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Abstract. Let {T(t)}:>0 be a Co-semigroup in a Banach space X with generator A.
We prove that if {T'(t)};>0 is bounded and sun-reflexive, and the sun-dual semigroup is
not asymptotically stable, then there exist bounded complete trajectories under {T(®)}i>o0,
provided: (i) thereis to > 0 such that ran(T©(to)) is densein X©, or (ii) o(A) 2 iR.
Questions of almost periodicity of complete trajectories are also discussed and a new proof of
our earlier theorem (jointly with Yu.I. Lyubich) on asymptotic stability is given.

1. Introduction.

Let {T(t)}s>0 be a strongly continuous one-parameter semigroup (Co-semigroup) of
bounded linear operators in a Banach space X, and A be its generator. For each vector
z in X the semi-trajectory v4(z) through =z is defined by vy4(z) = {T(t)z:t > 0}.
A continuous function x(t) : R — X 1is called a complete trajectory through =z if
x(t) = T(t — s)x(s) foreach t,s € R suchthat ¢ > s, and x(0) ==z Whilea
semi-trajectory through any vector ¢ in X always exists, it may happen that there
is no complete trajectory, except the trivial one through 0. For instance, the semigroup
{T(t)}t>0 in LP(R4),1 < p < oo, defined by T(t)f(s) = f(s—t) if s>t and
Tt)f(s) =0 if s < t, doesn’t have a non-trivial complete trajectory. Note that a
function x(t) is a complete trajectory under the semigroup {T'(t)}:>0 if and only if it
is a mild solution of the differential equation dx(t)/dt = Ax(t), —oco <t < co (see
e.g. [19]). Thus, from the standpoint of application to the theory of differential equations
and dynamical systems, a natural and important question arised, under which conditions
there exists a non-trivial bounded or almost periodic complete trajectory for a given Cp-
semigroup {T(t)}¢>0? It should be noted that various conditions for almost periodicity of

bounded solutions of differential equations in Banach spaces are available in the literature
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(1], [15] (cf. also [7], [11], [12]). However, to our knowledge, a general criterion for existence
of a bounded complete trajectory was not known.

The primary object of the present paper is to establish such a general criterion for
existence of bounded complete trajectories under Cp-semigroups. Our main result asserts
that, if the semigroup {T'(t)}¢>0 is bounded and sun-reflexive, and its sun-dual semigroup
{T®(t)}s+>0 is not asymptotically stable, then there exist (non-trivial) bounded complete
trajectories, provided one of the following conditions holds: i) o(A) 2 iR, ii) ranT®(2o)
is dense in X© for some ty > 0 (Corollary 2.4). The proof provides also a constructive
method of obtaining a large family of bounded complete trajectories. An example is
given showing that in this result sun-reflexivity is essential. Then we prove that, if the
intersection of the approximate point spectrum of A and the imaginary axis is countable,
then every uniformly continuous bounded complete trajectory is almost periodic, provided
the space X does not contain an isomorphic copy of ¢, (the Banach space of sequences
convergent to 0), or the trajectory itself is weakly compact (Theorem 3.10 ).

As an unexpected by-product we obtain one more new proof of a theorem on asymptotic
stability of Cp-semigroups, which was established in [23] (see also [18]) and independently
in [2]. The proof in [2] is, however, obscure, involving the transfinite induction method. A
third different proof of this result, which is in the same spirit of [2] but does not require
the transfinite induction, was subsequently given in [10]. Our new proof is rather short
and elegant and has the flavour of the proof in [23], though we don’t use here the Gelfand
theorem and the spectral theory of isometric groups. Instead, we use the classical Wiener
General Tauberian Theorem.

Of independent interest are analogous results for single operators, which we formulate
in the last section. The proofs are easy modifications, with corresponding simplifications,
of the proofs for Cy-semigroups.

Throughout this paper {T(t)}'tzo is a one-parameter semigroup in a Banach space
X, with a generator A. The domain of A is denoted by D(A), while the spectrum,
point spectrum, approximate point spectrum and the resolvent set of A will be denoted
by o(A), Po(A), Ac(A) and p(A), respectively. Further, C(R,X) (BUC(R,X),

Co(R, X)) is the Banach space of continuous bounded functions (respectively, uniformly
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continuous bounded functions, continuous functions vanishing at infinity) from R to the

Banach space X.
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2. Bounded complete trajectories.

In this section we prove that under some general conditions there exist bounded complete

trajectories; moreover, we present some constructive method of finding them.

PROPOSITION 2.1. Let {T(t)}:>0 be a Co-semigroup of isometries in X with generator
A. Assume that o(A) 2 iR. Then every operator T(t) is invertible (so that {T(t)}¢>0

can be extended to an isometric group).

PRrooF: This proposition is already implicitely contained in [18], [22], [23]. We recall the
main arguments from these papers. It is shown in [18], that if {T'(¢)}:;>0 is an isometric

semigroup, then
(2.1) [Az — Az|| > [ReA|| ],

for every A, Red < 0, and every z in X. From this inequality it follows that the
half-plane C_ = {A € C: ReA < 0} lies in a regular component of the operator A.
The right half-plane C_ = {A € C: ReX > 0} is, of course, also contained in a regular
component of A (moreover, it is in the resolvent set p(A4)). Since o(A4) 2 iR, both open

left and right half-planes are in the same regular component of A, which implies that
(2.2) {A € C: ReX < 0} C p(4).

From (2.1), (2.2) and the Hille-Yosida Theorem (see e.g. [13]) it follows that the operator
(—A) is the generator of a strongly continuous contraction semigroup {S(t)}:>0. It is

easy to see that
%{T(t)S(t)w} = T(t)AS(t)z — T(t)S(t)Az = 0, Vz € D(A),
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so that T(t)S(t) = I, for each t >0, i.e. T(t) areinvertible and T(t)~! = S(t). I

The following proposition represents the method of the limit isometric semigroup. In

this form it appears firstly in [22], though the same idea was used in [18], [20-24].

PROPOSITION 2.2. Let {T(t)}:>0 be a bounded Cyp-semigroup in X, with generator
A. Then there exists a Banach space E, a continuous homomorphism m from X to
E, with dense range, and an isometric semigroup {V(t)}:>0 in E, with generator S,
such that the following properties hold:

i) o(S)C o(A), Po(S*)C Po(A*);

i) V(t)omw=moT(t) foreach t>0;

iii) ||7z| g = limy— ||T(t)z|| for each z in X.

In order to know how to find bounded complete trajectories in next theorem, let us recall
the construction of E and V(t) in Proposition 2.2. First we define a semi-norm [ in
X by

I(z) % lim | T(0)e]).
t—co

Then E is defined as completion of the quotient space X/ker(!) in the norm
i(ra) < 1(2),

where 7 is the canonical mapping from X to X/ker(!). The operator V(t) is defined by
V(t)rz = n(T(t)z) for each z in X and then extended to the whole E by continuity.
The isometric semigroup {V(t)}:>0 is uniquely determined (up to unitary equivalence)
and is called the limit isometric semigroup of {T(t)}¢>o.

If the Banach space X is non-reflexive, then the adjoint semigroup {T*(t)}:>0 will

not be, in general, strongly continuous. However, the subspace
X® ={pe X*:T*(t)p is strongly continuous}

is a closed subspace in X*, which is invariant with respect to every T*(t). Moreover,
X© = D(A*). The restriction TO(¢) = T*(¢)|X® defines a strongly continuous semigroup

in X©, which is called sun-dual semigroup of {T(t)}¢>0. Repeating this construction, we

4



can define the sun-dual semigroup of {T®(t)}:>0, which will be denoted by {T©®(¢)}:>0.
There is a natural imbedding from X into the corresponding second sun-dual space X©©.
If X =X©9, then the semigroup {T(t)};>o is said to be sun-reflezive. For these and
related facts we refer the reader to [6], [13]. Let us recall that the semigroup {T'(t)}:>0
is said to be asymptotically stable, if ||T(t)z|| - 0 as t — oo for each z in X.

THEOREM 2.3. Suppose that {T(t)};>o is a bounded Cy-semigroup which is not asymp-
totically stable. Suppose that, moreover, one of the following conditions is satisfied:

i) Thereis an ty > 0 such that T(t,) has dense range;

ii) o(A) 2R

Then there is a non-trivial bounded complete trajectory for the sun-dual semigroup
{T®(t)} 2o

PRroOF: Since {T(t)}:>0 is not asymptotically stable, the limit isometric semigroup
{V(t)}t>0 is not identically zero. Condition (i) yields that operator V(t) also has
dense range, hence it is an invertible isometry. Therefore, {V(t)};>0 can be extended
to an isometric group (see e.g. [19, p. 24]). If condition (ii) holds, then by Proposition
2.2 o(S) C o(A), so that o(S) 2 iR. By Proposition 2.1 {V(t)}s>0 can be extended
to an isometric group. Let ¢ € E® and ¢(t) = VO(t)p, —oo0 < t < oo. We put
(f(t))(z) = (¢(t))(7z) and f = £(0). It is easy to see that f(¢) is uniformly bounded.

Moreover

IT*@)f - £l = P I(T*()f — F)(=)| =

sup |[(T(t)e) = f(&)] = sup I o T(0z) - p(nz)| =

llzll<
sup |p(V(t)re) —p(me)| < sup |[(VF(D)ep)(2) — #(2)| =
lzll<1 Izl <1

|V*(t)p — @]l = 0 as t — 0.
Therefore f € X©, and hence f(t) € X© and f(t) is continuous. Analogously we have,
for t>s

(TO(t - )£(s))(=) = £(s)(T(t — s)2) = (s)(w 0 T(¢ — s)a)
= (s)(V(t — s) o mz) = (V*(t — s)p(s))(mz) = ((t))(z) = £(t)(a),

ie. f(t) is a bounded complete trajectory under {T®(¢)}i>0. B
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Applying Theorem 2.3 to the sun-dual semigroup, we obtain the following corollary (note
that o(A®) = o(4), see[13]).

COROLLARY 2.4. Suppose that {T'(t)}¢>0 is a bounded sun-reflexive semigroup, such
that {T®(t)}+>0 is not asymptotically stable and one of the following conditions holds:
i) There is Ato > 0 such that ran(T®(ty)) is densein XO;
i) o(A) 2R

- Then there exists a non-trivial bounded complete trajectory under {T'(t)}¢>o0.

The following is a consequence of Corollary 2.4 because a semigroup in X, with bounded

generator, is sun-reflexive iff X is reflexive, and always satisfies condition (ii).

COROLLARY 2.5. Suppose that X is reflexive and {T(t)}:;>0 Iis a bounded semigroup
in X with bounded generator A, such that {T*(t)}:>0 is not asymptotically stable.

Then there exists a non-trivial bounded complete trajectory under {T(t)}¢>0.

If X is reflexive, then every Cy-semigroup in X 1is sun-reflexive. Moreover, condition
(i) 1is equivalent to

(i’) Thereis to > 0 such that ker(T(to)) = {0}.

Therefore, the following holds.

COROLLARY 2.6. If {T(t)}+>0 is a bounded Cy-semigroup in a reflexive Banach space,
such that T*(t) does not converge strongly to zero and one of the conditions (i’) or

(ii) holds, then there exists a non-trivial bounded complete trajectory under {T'(t)}¢>o-

The proof in Theorem 2.3 (and thus in Corollaries 2.4 - 2.6) also gives a way of obtaining
bounded complete trajectories: for this it is enough to pick up any functional ¢ from
E® and to lift each functional ¢(t) = VO(t)p, t € R, to a functional f(t) on X using

the exact sequence of natural homomorphisms
X — X/ ker(l) — E.

Note that the sun-refexivity condition in Corollary 2.4 is essential, as is shown by the

following example.



EXAMPLE 2.6. Consider the diffusion semigroup {T'(t)}:>0 in Co(R) defined by
— 1 2 —
T () = gy [ exp(—lu— vl /46)(0)do = prox f(u),

where p;(u) = (47t)~1/2exp(—|u|?/4t) is the Gaussian probability density. The generator
of this semigroup is the differential operator A = d?/du? in Cy(R), with the domain
D(A) = {f € Co(R) : f is twice differentiable and f" € Co(R)}.

It is easy to see that the semigroup {T(t)}¢>0 is not sun-reflexive and its sun-dual
semigroup {T®(t)}:>0 is not asymptotically stable. Indeed, the dual space of Co(R) can
be identified with the space M,(R) of all bounded (complex) Borel measures on R. Since
A is the square of the differentiation operator on Cy(R), the adjoint of A is given by

D(A*) = {u € My(R) : D*p € My(R)}, A*u= D?p,

(here Dy denotes the distributional derivative of p). Thus, by the same reasoning as
in [9], one can show that X© = L!(R), T7®(t) and A® have the same form, but are
defined on the space L(R). Moreover, X®® = BUC(R), hence the semigroup {T(t)}:>0
is not sun-reflexive. Note that the second sun-dual semigroup {T©®(t)}i>o is agaiﬁ the
diffusion semigroup on BUC(R). Note also that o(A4) 2 iR (indeed o(A)NiR = {0}).

We show that there are no complete bounded trajectories under {T(t)}s>o. In fact,
suppose that f(t,u) is a bounded complete trajectory under {T(t)}:>o. Then from
Propositions 3.7 and 3.8 (see section 3) it follows that f(¢,u) is an almost periodic
function from R to Co(R). This implies that the operator A4 = d?/du? on Co(R) has

an eigenvalue on iR (namely A = 0), which is impossible.
3. Almost periodicity .

In this section we prove that, under suitable conditions on the spectrum of the generator
A, a bounded complete trajectory is almost periodic. For this purpose we carry out a
comparative analysis of spectra of functions, trajectories and associated generators, which

may be of independent interest.



Let x(t), —oo <t < o0, be a bounded measurable function with values in X. We

recall, that the Carleman transform of the function x(t) is defined as follows (see [5],

14) i}

3 J. e Mx(t)dt, Rer >0,

X(A) = 0 —t

— [ e Mx(t)dt, Rel <0,
and is a function holomorphic in C\:R. A point Ay on (R is called regular point of
x(t) if %(\) can be continued analytically into a neighborhood of A¢. The corﬁplement
in ‘R of the set of regular points is called (Carleman) spectrum of x(t) and is denoted
by Sp(x).
The following proposition is a vector-valued version of the Carleman Lemma on analytic

continuation (for the scalar case, see e.g. [5], [14]).

PROPOSITION 3.1. Let x(t) € L(R,X) and f be a(scalar) function in L*(R) such
that

(3.1) fFax %t /_ " ft — r)x(r)dr = 0.

Suppose that the Fourier transform f is different from zero for all £ from an interval

(a,b). Then the Carleman transform %()\) has analytic continuation through i(a, b).

PROOF: We note, first of all, that if h(t) and f(t) are functions in L'(R) such that h
has a compact support and f (§) #0 for each £ € supp h, then the convolution equation
f*u = h has a solution u € L'(R) which depends continuously on f and h, and
it =h/f. Let € >0 be a positive number less than (b— a)/2 and ), be any point in

the interval A, =i(a +¢,b—¢). Then the convolution equation
(f *u)(t) = Kc(t)e*"

has a solution which depends continuously on X9 € A, in the norm of L!(R), where

sinZ(Et)

K (t) = —=—
ey



From (3.1) it follows that

/ X(O)K.(t)e™tdt = 0, VAo € A..

— 00

Consequently, the Carleman transform (xi\I;'e)(/\) has analytic continuation into A..
Since (x’-\f{e)(/\) converges to X(A) as € — 0 uniformly on every compact set inside C_
and Cy, it is enough to show that (xp-*f{e)(/\) is uniformly bounded in some neighborhood
of A..

Consider the following function.
yA) =\ —a—e)(A—b+e)(x-K)(A), A€ C\iR.
It is easy to see that the following estimate holds

— I .
(3.2) 6RO < o YA€ C\iR

Let Q be the square with vertices at i(a+¢), i(b—¢), ,(b—a)/2—e+i(b+a)/2, and —
(b—a)/2+c+ z(b + a)/2. From (3.2) it follows that ||y(A)|] £ C for each A on the
boundary of @, thus for each A in @ by virtue of the Maximum Modulus Principle;
moreover, the constant C' does not depend on ¢. Therefore, the family (X"\f{e)(/\) is
uniformly bounded in Q. I

The following proposition is in fact the theorem on equality between the Carleman

spectrum and the Beurling spectrum. For scalar functions the proof can be found in [14,

Chapter VI, Theorem 8.2].

PROPOSITION 3.2. A point Ao is in the spectrum of a function x(t) € L*°(R, X) if and
only if, for each neighborhood U of X, there exists a scalar function u € L*(R) with
supp@ C A4 such that xxu # 0.

PROOF: We show that Ao is aregular point of X if and only if there exists a neighborhobd
U of Ao suchthat x+u =0 for each function u € L}(R) with supp@ € if. Let Ao be
a regular point of X()), that is, %X(A) has analytic continuation into a neighborhood U
of Xo. Let uw € L}(R) such that supp@ C if. For each € >0 we have x x K, € L'(R)

and (x;\_f(})hu = 0. Therefore, u*x* K. =0. This implies u*x =0.
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Conversely, assume that A\ € iR and U is a neighborhood of ¢ such that u € L'(R)
with supp@ C @/ implies u*xx'= 0. By Proposition 3.1, X(A) has analytic continuation

into U. B

REMARK 3.3. The proof of Proposition 3.2 also shows that if {x,}32, C L*°(R, X), x, —
X as n — oo (in L*-norm), Ag € iR, and U is a neighborhood of A¢ such that X,(})
has analytic continuation into & for each n, then %(\) also has analytic continuation

into U.

Two well-known central results of the classical harmonic analysis which will be used in
section 4 can be formulated in terms of a spectrum of a function. The first is the Wiener
General Tauberian Theorem: the translates of a function f € L*(R) span a dense subspace
of LY(R) if its Fourier transform never vanishes. It is not hard to see (having in mind
the equivalent definition of a spectrum given by Proposition 3.2) that the following is an
equivalent formulation of this statement: @ function x € L*°(R,X) has empty spectrum
only if x 13 identically zero.

The second result is the Primary Ideal Theorem due to V. Ditkin: a closed ideal in L'(R)
whose Fourier transforms have only one common zero mecessarily contains all functions
whose Fourier transforms vanish at that point. In other words, every closed primary ideal is
maximal. In terms of a spectrum this theorem reads as follows: a function x € L*(R, X)

Mo, where zo € X.

whose spectrum is one point X\ € iR has the form x(t) =e
We note that both theorems follow from the Carleman Lemma on analytic continuation,

the estimate
1
x(\)|| < —— AR
SO0 < gyl A iR,

and a standard argument of the complex analysis involving the Phragmén-Lindel6f Theo-
rem (see e.g. {14, p. 181]). _

Now let {T'(t)}:er be a bounded Cy-group of linear operators in a Banach space X.
Then for each vector z in X there is a complete trajectory through =z, defined by
y(z) = {x(t) = T(t)z : t € R}. Let M, denote the closed subspace of X spanned by
T(t)z, t € R. Clearly, M, is invariant for each T(t), thus also for A. We have
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PROPOSITION 3.4. Sp(x) = o(A|M3).

PROOF: We have, for each Rel > 0,
x(A) = / e~ MT(t)zdt = (\ — A|M,) 'z,
0
and, since (—A) is the generator of the semigroup {T'(—s)}s>0, for each Rel < 0,

%(\) = — / 0 e MT(t)zdt = - / ” e T(—s)zds

—00 0

= — /‘°° e—("’\)sT(—s)wds = (A= (A)|M) z =(\ - A|M,) .

0

From this it follows that every point A in p(A|M;) is a regular point of X, hence
Sp(x) C o(A|M,). Conversely, let A be a regular point of X and U be a corresponding
neighborhood of A into which % has analytic continuation. Let y € span{7T'(¢)z : t € R}
and y(t) = T(t)y. It is easy to see that ¥ also has analytic continuation into Y. By
Remark 3.3, for every y € M, the function ¥ has analytic continuation into . From
this it is easy to see that the operator B in M, defined by By = §()\) is a bounded
inverse of (A — A|M,). 1

Below we denote the differentiation operator d/dt by D for simplicity of notations.

PROPOSITION 3.5. Let x(t) be a functionin BUC(R,X) and My be a closed subspace
in BUC(R,X) spanned by all translations of x. Then Sp(x) = o(D|My).

PRrROOF: Apply Proposition 3.4 to the translation group {S(t)}«er in BUC(R,X). 1

REMARK 3.6. Using the fact that isometric groups have separable spectrum [3], [17] (see
also [8]), one can show that, if x(t) € BUC(R, X) is a complete trajectory, then for every
compact subset A CSp(x), such that Int(A) is non-empty (where Int means interior
with regard to Sp(x)), there is a non-trivial complete trajectory y(t) € BUC(R, X)

under {T'(t)}+>0 such that Sp(y) C A. This fact will not be used in the sequel.
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ProrosITiON 3.7. If x(t) is a uniformly continuous bounded complete trajectory under

the semigroup {T(t)}:>0, then Sp(x) C Ao(A)N:R.

PROOF: Suppose that A € Sp(x). By Proposition 3.5, A € o(D|My). Since D|My
is a generator of an isometric group, its spectrum coincides with the approximate point

spectrum, so that there exists {yn,} C Mx, ||lyx|| =1, such that
lim ||S(t)yn — e*'ynlloo =0, Vt€R.
n—oo

Without lost of generality we can assume that all y, are from the dense linear manifold

‘spanned by translations of x, that is,
kn

ya(s) =) 65”)3(,;")(3),

J=1

for some 55-") € C, 'r](n) € R. Thus we have

kn kn

(3.3) Tim |3 6Vx oy, = MY 6% mll =0, VEER.
i=1 ! i=1 ’

Since ||lyn]| =1, there exists, for each n, a real number s, such that

kn
1S EMx(r(™ + sa)l 21— e

Jj=1

We put z, = E?;l {;")X(T;") + sn). Then ||zx|| 21— ¢ and, since x() is a complete
trajectory under T(t), we have, for each positive t, X(T}n) +sp+1t) = T(t)x(r}n) + Sn).
Therefore, from (3.3) it follows

lim ||T(t)2z, — e*z,|| =0, Vt>0,

ie. A€ Ao(A). 1

Recall that a function x(t) € BUC(R, X) is said to be almost periodic if the family of
translations Hyx = {S(t)x : t € R} is relatively compact in BUC(R, X).
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PROPOSITION 3.8. Suppose that x € BUC(R,X) and Sp(x) is countable. Then x is
almost periodic, provided one of the following conditions is satisfied:
1) X does not contain co;

ii) The set {x(t): —oo < t < oo} is weakly relatively compact in X.

This is the vector-valued version of the well known Loomis’ Theorem ( see [15], [16]).
Here “X does not contain ¢yp” means that there is no subspace of X, which is isomorphic
to c¢p, the Banach space of (numerical) sequences which converge to zero. For example,

reflexive or weakly complete Banach spaces do not contain ¢y.

THEOREM 3.9. Let T be a Cy-semigroup with generator A such that Ao(A)N:R is
countable and Po(A)N:R is empty. Then there exists no non-trivial uniformly continuous
weakly compact complete trajectory. If, in addition, X does not contain c¢g, then there

1s no non-trivial uniformly continuous bounded complete trajectory.

PROOF: Indeed, if x(¢) is a non-trivial uniformly continuous bounded complete trajectory,
then from Proposition 3.7 it follows that Sp(x) is countable. Thus, by Proposition 3.8,
x(t) is an almost periodic function. Consider the subspace My in BUC(R, X), which is
spanned by translations {S(7)x},er. It is easy to see that the restriction of {S(7)},er
onto My is an almost periodic group. Therefore, there exists a function y(t) in My
and a real number ), such that S(7)y(t) = e*7y(t),Vr,t € R, (see e.g. [4]) As
indicated in the proof of Proposition 3.6, y(t) is a complete trajectory under {T'(¢)}:>o-

Consequently, we have
(T(T)y)(t) = y(t + 1) = (S(n)y)(t) = €Ty (), Vr 2 0,¢ € R.

This implies that A € Po(A), which is a contradiction. §

In [15] it was proved, that if o(A4) NiR is countable and {x(¢)}+er is a uniformly
continuous bounded complete trajectory, then x(t) is almost periodic, provided that
condition (i) or (ii) in Theorem 3.10 holds. Propositions 3.7 and 3.8 give an alternative

proof of the following slightly improved version of this result.
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THEOREM 3.10. Let {T'(t)}s>0 be a Cy-semigroup with generator A, such that Ac(A)N
iR is countable. Then every uniformly continuous bounded complete trajectory {x(t)}{en
is almost periodic, provided one of the following conditions is satisfied:

i) X does not contain co;

ii) The set {x(t):t € R} is weakly relatively compact in X.

4. Asymptotic stability.

COROLLARY 4.1. Suppose that {T(t)};>0 Is a bounded Cy-semigroup with generator A.
Assume that:

i) o(A) NiR is countable;

ii) Po(A*) NiR is empty.

Then the semigroup {T(t)}:>0 is asymptotically stable.

PROOF: Assume, on contrary, that {T'(¢)}¢>0 is not asymptotically stable. By Theorem
2.3, there is a non-trivial complete trajectory f(t) € BUC(R, X?®). By Proposition 3.7,
Sp(f) C 0(A®)NiR, so that Sp(f) also is countable. By the Wiener General Tauberian
Theorem, Sp(f) is non-empty, so that o(D|Mg) also is non-empty, by Proposition 3.5.
Let Ao be an isolated point in o(D|Ms) and P be the corresponding Riesz projection
in M;. It is not hard to see that every function g(¢) in ran(P) C BUC(R,X®) isa
complete trajectory under {T©(t)};>0 with a single spectrum at Aq € :R.  Therefore,
g(t) = eMtgy for some gy € X*, ie. T*(t)go = e*°'gy, V¥t >0, or A*gy = Aogo, which

is a contradiction. [

We remark that Theorem 2.3 itself can be also reformulated as a criterion of asymptotic

stability.

COROLLARY 4.2. . Let {T(t)}:>0 be a bounded Cy-semigroup. Assume, that the sun-
dual semigroup {T®(t)}s>0 has no non-trivial bounded complete trajectory. Assume,
moreover, that one of the following conditions is satisfied:

i) There is to > 0 such that T(to) has dense range;
ii) o(A) 2 iR.
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Then the semigroup {T'(t)}:>0 is asymptotically stable.

In particular, if the semigroup {T(t)}:>0 has bounded generator and the adjoint
semigroup does not have a non-trivial bounded complete trajectory, then {T'(¢)}:>0 is

asymptotically stable.

5. Discrete case.

The results of sections 2-4 remain true for discrete semigroup {T"},cz,, where Z, =
{n € Z : n > 0}. Since the proofs are obvious modifications of the proofs for the case
of Cy-semigroups, we restrict ourselves to formulations of the results. Let T be a linear
bounded operator in a Banach space X. A two—sidedAsequence X = {Tn}nez is called
a complete trajectory under T if z,4p = Tz, for every n € Z and every k € Z,.
The operator T is said to be power-bounded, if sup,ez, ||T"|| < co. If || T"z|| - 0 as
n — oo forall z in X, then we say that T 13 of class Cy. . Below we denote by T the
set {Ae€ C: |\ =1}

THEOREM 5.1. Suppose that T is a power-bounded operator in a Banach space X, such
that T ¢ Cy. . Suppose, moreover, that one of the following conditions is satisfied:

i) ran(T) is dense in X;

i) o(T) 2 T.

Then there exists a non-trivial bounded complete trajectory for the adjoint operator T*.

Note that for discrete semigroups (as well as for uniformly continuous one-parameter
semigroups) the sun-dual semigroup coincides with the usual dual semigroup. Conse-

quently, such semigroups are sun-reflexive iff X is reflexive.

COROLLARY 5.2. Suppose that X is reflexive and T is a power-bounded operator in
X such that T* ¢ Cy. and one of the following conditions holds:

i) kex(T) = {0);

ii) o(T) B T.

15



Then there exists a non-trivial bounded complete trajectory under T.

Let x = {zn}nez be a bounded two-sided sequence in X. The Carleman transform

%(z) of x is a function analytic on C\T defined by

-0 2z, lz] > 1

- E?:l Tpz™ 1, |z| <1
X(z) =

A point z on T is called regular point of x,if X(z) can be continued analytically into a
neighborhood of z. The complement in I" of the set of regular points is called spectrum

of x and denoted by Sp(x).

PROPOSITION 5.3. Let T be alinear operatorin X and x = {z,}nez be a bounded

complete trajectory under T. Then Sp(x) C Ac(T)NT.

THEOREM 5.4. Suppose that Ao(T)NT is countable and Po(T)NT is empty. Then
there is no non-trivial weakly compact trajectory under T. If, in addition, X does not

contain ¢y, then there is no non-trivial bounded complete trajectory under T.

A two-sided sequence x = {z,}nez is said to be almost pef;iodic if the sequence of shifts
Xk = {Tktn}nez, k € Z, is relatively compact in [°°(X), the Banach space of bounded
two-sided sequences with values in X. Equivalently, x = {z,}nez is almost periodic if
and only if, for every ¢ > 0, there exists a natural number k., such that, every interval
(m,m +k.), m € Z, contains a ¢-almost-period N ,ie. |TptNn — Zs|| < € for each

nelz.

THEOREM 5.5. Assume that Ao(T)NT is countable. Then every bounded complete
trajectory x = {zn}nez under T is almost periodic, provided one of the following
conditions is satisfied:

1) X does not contain co;

ii) {zn}nez is weakly relatively compact.
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