has to be ortho

gonal to u1 • 

Let m = 1 and consider the usual ordering on Z then 

a, : has to be defined by 
n 

a(a1,···,an) = 1iai q i . Let us consider Q1, ... ,qn as 

weights of the variables x1 , ... xn and then let us consider 

the graded structure on A described in Example 2 of section 1i 

also this structure, which we denote by Az is a strong 

Krull structure and it is clear that Aa = (Ar,Az,a) is a 

strong Krull double structure on A. Since rO (Ar) = JNn 

the hypotheses of Theorem 4.9 are satisfied. 

Let now I be an ideal of A and let 3a, = (Jr,Jz ) be 

the induced double structure on I. By Proposition 4.6 

we know that Aa,/J a is a strong Krull double structure on 

A/I and that if {f1 , ••• ,fr } is a d-base of J r I then 

it is also a d-base of J , and the hypotheses of Theorem 

4.9 are satysfied. If we apply Theorem 4.9 to 

the following 

A /3 we get a a 

COROLLARY 4.10 Let A = k[x1 , ••. ,xn ] , I an ideal of A. 

Let M(I} denote the ideal generated by the maximal monomials 

of the elements of I, with respect to an ordering on ~n 

and let F {I} denote 

the ideal generated by the forms of maximum degree of the 
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elements of I, where deg xi = qi ' i = 1, ... ,n • Let 

AIM (I) and A/F(I) be considered as graded over :IN £y 

the graduations induced by the graduation on A defined 

by the total degree, where deg xi = qi ' r = 1, .•• , n • 

Finally let H(A/M(I» , H(A/F(I» be the Hilbert functions. 

Then U(A/M(I» = H(A/F(I» 

In particular we get 

COROLLARY 4 .11. (Macaulay, see [ 5 ]) With the same nota-

tions as before, let us assume that u1 = {1,1, .•. ,1} and 

that I is homogeneous with respect to the usual total 

degree. Then U(A/M(I}) = U(A/I) • 

REMARK. Let us consider the ring S = k[xO, ... ,xnJ graded 

by the total degree, where degxo = 1 , deg xi = qi 

i = 1, ... ,n ; let us denote by hI the ideal generated 

all the hf I fEI , where hf is the homogenization of 

f with respect to Xo . With the notations of Corollary 

h 4.10, it is clear that (I,XO) = (F(I), xo' . As before 

by 

we denote by H ( ••• ) the Hilbert function and by 1 U ( ••• ) 

the function defined by 1 H ( ••• ,n) = n . Since r . H( ••• , ~} . 
O~ 

is a nonzerodivisor modulo hI 
I homogeneous of degree 

we get U1 (A/M(I» = U1 (A/F(I» = U1 (S/(F(I),XO» = 

= U1 (S/(hI,X
O

}) = Res/hI) • Hence we deduce that 

Xo 

1 , 

R(S/(M(I)·S» = ms/hI) • On the other hand it is easily seen 

that if {f
1

, ••• ,fr } is a d-base of J r {this is usually 

called a Grebner-base of I with resp~ct to the given 



- 55 -

ordering) then not only l-1(I} = (M(f
1

) , •.• ,M(fr » but 
h h h also I = ( f l' ... , f r ) • 

Therefore the knowledge of such a base allows to "compute" 

the equations and the Hilbert function of the compacti

fication of Spec (A/I) in the weighted projective space 

]I? (1,Q1, ••• ,qr) = Proj(S) • 

The second application is dealing 

with the local ring R = k {[x1 ' .•. ,xn ]] of power series. 

We consider on it the noetherian structure A~ described 

in Example 1 of section 1. Let now r = 2t
n and let < be 

an ordering on it such that u 1 = (-1,-1, .•. ,.-1) . To every 

serie we associate its maximum monomial (it exists, because 

the maximum monomial with respect to the given ordering is 

among those of minimum degree) and we get again a noetherian 

graded structure Ar on R, since the associated graded 

ring is clearly isomorphic to k{x 1, •.. ,xn ] • 

n 
Let now 0:: zn -> Z be defined by 0: (a1 , .•. ,a ) =- L . a. • 

n 1 J. J. 

It is an ordered homomorphism and Ker (0:) n r ° (A r) = {O} • 

In this case r 0 (Ar) = JNn , hence it is already a 

semigroupi moreover r o (Ar) ~ 0 (remember that 

u1 = (-1,-1, .•. ,-1» , A~ is a strong Krull structure by 

PropOSition 1.7 and Ao: = (Ar,Az'O:) is clearly a double 

structure on R • So we may use Lemma 4.8 and we get 

that Ar is strong Krull. 

Let now I be an ideal of R and let Jo: = (Jr,J~) be 

the induced double structure on I • By PropOSition 4.6 

we know that Ao:/Jo: is a strong Krull double structure 
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on R/I and that if {f1 , ••• ,fr } is a d-base of lr 

(it exists, since Ar is strong Krull), then it is also 

a d-base of l z (which is usually called a standard base 

of I with respect to the maximal ideal of R (see [ 7 ] 

and [8]» • Moreover, by using Theorem 4.9 we see again 

that the computation of the Hilbert function of the 

tangent cone to Spec (R/I) at the origin can be 

computed by means of a monomial ideal. Analgorithm 

which shows the effectiveness of such a computation is 

discussed in [6 ], while the stu~y of graded structures 

on R (and on the ring of convergent power series) such 

as Ar was in some sense started by Hironaka and Grauert 

and developed by Galligo (see [2]) and others. 
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