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1. Introduction

Let k be a number field, let k be an algebraic closure, and write G = Gal(k/k) for the
relative Galois group. If E is an elliptic curve d~fined over k, then G acts on the group
E(k) of points of E defined over k. In particular, for any positive integer n it acts on
the group E n of points of E with finite order dividing n. From now on, suppose n = [
is prime. We can regard EI as a vector space (of dimension 2) over the finite field IF I
with [ elements, and so there is a natural homomorphism 'PI from G to the corresponding
general linear group GL(EI)' A fundamental result of SeITe ([SI], [S2]) says that if E has
no complex multiplication over k then 'P1(G) = GL(EI) for all sufficiently large [. In

other words, there exists [0, depending only on k and E, such that 'PI (G) = GL (EI)
for all [ > [0.

Up to now it seems that no general estimate for [0 has been written down. Serre gives
a number of results for special classes of elliptic curves. For example, Corollaire 1 (p. 308)
of [S2] yields a simple estimate when k = Q and E is semistable. In his later paper [S3]
he was able to eliminate the semistability condition by assuming the Generalized Riemann
Hypothesis (see Theoreme 22 and Lemme 15, p. 196). But in a talk at the D.-P.-P. Seminaire
in April 1988 he did announce an effective estimate in the general case.

In this note we give a general upper bound for 10 • As Serre hirnself pointed out during
a conference at Schloß Ringberg in July 1988, such a result is a relatively simple deduction
from some isogeny estimates proved by uso Indeed our exposition in sections 3 and 4 follows
closely a talk he gave there on this subject. After recording the necessary isogeny estimates in
section 2, we apply these in section 3 to rule out some particular possibilities for 'Pl(G). Then
in section 4 we prove our main result by appealing to the group-theoretical analysis of [S2].

We also prove two further results of a similar type. In section 5 we generalize to several
elliptic' curves, and in section 6 we consider the corresponding problem for several points of
infinite order on a single elliptic curve.

To state oUf main result we define the Weil height of the elliptic curve E as the (absolute
logarithmic) Weil height of its j-invariant.

Theorem There are absolute constants c, , with the /ollowing properties. Suppose E is an
elliptic curve 0/ Weil height h defined over a number field k 0/ degree d, and. assume E
has no complex multiplication over k .

(a) If [> c(max{d,h})' then 'P1(G) contains·the special linear group SL(EI).
(b) If further 1 does not divide the discriminant of k then 'P1(G) = GL(EI) .

Our exponent , is completely effective, but rather large at the moment. There is little
doubt that it could be substantially reduced without any new ideas. It is rather more difficult
to estimate the constant c, and it would be an interesting project to attempt.

Generally throughout this paper we use c, Cl, C2, ... (but not C, Cl, C2 , ... ) for
sufficiently large positive absolute constants.

It is a pleasure to thank Serre for valuable correspondence on these topics. The first
author was supported in part by the National Science Foundation, and the paper was written
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while he was enjoying the hospitality of the University of Konstanz and supported by the
Alexander von Humboldt Foundation.

2. Isogeny estimates

The following result is a preliminary version of what we shall need. For an abelian variety A
defined over a number field k we denote by h(A) the (absolute logarithmic) Faltings height
of A, obtained by passing to any field extension'over which A hassemistable reduction (see
for example p. 248 of Chai's artic1e in [CS]). For an elliptic curve E, this is well-known
to have the same order of magnitude as the Weil height h (see for example Proposition 2.1
(p. 258) of Silverman's artieie in [CS]). In partieular h(E) ::; cmax {I, h} and so it suffices
to prove ourTheorem for the Faltings height in place of the Weil height.

Lemma 2.1 Given a positive integer n ,. there are constants Cl, Al , depending only on n ,
with the /ollowing property. Suppose A, A* are abelian varieties 0/ dimension n defined
over a number field k 0/ degree d, and that they are isogenous over Tc . Assume further that
A, A* are principally polarized. Then there is an isogeny /rom A* to A, defined over Tc,

0/ degree at most Cl (max {d, h(A)} )"1 .

Proof: In the Theorem of [MW5] we proved a result of this kind with Cl depending on d
as well as on n; but in section 6 of the paper we computed the dependence on d. From the
formulae given there, in particular equation (6.2), the present lemma follows at once.

Note that for elliptic curves a result of this form, with Cl depending also on d, was
proved in [MW2] with Al = 4. So small exponents can be aehieved in this game. The
result was then used in [MW3] to give some effective est~ates li.ke Our Theorem when the
j-invariant of E is not an algebraic integer.

In fact we shall need a modified version of Lemma 2.1 in whieh the polarization hypothesis
on A* is removed at the expense of an extra condition on A.

Lemma 2.2 Given a positive integer n, there are constants C, A , depending only on n ,
with the /ollowing property. Suppose A, A* are abelian varieties 0/ dimension n defined
over a number field k 0/ degree d, and that they are isogenous over Tc . Assume further that
A is principally polarized and /actorizes as A~1 x ... x A;r where el, ... , er are positive
integers and Al, ... , Ar are abelian varieties, pairwise non-isogenous over Tc, with trivial
endomorphism rings over Tc. Then there is an isogeny /rom A* to A, defined over Tc, 0/
degree at most C(max {d, h(A)})" .

Proof: We define Z = (A x A) 4, where A is the dual of A, and we define Z' analogously

for A * . Then Z, Z* are defined over k and isogenous over Tc. Moreover since A is
principally polarized, Z is isomorphie over Tc to A8 ; and a well-known observation of
Zarhin (see for example [Z] p. 314) shows that Z* is principally polarized. Therefore by

Lemma 2.1 there is an isogeny from Z* to A8 ofdegree b::; C2 (max {d, h(A8)})", where

C2 and A are the values of Cl and Al with n replaced by 8n. Choose any embedding
of A* into Z*, and compose this with the above isogeny to get a homomorphism E from

A * to A8
• This is surjective onto its image B = E(A*), and it is easy to see that E is an

isogeny from A * to B of degree at most b.
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Thus B is an abelian subvariety of A8 whieh is isogenous to A (that is, it is "stably
isogenous" to A in the sense of [Zn. Now it follows from oUf faetorization assumptions
about A that in fact B must be isomorphie to A. One way of seeing this is to use the
eoneept of "disjointness" introdueed in [MW1] (p. 235). Eaeh of Al, ... , Ar is simple, and
any two are non-isogenous, so by Lemma 7 (i) (p. 262) of [MW1] any two are disjoint. It
follows from Lemma 7 (iii) that .Al, ,Ar are disjoint. Henee by repeated use of Lemma
7 (ii) we see that the faetors A~el, , A~er of A8 are also disjoint. In other words, B
in A8 must faetorize as BI x ... x Br for Bi in A~ei (1::; i ::; r) . But sinee Ai has
trivial endomorphism ring, Bi must be isomorphie to some power Ar (1::; i :::; r) . Now
"uniqueness of faetorization up to isogeny" shows that fi = ei (1::; i ::; r) ; henee the
desired eonelusion.

So we end up with our required isogeny from A* to A; and beeause h(A8 ) = 8h(A)
its degree satisfies the required bound with C = 8AC2 • This proves the present lemma.

3. Isogeny arguments

Throughout this and the next seetion we let E be an elliptie eurve of Faltings height h
defined over a number field k of degree d , with no eomplex multiplieation over Tc ; and
for a prime 1 we define EI and 'PI as in seetion 1. We write for brevity

M = max{d,h}

and we denote by A = A(n) the exponent in Lemma 2.2.

Lemma 3.1 Suppose 1 > cIMA(I) . ,Then 'PI(G) does not fix any one-dimensional subspace

0/ EI .

Proof: This is in [MW3], but for eompleteness we reproduee the argument. Suppose to the
eontrary that 'PI( G) fixes some one-dimensional subspace r of EI . Then r is defined over
k . So the abelian varieties A = E and A* = E Ir are defined over k and isogenous over
k . Henee by Lemma 2.2 (or Lemma 2.1) there is an isogeny from Elr to E of degree
b :::; cI M A(1) . Composing this with the natural isogeny from E to E Ir of degree 1 we
end up with an endomorphism of E , whieh by hypothesis must be multiplieation by some
integer p. Comparing degrees, we get p2 = bl . So 1 divides p, and therefore 1 must also
divide b. In partieular 1 ::; b. This is a eontradietion, and the present lemma is proved.

The next result uses a two-dimensional version of the same argument.

Lemma 3.2 Suppose 1 > C2MA(2)/2 . Then if 'PI(G) is commutative, it is contained in the

group IFj 0/ scalars in GL(EI) .

Proof: Suppose to the eontrary that 'PI (G) is eommutative but not eontained in IFj . Choose
any f in 'PI (G) not in IF j , and define r in E x E as the group of elements (x, f x) as x
runs over EI . Then r is defined over k , sinee an arbitrary 9 in G aets on (x, fx) to give
('PI(9)X, 'PI(g)fx) whieh is (y, fy) for y = 'PI(g)x byeommutativity. Henee A = E x E
and A* = Air are both defined over k and isogenous over k .

We ean now apply Lemma 2.2 to obtain an isogeny of degree b ::; C3MA(2) from A*
to A; note that h(A) = 2h. Composing this with the natural isogeny from A to Air of
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degree [2 we get an endomorphism E of A. This can be represented by an integral matrix

(~ ~) acting on elements (x, x') of E xE. Since it annihilates r we get

px + r fx = qx + sfx = 0

for all x in EI. On the other hand, since f is not in Fi there is no integer a such that
fx = ax, and we deduce easily that p, q, r, s are all divisible by [. So [4 divides the degree
(ps - qr)2 of E. But this is b[2; hence [2 divides b and [ :::; b1/ 2 . This contradiction

completes the proof of thepresent lemma.

4. Group theory

We can now prove part (a) of our Theorem. Suppose first that [ divides the order of 'PI( G) .
By Proposition 15 (p. 280) of [S2], either 'PI(G) contains SL(E1) as desired, or 'PI(G) is
contained in a Borel subgroup. By definition the latter fixes some one-dimensional subspace
of EI, so we can Use Lemma 3.1 to eliminate this possibility if

(4.1)

So henceforth we may assurne that [ does not divide the order of 'PI(G). Let H be the

image of 'PI(G) under the canonical map from GL(EI) to the projective group PGL(EI) .
By section 2.6 (p. 282) of [S2] we have the following three possibilities:

(i) 'PI (G) is contained in a Cartah subgroup C ,
(ü) 'PI(G) is contained in the normalizer N of a Cartan subgroup C ,
(üi) H has order at most 60.

We proceed to eliminate each of these in turn.

In case (i) we may suppose 'PI (G) is not contained in Fi by assuming (4.1) and using
once again Lemma 3.1. Now every Cartan subgroup is commutative, and so we can use
Lemma 3.2 to eliminate this case completely if

(4.2)

Next in case (ii) it is known that C has index 2 in N if [ > 2 (see p. 279 of [S2]).

Thus K = C n 'PI(G) has index at most 2 in 'PI(G). Hence it corresponds to an extension
ko of k with

[ko : k] :::; 2, 'PI(Go) = !{ C C

for Go = Gal (fo/ ko). So over ko we are back in case (i). Thus to eliminate this it suffices
to replace d by 2d and therefore it is enough to assurne (4.1) and (4.2) with M replaced
by 2M.

Finally in case (iii) the group !( = Fr n 'PI(G) has index at most 60 in c.pl(G) and we
get an extension ko of k with

[ko : k] :::; 60, 'PI(Go) = !{ c Fi
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So over ko we are back in a special case of (i), and to eliminate this it suffices to replace
M by 60M in (4.1) and (4.2).

This completes the proof of part (a) of the Theorem. From (4.1) and (4.2) we see that
we can take

, = max {A(1), A(2) /2} .

To prove part (b), we introduce the number

(4.3)

where tLl = e27ri /1 • This is an integer since Gal(k(tLl)/k) is a subgroup of Fi

and so its order divides 1- 1. Now an arbitrary 9 in G sends tLl to tLi, where m is the
determiriant det 'PI(9) in Fi . It follows easily from part (a) that if I > cM'Y then 'PI(G) is
the subgroup of GL(EI) consisting of all elements whose detehninant is an e-th power in
Fr. So 'PI(G) = GL(EI) if and only if e = 1 . But this last condition is certainly satisfied
when I does not divide the discriminant of k. For then I does not ramify in k and the
Eisenstein criterion shows that the minimal polynomial for tLl over Q remains irreducible
over k; hence [k(tLI): k] = I - 1 . This proves part (b), and thereby completes the proof
of the Theorem.

5. Several elliptic curves

For an integer n 2:: 2 let E(1), . .. , E(n) be elliptic curves defined over a number field k, with
1- torsion groups E1(1), ... , E1(n) respectively. These provide homomorphisms 'P~i) from

G = Gal(k/k) to GL(EJi)) (1 ~ i ~ Ti) andso ahomomorphism <I>l = ('PV)' ... ''P~n))

from G to the product GL (E[l)) x ... x GL (E[n)) . Let ß = ß (E[.I), . .. , E[n)) be the

subgroup of this product consisting of alt (j(l), ... , j(n)) with

det j(1) = ... = det j(n)

in Fr. When n = 2, SeITe proved in [S2] (p. 327) that <I> I (G) = ß for all sufficiently
large I , providedE(1), E(2) have no complex multiplication over k and the associated
1- adic representations are not isomorphic over k. By Faltings [F] this latter condition is
equivalent to E(1), E(2) being non~isogenous over k. We will prove the following more
precise version for arbitrary n; when n = 1 it reduces to our Theorem already proved.

Proposition 1. There are absolute constants c, , with the /ollowing property. Suppose
E(1), . .. ,E(n) are elliptic curves defined over a number field k 0/ degree d, with Weil
heights at most h . Assume that E(1), ... ,E(n) have no complex multiplication over k and

that they are pairwise rwn-isogenous over k .

(a) If 1> c(max{d,h})'Y then <I>1(G) contains SL(E1(1)) x ... x SL(Ez(n)) .

(b) If further I does not divide the discriminant of k then <I> I ( G)
ß(EjI), ... ,E}n)) .
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For the proof we shall need the following result, which slightly generalizes the arguments
of Lemma 8 (p. 326) of [S2].

Lemma 5.1 For a prime l ~ 5 let e be a divisor 0/ l - 1 , let V, V' be vector spaces 0/
dimension 2 over F I and let B, B' be the subgroups 0/ GL(V) and GL(V') respectively
consisting 0/ all elements whose determinants are e-th powers. Let D be the subgroup 0/
B x B' consisting 0/ all (b, b') with det b = det b' , and suppose H is a subgroup 0/
D in B x B' whose projections to each /actor are surjective. Then if H =J D there is an
isomorphism f /rom V to V' and a character X 0/ H with X2 = 1 such that

b' = x(h)fbf-l

tor all h = (b, b') in H .

Proof: As in [S2] we let N, N' be the kerneis defined by

N x {I} = H n (B x {I}), {I} x N' = H n ({ I} x B') ;

then the image of H in BIN x B' IN' is the graph of an isomorphism a from BIN to
B'IN' . Since HCD we have NCSL(V) . If N = SL(V) it is easily seen that H = D;
thus since N is a normal subgroup and l ~ 5 it follows that N = {I} or {I, -I} .
Similarly for N' . Let Z, Z' be the centres of B, B' respectively; then Z IN, Z' IN' are
the centres of BIN, B' IN' respectively, so a induces an isomorphism between these. So
it also induces an isomorphism Ci from BIZ to B' Iz' .

However, these latter quotients are isomorphic to either PGL2 (F/) or PSL2(FI) ac­
cording to whether e is odd or even. It is known that every automorphism of these groups
is induced by an inner automorphism of PGL2 (F /) (see [Di] pp. 103-104 and also [R1] p.

795). It follows that there is an isomorphism f from V to V' such that Ci (b) = /bf-l

for every b in B IZ . This means that for every h = (b, b') in H we have b' = Xfbf-l

for some X = X(h) in Fi. Clearly X defines a homomorphism, and by taking determinants
we see that X2 = 1 . This proves the present lemma.

We can now prove part (a) of the Proposition for n = 2; for consistency of notation we
rename E(1), E(2), 'P~1), 'P~2) as E, E', 'PI, 'P~ respectively. Assurne first that

l > cM'Y (5.1)

for c, I as in the Theorem and M = max {d, h}. We will apply Lemma 5.1 to H = <I> I ( G)

for V = EI, V' = Ef. By the Theorem and the remarks at the end of section 4, we know
that H projects sUIjectively onto B, B' . If H = D, then H contains S L(EI) X S L (Ef)
and we are done. Otherwise H =J D and Lemma 5.1 gives

'P~(g) = XO(9)f'PI(9)f-l (5.2)

for every 9 in G, where XO is the induced character on G, with X5 = 1 .

Assume for the moment that XO = 1 identically. We define r in E x E' as the group
of elements (x, f x) as x runs over EI. Then r is defined over k, since an arbitrary 9

in G acts on (x, f x) to give ('PI(9)X, 'PHg)fx) which is (y, fy) for y = 'PI(g)x by (5.2).
Hence A = E x E' and A* = Air are both defined over k and isogenous over k.
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We can now appIy Lemma 2.2 to obtain an isogeny of degree b ::; C4MA(2) from A* to

A; note that h(A) = h(E) + h(E') ::; 2h. Composing this with the natural isogeny from

A to Air of degree [2 we get an endomorphism E of A. This can be represented by an

integral matrix (~ ~) and since it annihilates r we get px = qfx = 0 for all x in EI.

Because f is an isomorphism, this implies that 1 divides p andq. Therefore 14 divides
the degree p2 q2 of E. But this is b[2; hence 12 divides b and 1::; bl / 2 . So this case can

be mIed out by assuming that

1> cSM A(2)/2 . (5.3)

It remains to consider the case when Xo is not identically 1 in (5.2). But then there is a

quadratic extension ko of k such that XO = 1 on Go = Gal(kolko) . Now the foregoing
arguments apply over ko , and by assuming (5.3) with M replaced by 2M we conclude

that <I>1(GO) contains SL(Ed x SL(ED . Hence so does <I>1(G). This proves part (a) of the
Proposition for n = 2; from (4.3), (5.1) and (5.3) we see that a single condition

1> c6Mi (5.4)

suffices, where , as in (4.3) is the exponent appearing in the statement of the Theorem.

Part (b) of the Proposition follows easily as at the end of section 4, and this completes the

proof for n = 2 .

We now deduce the general case. Write Si = S L (E?)) (1::; i ::; n), and consider the

intersection H of <I> I ( G) with S = SI X ... X Sn. If (5.4) holds~ then the projection ofH to
each product Si x Sj (1::; i < j ::; n) is surjective. Since Sb ... , Sn have no non-trivial
commutative quotients for ·1 ~ 5 , .Lemma 5.2.2 (p. 793) of [R1] implies that H = S. This
proves part (a), and again part (b) is an immediate consequence. This completes the proof of

Proposition 1; once more the exponent, is as in (4.3).

6. Points of infinite order

Let E be an elliptic curve defined over a number field k, and for a positive integer mIet
PI, ... ,Pm be elements of the group E( k) of points of E defined over k. For a prime

1 let 'PI be the homomorphism of G = Gal(klk) into GL(EI) defined in section 1, and
write GI for its kernel in G. We now define a homomorphism 'lfJI from GI into the additive

group Er as folIows. Pick QI, ... , Qm in E(k) with 1Qi = Pi (1 ::; i ::; m) , and
for g in GI let

Since g fixes all points of order 1, it is easily checked that 'lfJI is independent of the choice

of Ql, ... ,Qm .

Assurne now that PI, ... , Pm are linearIy independent over the ring of endomorphisms

of E over k. Bashmakov [Ba] proved that 'lfJI(Gd = Er for all sufficiently Iarge 1.
In [Be] Bertrand extended this result and gave an effective version when E has complex
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multiplication. When E has no complex multiplication, we obtained in [MW3] an effective
version for m = 1. Dur Theorem now enables this to be generalized to arbitrary m. We
will need the (absolute logarithmic) Neron-Tate height q on E(k).

Proposition 2. There are absolute constants c, 8 with the following property. Suppose E is
an elliptic curve ofWeil height h defined over a number field k ofdegree d. Assume E has

no complex multiplication over Tc and Pb"" Pm are points of E(k) linearly independent

over 1... Then if 1 > (cM8u) m/2 we have 'l/JI(GI) = Ei , where

M = max{d, h}, 'U = q(PI) + ... + q(Pm ).

For the proof we follow the proof of Theorem 3 of [MW3]. We have to check the validity
of the axioms BI, B2, B3, B4 (p. 747) of Ribet's paper [R2] for E .

Firstly, if 1> cM'Y for the constants c" of our Theorem then 'PI(G) contains SL(EI) ,
and therefore the commutant of 'PI(G) in End EI is contained in the commutant of SL(EI)
in End EI, which is well-known to be FI. This settles BI .

Similarly if 1> cM'Y then EI is irreducible as a 'PI(G) - module, and so by Lemma 10
(p. 179) of [C] the cohomology group H I ( 'PI(G), EI) vanishes. This deals with B 2 and B3 •

Finally the validity of B4 is obvious, and from Proposition 1.1 (p. 747) of [R2] it will
suffice to make 1 so large that PI, ... Pm remain linearly independent modulo lE(k). By

the discussion in [Be] (pp. 85, 87), this holds if 1> (Il- I U) m/2 , where Il is the minimum
of q(P) taken over all non-torsion P in E(k). Since U 2:: Il, we deduce Proposition 2
with 8 = ß+ 2, as soon as we can show that Il- I :s; C7Mß for some absolute constant ß.

Such abound follows from arecent result of S. David [Da]. For 9 = 1 his Theoreme
1.4 leads to the estimate

with hI = max {I, h}. A slightly better exponent can be obtained using the method of [M];

in this paper we did not work out the dependence on d, but it is a relatively easy matter
to do so, and we find

This completes the proof of Proposition 2.
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