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9. Introduction

In [1] we started the computation of the module of infinitesimal

deformations T; of a twodimensiaonal cusp singularity X. We were

able to construct a certain number of infinitesimal deformations,
1

X
cle is to prove. that this bound does already give the correct dimen-

giving a lowexr bound for the dimension of T The aim of this arti-

sion of T; , as conjectured.

Theorem 3.4.: Let X be a twodimensional cusp singularity of em-

bedding dimension d:z 5, defined-gz a lattice M in a real gua-

dratic number field K and a group V of totally positive units

of K acting on M. Let (ao,...,ad_1) be the cycle of selfin-

tersection numbers associated with the dual lattice M¥*. Then

=1
is equal to I (a ,-1).

the dimension g£ '1'1
i=o 4

X

The idea of proof is to use local duality, which for the Gorenstein

surface singularity X gives a perfect pairing of T; and the

1 1 " 1
{) (Qx) of the Kdhler differentials @ X"

A
If (R,m) 4is the local ring.of X at » , and if R is the m-adic

first local cohomology H

completion of R, we investigate the natural map ¢:9; s Dﬁ

from the module of Kihler differentials to its double dual, the
module of Zariski differentials of ﬁ, which has H}w}(n;) as its
cokernel. We give a criterion, in terms of Fourier series, for

an element of Da to be in the image of ¢ . In more geometric
terms this is a criterion for a differential form w , defined

on a punctured neighbourhood of the singular point to have an

extension across the singular point. This applies immediately to

give the desired upper bound for the length of H}ul(n;).



As a by-product we get a precise description af the module of
Zariski differnetials Da. For example one can easily see that

it has a minimal set of generators of length 24.

In the first section we recall the results from [1]. Then we study
the module of Zariski differentials of the complete local ring

A

R of the cusp singularity (X,«), and in the third part we

give the proofs of our results.

After finishing this manuscript we obtained the preprint 6 from
I. Nakamura, which also contains a proof of our conjecture form

[1] by different methods.



1. Cusp Singularities

In this section we recall briefly the results of [1] on
infinitesimal deformations of cusp singularities. Let K be

a real quadratic number field. For an element o€ K denote

by a' the conjugate , by N( a) = aa' the norm, and by

Tr (a) = a+ta' the trace of a. The element a is called totally
positive if both a and a'are greater than zero. Let Mc K be
a complete lattice, let U; be the infinite cyclic group of

totally positive units of K which act on M, and let veu,

M
be a subgroup of finite index.
€ W
The group G = G(M,V) of all 2x2 matrices y= o 1 with €€V

and ne M acts freely and properly discontinuously on the
product HxH of upper half planes: (21,22) — Y(z1,22) =
(ez1+u,e‘zz+u'), and an ideal point « can be added to the
orbit space X' to obtain a normal complex space X. The singu-

larity of X at =« is called a twodimensional cusp.

Let M* ¢ K be the dual lattice of M, and assume that M has

been chosen in its strict equivalence class so that M* =

2.1 Z w, with 0< w3 < 1 < w,. Then w, has a purely periodic
expansion as a continued fraction w, = [[axQ,a1 130 +00]])2"
ag-1]"a, - 1[ ... , with a; 2 2, and at least one a; 2 3.

Let (ao,...,as_1) be a primitive period. If (—bo,...,-br_1)
15 the cycle of selfintersection numbers on the minimal reso-
lution, in cyclic order, then after cyclic permutation for

d = s. [Uy:V] the cycles (ay, ... , a4 ,) and (by,...,b__.)

r-1
for r 22, and (b°+2) for r = 1 are dual.



Consider the sector M3 of totally positive elements of M*, If

M* is mapped to ]R2 by sending y-xw, to (x,Yy) eIR2 , the

elements of M: correspond to the integral lattice points of :lR:Z

with y>xw, and y>xw] . Denote by Ak,kE Z , the lattice points

on the boundary of the convex hull of M: in ]Rz , numbered in

consecutive order, such that A_y = Wue A = 1. The A are called

k
support points of M} . For proofs of the following properties of

the support points see [3] , sections 2.2 and 2.3:

1. For all k we have relations + A A, , where the

Be1 * Brer T 3%
a, are the denominators from the continued fraction expansion of

w, » and all the relations among the Ak are generated by these.

2. Each element uEMit can be written in a unique way as

u = nAk + m.AK,(1 for integers k,n,m with n>0, m20.

3. If the Ak are considered as elements of KcIR, we have

' J
chains of estimates->A, ,>2 >A, 4, >~and~<A  _, <A <A ,<... .

4. A is the unique generator ¢ of V with 0< e, < 1.

d 1 1

5. Ay acts on {Ak} by A4 - AL = AL .q -

In [1] , section 3, we constructed a fundamental domain F_
for the action of V on M3. The points of
F = {ueug. |e1<|."/ u'ISc;} correspond to the integral lattice

points (x,y) which are elements of the convex cone defined by
] ] [ 3
y z((e1w*-w*)/(e1-1) X 0y 2((weme w,)/(1-€,)) x .

For all }1€F+ and for all ¢ €V there we have - Tr(eu) 2 Tr(u) .
Equality holds if and only if 4. is on the boundary of F, and
€ 1is the generator of V which maps u to the other boundary

component.



For d = 2k+1 the support points contained in F, are A_,, Ay
and for d = 2k+2, A—k-1""'Ak+1 are the support points con-
tained in F_ . Observe that in the latter case Ay 4 and Ay,
are equivalent and are on the boundary of F,.

The vectorspace of infinitesimal deformations of the cusp

singularity X can be identified in a canonical way with a

subspace of the cohomology group H1(x', ©

<X')' where Ox, is

the tangent sheaf of X'.

Let Y be the Stein space HZ/M. Then V acts on Y, and we

showed in Proposition 2.2. of [1] , that ul(x', Oys)
coker ((ei-id): (v,0,) —> H®(¥,0,)). A derivation §
HO(Y,QY) is given by a Fourier series

§ = a(j)e(uz)alaz + a(z)e(uz)a/az .
pemr M - uzM* H 2

where e(uz) is used as an abbreviation for exp(2ni(uz1+u'zz)).

We have from [1]:

Theorem 1.1.: The restriction of the canonical projection

HO(Y,QY) > a‘(x',ex.) to the subspace of derivations with

M . (2
T %

=0 forlgnot in -F, is an isomorphism.

-

Moreover we know already a certain number of elements of T;,

namely:

Proposition 1.2.: Assume d 2 3, and for every point Ai contained

fﬂ?rt consider the derivations f},a = e(-aéiz)(Aia/az1-§ia/azzy

ggf 1 S as ai-1. Their images in H1(¥',ex,) are linearly inde-

pendent elements of T;. In particular the dimension of ?; is
d=1 y »

at least ] (a;-1).
1=0




2. The module of Zariski differentials of a twodimensional

- —————

cusp singularity.

Le@ R be the local ring of (X,»), and let m be the maximal
ideal of R. As usual denote by g; the module of Kdhler diffe-
rentials, and let DR be the double dual of 21, the module of
Zariski differentials. If j: X' «—— X denotes the embedding

of the reqular locus of X then "DRisthe stalk of the direct
image sheaf j*Qi. at the singular point.Choosing any Stein
neighbourhood of the singular point one has the exact sequence
of local cohomology

_ 0 1 0 1 0 1 1 1
0 -— H{mf QX ) — H (X, QX ) — H (X', Q_x,) -——-—-)H{mfﬂ X) — 0.

Since kernel and cokernel are concentrated in the singular point,
we can pass to the direct limit and obtain

0 : 1 ¢
0 — Hy 3 ( 8) —> Qg —> Dp —> H (2 ) — 0.

R
Kernel.and cokernel are R-modules of firite length, so
m-adic completion will not change them. We want to give an

intrinsic description of the m-adic completions of R and Dp-

As in the first section let e(Ez) = exp(231(gz1+g'zz)). The
local ring R consists of all V~-invariant Fourier series

2 a e(uz), which converge for Im(z1)Im(zz) >> 0. The inva-
HEM* u
riance is expressed by au = a,e for all ee¢V, and the series
converges for Im(z1)Im(22) 2 ¢ if and only if |aul <
const. exp(27(au+a'y)) holds for all pairs of real numbers

(a,a') with a&’ 2c. As an easy consequence all Fourier coef-

ficients a, with p¢ M*u {0} vanish,



An element of the module of Zariski differentials is repre-
sented by a V-invariant differential form v = f1(z)dz1+f2(z)d22

on U, := {Im(z1)1m(22) 2 c}lc HxH, where again

fi(z) = ¥ . aéi)e(uz), i = 1,2. The invariance of w under
HEM : _
V is expressed by a;l) = ea£1) and asz) =€ 1a52) for all elements

H&M* and eeV. Together with the convergence of f1 and f2 this

implies that aé1) = aéz) = 0 for all p not in M:.

In their article [2] Freitag and Kiehl defined a very natural

filtration of the local ring R. Consider the ring R of all

formal V- invariant Fourier series 2 a e(uz). Let r
peM*u{0} 0

be the positive generator of the infinite cyclic subgroup

Tr(M*) ¢ @. For all natural numbers r define the ideals

Lo
mr== {feR | a, = 0 for Tr(u)< rr }, and let m_ be the

intersection of mr and R.

D

Then m, 3 m, D eee o mm Cm and m_ = (0). Since

1 i o - .r+s r21 _r

m, is the maximal ideal of R,one has n’ ¢ m_, §o the m. -
filtration is courser than the m - adic one. Freitag and
Kiehl proved nevertheless that the formal ring ﬁ is the m -~

adic completion of R.

Now let Da be the ﬁ - module of formal V invariant differential

forms w = £f.(z)dz, + £,(z)dz, with £, (z) = } a(j’e(uZ)
1 1 2 2 3 peMr B
j.= 1,2. Again there is an obvious filtration®
b 5 D .= - 1ot = 5(2) _
Df =Dy > Dy 2 ... with D := {weDg |a, =a 0 for
A
Tr(u) < rr, }. Let D, = D_Nn Do Then mD_C D_, ., and {nr}

is an {m_} filtration of Dp. The following is an immediate

consequence of the result of Freitag and Kiehl.



Proposition 2.1.: Dﬁ is the m - adic completion of D ]

R.

From now on we will work with the complete modules. Observe

that the m - adic completion of Q§ is just Qﬁ .

3. Proof of the main result

In this section we want to show that for cusp singularities
da-1

of degree 4 25 the dimension of T; is Z (ai—1) . Since cusp
i=0

singularities are Gorenstein (see [4], or observe that dz,dz,

descends to a holomorphic section of the canonical bundle over
X' without zeros), one has the nice local duality pairing

1 2 1 . 1
Extg (24,R) x H{_1(R2}) —> C.In particular the module Hi,y (9%)
has the same length as T1

X
see that an upper estimate for the length of H}w}(gﬁ) can be

.From the preceeding section we can

obtained by looking at the map ¢ :Qé —> Dg. The image of

N3 is generated by the elements fdg, where f and g are formal
R Yy

Pl
series from R.

Theorem 3.1.: Let d 2 5 and let u = aé1)e(pz)dz1 +
- . weMr %
) al(lz)e(uz)dz2 be an element of Dg *~ ~Buch that
ueM* - —_

a =a'¢= 0

u Y for all lattice points y = aAi

and 1 s a § ai-1. Then w is in the image of ¢ .

S Y

with 1e2Z

Remark: The Fourier coefficients are completely determined
by those for the points of the fundamental domain F,. So
the theorem gives only a finite number of conditions for a

differential form to be in the image of ¢.



Proof: We use the trace filtration {ﬁr} of Dﬁ . Let

w= I e(unz) (a‘(l”dz

I + 31(;2)‘322)
REM
+

1

be an element of DA with a:j)=0, 5 =1,2 for u = aA

R i’

Assume that mEﬁr for some r >0. By induction it is sufficient
A
to find an element n€Dr Nim ¢ such that

(1) The Pourier coefficients of n at p = aiA 1sas ai-'1 vanish,

i r
and

(2) ‘w - ned

r+1
= - (1) (2)
Let B(w) = {pe€M* lTr(u) =r and (a ''#0 or a, +0)} .

If B(w) = ¢ , then w is already in 3 and we are done. So

r+1

let p€B(w) . Clearly B(w) is finite, so again by induction it
A

is sufficient to construct n€ Dr Nnim ¢ - with

(1) and

(2') B(w-n) = B(u) - {p} .

By construction of the fundamental domain F + (see Section 1) we

can assume that u 4is an element of F+ : since w is invariant

n ea“)#o or a(z)

under V we ha a
ve e 13 ue

[y

T1a;2) +0 for all

£t € V. Hence Tr(eu) z'rr(u) for all e€V .

A
For an element vEMi let Fv be the series I e(evz)€ R.
e€EV

Lemma 3.2 Assume that pu can be written as a sum u=u1+u2 with

]
elements u1,u2€F*, such that (u1,u1) and (uz,ué) are linearly

independent over IR . Then there exists a complex linear combina-

tion n of dru and 1:-‘u

-_ 1

ar with B(w-n) = Blw) - {u} .
Ho




Remark:

(i) Since by assumption p is not of the form aAk .15a5ak—1'

dFu has zero Fourier coefficient at these points.
The Fourier coefficients of Fu dFu are different from zero
1 2
(1)

at ¢ nqt E(z)uz with e“), e(z)e V. But it follows from the

first two properties of the support points from the first section

that the multiples a2 1$a$ai-1 can be written as a sum of

it
two elements. of M} at most in a trivial way, that is

aAk=bAk+cAk, b ¢ >0. So property (1) holds for #n as in the Lemma.
(ii) The two embeddings of M} in Itz by mapping Vv = xw, to
(x,y) or to . (v,v') are related by the nonsingular matrix

("W 1). Hence it is equivalent to say (u,,u,) and (Basul)

-w' 1
*
are linearly independent or to say that (x1,y1) and (xz,yz) are

linearly independent, wherec ¥y =‘yi~x1w*,i = 1,2,

Proof of the Lemma:

We can assume that Mqr M 5 are elements of F,. So the estimate

Tr | ui) S Tr(e ui), i=1,2, e€V holds, with equality if and
only if uiis on the boundary of F,, and ¢ is the generator of V
which maps LY to the other boundary component. Hence

Tr( 5(1)u1 + 42) “2) 2 Tr (u1 + uz) = r with equality if and
only if 5‘1) = 5(2) = 1, The differential form

= (1) (2) (1) (2)
F dFu = 2ni (1)' i(Z)ev e(( ¢ PR uz)(e uzdz1 +(€ uz)ﬁzz)

¥ W2 €
can be written as a sum over infinitely many V-orbits. But by

what we said before among these orbits there is exactly one,

namely Vu , which contains a point of trace less or equal to r.
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So modulo Dr+

-—b

F dF, =1 := 211 I a 'a

b, Fu, n := eeve(eu z) (eu,dz, +(eu,) 'dz, ).

The complex vectorspace of differential forms

I e(ep z)(b(1)dz + b(z) dz,) which are invariant under V is

cev EN 1 EY 2

of dimension 2. Since (p,u') and (uz,uz') are linearly independent
N

n and dFu are a basis. Hence we can find complex numbers

a and B such that n = q dFu + B Fu dFu has properties (1)
2

1
and (2').

Returning to the proof of our Theorem we write yu as the unique
nonnegative linear combination yu = nAi + mAi+1, n>0, m2 0,
If both A; and Ai+1 are elements of F, we can apply Lemma 3.2..
Lét us call bad points of F, those, which are different from
aKi, 1 Sa Sa;_,, and for which the Lemma does not apply. If

d = 2k + 1, then all bad points are contained in the sectors
spanned by A-k-1 . A-k and by Ak'Ak+1 respectively (see figure
below ). For @ = 2k + 2 the only bad points are aA_k_1, aAk+1,

L N T

We will only treat the case @ = 2k+1, k 22, yu = nA, + mA, .,

n,m > 0. The others are done more or less the same way.

- = e e 1
Let Uy = DAL, Mo mA_, =€, (mAk+1), and consider Fh1d§12.
This differential form has nonzero Fourier coefficients at



(1) (1)

€

Byt éz)uz, € ' 5(2) € V, so we have to find out which

of these have trace less or equal than r. Since u, and M, are

1
in F,, and are not on the boundary, the traces of the 4, can be

estimated as follows:

cos >Tr(nA_k_1) > Tr(nAk) < Tr(nA3k+1) < ...

ces >Tr(mA_3k_1)> Tr(mA_k)< Tr(mAk*1) < ... .
Clearly Bath, = nAk + mA_k has the smallest trace among the
points we have to study. We want to show that the point with

the next largest trace is u = nAk + mAk+1. Observe that

-1

nA_k_1+mA_k = €, K. By our assumption p is an element of

-1
F+' hence 51
by the V-invariance of our form w we don't have to care about

4 is not. So we have Tr(u) $ Tr (e;1u), and

the case where equality holds.

We claim that Tr(A3k+1)
For example for the first inequality one computes easily that

-k-1) and t .
> Tr(A-k~-1) and that Tr(A_3kr1) >Tr(Ak+1)

- = e e -
Tr(A3k+1 A-k-1) = { €4- €, ) (Ak Ap) . But €y <1, and for positive
indices t 0 < A, <1 <ajl.
Hence modulo Dr+1 :
- ]
1/27ni Fu1dFu2 = eéve(a(u1+u2)z)((eu2)dz1+ (euz) dzz) +

+ I e(euz)(ce.p,dz, + (ec,u,)'dz.).
c€V 127" 172 . 2

By the same argument as before we can find a complex linear
combination R = Q dFu + B Fu1dFu2 such that w -~ R has Fourier
coefficient zero at u. Moreover all the other Fourier coefficients
a(i) e 1=1,2, with Tr(v ) S r remain unchanged, except at

VR HgtE,, where we possibly created a new one. But fortunately

the point Hyth, is no longer a bad point.



w* =[[6,2'2'2,2]]

bad pofi

Figure.




To complete the proof we have to show that we can remove this
coefficient without destroying what we obtained so far. For
this we need two differential forms PP with the following

properties:

= (1) (2) s = 2
nj véu* e({vz) (a\“j dz1 + av'j dzz)e im ¢, 3 1,
+

such that

(1) (2) (1) (2)
(a“1+"2.1' "wituz,1)  and (3"1*“2,2 a“1*“2,2)

are linearly independent over € ,and

(1) _ s
av,j =0 for i,j = 1,2 and Tr(v)sr, v*u1+u2 .
We can take h»1 = dF which by the estimate we gave above

u1+u2
has the second property. The following Lemma shows that n,

exists, if 425,

Lemma 3.3: If 4 = 2k+125, the point xmk + mA_k, n,m>0,

can always be written as a sum of elements B and C of F_.
t:(1)"_.(?-)€V'

linearly independent such that for any pair of units

not both equal to one, to estimate

re(e!MB + Py > erma, v ma L)

holds.

Proof. Without loss of generality we can assume msSn.

Consider the equation.



nA, + mA_, = (n-m)A, + mlay ,-1) A _ (3 =2)A +...d(ay . -NA_,

which is an easy consequence of the relations between the Ay
mentioned in the first section.

Since all a; are at least 2, the last summand on the right hand
side is not zero. Let C =mA_, .., B = nA + mA_, - mA_, , . Since
k22, B and C are linearly independent. elements of F_. Next
to Tr(B+C) the smallest possible values for the trace of e(1)B+.e(2
1 ;1 €;1B-rC, B+e,C. The first and
the third point are V-equivalent to the second and the last one

are the traces of ¢,B + C, B + ¢, C,

respectively. Since these are in F, it is sufficient to estimate
their traces.

One find easily that B +&£.,C = pu+ m(1 -61)(A_k-A and by

-k""‘) ’
the second summand

1

<1< g! and A', <A'

1 1 A x4 x B x4
on the right hand side has positive trace. This shows that

Tr(B+¢,C) > Tr(u). Finally B +e;1c = “*’m(€;1-1)(A-k+1+Ak+1)‘

O0<e . A_k>

But A + Ak+1 is totally positive, and since €, is a totally
postive unit of K (51-1) has positive trace. This ends the proof

of the Lemma and of the Theorem.

Putting together the lower estimate of Proposition 1.2. and

the preceeding result, we obtain immediately

Theorem 3.3.: Let X be a cusp singularity of degree 4 2 5,

defined by a lattice M and a subgroup V ¢ U; of finite

index. Let (ao,...,ad_1) be the cycle of selfintersection

numbers of the dual lattice M* Then the dimension of T;

d-1
is Z (a;-1), and a basis for T1 is given by the derivations
—1_.6 H (x',ex.), for -k s j sk, 1 s as aj:l, in case d=2k+1,

and for -k-1 s j sk, 1 s asa.-1, if d = 2k+ 2.




1

Proof: We need to show that H{

a-1
T = £ (ai-1) elements as a complex vectorspace. By Theorem 3.1.
i=0

HEOI(Q&) is generated by the images of the 2.1 forms

) (né) can be generated by

I e{epz)dz

3=12 , p=an €F_, 1$a5ai-1 .
e€V

i ! i
For each Ai we choose a pair of complex numbers (ci,ci) which

is not a multiple of (Ai'Ai) . Since dFu maps to zero in

1
quﬂﬂﬁ) we are left with the 1 generators

m(aAi):= I e(eaAi) (cisdz

+ cie'dz
e€v

1 2) -

Remark: J. Wahl [8] and E. Locoijenga [5] have computed the di-
mension of smoothing components of twodimensional cusp singulari-
ties. If a cusp is smoothable then possibly there are several
components in the base space of the semiuniversal deformation,

where smoothings occur, but they all have the same dimension
a-1

L (ai—1)-2- (8-5). For d =5 this gives the same value as
i=0

our formular for dim"l‘1

% ! which is no surprise, since the base

space of the semiuniversal deformation of a Gorenstein surface
singularity of embedding dimension 5 is smooth and the general
fibre is nonsingular. For 6sds9 all cusps are smoothable by

[4] and [7] . Since the smoothing components have strictly

smaller dimension that T; the base space of the semiuniversal
deformation has to be singular in this range... Just to indicate

that our results give a precise description of the Zariski-differ-

entials we mention

Corollary 3.5.: For a cusp singularity of degree d25 the mi-

nimal number of generators of Da is 2d.



Proof: It is well known that in this case the embedding dimen-
sion of the singularity, which equals the corank of né  is also

d . A minimal set of generators for né is given by dFA ,Ai€F+.
i

We consider the set of generators obtained at the end of the
proof of Theorem 3.4. From the proof of Theorem 3.1. it follows

that modulo the image of ¢

FAJ‘ ° m(aAi) Ll

13 . m((a+1)Ai)

if a<ai—1, and FAjow((ai-ﬂAi) = 0 .

This shows that the corank of H}“}(Q;) is also d so we need

at most 2d elements to generate Dﬁ .

On the other hand it is easy to see that the elements

CEVE(CAiZ)dzj ’ J=1'2' Ai
dent elements of Dﬁaﬁc . A product of an element of DA and of a

A
formal series in R with zero constant term must have zero

€F,_ , are mapped to linearly indepen-

Fourier coefficient at support points. Otherwise one of the Ai

would have a representation as a sum of two elements of M: ’

which is impossible.

1

Remark: For ds4 the structure of H{’}(n is more compli-

1
R)
cated, so that one cannot apply these arguments. In this range

it is possibly simpler to work with the equations which here are

explicitly known (see [4]) .



References

1.

Behnke, K., Infinitesimal deformations of cusp singularities,
Math. Ann. 265, 407 - 422 (1983).

Freitag, R., Kiehl, R., Algebraische Eigenschaften in den
Spitzen der Hilbertschen Modulgruppe, Invent. Math. 24,
121 - 148 (1974).

Hirzebruch, F., Hilbert modular surfaces, Ens. Math. 19,
183 - 281 (1973).

Karras, U., Eigenschaften der lokalen Ringe in zweidimen-
sionalen Spitzen, Math. Ann. 215, 119 - 129 (1975).

Looijenga, E., Rational surfaces with an anticanonical
cycle, Ann. of Math. 114, 267 - 322 (1981).

Nakamura, I., Infinitesimal deformations of cusp singularities
(To appear).

Pinkham, H., Deformations of algebraic varieties with
Gm- action, Astérispue 20.

Wahl, J., Smoothings of normal surface singularities
Topology 20, 219 - 248 (1981).



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 

