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ON HOMOTOPY CLASSIFICATION 

PROBLEMS OF J.H.C. WHITEHEAD 

by 

Hans Joachim Baues 

A principal task of homotopy theory arises from the homotopy classification 

problems: 

(1) Classify homotopy types of polyhedra X,Y .•• by computable algebraic 

data! 

(2) Compute the set of homotopy classes of maps, [X.Y] ,in terms of the 

classifying data for X and Y ! Moreover, compute the group of 

homotopy equivalences, Aut (X) ! 

[ m nJ The rich structure of homotopy groups of spheres S ,S • however, shows 

that the difficulties for a solution of these problems increase rapidly 

when, for the spaces involved, the range = (dimension) - (degree of connectedness) 

is growing. Whitehead [21], [22], [23] examined examples of the homotopy 

classification of polyhedra in a small range. In particular, he classified 

simply connected 4-dimensional homotopy types. Moreover, he classified (n-1)-

connected (n+2)-dimensional polyhedra which he calls 2 A -polyhedra. The 
n 

following related problems ever since remained unsolved though they are just 

first steps beyond Whitehead's results: 

(3) Compute all homotopy classes of maps between simply connected 4-dimen­

sional polyhedra in terms of Whitehead's classifying data! 
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(4) Compute the groups of homotopy classes of maps between 
A2 - polyhedra n ;;: 3 1 n ,. 

(5) Classify homotopy types of all simply connected 5-dimensional 
polyhedra and of all A3 - polyhedra, n ~ 3 • 

n 

We obtained solutions of these problems which will appear in [3}, [4]. 

This paper (which is an addendum of my lecture in Gottingen) describes 

some of the results. I would like to acknowledge the support of the 

'Sonderforschungsbereich 40, Theoretische Mathematik' and of the 'Max-

Planck-Institut fUr Mathematik', in Bonn. 

Part I. On the homotopy classification of simply connected polyhedra 

of finite dimension 

§ 1 The r-groups, ••• 

§ 2 The classification of simply connected 4-dimensional polyhedra 

by J.H.C. Whitehead 

§ 3 The boundary invariants 

§ 4 The classification of simply connected n-dimensional polyhedra 

§ 5 The classification of simply connected 5-dimensional polyhedra 

§ 6 The example of Unsold 

Part II. An example: The Classification of A
3 

- polyhedra, 
n ~ 4. n 

Part III. The computation of maps between l-connected 
4-dimensional polyhedra. 

§ 1 

§ 2 

The realizability of homology homomorphisms for l-connected 

The homotopy groups n
4 

and r
4 

and the realizability of White­

Whitehead's exact sequence in dimension 5. 

4-5 

6-8 

9-11 

12-15 

16-19 

20-21 

22-26 

26-26 

27-30 

31-35 



§ 3 

§ 4 

§ 5 

- 3 -

The classification of maps between simply connected 4-dimensional 

polyhedra. 

The group of homotopy equivalences of a simply connected 

4-dimensional polyhedron. 

Symmetric bilinear forms and spaces. 

Part IV. The computation of maps between Chang's elementary 
2 

Literature 

Pare I. 

A - polyhedra, n ~ 4. 
n 

On the homotopy classification of simEly connected 

Eolyhedra of finite dimension. 

We describe some results on 

Problem ( *) : Classify algebraically the homotopy typos of n-dimensional 

polyhedra which are simply connected! 

Our main tool is a new kind of invariant which we call the boundary invariant 

of a simply connected complex. Using these invariants one obtains a solution 

of problem (*) by the inductive computation of r-groups. This extends 

nicely the solution of J.B.C. Whitehead for n = 4 . 

36-38 

39-40 

41-45 

46-52 

53-54 



(1.1) 

(1.2 ) 

(1.3) 

(1.4) 

199 - 4 -

§ 1 The r- groups 

Let X be a simply connected at - complex with basepoint and let Spcox 

be the infinite symmetric product of X. The canonical inclusion j: X c: 

sp~ yields the fiber sequence 

rX 

co 
By the result of Dold - '!'hom [10] we have the natural equation 'If SP X = 

n 

H (X) where H denotes the singular homology with integral coefficients. 
n n 

Moreover, j induces the Hurewicz homomorphism h • Therefore we obtain 

by (1.1) the natural exact sequence of homotopy groups 

H l X b ) r X 
n+ n+l n 

---,.-+) 'If X ~h H X b ) r
n

_1
x 

i* n n n 

where we set r X = 'If rX • In fact, this sequence is the ·certain exact 
n n 

se~ence' of J.H.C. Whitehead [23] compare the results of Kan in [17]. 

The connecting homomorphisn bn+1 =bn+1X is called the secondarx bounda!X 

o~erator. Whitehead defines r X by the cell structure of X, namely 
n 

Since X is 1 - connected the Hurewicz theorem shows that rX is 2 - con-

nected. Thus we have r 2X = 0 • The group r 3X was computed by Whitehead 

in [23]; he introduces the universal WIadratic functor r from abelian 

groups to abelian groups and he obtaines the natural equation 

We also use homotoFY groups with coefficients in an abelian group A: 
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'IT (AjX) = [M(A,n) ,xl , n ~ 2 , 
n 

which are defined by the Moore-space M(A,n) with H M(A,n) ~ A . 
n 

Here one has to be careful since 'IT (AiX) is not a contravariant functor 
n 

in A. A han01'llOrphism ~: A ~ B between abelian groups induces a 

subset 

~# C Hom (n (B iX), n (AiX» 
n n 

# * t "" {~ I t € [!UA,n),M (B,n)] , H ~ = ~} • 
n 

The well known universal coefficient theorem [151 yields the binatural short 

exact sequenoe 

We introduoe the r - sroups with ooefficients: 

r (A,X) = n (A;rX) (1 1) n n ,see.. 

Clearly, this group is embeded in the binatural short exact sequence 

A Ext(A,r lX) ~ r (A;X) ~ Hom(A,r X) n+ n n 

Sinoe X is simply connected we derive from (1.4) 

All groups r (A;X) , n €Z , are abelian, we set r =0 for n::; 1 • n n 
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§ 2 The classification of simply connected 

4 - dimensional polyhedra by J.H .C. Whitehead 

A graded abel·ian group a =: {a} is r - connected if H == Z and H. = 0 n 0 1 

for i < 0 and 0 < i ~ r • Moreover, H has dimension :::aN if HN is free 

abelian and if Hi == 0 for i > N • For example the homology H* (x) of 

an r - connected N-dimensional polyhedron X is an r - connected N - dimen-

sional graded abelian group and in fact each such group arises this way. 

We now fix a simply connected graded abelian group B of dimension N 

and we slightly alter problem (*) above by: 

problem(**): Classify algebraically the simply connected homotopy types 

with homology B. 

In this lecture graded abelian groups H and homotopy types {X} al-

ways are sim21y connected. For dimB=4 problem <**> was solved by J.B.C. 

Whitehead as follows: 

(2.1) Theorem [23]; Let dim H ::: 4: • Then propel' equivalence ctasses of paire 

(2.2 ) 

b4 € Hom(H4I r(H2)) I 

~4 € E~(H3Iaok b4) 

are 1 - 1 colTespondsd to the homotopy types {X} wi th hOlTK) logy H. 

TWo pairs (b4,a4 ) and (b4,a4) are 2ro2er e~ivalent if there exists 

an autanorphism q): H ~ a of degree 0 such that 
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The correspondence in (2.1) is given by 

(2.3) with 

b4X = secondary boundary in (1.2), 

These invariants are given by Whitehead's exact sequence • By natura-

lity of this sequence the correspondence (2.3) between homotopy types and 

proper equivalence classes is welldefined , compare also (III. § 1). 

A new proof of Whitehead' s result was described by Chang in [4], I will 

give further proofs in {3J, [4J , in fact, Whitehead's result 

is the special case n=4 of our general result in section § 4 below. 

(2.4) Remark: The result of J.H.C. Whitehead above was generalized in 

the literature in various directions. Actually Whitehead first used a 

quite complicated 'extended cohomology ring' together with the Pontrjagin 

square for the classification, [21J. In his second approach [23] he points 

out that the classification by the r - sequence is much simpler. Whitehead 

also obtained a solution of problem (**) if H is (n-1) -connected and 

(n+2) -dimensional, this is the classifiaction of the A2 - poly-
n 

3 . 
hedra, [22L [23]. Next Shiraiwa[19] considers A -polyhedra, that is 

n 

the case of problem (**) where H is (n-1) - connected and (n+3) - dimen-

sional; he restricts to n ~ 3 • However, his result is not correct as was 

poi~ted out by Chow [9]. A different approach on 3 A - polyhedra, n 
n;;: 3 I 

is due to Chang [8], but also his result is not correct. We have the fo110-

wing counterexample for Shiraiwa's result as well as for Chang's result: 



203 - 8 -

and H. = 0 other-
1. 

wise, i > 0 , n > 3 • Then each COJIlplex X with homology H has the homo-

topY type of a mapping cone C
f 

where 

This shows that there are atmost 4 such homotopy types, in fact, there are 

exactly 4. However, the result of Shiraiwa [19] yields 6 and the result of 

Chang [9] yields 5 homotopy types with homology H. Since also Chow (91 

did not clarify the realizability of his invariants the classification 

3 of An -polyhedra, n ~ 3 , remained open. It can be achieved for n ~ 2 by 

our method below, for n=2 this is the classification of 1 - connected 5-

dimensional polyhedra. 

ReCently Henn [12J obtained a further solution of problem C**). He con-

siders for an odd pr ime p and for large n (stable range) homology 

groups H which are p - local, (n-l) - connected and n+4p-5 - dimensional. 

His result is exactly an analogue of Whitehead's original result on A2_ 
n 

polyhedra, n ii:; 3 , since only primary (co)homology operations are needed. 

The classification of A3 - polyhedra is made more difficult by the 
n 

secondary Adem operation. 
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S 3 The boundary invariants 

For an abelian group A and for a simply connected complex X we de-

fine the group b r t(A,X) n- by the push out diagram (see (1.9»: 

Here p: r X 
n 

--i'-:' Ext (A,cok b 1) 
P n+ 

PU:h J 
" 

b r 1 (AiX) n-

ip 

----:.~cok b 1 is the projection for the secondary boundary 
n+ 

bn+1 : Hn+1X ~ rnX in the exact sequence (1.2). By naturality of this 

sequence also p is natural and therefore diagram (3.1) is binatural in 

X and A, see (1.6). 

The exact sequence (1.2) yields the short exact sequence of abelian 

groups 

cok b 1 >--+ 1T X ~ ker b n+ n n with 

{n X} € Ext(ker b ,cok b +1) n n n 

(3.3) Theorem: To each l-aonneated CW-complex there is canon£caUy associated 

a sequence of elements a = (a4" as""') with 

a 1 = ~ IX € rb 1 (8 X; X) n+ n+ n- n 
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s'ltlCh that th8 fo~lowing propemes are satisfied: 

(aJ NatvraUty: For a map F: X ----+ Y lJe have the eqwtion 

(b) 

(c) 

b in r l(B X;Y) n- n 

ldan lXJ = b X € Bom(B X~ r lX) + n n n-

i: k9r(b X) c: H X denotes the inclusion. n n 

The equations in (a) and (b) also show that the subsets (HnF)if'I a
n

+1 y 

and i"'an+1X consist of a single element, see (l.6). By (b) and by 

exactness in the colunn of (3.1) equation (c) is welldefined. For n=3 we 

have 

compare (2.3). 

(3.5) Remark: The boundary invariant a lX depends only on the (n+l) - skeleton 
n+ 

of X or at the n - th section of a homology decomposition of X, see [ 15] • 

The homology decomposition was introduced by Eckmann and Hilton as a dual 

of the Postnikov decomposition. The homology decomposition, however, 

turned out to have a major disadvantage, namely it failed to be natural 

while the Postnikov. decomposition' is natural. In particular, the homotopy 

type of the n .,. th section of a hcaology decomposition is not an invariant 

of the hanotopy type of X, see [5]. Therefore also the k' - invariants 

(= attaching maps of the homology decomposition) do not have the desired 

p:r:operty of naturality. The boundary invariants in the theorem above can 
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be thought of as being the 'natural part' of the k' -'invariants. The proof 

of the theorem relies on the 'principal reduction' ot: a 1 - connected 

complex as described in [1] and on a study of 'twisted maps' , see' 

[3], [4]. 

S 4 The classification of simply connected 

N-dimensional polyhedra 

Let H be a simply connected graded abelian group of dimension N. Then 

there is a space X which realizes the homology H, we can take the one 

point union of Moore spaces: 

N 
X = Y M(H ,n) 

n=2 n 

On the other hand we get: 

(4.2) Theorem: Let X be a 1- oonneoted N - diJOOnsionaZ poZyhedron with homoZogy 

H • Then X has the hoT1XJtopy type of a one point union of lbol"e spaoes 

as in (4.:1) if and onZy if all bouniJa:l'!J inva:Piants t3n (X) aPe trivial,,, 

n ~2 • 

one obtains a olassification of all simply connected homotopy types 

with homology H by the following kind of a system of operators: 

(4.3) Definition: A r - system associated to H is given by operators r and 
n 

r 1 CA) , 2;:it n < N , which are defined on the set D • '!his set consists 
~ n 

of sequenoes 

(1) 
n-l 

(b,j3) - (b.,I3., ••• ,b 1,13 I' € D 1 n- n- n-
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in addition we set bi =0 and ~i -0 for i-2,3 so that D2 and D3 

contain only the sequence (0, ••• ,0). The operator rn associates with 

(b, p)n€ D the abelian group r = r {b,~)n and the operator r 1 (A) 
n n n n-

associates with an abelian group A and with 

. n - -
group r n- 1 (A) ... r n -

1 
(A) (b,p> together with a short exact sequence 

(2) 

For n=2 we have r 2 = 0 and r 1 (A) .. 0 and for n=3 we have 

(3) 

compare 

by the 

(1.4) and (1.10). The domain D,n ~ 3 , is defined inductively 
n 

r - system, that is: (b Q) n+1 E D if and only if the following 
'... n+l 

condition are satisfied: 

, 

bn+1 
n 

E Hom(H
n

+1,rn {b,s) ) , 

(4) 
E r:-l (Hn) (b,p)n Bn+1 , 

lJSn+1 =b n 

Here the group r~_1 (A) is defined by the push out diagram 

Ext(A,r ) 
n 

AI push 

• Ext(A'~k bn+1l 

----iJolJ ~_~ (A) 

Han (A, r
n

_
1 

) 

which is given by the exact sequence in (2) and by b
n

+
1 

in (4). We de­

note by p: r = r (b, In n ---+ cok b 1 the quotient map, compare (3.1). 
n n n+ 
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(4.4) Theorem: Let H be a 1-aonnected gn::uJed abeUan group of diTTr3naion N. 

Then w:roe e:xn.sts a r - system of opePatoX's associated to H such that 

pX'opeX' equimlence olasses of sequences 

aPe 1 -1 col"respone7sd to the simpZy connected hoTTf:)topy types with homo-

logy H. 

Clearly, by (3) and (4) in (4.3) we know D4 • Therefore the theorem 

with N=4 is exactly the result of J.H.C. Whitehead in (2.1). The theorem 

raises two highly non trivial problems: 

Problem (***l: (a) Compute a r - system as in (4.4). 

(b) COmpute the relation of proper equivalence on . DN • 

The solution of these problems yields by (4.4) a solution of problem 

(**). We do not say that we can solve problem (***), in fact, this would 

be a never ending task. still various examples show that theorem (4.4) 

leads much further than the results previously obtained in the litera-

ture. 

For the proof of (4.4) we use the following results. We show that for 

a simply connected complex X the r - groups r (X) 
n and r 1 (A;X) n- in 

§ 2 are essentially determiuad, by the homology H* (X) and by the se­

quences of boundary invariants (b4X,a4X, ••• ,bnX,anX). Here we use in­

ductively the 'CW - tower of categories' which is introduced in [3], [4]. 

Moreover, the cw - tower shows that all boundary invariants bn+1 and 

an+1 with the properties in (4) of (4.3) are realizable by an appropriate 

X • '!'his, together with conditions on the realizability of hanology hano-
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morpbisms, yields the result. 

Actually, the result (4.4) above is an abbreviation of our result in 

[3], [4J since we describe many properties of a r-system associated 

to H. 

(4.5) Remark: If the homology H is free abelian we have Ext (Hn+1 ,rn) = 0 

and therefore the isanorphism 

'rhus Q 
"'n+l 

p: fb 1(H ) ~Hom{H ,r 1) n- n n n-

is determined by pI! 1 = b in this case. Therefore we can n+ n 

omit the boundary invariant I!n in this case and a r - system associated 

to H consists of domains D with 
n 

and of operators rn defined on Dn with bn+1 € Hom(Hn+1,rn } • This 

simplifies the canputation of the r - system. II 

(4.6) Remark: If H is a rational vector space, n >0 , then also r is a 
n n 

rational vector space and in this case 

is the boundary in the minimal model 

bn+1 € HomCHn+1,rn) essentially 

-1 (L(s H),d) of the Quillen model, 

this minimal model was constructed in [2]. This shows that rationally a 

r - system can be canputed by using differential Lie algebras. II 
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§ 5 The classification of simply connected 

5 - dimensional polyhedra 

For dim H = 4 we have the example of J.H.C. Whitehead in §2. Thus 

the next case is dim H = 5 • 

The domain D4 is the set of all pairs (b4,f34) with 

We have to compute the operators r 4 and r 3 (A) on D 4 

part (a) of problem (***) for N=5: 

this solves 

Our computation uses the 'natural short exact sequences ( A = abelian 

group) : 

2 Here r 2 and the rT are functors from abelian groups to abelian groups. 

We call rT the r - torsion. We give an explicit description of these 

functors in (III. 2.1) and (III. 2.3) below. We point out that in (5.2) 

the group R
4

(M(A,2)} is not a functor in A, see (1.6). The extension 

pi:'oblem for (5.2) is solved. 

The group r ~ (A) is a natural quotient 

Here the eqUivalence relation ~ is explicitly described by certain 

natural structure of the functor r. 
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We now obtain the group r 4 (b4'~4) as follows. For a4 we choose an 

extension 

with a4 ;;: {n3} • By use of the composition 

p )I cok b 4 >>----+) It 3 

we obtain the push out diagram 

r(H
2

) &Z2 ED rCH
2

) SH2 p» r;H2;:' j )I lt
4

{M(H
2
,2» 

1 i SZ2 8 i SR2 push 

I 
I 
! ;q 
! 
I 

"V' 
Tr3 0 Z2 lB Tr3 &H2 _------2.-------7 r 4 Cb4,a4) 

This yields r 4 (b4,a4) as an abelian group. The map p in (5.4) is the 

quotient map, see (5.2), and j is the inclusion in (5.2). 

Next we· obtain the group r 3 (A) (b 4' a 4) by the push out 

Tr3 (AiM{H2, 2)1 
f 

t Jl 
t 

~ 
Hom(A,1t3M(H

2
,2» 

.v = -------+) Hom(A,r{H
2
» 

Again the extension problem for the left hand column in (5.6) is solved. 
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'!hus this diagram determines r 3(A) (b4,f\4) as an abelian group. By (5.5) 

and (S.6) the domain DS can be computed, see (4) in (4.3). The 

classification of 1 - connected 5 - dimensional polyhedra is complete if 

we describe the relation of proper equivalence on D5 , see (4.4). This 

relation, however, is fairly complicated. For simplicity we here consider 

only the case that the homology H is free abelian, see (4.5). In this 

case we have 

-E )0)0 r
4 

is surjective since rT{H2) =0 , see (5.5). Now (b4 ,b5) is properly 

'" if and only if there is an isomorphism q>: H = H 

and a map q> such that 

* = q> b' 4 4 

Here q> is any map for which the diagram 

cok b
4 

:> )0 11' 3 »0 H3 

1 rW21 

I I 
j 

j -
I 

,q> ! q>3 . 
V V 

cok b
4 

> )0 11'3 )0)0 H3 

commutes. Such a map induces a homomorphism r (ij),q>2) by the commutative 

diagram 
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Tr3 0 2:2 ED Tr3 ~H2 »' r 4 1 iii 8:&2 • iii 81fJ2 
I -
if (<1',<1'2) 

Tr 3 0 :&2 ED Tr 3 ® H2 »' f4 

" The subclass of all simply connected 5 - dimensional Poincare complexes 

was recently classified by StOcker [20]. These complexes have invariants 

§6 The exame1e of Uns51d 

My student H.M. Uns5ld who is working on his dissertation solved 

problem (***) for the following special types of homology groups: 

H is free abelian, 

H is (n-1) - connected and (n+4) - dimensional, 

n ;;; 6 (stable range) • 

In this case Dn+4 consists of sequences 

computed explicitly by 

f 2 = H 07l.2 ' n+ n 

is 

Here bn+2: Hn+2 0 Z2 ~ Bn 0:&2 is induced by bn+2 and the inclu­

sion i is given by the commutative diagram 
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Hn 8 Z2 ]I) cok :n+2 

1 j 

I 

1 i 
Hn & :1:24 - ]I) cok(jbn+2 ) 

where j is given by the inclusion Z2 CZ24 • Moreover, Unsold obtained 

explicit formulas for proper equivalences in Dn+4 • Thus by (4.4) all 

simply connected homotopy types with homology B as in (6.1) are classi-

fled. 

For example there are exactly 89 simply connected homotopy types 

with homology 

H = H = H = H = B = H =Z o n n+l n+2 n+3 n+4 

and Hi = 0 otherwise, n ~ 6 • Moreover, there are exactly 27 simply 

connected homotopy types with 

H ==H =H =H =:1: o n n+2 n+4 

and Hi = 0 otherwise, n ~ 6 , the stable complex projeci tve 3 - space 

:rn-2~3 is one of these 27 types. 
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Part II. An example: The classificat.i9D 9f 

A~ - polyhedra, n ~ 4 • 

3 
A -polybedra are n (n-1)-connected C~complexes which are (n+3) - dimen-

3 sional. For n;r: 4 we define below A -systems for wbich we have: 
n 

(l) Theorem: Proper> isomorpm.sm classes of A! -systems are 1-1 cO'1'1'esponded to 

3 
homotopy types of An - poZyhed:r!a (n ~ 4). 

This result is a special case of (1.4.4) above. We use the following 

notation: Let A be an abelian group. The extension 

Z/2 ~ Z/4 ~ Z/2 yields the exact sequence 

By Bom(A *Z/2,A &Z/2) = Ext (A *Z/2,A eZ/2) we choose an extension G(A) 

which represents the connecting homomorphism {G(A)} above: 

(2) A&Z/2 ~ G(A) ~ A*Z/2 

-For each tp €Hom(A,B} there is a homomorphism tp such that the fo110-

wing diagram commutes: 

A &'&/2 > U 
)0 G(A) 

A 
)) A*Z/2 

{3} 1 ~81 
, 
f 
t 
I - , tp* 1 ,tp 

~ " B &Z/2 ::. ) G(B} ill) B*Z/2 
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Moreover, we define G(A) by the commutative diagram 

Ext (A,:&/2) >>--~6._~> G(A) 

(4) II II II 
6.* * Hom{A *:&/2,:&/4) ~ Hom(G(A) ,:&/4) ~ Hom(AOZ/2,Z/4) • 

Remark: For the Moore space of A in degree n we have 

isomorphisms (n ~ 4) 

G(A} == lln+i'1(A,n) 

G(A) n = [M(A,n+l),Sn] == II M(A,n+l} 

Thus these groups are Spanier - Whitehead duals of each other all 

(S) Definition: Consider the diagrams (a) and (b) below. An 
3 

An -system s with 

n ~ 4 is a diagram of unbroken arrows as in (a) together with an element 

~n+3 as in (b); (all arrows are homomorphisms between abelian groups, as 

usual ~ and ~ denote injective and surjective maps respectively). 

" 

(a) 

, , , 
" 

~ ___________ --y-_________ _ 

lTn+1 &Z/2 push out 

I 

: 11 

t 
G(H ) 

n 

'.~ r 
\, 11 ~/ ... / b 

b 3 \ 4OC:;. 

n+ > r (i) -~lT --~H ~H eZ/2 ~lT 1 ~H 1 
nr2 A n+2 ~~_n+_2 _______ n __ ~v~ ______ n_+ _______ n_+ __ / 

, exact sequence 
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The column is a short exact sequence, H
n

+
3 

is free abelian and i ~ 1 is 

given by the homomorphism i in the row of the diagram. By (2) we obtain 

the push out r n+2 (1) and the map A. The map v is the composition 

ql.l(i (1) where q is the quotient map. We use v for the definition of 

the following push out, see (4): 

II 

(b) 

Ext (Bn
+

21 :.Z/2) P:: 

Ext(Hn+2 ,cok b n+3 ) ~ r:+1 (Bn+2 ,v) ~ Bom {Hn+2 , Hn ~Z/2) 

~n+3 

l.l is induced by and we have l.ltl 3 = b 2' see (a). The rows of the n+ n+ 

diagram are exact. 

For a map lJl: A --)O~Hn+2 let W: G(A) ~ G(Hn+2) be a map as in 

(3) and let 

-* b b 
lJl : r n+t (Hn+ 2,v) ---+ r n+1 (A,v) 

-* be the map between push outs, see (5) (b), induced by lJl 8Hn $Ext(l/J,cok bn+3) 

-* -with lJl. = Bom(lJl ,Z/4) , see (4). 

For the inclusion 

* j bn+ 2 = 0 • Therefore the element 



222. - 23 -

is welldefined. An extension TIn+2 , which represents this element, fits 

into the row of (S)(a) such that this row is an exact sequence. Since 

A-1%* -1 
Q J is surjective on ~ (bn+2) we see that each exact row as in (a) 

is obtained via (7) by an appropriate ~n+3' 

Next we define proper maps. 

(8) Definition: Let Sand S· 3 
be An - systems as in (5). A p::oper map 

!.p: S ~ S' is a tuple of hOIlX:lDXJrphisms 

!.P.: H --+ H~ 
~ i ~ 

i=n,n+l,n+2,n+3 I 

Ca) 

such that !.P is compatible with all unbroken arrows in (5) (a) and such 

that 

(b) 

b -* in rn+1 (Hn+2,v') • Here !.Pn+2 is defined as in (6) and (~'~n)* is 

induced on the push out (5) (b) by Ext(Hn+2,!.Pr} ED G(Hn+2) OI.Pn where 

!.Pr: cok bn+2 ~ cok b~+2 is welldefined by 'Pr . II 

A proper isomorphism is a proper map I.P for which all !.Pi and thus 

also !.PTI and ~ are isomorphisms. We are now ready to formulate the 

following theorem for n ~ 4 • 

(~) 'lheorem: Let n ~ 4 • 

(A) Each A! - pol.yhedron J X induces an An - system S = SeX) suah that 

the ~ow in (S)(a) is the oe~tain exact sequence ofJ.H.C. Whitehead~ 
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~n+3 i8 the 'boundary invariant of X ' » see (I. 3.3). 

(B) Each map F: X ---Jo- X, bei;;b)een A3 -poZyhedm induces a proper 
n 

3 
(e) Each An - system S is realizabZe" that is, for S there exists 

an A! -poZyhedron X such that S == SX are properly isorTr)rphie. 

(D) Eaeh proper map (j): SeX) ~ S(X') is reaUzabZe by a continous 

map X ---Jo- X, • 

Theorem (1) is an easy corollary of this result and of (14). Actually 

A! -systems and proper maps form a category and S is a functor, S: A! 
~ A! -systems, --(here A~ denotes the full homotopy category of 

AJ-polyhedra). 
n 
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Part III. The classification .of maps bet"Yleen 1-connectec 

4-dimensional polyhedra 

Whitehead [23] and also Steenrod, in his review of Whitehead's paper 

[21], point out the problem of determing the homotopy classes of maps 

between 1-connected 4-dimensional polyhedra. We here describe a solution 

of this problem. In particular, we compute the 4-th homotopy group 

n4(x) and the group of homotopy equivalences E(X) of an arbitrary 

simply connected 4-dimensional polyhedron X. The computation of n~ 

solves a problem of P.J. Hilton in [13]. As an example we compute the 

group E(X) for a simply connected 4-dimensional manifold. 

§ 1 The realizability of homology homophisms for 

l-connected 4-dimensional Eolyhedra 

(1.1) 

We consider the following part of Whitehead's certain exact 

sequence in (I. 1.2) 

which is a functor on simp.ly connected polyhedra. For the group 

r3 we have the natural equation 

where r is the universal quadratic functor. 

(1.3) Definition of r: A map f: A---> B between abelian groups is 

quadratic ~f f(a)=f(-a) and if f(a+b) - fea) - f(b) is bilinear, 

A,bEA • There i8 a. universal quadratic map 

y : A-> fA 
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(1.7) 
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such that for each quadratic map :f there is a unique homomorphism f: rA 
--+ B between abelian groups--with . fy =f >. This defines the functor r 

on abelian groups. We define the "Whitehead product' 

[ , ]: A8A ~ A 

[a,b] == y(a+b) -yea) -y(b) • II 

It i~ easy to compute the abelian qroup I'A by the following formulas 

{ 

Z/2n 
f{Z!n) = 

Z/n 

n even 

, n odd 

rCA sa) == (rA) e (IB) e (A SB) 

'1.'he· isomorphism in (1.2) is induced by the Hopf map n: 8
3 ---+- 52 which 

induces the quadratic ~p 

This yields n* by the universal property. We also will use the homomor-

phisms 

cr: A ---? A 8 '8./2 

T: A ---? A@A 

which are induced by the quadratic maps a ~a ~1 and a t---;..a Sa respect-

ively. Via (1.3) the map cr is the suspension homomorphism. For whitehead 

products we get 

cr[a,b] == 0 

T[a,b] = a 8b + b 0a 

By na turali ty of (1. 1) and (1. 2) the secondary boundary b 4: H 4 --+ I'H2 

is a prinlary hanology opearation. The Pontrjagin square can be deduced from 

b4 and from {n3} E Ext(H
3

,cok b4 ) • Moreover, we have the following natural 

commutative diagram 
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H
2

@H
2 

'" .7 

I' / 
H4 )I r(H

2
> 

SQ2 1° 
H2 ® 'll./2 

,.., 
Here A is the reduced diagonal and SQ2 is the integral Steenrod square. 

If H* is free abelian and finitely generated then b4 is determined by 

the cup product in H* =H* (X,Z). 

Whitehead determined the groups IT3 which possibly appear as a third 

homotqpy group by the following result. 

(1.9) Theorem (J.H.C. Whitehead [23J): Each exaat sequenae 

wher>e H 4 is free abe Uan" is rea lizab ~e by a 1 - aonneated 4 - dimen­

sional. spaae X. For two such spaces X and X' a homology homomor­

phism q): H*X =8 ---)I- H*X' =H' i8 reaUzable if and only if there is 

a aorrmutative diagram 

H' -..."...r+"'" rH' 4 b
' 

F 2 
4 

This result implies the classification of 1-connected 4-dimensional 

polyhedra in (I. 2.1). 
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By (1.9) we know exactly the image H*[X,X'] of the homology functor 

(1.10) 

In § 3 below we compute the fibres of this map in terms of the classi-

fying data (b
4

,{rr
3

}) for X and Xl respectively. 

§ 2 The homotopy groups R4 and and the 

realizability of Whitehead's exact sequence 

in dimension 5 

In this section we determine the groups n4 which possibly appear as 

a fourth homotopy group of a simply connected space with prescribed homo-

logy. We first compute the group r 4 in {1.1}; this group clearly has much 

more structure than the group r3 in (1.2). We show that r 4 depends 

only on the homology H*X, on the secondary boundary b
4 

E Han(H4 ,I'H2 ) 

and on the extension class {n
3

} E Ext(H
3

,cok b4 ) • 

For the computation of r4 we have to introduce two new functors rT 

and r; which carry abelian groups to abelian groups and whiCh are derived 

from Whitehead's functor r in (1.3). 

(2.1) Definition: Let A be an abelian group. Then the r - torsion fT (A) is 

defined as follows. Choose a short exact sequence 

where C and D are free abelian. Then we get the sequence 

a1 
C t9c --~) rC e CeD 

a 
2 >rD -->+ fA 

01 = ([1,1],-1 Sd) with 1 = identity on C 

a2 = (r(d) , [d,l]) with 1 = identity on D 
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It is easy to check that fT is a we lldefined functor in A. The 

abelian group fT(A) can be easily computed by the following formulas 

which are sitnilar to (1.4): 

fT (A) = A * 'Is I 2 if A is cyclic, 

Here A * B denotes the torsion product of abelian groups over ~ • Ne"t 

we define via the natural structure [, J and y in (1.3) the functor 

2 
f2 • 

(2. 3) Definition: Let 

be the abelian group given by the relations 

(1) 0 ..... [x,y]Sz+[z/x]&y+[y,z]~x, 

(H) 

(Hi) o .... [x,y] 01 + (yx) (3)y + [y,X] ®x 

for ", y I Z € A • II 

Here (i) corre~nds to the Jacobi identity for Whitehead products, 

(H) is forced by the triviality of the Whitehead product [n,i] =0 in 

n
4 

(52) ; i € n
2
s2 denotes a generator. Moreover, (iii) is the Barcus -

Barratt formula for [itn,i2] where i1 and i2 are inclusions of 8
2 

in 2 2 S V 8 ; in (iii) the element 1 is the generator in Z2 • 

For the Moore space M(A,2) of the abelian group A in dimension 2 

we have: 
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(2.4) Theorem: Thel'e i8 a natul'a~ ahol't e:cact aequence 

We identify If3M (At 2) = rA by (1. 2) and If2M (A,2) = A • Then i on 

A & Z/2 is given by * (En) and i on rA 0A is the Whitehead product. 

'.This way we obtain the gecmetric interpretation of the relations as des-

(2.5) 

(2.6) 

cribed above in (2.3). 

As an abelian group, ~A is easily computable by the formula 

This equation is B2! natural in A. The term A2 denotes the second ex-

tarior power of a '4/2 - vector space and L(A, 1) 3 is the group of Lie ele­

ments of degree 3 in the tensoralgebra T(A) where A is concentrated in 

degree 1. In fact, L(A,1)3 splits of naturally in (2.5). 

Now let i3: r{H2 ) ~ If3 be the map in {l.l}. We obtain the group 

r4 by the push out diagram of abelian groups 

H2 0Z/2 1& I'H2 0H2 ~ 
2 

r 2H2 
i 
~ If

4
M(H

2
,2) 

ir3 
push 1 push 1 a. 

If30Z/2 e If30H2 ~ r; (i3 ) ::> .. r 4 

wi th i3 = i 3 @% e i3 SH2 • Geanetrically <x* is induced by a map <x: 

M {H2, 2} ~ X which induces an isomorphism on H2 • The map p is the 

quotient map, see (2.3). Diagram (2.6) completes our computation of r4 

for which we thus have the natural short exact sequence 
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Via the secondary boundary bS in (1.1) we obtain a new primary homo­

loQY operation 

The following diagram commutes 

HS tb
S 

;. I'T(H
2

) 

~21 10 

H3 (X,Z/2) 
A 

);. H2 *Z/2 

Here A is the surjection in the universal coefficient theorem and sQ2 

is the integral Steenrod square. The map (J is given on fCC) Ell C @D in 

(2.1) by (J on r( C) and by the trivial map on C 0 D ; we use H2 * :£/2 

c C *S/2 • 

We now can describe all realizable sequences in (1.1) which start with 

bS • This question of realizability also was asked by J.H.C. Whitehead [23]. 

(2. 10) Theorem: Le t H be a gpaded abe lian group wi th H 5 free abe'lian and Hi = 0 

for i > ~ • Then we aan ahoose arbi trary elements 

whe~ r4 is given by (b4~{n3}) as in (2.6). These ahoiaes yield 

ematly the sequences in (1.1) whiah are realizable by a 1 - aonneated 

5 -dimensional polyhedron. 
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This result corresponds to (1.9), however, the sequence (l.l) does not 

classify l-connected 5 - dimensional polyhedra. Thus the direct analogue 

of Whitehead's classification in (1.9) is not true in dimension 5. 

we still obtain an extension of (l.9) to the 5 - dimensional case by 

introducing the boundary invariant, 8
5

, which replaces the element 

{~4} in {2.10); see (I. § 5). 

Remark: P.J. Hilton in [13J computed the homotopy group 1f n+2 
2 of A -
n 

polyhedron for n ;;: 3 • Our computation of ~ 4 solves this problem for 

§ 3 The classification of maps between 

simply connected 4 - dimensional polyhedra 

With the notation in section § 2 we can state our result on the set of 

homotq>y classes [X,X'] where X and X· are simply connected 4 - di-

mensional polyhedra. Let H and H' be the homology of X and X I re-

spectively and assume the homotopy types of X and XI are determined by 

exact sequences as in (1.9). Thus we have by (1.10) a good characterization 

of the subset H*[X,X'J cHom(H,H') • For the full computation of the set 

[X,X'] we have the following result: 

(3.1) The0rem: There is a canonical, qaconposition of the function H* on [X,X'] 

as in the fo l, ZobJing diagn:un: 



- 33 -

H~(X,r;i3) + [X,x'] G - > ) 

t.p 1m (Aa) + im d{~) 

1~ 
" 

~ 
"-

G1 = Ext(H2,tt3} + 
) Ml (X,X') > 

H4 (x, rT(Hi» 

lA1 
G2 > + > M

2
(X,X') = 

1~2 H* 

G
3 = Ext{H

3
,ker b4) 

+ ) M
3

{X,X') > 

lA3 
G4 Hom(H

3
,cok b4) > + ) M4 (X,X') = 

t4 
t.p E H [x,X'] c:: Hom(H,H f) 

* 

All functions A are surjective maps. The groups Gi act transitively 

and effectively on all fibers of Ai (i=1,2,3,4). Moreover, the group 

Gt,p acts transitively and effectively on all fibers A-1
(f) for which 

f EM1 <X, X') induces t,p in H*[X,X'] • 

For the definition of Gt,p recall the definitions of r;<ij) in (2.6) 

and ~ecall that we have the short exact sequence 
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see (2.7). This sequence induces the connecting homomo;phism a in the 

following commutative diagram: 

t(H r2. ') ~ H4 (X,r2
2

1.·
3
') EX 3' 21.3 ~ 

d(<Il:! l 1 
H2 (X,lf3) 

Here a is the Bockstein homomorphism for (3.2) and ~ and ~ are defined 

b¥ the universal coefficient theorem. Thus we see that in the definition of 

G'f) in (3.1) we have im (Aa) ;: 1m a • Next we define d ('f)2 ) by 

for a€H2 (X,TTj) • Here sq2(a) € H4 (X,lf30 2:/2) is given by the steenrod 

squaring operation and ern) *: TTl 0 Z/2 --+ r2 (i') 323 in (3.4) is the re-

striction of the quotient map p in (2.6). Moreover, for <P2 €H2 (X,Hi) we 

have a Ulp2 € H4 (x, TT3 SH:P and [, ]: TTj 6Hi --+ r; (ij) in (3.4) is 
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the restriction of the quotient map p in (2.6). This completes the defi­

nition of d(~2) in (3.4). The composition d(~2) =~d(~2) in (3.3) satis­

fies the formula 

Bee {1. 8) , a E Hom (H2 ' lI'j) • Here the compositions are 

a0tp2 
--~) lI'3®lI'2 

An important feature of the decomposition of H* in (3.1) is the following 

fact: 

(3.G) Addendum: For i=1,2,3,4 the composition of maps, 0 , induces a commutative 

diagram 

[X' IX"] x [X,X'] 
0 

[X,X"] ~ 

} 1 
0 

M. (x' ,X") 
l. 

x M. (X,X' ).- --~ M. (X,X") 
1. l. 

Therefore the sets Mi(X,X') are mo~hism sets of a category Mi such that 

A and Ai are quotient functors. Moreover, Gi yields a hifunctor on Mi 

such that the following distributivity law is satisfied 

* {f + (X) (g +~) = f g + g a + f*~ , 

f€Mi(X',X It
) , aEGi(X',X") , gEMi(X,X') and f3EGi(X,x') • The same for­

mula holds for f E [X' ,X .. ] , a EG<p{X' ,X"} , g E [X,X'] and a €G~(XtXI) 
where H*f =q> , H*g =w . 'fhis shows that all functors 1..,1..1"" 11..4 

of the decomposition are 'linear extensions of categories', see [3]. 
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§ 4 The grouE of homotoEY equivalences of a s1mEly 

connected 4 - dimensional polyhedron 

Let X be a simply connected 4 - dimensional polyhedron and let E(X) 

be the group of homotopy equivalences of X. Thus E eX) consists of all 

f € [X,X] which induce an isano:r::phism in homology. Composition of such 

maps yields the group structure in E(X). 

(4.1) Theorem: The homomozphi8m H*: E(X) ---+ Aut(H*X) has the foUowing aano­

niaaZ deaorrpo8ition whe:re tp =id i8 the identity of .H*X • 

4 2 

G 
H (X,r2i 3) 

::-
1+ 

)0 E(X) ::::: 
tp 

im{Aa) + im d(tp) 

1~ 
G1 = Ext (H2 ,n3) > 

1+ )0 E1 (X) 

lA1 
'. . 

+ 
H

4
(X,rT(H2» 1-

)0 E2 {X) G2 = ::-

!A2 
H* 

1+ 
G3 = Ext(H3,ker b4) ::- )t E3 (X) 

1+ 

lA3 
G4 = Hom(H3 ,cok b4) ::- )0 E

4
{X) ! 

I 

}. ~ ~ 

Aut(H) f'lH*[X,X] 
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Here A and A1, ••• ,A4 are surjective homomorphisms of groups with an 

abelian kernel. The kernel of Ai is and the kernel of A is 

l+(G~) • Here each homomorphism 1+ is injective and is defined by 
+ 1 (a) = 

1 + a where we use the action in (3.1) and where 1 denotes the identity 

of X. This result is actually an easy consequence of (3.1) and of (3.6). 

By the distributivity law in (3.6) we see that 1+ is a homomorphism of 

groups since we have 

Clearly, 

(1 + (a) ) 0(1 + Un) = (1 + a)o(1 + fH 

101 * 1*~ = + 1 a + 

= 1 + (a +~) 

= 1+ (a +~) 

-1 + 
is injective by (3.1) and also kernel A. = A. (1) = !m{1 ) 

l. l. 
by 

(3.1). We have an algebraic characterization of all group extensions in (4.1) 

up to the group E1X. The extension problem for A is not solved. 

§ 5 Symmetric bilinear forms and space::; 

. Symmetric bilinear forms appear naturally in topology as the intersection 

forms of manifolds, see for example [16]. We here are interested in the 

homotopy theory of 1 - connected 4 - dimensional manifolds i in fact, the 

homotopy type of such a manifold is determined by its intersection form. 

(S.l) Definition: Let V be a finitely generated free abelian group. A symmetric 

bilin~ar form <V,U) is a map U: V8V ~ Z which is bilinear and 
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which is symmetric, vlJw = wuv • A map f: (V, v) ----+ (W, lj) is a pair 

W f - ---.-. z) of hODlOlllOrphisms which satisfies f (vU",) ... 
(f: V ---.-. , : - 0 o 

(fv)U(fw) • These maps form a category which we denote by SBF. We say that 

f is ~entation preserving if 
f =1 • An orientation preserving auto­

o 

JDOrphiSDl in SBF is called an isometry. Let AUt (V, LJ) be the group of 

equivalences in SBF. II 

(5.2) Remark: Let V* = Han (V,Z) • 1he symmetric bilinear forms LJ on V are 

elements in * * V 0v = Hom(V0V,Z) , in fact, these elements are exactly 

those in the image of 

see (1.6). Here l is injective since * V is free abelian. Thus we can 

identify the symmetric bilinear forms u on V with the element 

which we call the boundery element associated to u. II 

The following homotopy category of spaces is highly related to the cate­

gory SBf of symmetric bilinear forms. 
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(5.3) Definition: Let SBf-4paee6 be the full category consisting of simply 

connected Of - spaces X with cohanology groups 

~(X,Z) = free abelian and finitely generated, 

otherwise • /1 

224 The cup product U: H x H ----. H =Z of an SBF - space is a symmetric 

bilinear form, the intersection form. Moreover, the secondary boundary in 

Whitehead's exact sequence (1.1): 

with n Hn = Hom(H ,Z) , is given by the boundary element 

(5.4) see (5.2). 

Now cohomology yields the contravariant functor 

* (5.5) SBF - .opaCM _H_~) SBF 

which by Whitehead's theorem (1.9) has the following properties: 

(5.6) Theorem: Each symmetric bilinear form (V,U) is reaLizabLe by an 

SBF - space X J' that is . (H*X,U) l:: (V,U) • Moreover, for 

* * SSF-spaces X"Y each 17klp q>: (H Y"U) ~ (8 X"U) in SBf is reaU-

zable by a mzp F: X ~ Y mth H*F =q> • 

We derive from this result that the equivalence classes of objects in 

SBf are 1-1 correseonded to the homotopy types of SBF - spaces. We write 

(S.7) x • M(V,u) 
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if X is an SBF - space which realizes the symmetric bilinear form (V, u) • 

By (5.6) the homotopy type of M(V,u) is welldefined. 

(5.8) Bemark: It is easy to see that each simply connected 4 - dimensional closed 

topological manifold has the~ homotopy type of an SBF - space. By Freed­

man's result Cor. 1. 6 in [ 11] we do not know whether such a manifold is 

triangulable. on the other hand differentiable manifolds are well known to 

be triangulable. Since our results in this section are available for all 

SBF - spaces we do not restrict. to manifolds. II 

We want to compute the set of all maps between SBF-spaces which induce 

the same cohomology homomorphism ~. For this we need the abelian group 

G(~) which we define below in terms of the following natural structure 

of the r - functor, see § 1: 

{S.9} Definition: Let ~: (V,U) ~ (W,u) be a map in SBF and let 

cp*: W* ~ V* 

be the dual of ~. '!'hen we set 

G(~) -= (r(V*) 02:/2 II) r (V*) 0V*> I U 

where the subgroup U is generated by the following elements (where 1 € 2:/2 

is a generator): 
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(H) 

(iii) 

(iv) 

(v) 

(vi) 

* where x,y,z Ev and 
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[x,y]ez + [z,x]0y + {y,z]ex 

yx ex 

[x,y] e 1 + (yx) @y + [y,x] ex 

bv e 1 

bv 9 y 

* (a e 1~r;;2 )(J~ + (a @tp ) Tbw 

* * * a E Hom (w ,r (v » . The elements b
v 

E reV ) and hw 
E r (W*) are the boundary elements in (5.2). II 

For each symmetric bilinear form (V,U) we define the abelian group 

G (V, U) = G (1) where 1 = identity of (V, U) 

This is an Aut (V, U) - module induced by the functor r<v*) ®2Z/2 ED r (v*) @v* 

in V. From (3.1) and {4.1} we easily derive the following results: 

(5.10) Theorem: Let Y =M(V.,U) and X =M(W.,U) be SBP -spaces. Then the oohomology 

yie Zds the sUJ:'jeotive j'unotion 

* H : [X.,Y] --~).,..) Hom«V.,U)., (W.,U)) 

Fo:r tp: (V., U) ----.,.. (W., U) the group G(tp) acts transitively and effect­

ively on the fibe:r (H*)-l(tp). 

In addition, H* in (5.5) is a linear extension of categories, see (3.6). 

(5.11) Theorem: Fo:r the gPoup of horootopy equivalenoes E(Y) of the SBF-space 

Y = M(V., UJ we have the sha:rt e:x:aot sequenoe 

G (V., U) >>---;..) E (Y ) 
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the associated module of which is the one in ([j.9). 

Thus E (X) represents the canonical element 

(5.12) I 

which, however, is not known. 

'!he intersection form of a 1 - connected 4 - dimensional closed manifold 

is always unimodular. We therefore consider the following example of (5.12): 

(5.13) corollaq: Let V be a fJ:tee 7J, - module of dimension n and let u: V x V 

---+.z be an unimoduZar aY1Tl1lemc bilinear form which is rea Used by 

Y = M(V" U) • Then we get the short exact sequence of groups 

(Z/2)n+o >---+ E(Y) ~ Aut(V,UJ 

where 0 = -1 if the 10m U is odd and where 0 = O· if the form U 

is even. 

Proof: For an unimodular form (V, U) one shows 

G(V,U) = (Z/2)n+o 

by the definition in (5.9). Now the corollary is a consequence of (5.11).D 

(S.14) Remark: By the result of Freedman [ 11] we know that each unimodular sym­

metric bilinear form is realizable by a 1 - connected 4 - dimensional topolo­

gical manifold. Thus the corollary is available for the weak homotopy types 

of all such manifolds, see (s.S).// 
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Part IV. The computation of maps between Chang's 

elementary A2 - polyhedra, n ~ 3 . 
D 

2 It is a well known fact that each A - polyhedron (of finite type) is 
n 

homotopy equivalent to the one point union of appropriate elementary 

A2 - polyhedra, see [6], [14], [15]. Let n: sn+1 -> Sn be the 
n 

Hopf element, let p be an odd prime and let r,t be natural numbers 

~ 1 • Then all elementary 2 A - polyhedra are given by the following 
n 

11 types: 

X1 · - Sn · -

Xz : = Sn+1 

X3 : = Sn+Z 

X4(r) · - Sn uZr en+1 · -
XS(p,r) : = Sn upr en+1 

X6 · - Sn u en+Z · - 'l 

X7(t) · - (SnvSn+1) u,+zt en+Z · -

XS{t) · - Sn+1 uzt en+Z · -

Xg (P. r) : :: Sn+1 upr en+Z 

X10(r) · - Sn u(Zr."l) (en+1yen+2) · -
X11 (r,t) := (SnYSn+ 1 ) u(Zr.,+zt} (e n+1ye n+Z) 



- 44 -

Using the formalism in [3] and [4] my student T. Schmidt [1S] worked out 

the table below which describes the abelian groups [Xi ,X
j

] where Xi and 

2 
are elementary A - polyhedra. The homotopy groups 

n 

were also obtained by Hilton [14]. Moreover, the groups 

n 2(X
j

), n l(X
j

) n+ . n+ 

[x. IX.l were 
~ J 

computed by Brown-COpeland [5] in case Xi and Xj are Moore spaces, 

that is i,j € {4,5,9,10} • The more difficult parts of the table seem to 

be new results. we point out that we have Spanier Whitehead dualit¥ 

where DO = identity and where 

OX = X 
1 3 

OX
2 

= X
2 

DX4 (r) = XS{r) 

OXS(p,r) = x
9

(p,r) 

DX6 = X6 

DX7 (t) = X10(t) 

DX
11 

Cr,t) = x
11

(t,r) 

In the following table we use the notation: 

9 :., (P,P' ) j : ., max(t.r') 

1 : ;: min(r,r' } 1 1 .-. - min(r+1,r') 

m . - min(r,t') .- mi. -. - min(r+1,t') 

n :- mln(t,t' ) 

k : ;: min(t.r') 

mll
.-. - min{r.t'+1) 

n":= min(t.t'+1} 
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x 
y 

Z/2 Z/2 

X2 0 Z Z/2 Z/2 r 

X3 0 0 I 0 

X4(r') 1/2r' Z/2 rl::1: Z/4 r=r'::1: Z/4 
rl>1: 2/2eZ/2 sonst: Z/2 1,I/2 

o o 

Z o 

1/2 

Z/2 

Xg(p',tl) 0 Z/p,t ' o o 

I/2eZ/2 

o .. 5 



- 46 -

x Xs{p.r) X6 X7{t) 
Y 

1 0 Z ZeZ/2 t=1: 1/4 

t>1: 1/2.Z/2 

2 Z/pr 0 0 Z/2 

3 0 Z Z/2t Z/2t 

4 0 Z/2 r ' Z/2r I .Z/2 t=1"r'=1: 1/2.Z/2 

t>1J\r'=1: 1/4.Z/2 

t=1I\r'>1: 1/2"Z/4 
t>1"r'>1': 1/2.Z/2eZ/2 

5 Zl g l Z/p,r ' Z/p,r' 0 

6 0 Z,Z ZeZ/2t Z/2t 

7 0 Z Z,Z/2n" Z/2n".Z/2 

8 0 0 Z/2n t=t'=1: 1/4 
sonst: Z/2n.Z/2 

9 Z/gm 0 0 0 

10 0 ZeZ/2r ' Z/2 j + 1.Z/21< Z/2 t .Z/2 

11 0 Z/2 r' t'~t: Z/2 j +1,Z/2k Z/2 n",1/2.1/2 

t'<t: Z/2t '+1.Z/2r' 

o • 6 
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x X9(P,t) 
y 

1 o ZIZ ZIZIZIZ 

Z 

3 Z/pt Z 

4 o ZIZ 1' IZIZ Z/Z 1 
I IZ/Z eZIZ 

5 o 0 o 

6 Z/pt Z 

7 

8 

9 Z/g n 0 0 

10 Z/pt ZeZ/21 , rl~r: ZIZj+1,Z/2k 

r'>r: Z/Zr+1eZ/2t 

11 0 IIZl' eZIZm+1 r'~rAtl~t: ZIZj+1,ZIZk.Z/Zm+1 

r'>rvt'<t: I/Zn"eZIZl'eZIZm+1 

0-7 
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we have also results on the law of composition 

This in particular yields the following list of groups of homotopy 

equivalences: 

X Aut X 

X, Aut 1 = 1/2 

X2 Aut 1 = 1/2 

X3 Aut 1 = 1/2 
X4(r) Aut 1/2 r , 1/2 = 1/2 fUr r::1 

1/2r - 2,1/2,1/2 fUr r~2 

XS(p·r) Aut Z/pr = 1/ ( p - 1 ) It 1/ P r - 1 

X6 Aut Z a Aut 1 = 1/2.1/2 
X7(t) Aut Z/2t+1 e Aut I = 1/2t - 1,1/2.1/2 
Xa(t) Aut Z/2t , 1/2 = 1/2 fUr t:::1 

1/2t - 2aZ/2al/2 fUr t~2 

X9(P.t) Aut Z/pt = II( p - 1 ) all p t -1 

X10(r) Aut Z a Aut 1/2r+1 = 112el/2r - 1,Z/2 

For x; X11 (r,t) we have the short exact sequence 

which is split if . r * t . 'l'be associated action is given by 
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where p : Z/2t+l _~ Z/2min (r ,t)+l and q: Z/2r + 1 _> Z/2min (r ,t) + 1 

are the canonical projections. For r = t we have the commutative diagram 

with exact rows and with exact columns: 

Z/2 >--+ Z/2r+1 ---* Z/2 r 

II 1 I 
Z/2 >---70 Aut X ~ A 

~ / 
Aut(Z/2t +1)aAutCZ/2 r+1) 

Here the extension A is split. 
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