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ON HOMOTOPY CLASSIFICATION

PROBLEMS OF J.H.C. WHITEHEAD

by

Hans Joachim Baues

A principal task of homotopy theory arises from the homotopy classification

problems:

@)) Classify homotopy types of polyhedra X,Y... by computable algebraic
datal!

(2) Compute the set of homotopy classes of maps, [X,Y] , in terms of the

classifying data for X and Y ! Moreover, compute the group of

homotopy equivalences, Aut(X) !

The rich structure of homotopy groups of spheres {Sm,Sn] , however, shows

that the difficulties for a solution of these problems increase rapidly

when, for the spaces involved, the range = (dimension) - (degree of conmectedness)
is growing. Whitehead [21], [22], [23] examined examples of the homotopy
classification of polyhedra in a small range. In particular, he classified

simply connected 4~dimensional homotopy types. Moreover, he classified (n~1)-
connected (n+2)-dimensional polyhedra which he calls A§~polyhedra. The

following related problems ever since remained unsolved though they are just

first steps beyond Whitehead's results:

(3) Compute all homotopy classes of maps between simply comnected 4-~dimen-

sional polyhedra in terms of Whitehead's classifying data!



(4) Compute the groups of homotopy classes of maps between
Arzx - polyhedra, n23 1

(5) Classify homotopy types of all simply connected 5-dimensional
polyhedra and of all Ag - polyhedra, nz23 .

We obtained solutions of these problems which will appear in [3], [4].

This paper (which is an addendum of my lecture in G&ttingen) describes

some of the results. I would like to acknowledge the support of the

' Sonderforschungsbereich 40, Theoretische Mathematik' and of the 'Max-

Planck~Institut fiir Mathematik®', in Bonn.
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§1 The r-groups

Let X be a simply connected CW - complex with basepoint and let SP X

be the infinite symmetric product of X . The canonical inclusion j: X <

SP°X yvields the fiber seguence

(.0 X — > x —3 5 sp%% .

By the result of Dold - Thom [10] we have the natural equation nnSme =
Hn (X) where Hn denctes the singular homology with integral coefficients.

Moreover, 3§ induces the Hurewicz homomorphism h . Therefore we obtain

by (1.1) the natural exact sequence of homotopy groups

(.2) Hn-i-lx —1'5—_') rnx —T-) ﬂnx h > an b > rn—l
n+i * n

where we set pnx=nnrx . In fact, this sequence is the ‘certain exact

sequence' of J.H.C., Whitehead [23] compare the results of Kan in[17].

The connecting homomorphism bm_ X is called the secondary boundary

1 =bn+fi

p . Whi i r 1
operator. Whitehead defines nX by the cell structure of X , namely

s gz n-1 n
{1.3) rnx = J.E(ln*. nnx ——p "nx ) I

gince X is 1 - connected the Hurewlicz theorem shows that TX is 2 -con-
nected. Thus we have r2x=c . The group I'3x was computed by Whitehead

in [23]; he introduces the universal quadratic functor T from abelian

groups to abelian groups and he cobtaines the natural equation

(1.4) 1‘3X = P(Hzx) , compare (III. 1.2) below.

We also use homotopy groups with coefficients in an abelian group A:
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(1.5) Trn(A;X) = [M(A,n),X] , n22,

which are defined by the Moore-space M(A,n) with HnM(A,n) = A .

Here one has to be careful since “n {A;X) is not a contravariant functor
in A . A homomorphism &: A ~—> B between abelian groups induces a

subset
(1.6) E#c Hom(®w (B;X),mw (A;X))
n n
E# ={§* 1Eema,n) ,M(B,0)] , Hn€=£} .

The well known universal coefficient theorem [15] yields the binatural short

exact sequence
u.m Ext (A, 0 . X) >2> 1 (a;X) —b>> Hom(a,n %)
. "Ta+l n’ "'n )

We introduce the I -groups with coefficients:

(1 .8) Pn (A;X) = “n (A;I‘X) , see (}. 1).
Clearly, this group is embeded in the binatural short exact sequence
(1.9) Ext (a,T__ %) >2> T (a;X) —>> Hom(a,T %) .
n+1 n n
Since X is simply connected we derive from (1.4)

{1.10) I'z(a;x) = Ext(a,l’(ﬁzx)) .

All groups I‘n{A;x) , n€% , are abelian, we set I‘n=0 for nst .



201 -6 -

§ 2 The classification of simply connected

4 - dimensional polyhedra by J.H.C. Whitehead

A graded abelian group H= {Hn} is r -connected if H_ =X and H, =0

for i<0 and O<isr . Moreover, H has dimension SN if HN is free

abelian and if H, =0 for i>N . For example the homology Hy (X} of

i
an r -connected N - dimensional polyhedron X is an r -connected N -dimen-

sional graded abelian group and in fact each such group arises this way.

We now £ix a simply connected graded abelian group H of dimension N

and we slightly alter problem (*) above by:

Problem (*%): Classify algebraically the simply connected homotopy types

with homology H .

In this lecture graded abelian groups H and homotopy types {X} al-

ways are simply connected. For dimH=4 problem (¥*) was solved by J.H.C.

Wwhitehead as follows:

(2.1) Theoxem [23]: Let dim H = 4 . Then proper equivalence classes of pairs

(b ) with

+84
b, € Hom(H,T(H,))

34 € Ext(Hs,cok b4}

are 1-1 corresponded to the homotopy types {X} with homology H .

Two pairs (b4,84) and (b&,ﬁ&) are proper equivalent if there exists

an automorphism : H ¥ H of degree O such that

(2.2) T@.)Db, = @b B =B
. Polaby = @by 1+ Wy By = 03k, -
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The correspondence in (2.1) is given by

{2.3) X > (b4x,ﬁ4x) with

1*2
M
1l

secondary boundary in (1.2),
B4X = {n3x} = class of the extension

cok(b4x) S A X ——>> H3X in (1.2).

3

These invariants are given by Whitehead's exact sequence . By natura-
lity of this sequence the correspondence (2.3} between homotopy types and

proper equivalence classes is welldefined , compare also (III. § 1),

A new proof of Whitehead's result was described by Chang in [4], I will
give further proofs in {3], [4] , in fact, Whitehead's result

is the special case n=4 of our general result in section §4 below.

(2.4) Ramark: The result of J.H.C. Whitehead above was generalized in

the literature in various directions. Actually Whitehead first used a
quite complicated 'extended cohomology ring' together with the Pontrjagin
square for the classification, [21]. In his second approach [23] he points
out that the classification by the T -sequence is much simpler. Whitehead
also obtained a solution of problem (%) if H is (n-1) - connected and
{n+2) ~dimensional, this is the classifiaction of the Ai - poly-

hedra, [22], [23]. Next Shiraiwa[19] considers Ai~pélyhedra, that is
the case of problem (k%) where H is (n-1) - connected and (n+3) -dimen-
sional; he restricts to nz 3 . However, his result is not correct as was
pointed out by Chow [9]. A different approach on Ai - polyhedra, nz23 ,
is due to Chang [8], but also his result is not correct. We have the follo~-

wing counterexample for Shiraiwa's result as well as for Chang's result:
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Consider the homology H with Hn==z and Hn+ =%, and Hi=0 other-

2 T2
wise, 1>0 , n>3 ., Then each complex X with homology H has the homo-

2

topy type of a mapping cone cf where

£ € [H(lz,n-l-i),l&(lz,n)] =xzeszz .

This shows that there are atmost 4 such homotopy types, in fact, there are
exactly 4. However, the result of Shiraiwa [19] yields 6 and the result of
Chang [9] yields 5 homotopy types with homology H . Since also Chow [9]
did not clarify the realizability of his invariants the classification

of Aﬁ ~-pelyhedra, n23 , remained open. It can be achieved for nz22 by
our method below, for n=2 this is the classification of 1 - connected 5 -

dimensional polyhedra.

Recently Henn [12] obtained a further solution of problem (*%). He con~-
siders for an odd prime p and for I!.art_:;e~ n (stable range) homology
groups H which are p -local, (n-1) -connected and n+4p-5 - dimensional.
His result is exactly an analoque of Whitehead's original result on Aﬁ -
polyhedra, n<23 , since only primaxry (co)lhomology operations are needed.
The classification of Ai ~ polyhedra is made more difficult by the

secondary Adem operation.
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§ 3 The boundary invariants

For an abelian group A and for a simply connected complex X we de-

fine the group Fﬁ_i(A,x) by the push out diagram (see {1.9)):

Ext(A,I'nX) — Ext {A,cok bn )

N V) +1

A push
v ¢

(3.1) T _ &%) ——— T (a;X)

Here p: Tnx ———3 gok bn+1 is the projection for the secondary boundary

b

el Hn+1x — an in the exact sequence (1.2). By naturality of this

sequence also p is natural and therefore diagram (3.1) is binatural in

X and A, see (1.6).

The exact sequence (1.2) yields the short exact sequence of abelian

groups

(3.2) " cok b Sy Tf X ——>» ker b with
n+ n n

1

{nnx} € Ext(ker b ,cok b ) .

{3.3) Theorem: To each 1 - comnected CW -complex there is canonicqlly associated

a sequence of elements 32(34,35_,...) with

B, =B X € To_ (H X:X)
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such that the following properties are satisfied:

(a) Naturality: For a map F: X ——>» Y we have the equation

- # . b .
F*Bm-l = (HnF) Bm—.‘ly in T,_4 (an_‘y) .
(b) u(Bn_l_lX) =bXe€ Ham(an, T, %)
(e) {n X} = e (8, %)

where <: ker(bnx) c HnX denotes the inclusion.

Bn+1Y

The equations in (a) and (b) also show that the subsets (HnF)#
and i# Bn+1x consist of a single element, see (1.6). By (b) and by

exactness in the column of (3.1) equation (¢) is welldefined, For n=3 we

have
b
(3.4) BX = {m,X} € I (H,X;X) = Ext(#,X,cok bX) ,
compare {(2.3).

(3.5) Remark: The boundary invariant 5n+1x depends only on the (n+1) - skeleton
of X or at the n~th section of a homology decomposition of X , see[15].
The homology decomposition was introduced by Eckmann and Hilton as a dual
of the Postnikov decomposition. The homology decomposition, however,
turned out to have a major disadvantage, namely it failed to be natural
while the Postnikov. deccmpoaition‘ is natural. In particular, the homotopy
type of the n -th section of a homology decomposition is not an invariant
of the homotopy type of X , see [5]. Therefore also the k' ~invariants
{= attaching maps of the homology decomposition) do not have the desired

property of naturality. The boundary invariants in the theorem above can
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(4.3)
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be thought of as being the 'natural part' of the k' ~invariants. The proof
of the theorem relies on the 'principal reduction' of a 1 - connected

complex as described in [1] and on a study of 'twisted maps' , see

{31, [4].

§ 4 The classification of simply connected

N -dimensional polyhedra

Let H be a simply connected graded@ abelian group of dimension N. Then
there is a space X which realizes the homclogy H , we can take the one
point union of Moore spaces:

N
x =\ M@ ) .

n=2

On the other hand we get:

Theorem: Let X be a 1-comnected N - dimensional polyhedron with homology
H . Then X has the homotopy type of a one point wunion of Moore spaces
as in (4.1) if and only if all boundary invariants ﬁn(X) are trivial,

n22 .

One obtains a c¢lagsification of all simply connected homotopy types

with homology H by the following kind of a system of operators:

Definition: A [ - system associated to H is given by operators Fn and

I _4@) , 2sn<N, which are defined on the set D . This set consists

of sequences

n
(b,8) = (bA'B'&""'bn'an) with
(1)
n-1
{b,B) - ‘b‘:'%"""’navﬂm—z’E“‘m .
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in addition we set bi=° and aiﬂc for i=2,3 s0 that D2 and D3

contain only the sequence (0,...,0) . The operator I'n associates with
(b,B)"€D_ the abelian growp T =T (b,B)" and the operator T _, (a)

assoclates with an abelian group A and with (b,ﬁ)nG Dn an abelian
group .rn—l (A) = I'n__1 {n) {b,B)n together with a short exact sequence

) =t (,r, (0,8)") >E5 T (a) (b,)" —>» mom(a,r__ 6,87 .

For n=2 we have I‘2=0 and I‘1 {A) =0 and for n=3 we have
{3) I'3'=I‘(Hz) and I'Z(A) = mt(A.F(HZ)) v

compare (1.4) and {1.10). The domain Dn , nz23 , is defined inductively
n+l

by the T - system, that is: (b,B) GDn +1 if and only if the following
condition are satisfied:
r
(b,3)" € D .
n
bn+1 € Hom(Hn-!—l'Pn(b’ﬁ) ) r
(4) A

n
Byg € To_y () (5,8) :

Lusnﬂ = bn v

Here the group I‘i_l (A} is defined by the push out diagram

Ext(A,I'n) ——————3 Ext {3, cok bn )

% +1
A push
}Z‘n_1 () ——— et B
\‘\
\\\ u
W
8
Hom (A, I‘n‘_1 )

which is given by the exact sequence in (2) and by bn+l in {4). We de-

note by p: I‘n=I'n(b,B)n e 00k bn-l- the quotient map, compare (3.1).

1
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(4.4) Theorem: Lot H be a 1-connected graded abelian group of dimension N.
Then there existas a T —system of operators associated to H such that

proper equivalence classes of sequences
(b4,B4, e -.’bNJBN) E DN

are 1 -1 corresponded to the simply conneected homotopy types with homo—
logy H.

Clearly, by (3) and (4) in (4.3) we know D4 . Therefore the theorem
with N=4 is exactly the result of J.H.C. Whitehead in (2.1). The theorem

raises two highly non trivial problems:

Problem {¥#*%): (a) Compute a [ ~system as in (4.4).

(b) Compute the relation of proper equivalence on ‘D& .

The solution of these problems yields by (4.4) a solution of problem
{(x*). We do not say that we can solve problem {(*%%), in fact, this would
be a never ending task. Still various examples show that theorem (4.4)
leads much further than the results previously obtained in the litera-

ture.

For the proof of (4.4) we use the following results. We show that for
a simply connected complex X the T ~groups I'n(x-) and Pn-l {A;X) in
§2 are essentially determined by the homology H,(X) and by the se-
quences of boundary invariants (b4x,s4x,...,bnx,ﬁnx) . Here we use in-
ductively the 'CW -tower of categories' which is introduced in [3], [4].
Moreover, the (W - tower shows that all boundary invariants bn + and
with the properties in (4) of (4.3) are realizable by an appropriate

Bzwj.
X . Thias, together with conditions on the realizability of homology homo-
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(4.6)
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morphisms, yields the result.

Actually, the result (4.4) above is an abbreviation of our result in

[3], [4] since we describe many properties of a I'-system associated

to H .,

Remark: If the homology H 1is free abelian we have Ext (Hn-i-l'rn) = 0

and therefore the iscmorphism

Wi To_ () THom(n T ) .

n- 1

Thus Bn + is determined by an "= bn in this case. Thexefore we can
omit the boundary invariant ﬁn in this case and a T - gystem associated

to H consists of domains D with

(b ,...,bn) € nn

4

and of operators I‘n defined on Dn with an € Hom(HnH,I‘n) . This

simplifies the computation of the T - system. /

Remark: If Hn is a rational vector space, n>0 , then also I'n is a

rational vector space and in this case bn 1 € Hom (Hn I'n) essentially

+17
is the boundary in the minimal model (L(s-lm ,d) of the Quillen model,

-+

this minimal model was constructed in [2]. This shows that rationally a

T~ system can be computed by using differential Lie algebras. Y,
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§ 5 The classification of simply connected

5 -~ dimensional polyhedra

For dim H = 4 we have the example of J.H.C. Whitehead in § 2. Thus

the next case is dim B =5 .

The domain D, is the set of all pairs (b4,ﬁ4) with

4
b4 € Hom(H4;I‘H2) ’
{5.1)
B, € Ext(H,,cok b,)
We have to compute the operators T4 and P3(A) on D, ; this solves
part {a) of problem {¥%x) for N=5:
Our computation uses the 'natural short exact sequences ( A = abelian
group) :
(5.2) rim L n,m(2,2)) —>> rT@a) .
Here Pg and the T'T are functors from abelian groups to abelian groups.
We call TI'T the T - torsion. We give an explicit description of these
functorxs in (III. 2.1) and (III. 2.3) below. We point out that in (5.2)
the group KA(M(A,Z)) is not a functor in A , see {1.6). The extension
problem for (5.2) is solved.
The group Pg(A) is a natural quotient
(5.3)y rim) = @ ez, ra8R /~ .

Here the eguivalence relation ~ is explicitly described by certain

natural structure of the functor T .
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We now obtain the group

extension

{5.4) cok b4

with 34={n3} . By use of

- 16 -

1‘4(b4,B4) as follows. For 34 we choose an

>———-——-)ﬂ3————'»H3

the composition

i: I‘(Hz) —E cok b4 P e o ny

we obtain the push out diagram

[*5,) ®3, ® I'(H,)

iB%,01i8H, push

P 2 3
eHz —— I‘2H2 b n4(M(H2,2))

e,

B N
ny 8%, & Wy BH, — » T,tbyrBy)

This yields I’4(b4.B4) as

an abelian group. The map p in (5.4) is the

guotient map, see (5.2), and j is the inclusion in (5.2).

Next we-obtain the group P3(A) {b 4 B 4) by the push out

Ext(a,n,M(H,,2)) ——-—-&—;—-—) Ext(A,F4(b4,84))
Y Y
A push A
{ i
(5.6) ny(A;M(H,,2)} ————> T;(B)(b,,B,)
H H
v .

Hom (A, T M(H,,2)) e Hom(A,T(H,)) .

Again the extension problem for the left hand column in (5.6) is solved.
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Thus this diagram determines P3(A) (b4,84) as an abelian group. By {5.5)
and (5.6) the domain DS can be computed, see (4} in (4.3). The
classification of 1 - connected 5 - dimensional polyhedra is complete if
we describe the relation of proper equivalence on D5 ; see {4.4). This
relation, however, is fairly complicated. For simplicity we here consider
only the case that the homology H is free abelian, see (4.5). In this

case we have

(b4,b5) € DS
iff b, € Hom(H4,I'Hz) and bg € Hom(HS,I'4) . For I’4=I‘4(b4) the map
%, 8%, 0,05, —Poa> T,

is surjective since I"I‘(Hz) =0 , see (5.5). Now (b4,b5) is properly
equivalent to (b',hé) if and only if there is an isomorphism ©: H S H
and a map ¢ such that

T@)ab, = oby

474
(5.7)

- *
P4 (‘pl(pz)*bs =q)5b§ »

-

Here P is any map for which the diagram

4 3 3
1 }
}
i - i
I'ipz) iiﬂ ;QPB
\'Z v
cok b4>-—--————> u3~———-——-—>> H3

commtes. Such a map induces a homomorphism T ((3.‘432) by the commutative

diagram
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e 3
n381 en3@32 1‘4

2
PBZ._BpOQ grw@w)
2 2 Py

|

—————— .
“3822 en3832 1’4
The subclass of all simply connected 5 - dimensional Poincare complexes

was recently classified by St&cker [20]. These complexes have invariants

(b4,84,b5) since H3 =0 and thus B3=0 ;, MOYeover H5 =2 .

§6 The example of Uns&ld

My student H.M. Unsdld who is working on his dissertation solved
problem (%¥%) for the following special types of homology groups:
H is free abelian,
{6.1) H is (n-1) - connected and (n+4) - dimensional,

ne6 (stable range) .

In this case Dig consists of sequences (bn+2'bn+3'bn+4) . Dn+4 is
computed explicitly by
Pn+2 = Hn e Z,
I 43t o) =cok(b ) @H , 8®Z, ,
Fn+3(bn+2’bn+3) = cok((i@l)bn+3) ] ker(bm_z) .

Here bn+2: H .o ® z2 —> 8 8 z, is induced by bn+ and the inclu-

n 2

sion i 1is given by the commutative diagram
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+2
2 Yn
i
i i
Hn ] 124 B e o cok(jbn+2)

where J is given by the inclusion zz cZz, 4" Moreover, Unsdld obtained

explicit formulas for proper equivalences in Dn-l- 4" Thus by (4.4) all
simply connected homotopy types with homology H as in {6.1) are classi-

fied.

For example there are exactly 89 simply connected homotopy types
with homology

and Hi=0 otherwise, n26 . Morecover, there are exactly 27 simply

connected homotopy types with

and H i=0 otherwise, na6 , the stable complex projecitve 3 - space

Zn*zﬂ-“?’ is one of these 27 types.
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Part II. An example: The classification of
Ai - polyhedra, nz4 .

3
An ~-polyhedra are (n-1)-connected CW-complexes which are (n+3) - dimen-

sional. For n24 we define below Ag—systems for which we have:

(1) Theorem: Proper isomorphism classes of Aﬁ-systems are 1-1 corresponded to

homotopy types of AS ~polyhedra (nz24).

This result is a special case of (I.4.4) above. We use the following
notation: Let A be an abelian group. The extension

Z/2 >—>» Z/4 —>> X/2 vyields the exact segquence

A¥E/2 > A¥Z/4 > A¥E]2 m AGR/2 —> BR/4 —>> Ag%/2

By Hom(A*X/2,A@%Z/2) = Ext(A*%/2,A@%/2) we choose an extension G{a)

which represents the connecting homomorphism {c(a)} above:
(2) ARZ/2 >--E-> G(A) SN A¥x/2 |

For each @ €Hom(A,B) there is a homomorphism (B such that the follo-

wing diagram commutes:

A®K/2 >~——1-1-——-—> G(a) --——-A—‘——» A¥Z/2

(3) ve1 @ S e 1
W
B®Z/2 >——» G(B) ——p> B¥Z/2

F -
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Moreover, we define G(A) by the commutative diagram

Ext(a,Z/2) >—2 5 &) —Y— 5> Hom(a,z/2)

(4) I i i

* *
Hom(a *%/2,%/4) >2> Hom(G(a),%/4) —to> Hom(r0Z/2,E/4) .

Remark: For the Moore space of A in degree n we have

isomorphisms (n24)

G(B)

]

“n+2M(PL:n) ’

d@) = M@a,n+1) = [M@a,n+1),87] .

)]

Thus these groups are Spanier ~Whitehead duals of each other. Ve

(5) Definition: Consider the diagrams (a) and (b) below. An Ai—system S with
ne4 is a diagram of unbroken arrows as in (a) together with an element
B

n+3 23S in (b); (all arrows are homomorphisms between abelian groups, as

usual >—» and -—>»» Qenote injective and surjective maps respectively).

) v
cok(bn+3) < Hn ®F/2
% o
AN il . X
A Y -
. e  H
\\ & N
. n . 8%/2 v
N +1 push ocut clH )
‘g n
(a) N U ]
AY - -
\ -
b \ & b .
n+3 . n+3 i
n+3 > T @) —> T o> H B 8%/2 T+t B+t
\ v
~
A

exact sequence

*
Hn %/2
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The column is a short exact sequence, Hn+3 is free abelian and i@1 is
given by the homomorphism i in the row of the diagram. By (2) we cobtain
the push out Pn+2(i) and the map A . The map v is the composition
qi{i1 ®1) where g is the guotient map. We use v for the definition of
the following push ocut, see (4):

Ext (H_, , 2/2) @H_ Bet, Gm_,)em Moy, Hom(Hn+2,‘Z/2) oH_

il

Ext(Hn+2,Hn ®Z/2)

push
®) Vi out
v H
Ext{Hn+2,cok bn+3) I (Hn+2,v) — Hom(Hn+2,Hn®Z/2)
W \Y
E'n+3 — P2

B is induced by H@1 and we have u3n+3=bn+2 , see {(a). The rows of the

diagram are exact.

For a map Y: A —>H , let ¥: 6(a) ——> G(H_,,) be a map as in

{3) and let
() . (B —sT? @
YT AL ntt BV

be the map between push outs, see (5)(b), induced by x.l;* ®H ®Ext W, cok bn+3)

with ﬁ;f=ﬁom(ﬁ;,z/4) . see (4).

. . L =% _ % -
For the inclusion j=y: kerb ., <H , weget uj B  ,=jub

*

3 bn 2 = O . Therefore the element

RS £
(7) {“n+2} = A ) ﬂn+3 € Ext(ker bn+2,cok bn+ )

3
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(9)
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is welldefined. An extension T2 7 which represents this element, fits
into the row of (5)(a) such that this row is an exact sequence, Since

-l ok -
A 1'J' is surjective on | 1(b } we see that each exact row as in (a)

n+2

is obtained via (7) by an appropriate 3n +3
Next we define proper maps.

Definition: Let § and S' be Ai-s'ystems as in (5). A proper map
@: § ——> 8' 1is a tuple of homomorphisms
(pi: Hi —— H; , i=n,n+l,n+2,n+3 ,

(a) p=3¢:T —> !

n ntl n+t ’
LDP: Tn+2(i) ——— I‘n+2(i )

such that ¢ is compatible with all unbroken arrows in (5) {a) and such

that
—k
®) (m("(pn)*mn‘!ﬁ) = “’n+z“3§x+3)
b ~% ) )
in rn+1(Hn+2’V') - Here @ .. is defined as in (6) and ((Dr.tpn}* is

induced on the push out (5) (b) by Ext(ﬁn+2,tpr) @ G(Hn+2) 80 where

» 4 » s
Lpr. cok bn+2 —— oK bn-i» is welldefined by $p 7

2

A proper isomorphism is a proper map ¢ for which all v, and thus

also ‘0“ and (pr are isomorphisms. We are now ready to formulate the

following theorem for n24 .

Theorem: Let ned .

(A) Each Ag~palyhedmn X 1induces an Az—&ystem S5=5(X) such that

the row in (5)(a) i8 the certain exact sequence of J.H.C. Whitehead,
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B,z t8 the 'boundary invariant of X ' , see (1.3.3).

(B) Fach map F: X —>» X' between Ai-polyhedm induces a proper

map Fy: S(X) —> S(X') .

(C) Each Ai-system S 18 realizable, that ig, for S there exists

an Ai —-polyhedron X such that S = SX are properly isomorphic,

(D) Each proper map ®: S(X) ——> S(X') 18 realizable by a continous

map X —> X' .

Theorem (1) is an easy corollary of this result and of (14). Actually

3

Ai-systems and proper maps form a category and S is a functor, S: An
———r Ai-—systems , “here Ag denotes the full homotopy category of

Ai-polyhedra) .



- 25 -

Part TIXI. The classification of maps between 1-connected

4~dimensional polyhedra

Whitehead [23] and also Steenrod, in his review of Whitehead's paper
{21], point out the problem of determing the homotopy classes of maps
between i~connected 4-dimensional polyhedra. We here describe a solution
of this problem. In particular, we compute the 4-th homotopy group
WA(X) and the group of homotopy equivalences E(X) of an arbitrary
simply connected 4-dimensional polyhedron X . The computation of ,

solves a problem of P.J. Hilton in [13]. As an example we compute the

group E(X) for a simply connected 4~dimensional manifold.

§ 1 The realizability of homology homophisms for

1-connected 4~dimensional polyhedra

We consider the following part of Whitehead's certain exact

sequence in (I. 1.2)

.1 H 5> F4 > T, > H, ~EZ> T3 —> T, ~?;> H3 —> 0,

which is a functor on simply connected polyhedra. For the group

P3 we have the natural equation

s

* . = =
(1.2) n o T(HZX) F3X T3

where I 1is the universal quadratic functor.

(1.3) Definition of I : Amap f: A-—> B between abelian groups is
quadratic 4f f(a)=f(-a) and if £f(a+b) -~ fla) ~ £(b) is bilinear,
a,b€A . There I8 a universal quadratic map

Y : A—>TA
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such that for each quadratic map £ ‘there is a unique homomorphism £: TA
~——3» B between abelian groups with - fy=f -. This defines the functor T

on abelian groups. We define the'Whitehead product’

[,1: 282 ——> 2 '

[a,b] = Y(atb) -Y(a) -7v(b) . P

It is easy to compute the abelian group I'A by the following formulas

X/2n , n even ,

(1.4) T'(%/n) ={
Z/m , n odd ,

riaes) = (ra) @ (IB) @ (A ®B) .

The- isomorphism in (1.2) is induced by the Hopf map n: 83 —— 52 which

induces the quadratic map

*
(1.5) N : Hzx”“z}f — I'3X .

——

This yields n* by the universal property. We also will use the homomor-
phisnms

(1.6)
T: A —> A@A 1

which are induced by the quadratic maps al—>a®1 and al—>a®a respect-

ively. via (1.3) the map ¢ is the suspension homomorphism. For Whitehead

products we get

ola,b]

]

O ’
{1.7)

Tfa,b] = 2a@®b + bRa .

By naturality of (1.1) and (1.2} the secondary boundary b4: Hy —> I'Hz

is a primary homology opearation. The Pontrjagin square can be deduced from

b

, 2and from {na} € Ext(H,,cok b,) . Moreover, we have the following natural

commutative diagram
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H2 @Bz
~ 7 »
7N ,
T
{1.8) H, 5 > I’(Hz)
4
o
qu v
Hz® %/2

Here A 1is the reduced diagonal and qu is the integral Steenrod square.
If H, is free abelian and finitely generated then b, is determined by

* x
the cup product in H =H (X,X).

Whitehead determined the groups ny vwhich possibly appear as a third

homotopy group by the following result.
{1.9) Theorem (J.H.C. Whitehead [23]): Each exact sequence
By ——>THy ——> Ty —> H; —> 0,

where H, <8 free abelian, is realizable by a 1 - eonnected ¢ ~dimen—
stonal space X . For two such spaces X and X' a homology homomor—
phiem @: HX=H —> H X' =H' <48 realizable if and only if there is

a commutative diagram

Hé.——b—é—&mz——-—%——)n&, >H3 > 0
t
0, re, : yﬂg
v
Hé"'ﬁ;"’mé”“i’g”"“é >Hé > 0

This result implies the classification of 1-connected 4-dimensional

polyhedra in (I. 2.1).
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By (1.9) we know exactly the image H,[X,X'] of the homology functor
{(1.10) H, : [X,X'] — Hom(H X,H.X') .

In § 3 below we compute the fibres of this map in terms of the classi-

fying data (b4,{w3}) for X and X' respectively.

§ 2 The homotopy groups LA and P4 and the

realizability of Whitehead's exact sequence

in dimension 5

In this section we determine the groups LA which possibly appear as
a fourth homotopy group of a simply connected space with prescribed ﬁomo—
logy. We first compute the group P4 in (1.1); this group clearly has much
more structure than the group T3 in (1.2). We show that P4 depends
only on the homology HxX , on the secondary boundary b, € Hom(H4,P32)

and on the extension class {n3} € Ext(H,,cok b,) .

For the computation of P4 we have to introduce two new functors I'T
and Pi which carry abelian groups to abelian groups and which are derived

from Whitehead's functor ' in (1.3).

{(2.1) pefinition: Iet A be an abelian group. Then the T - torsion TT(a) is

defined as follows. Choose a short exact sequence

Q —>C d>D

v
o
v
(o]

where C and D are free abelian. Then we get the sequence

5 9
C®C —> TC ® C8D —2—>TD —>> T2 ,

9, = ([1,1],-184d) with 1 = identity on C ,

3, = (T(a) , [4,11) with 1 = identity on D .
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We bave cok{Bz) =TaA and 3281 =0 . Now we set

TT(A) = ker 32/im 81 .

It is easy to check that I'T is a welldefined functor in A . The
abelian group TIT(A) can be easily computed by the following formulas

which are similar to (1.4):

Tr(a) = A%xXE /2 , if A is cyclice,
(2.2)
I'r(aeB) = I'T{a) ® I’'T(B) & A xB

Here A *B denotes the torsion product of abelian groups over Z . Next

we define via the natural structure [ , 1] and Y in (1.3) the functor

2

r, .

(2.3) Definition: Let

rgm = (P{a) ® Z/2 ® T(a) BA) /~

be the abelian group given by the relations

1) 0~ [x,y]18z+[2,x]®y+[y,z]®x ,
(ii) 0 ~ (yx) ®x s
(iii) 0~ [x,y]1®1+ (yx) 8y + [y, x]18x ,

for x,y,z €A . Y,

Here (i) corresponds to the Jacobi identity for Whitehead products,
(ii) is forced by the triviality of the Whitehead product [n,il=0 in
n4(52) ;i €n282 denotes a generator., Moreover, (iii) is the Barcus -
Baxrratt formula for [iln,izl where i, and i, are inclusions of 32

2 2

in §"vS" ; in (iii) the element 1 is the generator in X, .

For the Moore space M(A,2) of the abelian group A in dimension 2

we have:
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(2.4) Theorem: There i8 a natural shori exact sequence

T2(4) >—> T M(A,2) —>> TT(A) .

We identify R3M(A,2) = A by (1.2} and HZM(A,2)==A . Then i on
A® Z/2 is given by (Xn)* and i on TA®A is the Whitehead product.
nThis way we obtain the geametric interpretation of the relations as des-

cribed above in {2.3).

As an abelian group, I'gA is easily computable by the formula

(2.5) a=a60%/2 @ K;e z/2) 8 Lia 1), .

{2.86)

This equation is not natural in A . The temm A2 denotes the second ex-
terior power of a ®/2 - vector space and L(A,l)3 is the group of Lie ele~-
ments of degree 3 in the tensoralgebra T(A) where A is concentrated in

degree 1. In fact, L(A,1)3 splits of naturally in {(2.5).

Now let i3: I’(Hz) ~———> T, be the map in (1.1). We obtain the group

I’4 by the push out diagram of abelian groups

P 2 i
H, RE/2 ® I‘H2 QH, —=»> I’2H2 >—-—>n4M(H2,2)

37.3 push push e}

-

2.
m,®%/2 @ T, BH, ~E>> T, (1) >——> T,
with i, =i, @72 ® i, ®H, . Geometrically &, is induced by a map :
M(H2,2) ——> X which induces an isomorphism on H, . The map p is the
quotient map, see (2,3). Diagram (2.6) completes our computation of T 4

for which we thus have the natural short exact sequence
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t
(2.7) (i) >—> I, —t>> Ir(s,)

via the secondary boundary hs in (1.1) we obtain a new primary homo-

logy operation

(2.8) thy: Hy ——> I‘I‘(Hz)
The following diagram commutes
He B - TT(H,)
5
{2.9) sq, G
H, (X,%/2) 5 >> H, *Z/2 .

Here A is the surjection in the universal coefficient theorem and 8q,

is the integral Steenrod square. The map ¢ is given on T(C) ® CO®D in

(2.1) by ¢ on I'(C) and by the trivial map on C®D ; we use Hy *B/2
C CxX/2 .,

We now can describe all realizable sequences in (1.1) which start with

bs . This question of realizability also was asked by J.H.C. Whitehead [23].

(2.10) Theorem: Let H Dle a graded abelian group with Hy free abelian and H;=0
for 1>5 . Then we can choose arbitrary elements
234 € Hom(f14, Piig) » b5 € Hom(b’5, I‘4)

{m;} €Ext(Hg,cok by) {m,} € Ext(ker by, cok bg) ,

where T, is given by (by,{n;}) as in (2.6). These choices yield

exactly the sequencee in (1.1) which are realizable by a 1 - connected

5 - dimeneional polyhedron.
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This result corresponds to (1.9), however, the sequence (1.1) does not
classify l-connected 5 ~ dimensional polyhedra. Thus the direct analogue

of Whitehead's classification in (1.9) is not true in dimension 5.

We still obtain an extension of (1.9) to the 5 - dimensional case by
introducing the boundary invariant, 65 , which replaces the element

{1r4} in {2.10); see (I. § 5).

Remark: P.J. Hilton in [13] computed the homotopy group “n+2 of Ai -

polyhedron for nz3 . Our computation of 7 solves this problem for

4
n= 2

“

§ 3 The classification of maps between

simply connected 4 - dimensional polyhedra

With the notation in section §2 we can state our result on the set of
homotopy classes [X,X'] where X and X' are simply connected 4 -di-
mensional polyhedra. Iet H and H' be the homology of X and X' re-
spectively and assume the homotopy types of X and X' are determined by
exact sequences as in (1.9). Thus we have by (1.10) a good characterization
of the subset H*[x,x'} < Hom{H,H') . For the full computation of the set

[X,X'] we have the following result:

(3.1) Theorem: There is a canonical decomposition of the function H, on [X,X']

as in the following diagram:
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a® (x,1211) .
Gw = D [ %, %]
im (AB) +im d(q:z) >
A
+ l \\\\’
G1 = Ext(Hz,né) b e Mi(x,x')
A
4 +
6, = H(XIT®)) > M, (x,%)
L. .
Gy = Ext(ijker b)) >——> M_(X,X')
Ay
G, = Hom(H,,cok bj) —_— M, (X,X*)
A
14 A 4

P € H*IX,X‘] < Hom{H,H')

3ll functions A are surjective maps. The groups Gi act transitively
and effectively on all fibers of }‘i {i=1,2,3,4). Moreover, the group

G;p acts transitively and effectively on all fibers A"I{f) for which

f €M, (X,X') induces ¢ in H*[X,X'] .

For the definition of q@ recall the definitions of Pg(ii) in (2.6)

and recall that we have the short exact sequence
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(3.2) To(1y) >——> T} —>> T}

see (2.7). This sequence induces the connecting homomorphism B in the

following cammutative diagram:

H 3 .
Hom(H3,I"IHé) <<—— H (X,I"I'Hz)

B 3
2, A 4 2., u 2.,
{3.3) EXt(H;;'rzl;:;) >—> H (X,I‘213) — Hom(H4,I'213)
ate,) d(e,)
2

H(X,n’é) e Hom(Hz,ﬂé)

Here J 1is the Bockstein homomorphism for (3.2) and § and A are defined
by the universal coefficient theorem. Thus we see that in the definition of

G‘p in {3.1) we have im(AB) = im 3 . Next we define d(QJz) by
(3.4) ' = (™ sd@ + [, 1 (aug)
. a@,) (o) = ((Im) )*Sq {x e (ale,

for 0(€H2 (X,n:',') . Hexe qu(a) € H4 (X,Ré@ x/2) is given by the Steenxrod
*

squaring operation and (In) : Tt:',’@ x/2 ————P I‘g (ié) in (3.4) is the re-

striction of the quotient map p in (2.6). Moreover, for ®, €H2 (X,Hé) we

nave aU®, € 34(x,n§ ®n)) ana [, }: myen; —> Fi(ié) in (3.4) is
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the restriction of the quotient map p in (2.6). This completes the defi-
nition of d(ﬁpz) in (3.4). The composition 5((92) =ud(<92) in (3.3) satis-

fies the formula
(3.5) d(0,) (@) = () (a® Z/2)0b, + [, 1(a8®,)A ,

see {1.8), O CEHom (H2 ’ Ré) . Here the compositions are

b

. *
H, —> T, —2> 1, 02/2 L2248 1 ez s 1l
Y U TR (P R
4 2 98 LE R 2%3 -

An important feature of the decomposition of H " in (3.1) is the following

fact:

(3.6) Addendum: For i=1,2,3,4 the composition of maps, © , induces a commutative

diagram

[x',x"] x [%,x'] —> [X,x"]

<]
ui(x',x") b Mi(x,x')-~---> Mi(X,X") .

Therefore the sets Mi(X,X') are morphism sets of a category Mi such that
A and }‘i are guotient functors. Moreover, Gi yields a bifunctor on Mi

such that the following distributivity law is satisfied
(E+at) {(g+B) =f g + g*a + f*B .

f€Mi(X',X") R (x€si(x',x") R gEMi(X,X') and BEGi(X,X') . The same for-
mula holds for f£€[x',x"], ae%(x',x") , g€[x,x'] and Becw(x,x')

where H,f =9 , B g=Y . This shows that all functors A,Xl,...,l4

of the decomposition are 'linear extensions of categories', see [3].
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§ 4 The group of homotopy equivalences of a simply

connected 4 - dimensional polyhedron

et X be a simply connected 4 - dimensional polyhedron and let E(X)
be the group of homotopy equivalences of X . Thus E(X) consists of all
f€[X,x] which induce an isomorphism in homology. Composition of such

maps yilelds the group structure in E(X).

(4.1) Theorem: The homomorphism H_ : E(X) ——> Aut(H,X) has the following cano—

nical decomposition where @w=1id <8 the tdentity of HX .

H4(X,I'§iB) o+
G = > —> E(X)
?  im(AB) + im d(@)
A
1t B, (X)
c;1 = Ext(Hz,u3) D e |
\1
3\1 :
4 1t ‘
Gy = H (X,I’T(Hz)) S EZIX)
H*
Ay
1'!-
Gy = Ext(HB,ker by) >——> E;(X)
A, |
+ i

1 /
Gy = Hom(Ha,cok b4) B e 2 E4(x) /

A,

¥
Aut (H) NH_[X,X]



(5.1)
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Here A and Rl,...,RQ are surjective homomorphisms of groups with an
abelian kernel. The kernel of A, is 1'(G,) and the kernel of A is
1+(q¢) . Here each homomorphism 1Y ois injective and is defined by 1+{a) =
1 +a where we use the action in (3.1) and where 1 denotes the identity
of X . This result is actually an easy consequence of (3.1) and of (3.6).
By the distributivity law in (3.6) we see that 1t isa homomorphism of

groups since we have

¥ ottt @) = (t+ayo(1 +p)

]

ol + l*a + 1*8

1+ {(a+8)

il

L}

1Y (o +8)

~ ..t
Clearly, 1* s injective by (3.1) and also kernel Xi = kilﬁl) = im{1') by
(3.1). We have an algebraic characterization of all group extensions in (4.1)

up to the group E(X . The extension problem for A is not solved.

§5 Symmetric bilinear forms and spaces

. Symmetric bilinear forms appear naturally in topology as the intersection
forms of manifolds, see for example [16]. We here are interested in the
homotopy theory of 1 - connected 4 - dimensional manifolds; in fact, the

homotopy type of such a manifold is determined by its interxsection form.

Definition: Let V be a finitely generated free abelian group. A symmetric

bilinear form (V,u) is a map U: V8V ——> X which is bilinear and
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which is symmetric, vuw = wUv . A map £: (V,u) —> (W,U} 18 a pair

(£: V—>W , £ : & —> % ) of homomorphisms which satisfies fo(vu‘v) =

(fv)u(fw) . These maps form a category which we denote by SBF . We say that

if £ =1 . An orientation preserving auto-
o

£ is orientation preserving

morphism in SBF is called an isometry. Let »Aut (v,u) be the group of

equivalences in SBF . y,

(5.2) Remark: Iet v*=Han(v,z) . The symmetric bilinear forms u on V are

elements in v*@v* = Hom(V®V,Z) , in fact, these elements are exactly

those in the image of

Ts I‘(V*) RS v*@v* y

%
see (1.6), Here T is injective since V 1is free abelian. Thus we can

identify the symmetric bilinear forms uv on V with the element
- *
b=b, =17 ‘v € I(v¥)

which we call the boundary element associated to wu .

/4

The following homotopy category of spaces is highly related to the cate-

gory SBF of symmetric bilinear forms.
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(5.3) pefinition: Let SBF-4paces be the full category consisting of simply

connected CW -~ spaces X with cohamology groups

H4 (X,X) =% .
Hz(x,x) = free abelian and finitely generated,
'I-\I‘i(X,Z) =0 otherwise

/4

The cup product U: H2XH2 —> H*=2 of an SBF ~ space is a symmetric

bilinear form, the intersection form. Moreover, the secondary boundary in

Whitehead's exact sequence (1.1):

b4: H4 =% ————> I‘(H2) I

with Hn=Hom(Hn,x) , is given by the boundary element
(5.4) b(1) =b =1 () , see (5.2).

Now cohomology yields the contravariant functor

*
(5.5) SBF - spaces ——> SBF

which by Whitehead's theorem (1.9) has the following properties:

(5.6) Theorem : FEach symmetric bilinear form (V,U) <is realizable by an
SBF ~ space X , that is -(H*X,U) = (V,U) . Moreover, for
SBF - spaces X,Y each map : (H*Y, v) ——> (H*X, U) in SBF 1is reali-

zable by amap F: X —> ¥ with H'F=o¢ .

We derive from this result that the equivalence classes of objects in

SBF are 1-1 corresponded to the homotopy types of SBF ~ spaces. We write

5.7) X = M(V,u)
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if X is an SBF -space which realizes the symmetric bilinear form (V,u) .

By (5.6} the homotopy type of M(V,u) is welldefined.

(5.8) Remark: It is easy to see that each simply connected 4 -dimensional closed
topological manifold has the weak homotopy type of an SBF - space. By Freed-
man's result Cor. 1.6 inl[11} we do not know whether such a manifold is
triangulable. On the other hand differentiable manifolds are well known to
be triangulable. Since our results in this section are available for all

SBF - spaces we do not restrict to manifolds. Y

We want to compute the set of all maps between SBF —spaces which induce
the same cohomology hoxﬁomorphism ¢ . For this we need the abelian group
G{p) which we define below in terms of the following natural structure

of the T -functor, see § 1:

A

4 . AR
Y T
\}PA /
/ﬁy \UL
A®A

AQX/2 .

{5.9) Definition: Let : (V,u) —> (W,u) be a map in SBF and let
0% W —— v*
be the dual of ¢ . Then we set
clp) = (rvh) ez/2 e T(v*) 0v") /U

where the subgroup U is generated by the following elements (where 1€ZX/2

is a generator):



- 41 -

(i) {x,y18z + [z,x]®y + [y,z]8x ,
(ii) < 8 x .
(iii) [x,vy]®1 + (yx)®y + [v,x]18x .
{iv) bv ®1 .
(v) bv 8y ’
(vi) (@81, )0k + (@®¢")Th, ,

where x,y,zEV* and O(EHom(W*,I'(V*)) . The elements vaI‘(V*) and bw

€ TW¥) are the boundary elements in (5.2).//

For each symmetric bilinear form (V,U} we define the abelian group
(5.9)°' 6{(v,U) = G{1) where 1 =identity of (V,U) .

This is an BAut(V,U)} -~module induced by the functor I’(V*) RZ/2 ® rv) ev*

in Vv . From (3.1) and {4.1) we easily derive the following results:

(5.10) Theorem: Let Y=M(V,U) and X=M(W,U) be SBF-spaces. Then the cohomology

yields the surjective function
H*: [X,Y] ——> Hom((V,U), (W,U)) .

For «@: (V,U) ——> (W,U) the growp G(p) acts transitively and effect-

tvely on the fiber (r*)~2 (@) .
In addition, H* in (5.5) is a linear extension of categories, see (3.6).

(5.11) Theorem: For the group of homotopy equivalences E(Y) of the SBF -space

Y=M(V,U) we have the short exact sequence

G(V,U) >——> E(Y) ——>>» Aut(V,U)
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the associated module of which is the one in (5.9).
Thus E(X) represents the cancnical element
(5.12) {2(x)} € B (aut(v,0),c(v,0)) ,
which, however, is not known.

The intersection form of a 1 -connected 4 - dimensional clogsed manifold

is always unimodular. We therefore consider the following example of (5.12):

(5.13) Corollary: Let V be a free Z-module of dimension n and let U: VXV
—> Z be an unimodular symmetric bilinear form which is realized by

Y=M(V,U) . Then we get the short exact sequence of groups
(2/2)™% > E(¥) —>> aut(v,0)

where 8§ =-1 <if the form U 1e odd and where & =0- if the form U

i8 even.

Proof: For an unimodular form (V,U) one shows

ctv,u) = @2)™*

by the definition in (5.9). Now the corollary is a consequence of (S.ll).n

(5.14) Remark: By the result of Freedman[11] we know that each unimodular sym-
metric bilinear form is realizable by a 1 - connected 4 —dimensional topolo-
gical manifold. Thus the corollary is available for the weak homotopy types

of all such manifolds, see (5.8). Y
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Part 1IVv. The computation of maps between Chang's

elementary Ai - polyhedra, nz23 .

It is a well known fact that each Aﬁ ~ polyhedron {(of finite type) is
homotopy eguivalent to the one point union of appropriate elementary
Ai - polyhedra, see [6], [14], [15]. Let n : s™1 —>s" be the

Hopf element, let p be an 0dd prime and let r,t be natural numbers
21 . Then all elementary Ai ~ polyhedra are given by the following

11 types:

Xy = N
Xo = gh+1
X3 = gh+2
Xz(r) = SM uyr ah+1
X5(p,r) := 0 upr o+ 1
Xg .= gh Uy eN+2

X7 (t) c= (sPysh+ly u?+2t eh+2

2
(e o]
o~
ot
S
n

xg(p’r) ‘e Sn+1 upr en+2

b
—
<

—
1
p
L]

sh “(2',7) (e“*’ve“*z)

b3
i
i
-
‘1
-
ot
St
fl

(S"vS"*‘) u(zr‘?*zt) (e“+1ve"+2)
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Using the formalism in [3] and [4] my student T. Schmidt [18] worked out

the table below which describes the abelian groups [xi'xj} where xi and

+2(xj)’ nn+1(xj)

were also obtained by Hilton [14]. Moreover, the groups [Xi'xj] were

xj are elementary Ai - polyhedra. The homotopy groups nn

computed by Brown-Copeland [5] in case X, and xj are Moore spaces,

that is 1,3j€ {4,5,9,10} . The more difficult parts of the table seem to

be new results. We point out that we have Spanier Whitehead duality

[xi.xj] = [px ,Dxi]

3

vwhere DD = identity and where

DX1 = X3

DX2 = 32

Dx4(r) = xa(r)
st(p,r) = Xglp,r)

DX6 = XG

Dx7£t} = X . {t)

10
Dxiltr,t) = xli(t.r)

In the following table we use the notation:

g := {p,p') j = max(t,r') k := min(t,r'}
1 := min{r,r') 1':= min{r+t,r')

m = min{r,t') m':= min(r+t1,t') m":= min{r,t'+1)
n o= min{t,t') n":=x min(t,t'+1)
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X | Xy Xo X3 Xg(r)
Y
Xy i 1/2 7/2 Z/2
X2 0 z z/2 z/2"
X3 0 0 z 0
Xa(r') z/2"  Z/2  r'=1: 1/4 rert=1: 1/4

r'>{: 2/2eZ/2 sonst: 2/2Ye2/2

xs(p'.r') | z/p'tt 0 0 0
Xg z 0 z 0
X7(t") 7 z/2t'+1 1/2 1/2""
Xg(t') 0 z/2%' 7/2 z/2"
Xg(p',t') 0 z/p't 0 0
Xyg(r®) z/2" 0 Z82/2 z/21
Xgqrt,tr) | a2t gzttt z/2e2/2 z/2lez/2™"
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X5(p.,r)  Xg X7(t) Xg(t)

Y

1 0 yi ZoZ/2 t=1: Z/4

t>1: Z/2e2/2

2 Z/p’ 0 0 z/2

3 0 y A 7/2t 7/2%

4 0 z/2"" z/2" ' ez/2 t=1ar'=1: Z/26Z/2
t>1avi=1: Z/402/2
t=1ar'>t: Z/20Z/4
t>1ari>1: Z/2eZ/20Z/2

5 z/g!  z/p'T’ z/p'"’ 0

6 0 ZoZ Zez/2% z/2t

7 0 7 Ze2/2" Z/2""s2/2

8 0 0 z/20 t=t'=1: Z/4

sonst: Z/2%ez/2

9 7/ 0 0 0

10 0 Zez/2"' z/21+ g2/ 2K z/2te2/2

11 0 z727" vyt z723t1ez/2K 7/2""e2/201/2

tret: 272t vlezy27!
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Xg(p,t) Xq0(r) Xqq(r,t)

0 2/2 Z/2e1/2

0 z/zl"-i"l Z/ZY‘+1
z/pt y 4 2/2%

0 2/21'02/2 z/21'02/202/2
0 0 0
z/pt y 4 2/2t

0 z/2M+ 2/2"" o2/2™*1
0 z/2m Z/2Mez/2™'
z/g" 0 0

z/pt 20z/21"' rigr: 7/23tlez/2k

rise; z/2T+lez/2t

0 272V ez/2™ 1 rrgratiat: 7/23t1ez/2kez/2MH1
risevtict: /20" ez/21 02721
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We have also results on the law of composition

{xi,xj} x ixj,xkl — [xi,}g(}

This in particular yields the following list of groups of homotopy

equivalences:
X Aut X
X, Aut Z = Z/2
X2 Aut Z = Z/2
X3 Aut Z = Z/2
Xg(r) Aut 2/27 e Z/2 = 2/2 fiir r=1

Z/27-29Z/201/2 fiir r»2
z/(p-1)ez/p"-1

1]

Xs(p,r) | Aut z/p"

Xg Aut Z & Aut Z = 1/2e1/2
X7(t) Aut 27241 o Aut Z = 2/2%-1ez/202/2
Xg(t) aut 2/2% o 2/2 = 2/2 fir t=1

2/2%-292/202/2 fir t22
z/(p-1)ez/pt-1
z/202/2 " 1e2/2

Xg(p.t) | Aut z/pt
Xqp(r) Aut Z e Aut Z/27*1

#

For X = xli(r’t) we have the short exact sequence

z/2Mn(r t)+t o 5 Aut X —» Aut(Z/28t1)eAut(z/27+1)

which is split if .r+t . The associated action is given by
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aut @725 1) @ aut @/25 Yy — Aut @ 2R (Fe) L

-1
(Fn+2 'Fn) > P*Fn+2q*Fn

. _ 1
where p : x/20 5 g PR ERL g gm0 s g ERY

are the canonical projections. For r = t we have the commutative diagram

with exact rows and with exact columns:

Z/2 > Z/2TFY 5 7727

1]

Z/2 > Aut X —>» A

N/

Aut(Z/2%*VyeAut(z/27Y)

Here the extension A is split.
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