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MASUR-VEECH VOLUMES AND INTERSECTION THEORY:

THE PRINCIPAL STRATA OF QUADRATIC DIFFERENTIALS

DAWEI CHEN, MARTIN MÖLLER, AND ADRIEN SAUVAGET

WITH AN APPENDIX BY GAËTAN BOROT, ALESSANDRO GIACCHETTO,

AND DANILO LEWAŃSKI

Abstract. We describe a conjectural formula via intersection numbers for
the Masur-Veech volumes of strata of quadratic differentials with prescribed

zero orders, and we prove the formula for the case when the zero orders are

odd. For the principal strata of quadratic differentials with simple zeros, the
formula reduces to compute the top Segre class of the quadratic Hodge bundle,

which can be further simplified to certain linear Hodge integrals. An appendix

proves that the intersection of this class with ψ-classes can be computed by
Eynard-Orantin topological recursion.

As applications, we analyze numerical properties of Masur-Veech volumes,

area Siegel-Veech constants and sums of Lyapunov exponents of the prin-
cipal strata for fixed genus and varying number of zeros, which settles the

corresponding conjectures due to Grivaux-Hubert, Fougeron, and elaborated
in [the7]. We also describe conjectural formulas for area Siegel-Veech constants

and sums of Lyapunov exponents for arbitrary affine invariant submanifolds,

and verify them for the principal strata.
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1. Introduction

Computing volumes of moduli spaces via intersection theory has significance in
many aspects. For example, the Weil-Petersson volumes of the moduli spaces of
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marked Riemann surfaces can be calculated by intersection numbers on the Deligne-
Mumford compactification Mg,n, which motivated Mirzakhani to give a proof of
Witten’s conjecture by hyperbolic geometry [Mir07]. A more recent instance is
the intersection-theoretic formula for the Masur-Veech volumes of moduli spaces of
Abelian differentials with prescribed orders of zeros, which can be used to determine
the large genus asymptotics of the Masur-Veech volumes [CMSZ19].

The moduli spaces of Abelian differentials carry a natural GL+
2 (R)-action in-

duced by varying the translation surface representations of Abelian differentials.
The orbit closures of this action are called affine invariant submanifolds, since they
have locally linear structures [EM18; EMM15]. Besides the ambient moduli spaces,
affine invariant submanifolds can provide interesting (and more challenging) play-
grounds for us to detect relevant geometric invariants, such as volumes and intersec-
tion numbers. A prominent type of affine invariant submanifolds arises from moduli
spaces of (primitive) quadratic differentials (also called half-translation surfaces),
which can be lifted into the corresponding moduli spaces of Abelian differentials
via the canonical double cover. In this paper we focus on the moduli spaces of
quadratic differentials.

Masur-Veech volumes. Let (µ, ν) be an integer partition of 4g − 4, where µ =
(2mi)

r
i=1 are the even parts and ν = (2nj−1)sj=1 are the odd parts, with mi, nj ≥ 0.

Consider the moduli space (also called the stratum) Qg,r+s(µ, ν) parameterizing
quadratic differentials q on Riemann surfaces of genus g such that q has r even
order zeros of type µ and s odd order zeros of type ν. Note that q is allowed to
have simple poles, i.e., when some nj = 0, which are regarded as “zeros of order −1”
because in this case the surface still has finite area under the metric of q. Similarly
q is allowed to have ordinary marked points, i.e., when some mi = 0, which are
regarded as “zeros of order 0”. Moreover, in our setting all zeros are labeled (as in
[CMSZ19], but contrary to [DGZZ19] where only the simple poles are labeled).

Let PQg,r+s(µ, ν) = Qg,r+s(µ, ν)/C∗ be the projectivized stratum parameter-

izing quadratic differentials of type (µ, ν) up to scaling. Denote by PQg,r+s(µ, ν)
its closure in the incidence variety compactification (IVC) of the strata of qua-
dratic differentials [BCGGM19]. Let ζ be the first Chern class of the universal line
bundle O(1) on PQg,r+s(µ, ν). Denote by ψi the cotangent line bundle class on

Mg,n associated with the i-th marked point as well as its pullbacks to the strata

PQg,r+s(µ, ν). We first describe a conjectural formula to compute the Masur-Veech
volumes of all strata Qg,r+s(µ, ν) via intersection theory (see Section 2.1 for our
convention on volume normalization).

Conjecture 1.1. The Masur-Veech volumes of strata of quadratic differentials can
be obtained as the intersection numbers

vol(Qg,r+s(µ, ν)) =
2r−s+3(2πi)2g−2+s

(2g − 3 + r + s)!

∫
PQg,r+s(µ,ν)

ζ2g+s−3ψ1 · · ·ψr , (1)

where ψ1, . . . , ψr are associated with the r even order zeros.

Note that for the strata of quadratic differentials, the number r of even order
zeros is equal to the dimension of the relative period foliation. Hence from the
viewpoint of period coordinates, when there is no relative period, i.e., when r = 0,
the volume formula of the strata of quadratic differentials behaves similarly to that
of the minimal strata H(2g − 2) of Abelian differentials [Sau18]. We can thus
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prove the above conjectural formula for this special case using a good metric on the
tautological line bundle O(−1) [CMZ19].

Theorem 1.2. For the strata of quadratic differentials with odd zeros only, we have

vol(Qg,s(ν)) =
23−s(2πi)2g−2+s

(2g − 3 + s)!

∫
PQg,s(ν)

ζ2g+s−3 . (2)

We remark that we have also verified the conjectural formula for a number of
low genus strata that have relative periods, i.e. when r 6= 0, by ad hoc calculations.
However, to prove the formula in full generality, one either needs a good metric on
the ψ-bundles or a volume recursion out of merging zeros, which we plan to study
in future work.

Theorem 1.2 is particularly useful for the principal strata of quadratic differ-
entials with only simple zeros (and simple poles). Let Qg,n be the quadratic

Hodge bundle over Mg,n whose fiber over a stable pointed curve (X, p1, . . . , pn)

is H0(ω⊗2
X (p1 + · · · + pn)) ∼= C3g−3+n, where ωX is the dualizing line bundle of

X. The interior space Qg,n over Mg,n parameterizes quadratic differentials with

at worst simple poles at the marked points. Hence Qg,n provides an alternate
compactification (smaller than the IVC in [BCGGM19]) for the principal stratum
Qg,n(14g−4+n,−1n) (here the 4g − 4 + n simple zeros are not labeled as they can
merge to form higher order zeros in the quadratic Hodge bundle). In this case the
top self-intersection of the ζ-class corresponds to the top Segre class s(Qg,n) of the

quadratic Hodge bundle Qg,n. Characteristic classes of the (Abelian) Hodge bundle
and its variants including the k-th Hodge bundle were computed in [Mum83; Chi08]
by the Grothendieck-Riemann-Roch formula. Combining their results with inter-
section calculations onMg,n, Formula (2) can then be evaluated more explicitly in
terms of linear Hodge integrals as follows.

Theorem 1.3. The Masur-Veech volumes of the principal strata of quadratic dif-
ferentials can be obtained as the intersection numbers

vol(Qg,4g−4+2n(14g−4+n,−1n))

=
22g+1π6g−6+2n

(6g − 7 + 2n)!

g∑
i=0

(4g − 4 + n)!

(2g − 3 + n+ i)!

∫
Mg,2g−3+2n+i

ψ2
n+1 · · ·ψ2

2g−3+2n+iλg−i

=
22g+1π6g−6+2n

(6g − 7 + 2n)!

g∑
i=0

(4g − 4 + n)!(4g − 7 + 2n+ i)!!

(2g − 3 + i)!(4g − 7 + i)!!

∫
Mg,2g−3+i

ψ2
1 · · ·ψ2

2g−3+iλg−i ,

(3)
where λi is the i-th Chern class of the (Abelian) Hodge bundle on Mg,k.

In addition, the Appendix shows that the intersection of this Segre class with
ψ-classes ∫

Mg,n

s(Qg,n)

n∏
i=1

ψkii (ki ≥ 0) (4)

can be computed by the Eynard-Orantin topological recursion for the spectral curve{
x(z) = −z − ln z
y(z) = z2 ω0,2(z1, z2) =

dz1dz2

(z1 − z2)2
. (5)

In particular, the volumes of the principal strata can be recovered from the ki =
0 term. In [the7] another set of numbers Fg,n(k1, . . . , kn) was constructed and
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computed by the topological recursion, which can also be expressed via intersection
theory on Mg,n such that the ki = 0 case recovers the volumes of the principal
strata. Rather surprisingly though, in [the7] the spectral curve is very different
from (5) and these Fg,n are not a priori related to (4) except for ki = 0, where it
gives a different expression of vol(Qg,4g−4+2n(14g−4+n,−1n)) as the top intersection

of a class on Mg,n.
Theorem 1.3 can be used to analyze numerical properties of the Masur-Veech

volumes of the principal strata with fixed genus and varying number of zeros.

Theorem 1.4 ([the7, Conjecture 5.4 and (5.12)]). For all g ≥ 1 and for n ≥ 0
(except for g = 1 and n ≤ 1 where the strata are empty), there exist two rational
polynomials pg(n) and qg(n) of degree b(g− 1)/2c and bg/2c respectively, such that

vol(Qg,4g−4+2n(14g−4+n,−1n))

π6g−6+2n

= 2n
(2g − 3 + n)!(4g − 4 + n)!

(6g − 7 + 2n)!

(
pg(n) + γ2g−3+nqg(n)

)
,

(6)

where γk = 1
4k

(
2k
k

)
.

Moreover for fixed g and n→∞, we have the asymptotic growth rates

vol(Qg,4g−4+2n(14g−4+n,−1n)) ∼ 2−nπ6g−6+2n+ε(g)/2mgn
g/2 , (7)

where ε(g) = 0 or 1 is the parity of g and where 26g−7mg is the top coefficient of
qg if g is even or the top coefficient of pg if g is odd.

For the case of tori, the above results can be described more explicitly as follows.

Corollary 1.5. For g = 1 and n ≥ 2, we have

vol(Q1,2n(1n,−1n)) = π2n n!

3(2n− 1)!

(
(2n− 3)!! + (2n− 2)!!

)
. (8)

We remark that the coefficient mg in Theorem 1.4 is a rescaling of the inter-
section number

∫
Mg,3g−3

ψ2
1 . . . ψ

2
3g−3 and can be computed efficiently (see the end

of Section 3.3 for references on this topic). In addition to the large n asymptotic,
in [DGZZ19] the large g asymptotic of vol(Qg,n) was described conjecturally, and
the conjecture was further extended and refined in [YZZ19].

Lyapunov exponents and Siegel-Veech constants. We now switch gears to
discuss applications of our results in surface dynamics. Consider the straight line
flow on a torus with a half-translation structure induced by a quadratic differential
with ` simple zeros and ` simple poles. Closing up a random trajectory as it comes
within the (1/n)-ball of its starting point defines a collection of cycles {γn}n∈N.
The logarithm of the size of γn in any norm on the cohomology of the torus tends
to λ1 times the logarithm of the flat length of γn, where λ1 is a quantity that does
not depend on the starting point and the direction of the trajectory, as long as
they are generic. This is a consequence of Oseledets theorem and λ1 is the (first)
Lyapunov exponent of the straight line flow (see e.g. [Zor02; Zor06] for more details
about Lyapunov exponents).

Near each of the simple poles, the trajectory makes a U -turn. Pulling the tra-
jectory tight as a cohomology class should cause drastic shortcuts, and hence the
growth rate of the cohomology classes γn is expected to decrease with the number
of poles `. This conjecture was first announced by Grivaux and Hubert. In the
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case of half-translation surfaces in the stratum Q(`,−1`) with a zero of order ` and
` simple poles, Fougeron [Fou18] found an upper bound for λ1 in the order of 1/`.
His method works in any sequence of strata where the largest order of zeros is un-
bounded. In the case of simple zeros, Fougeron conjectured a decay in the order
of 1/

√
`. A refined version of these conjectures for the principal strata of quadratic

differentials appeared in [the7] in terms of area Siegel-Veech constants carea, which
can determine the sums of (involution-invariant) Lyapunov exponents L+, and vice
versa by [EKZ14, Theorem 2]. These conjectures were stated as conditional corol-
laries in [the7] assuming the numerical results in our Theorem 1.4. Here we prove
them unconditionally based on the following formulas that express carea and L+ as
intersection numbers.

Theorem 1.6. For the principal strata of quadratic differentials, we have

carea(14g−4+n,−1n) = − 1

2π2

∫
PQg,n

ζ6g−8+2nδ∫
PQg,n

ζ6g−7+2n
, (9)

where δ is the total boundary divisor class, and

L+(14g−4+n,−1n) = −2

∫
PQg,n

ζ6g−8+2nλ1∫
PQg,n

ζ6g−7+2n
. (10)

Corollary 1.7 ([the7, Corollary 5.5 and (5.12)]). For all g ≥ 1 and n ≥ 0 (except
for g = 1 and n ≤ 1 where the strata are empty), there exist two rational polynomials
p∗g(n) and q∗g(n) of degree b(g + 3)/2c and 1 + bg/2c respectively, such that

carea(14g−4+n,−1n) =
1

π2

p∗g(n)

2g−3+n + γ2g−3+nq
∗
g(n)

pg(n) + γ2g−3+nqg(n)
, (11)

where pg and qg are the polynomials in Theorem 1.4.
Moreover, there exist two rational polynomials rg(n) and sg(n) of degree bg/2c

and b(g + 1)/2c respectively, such that

L+(14g−4+n,−1n) =
1

2g − 3 + n

rg(n) + γ2g−3+nsg(n)

pg(n) + γ2g−3+nqg(n)

∼ π1/2−ε(g)ng/mg√
n

(12)

as n → ∞, where mg is defined in Theorem 1.4 and 26g−7ng is the top coefficient
of rg if g is even or the top coefficient of sg if g is odd.

Again for the case of tori, the above results can be described more explicitly.

Corollary 1.8. For g = 1 and n ≥ 2, we have

carea(1n,−1n) =
1

π2

(
n

6
+

6

1 + (2n−2)!!
(2n−3)!!

)
(13)

and

L+(1n,−1n) =
2

1 + (2n−2)!!
(2n−3)!!

. (14)

Motivated by Conjecture 1.1 and Theorem 1.6, we come up with an analogous
conjecture for carea and L+ for all strata of quadratic differentials.
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Conjecture 1.9. The Siegel-Veech constants and Lyapunov exponents for the strata
Qg(µ, ν) with µ = (2mi)

r
i=1 and ν = (2nj − 1)sj=1 are given by

carea(µ, ν) = − 1

2π2

∫
PQg(µ,ν)

ζ2g+s−4ψ1 · · ·ψrδ∫
PQg(µ,ν)

ζ2g+s−3ψ1 · · ·ψr
,

L+(µ, ν) = −2

∫
PQg(µ,ν)

ζ2g+s−4ψ1 · · ·ψrλ1∫
PQg(µ,ν)

ζ2g+s−3ψ1 · · ·ψr
,

where ψ1, . . . , ψr are associated with the r even order zeros.

We remark that Kontsevich speculated an implicit intersection formula to com-
pute sums of Lyapunov exponents for strata of Abelian differentials [Kon97, Sec-
tion 7], and such a formula was justified explicitly in our previous work [CMSZ19].

Motivated by the above results, at the end of the paper we make a general con-
jecture to compute area Siegel-Veech constants and sums of Lyapunov exponents
as intersection numbers for an arbitrary affine invariant submanifold (see Conjec-
ture 4.3), and we summarize known cases as evidences of the conjecture.

Related works. We briefly review several related works about the Masur-Veech
volumes of strata of quadratic differentials. A standard method to compute vol-
umes is to determine the quasimodular forms that arise from pillowcase covers
and compute their large degree asymptotics (which follows from the initial idea
of counting torus covers for Abelian differentials in [EO01]). This was used in
[Gou16] to obtain explicit values of volumes for a number of low dimensional strata
of quadratic differentials. Another approach is to decompose half-translation sur-
faces into ribbon graphs and sum up the corresponding local contributions. This
was first carried out for all strata in genus zero in [AEZ16] and then extended to
the principal strata for all genus in [DGZZ19]. These local contributions of ribbon
graphs are indeed intersection numbers of ψ-classes onMg,n that come from Kont-
sevich’s proof of Witten’s conjecture [Kon92]. Moreover, in [the7] the same sum of
local contributions was shown to arise as constant terms of a family of polynomials
that are determined by topological recursion, whose approach relies on statistics
of hyperbolic curves. Our method is different from all of these works, as we use a
good metric on the compactified strata and simplify the intersection calculation for
the principal strata by the Grothendieck-Riemann-Roch formula and linear Hodge
integrals.

Organization of the paper. In Section 2 we show that when there is no relative
period, the Hermitian metric induced by the area form gives the Masur-Veech vol-
ume form up to an explicit scaling factor, thus proving Theorem 1.2. In Section 3
we reduce the volume formula for the principal strata to certain linear Hodge in-
tegrals and analyze its numerical properties for fixed genus and varying number
of zeros, proving Theorem 1.3, Theorem 1.4 and Corollary 1.5. In Section 4 we
apply our results to area Siegel-Veech constants and sums of Lyapunov exponents
of the principal strata, proving Theorem 1.6, Corollary 1.7 and Corollary 1.8. The
Appendix establishes a topological recursion for (4) and shows how to compute the
volumes of the principal strata from it.
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2. Masur-Veech volumes as intersection numbers

In this section we prove the expression of Masur-Veech volumes as intersection
numbers in Theorem 1.2 for the strata of quadratic differentials with no even order
zeros. The argument is largely parallel to the proof of [Sau18, Proposition 1.3]. This
section also serves the purpose of introducing period coordinates and explaining the
volume normalization convention we use.

We first set up some general notation. We write N = r+ s for the total number
of marked zeros. Half-translation surfaces parameterized in Qg,N (µ, ν) are usually

denoted by (X, q). For a surface (X, q) ∈ Qg,N (µ, ν), let π : X̂ → X be the canonical
double cover such that π∗q = ω2 is the square of an Abelian differential (see e.g.

[EKZ14, Section 2.2]). We simply denote by Ĥ the space of lifts of Qg,N (µ, ν)
via the double cover, with all preimages of the singularities of q being labeled.
This locus is an affine invariant submanifold of the stratum ΩMĝ,N̂ (µ̂) of Abelian

differentials, where ĝ = 2g − 1 + s/2, N̂ = 2r + s, and µ̂ = ((mi,mi)
r
i=1, (nj)

s
j=1).

Note that the squaring map Ĥ → Qg,N (µ, ν) is finite of degree 2r+1, which is due to
labeling the r pairs of preimages of the even order zeros as well as choosing the sign

of ω. Therefore, the induced map PĤ → PQg,N (µ, ν) on the projectivized spaces
has degree 2r, since ±ω correspond to the same point in the projectivization. In

particular, PĤ → PQg,N (µ, ν) is an isomorphism for the case r = 0 (though PĤ
carries an order-2 stacky structure due to the involution of the double cover).

2.1. The Masur-Veech volume form. The Masur-Veech volume form is defined
on Qg,N (µ, ν) using period coordinates and gives a finite measure on the hyper-
boloid Q1

g,N (µ, ν) of half-translation surfaces of area 1/2, i.e. the double cover

surface (X̂, ω) has area one. This volume form is obtained by desintegration of the
Lebesgue measure with respect to the area coordinate. The volume of Q1

g,N (µ, ν)

can be computed by integration of a volume form on PQg,N (µ, ν) as we describe
below.

We start with the flat area form on the double cover

h(ω) := AreaX̂(ω) =
i

2

∫
X̂

ω ∧ ω̄ =
i

2

ĝ∑
i=1

(zAi
z̄Bi
− zBi

z̄Ai
) ,

where (Ai, Bi)
ĝ
i=1 form a symplectic basis of H1(X̂,Z) and (zAi , zBi)

ĝ
i=1 are the

ω-periods of this basis. Let τ be the involution on X̂ whose quotient map is π.

Let Ẑ ⊂ X̂ be the set of preimages of singularities of q. Both Ĥ and Qg,N (µ, ν)

can be locally modeled on the τ -anti-invariant relative cohomology H1
−(X̂, Ẑ,C).

Any choice of scale of the Lebesgue measure that is invariant under the symplec-
tic group results in an (infinite) measure ν̃MV on Qg,N (µ, ν). For our choice of
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normalization we define

H1
±(X̂, Ẑ,Z) = H1(X̂, Ẑ,Z) ∩H1

±(X̂, Ẑ,R) . (15)

Consequently, H1
−(X̂, Ẑ,Z⊕ iZ) is a lattice in H1

−(X̂, Ẑ,C) and we normalize ν̃MV

so that this lattice has covolume one. We remark that when q has no zero of

even order, the τ -anti-invariant relative cohomology H1
−(X̂, Ẑ, •) can be identified

with the τ -anti-invariant absolute cohomology H1
−(X̂, •), which is the case we will

consider in the next subsection.
With the help of the area normalization and of ν̃MV we define

νMV (U) = ν̃MV (CU ) , (U ⊆ Q1
g,N (µ, ν)) , (16)

where CU = {λ(X, q) : (X, q) ∈ U, λ ∈ [0, 1]} is the cone under U . This measure is
finite by [Mas82; Vee82]. Abusing notation we also denote by νMV the pushforward
of this measure on PQg,N (µ, ν). By the squaring map we can view νMV also as a

measure on PĤ. We write

vol(Qg,N (µ, ν)) = dimR(Ĥ) · νMV (PQg,N (µ, ν))

for the Masur-Veech volume of the total space.

2.2. The metric on OPĤ(−1) and comparison of volume forms. In this sec-
tion we consider the special case when all zero orders are odd. The area form h
induces a Hermitian metric (still denoted by h) on OPĤ(−1). For a section σ of
OPĤ(−1), we consider the associated curvature (1, 1)-form

ωh =
1

2πi
∂∂̄ log h(σ) and νh = ω2g−3+s

h

the corresponding volume form on PĤ.

Lemma 2.1. For r = 0, i.e. when there is no zero of even order, the two volume
forms are proportional as follows:

νh = − (2g − 3 + s)!

22g+1(2πi)2g−2+s
dimR(Ĥ) νMV .

Proof. Fix a point (X̂, ω) ∈ Ĥ. An open neighborhood of this point can be written

under the period coordinates as X̂ + v for v ∈ H1
−(X̂,C) small enough. After

shrinking we may assume that this neighborhood is contained in the positive cone

C = {X̂ + v ∈ H1(X̂,C) : h(X̂ + v) > 0} .
It thus suffices to prove the volume form relation on PC. The proof follows the idea
of [Sau18, Lemma 2.1], with an extra twist coming from the fact that the sum of

the two subspaces H1
±(X̂,Z) spans a proper subgroup of finite index in H1(X̂,Z).

First note that since r = 0, s is positive and even, and hence the rank of the
anti-invariant part is greater than or equal to 2g. By [BL04, Corollary 12.1.5] the

symplectic form restricted to H+
1 (X̂,Z) is of type (2, . . . , 2) and the restriction to

H−1 (X̂,Z) is of type (2, . . . , 2, 1, . . . 1) with g entries of 2.

By the Riemann-Hurwitz formula the genus ĝ of X̂ is given by ĝ = 2g− 1 + s/2.
We also set g̃ = g − 1 + s/2 = ĝ − g to simplify formulas later. We define C±i =
A2i−1 ± A2i and D±i = B2i−1 ± B2i for i = 1, . . . , g. For an appropriate order of
the elements in the symplectic basis we have

H−1 (X̂,Z) = 〈C−1 , D
−
1 , . . . , C

−
g , D

−
g , A2g+1, B2g+1, . . . , Aĝ, Bĝ〉Z , (17)
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see also [Gou16, Section 2.1] for a realization of these cycles. We define C−g+i =

A2g+i and D−g+i = B2g+i for 1 ≤ i ≤ g̃ − g, define χj = 1/2 for 1 ≤ j ≤ g and
χj = 1 for g < j ≤ g̃, and denote by zC−j

and zD−j
the corresponding ω-periods of

C−j and D−j . Since ω pairs trivially with the invariant eigenspace H+
1 (X̂,Z), for

1 ≤ j ≤ g we have

zC−j
= 2zA2j−1

= −2zA2j
, zD−j

= 2zB2j−1
= −2zB2j

,

and hence
1

2
(zC−j

z̄D−j
− zD−j z̄C−j ) = (zA2j−1

z̄B2j−1
− zB2j−1

z̄A2j−1
) + (zA2j

z̄B2j
− zB2j

z̄A2j
) .

It follows that

h(ω) =
i

2

g̃∑
j=1

χj(zC−j
z̄D−j

− zD−j z̄C−j ) . (18)

Passing to the coordinate system

zcj =
1

2
(zC−j

− izD−j
) , zdj =

1

2
(zC−j

+ izD−j
)

of H1
−(X̂,C), the Hermitian metric h (of signature (g̃, g̃)) can be written as

h({zcj , zdj}
g̃
j=1) =

g̃∑
j=1

χj(zcj z̄cj − zdj z̄dj ) . (19)

As in the proof of [Sau18, Lemma 2.1], we now proceed by comparing ωh and
νMV to the forms ω′h and ν′MV obtained from the (positive definite) metric h′ with
a plus sign (instead of minus) in (19). Since the ratios are invariant under the group
U(g̃, g̃) ∩ U(2g̃), it suffices to compare νh and νMV on a fundamental domain for
this group inside the cone, i.e. the set (zc1 , zd1 , 0, . . . , 0) in the projectivized cone
PC. By symmetry consideration it suffices to focus on the chart Uc1 = {zc1 = 1}
and use the section σ(zd1 , zc2 , . . .) = (1, zd1 , zc2 , . . .) of OPĤ(−1).

In this chart, we claim that the Masur-Veech volume form is

νMV =
2(2π)i2g̃−1

dimR(Ĥ)h(σ)2g̃

(
dzd1 ∧ dz̄d1 ∧

g̃∏
j=2

(dzcj ∧ dz̄cj ∧ dzdj ∧ dz̄dj )
)
. (20)

To see this, first note that the factor 2π comes from integrating the argument of the
(complex) coordinate zc1 with fixed norm. Next, the volume of a cone over a base

parameterizing surfaces of area h is hdimC(Ĥ) times the volume of the corresponding
cone over the base parameterizing surfaces of area one, thus explaining the factor
h(σ)2g̃. Moreover, one checks that

dzcj ∧ dz̄cj ∧ dzdj ∧ dz̄dj = −dxC−j ∧ dyC−j ∧ dxD−j ∧ dyD−j ,

where x and y denote the real and imaginary parts, thus giving a factor (−1)ĝ−1 =
i2ĝ−2 for j = 2, . . . , ĝ. An extra factor of i similarly comes from the conversion
of dzd1 ∧ dz̄d1 when setting zc1 = 1. Finally the extra factor 2 is due to the fact

that the hyperplane defined by zc1 = 1 has distance
√

2 to the origin while the
hyperplane defined by zC−1

= 1 has distance 1 to the origin, hence the cone over the

former has volume equal to 2 times that of the latter, because the circle perimeter
of radius |zc1 | = 1 is also multiplied by

√
2 compared to that of radius |zC−1 | = 1.
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On the other hand, at the point σ = (1, zd1 , 0, . . . , 0) we have

ωh =
1

2πi

(∑g̃
j=2 χj(dzcj ∧ dz̄cj − dzdj ∧ dz̄dj )

h(σ)
− χ2

1 dzd1 ∧ dz̄d1
h(σ)2

)
and hence

νh =
(−1)g̃(2g̃ − 1)!

(2πi)2g̃−1h(σ)2g̃

(
χ2

1dzd1 ∧ dz̄d1 ∧
g̃∏
j=2

(χ2
jdzcj ∧ dz̄cj ∧ dzdj ∧ dz̄dj )

)

=
(−1)g̃(2g̃ − 1)!

22g(2πi)2g̃−1h(σ)2g̃

(
dzd1 ∧ dz̄d1 ∧

g̃∏
j=2

(dzcj ∧ dz̄cj ∧ dzdj ∧ dz̄dj )
)
,

where we used the definition of χj in the last step. Comparing the above expressions
of νMV and νh thus implies the desired identity. �

Proof of Theorem 1.2. First note that by [CMZ19] the metric h on OPĤ(−1) is
good in the sense of Mumford [Mum77], and thus ωh represents the first Chern
class of OPĤ(−1) (after extending to the boundary). Moreover note that ζ = 2ξ =

c1(OPĤ(2)), which follows from the relation q = ω2 on the double cover. Finally

taking into account the order-2 stacky structure of PĤ by the involution of the
double cover, we conclude that∫

PQg,s(ν)

ζ2g−3+s = 22g−2+s

∫
PĤ

ξ2g−3+s

= 22g−2+s (−1)2g−3+s νh(PĤ)

=
(2g − 3 + s)!

23−s(2πi)2g−2+s
vol(Qg,s(ν)) ,

where we used Lemma 2.1 and the fact that s is even in the last step. This thus
implies the desired formula. �

3. Masur-Veech volumes of the principal strata

In this section we evaluate the expression given in Theorem 1.2 for the principal
strata, and prove Theorem 1.3, Theorem 1.4 and Corollary 1.5 accordingly. For
simplicity we abbreviate the (fully labeled) principal stratum of quadratic differen-
tials with 4g−4+n simple zeros and n simple poles as Qg,N = Qg,N (14g−4+n,−1n),
where N = 4g − 4 + 2n. Note the difference between Qg,N and Qg,n, as the latter
is the quadratic Hodge bundle over Mg,n with only the n simple poles labeled. In
particular, their volumes differ by a factor (4g − 4 + n)! due to the labeling of the
4g − 4 + n simple zeros.

3.1. The Segre class of Qg,n. Recall that for a projective bundle p : PE → M
associated to a vector bundle E of rank r, the p-pushforwards of c1(OPE(1))k are
the Segre classes sk−r+1 of E .

Here we consider the quadratic Hodge bundle Qg,n (extended over the Deligne-

Mumford compactification) given by Qg,n = f∗(ωf (
∑n
i=1 σi)), where f : X →Mg,n

is the universal curve, ωf is the relative dualizing line bundle, and σ1, . . . , σn are

the sections of the n marked points. We denote by PQg,n the associated projective

bundle. Since the rank of Qg,n is 3g − 3 + n which equals dimMg,n, the top self-
intersection number of the O(1)-class ζ in Equation (2) in this case thus corresponds
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to the degree of the top Segre class s3g−3+n(Qg,n), hence we can use it to compute
the volumes of the principal strata.

Proposition 3.1. For the principal strata we have

vol(Qg,N ) =
22g+1(πi)6g−6+2n(4g − 4 + n)!

(6g − 7 + 2n)!

∫
Mg,n

s3g−3+n(Qg,n) .

Proof. The claim follows from Theorem 1.2 for the special case ν = (14g−4+n,−1n)
and s = N = 4g − 4 + 2n, with an additional factor (4g − 4 + n)! multiplied to the
right-hand side, because in Equation (2) all zeros are labeled while for the quadratic
Hodge bundle Qg,n over Mg,n we do not label the 4g − 4 + n simple zeros. �

In order to evaluate the degree of s3g−3+n(Qg,n), we first compute the total

Segre class of Qg,n. The beginning step is a standard calculation originally due to
[Mum83] for the (Abelian) Hodge bundle and extended more generally in [Chi08],
which we will further simplify.

Recall the definition of the Bernoulli polynomials Bn(x) by the expansion

tetx

et − 1
=
∑
n≥0

Bn(x)

n!
tn .

They satisfy the properties that Bn(x) = (−1)nBn(1− x) and that

Bn(x+ y) =

n∑
m=0

(
n

m

)
Bm(x)yn−m .

We also denote by κd = f∗(c1(ωf (
∑n
i=1 σi))

d+1) for the κ-classes on Mg,n.

Lemma 3.2 ([Chi08, Theorem 1.1.1] for the case s = 2, r = 1 and mi = 1). The
Chern character of the quadratic Hodge bundle Qg,n is given by

ch(Qg,n) = 3g − 3 + n+
∑
d≥1

(
Bd+1(2)

(d+ 1)!
κd −

n∑
i=1

Bd+1(1)

(d+ 1)!
ψdi

+
1

2

Bd+1(1)

(d+ 1)!

∑
i+j=d−1

iirr ∗(−ψ1)iψj2

+
1

2

Bd+1(1)

(d+ 1)!

g∑
h=0

∑
S⊆[[1,n]]

∑
i+j=d−1

ih,S∗(−ψ1)iψj2

)
,

where the sum is constrained to |S| ≥ 2 if h = 0 and to |S| ≤ n − 2 if h = g.
In particular, iirr : Mg−1,n+2 → ∆irr has degree 2 and the other ih,S : Mh,S ×
Mg−h,Sc → ∆h,S are repeated twice in the sum (hence explaining the factor 1/2).

Recall that for a vector bundle E , the total Segre class is given in terms of the
coefficients of the Chern character by

s(E; t) = c(E; t)−1 = exp
(∑
s≥1

(−1)s(s− 1)! chs(E)ts
)
, (21)

where t is the grading parameter. Hence in principle one can plug Lemma 3.2 in
the above to compute the Segre classes of Qg,n. In order to further simplify the
expression obtained this way, we introduce the notation κ(d) = π∗(ψ

2
n+1 . . . ψ

2
n+d),

where π is the mapMg,n+d →Mg,n induced by forgetting the last d marked points.
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Lemma 3.3. The total Segre class of Qg,n can be expressed as

s(Qg,n) =
(
1− λ1 + · · ·+ (−1)gλg

) (
1−

κ(1)

1!
+
κ(2)

2!
−
κ(3)

3!
+ · · ·

)
.

In particular, the top Segre class of Qg,n is equal to

s3g−3+n(Qg,n) = (−1)3g−3+n

g∑
i=0

κ(2g−3+n+i)λg−i

(2g − 3 + n+ i)!
.

Proof. Denote by Eg,n the (Abelian) Hodge bundle over Mg,n. Comparing the

expression of ch(Qg,n) in Lemma 3.2 with that of ch(Eg,n) in [Chi08, Equation (1)],
we conclude that

ch(Qg,n) = ch(Eg,n)− 1 +
∑
d≥0

(Bd+1(2)−Bd+1(1)

(d+ 1)!
κd

)
= ch(Eg,n)− 1 +

∑
d≥0

1

d!
κd .

(22)

To further simplify this expression we recall some κ-class computation from
[Pix13, Section 2]. For any permutation σ ∈ Sm with cycle decomposition σ =
σ1 · · ·σ` and integers α1, . . . , αm, we define κασ =

∏
j κ|σj | where |σj | =

∑
i∈σj

αi is

the sum of αi corresponding to the cycle. Then there is the pushforward formula

π∗(ψ
α1+1
n+1 . . . ψαm+1

n+m ) =
︷ ︸︸ ︷
κα1
· · ·καm

:=
∑
σ∈Sm

κασ

(see [Pix13, Section 2.3]). In particular, in this notation κ(j) =
︷ ︸︸ ︷
κ1 · · ·κ1 with j

factors. On the other hand, we define the linear map{∑
i

cit
i
}
κ

=
∑
i

ciκit
i

on power series. Then [Pix13, Lemma 2.3] shows that

exp(−{log(1−X)}κ) =
︷ ︸︸ ︷
exp({X}κ) (23)

for any X ∈ Q[t]. Combining (21) with (22) thus implies that

s(Qg,n) = s(Eg,n) exp
(∑
d≥1

(−1)d

d
κd

)
= c(E∗g,n) exp

(
− κ1 +

κ2

2
− κ3

3
+ · · ·

)
=

(
1− λ1 + λ2 − · · ·+ (−1)gλg

) (
1−

κ(1)

1!
+
κ(2)

2!
−
κ(3)

3!
+ · · ·

)
,

where we used (23) for X(t) = −t and the fact that s(Eg,n) = c(Eg,n)−1 = c(E∗g,n)
(see [Mum83, Equation (5.4)]).

The expression of s3g−3+n(Qg,n) follows from taking the terms of codimension
3g − 3 + n in the expansion of the above product. �
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3.2. Linear Hodge integrals. In this section we use the previous results to prove
Theorem 1.3. To simplify notation, for n ≥ 0 and 0 ≤ i ≤ g we define the following
linear Hodge integrals

κ(g, i)n :=

∫
Mg,n

κ(2g−3+n+i)λg−i (24)

=

∫
Mg,2g−3+2n+i

ψ2
n+1 · · ·ψ2

2g−3+2n+iλg−i ,

where the second equality follows from the definition of κ(d) and the projection
formula. For n = 0 we also denote κ(g, i)0 = κ(g, i), i.e.

κ(g, i) :=

∫
Mg,2g−3+i

ψ2
1 · · ·ψ2

2g−3+iλg−i . (25)

We show that κ(g, i)n can be expressed in terms of κ(g, i).

Lemma 3.4. For all g, i and n we have

κ(g, i)n = κ(g, i)
(2g − 3 + n+ i)!

(2g − 3 + i)!

(4g − 7 + 2n+ i)!!

(4g − 7 + i)!!
.

Proof. The proof relies on the string and dilation equations [Wit91, (2.41) and
(2.45)]. We choose a triple (g, i, n) such that n > 0 and denote by d = 2g−3+n+i.
Then we have

κ(g, i)n =

∫
Mg,n+d

ψ2
n+1 . . . ψ

2
n+dλg−i (26)

=

d∑
j=1

∫
Mg,n−1+d

ψ2
n . . . ψn−1+j . . . ψ

2
n+d−1λg−i

= d

∫
Mg,n−1+d

ψ2
n . . . ψ

2
n+d−2ψn+d−1λg−i

= d(2g − 4 + d+ n)

∫
Mg,n−2+d

ψ2
n . . . ψ

2
n+d−2λg−i

= d(2d− i− 1)κ(g, i)n−1 ,

where from the first line to the second we used the string equation applied to
the first marked point and from the third line to the fourth we used the dilation
equation for the last marked point. The claim thus follows by induction on n. �

Proof of Theorem 1.3. Proposition 3.1 and Lemma 3.3 imply that

vol(Qg,N ) =
22g+1(πi)6g−6+2n(4g − 4 + n)!

(6g − 7 + 2n)!
(−1)3g−3+n

g∑
i=0

κ(g, i)n
(2g − 3 + n+ i)!

,

which after simplification gives the first equality in (3). The second equality in (3)
thus follows from Lemma 3.4. �

3.3. Volumes of the principal strata for fixed g and varying n. In this
section we consider numerical properties of vol(Qg,N ) when g is fixed and n varies
(i.e. N = 4g − 4 + 2n varies), especially as n tends to infinity.
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Proof of Theorem 1.4, Equation (6). We renormalize the volume to be

v(g, n) =
vol(Qg,N )

2nπ6g−6+2n

(6g − 7 + 2n)!

(2g − 3 + n)!(4g − 4 + n)!
. (27)

Then Theorem 1.3 implies that

22−4gv(g, n) =
1

(4g − 6 + 2n)!!

g∑
i=0

κ(g, i)

(2g − 3 + i)!

(4g − 7 + 2n+ i)!!

(4g − 7 + i)!!
.

Denote by

κ(g, i)′ =
κ(g, i)

(2g − 3 + i)!(4g − 7 + i)!!

which is independent of n. Setting ag,n = 4g − 6 + 2n below, we conclude that

22−4gv(g, n) =

g∑
i=0

κ(g, i)′
(ag,n + i− 1)!!

ag,n!!

=

b(g−1)/2c∑
i=0

κ(g, 2i+ 1)′
(ag,n + 2i)!!

ag,n!!
+

bg/2c∑
i=0

κ(g, 2i)′
(ag,n − 1 + 2i)!!

ag,n!!

=

b(g−1)/2c∑
i=0

κ(g, 2i+ 1)′
(ag,n + 2i)!!

ag,n!!
+ γ2g−3+n

bg/2c∑
i=0

κ(g, 2i)′
(ag,n − 1 + 2i)!!

(ag,n − 1)!!
,

where in the last step we used γk = 1
4k

(
2k
k

)
. Therefore, we obtain that

pg(n) = 24g−2

b(g−1)/2c∑
i=0

κ(g, 2i+ 1)′
(4g − 6 + 2n+ 2i)!!

(4g − 6 + 2n)!!

and

qg(n) = 24g−2

bg/2c∑
i=0

κ(g, 2i)′
(4g − 7 + 2n+ 2i)!!

(4g − 7 + 2n)!!

as the polynomials whose existence we claimed to exist.
Note that the leading coefficients of pg and qg are given by

∫
Mg,3g−3

ψ2
1 · · ·ψ2

3g−3

and
∫
Mg,3g−4

ψ2
1 · · ·ψ2

3g−4λ1. It is well-known that the divisor class λ1 is nef and

effective and that the divisor classes ψi are nef (see e.g. [HM98, Chapter 6, D]).
Bigness of ψi also holds, since the top self-intersection of ψi on Mg,n is positive
(see [FP00, Equation (28)]). Then the non-vanishing of the lead terms of pg and qg
follows from Lemma 3.5 below. �

Lemma 3.5. Suppose D1, . . . , Dn are divisor classes in an n-dimensional projective
variety X such that D1 is nef and effective and such that D2, . . . , Dn are big and
nef. Then the intersection number

∫
X
D1 · · ·Dn is positive.

Proof. Since Dn is big, we can write Dn = An +En, where An is ample and En is
effective. Then

∫
X
D1 · · ·Dn−1En ≥ 0, because a nef divisor class is a limit of ample

divisor classes. Hence it suffices to show that
∫
X
D1 · · ·Dn−1An > 0. Repeating the

argument inductively, it eventually reduces to showing that
∫
X
D1A2 · · ·An > 0,

where the Ai are all ample, and this holds since D1 is effective. �
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We can extract the leading term of the volume from the above expression. Recall
that 26g−7mg is the top coefficient of qg if g is even or the top coefficient of pg if g
is odd, and that ε(g) = 0 or 1 determined by the parity of g.

Proof of Theorem 1.4, Equation (7). Note that γk ∼ (πk)−1/2 as k →∞. Then as
n → ∞, the dominant term of the two in the sum v(g, n) = pg(n) + γ2g−3+nqg(n)
is γ2g−3+nqg(n) when g is even and is pg(n) when g is odd. Hence the leading

term of v(g, n) (as a function of n) is π−1/2n(g−1)/226g−7mg when g is even and is

n(g−1)/226g−7mg when g is odd. Altogether it implies that for large n

v(g, n) ∼ 26g−7π(ε(g)−1)/2mgn
(g−1)/2 . (28)

For the leading term of
(

6g−7+2n
2g−3+n

)
, recall Stirling’s approximation k! ∼

√
2πk(k/e)k.

It implies that for large n(
6g − 7 + 2n

2g − 3 + n

)
∼ 22n+6g−7 1√

πn
.

The claim on vol(Qg,N ) thus follows from (28) and the conversion of vol(Qg,N ) to
v(g, n) in (27). �

From the above proof, we see that the coefficient mg is an explicit rescaling of
the intersection number

∫
Mg,3g−3

ψ2
1 · · ·ψ2

3g−3. The generating series of such inter-

section numbers satisfies the Painlevé equation I, and hence they can be computed
efficiently. We refer to [IZ92, Section 6], [Zvo05, Section 4.2], [LMX16, Section 4],
[DYZ17], and [YZZ19] for related discussions on this topic.

3.4. Volumes of the principal strata in genus one. In this section we prove
Corollary 1.5. By Lemma 3.3 we have∫

M1,n

sn(Q1,n) = (−1)n
∫
M1,n

(
κ(n)

n!
+
λ1κ(n−1)

(n− 1)!

)
.

By the λg-theorem ([FP00]), we can evaluate the Hodge integral∫
M1,n

λ1κ(n−1) =

∫
M1,2n−1

ψ2
n+1 · · ·ψ2

2n−1λ1

=

(
2n− 2

0, . . . , 0, 2, . . . , 2

)
1

24
=

(n− 1)!(2n− 3)!!

24
.

(29)

Moreover, using the string and dilation equations we have∫
M1,n

κ(n) =

∫
M1,2n

ψ2
n+1 · · ·ψ2

2n

= n

∫
M1,2n−1

ψ2
n · · ·ψ2

2n−2ψ2n−1

= n(2n− 2)

∫
M1,2n−2

ψ2
n · · ·ψ2

2n−2 = · · · =
1

24
n!(2n− 2)!! .

It follows that ∫
M1,n

sn(Q1,n) = (−1)n
1

24

(
(2n− 3)!! + (2n− 2)!!

)
. (30)
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By Proposition 3.1 we thus conclude that

vol(Q1,2n(1n,−1n)) =
23(πi)2nn!

(2n− 1)!
sn(Q1,n)

= π2n n!

3(2n− 1)!

(
(2n− 3)!! + (2n− 2)!!

)
,

which proves Equation (8). In particular, it confirms [the7, Conjecture 5.4] for the
case g = 1 with p1(n) = q1(n) = 1/6.

4. Siegel-Veech constants and Lyapunov exponents

In this section we study area Siegel-Veech constants carea and sums of (involution-
invariant) Lyapunov exponents L+ for the principal strata of quadratic differentials.
In particular, we will prove Theorem 1.6, Corollary 1.7, and Corollary 1.8. In addi-
tion, we will give conjectural formulas to compute area Siegel-Veech constants and
sums of Lyapunov exponents as intersection numbers for arbitrary affine invariant
submanifolds.

4.1. carea and L+ as intersection numbers. Recall that Qg,n is the quadratic

Hodge bundle over Mg,n with only n marked points, and δ is the divisor class of

the total boundary of PQg,n. We first prove the formula for carea.

Proof of Theorem 1.6, Equation (9). For simplicity we denote by sg,n the degree

of the top Segre class of Qg,n. Note that the denominator of the right-hand side
of (9) corresponds to sg,n. By [Gou15, Section 4.2, Corollary 1] (see also [the7,
Theorem 4.1]) and Proposition 3.1, the desired formula is equivalent to the following
equality of top Segre classes∫

PQg,n

ζ6g−8+2nδ =
1

2
sg−1,n+2 +

1

2

∑
g1+g2=n
n1+n2=n

n!

n1!n2!
sg1,n1+1sg2,n2+1 , (31)

where the sum ranges over admissible pairs (gi, ni) as constrained in Lemma 3.2.
Since the total boundary of Mg,n is the union of irreducible boundary divisors
whose types correspond to the summands on the right-hand side of (31), the equal-
ity follows from the structure of Qg,n restricted to each of the boundary divisors.

More precisely, consider the morphism iirr : Mg−1,n+2 → ∆irr induced by nor-
malizing a non-separating node r of a pointed stable curve (X, p1, . . . , pn). Let X ′

be the normalization of X at r and denote by r1, r2 the (labeled) preimages of r
in X ′. The fiber of Qg,n over (X, p1, . . . , pn) parameterizes quadratic differentials

q ∈ H0(ω⊗2
X′ (p1 + · · · + pn + 2r1 + 2r2)) such that the 2-residues of q at r1 and

r2 are equal (see [BCGGM19, Section 3.1] for k-residues in general). From this
viewpoint we can regard Qg−1,n+2 as a sub-bundle of i∗irrQg,n whose fiber over

(X ′, p1, . . . , pn, r1, r2) is H0(ω⊗2
X′ (p1 + · · · + pn + r1 + r2)), containing quadratic

differentials with zero 2-residues at r1 and r2. We then have the exact sequence

0→ Qg−1,n+2 → i∗irrQg,n → C→ 0 ,

where the last map to the trivial line bundle is induced by taking the value of the
2-residue at r1. It implies that

sg−1,n+2 =

∫
Mg−1,n+2

s3g−4+n(i∗irrQg,n) = 2

∫
PQg,n

ζ6g−8+2nδirr ,
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where the factor 2 is due to the labeling of r1 and r2, i.e. due to deg iirr = 2. This
explains the term 1

2sg−1,n+2 on the right-hand side of (31).

Similarly consider the morphism ig1,S1 : Mg1,n1 ×Mg2,n2 → ∆g1,S1 induced by
normalizing a separating node r of a pointed stable curve (X, p1, . . . , pn), where X
consists of two components X1 and X2 separated by q, g1 + g2 = g, n1 + n2 = n,
and Xi contains the ni marked points in the subset Si ⊆ {p1, . . . , pn} for i = 1, 2.
Using the same argument as in the previous case, we obtain the exact sequence

0→ Qg1,n1+1 ⊕Qg2,n2+1 → i∗g1,S1
Qg,n → C→ 0 .

It implies that∫
PQg,n

ζ6g−8+2nδg1,S1
=

∫
Mg1,n1×Mg2,n2

s3g−4+n(i∗g1,S1
Qg,n) = sg1,n1+1sg2,n2+1 .

This explains the remaining summation on the right-hand side of (31), where the
factors 1

2 and n!
n1!n2! are due to the ordering of n1, n2 and choosing n1 marked points

out of the total n marked points respectively. �

Next we prove the formula for L+.

Proof of Theorem 1.6, Equation (10). Denote by κg,n = 1
18 (5g − 5 − n). Then

by [EKZ14, Theorem 2, (2.3)] we have the following relation

L+(14g−4+n,−1n) = κg,n +
π2

3
carea(14g−4+n,−1n) . (32)

For a family of nodal curves f : X → B, there is a relation of divisor classes 12λ1−
δ = f∗(c1(ωf )2) (see [Mum83, p. 306]). Combining with (9), the desired formula is
equivalent to the following equality∫

PQg,n

ζ6g−8+2nf∗(c1(ωf )2) = −6κg,n

∫
PQg,n

ζ6g−7+2n , (33)

where f : X → PQg,n is the universal curve.

Let PQg,n(2) be the closure of the locus in PQg,n parameterizing quadratic dif-

ferentials with a double zero. A general differential parameterized in PQg,n(2) has

zero type (2, 14g−6+n,−1n). Let PQg,n(0) be the closure of the locus in PQg,n pa-
rameterizing quadratic differentials that are holomorphic at some marked point pi.
A general differential parameterized in PQg,n(0) has zero type (14g−5+n,−1n−1, 0),
where the entry 0 indicates that pi becomes an ordinary point instead of a simple
pole (still labeled). Denote by B the complement of PQg,n(2) and PQg,n(0). Then
differentials parameterized by B have zero type exactly (14g−4+n,−1n).

Denote by Zi and Pj the i-th zero section and the j-th pole section in the uni-
versal curve X over B respectively, which are pairwise disjoint. Then as in [EKZ14,
Section 3.4] we have the relation of divisor classes

f∗(−ζ) = 2c1(ωf )−
4g−4+n∑
i=1

Zi +

n∑
j=1

Pj .

Intersecting the relation with Zi and Pj respectively and pushing forward by f , we
conclude that f∗(Z

2
i ) = ζ/3 and f∗(P

2
j ) = ζ for all i and j. Intersecting the relation

with c1(ωf ) and pushing forward by f , we obtain that f∗(c1(ωf )2) = −6κg,nζ in

B, which implies that the same relation holds in PQg,n modulo a divisor class
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supported on the union of PQg,n(2) and PQg,n(0). Therefore, it suffices to prove
that

∫
PQg,n(2)

ζ6g−8+2n = 0 and
∫
PQg,n(0)

ζ6g−8+2n = 0.

Note that PQg,n(2) is the closure of PQ(2, 14g−6+n,−1n) whose period coor-
dinates are not all given by absolute periods due to the double zero. Recall in
Section 2 that −ζ corresponds to the curvature form ωh of the good metric on the
tautological bundle O(−1). Then ω6g−8+2n

h = 0 on this stratum, since the exponent
is one bigger than the rank of the subspace of absolute periods (after projectiviza-
tion). It follows that

∫
PQg,n(2)

ζ6g−8+2n = 0. Similarly PQg,n(0) consists of closures

of PQ(14g−5+n,−1n−1, 0) whose period coordinates are not all given by absolute
periods due to the labeled ordinary point (as a zero of order 0). Then the same
argument implies that

∫
PQg,n(0)

ζ6g−8+2n = 0. �

4.2. carea and L+ for fixed g and varying n. In this section we consider numer-
ical properties of carea and L+ for the principal strata when g is fixed and n varies,
especially as n tends to infinity. Since carea and L+ determine each other by the
relation (32), it suffices to evaluate L+.

The denominator in the formula (10) for L+ corresponds to the top Segre class
of Qg,n, which has been computed via linear Hodge integrals of type (24) and (25).
To evaluate the numerator, we define similarly

ϑ(g, i)n :=

∫
Mg,n

κ(2g−4+n+i)λg−iλ1

=

∫
Mg,2g−4+2n+i

ψ2
n+1 · · ·ψ2

2g−4+2n+iλg−iλ1 .

(34)

For n = 0 we also denote ϑ(g, i)0 = ϑ(g, i), i.e.

ϑ(g, i) :=

∫
Mg,2g−4+i

ψ2
1 · · ·ψ2

2g−4+iλg−iλ1 . (35)

We show that ϑ(g, i)n can be expressed in terms of ϑ(g, i).

Lemma 4.1. For all g, i and n we have

ϑ(g, i)n = ϑ(g, i)
(2g − 4 + n+ i)!

(2g − 4 + i)!

(4g − 8 + 2n+ i)!!

(4g − 8 + i)!!
.

Proof. Let d = 2g − 4 + n+ i. For any n > 0, the same method as in the proof of
Lemma 3.4 implies that

ϑ(g, i)n =

∫
Mg,n+d

ψ2
n+1 · · ·ψ2

n+dλg−iλ1

= d(2d− i)ϑ(g, i)n−1 .

Then the claim follows by induction on n. �

Lemma 4.2. The numerator of (10) is equal to∫
Mg,n

s3g−4+n(Qg,n)λ1 = (−1)3g−4+n

g∑
i=0

ϑ(g, i)n
(2g − 4 + n+ i)!

.

Proof. This follows from the expression of the total Segre class s(Qg,n) in Lemma 3.3
and the definition of ϑ(g, i)n in (34). �
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Now we can verify the desired numerical properties of L+ and carea for fixed g
and varying n.

Proof of Corollary 1.7. We renormalize the numerator of (10) to be

u(g, n) =
(−1)3g−4+n24g−2

(4g − 8 + 2n)!!

∫
Mg,n

s3g−4+n(Qg,n)λ1 . (36)

Then Lemma 4.1 and Lemma 4.2 imply that

22−4gu(g, n) =
1

(4g − 8 + 2n)!!

g∑
i=0

ϑ(g, i)n
(2g − 4 + n+ i)!

=
1

(4g − 8 + 2n)!!

g∑
i=0

ϑ(g, i)

(2g − 4 + i)!

(4g − 8 + 2n+ i)!!

(4g − 8 + i)!!
.

Denote by

ϑ(g, i)′ =
ϑ(g, i)

(2g − 4 + i)!(4g − 8 + i)!!

which is independent of n. Setting bg,n = 4g − 8 + 2n below, we conclude that

22−4gu(g, n) =

g∑
i=0

ϑ(g, i)′
(bg,n + i)!!

bg,n!!

=

b(g−1)/2c∑
i=0

ϑ(g, 2i+ 1)′
(bg,n + 2i+ 1)!!

bg,n!!
+

bg/2c∑
i=0

ϑ(g, 2i)′
(bg,n + 2i)!!

bg,n!!

= (4g − 6 + 2n)γ2g−3+n

b(g−1)/2c∑
i=0

ϑ(g, 2i+ 1)′
(bg,n + 2i+ 1)!!

(bg,n + 1)!!

+

bg/2c∑
i=0

ϑ(g, 2i)′
(bg,n + 2i)!!

bg,n!!
.

Therefore, we obtain that

rg(n) = 24g−2

bg/2c∑
i=0

ϑ(g, 2i)′
(4g − 8 + 2n+ 2i)!!

(4g − 8 + 2n)!!

and

sg(n) = 24g−2(4g − 6 + 2n)

b(g−1)/2c∑
i=0

ϑ(g, 2i+ 1)′
(4g − 7 + 2n+ 2i)!!

(4g − 7 + 2n)!!

as the polynomials whose existence we claimed to exist. The non-vanishing of their
leading coefficients follows from a similar argument using Lemma 3.5.

Recall v(g, n) defined in (27) in the proof of Theorem 1.4. In summary, we have

v(g, n) =
(−1)3g−3+n24g−2

(4g − 6 + 2n)!!

∫
Mg,n

s3g−3+n(Qg,n) = pg(n) + γ2g−3+nqg(n) ,

u(g, n) =
(−1)3g−4+n24g−2

(4g − 8 + 2n)!!

∫
Mg,n

s3g−4+n(Qg,n)λ1 = rg(n) + γ2g−3+nsg(n) .

The rational function expression of L+ in (12) thus follows from (10).
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For the large n asymptotic of L+, recall that 26g−7ng is the leading coefficient
of rg(n) and sg(n) when g is even and odd respectively. We claim that

u(g, n) ∼ 26g−7π−ε(g)/2ngn
g/2 (37)

for fixed g and n → ∞. To see this, the dominant term of the two in the sum
u(g, n) = rg(n) + γ2g−3+nsg(n) is rg(n) when g is even and γ2g−3+nsg(n) when g

is odd. Hence the leading term of u(g, n) (as a function of n) is ng/226g−7ng when

g is even and π−1/2ng/226g−7mg when g is odd. The claim thus follows from the

fact that γk ∼ (πk)−1/2 as k → ∞. We then obtain the asymptotic expression of
L+ in (12) by the asymptotic expressions of v(g, n) and u(g, n) in (28) and (37).

Finally for carea, by (32) we have

π2

3
carea =

n+ 5− 5g

18
+ L+

=
n+ 5− 5g

18
+

1

2g − 3 + n

rg(n) + γ2g−3+nsg(n)

pg(n) + γ2g−3+nqg(n)
.

We thus define the polynomials

p∗g(n) =
(n+ 5− 5g)(2g − 3 + n)pg(n)

6
+ 3rg(n)

and

q∗g(n) =
(n+ 5− 5g)qg(n)

6
+

3sg(n)

2g − 3 + n
,

where sg(n) is divisible by 2g − 3 + n by definition. The above expression for carea

can then be rewritten as

carea =
1

π2

p∗g(n)

2g − 3 + n
+ γ2g−3+nq

∗
g(n)

pg(n) + γ2g−3+nqg(n)
,

in accordance with (11). The claim about the degrees of p∗g(n) and q∗g(n) follows
from the degrees of pg(n) and qg(n). �

4.3. carea and L+ in genus one. In this section we prove Corollary 1.8. We have

L+(1n,−1n) = −2

∫
M1,n

sn−1(Q1,n)λ1∫
M1,n

sn(Q1,n)
.

The denominator was computed previously in (30). For the numerator, we have∫
M1,n

sn−1(Q1,n)λ1 = (−1)n−1

∫
M1,n

(
κ(n−1)λ1

(n− 1)!
+
κ(n−2)λ

2
1

(n− 1)!

)
= (−1)n−1 (2n− 3)!!

24
,

where κ(n−1)λ1 was computed previously in (29), and λ2
1 = 0 as λ1 is a pullback

from M1,1. It follows that

L+(1n,−1n) =
2

1 + (2n−2)!!
(2n−3)!!

,
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thus proving (14). Recall that (2n)!!
(2n−1)!! ∼

√
πn for n → ∞. Then (14) also implies

a decay of L+ in the order of 1√
n

conjectured by Fougeron.

Finally by (32) we conclude that

π2

3
carea(1n,−1n) = L+(1n,−1n) +

n

18

=
2

1 + (2n−2)!!
(2n−3)!!

+
n

18
,

thus proving (13). In particular, it confirms [the7, Table 8] for the case g = 1 with
p∗1(n) = 1

36 (n2 − n) and q∗1(n) = 1
36n+ 1.

4.4. carea and L+ of affine invariant submanifolds. Recall that a stratum of
quadratic differentials can be lifted to the corresponding stratum of Abelian dif-
ferentials via the canonical double cover, such that the image becomes an affine
invariant submanifold. In general, let N be an arbitrary affine invariant subman-
ifold in a stratum of Abelian differentials H(µ). Suppose the tangent space of N
projects onto a subspace A of absolute periods, with kernel R of relative periods.
Denote dimCA = a and dimCR = r, so that dimCN = a + r. Without loss of
generality, assume that a basis of R is given by integration over r paths joining the
zeros z1, . . . , zr to a reference zero.

Denote by PN the closure of PN in the IVC compactification of the projectivized
stratum. Then dimC PN = (a−1)+r. Let ξ be the first Chern class of the universal
line bundle O(1) and δ the boundary divisor class. We make the following bold
conjecture.

Conjecture 4.3. The area Siegel-Veech constant and sum of Lyapunov exponents
of N can be obtained as the following intersection numbers:

carea(N ) = − 1

4π2

∫
PN ξ

a−2ψ1 · · ·ψrδ∫
PN ξ

a−1ψ1 · · ·ψr
, (38)

L(N ) = −
∫
PN ξ

a−2ψ1 · · ·ψrλ1∫
PN ξ

a−1ψ1 · · ·ψr
, (39)

where ψi is associated with the zero zi in the chosen basis of R.

We briefly explain the idea behind this conjecture. Since we work with the pro-
jectivized stratum, we can set one absolute period to be 1, hence ξa−1 governs the
absolute part of the volume form of N , and ψ1, . . . , ψr govern the relative part
by varying the relevant zeros in N . Therefore, the denominator in (38) and (39)
can be regarded as the volume of N , up to a volume normalization factor. By
now it has become clear that the boundary divisor class is responsible for carea and
the first Chern class of the Hodge bundle is responsible for L, thus explaining the
structure of the conjectural formulas. In particular, using a different volume nor-
malization factor should not matter, as it would cancel out between the numerator
and denominator in each of the formulas.

Moreover, there are evidences to support this conjecture from a number of known
cases. If PN is a Teichmüller curve, then the conjectural formulas reduce to evalu-
ating deg δ/deg ξ and deg λ1/deg ξ up to the normalizing factors, and this case was
well-understood after the works [Kon97; EKZ14; Che11; CM12]. If PN is a Hurwitz
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space of torus covers, then the above conjecture was established in [CMZ18, Sec-
tion 4]. If N is the entire stratum H(µ), as said the above conjecture was verified
in [CMSZ19, Theorem 1.4]. If N arises from a stratum of quadratic differentials via
the canonical double cover, then Conjecture 4.3 reduces to Conjecture 1.9, which
was proved in Theorem 1.6 for the case of the principal strata. Note that in this
case ζ = 2ξ after lifting via the canonical double cover, which explains the difference
of a factor 2 in the two conjectures.

We plan to treat the conjectures in this paper in future work.

A second topological recursion for Masur–Veech volumes

by Gaëtan Borot, Alessandro Giacchetto, and Danilo Lewański

In [the7] we constructed a collection of generating series (W I
g,n)n≥1

g≥0 encoding
some aspects of length statistics of multicurves, in which the Masur–Veech volumes
of the principal strata of quadratic differentials appear as the lowest coefficients,
and which satisfy the Eynard–Orantin topological recursion for a spectral curve SI.
This Appendix shows that a generating series W II

g,n of intersection indices of the
Segre class of Section 3.1 with ψ-classes, in which the Masur–Veech volume is also
the lowest coefficient, satisfy the same topological recursion for a (very different)
spectral curve SII. The two generating series have different meanings and are not a
priori related. Only their lowest coefficients agree. We first review in Section A the
definitions of the topological recursion, which originate in [EO09], in a simplified
fashion which is sufficient for our needs. The main result of this Appendix is exposed
in Proposition A.2. We prove it in Section C.1 as a direct consequence (after
some algebraic manipulations) of general relations between topological recursion
and intersection theory established in [Eyn14] and reviewed in Section B.

A. Topological recursion for Masur–Veech volumes

A.1. Definition. For us, a spectral curve will be a quadruple S = (C, x, y, ω0,2) as
follows. C is an open subset of P1, x is a (perhaps multivalued) function on C such
that dx is meromorphic with a single, simple zero at a ∈ C\{∞}, y is a holomorphic
function on C such that dy(a) 6= 0, and ω0,2 is a meromorphic bidifferential whose
only singularity on C2 is a double pole with biresidue 1 on the diagonal.

We define σ to be the holomorphic involution defined in a neighbourhood U ⊆ C
of a such that σ(a) = a, x ◦ σ = x and σ 6= id. We introduce the recursion kernel

K(z0, z) :=
1

2

∫ z
σ(z)

ω0,2(·, z0)(
y(z)− y(σ(z))

)
dx(z)

,

which is a 1-form in the variable z0 ∈ C and a (−1)-form in the variable z ∈ U .
This allows the definition of multidifferentials ωg,n on Cn, indexed by g ≥ 0 and
n > 0 with 2g − 2 + n ≥ 0, by the following induction on 2g − 2 + n:

ωg,n(z1, . . . , zn) = Res
z=a

K(z1, z)

(
ωg−1,n+1(z, σ(z), z2, . . . , zn) (40)

+
∑

h+h′=g
JtJ′={z2,...,zn}

ωh,1+|J|(z, J)ωh′,1+|J′|(σ(z), J ′)

)
,
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with the convention that ω0,1 = 0. To be precise, ωg,n ∈ H0(Cn,KC(∗a)�n) where
∗a means allowing poles of arbitrary order at a, and although it is not apparent
in their definition, ωg,n are invariant under permutation of their n variables. For
n = 0 and g ≥ 2, we also define the numbers

ωg,0 =
1

2− 2g
Res
z=a

(∫ z

a

y dx

)
ωg,1(z) . (41)

We call ωg,n the TR amplitudes.

The ωg,n for 2g − 2 + n > 0 can be decomposed

ωg,n(z1, . . . , zn) =
∑

k1,...,kn≥0
k1+···+kn≤3g−3+n

Fg,n[k1, . . . , kn]

n∏
i=1

ξk(zi) (42)

on the basis of 1-forms (ξk)k≥0 defined by

ξ0(z0) := Res
z=a

(
ω0,2(z0, z)√

2(x(z)− x(a))

)
, ξk := −d

(
ξk−1

dx

)
.

For n = 0 we also use the notation Fg,0 = ωg,0 for uniformity.

A.2. Applications to Masur–Veech volumes. Here is the first topological re-
cursion announced in the introduction of the Appendix.

Theorem A.1 ([the7]). Let ωI
g,n be the TR amplitudes for the spectral curve SI

where C is a small neighbourhood of 0 in C, x(z) = z2/2, y(z) = −z and

ωI
0,2(z1, z2) =

dz1dz2

2

(
1

(z1 − z2)2
+

π2

sin2 π(z1 − z2)

)
.

For 2g − 2 + n > 0 we have

vol(Qg,4g−4+2n(14g−4+n,−1n))

=
24g−2+n(4g − 4 + n)!

(6g − 7 + 2n)!
F I
g,n[0, . . . , 0]

=
24g−2+n(4g − 4 + n)!

(6g − 7 + 2n)!
Res
z1=0
· · · Res

zn=0
ωI
g,n(z1, . . . , zn)

n∏
i=1

zi ,

where the third line is only valid for n > 0. For n = 0 and g ≥ 2 we have

vol(Qg,4g−4(14g−4,−10)) =
3 · 24g−2(4g − 4)!

(6g − 6)!
F I
g,1[1] .

In this Appendix we show a second topological recursion.

Proposition A.2. Let ωII
g,n be the TR amplitudes for the spectral curve SII defined

by

C = P1 , x(z) = −z − ln z , y(z) = z2 , ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2
.

For 2g − 2 + n > 0 and k1, . . . , kn ≥ 0 we have

F II
g,n[k1, . . . , kn] = 22−2g−n

∫
Mg,n

s(Qg,n)

n∏
i=1

ψkii . (43)
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In particular, in view of Proposition 3.1, we have

vol(Qg,4g−4+2n(14g−4+n,−1n))

=
24g−1+n(iπ)6g−6+2n(4g − 4 + n)!

(6g − 7 + 2n)!
F II
g,n[0, . . . , 0] (44)

=
24g−1+n(iπ)6g−6+2n(4g − 4 + n)!

(6g − 7 + 2n)!
Res
z1=−1

· · · Res
zn=−1

ωII
g,n(z1, . . . , zn)

n∏
i=1

(zi + 1) ,

where the third line is only valid for n > 0. For n = 0 and g ≥ 2 we have

vol(Qg,4g−4(14g−4,−10)) =
3 · 24g(iπ)6g−6(4g − 4)!

(6g − 6)!

(
F II
g,1[1] + F II

g,1[2]
)
. (45)

B. Topological recursion and intersection theory

Let S be a spectral curve as in Section A.1 and ωg,n the corresponding TR
amplitudes. The coefficients in (42) can then be interpreted in terms of intersection
theory on Mg,n. To state the formula, we introduce two formal power series:

T (u) =
ex(a)u−1

√
2πu

∫
γ

e−x(z)u−1

dy(z) = exp

(
−
∑
d≥0

td u
d

)
, (46)

R(u) =
ex(a)u−1

√
2πu−1

∫
γ

e−x(z)u−1

ξ0(z) = exp

(∑
d≥1

rd u
d

)
= exp

(
r(u)

)
. (47)

Here, γ is the steepest descent contour for the function x/u on C, going around a in
the positive direction. T (u) and R(u) are the asymptotic series to the right-hand
side when u→ +∞, and these definitions only depend on the germ of γ near a (see
below).

We define a class Ωg,n ∈ H•(Mg,n) by the formula

Ωg,n = exp

(∑
d≥0

td κd +

n∑
i=1

r(ψi) (48)

+
1

2
iirr∗

(
r(ψ1) + r(ψ2)

ψ1 + ψ2

)
+

1

2

g∑
h=0

∑
S⊆[[1,n]]

ih,S∗

(
r(ψ1) + r(ψ2)

ψ1 + ψ2

))
,

where iirr and ih,S are the maps introduced in Section 3.1.

Theorem B.1. For 2g − 2 + n > 0, we have the equality in C[[µ−1
1 , . . . , µ−1

n ]]∫
γn

ωg,n(z1, . . . , zn)

n∏
i=1

e−µi(x(zi)−x(a))dzi√
2πµiR(1/µi)

=

∫
Mg,n

Ωg,n

n∏
i=1

1

1 + µiψi
. (49)

Equivalently, in the decomposition (42) we have for k1, . . . , kn ≥ 0

Fg,n[k1, . . . , kn] =

∫
Mg,n

Ωg,n

n∏
i=1

ψkii .

Proof. We explain how to derive the particular form we give to the result (49) from
[Eyn14, Theorem 3.1].
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Firstly, the Laplace variable u in [Eyn14] is the variable u−1 for us. We chose
this convention, as we found more convenient to work with formal power series in u
(instead of u−1).

Secondly, as it is clear from the proof in [Eyn14], the contribution of boundary
divisors in [Eyn14, Formula (3.11)] should not be understood as the genuine expo-
nential of a class, but rather as a sum over stable graphs, where the weight of the
edges is B̌(1/ψ1, 1/ψ2), which we here denote E(ψ1, ψ2). E(u1, u2) is a formal power
series in u1 and u2 which can be computed form the data of x and ω0,2. Since dx
is meromorphic on the compact curve P1, we can use [Eyn14, Appendix B] which
justifies (with the preceding conventions) that

E(u, v) =
1−R(u)R(v)

u+ v
. (50)

Our R(u) corresponds to ±fa,0(u−1) in [Eyn14]. The sign depends on the choice of
square root, that should be made so that R(u) = 1 + O(u), but it does not affect
(50) since R appears by pairs. We also warn the reader familiar with cohomological
field theories that R rather corresponds to the inverse of the R-matrix in Givental
formalism.

Thirdly, the sum over stable graphs can be converted into intersections inMg,n

of the exponential of a boundary class. Namely [Eyn14, Formula (3.11)] is cor-
rectly interpreted as involving the exponential of a boundary class if we replace the
contribution of boundary divisors by the pushforward of E(ψ1, ψ2), where the new
generating series is

E(u1, u2) = −
ln
(
1− (u1 + u2)E(u1, u2)

)
u1 + u2

,

or equivalently

E(u1, u2) =
1− e−(u1+u2)E(u1,u2)

u1 + u2
.

This relation comes from taking into account self-intersections of divisors, see e.g.
[the7, Lemma 3.10].

Fourthly, the relation (50) leads to a simplification of the contribution of ψ-
classes in [Eyn14, Formula (3.10)], namely

2
√
π e−µix(a)

√
µi

(
µi

1 + µiψi
− E(1/µi, ψi)

)
= 2
√
πµi e

−µix(a)R(1/µi)R(ψi)

1 + µiψi
.

If we factor out
∏n
i=1

√
2πµiR(1/µi) to put it in the left-hand side of [Eyn14,

Formula (3.10)], this leaves in the right-hand side a power 2n/2, which combines
with the overall power 23g−3+n to give 2(3/2)(2g−2+n) = 2(3/2)κ0 . Therefore, we can
change the definition of the coefficient of κ0 in [Eyn14]; it was there denoted t̂0 and
it is related to our t0 by t̂0 +(3/2) ln 2 = t0. Note that there seems to be a misprint
in [Eyn14], where Formulas (3.12) and (4.15) should have the prefactor of 2 in the
numerator rather than in the denominator. Making this correction led us to the
definition of T (u) with a prefactor of 2−1/2. �

For certain (x, y), T (u) and R(u) can be identified with well-known special func-
tions and tk and rk can be computed explicitly. A term-by-term computation is
always possible, for instance as follows. Let ζ(z) =

√
2(x(z)− x(a)) be the local
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coordinate near a (for the standard determination of the square root), which has
the property that ζ(σ(z)) = −z, and compute the expansion near z = a:

y(z) =
∑
k≥0

yk ζ(z)k , ξ0(z) =
dζ(z)

ζ(z)2
+
∑
k≥0

ξ0,k ζ(z)kdζ(z) .

Then, to obtain the asymptotic expansion of the integrals up to O(u∞), we can
take u > 0 and replace γ in the z-plane with a contour δ in the ζ-plane that goes
from +∞− i0 to −i0, then follows the half-circle leaving 0 to its right until i0, from
where it goes to +∞+ i0. We have∫

δ

e−ζ
2/2u ζ2k dζ√

2πu
= −(2k − 1)!!uk ,

where the global minus sign comes from the orientation of the contour. This formula
remains valid for any k ≥ −1, with the convention that (−1)!! = 1 and (−3)!! = −1.
Thus

T (u) = −
∑
d≥0

(2d+ 1)!! y2d+1 u
d , R(u) = 1 +

∑
d≥0

(2d− 1)!! ξ0,2d u
d+1 .

C. Study of a family of spectral curves

C.1. Definition and basic properties. Let (a, b) ∈ C∗ × Z∗ and consider the
spectral curve S[a, b] defined by

x(z) = −z + a ln z , y(z) = zb , ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2
. (51)

Notice that dx has a unique, simple zero at z = a. To complete the definition, we
choose C to be a small neighbourhood of a in C. The determination of the logarithm
is chosen arbitrarily and will not affect our discussion. For the record, we compute

x(a) = a
(

ln(a)− 1
)
, x′′(a) = −1

a
.

We will use instead of z the coordinate t = z − a, so that

x(z) = −(t+ a) + a ln(t+ a) , y(z) = (t+ a)b .

The involution such that x(a + σ(t)) = x(a + t) is given by σ(t) = −a−1σ̂(−a−1t)
where σ̂ is the unique solution to

t− σ̂(t) = ln

(
1− σ̂(t)

1− t

)
, σ̂(t) = −t+O(t2) .

It does not have a simple expression, but can be generated to high order on the
computer

σ̂(t) = −
(
t+

2t2

3
+

4t3

9
+

44t4

135
+

104t5

405
+

40t6

189
+

7648t7

42525
+

2848t8

18225
+

31712t9

229635
+O(t10)

)
.

Lemma C.1. For 2g − 2 + n > 0 and k1, . . . , kn ≥ 0 we have

Fg,n[k1, . . . , kn] ∈ ((−a)b−1/2b)2−2g−n ·Q[a−1, b] .

Proof. As we need to stress the dependence in a and b in this proof, we momentarily

denote ω
[a,b]
g,n the TR amplitudes associated with S[a, b]. We claim that for 2g− 2 +

n > 0 we have

ω[a,b]
g,n (z1, . . . , zn) = (−a)(b+1)(2−2g−n) ω[−1,b]

g,n (−z1/a, . . . ,−zn/a) . (52)
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This is justified by noticing that x(z) = −ax̃(−z/a) and y(z) = (−a)b(−z/a)b with
x̃(z̃) = c + x(z̃)|a=−1 for some constant c, ỹ(z̃) = y(z̃)|a=−1 and ω0,2(z1, z2) =
ω0,2(−z1/a,−z2/a). Since (x, y) are involved in (40) only via the 1-form ydx in the
denominator of the recursion kernel and ωg,n is reached by 2g − 2 + n steps of the
recursion, we deduce (52) for n > 0. Inserting this result for ωg,1 in (41), we see
that (52) also holds for n = 0.

We denote ξ
[a]
k the basis of 1-forms, since it only depends on a. One easily checks

by induction on k that

ξ
[a]
k (z) = −(−a)−(k+1/2) ξ

[−1]
k (−z/a) .

We deduce that

F [a,b]
g,n [k1, . . . , kn] = (−1)n(−a)(b+1)(2−2g−n)+

∑n
i=1(ki+1/2) F [−1,b]

g,n [k1, . . . , kn] .

Since in (42) we have
∑
i ki ≤ 3g − 3 + n, we obtain that, for any value of b ∈ Z∗,

F [a,b]
g,n [k1, . . . , kn] ∈ (−a)(b−1/2)(2−2g−n) ·Q3g−3+n[a−1] . (53)

We now study the dependence in b. Taking into account the dependence in a of the
involution, we observe that the t→ 0 expansion of the recursion kernel K(a+t1, a+t)
belongs to t−1(bab−2)−1 ·Q[t−1

1 , a−1, b][[t]] · dt1
dt . This implies by induction that for

2g − 2 + n > 0 and n > 0

ωg,n(t1, . . . , tn) ∈ (bab−2)2−2g−n ·Q[a−1, b][t−1
1 , . . . , t−1

n ]

n∏
i=1

dti
ti
. (54)

Combining with (41) then extends the validity of (54) to n = 0, which together
with (53) proves the claim. �

C.2. Intersection theory. We recall the Hankel representation for v ∈ C
1

Γ(v)
=

1

2iπ

∫
c

et t−v dt ,

where the contour c (as given by Theorem B.1) goes in the v-plane from −∞− i0
to −i0, then follows the half-circle leaving 0 to its left until i0, from where it goes
to −∞+ i0. We also recall that for fixed β ∈ C, we have the asymptotic expansion
when v →∞ such that |arg v| < π − ε for some fixed ε > 0

Γ(v + β) = exp

(
v ln v − v +

(
β − 1

2

)
ln v +

ln(2π)

2
+
∑
d≥1

(−1)d+1Bd+1(β)

d(d+ 1)
v−d

)
,

where Bd(β) are the Bernoulli polynomials and Bd(0) = Bd are the Bernoulli
numbers (see Section 3.1). They vanish if d is odd and greater than 2.

We can compute T (u) and R(u) for the spectral curve (51), first setting u > 0
and a /∈ R−.

T (u) =
b√
2πu

eau
−1(ln(a)−1)

∫
γ

ezu
−1

z−au
−1

zb−1 dz

=
b√
2πu

eau
−1(ln(au−1)−1)−b ln(u−1)

∫
c

ett−au
−1+b−1 dt

=
ib eau

−1 ln(au−1)−au−1+(1/2−b) ln(u−1)+ 1
2 ln(2π)

Γ(au−1 + 1− b)
,
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where we used the Hankel representation. Using the asymptotic expansion for ln(Γ),
we obtain when u→ 0

T (u) = ibab−1/2 exp

(∑
d≥1

(−1)dBd+1(1− b)
d(d+ 1)ad

ud
)
,

that is

et0 = −ib−1a1/2−b , td = (−1)d+1Bd+1(1− b)
d(d+ 1)ad

(for d ≥ 1) .

We compute using integration by parts

R(u) =
eau

−1(ln(a)−1)√
−2π(au)−1

∫
γ

ezu
−1

z−au
−1

(z − a)2
dz

=
eau

−1(ln(a)−1)√
−2π(au−1)−1

∫
γ

ezu
−1

z−au
−1−1 dz ,

where we notice the cancellation of poles between the integrated factor (z − a)−1

and the factor coming from the derivative, the only effect being an extra factor of

(zu)−1 turning u1/2 into u−1/2 and z−au
−1

into z−au
−1−1. We then get

R(u) =

√
2πau−1eau

−1(ln(au−1)−1)

Γ(au−1 + 1)
.

It admits the asymptotic expansion when u→ 0

R(u) = exp

(
−
∑
d≥1

Bd+1

d(d+ 1)ad
ud
)
.

Therefore, we are led to define the class

Ωg,n[a, b] := exp

{∑
d≥1

(
(−1)d+1Bd+1(1− b)

d(d+ 1)ad
κd −

n∑
i=1

Bd+1

d(d+ 1)ad
ψdi

+
1

2

Bd+1

d(d+ 1)ad

∑
i+j=d−1

iirr∗(−ψ1)iψj2

+
1

2

Bd+1

d(d+ 1)ad

g∑
h=0

∑
S⊆[[1,n]]

∑
i+j=d−1

ih,S∗(−ψ1)iψj2

)}
,

where compared to (48) we have excluded the κ0 term. Due to the vanishing
of odd Bernoulli numbers and the symmetry (−1)dBd(1 − b) = Bd(b), we have
Ωg,n[−a, b] = Ω−1

g,n[a, 1− b]. Notice that Ωg,n[a, b] is a polynomial in a−1 (for each
fixed g, n), therefore makes sense even if a is on the negative real axis.

Corollary C.2. For any (a, b) ∈ C∗ ×Z∗, the TR amplitudes of the spectral curve
(51) are decomposed as in (42) with

Fg,n[k1, . . . , kn] = (ibab−1/2)2−2g−n
∫
Mg,n

Ωg,n[a, b]

n∏
i=1

ψkii . (55)

In particular,

Fg,n[0, . . . , 0] = (ibab−1/2)2−2g−n
∫
Mg,n

Ωg,n[a, b] .
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Proof. For a /∈ R−, we just apply Theorem B.1. We know a priori that the left-hand
side of (55) divided by (bab−1/2)2−2g−n is a polynomial in a−1 and b, and the class
Ωg,n[a, b] depends polynomially on a−1 and b. Therefore, the equality holds for all
(a, b) ∈ C∗ × Z∗. �

Remark C.3. The Chiodo class ch(R•π∗S) of [Chi08] for the values (r, s) = (1, b)
coincides with our class Ωg,n[1, b]. For b = 1 this is simply the Chern character of
the Hodge bundle: the first proof of Corollary C.2 in that case comes from combin-
ing [ELSV01] (ELSV formula for Hurwitz numbers) and topological recursion for
Hurwitz numbers [EMS11]; computations similar to ours appear in [SSZ15].

C.3. Specialization to (a, b) = (−1, 2). For these values, the class we have con-
structed is precisely the Segre class appearing in Lemma 3.2.

Ωg,n[−1, 2] = exp

(∑
d≥1

(
(−1)dBd+1(2)

d(d+ 1)
κd −

n∑
i=1

(−1)dBd+1

d(d+ 1)
ψdi

+
1

2

(−1)dBd+1

d(d+ 1)

∑
i+j=d−1

iirr∗(−ψ1)iψj2

+
1

2

(−1)dBd+1

d(d+ 1)

g∑
h=0

∑
S⊆[[1,n]]

∑
i+j=d−1

ih,S∗(−ψ1)iψj2

)

= s(Eg,n) exp

(∑
d≥1

(−1)d

d
κd

)
= s(Qg,n) .

The application of Corollary C.2 yields for 2g − 2 + n > 0 and k1, . . . , kn ≥ 0

Fg,n[0, . . . , 0] = 22−2g−n
∫
Mg,n

s(Qg,n) . (56)

Recalling Proposition 3.1, we have proved Theorem A.2, except for the alternative
formula (45) for the n = 0 case. To obtain it, we go back to (41) which gives

Fg,0 =
1

2g − 2
Res
z=−1

(2z − 1)(z + 1)2

6

( 3g−3∑
k=0

Fg,1[k] ξk(z)

)
. (57)

It is easy to prove by induction on k ≥ 0 that

ξk(z) =

2k∑
l=k

ck,l dz

(z + 1)l+2
, ck,l ∈ Z .

Therefore, only the terms k ∈ {1, 2} contribute to the residue in (57) and we find

Fg,0 =
Fg,1[1] + Fg,1[2]

g − 1
,

which can be rearranged into the desired Equation (45).
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For computations of the TR amplitudes, it is simpler to work with rational
functions instead of rational differential forms. We therefore set

Wg,n(t1, . . . , tn) =
ωg,n(t1 + a, . . . , tn + a)

dt1 · · · dtn
,

K(t1, t) = K(t1 + a, t+ a)σ′(t+ a)
dt

dt1
,

Ξk(t) =
ξk(t)

dt
.

Then, Wg,n(t1, . . . , tn) ∈
∏n
i=1 t

−1
i · C[t−1

1 , . . . , t−1
n ]. We focus on the case (a, b) =

(−1, 2), in which case

K(t1, t) =
tσ̂′(t)

2(t+ 1)(2− t− σ̂(t))

1

(t1 − t)(t1 − σ̂(t))
.

The recursion formula becomes

Wg,n(t1, . . . , tn) = Res
t=0

dtK(t1, t)

(
Wg−1,n+1(t, σ̂(t), t2, . . . , tn)

+
∑

JtJ′={t2,...,tn}
h+h′=g

Wh,1+|J|(t, J)Wh′,1+|J′|(σ̂(t), J ′)

)
.

(58)

The first elements on the basis in which we can read the Fg,n are

Ξ0(t) = 1
t2

Ξ1(t) = − 2
t3 + 3

t4

Ξ2(t) = 6
t4 −

20
t5 + 15

t6

Ξ3(t) = − 24
t5 + 130

t6 −
210
t7 + 105

t8

Ξ4(t) = 120
t6 −

924
t7 + 2380

t8 −
2520
t9 + 945

t10

Ξ5(t) = − 720
t7 + 7308

t8 −
26432
t9 + 44100

t10 −
34650
t11 + 10395

t12

We need to expand the recursion kernel when t→ 0

K(t1, t) =
∑
j≥−1

Kj(t1) tj

and it is useful to decompose the coefficients on the (Ξm(t1))m≥0.

K−1 = Ξ0

4

K0 = Ξ0

12

K1 = −Ξ0

12 + Ξ1

12

K2 = − 49 Ξ0

540 + Ξ1

12

K3 = − 59 Ξ0

1620 + 17 Ξ1

540 + Ξ2

60

K4 = − Ξ0

2268 −
Ξ1

324 + Ξ2

36

K5 = 1021 Ξ0

170100 −
11 Ξ1

1260 + 97 Ξ2

3780 + Ξ3

420

K6 = 17 Ξ0

72900 −
59 Ξ1

24300 + 149 Ξ2

8100 + Ξ3

180

Applying (58) and rearranging the result as a multilinear combination of Ξki(ti)
we arrive to Table 1.
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(g, n) (k1, . . . , kn) Fg,n[k]

(0, 3) (0, 0, 0) 1
2

(0, 4)
(0, 0, 0, 0) −1

4

(1, 0, 0, 0) 1
4

(0, 5)

(0, 0, 0, 0, 0) 3
8

(1, 0, 0, 0, 0) − 3
8

(2, 0, 0, 0, 0) 1
8

(1, 1, 0, 0, 0) 1
4

(2, 1)

(0) 29
5120

(1) − 29
5120

(2) 47
15360

(3) − 41
46080

(4) 1
9216

(2, 0) ∅ − 1
384

(g, n) (k1, . . . , kn) Fg,n[k]

(1, 1)
(0) − 1

24

(1) 1
48

(1, 2)

(0, 0) 1
32

(1, 0) − 1
32

(2, 0) − 1
96

(1, 1) 1
96

(1, 3)

(0, 0, 0) − 11
192

(1, 0, 0) 11
192

(2, 0, 0) − 5
192

(1, 1, 0) − 1
24

(3, 0, 0) 1
192

(2, 1, 0) 1
96

(1, 1, 1) 1
96

Table 1. For low values of (g, n) we indicate the non-zero values
of Fg,n[k1, . . . , kn] for k1 ≥ · · · ≥ kn ≥ 0 (the others are obtained
by symmetry). These coefficients were denoted F II

g,n[k1, . . . , kn] in
Proposition A.2. Inserting the values in bold in (44) recovers the
values of the Masur–Veech volumes given in [the7, Table 11]. The
other values match with the intersection numbers computed from
(56) via admcycles ([DSZ20]).
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Études Sci. 127 (2018), pp. 95–324.
[EMM15] A. Eskin, M. Mirzakhani, and A. Mohammadi. “Isolation, equidistri-

bution, and orbit closures for the SL(2,R) action on moduli space”.
In: Ann. of Math. (2) 182.2 (2015), pp. 673–721.

http://arxiv.org/abs/1901.01785
http://arxiv.org/abs/1910.14151
http://arxiv.org/abs/1908.08611
http://arxiv.org/abs/2002.01709


A SECOND TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 33

[EMS11] B. Eynard, M. Mulase, and B. Safnuk. “The Laplace transform of the
cut-and-join equation and the Bouchard-Mariño conjecture on Hur-
witz numbers”. In: Publ. Res. Inst. Math. Sci. 47.2 (2011), pp. 629–
670.

[EO01] A. Eskin and A. Okounkov. “Asymptotics of numbers of branched
coverings of a torus and volumes of moduli spaces of holomorphic
differentials”. In: Invent. Math. 145.1 (2001), pp. 59–103.

[EO09] B. Eynard and N. Orantin. “Topological recursion in random matri-
ces and enumerative geometry”. In: J. Phys. A: Math. Theor. 42.29
(2009).

[Eyn14] B. Eynard. “Invariants of spectral curves and intersection theory of
moduli spaces of complex curves”. In: Commun. Numb. Th. Phys.
8.3 (2014).

[Fou18] C. Fougeron. “Lyapunov exponents of the Hodge bundle over strata
of quadratic differentials with large number of poles”. In: Math. Res.
Lett. 25.4 (2018), pp. 1213–1225.

[FP00] C. Faber and R. Pandharipande. “Hodge integrals and Gromov-
Witten theory”. In: Invent. Math. 139.1 (2000), pp. 173–199.

[Gou15] E. Goujard. “Siegel-Veech constants for strata of moduli spaces of
quadratic differentials”. In: Geom. Funct. Anal. 25.5 (2015), pp. 1440–
1492.

[Gou16] E. Goujard. “Volumes of strata of moduli spaces of quadratic dif-
ferentials: getting explicit values”. In: Ann. Inst. Fourier (Grenoble)
66.6 (2016), pp. 2203–2251.

[HM98] J. Harris and I. Morrison. Moduli of Curves. Vol. 187. Graduate
Texts in Mathematics. New York: Springer-Verlag, 1998, pp. xiv+366.

[IZ92] C. Itzykson and J.-B. Zuber. “Combinatorics of the modular group.
II. The Kontsevich integrals”. In: Internat. J. Modern Phys. A 7.23
(1992), pp. 5661–5705.

[Kon92] M. Kontsevich. “Intersection theory on the moduli space of curves
and the matrix Airy function”. In: Comm. Math. Phys. 147.1 (1992),
pp. 1–23.

[Kon97] M. Kontsevich. “Lyapunov exponents and Hodge theory”. In: The
mathematical beauty of physics (Saclay, 1996). Vol. 24. Adv. Ser.
Math. Phys. River Edge, NJ: World Sci. Publishing, 1997, pp. 318–
332.

[LMX16] K. Liu, M. Mulase, and H. Xu. “Recursions and asymptotics of in-
tersection numbers”. In: Internat. J. Math. 27.9 (2016), pp. 1650072,
31.

[Mas82] H. Masur. “Interval exchange transformations and measured folia-
tions”. In: Ann. of Math. (2) 115.1 (1982), pp. 169–200.

[Mir07] M. Mirzakhani. “Weil-Petersson volumes and intersection theory on
the moduli space of curves”. In: J. Amer. Math. Soc. 20.1 (2007),
pp. 1–23.

[Mum77] D. Mumford. “Hirzebruch’s proportionality theorem in the noncom-
pact case”. In: Invent. Math. 42 (1977), pp. 239–272.
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Math. Boston, MA: Birkhäuser Boston, 1983, pp. 271–328.

[Pix13] A. Pixton. The tautological ring of the moduli space of curves. Thesis
(Ph.D.)–Princeton University. ProQuest LLC, Ann Arbor, MI, 2013,
p. 133.

[Sau18] A. Sauvaget. “Volumes and Siegel–Veech constants of H(2g−2) and
Hodge integrals”. In: Geom. Funct. Anal. 28.6 (2018), pp. 1756–1779.

[SSZ15] S. Shadrin, L. Spitz, and D. Zvonkine. “Equivalence of ELSV and
Bouchard-Mariño conjectures for r-spin Hurwitz numbers”. In: Math.
Ann. 361.3–4 (2015), pp. 611–645.

[the7] J.E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giac-
chetto, D. Lewanski, and C. Wheeler. Topolocial recursion for Masur-
Veech volumes. (2019). arXiv: 1905.10352.

[Vee82] W. Veech. “Gauss measures for transformations on the space of in-
terval exchange maps”. In: Ann. of Math. (2) 115.1 (1982), pp. 201–
242.

[Wit91] E. Witten. “Two-dimensional gravity and intersection theory on
moduli space”. In: Surveys in differential geometry (Cambridge, MA,
1990) 1 (1991), pp. 243–310.

[YZZ19] D. Yang, D. Zagier, and Y. Zhang. Asymptotics of the Masur-Veech
Volumes. Preprint. (2019).

[Zor02] A. Zorich. “Square tiled surfaces and Teichmüller volumes of the
moduli spaces of abelian differentials”. In: Rigidity in dynamics and
geometry (Cambridge, 2000). Berlin: Springer, 2002, pp. 459–471.

[Zor06] A. Zorich. “Flat surfaces”. In: Frontiers in Number Theory, Physics
and Geometry. Volume 1: On random matrices, zeta functions and
dynamical systems. Berlin: Springer-Verlag, 2006, pp. 439–586.

[Zvo05] D. Zvonkine. Enumeration of ramified coverings of the sphere and
2-dimensional gravity. (2005). arXiv: 0506248.

Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA

E-mail address: dawei.chen@bc.edu

Institut für Mathematik, Goethe–Universität Frankfurt, Robert-Mayer-Str. 6–8,

60325 Frankfurt am Main, Germany
E-mail address: moeller@math.uni-frankfurt.de

Mathematical Institute, Utrecht University, Budapestlaan 6 / Hans Freudenthal

Bldg, 3584 CD Utrecht, The Netherlands
E-mail address: a.c.b.sauvaget@uu.nl

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: gborot@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: agiacche@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: danilo.lewanski@studio.unibo.it

http://arxiv.org/abs/1905.10352
http://arxiv.org/abs/0506248

	29_Chen_cover

