
Max-Planck-Institut für Mathematik
Bonn

Q-operator and fusion relations for C(2)
q (2)

by

Ivan Chi-Ho Ip
Anton M. Zeitlin

Max-Planck-Institut für Mathematik
Preprint Series 2014 (8)





Q-operator and fusion relations for C(2)
q (2)

Ivan Chi-Ho Ip
Anton M. Zeitlin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Kavli Institute for the Physics and
Mathematics of the Universe (WPI)
University of Tokyo
Kashiwa, Chiba, 277-8583
Japan

Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
USA

IPME RAS
V. O. Bolshoj pr. 61
199178 St. Petersburg
Russia

MPIM 14-8





Q-OPERATOR AND FUSION RELATIONS FOR C
(2)
q (2)

IVAN CHI-HO IP AND ANTON M. ZEITLIN

Abstract. The construction of the Q-operator for twisted affine super-

algebra C
(2)
q (2) is given. It is shown that the corresponding prefunda-

mental representations give rise to evaluation modules some of which do

not have a classical limit, which nevertheless appear to be a necessary

part of fusion relations.

1. Introduction

The Q-operator and its generalizations are important ingredients in the
study of quantum integrable models. Namely, eigenvalues of the transfer-
matrices, corresponding to various representations can be expressed in terms
of eigenvalues of the Q-operator, which has less complicated analytic proper-
ties. These features of the Q-operators were first noticed by Baxter the early
70s in the case of vertex models. Later, after the quantum group interpretation
of the quantum integrable models it was realized that the original Baxter Q-
operator correspond to the integrable model based on the simplest nontrivial

quantum affine algebra ŝlq(2). A natural question was to generalize this notion
to the higher rank and give a proper representation-theoretic meaning to these
fundamental building blocks for transfer matrix eigenvalues. The first idea in
that direction was given in the papers of V. Bazhanov, S. Lukyanov and A.
Zamolodchikov [3], [4] in the context of the construction of integrable struc-

ture of conformal field theory: the interpretation of Q-operators for ŝlq(2) as
transfer-matrices for certain infinite-dimensional representations of the Borel

subalgebra of ŝlq(2). Later their results were generalized in [2], [12] to the

case of ŝlq(n). Finally, in the recent preprint of E. Frenkel and D. Hernandez
[8] the full representation-theoretic description of Q-operators was given for
any integrable model based on any untwisted quantum affine algebra Uq(g)
and connected to the earlier description of the transfer-matrix eigenvalues via
the q-characters [6]. The infinite-dimensional representations corresponding
to the Q-operator, which the authors called ”prefundamental representations”
were constructed just before that in [7].
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At the same time, some analogues of the Q-operators were constructed
in this way in the case of superalgebras [14], [5], [16]. In this article we
improve the constructions of [14]. In that paper an attempt to construct
the Q-operator and associated fusion relation for transfer matrices was made

in the case of C
(2)
q (2) ≡ sl(2)(2|1). However, the construction given there

lead to only partial result: half of the resulting transfer matrices were built
“by hands” out of Q-operators and did not seem to correspond to any finite

dimensional representation of C
(2)
q (2). In this paper we solve this ambiguity,

by allowing some representations to have no classical limit (q → 1). The

approach we are using allows to show explicitly the similarity between (A
(1)
1 )q

and C
(2)
q (2) previously noticed on the level of universal R-matrices [11].

The structure of the article is as follows. In Section 2 we fix the nota-
tions and describe the relation between finite-dimensional representations of
ospq(2|1) and slq(2), previously noticed on the level of modular double [9]. The
approach, which can be generalized to higher rank superalgebras is that we
find representations of ospq(2|1) inside the tensor product of finite-dimensional
representation of sl−iq(2) and two-dimensional Clifford algebra. such repre-
sentation splits into two irreducible representations which differ by the parity
of the highest weight and have equal dimensions. It is notable that the even-
dimensional irreducible representations obtained in this way do not have the
classical limit. We also give explicit formulas for R-matrix in these repre-

sentations. In Section 3 we consider evaluation modules for C
(2)
q (2), which

can be obtained in a similar fashion from evaluation modules of (A
(1)
1 )−iq.

We explicitly find the resulting trigonometric R-matrix and its matrix coeffi-
cients (with the details of calculations in the Appendix). We also introduce in

Section 3 the prefundamental representations for C
(2)
q (2) and study in detail

the relations in the Grothendieck ring of prefundamental representations com-
bined with evaluation representations. The relations in the Grothendieck ring
lead to relations between transfer-matrices and Q-operators: in Section 4 we
correct the constructions of [14], where the integrable structure of supercon-
formal field theory was studied, now changing “fusion-like” relations by the
true fusion relations.
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2. Quantum superalgebra ospq(2|1) and its representations

We define the quantum superalgebra ospq(2|1) as follows. It is a Hopf
algebra generated by even element K and odd elements E and F such that

{E ,F} := EF + FE =
K −K−1

q + q−1
,

KE = q2EK,
KF = q−2FK,

where the corresponding coproduct is:

∆(E) = E ⊗ K + 1⊗ E ,
∆(F) = F ⊗ 1 +K−1 ⊗F ,
∆(K) = K ⊗K.

Let us choose the (odd) Clifford generators ξ, η acting in the space C1|1 :=
span{|+〉, |−〉}, where |−〉, |+〉 are odd and even vectors correspondingly and

ξ =

(
0 1
1 0

)
, η =

(
0 i
−i 0

)
, (1)

such that

iξη =

(
1 0
0 −1

)
. (2)

The following notation will play a crucial role in relating the superalgebra
and the classical case via the spinor representation:

Definition 2.1. We denote by

q∗ := −iq (3)

and writing q := eπib
2

, q∗ := eπib
2
∗ , we have

b2 = b2∗ +
1

2
. (4)

Then we have the following proposition observed in [9], which can be proved
by direct computation.

Proposition 2.2. If E,F,K generate slq∗(2), then

E = ξE, F = ηF, K = iξηK (5)

generate ospq(2|1).
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Therefore, we are now able to relate the representations of slq∗(2) and
ospq(2|1). Let us do it explicitly.

Consider the s + 1 = 2l + 1 dimensional representation Vs of slq∗(2) with
basis

elm, m = −l, ..., l
and action

Kelm = q2m
∗ elm,

Helm = (2m)elm,

Eelm = [l −m]q∗e
l
m+1,

F elm = [l +m]q∗e
l
m−1,

where formally K = qH∗ and [n]q := qn−q−n
q−q−1 is the quantum number.

The generators E ,F ,K naturally act on Vs ⊗ C1|1 by means of the slq∗(2)
action, and decomposes as

Ws = Vs ⊗ C1|1 = W+
s ⊕W−s , (6)

where W±s has highest weight w±s = ell ⊗ |±〉 and spanned by

W±s = span{w±s ,Fw±s ,F2w±s , ...,Fsw±s }. (7)

Let elm,± := elm ⊗ |±〉 be the natural basis of Vs ⊗ C1|1. Note that elm,− is

an odd vector while elm,+ is even. Then the action of E ,F ,K can be written
explicitly as follows:

Proposition 2.3.

Kelm,± = ±q2m
∗ elm,±,

= ±i−2mq2melm,±,

Eelm,± = [l −m]q∗e
l
m+1,∓,

= il−m−1{l −m}qelm+1,∓,

Felm,± = ∓i[l +m]q∗e
l
m−1,∓

= ∓il+m{l +m}qelm−1,∓

where {n}q := q−n−(−1)nqn

q+q−1 = i1−n[n]q∗ .

We notice that the representations of even dimension is something which
we do not encounter in the classical case, namely all the finite-dimensional
representations of Lie superalgebra osp(2|1) are odd-dimensional.
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Example 2.4. For l = 1
2 , the representation on W±1 with basis {e1/2

1/2,±, e
1/2
−1/2,∓}

is given by

K =

(
∓iq 0
0 ∓iq−1

)
, H =

(
1 0
0 −1

)
,

E =

(
0 1
0 0

)
, F =

(
0 0
∓i 0

)
.

For l = 1, the representation on W±2 with basis {e1
1,±, e

1
0,∓, e

1
−1,±} is given by

K =

∓q2 0 0
0 ∓1 0
0 0 ∓q−2

 , H =

2 0 0
0 0 0
0 0 −2

 ,

E =

0 1 0
0 0 i(q−1 − q)
0 0 0

 , F =

 0 0 0
±(q−1 − q) 0 0

0 ±i 0

 .

Now we will find the formula for the R-matrix acting in tensor product of
W±s .

Let

expq(x) =

∞∑
n=0

xn

dneq!
(8)

where dneq = 1−qn
1−q . The the following Theorem holds.

Theorem 2.5. The universal R matrix is given by

R = QR

where Q := Cq
H⊗H

2
∗ with C := 1

2 (1⊗ 1 + iξη⊗ 1 + 1⊗ iξη+ ξη⊗ ξη) such that

C · |(−1)ε1〉 ⊗ |(−1)ε2〉 = (−1)ε1ε2 , εi ∈ {0, 1}, (9)

and

R := expq−2
∗

(i(q−1
∗ − q∗)E ⊗ F) (10)

= exp−q−2(−(q + q−1)E ⊗ F)

=
∑

anEn ⊗Fn

where

an = (−1)nq
1
2n(n−1) (q + q−1)n

{n}q!
(11)
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The proof is given in Appendix.

Finally, let us give for completeness the explicit matrix coefficients of R.
Namely, we find the pairing for Rl1,l2 = R|W±s1⊗W±s2〈

el1m′1,ε1
⊗ el2m′2,ε2 ,Rl1,l2(el1m1,ε′1

⊗ el2m2,ε′2
)
〉

where εi ∈ {0, 1} indicates the parity, namely |±〉 = |(−1)ε〉. Let us fix l1, l2
and write elm,ε for elm,±.

Proposition 2.6.〈
el1m′1,ε1

⊗ el2m′2,ε2 ,Rl1,l2(el1m1,ε′1
⊗ el2m2,ε′2

)
〉

= 0

if m′1 −m1 6= m2 −m′2 or m′1 −m1 = m2 −m′2 < 0.
Otherwise let n = m′1 −m1, we have〈

el1m′1,ε′1
⊗ el2m′2,ε′2 ,Rl1,l2(el1m1,ε1 ⊗ e

l2
m2,ε2)

〉
=i(l1−m1+l2+m2−1)n−2m′1m

′
2(−1)ε1ε2+nq

1
2n(n−1)+2m′1m

′
2 ·

· (q + q−1)n

{n}q!
{l1 −m1}q!
{l1 −m1 − n}q!

{l2 +m2}q!
{l2 +m2 − n}q!

In terms of q∗ and using the standard [n]q∗ instead, we get

=q
1
2n(n−1)+2m′1m

′
2

∗ (−1)ε1ε2
(q∗ − q−1

∗ )n

[n]q∗ !

[l1 −m1]q∗ !

[l1 −m1 − n]q∗ !

[l2 +m2]q∗ !

[l2 +m2 − n]q∗ !

Note that there are no more i’s using the q∗ notation.

Example 2.7. For W+
1 ⊗W

+
1 , let the basis be {e1/2

1/2,+, e
1/2
−1/2,−}⊗{e

1/2
1/2,+, e

1/2
−1/2,−}.

Then R is given by

R 1
2 ,

1
2

=


q

1
2
∗ 0 0 0

0 q
− 1

2
∗ (1− q−2

∗ )q
1
2
∗ 0

0 0 q
− 1

2
∗ 0

0 0 0 −q
1
2
∗


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Example 2.8. For W+
2 ⊗W

+
2 , let the basis be {e1

1,+, e
1
0,−, e

1
−1,+}⊗{e1

1,+, e
1
0,−, e

1
−1,+}.

Then R is given by

R1,1 =



q2
∗ 0 0 0 0 0 0 0 0
0 1 0 q2

∗ − q−2
∗ 0 0 0 0 0

0 0 q−2
∗ 0 q−2

∗ (q−1
∗ − q∗) 0 (q2

∗ − q−2
∗ )(1− q−2

∗ ) 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 (q2

∗ − q−2
∗ )(q∗ + q−1

∗ ) 0 0
0 0 0 0 0 1 0 q2

∗ − q−2
∗ 0

0 0 0 0 0 0 q−2
∗ 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 q2

∗



3. Evaluation modules for C
(2)
q (2) and prefundamental

representations

The quantum affine superalgebra C
(2)
q (2) is generated by Ei,Fi,Ki, i = 0, 1,

where Ei and Fi are odd, with Cartan matrix given by

A =

(
2 −2
−2 2

)
.

In particular, we have

KiEj = qaijEjKi, KiFj = q−aijFjKi, (12)

and in addition the Serre relations

E3
i Ej + {3}qE2

i EjEi − {3}qEiEjE2
i − EjE3

i = 0 (13)

F3
i Fj + {3}qF2

i FjFi − {3}qFiFjF2
i −FjF3

i = 0 (14)

where {3}q = q3+q−3

q+q−1 . Furthermore, for later convenience we modify the scal-

ing of Fi and use instead the following commutation relations:

{Ei,Fi} =
Ki −K−1

i

q + q−1
. (15)

3.1. Evaluation modules for C
(2)
q (2) and trigonometric R-matrix. One

check easily that we have the following spinor representation as in the ospq(2|1)
case:

Ej = Ejξ, Fj = Fjη, Kj = iξηKj , (16)
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and we also have the evaluation modules induced from (A
(1)
1 )q∗ given by

E1 7→ λE, E0 7→ λF

F1 7→ λ−1F, F0 7→ λ−1E

K1 7→ K, K0 7→ K−1

Then using the 2-dimensional representation of the Clifford algebra, we can
consider its action as before on Vs ⊗ C1|1, and decompose it into Ws(λ) :=
Ws(λ)+ ⊗Ws(λ)−.

Proposition 3.1. The action on the evaluation module Ws(λ)± with basis
elm,±, s = 2l, m = −l, ..., l, is given by

E1elm,± = λ[l −m]q∗e
l
m+1,∓

E0elm,± = λ[l +m]q∗e
l
m−1,∓

F1e
l
m,± = ∓iλ−1[l +m]q∗e

l
m−1,∓

F0e
l
m,± = ∓iλ−1[l −m]q∗e

l
m+1,∓

K1e
l
m,± = ±q2m

∗ elm,±

K0e
l
m,± = ±q−2m

∗ elm,±

Kδelm,± = elm,±

In the case s = 1, one can solve for the R matrix explicitly.

Proposition 3.2. The R matrix for s = 1, Ws(λ1)ε1⊗Ws(λ2)ε2 , εi ∈ {+,−},
is, up to scalar, given by

R '


1− z2q2

∗ 0 0 0
0 ε1q∗(1− z2) ε2z(1− q2

∗) 0
0 ε1z(1− q2

∗) ε2q∗(1− z2) 0
0 0 0 −ε1ε2(1− z2q2

∗)

 , (17)

where z = λ2

λ1
. Alternatively, let λi = exi , then we can cast it in trigonometric

terms:

R '


sinh(x1 − x2 − ln q∗) 0 0 0

0 ε1 sinh(x1 − x2) ε2 sinh(ln q∗) 0
0 ε1 sinh(ln q∗) ε2 sinh(x1 − x2) 0
0 0 0 −ε1ε2 sinh(x1 − x2 − ln q∗)

 .

(18)
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In the general case, one has to calculate the action of the generators cor-
responding to the imaginary roots. The explicit calculation is given in the
Appendix and the explicit form of the R-matrix is presented in Theorem A.4.

3.2. Prefundamental representations and the Grothendieck ring. Let

us consider the Verma modules corresponding to evaluation modules of C
(2)
q (2).

Namely, let us start from the following representation of ospq(2|1):

W±s = {Fkw±s }∞k=0, (19)

where w±s := ell ⊗ |±〉 as before such that K · w±s = ±qs∗w±s .
Writing |k〉± := Fkw±s , the basis are related to elm,± of the s+1 dimensional

module W±s from before by

|0〉± = w±s = ell,±,

|k〉± = Fkw±s = Fkell,± = i−k
[2l]q∗ !

[2l − k]q∗ !
ell−k,±(−1)k . (20)

Note that |k〉± is an even vector when ±(−1)k = +1.
This gives rise to the following evaluation module of the upper Borel part

b+ of C
(2)
q (2) on W±s :

E0|k〉± = λF|k〉± = λ|k + 1〉±,
E1|k〉± = λE|k〉± = λ[k]q∗ [s− k + 1]q∗ |k − 1〉±,

K0|k〉± = K−1|k〉± = ±q2kq−s∗ |k〉± = ±(−1)kq2k−s
∗ |k〉±,

K1|k〉± = K|k〉± = ±q−2kqs∗|k〉± = ±(−1)kq−2k+s
∗ |k〉±.

Furthermore, we see that when s ∈ Z≥0, W±s (λ) has a block diagonal form
such that in the Grothendieck ring of the representation of b+,

[W±s (λ)] = [W±s (λ)] + [W±(−1)s+1

−s−2 (λ)]. (21)

Let us define the prefundamental (or q-oscillator) representation of b+ of

C
(2)
q (2). The q-oscillator algebra is generated by α+, α−,H such that

qα+α− + q−1α−α+ = − 1

q + q−1
, [H, α±] = ±2α±, (22)

where α± are considered as odd elements. We consider the Fock modules

Π± = span{αk±|0〉± : H|0〉± = 0, α∓|0〉± = 0}∞k=0, (23)

where the vacuum vectors |0〉± are even. Then we have an important Lemma.
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Lemma 3.3. The following substitution provides an infinite dimensional rep-
resentation of b+:

ρ±(λ) : E1 = λα±, E0 = λα∓, K1 = q±H, K0 = q∓H. (24)

Let us consider the tensor product ρ+(λµ)⊗ ρ−(λµ−1). The action of Ei is
given by

E1 = λ(µα+ ⊗ q−H + 1⊗ µ−1α−) =: λ(a− + b−)

E0 = λ(µα− ⊗ qH + 1⊗ µ−1α+) =: λ(a+ + b+)

so that we have the commutation relations

qa−a+ + q−1a+a− = − µ2

q + q−1
,

qb+b− + q−1b−b+ = − µ−2

q + q−1
,

aδ1bδ2 = −q2δ1δ2bδ2aδ1 , δi ∈ {±},
or, in q∗ notation we have:

q∗a−a+ − q−1
∗ a+a− =

µ2

q∗ − q−1
∗
,

q∗b+b− − q−1
∗ b−b+ =

µ−2

q∗ − q−1
∗
,

aδ1bδ2 = q2δ1δ2
∗ bδ2aδ1 ,

which is similar to the bosonic case considered in [4]. Hence as in [4], the
tensor product ρ+(λµ)⊗ ρ−(λµ−1) decomposes as

ρ+(λµ)⊗ ρ−(λµ−1) =

∞⊕
m=0

ρ(m), (25)

where

ρ(m) : |ρ(m)
k 〉 = (a+ + b+)k(a+ − γb+)m|0〉+ ⊗ |0〉−, (26)

for k ∈ Z≥0 and γ 6= −q2n
∗ , n ∈ Z any constant. Note that |ρ(m)

k 〉 is even when
k +m is even.

Let µ = q
s
2 + 1

2
∗ . Then the action of b+ is given by

ρ+(λµ)⊗ ρ−(λµ−1)(K1)|ρ(m)
k 〉 = q−2(k+m)|ρ(m)

k 〉 = (−1)k+mq
−2(k+m)
∗ |ρ(m)

k 〉,

ρ+(λµ)⊗ ρ−(λµ−1)(K0)|ρ(m)
k 〉 = q2(k+m)|ρ(m)

k 〉 = (−1)k+mq
2(k+m)
∗ |ρ(m)

k 〉,

ρ+(λµ)⊗ ρ−(λµ−1)(E0)|ρ(m)
k 〉 = λ|ρ(m)

k+1〉,

ρ+(λµ)⊗ ρ−(λµ−1)(E1)|ρ(m)
k 〉 = λ[k]q∗ [s− k + 1]q∗ |ρ

(m)
k−1〉+ c

(m)
k |ρ(m−1)

k 〉,
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where c
(m)
k are constants not necessary in what follows.

We observe that the representation of b+ has a block diagonal form defined
by ρ(m), which resembles the Verma module W±s with a shift in the factors of
Ki. Hence in the Grothendieck ring of representation of b+ we obtain

[ρ+(λµ)⊗ ρ−(λµ−1)] =

∞∑
m=0

[U−s−2m ⊗W(−1)m

s (λ)] (27)

where Up is the 1-dimensional representation such that E1, E0 act trivially

as 0, while K1,K0 acts as qp∗ , q
−p
∗ respectively. Indeed, the action of K1 on

U−s−2m ⊗W(−1)m

s (λ) is given by multiplication by

(q−s−2m
∗ ) · ((−1)m(−1)kq−2k+s

∗ ) = (−1)k+mq
−2(k+m)
∗ .

Note that [U0] = [W+
0 (λ)] = 1 in the Grothendieck ring.

Let us denote by

U±−s−2m := C · |±〉
the 1-dimensional representation with odd generator |−〉 or even generator
|+〉. (Here U+

p := Up) We have

U ε1m ⊗ U ε2n ' U
ε1ε2
m+n. (28)

Let us introduce the parity element σ := [U−0 ] in the Grothendieck ring.
Then

U−0 ⊗W±s ' W∓s , U−0 ⊗ U±p ' U∓p . (29)

Hence

σ[W±s ] = [W∓s ], σ[U±p ] = [U∓p ], σ2 = 1, (30)

and we can rewrite in the Grothendieck ring:

[ρ+(q
s
2 + 1

2
∗ λ)][ρ−(q

− s2−
1
2

∗ λ)] =

∞∑
m=0

[U−s−2m ⊗W(−1)m

s (λ)]

=

∞∑
m=0

σm[U−s−2m][W+
s (λ)]

= [W+
s (λ)]

∞∑
m=0

σm[U−s−2m]

= [W+
s (λ)] · fs

where

fs :=

∞∑
m=0

σm[U−s−2m] = [U−s]

∞∑
m=0

σm[U−2]m =
[U−s]

1− σ[U−2]
. (31)
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For simplicity, let us always fix the highest weight of the finite-dimensional
module to be even and rewrite Ws(λ) := W+

s (λ).
Now from previous observation,

[W+
s (λ)] = [Ws(λ)] + [W(−1)s+1

−s−2 (λ)] = [Ws(λ)] + σs+1[W+
−s−2(λ)].

Letting s 7→ −s− 2, we have

[ρ+(q
− s2−

1
2

∗ λ)][ρ−(q
s
2 + 1

2
∗ λ)] = [W+

−s−2(λ)] · f−s−2.

Hence we have

[Ws(λ)] = [W+
s (λ)]− σs+1[W+

−s−2(λ)]

= f−1
s [ρ+(q

s
2 + 1

2
∗ λ)][ρ−(q

− s2−
1
2

∗ λ)]− f−1
−s−2σ

s+1[ρ+(q
− s2−

1
2

∗ λ)][ρ−(q
s
2 + 1

2
∗ λ)].

In particular, letting s = 0, we obtain the q-Wronskian identity:

1 = [W0(λ)] = f−1
0 [ρ+(q

1
2
∗ λ)][ρ−(q

− 1
2
∗ λ)]− f−1

−2σ[ρ+(q
− 1

2
∗ λ)][ρ−(q

1
2
∗ λ)]. (32)

On the other hand, let us consider the product of [W1(λ)] and [ρ+(λ)].
Using (32) with appropriate λ:

[W1(λ)][ρ+(λ)] = f−1
1 [ρ+(q∗λ)][ρ−(q−1

∗ λ)][ρ+(λ)]− f−1
−3 [ρ+(q−1

∗ λ)][ρ−(q∗λ)][ρ+(λ)]

= f−1
1 [ρ+(q∗λ)](f0 + f−1

−2 f0σ[ρ+(q−1
∗ λ)][ρ−(λ)]

− f−1
−3 [ρ+(q−1

∗ λ)](f−1
0 f−2σ[ρ+(q∗λ)][ρ−(λ)]− f−2σ)

= f−1
1 f0[ρ+(q∗λ)] + f−1

1 f−1
−2 f0σ[ρ+(q∗λ)][ρ+(q−1

∗ λ)][ρ−(λ)]

− f−1
−3 f

−1
0 f−2σ[ρ+(q−1

∗ λ)][ρ+(q∗λ)][ρ−(λ)]− f−1
−3 f−2σ[ρ+(q−1

∗ λ)].

Now using

f−1
1 f−1

−2 f0 = f−1
−3 f

−1
0 f−2 =

1− σ[U−2]

[U1]
= f−1
−1

f−1
1 f0 = [U1], f−1

−3 f−2 = [U−1],

we get the Baxter relation:

[W1(λ)][ρ+(λ)] = [U1][ρ+(q∗λ)]− σ[U−1][ρ+(q−1
∗ λ). (33)

Similar relation holds for [W1(λ)] and [ρ−(λ)]:

[W1(λ)][ρ−(λ)] = [U1][ρ−(q−1
∗ λ)]− σ[U−1][ρ−(q∗λ) (34)
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4. Transfer matrices for SCFT

The universal R-matrix for C
(2)
q (2) belongs to a completion of U(b+) ⊗

U(b−). In [14] the lower Borel subalgebra b− was represented by means of
vertex operators (here wwe use some rescaling):

V±(u) =

∫
dθ : e±Φ(u,θ) := ∓i

√
2ξ(u) : e±2φ(u) :,

where

Φ(u, θ) := φ(u)− i√
2
θξ(u) (35)

φ(u) := iQ+ iPu+
∑
n

a−n
n
einu, ξ(u) := i−1/2

∑
n

ξne
−inu,

[Q,P ] =
ib2

2
, [an, am] =

b2

2
nδn+m,0, {ξn, ξm} = b2δn+m,0.

: e±φ(u) := exp
(
±
∞∑
n=1

2a−n
n

einu
)

exp
(
± 2i(Q+ Pu)

)
exp

(
∓
∞∑
n=1

2an
n
e−inu

)
.

These are the vertex operators acting in the Fock space and according to their
commutation relations, the substitution

Hα1
−→ 2P

b2
, E−α1

=

∫ 2π

0

V−(u)du

Hα0
−→ −2P

b2
, E−α0

=

∫ 2π

0

V+(u)du

gives rise to a representation of the lower Borel subalgebra b− with q = eπib
2

.
The R-matrix with b− represented as above and b+ as in Ws(λ) has the

form

Ls(λ) = eπiPHPexp(q)

∫ 2π

0

(λV−(u)E + λV+(u)F)du (36)

The letter q over the path-ordered exponential (Pexp) means certain regu-
larization procedure, which preserves the property of Pexp (see [14] for more
details).

Similarly, one can consider operators L±(λ), where the upper Borel algebra
b+ is represented via ρ±(λ):

L±(λ) = e±πiPHPexp(q)

∫ 2π

0

(λV−(u)α± + λV+(u)α∓)du (37)
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Then define

Ts(λ) := sTr(eπiPHLs(λ)), T+
s (λ) := sTr(eπiPHLs(λ))

Q̃±(λ) := sTr(e±πiPHL±(λ)), (38)

where we consider the highest weight vector in Ws(λ), ρ±(λ) to be even, and
we take the supertrace of the representation of the second tensor factor. (We
ignore the convergence of the trace here, treating it as formal series in λ.)

Then from the previous decomposition and the properties of the supertrace

Q̃+(q
s
2 + 1

2
∗ λ)Q̃−(q

− s2−
1
2

∗ λ)

= sTr(eπiPHL+(q
s
2 + 1

2
∗ λ))sTr(e−πiPHL−(q

− s2−
1
2

∗ λ))

= sTr
ρ+(q

s
2
+ 1

2
∗ λ)

(eπiPHR)sTr
ρ−(q

− s
2
− 1

2
∗ λ)

(eπiPHR)

=

∞∑
m=0

sTrW+
s (λ)(e

πiPHR))sTr
U

(−1)m

−s−2m
(eπiPHR)

=

∞∑
m=0

sTr(eπiPHL+(λ))sTr
U

(−1)m

−s−2m
(eπiPHR)

=

∞∑
m=0

T+
s (λ)sTr

U
(−1)m

−s−2m
(e2πiPH)

=

∞∑
m=0

(Ts(λ) + (−1)s+1T+
−s−2(λ))sTr

U
(−1)m

−s−2m
(e2πiPH)

= (Ts(λ) + (−1)s+1T+
−s−2(λ))

∞∑
m=0

(−1)me2πiP∗(−s−2m)

=
e−2πiP∗(s−1)

2 cos(2πP∗)
(Ts(λ) + (−1)s+1T+

−s−2(λ)),

where P∗ =
b2∗
b2P . Define the rescaled operator

Q±(λ) := 2 cos(2πP∗)e
2πiP∗(λ)

± 2P∗
b2∗ Q̃±(λ). (39)

Then

Q+(q
s
2 + 1

2
∗ λ)Q−(q

− s2−
1
2

∗ λ) = 2 cos(2πP∗)(Ts(λ) + (−1)s+1T+
−s−2(λ)).

Together with the other relation by substituting s −→ −s− 2:

Q+(q
− s2−

1
2

∗ λ)Q−(q
s
2 + 1

2
∗ λ) = 2 cos(2πP∗)T

+
−s−2(λ),
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we have

2 cos(2πP∗)Ts(λ) = Q+(q
s
2 + 1

2
∗ λ)Q−(q

− s2−
1
2

∗ λ) + (−1)sQ+(q
− s2−

1
2

∗ λ)Q−(q
s
2 + 1

2
∗ λ).
(40)

In particular, we obtain the quantum super-Wronskian relation:

2 cos(2πP∗) = Q+(q
1
2
∗ λ)Q−(q

− 1
2
∗ λ) + Q+(q

− 1
2
∗ λ)Q−(q

1
2
∗ λ). (41)

The Baxter T-Q relations for Q-operator follows from previous section:

T1(λ) ·Q±(λ) = ±Q±(q∗λ)∓Q±(q−1
∗ λ). (42)

The fusion relation, which follows from the quantum super-Wronskian relation
is:

Ts(q
1
2
∗ λ)Ts(q

− 1
2
∗ λ) = Ts+1(λ)Ts−1(λ) + (−1)s. (43)

This relation is similar to the one considered in [14], but now all the transfer

matrices correspond to the representations of C
(2)
q (2). In particular,

T2(λ) = T1(q
1
2
∗ λ)T1(q

− 1
2
∗ λ) + 1. (44)

Therefore

T2(q
1
2
∗ λ) = T1(q∗λ)T1(λ) + 1,

so that the Baxter relation for T2 is as follows.

T2(q
1
2
∗ λ)Q±(λ) = Q±(λ) + T1(q∗λ)(±Q±(q∗λ)∓Q±(q−1

∗ λ))

= Q±(λ) + Q±(q2
∗λ)−Q±(λ)∓T1(q∗λ)Q±(q−1

∗ λ)

= Q±(q2
∗λ)∓T1(q∗λ)Q±(q−1

∗ λ)

Moreover, one can write down the expression for each Ts in terms of either
one of Q±(λ) using the quantum super-Wronskian relation:

Ts(λ) = Q±(q
s
2 + 1

2
∗ λ)Q±(q

− s2−
1
2

∗ λ)

s/2∑
k=−s/2

(−1)(k± s2 )

Q±(q
k+ 1

2
∗ λ)Q±(q

k− 1
2

∗ λ)
(45)

The T2-transfer matrix has a classical limit of the trace of monodromy matrix
for super-KdV equation. The asymptotic expansion of it should produce both
local and nonlocal integrals of motion for superconformal field theory (SCFT).
We suppose that operators Q±(λ) possess nice analytic properties like it was

in the A
(1)
1 case [3].
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A. Appendix

Let us introduce the q-numbers:

[n]q =
qn − q−n

q − q−1

such that

[n]q∗ =
qn∗ − q−n∗
q∗ − q−1

∗

= in−1 q
−n − (−1)nqn

q + q−1

= in−1{n}q

with the usual notation in superalgebra

{n}q :=
q−n − (−1)nqn

q + q−1
.

A.1. R-matrix for ospq(2|1). Let us prove Theorem 2.5 that the universal R
matrix is given by

R = QR, (46)

where Q = Cq
H⊗H

2
∗ with C = 1

2 (1⊗ 1 + iξη ⊗ 1 + 1⊗ iξη + ξη ⊗ ξη) such that

C · |(−1)ε1〉 ⊗ |(−1)ε2〉 = (−1)ε1ε2 , εi ∈ {0, 1},

and

R = expq−2
∗

(i(q−1
∗ − q∗)E ⊗ F)

= exp−q−2(−(q + q−1)E ⊗ F)

=
∑

anEn ⊗Fn.

Note that using

dneq−2
∗

= (−q)1−n{n}q,

we have

an = (−1)nq
1
2n(n−1) (q + q−1)n

{n}q!
.

By definition an satisfies

an
an−1

= −qn (1 + q−2)

{n}q
. (47)
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In order to prove that R satisfies the properties of the R-matrix, one check
that

(K ⊗ E)Q = Q(1⊗ E) (48)

(E ⊗ 1)Q = Q(E ⊗ K−1) (49)

which follows easily from the commutation relations of the Clifford algebra,
and

(1⊗ E + E ⊗ K−1)E = E(1⊗ E + E ⊗ K) (50)

(The calculation for F is similar). Using

EFn − (−1)nFnE =
qn{n}q
1 + q2

KFn−1 +
(−1)nq−n{n}q

1 + q−2
K−1Fn−1, (51)

we have

(E ⊗ K−1)(En ⊗Fn)− (En ⊗Fn)(E ⊗ K) = En+1 ⊗K−1Fn − (−1)nq2nEn+1 ⊗KFn

(1⊗ E)(En ⊗Fn)− (En ⊗Fn)(1⊗ E) = (−1)nEn ⊗ EFn − En ⊗FnE

= (−1)n
qn{n}q
1 + q2

En ⊗KFn−1 +
q−n{n}q
1 + q−2

En ⊗K−1Fn−1

Hence adding up both sides, we need a0 = 1 and

an−1 +
q−n{n}q
1 + q−2

an = 0

(−1)n−1q2(n−1)an−1 − (−1)n
qn{n}q
1 + q2

an = 0

both of which is equivalent to

an
an−1

= −qn (1 + q−2)

{n}q
as required.

By writing formally

K = qH
′

= iξηqH∗ ,

the following proposition shows that up to a constant, the Cartan part of
the universal R-matrix using the Clifford generators coincides with the usual
expression.

Proposition A.1. On the space W±1
s1 ⊗W

±2
s2 , we have the action

q
H′⊗H′

2 = (−1)−l1l2 q̃Cq
H⊗H

2
∗ , (52)
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where C is the Clifford part 1
2 (1 ⊗ 1 + iξη ⊗ 1 + 1 ⊗ iξη + ξη ⊗ ξη) and H ′

reproduce the action of K on W±s :

H ′ =

{
H − l πiln q +

H − (l + 1) πiln q −

with s = 2l.

Proof. For simplicity, consider the basis el1m⊗ el2n ∈W+
s1 ⊗W

+
s2 . The action on

other parity is similar. Then we have

q
H′⊗H′

2 = q
H⊗H

2 (i−l2H ⊗ 1)(1⊗ i−l1H)q̃

= q2mn(−1)−l2m−l1nq̃

while

Cq
H⊗H

2
∗ el1m ⊗ el2n = (−1)(l1−m)(l2−n)q2mn

∗

= (−1)−mnq2mn(−1)(l1−m)(l2−n)

= (−1)l1l2−l2m−l1nq2mn

�

A.2. Universal R matrix for C
(2)
q (2). Recall from (15) that we have rescaled

our generator Fi from the usual definition by c = q+q−1

q−q−1 . Hence modifying

the constants from [11] accordingly, the universal R matrix in general is of the
form

R = QR>0R0R<0, (53)

where

Q = q
H1⊗H1

2 +Hδ⊗Hd+Hd⊗Hδ , (54)

with Hδ = H0 +H1 and Hd the extended generators such that

[Hd, E0] = E0, [Hd, E1] = 0,

and

R>0 =
∏
n≥0

exp−q−2((−1)n+1(q−1 + q)Eα+nδ ⊗Fα+nδ),

R<0 =
∏
n≥0

exp−q−2((−1)n+1(q−1 + q)Eδ−α+nδ ⊗Fδ−α+nδ),

R0 = exp

(∑
n>0

n(q + q−1)2

q2n − q−2n
Enδ ⊗Fnδ

)
,

where the imaginary generators Enδ±α,Fnδ±α are defined below.
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Proposition A.2. The Cartan term can be replaced using the Clifford part:

Q = Cq
H1⊗H1

2 +Hδ⊗Hd+Hd⊗Hδ
∗ . (55)

Proof. We just need to check that the following same commutation holds:

(E1 ⊗ 1)Q = (E1 ⊗K−1
1 ), (E0 ⊗ 1)Q = (E0 ⊗K−1

0 )

(F1 ⊗K−1
1 )Q = (F1 ⊗ 1), (F0 ⊗K−1

0 )Q = (F0 ⊗ 1)

(K1 ⊗ E1)Q = (1⊗ E1), (K0 ⊗ E0)Q = (1⊗ E0)

(1⊗F1)Q = (K1 ⊗F1), (1⊗F0)Q = (K0 ⊗F0)

Then it follows that the Clifford part C commute correctly with the odd el-
ements because Ei = Eiξ,Fi = Fiη and Ki = Kiiξη as before, and the even

part follows from the relation of (A
(1)
1 )q∗ . �

Let us define the following notations for the generators:

E1 := Eα, E0 := Eδ−α
F1 := Fα, F0 := Fδ−α
K1 := Kα, K0 := Kδ−α

Kδ := KαKδ−α.
Then using

[eβ , eβ′ ]q := eβeβ′ − (−1)θ(β)θ(β′)q(β,β′)eβ′eβ , (56)

where θ(β) is the parity of eβ , we define

Eδ := [Eα, Eδ−α]q = E1E0 + q−2E0E1,
Fδ := [Fδ−α,Fα]q−1 = F0F1 + q2F1F0.

Both Eδ,Fδ are even.
Next we define

Enδ+α :=
1

q − q−1
[E(n−1)δ+α, Eδ],

Fnδ+α :=
1

q − q−1
[Fδ,F(n−1)δ+α],

E(n+1)δ−α :=
1

q − q−1
[Eδ, Enδ−α],

F(n+1)δ−α :=
1

q − q−1
[Fnδ−α,Fδ].

These are all odd.
The pure imaginary roots are harder to define. First we define

E ′nδ := [Eα, Enδ−α]q = EαEnδ−α + q−2Enδ−αEα,
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F ′nδ := [Fnδ−α,Fα]q−1 = Fnδ−αFα + q2FαFnδ−α.
Note that E ′δ = Eδ,F ′δ = Fδ. Then the pure imaginary root vectors are defined
recursively by

Enδ =
∑

p1+2p2+...+npn=n

(q − q−1)
∑
pi−1(

∑
pi − 1)!

p1!...pn!
(E ′δ)p1 ...(E ′nδ)pn ,

Fnδ =
∑

p1+2p2+...+npn=n

(q−1 − q)
∑
pi−1(

∑
pi − 1)!

p1!...pn!
(F ′nδ)pn ...(F ′δ)p1 .

More explicitly, by using generating functions:

E′(u) := −(q + q−1)
∑
n≥1

E ′nδu−n,

E(u) := −(q + q−1)
∑
n≥1

Enδu−n,

F′(u) := (q + q−1)
∑
n≥1

F ′nδu−n,

F(u) := (q + q−1)
∑
n≥1

Fnδu−n,

we have

E′(u) = −1 + exp E(u), E(u) = ln(1 + E′(u))

and similarly for F(u).

Proposition A.3. We have the following action of the non-simple generators
on W±s (λ):

Eδelm,± = λ2q−m−1
∗

(
ql∗[l +m+ 1]q∗ − q−l∗ [l −m+ 1]q∗

)
elm,±

Fδelm,± = λ−2qm+1
∗

(
ql∗[l −m+ 1]q∗ − q−l∗ [l +m+ 1]q∗

)
elm,±

Enδ+αelm,± = inλ2n+1q
−2n(m+1)
∗ [l −m]q∗e

l
m+1,∓

E(n+1)δ−αe
l
m,± = inλ2n+1q−2nm

∗ [l +m]q∗e
l
m−1,∓

Fnδ+αelm,± = ±in−1λ−2n−1q2nm
∗ [l +m]q∗e

l
m−1,∓

F(n+1)δ−αe
l
m,± = ±in−1λ−2n−1q

2n(m+1)
∗ [l −m]q∗e

l
m+1,∓

E ′nδelm,± = in−1λ2nq
−2(n−1)m
∗

(
[l +m]q∗ [l −m+ 1]q∗ − q−2n

∗ [l −m]q∗ [l +m+ 1]q∗
)
elm,±

F ′nδelm,± = in−1λ−2nq
2(n−1)m
∗

(
[l +m]q∗ [l −m+ 1]q∗ − q2n

∗ [l −m]q∗ [l +m+ 1]q∗
)
elm,±.
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By the generating functions, we get

Enδelm,± = in−1λ
2n

n
N(l,m, n, q∗)e

l
m,±,

Fnδelm,± = in−1λ
−2n

n
N(l,m, n, q−1

∗ )elm,±,

where

N(l,m, n, q) := q−n(m+1)(qn(l+1)[n(l +m)]q − q−n(l+1)[n(l −m)]q)

=
q2nl + q−2n(l+1) − q−2nm − q−2n(m+1)

q − q−1
.

Theorem A.4. We have the following expression for R:

R = QR>0R0R<0,

where the matrix coefficients of each component are given below expressed only
in terms of q∗:

• The matrix coefficients of R>0 is given by:

〈el1m′1,ε′1 ⊗ e
l1
m′2,ε

′
2
|R>0|el1m1,ε1 ⊗ e

l2
m2,ε2〉 = 0

if m′1 −m1 6= m2 −m′2 or m′1 −m1 = m2 −m′2 < 0.
Otherwise let n = m′1 −m1, we have

〈el1m′1,ε′1 ⊗ e
l2
m′2,ε

′
2
|R>0|el1m1,ε1 ⊗ e

l2
m2,ε2〉

=
(−1)n(ε1+ε2−1)(q∗ − q−1

∗ )n(λ1λ2)n∏n
k=1(λ2

2 − q∗2m2−2m1−2kλ2
1)

[l1 −m1]q∗ !

bncq∗ ![l1 −m1 − n]q∗ !

[l2 +m2]q∗ !

[l2 +m2 − n]q∗ !

where bncq∗ =
1−q−2n

∗
1−q−2

∗
.

• Similarly, the matrix coefficients of R<0 is given by

〈el1m′1,ε′1 ⊗ e
l2
m′2,ε

′
2
|R<0|el1m1,ε1 ⊗ e

l2
m2,ε2〉 = 0

if m′1 −m1 6= m2 −m′2 or m′1 −m1 = m2 −m′2 > 0.
Otherwise let n = m1 −m′1, we have

〈el1m′1,ε′1 ⊗ e
l2
m′2,ε

′
2
|R<0|el1m1,ε1 ⊗ e

l2
m2,ε2〉 = 0

=
(−1)n(ε1+ε2−1)(q∗ − q−1

∗ )n(λ1λ2)n∏n
k=1(λ2

2 − q∗2m2−2m1+2(k+n−1)λ2
1)

[l1 +m1]q∗ !

bncq∗ ![l1 +m1 − n]q∗ !

[l2 −m2]q∗ !

[l2 −m2 − n]q∗ !

• The matrix coefficients of R0 is given by

R0(el1m1,ε1⊗e
l2
m2,ε2) = fq·

l1+m1∏
k=1

λ2
2 − λ2

1q
2l1+2l2−2k+2
∗

λ2
2 − λ2

1q
2m2−2m1+2k
∗

l2+m2∏
k=1

λ2
2 − λ2

1q
2m2−2m1−2k
∗

λ2
2 − λ2

1q
−2l1−2l2+2k−2
∗

el1m1,ε1⊗e
l2
m2,ε2 ,
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where

fq(l1, λ1, l2, λ2) = exp

(∑
n>0

1

n

(
λ1

λ2

)2n
(q2l1n
∗ − q−2l1n

∗ )(q2l2n
∗ − q−2l2n

∗ )

q2n
∗ − q−2n

∗

)

= exp

(∑
n>0

1

n

(
λ1

λ2

)2n

[2l1]qn∗ [2l2]qn∗
qn∗ − q−n∗
qn∗ + q−n∗

)
.

• Finally, the action of Q is given by

Q(el1m1,ε1 ⊗ e
l2
m2,ε2) = (−1)ε1ε2q2m1m2

∗ el1m1,ε1 ⊗ e
l2
m2,ε2 .

Example A.5. When l1 = l2 = 1
2 , we have

R 1
2 ,

1
2
(λ1, λ2) = q

1
2
∗ fq∗


1 0 0 0

0
λ2
1−λ

2
2

λ2
1q
−1
∗ −λ2

2q∗

λ1λ2(q−1
∗ −q∗)

λ2
1q
−1
∗ −λ2

2q∗
0

0
λ1λ2(q−1

∗ −q∗)
λ2
1q
−1
∗ −λ2

2q∗

λ2
1−λ

2
2

λ2
1q
−1
∗ −λ2

2q∗
0

0 0 0 −1


where

fq∗(λ1, λ2) := exp

(∑
n>0

1

n

(
λ1

λ2

)2n
qn∗ − q−n∗
qn∗ + q−n∗

)
.

Note that up to a constant we recover our previous formula (17).

Example A.6. Using Theorem A.4, we found for example the universal R
matrix acting on W+

2 ⊗W
+
2 is given by

R1,1(λ1, λ2) =
q2
∗fq
a



a . . . . . . . .
. b . d . . . . .
. . c . f . g . .
. d . b . . . . .
. . −h . −e . −h . .
. . . . . b . d .
. . g . f . c . .
. . . . . d . b .
. . . . . . . . a


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where λ1 = ex1 , λ2 = ex2 ,

a = 4 sinh(x1 − x2 − ln q∗) sinh(x1 − x2 − 2 ln q∗)

b = 4 sinh(x1 − x2) sinh(x1 − x2 − ln q∗)

c = 4 sinh(x1 − x2) sinh(x1 − x2 + ln q∗)

d = −4 sinh(x1 − x2 − ln q∗) sinh(2 ln q∗)

e = 2 cosh(2x1 − 2x2 − ln q∗)− 4 cosh(ln q∗) + 2 cosh(3 ln q∗)

f = 4q−1
∗ sinh(x1 − x2) sinh(ln q∗)

g = 4 sinh(ln q∗) sinh(2 ln q∗)

h = 8q∗ sinh(x1 − x2) cosh(ln q∗) sinh(2 ln q∗)

and all other entries are zero.
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