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DEFORMATIONS AND HOMOTOPY THEORY OF RELATIVE ROTA-BAXTER LIE
ALGEBRAS

ANDREY LAZAREV, YUNHE SHENG, AND RONG TANG

Abstract. We determine the L∞-algebra that controls deformations of a relative Rota-Baxter Lie
algebra and show that it is an extension of the dg Lie algebra controlling deformations of the
underlying LieRep pair by the dg Lie algebra controlling deformations of the relative Rota-Baxter
operator. Consequently, we define the cohomology of relative Rota-Baxter Lie algebras and relate
it to their infinitesimal deformations. A large class of relative Rota-Baxter Lie algebras is obtained
from triangular Lie bialgebras and we construct a map between the corresponding deformation
complexes. Next, the notion of a homotopy relative Rota-Baxter Lie algebra is introduced. We
show that a class of homotopy relative Rota-Baxter Lie algebras is intimately related to pre-Lie∞-
algebras.
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1. Introduction

In this paper we initiate the study of deformations and cohomology of relative Rota-Baxter Lie
algebras and their homotopy versions.

1.1. Rota-Baxter operators. The concept of Rota-Baxter operators on associative algebras was
introduced by G. Baxter [6] in his study of fluctuation theory in probability. Recently it has found
many applications, including Connes-Kreimer’s [12] algebraic approach to the renormalization
in perturbative quantum field theory. Rota-Baxter operators lead to the splitting of operads [3,
45], and are closely related to noncommutative symmetric functions and Hopf algebras [16, 27,
55]. Recently the relationship between Rota-Baxter operators and double Poisson algebras were
studied in [23]. In the Lie algebra context, a Rota-Baxter operator was introduced independently
in the 1980s as the operator form of the classical Yang-Baxter equation that plays important
roles in many subfields of mathematics and mathematical physics such as integrable systems and
quantum groups [10, 47]. For further details on Rota-Baxter operators, see [25, 26].

To better understand the classical Yang-Baxter equation and related integrable systems, the
more general notion of an O-operator (later also called a relative Rota-Baxter operator or a gen-
eralized Rota-Baxter operator) on a Lie algebra was introduced by Kupershmidt [33]; this notion
can be traced back to Bordemann [7]. Relative Rota-Baxter operators provide solutions of the
classical Yang-Baxter equation in the semidirect product Lie algebra and give rise to pre-Lie
algebras [2].

1.2. Deformations. The concept of a formal deformation of an algebraic structure began with
the seminal work of Gerstenhaber [20, 21] for associative algebras. Nijenhuis and Richardson
extended this study to Lie algebras [43, 44]. More generally, deformation theory for algebras
over quadratic operads was developed by Balavoine [4]. For more general operads we refer the
reader to [31, 37, 40], and the references therein. There is a well known slogan, often attributed
to Deligne, Drinfeld and Kontsevich: every reasonable deformation theory is controlled by a
differential graded (dg) Lie algebra, determined up to quasi-isomorphism. This slogan has been
made into a rigorous theorem by Lurie and Pridham, cf. [38, 46], and a recent simple treatment
in [24].

It is also meaningful to deform maps compatible with given algebraic structures. Recently,
the deformation theory of morphisms was developed in [8, 18, 19], the deformation theory of O-
operators was developed in [53] and the deformation theory of diagrams of algebras was studied
in [5, 17] using the minimal model of operads and the method of derived brackets [32, 39, 54].

Sometimes a dg Lie algebra up to quasi-isomorphism controlling a deformation theory man-
ifests itself naturally as an L∞-algebra. This often happens when one tries to deform several
algebraic structures as well as a compatibility relation between them, such as diagrams of al-
gebras mentioned above. We will see that this also happens in the study of deformations of a
relative Rota-Baxter Lie algebra, which consists of a Lie algebra, its representation and a relative
Rota-Baxter operator (see Definition 2.10 below). We apply Voronov’s higher derived brackets
construction [54] to construct the L∞-algebra that characterizes relative Rota-Baxter Lie alge-
bras as Maurer-Cartan (MC) elements in it. This leads, by a well-known procedure of twisting,
to an L∞-algebra controlling deformations of relative Rota-Baxter Lie algebras. Moreover, we
show that this L∞-algebra is an extension of the dg Lie algebra that controls deformations of
LieRep pairs (a LieRep pair consists of a Lie algebra and a representation) given in [1] by the dg
Lie algebra that controls deformations of relative Rota-Baxter operators given in [53].
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1.3. Cohomology theories. A classical approach for studying a mathematical structure is asso-
ciating invariants to it. Prominent among these are cohomological invariants, or simply cohomol-
ogy, of various types of algebras. Cohomology controls deformations and extension problems of
the corresponding algebraic structures. Cohomology theories of various kinds of algebras have
been developed and studied in [11, 20, 29, 30]. More recently these classical constructions have
been extended to strong homotopy (or infinity) versions of the algebras, cf. for example [28].

In the present paper we study the cohomology theory for relative Rota-Baxter Lie algebras. A
relative Rota-Baxter Lie algebra consists of a Lie algebra, its representation and an operator on it
together with appropriate compatibility conditions. Constructing the corresponding cohomology
theory is not straightforward due to the complexity of these data. We solve this problem by
constructing a deformation complex for a relative Rota-Baxter Lie algebra and endowing it with
an L∞-structure. Infinitesimal deformations of relative Rota-Baxter Lie algebras are classified
by the second cohomology group. Moreover, we show that there is a long exact sequence of
cohomology groups linking the cohomology of LieRep pairs introduced in [1], the cohomology
of O-operators introduced in [53] and the cohomology of relative Rota-Baxter Lie algebras.

The above general framework has two important special cases: Rota-Baxter Lie algebras and
triangular Lie bialgebras and we introduce the corresponding cohomology theories for these ob-
jects. We also show that infinitesimal deformations of Rota-Baxter Lie algebras and triangular
Lie bialgebras are classified by the corresponding second cohomology groups.

1.4. Homotopy invariant construction of Rota-Baxter Lie algebras. Homotopy invariant al-
gebraic structures play a prominent role in modern mathematical physics [52]. Historically, the
first such structure was that of an A∞-algebra introduced by Stasheff in his study of based loop
spaces [49]. Relevant later developments include the work of Lada and Stasheff [34, 51] about
L∞-algebras in mathematical physics and the work of Chapoton and Livernet [9] about pre-Lie∞-
algebras. Strong homotopy (or infinity-) versions of a large class of algebraic structures were
studied in the context of operads in [37, 41].

Dotsenko and Khoroshkin studied the homotopy of Rota-Baxter operators on associative alge-
bras in [15], and noted that “in general compact formulas are yet to be found”. For Rota-Baxter
Lie algebras, one encounters a similarly challenging situation. In this paper, we use the approach
of L∞-algebras and their MC elements to formulate the notion of a (strong) homotopy version
of a relative Rota-Baxter Lie algebra, which consists of an L∞-algebra, its representation and a
homotopy relative Rota-Baxter operator. We show that strict homotopy relative Rota-Baxter oper-
ators give rise to pre-Lie∞-algebras, and conversely the identity map is a strict homotopy relative
Rota-Baxter operator on the subadjacent L∞-algebra of a pre-Lie∞-algebra.

1.5. Outline of the paper. In Section 2, we briefly recall the deformation theory and the co-
homology of LieRep pairs and relative Rota-Baxter operators. In Section 3, we establish the
deformation theory of relative Rota-Baxter Lie algebras. In Section 4, we introduce the corre-
sponding cohomology theory and explain how it is related to infinitesimal deformations of rela-
tive Rota-Baxter Lie algebras in the usual way. In Section 4.3, we study the cohomology theory of
Rota-Baxter Lie algebras. In Section 4.4, we explain how the cohomology theories of triangular
Lie bialgebras and of relative Rota-Baxter Lie algebras are related. In Section 5, we introduce the
notion of a homotopy relative Rota-Baxter operator and characterize it as an MC element in a cer-
tain L∞-algebra. Finally, we exhibit a close relationship between homotopy relative Rota-Baxter
Lie algebras of a certain kind and pre-Lie∞-algebras.
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1.6. Notation and conventions. Throughout this paper, we work with a coefficient field K which
is of characteristic 0, and R is a pro-Artinian K-algebra, that is a projective limit of local Artinian
K-algebras.

A permutation σ ∈ Sn is called an (i, n−i)-shuffle if σ(1) < · · · < σ(i) and σ(i+1) < · · · < σ(n).
If i = 0 or n, we assume σ = Id. The set of all (i, n − i)-shuffles will be denoted by S(i,n−i). The
notion of an (i1, · · · , ik)-shuffle and the set S(i1,··· ,ik) are defined analogously.

Let V = ⊕k∈ZVk be a Z-graded vector space. We will denote by S(V) the symmetric algebra
of V . That is, S(V) := T(V)/I, where T(V) is the tensor algebra and I is the 2-sided ideal of
T(V) generated by all homogeneous elements of the form x ⊗ y − (−1)xyy ⊗ x. We will write
S(V) = ⊕+∞

i=0Si(V). Moreover, we denote the reduced symmetric algebra by S̄(V) := ⊕+∞
i=1Si(V).

Denote the product of homogeneous elements v1, · · · , vn ∈ V in Sn(V) by v1 � · · · � vn. The
degree of v1 � · · · � vn is by definition the sum of the degrees of vi. For a permutation σ ∈ Sn and
v1, · · · , vn ∈ V , the Koszul sign ε(σ) = ε(σ; v1, · · · , vn) ∈ {−1, 1} is defined by

v1 � · · · � vn = ε(σ; v1, · · · , vn)vσ(1) � · · · � vσ(n).

The desuspension operator s−1 changes the grading of V according to the rule (s−1V)i := V i+1.
The degree −1 map s−1 : V → s−1V is defined by sending v ∈ V to its copy s−1v ∈ s−1V .

A degree 1 element θ ∈ g1 is called an MC element of a differential graded Lie algebra
(⊕k∈Zg

k, [·, ·], d) if it satisfies the MC equation: dθ + 1
2 [θ, θ] = 0.

2. Maurer-Cartan characterizations of LieRep pairs and relative Rota-Baxter operators

2.1. Bidegrees and the Nijenhuis-Richardson bracket. Let g be a vector space. For all n ≥ 0,
set Cn(g, g) := Hom(∧n+1g, g). Let g1 and g2 be two vector spaces and elements in g1 will be
denoted by x, y, z, xi and elements in g2 will be denoted by u, v,w, vi. For a multilinear map
f : ∧kg1 ⊗ ∧

lg2 → g1, we define f̂ ∈ Ck+l−1(g1 ⊕ g2, g1 ⊕ g2) by

f̂
(
(x1, v1), · · · , (xk+l, vk+l)

)
:=

∑
τ∈S(k,l)

(−1)τ
(

f (xτ(1), · · · , xτ(k), vτ(k+1), · · · , vτ(k+l)), 0
)
.

Similarly, for f : ∧kg1 ⊗ ∧
lg2 → g2, we define f̂ ∈ Ck+l−1(g1 ⊕ g2, g1 ⊕ g2) by

f̂
(
(x1, v1), · · · , (xk+l, vk+l)

)
:=

∑
τ∈S(k,l)

(−1)τ
(
0, f (xτ(1), · · · , xτ(k), vτ(k+1), · · · , vτ(k+l))

)
.

The linear map f̂ is called a lift of f . We define gk,l := ∧kg1 ⊗ ∧
lg2. The vector space ∧n(g1 ⊕ g2)

is isomorphic to the direct sum of gk,l, k + l = n.

Definition 2.1. A linear map f ∈ Hom
(
∧k+l+1 (g1⊕g2), g1⊕g2

)
has a bidegree k|l, which is denoted

by || f || = k|l, if f satisfies the following two conditions:
(i) If X ∈ gk+1,l, then f (X) ∈ g1. If X ∈ gk,l+1, then f (X) ∈ g2;

(ii) In all the other cases f (X) = 0.
We denote the set of homogeneous linear maps of bidegree k|l by Ck|l(g1 ⊕ g2, g1 ⊕ g2).

It is clear that this gives a well-defined bigrading on the vector space Hom
(
∧k+l+1 (g1⊕ g2), g1⊕

g2
)
. We have k + l ≥ 0, k, l ≥ −1 because k + l + 1 ≥ 1 and k + 1, l + 1 ≥ 0.
Let g be a vector space. We consider the graded vector space C∗(g, g) = ⊕+∞

n=0C
n(g, g) =

⊕+∞
n=0Hom(∧n+1g, g). Then C∗(g, g) equipped with the Nijenhuis-Richardson bracket

[P,Q]NR = P◦̄Q − (−1)pqQ◦̄P, ∀P ∈ Cp(g, g),Q ∈ Cq(g, g),(1)
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is a graded Lie algebra, where P◦̄Q ∈ Cp+q(g, g) is defined by

(P◦̄Q)(x1, · · · , xp+q+1) =
∑

σ∈S(q+1,p)

(−1)σP(Q(xσ(1), · · · , xσ(q+1)), xσ(q+2), · · · , xσ(p+q+1)).(2)

Remark 2.2. In fact, the Nijenhuis-Richardson bracket is the commutator of coderivations on the
cofree conilpotent cocommutative coalgebra S̄c(s−1g). See [43, 50] for more details.

The following lemmas are very important in our later study.

Lemma 2.3. The Nijenhuis-Richardson bracket on C∗(g1 ⊕ g2, g1 ⊕ g2) is compatible with the
bigrading. More precisely, if || f || = k f |l f , ||g|| = kg|lg, then [ f , g]NR has bidegree (k f + kg)|(l f + lg).

Proof. It follows from direct computation. �

Remark 2.4. In our later study, the subspaces Ck|0(g1 ⊕ g2, g1 ⊕ g2) and C−1|l(g1 ⊕ g2, g1 ⊕ g2) will
be frequently used. By the above lift map, we have the following isomorphisms:

Ck|0(g1 ⊕ g2, g1 ⊕ g2) � Hom(∧k+1
g1, g1) ⊕ Hom(∧k

g1 ⊗ g2, g2),(3)
C−1|l(g1 ⊕ g2, g1 ⊕ g2) � Hom(∧l

g2, g1).(4)

Lemma 2.5. If || f || = (−1)|k and ||g|| = (−1)|l, then [ f , g]NR = 0. Consequently, ⊕+∞
l=1C−1|l(g1 ⊕

g2, g1 ⊕ g2) is an abelian subalgebra of the graded Lie algebra (C∗(g1 ⊕ g2, g1 ⊕ g2), [·, ·]NR)

Proof. It follows from Lemma 2.3. �

2.2. MC characterization, deformations and cohomology of LieRep pairs. Let g be a vector
space. For µ ∈ C1(g, g) = Hom(∧2g, g), we have

[µ, µ]NR(x, y, z) = 2(µ◦̄µ)(x, y, z) = 2
(
µ(µ(x, y), z) + µ(µ(y, z), x) + µ(µ(z, x), y)

)
.

Thus, µ defines a Lie algebra structure on g if and only if [µ, µ]NR = 0.
Define the set of 0-cochains C0

Lie(g; g) to be 0, and define the set of n-cochains Cn
Lie(g; g) to be

C
n
Lie(g; g) := Hom(∧n

g, g), n ≥ 1.

The Chevalley-Eilenberg coboundary operator dCE of the Lie algebra g with coefficients in the
adjoint representation is defined by

dCE f = (−1)n−1[µ, f ]NR, ∀ f ∈ Cn
Lie(g; g).(5)

The resulting cohomology is denoted byH∗Lie(g; g).

Definition 2.6. A LieRep pair consists of a Lie algebra (g, [·, ·]g) and a representation ρ : g −→
gl(V) of g on a vector space V .

Usually we will also use µ to indicate the Lie bracket [·, ·]g, and denote a LieRep pair by
(g, µ; ρ).

Note that µ + ρ ∈ C1|0(g ⊕ V, g ⊕ V). Moreover, the fact that µ is a Lie bracket and ρ is a
representation is equivalent to that

[µ + ρ, µ + ρ]NR = 0.

Next, the following result holds:

Proposition 2.7. ([1]) Let g and V be two vector spaces. Then
(
⊕+∞

k=0 Ck|0(g ⊕ V, g ⊕ V), [·, ·]NR
)

is
a graded Lie algebra. Its MC elements are precisely LieRep pairs.

�
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Let (g, µ; ρ) be a LieRep pair. By Proposition 2.7, π = µ+ρ is an MC element of the graded Lie
algebra

(
⊕+∞

k=0Ck|0(g⊕V, g⊕V), [·, ·]NR
)
. It follows from the graded Jacobi identity that dπ := [π, ·]NR

is a graded derivation of the graded Lie algebra
(
⊕+∞

k=0 Ck|0(g⊕V, g⊕V), [·, ·]NR
)

satisfying d2
π = 0.

Therefore we have

Theorem 2.8. ([1]) Let (g, µ; ρ) be a LieRep pair. Then
(
⊕+∞

k=0 Ck|0(g ⊕ V, g ⊕ V), [·, ·]NR, dπ
)

is a
dg Lie algebra.

Furthermore, (g, µ+µ′; ρ+ρ′) is also a LieRep pair for µ′ ∈ Hom(∧2g, g) and ρ′ ∈ Hom(g, gl(V))
if and only if µ′ + ρ′ is an MC element of the dg Lie algebra

(
⊕+∞

k=0 Ck|0(g ⊕ V, g ⊕ V), [·, ·]NR, dπ
)
.
�

Let (g, µ; ρ) be a LieRep pair. Define the set of 0-cochains C0(g, ρ) to be 0. For n ≥ 1, we
define the set of n-cochains Cn(g, ρ) to be

C
n(g, ρ) := C(n−1)|0(g ⊕ V, g ⊕ V) = Hom(∧n

g, g) ⊕ Hom(∧n−1
g ⊗ V,V).

Define the coboundary operator ∂ : Cn(g, ρ) → Cn+1(g, ρ) by

(6) ∂ f := (−1)n−1[µ + ρ, f ]NR.

By Proposition 2.7, we deduce that ∂ ◦ ∂ = 0. Thus we obtain the complex (⊕+∞
n=0C

n(g, ρ), ∂).

Definition 2.9. ([1]) The cohomology of the cochain complex (⊕+∞
n=0C

n(g, ρ), ∂) is called the coho-
mology of the LieRep pair (g, µ; ρ). The resulting n-th cohomology group is denoted byHn(g, ρ).

Now we give the precise formula for ∂. For any n-cochain f ∈ Cn(g, ρ), by (3), we will write
f = ( fg, fV), where fg ∈ Hom(∧ng, g) and fV ∈ Hom(∧n−1g ⊗ V,V). Then we have

∂ f =
(
(∂ f )g, (∂ f )V

)
,(7)

where (∂ f )g = dCE fg and (∂ f )V is given by

(∂ f )V(x1, · · · , xn, v)

=
∑

1≤i< j≤n

(−1)i+ j fV([xi, x j]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xn, v) + (−1)n−1ρ( fg(x1, · · · , xn))v(8)

+

n∑
i=1

(−1)i+1
(
ρ(xi) fV(x1, · · · , x̂i, · · · , xn, v) − fV

(
x1, · · · , x̂i, · · · , xn, ρ(xi)v

))
.

2.3. MC characterization, deformations and cohomologies of relative Rota-Baxter opera-
tors. We now recall the notion of a relative Rota-Baxter operator. Let (g, [·, ·]g) be a Lie algebra
and ρ : g −→ gl(V) a representation of g on a vector space V .

Definition 2.10. (i) A linear operator T : g −→ g is called a Rota-Baxter operator if

(9) [T (x),T (y)]g = T
(
[T (x), y]g + [x,T (y)]g

)
, ∀x, y ∈ g.

Moreover, a Lie algebra (g, [·, ·]g) with a Rota-Baxter operator T is called a Rota-Baxter
Lie algebra. We denote it by (g, [·, ·]g,T ).

(ii) A relative Rota-Baxter Lie algebra is a triple ((g, [·, ·]g), ρ,T ), where (g, [·, ·]g) is a Lie
algebra, ρ : g −→ gl(V) is a representation of g on a vector space V and T : V −→ g is a
relative Rota-Baxter operator, i.e.

(10) [Tu,Tv]g = T
(
ρ(Tu)(v) − ρ(Tv)(u)

)
, ∀u, v ∈ V.
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Note that a Rota-Baxter operator on a Lie algebra is a relative Rota-Baxter operator with respect
to the adjoint representation.

Definition 2.11. (i) Let (g, [·, ·]g,T ) and (g′, {·, ·}g′ ,T ′) be Rota-Baxter Lie algebras. A linear
map φ : g′ → g is called a homomorphism of Rota-Baxter Lie algebras if φ is a Lie
algebra homomorphism and φ ◦ T ′ = T ◦ φ.

(ii) Let ((g, [·, ·]g), ρ,T ) and ((g′, {·, ·}g′), ρ′,T ′) be two relative Rota-Baxter Lie algebras. A
homomorphism from ((g′, {·, ·}g′), ρ′,T ′) to ((g, [·, ·]g), ρ,T ) consists of a Lie algebra ho-
momorphism φ : g′ −→ g and a linear map ϕ : V ′ −→ V such that

T ◦ ϕ = φ ◦ T ′,(11)
ϕρ′(x)(u) = ρ(φ(x))(ϕ(u)), ∀x ∈ g′, u ∈ V ′.(12)

In particular, if φ and ϕ are invertible, then (φ, ϕ) is called an isomorphism.

Define a skew-symmetric bracket operation on the graded vector space ⊕+∞
k=1Hom(∧kV, g) by�

θ, φ
�

:= (−1)n−1[[µ + ρ, θ]NR, φ]NR, ∀θ ∈ Hom(∧nV, g), φ ∈ Hom(∧mV, g).

Proposition 2.12. ([53]) With the above notation, (⊕+∞
k=1Hom(∧kV, g), ~·, ·�) is a graded Lie alge-

bra. Its MC elements are precisely relative Rota-Baxter operators on (g, [·, ·]g) with respect to the
representation (V; ρ).

�

Let T : V −→ g be a relative Rota-Baxter operator. By Proposition 2.12, T is an MC element
of the graded Lie algebra (⊕+∞

k=1Hom(∧kV, g), ~·, ·�). It follows from graded Jacobi identity that
dT := ~T, ·� is a graded derivation on the graded Lie algebra (⊕+∞

k=1Hom(∧kV, g), ~·, ·�) satisfying
d2

T = 0. Therefore we have

Theorem 2.13. ([53]) With the above notation, (⊕+∞
k=1Hom(∧kV, g), ~·, ·� , dT ) is a dg Lie algebra.

Furthermore, T + T ′ is still a relative Rota-Baxter operator on the Lie algebra (g, [·, ·]g) with
respect to the representation (V; ρ) for T ′ : V −→ g if and only if T ′ is an MC element of the dg
Lie algebra (⊕+∞

k=1Hom(∧kV, g), ~·, ·� , dT ).
�

Now we define the cohomology governing deformations of a relative Rota-Baxter operator
T : V → g. The spaces of 0-cochains C0(T ) and of 1-cochains C1(T ) are set to be 0. For n ≥ 2,
define the vector space of n-cochains Cn(T ) as Cn(T ) = Hom(∧n−1V, g).

Define the coboundary operator δ : Cn(T ) → Cn+1(T ) by

(13) δθ = (−1)n−2 ~T, θ� = (−1)n−2[[µ + ρ,T ]NR, θ]NR, ∀θ ∈ Hom(∧n−1V, g).

By Proposition 2.12, (⊕+∞
n=0C

n(T ), δ) is a cochain complex.

Definition 2.14. ([53]) The cohomology of the cochain complex (⊕+∞
n=0C

n(T ), δ) is called the co-
homology of the relative Rota-Baxter operator T : V → g. The corresponding n-th cohomology
group is denoted byHn(T ).

See [53] for explicit formulas of the coboundary operator δ.

3. Maurer-Cartan characterization and deformations of relative Rota-Baxter Lie algebras

In this section, we apply Voronov’s higher derived brackets to construct the L∞-algebra that
characterizes relative Rota-Baxter Lie algebras as MC elements. Consequently, we obtain the
L∞-algebra that controls deformations of a relative Rota-Baxter Lie algebra.
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3.1. L∞-algebras and higher derived brackets. The notion of an L∞-algebra was introduced
by Stasheff in [51]. See [34, 35] for more details.

Definition 3.1. An L∞-algebra is a Z-graded vector space g = ⊕k∈Zg
k equipped with a collection

(k ≥ 1) of linear maps lk : ⊗kg → g of degree 1 with the property that, for any homogeneous
elements x1, · · · , xn ∈ g, we have

(i) (graded symmetry) for every σ ∈ Sn,

ln(xσ(1), · · · , xσ(n−1), xσ(n)) = ε(σ)ln(x1, · · · , xn−1, xn),

(ii) (generalized Jacobi identity) for all n ≥ 1,
n∑

i=1

∑
σ∈S(i,n−i)

ε(σ)ln−i+1(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n)) = 0.

There is a canonical way to view a differential graded Lie algebra as an L∞-algebra.

Lemma 3.2. Let (g, [·, ·]g, d) be a dg Lie algebra. Then (s−1g, {li}
+∞
i=1) is an L∞-algebra, where

l1(s−1x) = s−1d(x), l2(s−1x, s−1y) = (−1)xs−1[x, y]g, lk = 0, for all k ≥ 3, and homogeneous
elements x, y ∈ g.

�

Definition 3.3. ([13]) A filtered L∞-algebra is a pair (g,F•g), where g is an L∞-algebra and F•g
is a descending filtration of the graded vector space g such that g = F1g ⊃ · · · ⊃ Fng ⊃ · · · and

(i) for all k ≥ 1 and n1, n2, · · · , nk ≥ 1 we have

lk(Fn1g,Fn2g, · · · ,Fnkg) ⊂ Fn1+n2+···+nkg,

(ii) g is complete with respect to the filtration, i.e. g � lim
←−−
g/Fng, as L∞-algebras.

Definition 3.4. The set of MC elements, denoted by MC(g), of a filtered L∞-algebra (g,F•g) is
the set of those α ∈ g0 satisfying the MC equation

+∞∑
k=1

1
k!

lk(α, · · · , α) = 0.(14)

Let α be an MC element. Define lαk : ⊗kg → g (k ≥ 1) by

lαk (x1, · · · , xk) =

+∞∑
n=0

1
n!

lk+n(α, · · · , α︸    ︷︷    ︸
n

, x1, · · · , xk).(15)

Theorem 3.5. ([22]) With the above notation, (g, {lαk }
+∞
k=1) is an L∞-algebra, obtained from g by

twisting with the MC element α. Moreover, α + α′ is an MC element of (g,F•g) if and only if α′ is
an MC element of the twisted L∞-algebra (g, {lαk }

+∞
k=1).

�

One method for constructing explicit L∞-algebras is given by Voronov’s derived brackets [54].
Let us recall this construction.

Definition 3.6. A V-data consists of a quadruple (L, h, P,∆) where
• (L, [·, ·]) is a graded Lie algebra,
• h is an abelian graded Lie subalgebra of (L, [·, ·]),
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• P : L → L is a projection, that is P ◦ P = P, whose image is h and kernel is a graded Lie
subalgebra of (L, [·, ·]),
• ∆ is an element in ker(P)1 such that [∆,∆] = 0.

Theorem 3.7. ([54]) Let (L, h, P,∆) be a V-data. Then (h, {lk}
+∞
k=1) is an L∞-algebra where

lk(a1, · · · , ak) = P [· · · [[︸︷︷︸
k

∆, a1], a2], · · · , ak], for homogeneous a1, · · · , ak ∈ h.(16)

We call {lk}
+∞
k=1 the higher derived brackets of the V-data (L, h, P,∆).

�

There is also an L∞-algebra structure on a bigger space, which is used to study simultaneous
deformations of morphisms between Lie algebras in [5, 18, 19].

Theorem 3.8. ([54]) Let (L, h, P,∆) be a V-data. Then the graded vector space s−1L ⊕ h is an
L∞-algebra where

l1(s−1x, a) = (−s−1[∆, x], P(x + [∆, a])),
l2(s−1x, s−1y) = (−1)xs−1[x, y],

lk(s−1x, a1, · · · , ak−1) = P[· · · [[x, a1], a2] · · · , ak−1], k ≥ 2,
lk(a1, · · · , ak−1, ak) = P[· · · [[∆, a1], a2] · · · , ak], k ≥ 2.

Here a, a1, · · · , ak are homogeneous elements of h and x, y are homogeneous elements of L. All
the other L∞-algebra products that are not obtained from the ones written above by permutations
of arguments, will vanish.

�

Remark 3.9. ([18]) Let L′ be a graded Lie subalgebra of L that satisfies [∆, L′] ⊂ L′. Then
s−1L′ ⊕ h is an L∞-subalgebra of the above L∞-algebra (s−1L ⊕ h, {lk}

+∞
k=1).

3.2. The L∞-algebra that controls deformations of relative Rota-Baxter Lie algebras. Let g
and V be two vector spaces. Then we have a graded Lie algebra (⊕+∞

n=0C
n(g ⊕ V, g ⊕ V), [·, ·]NR).

This graded Lie algebra gives rise to a V-data, and an L∞-algebra naturally.

Proposition 3.10. We have a V-data (L, h, P,∆) as follows:
• the graded Lie algebra (L, [·, ·]) is given by

(
⊕+∞

n=0 Cn(g ⊕ V, g ⊕ V), [·, ·]NR
)
;

• the abelian graded Lie subalgebra h is given by

(17) h := ⊕+∞
n=0C

−1|(n+1)(g ⊕ V, g ⊕ V) = ⊕+∞
n=0Hom(∧n+1V, g);

• P : L → L is the projection onto the subspace h;
• ∆ = 0.

Consequently, we obtain an L∞-algebra (s−1L ⊕ h, {lk}
+∞
k=1), where li are given by

l1(s−1Q, θ) = P(Q),
l2(s−1Q, s−1Q′) = (−1)Qs−1[Q,Q′]NR,

lk(s−1Q, θ1, · · · , θk−1) = P[· · · [Q, θ1]NR, · · · , θk−1]NR,

for homogeneous elements θ, θ1, · · · , θk−1 ∈ h, homogeneous elements Q,Q′ ∈ L and all the other
possible combinations vanish.
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Proof. Note that h = ⊕+∞
n=0C

−1|(n+1)(g ⊕ V, g ⊕ V) = ⊕+∞
n=0Hom(∧n+1V, g). By Lemma 2.5, we deduce

that h is an abelian subalgebra of (L, [·, ·]).
Since P is the projection onto h, it is obvious that P ◦ P = P. It is also straightforward to see

that the kernel of P is a graded Lie subalgebra of (L, [·, ·]). Thus (L, h, P,∆ = 0) is a V-data.
The other conclusions follows immediately from Theorem 3.8. �

By Lemma 2.3, we obtain that

(18) L′ = ⊕+∞
n=0C

n|0(g⊕V, g⊕V), where Cn|0(g⊕V, g⊕V) = Hom(∧n+1
g, g)⊕Hom(∧n

g⊗V,V)

is a graded Lie subalgebra of
(
⊕+∞

n=0 Cn(g ⊕ V, g ⊕ V), [·, ·]NR
)
.

Corollary 3.11. With above notation, (s−1L′ ⊕ h, {li}
+∞
i=1) is an L∞-algebra, where li are given by

l2(s−1Q, s−1Q′) = (−1)Qs−1[Q,Q′]NR,

lk(s−1Q, θ1, · · · , θk−1) = P[· · · [Q, θ1]NR, · · · , θk−1]NR,

for homogeneous elements θ1, · · · , θk−1 ∈ h, homogeneous elements Q,Q′ ∈ L′, and all the other
possible combinations vanish.

Proof. It follows from Remark 3.9 and Proposition 3.10. �

Moreover, for all n ≥ 1, we set

Fn(s−1L′ ⊕ h) = s−1
(
⊕+∞

k=0 Hom(∧k+1
g, g) ⊕ Hom(∧k

g ⊗ V,V)
)
⊕

(
⊕+∞

k=n Hom(∧kV, g)
)
.(19)

Lemma 3.12. With above notation, (s−1L′ ⊕ h, {li}
+∞
i=1) is a filtered L∞-algebra.

Proof. By (19), we have s−1L′ ⊕ h = F1(s−1L′ ⊕ h) ⊃ · · · ⊃ Fn(s−1L′ ⊕ h) ⊃ · · · . Moreover, by
Corollary 3.11 and (19), we have

lk(Fn1(s−1L′ ⊕ h),Fn2(s−1L′ ⊕ h), · · · ,Fnk(s−1L′ ⊕ h)) ⊂ Fn1+n2+···+nk(s−1L′ ⊕ h).(20)

Thus, we deduce that
(
(s−1L′ ⊕ h),F•(s−1L′ ⊕ h)

)
is a filtered L∞-algebra. �

Now we are ready to formulate the main result in this subsection.

Theorem 3.13. Let g and V be two vector spaces, µ ∈ Hom(∧2g, g), ρ ∈ Hom(g ⊗ V,V) and
T ∈ Hom(V, g). Then ((g, µ), ρ,T ) is a relative Rota-Baxter Lie algebra if and only if (s−1π,T )
is an MC element of the filtered L∞-algebra (s−1L′ ⊕ h, {li}

+∞
i=1) given in Corollary 3.11, where

π = µ + ρ ∈ C1|0(g ⊕ V, g ⊕ V).

Proof. Since (s−1L′ ⊕ h)0 = s−1(Hom(g∧ g, g) ⊕Hom(g ⊗ V,V)
)
⊕Hom(V, g) ⊂ F1(s−1L′ ⊕ h), the

MC equation is well defined. Let (s−1π,T ) be an MC element of (s−1L′ ⊕ h, {li}
+∞
i=1). By Lemma

2.3 and Lemma 2.5, we have

||[π,T ]NR|| = 0|1, ||[[π,T ]NR,T ]NR|| = −1|2, [[[π,T ]NR,T ]NR,T ]NR = 0.

Then, by Corollary 3.11, we have
+∞∑
k=1

1
k!

lk

(
(s−1π,T ), · · · , (s−1π,T )

)
=

1
2!

l2

(
(s−1π,T ), (s−1π,T )

)
+

1
3!

l3

(
(s−1π,T ), (s−1π,T ), (s−1π,T )

)
=

(
− s−1 1

2
[π, π]NR,

1
2

[[π,T ]NR,T ]NR

)
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= (0, 0).

Thus, we obtain [π, π]NR = 0 and [[π,T ]NR,T ]NR = 0, which implies that (g, µ) is a Lie algebra,
(V; ρ) is its representation and T is a relative Rota-Baxter operator on the Lie algebra (g, µ) with
respect to the representation (V; ρ). �

Let ((g, µ), ρ,T ) be a relative Rota-Baxter Lie algebra. Denote by π = µ + ρ ∈ C1|0(g ⊕ V, g ⊕
V). By Theorem 3.13, we obtain that (s−1π,T ) is an MC element of the filtered L∞-algebra
(s−1L′ ⊕ h, {li}

+∞
i=1) given in Corollary 3.11. Now we are ready to give the L∞-algebra that controls

deformations of the relative Rota-Baxter Lie algebra.

Theorem 3.14. With the above notation, we have the twisted L∞-algebra
(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)

associated to a relative Rota-Baxter Lie algebra ((g, µ), ρ,T ), where π = µ + ρ.
Moreover, for linear maps T ′ ∈ Hom(V, g), µ′ ∈ Hom(∧2g, g) and ρ′ ∈ Hom(g, gl(V)), the triple

((g, µ+µ′), ρ+ρ′,T +T ′) is again a relative Rota-Baxter Lie algebra if and only if
(
s−1(µ′+ρ′),T ′

)
is an MC element of the twisted L∞-algebra

(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)
.

Proof. If ((g, µ+µ′), ρ+ρ′,T +T ′) is a relative Rota-Baxter Lie algebra, then by Theorem 3.13, we
deduce that (s−1(µ+µ′+ρ+ρ′),T +T ′) is an MC element of the L∞-algebra given in Corollary 3.11.
Moreover, by Theorem 3.5, we obtain that (s−1(µ′ + ρ′),T ′) is an MC element of the L∞-algebra(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)
. �

Let (g, µ) be a Lie algebra and (V; ρ) a representation of (g, µ). By Theorem 2.8 and Lemma
3.2, we have an L∞-algebra structure on the graded vector space ⊕+∞

k=0s−1Ck|0(g ⊕ V, g ⊕ V).
Let T : V −→ g be a relative Rota-Baxter operator on a Lie algebra (g, µ) with respect to a

representation (V; ρ). By Theorem 2.13 and Lemma 3.2, we have an L∞-algebra structure on the
graded vector space ⊕+∞

k=1Hom(∧kV, g).
The above L∞-algebras are related as follows.

Theorem 3.15. Let ((g, µ), ρ,T ) be a relative Rota-Baxter Lie algebra. Then the L∞-algebra(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)

is a strict extension of the L∞-algebra ⊕+∞
k=0s−1Ck|0(g⊕V, g⊕V) by the L∞-

algebra ⊕+∞
k=1Hom(∧kV, g), that is, we have the following short exact sequence of L∞-algebras:

(21) 0 −→ ⊕+∞
k=1Hom(∧kV, g)

ι
−→ s−1L′ ⊕ h

p
−→ ⊕+∞

k=0s−1Ck|0(g ⊕ V, g ⊕ V) −→ 0,

where ι(θ) = (0, θ) and p(s−1 f , θ) = s−1 f .

Proof. For any (s−1 f , θ) ∈ (s−1L′ ⊕ h)n−2, by Lemma 2.3 and Lemma 2.5, we obtain that

||[π, θ]NR|| = 0|(n − 1), ||[[π,T ]NR, θ]NR|| = −1|n, [[[π,T ]NR,T ]NR, θ]NR = 0.

Moreover, for 1 ≤ k ≤ n, we have

|| [· · · [[︸︷︷︸
k

f ,T ]NR,T ]NR, · · · ,T ]NR|| = (n − 1 − k)|k,

and for n + 1 ≤ k, we have [· · · [[︸︷︷︸
k

f ,T ]NR,T ]NR, · · · ,T ]NR = 0. Therefore, we have

l(s−1π,T )
1 (s−1 f , θ) =

+∞∑
k=0

1
k!

lk+1
(

(s−1π,T ), · · · , (s−1π,T )︸                        ︷︷                        ︸
k

, (s−1 f , θ)
)

= l2(s−1π, s−1 f ) + l3(s−1π,T, θ) +
1
n!

ln+1( f ,T, · · · ,T︸    ︷︷    ︸
n

)



12 ANDREY LAZAREV, YUNHE SHENG, AND RONG TANG

=
(
− s−1[π, f ]NR, [[π,T ]NR, θ]NR +

1
n!

[· · · [[︸︷︷︸
n

f ,T ]NR,T ]NR, · · · ,T ]NR
)
.(22)

For any (s−1 f1, θ1) ∈ (s−1L′ ⊕ h)n1−2, (s−1 f2, θ2) ∈ (s−1L′ ⊕ h)n2−2, we have

|| f1|| = (n1 − 1)|0, ||θ1|| = −1|(n1 − 1), || f2|| = (n2 − 1)|0, ||θ2|| = −1|(n2 − 1).

By Lemma 2.3, ||[[π, θ1]NR, θ1]NR|| = −1|(n1 +n2−2), ||[ f1, θ2]NR|| = (n1−2)|(n2−1), ||[ f2, θ1]NR|| =

(n2 − 2)|(n1 − 1). By Lemma 2.5, for 1 ≤ k, we have

[[[· · · [[π,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
k

]NR, θ1]NR, θ2]NR = 0.

By Lemma 2.3, for 1 ≤ k ≤ n1 − 1, we obtain that

||[[· · · [[ f1,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
k

]NR, θ2]NR|| = (n1 − k − 2)|(n2 + k − 1).

By Lemma 2.5, for n1 ≤ k, we have [[· · · [[ f1,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
k

]NR, θ2]NR = 0. By Lemma 2.3, for

1 ≤ k ≤ n2−1, we obtain that ||[[· · · [[ f2,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
k

]NR, θ1]NR|| = (n2−k−2)|(n1 +k−1). By

Lemma 2.5, for n2 ≤ k, we have [[· · · [[ f2,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
k

]NR, θ1]NR = 0. Therefore, we have

l(s−1π,T )
2

(
(s−1 f1, θ1), (s−1 f2, θ2)

)
=

+∞∑
k=0

1
k!

lk+2
(

(s−1π,T ), · · · , (s−1π,T )︸                        ︷︷                        ︸
k

, (s−1 f1, θ1), (s−1 f2, θ2)
)

= l2(s−1 f1, s−1 f2) + l3(s−1π, θ1, θ2) +
1

(n1 − 1)!
ln1+1( f1,T, · · · ,T︸    ︷︷    ︸

n1−1

, θ2)

+(−1)n1n2
1

(n2 − 1)!
ln2+1( f2,T, · · · ,T︸    ︷︷    ︸

n2−1

, θ1)

=
(
(−1)n1−1s−1[ f1, f2]NR, [[π, θ1]NR, θ2]NR +

1
(n1 − 1)!

[[· · · [[ f1,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸
n1−1

]NR, θ2]NR

+(−1)n2n1
1

(n2 − 1)!
[[· · · [[ f2,T ]NR,T ]NR · · · ,T︸                ︷︷                ︸

n2−1

]NR, θ1]NR

)
.

Similarly, for m ≥ 3, (s−1 fi, θi) ∈ (s−1L′ ⊕ h)ni−2, 1 ≤ i ≤ m, we have

l(s−1π,T )
m

(
(s−1 f1, θ1), · · · , (s−1 fm, θm)

)
=

(
0,

m∑
i=1

(−1)α
1

(ni + 1 − m)!
[· · · [ fi,T ]NR, · · · ,T︸         ︷︷         ︸

ni+1−m

]NR, θ1]NR, · · · , θi−1]NR, θi+1]NR, · · · , θm]NR

)
,

where α = ni(n1 + · · ·+ ni−1). Thus, ι and p are strict morphisms between L∞-algebras and satisfy
p ◦ ι = 0. �



DEFORMATIONS AND HOMOTOPY THEORY OF RELATIVE ROTA-BAXTER LIE ALGEBRAS 13

4. Cohomology and infinitesimal deformations of relative Rota-Baxter Lie algebras

In this section, ((g, µ), ρ,T ) is a relative Rota-Baxter Lie algebra, i.e. ρ : g → gl(V) is a
representation of the Lie algebra (g, µ) and T : V → g is a relative Rota-Baxter operator. We
define the cohomology of relative Rota-Baxter Lie algebras and show that the two-dimensional
cohomology groups classify infinitesimal deformations. We also establish a relationship between
the cohomology of relative Rota-Baxter Lie algebras and the cohomology of triangular Lie bial-
gebras.

4.1. Cohomology of relative Rota-Baxter Lie algebras. We define the cohomology of a rela-
tive Rota-Baxter Lie algebra using the twisted L∞-algebra given in Theorem 3.14.

By Theorem 3.14,
(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)

is an L∞-algebra, where π = µ+ρ, h and L′ are given
by (17) and (18) respectively. In particular, we have

Lemma 4.1.
(
s−1L′ ⊕ h, l(s−1π,T )

1
)

is a complex, i.e. l(s−1π,T )
1 ◦ l(s−1π,T )

1 = 0.

Proof. Since
(
s−1L′ ⊕ h, {l(s−1π,T )

k }+∞k=1
)

is an L∞-algebra, we have l(s−1π,T )
1 ◦ l(s−1π,T )

1 = 0. �

Define the set of 0-cochains C0(g, ρ,T ) to be 0, and define the set of 1-cochains C1(g, ρ,T ) to
be gl(g) ⊕ gl(V). For n ≥ 2, define the space of n-cochains Cn(g, ρ,T ) by

C
n(g, ρ,T ) := C

n(g, ρ) ⊕ Cn(T ) = C(n−1)|0(g ⊕ V, g ⊕ V) ⊕C−1|(n−1)(g ⊕ V, g ⊕ V)

=
(
Hom(∧n

g, g) ⊕ Hom(∧n−1
g ⊗ V,V)

)
⊕ Hom(∧n−1V, g).

Define the coboundary operatorD : Cn(g, ρ,T ) → Cn+1(g, ρ,T ) by

(23) D( f , θ) = (−1)n−2( − [π, f ]NR, [[π,T ]NR, θ]NR +
1
n!

[· · · [[︸︷︷︸
n

f ,T ]NR,T ]NR, · · · ,T ]NR
)
,

where f ∈ Hom(∧ng, g) ⊕ Hom(∧n−1g ⊗ V,V) and θ ∈ Hom(∧n−1V, g).

Theorem 4.2. With the above notation, (⊕+∞
n=0C

n(g, ρ,T ),D) is a cochain complex, i.e. D◦D = 0.

Proof. For any ( f , θ) ∈ Cn(g, ρ,T ), we have (s−1 f , θ) ∈ (s−1L′ ⊕ h)n−2. By (23), we deduce that

D( f , θ) = (−1)n−2l(s−1π,T )
1 (s−1 f , θ).

By Lemma 4.1, we obtain that (⊕+∞
n=0C

n(g, ρ,T ),D) is a cochain complex. �

Definition 4.3. The cohomology of the cochain complex (⊕+∞
n=0C

n(g, ρ,T ),D) is called the co-
homology of the relative Rota-Baxter Lie algebra ((g, µ), ρ,T ). We denote its n-th cohomology
group byHn(g, ρ,T )

Define a linear operator hT : Cn(g, ρ) → Cn+1(T ) by

hT f := (−1)n−2 1
n!

[· · · [[︸︷︷︸
n

f ,T ]NR,T ]NR, · · · ,T ]NR.(24)

By (23) and (24), the coboundary operator can be written as

(25) D( f , θ) = (∂ f , δθ + hT f ),

where ∂ is given by (6), and δ is given by (13). More precisely,

(δθ)(v1, · · · , vn)
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=

n∑
i=1

(−1)i+1[Tvi, θ(v1, · · · , v̂i, · · · , vn)]g +

n∑
i=1

(−1)i+1Tρ(θ(v1, · · · , v̂i, · · · , vn))(vi)(26)

+
∑

1≤i< j≤n

(−1)i+ jθ(ρ(Tvi)(v j) − ρ(Tv j)(vi), v1, · · · , v̂i, · · · , v̂ j, · · · , vn).

Now we give the formulas for hT in terms of multilinear maps.

Lemma 4.4. The operator hT : Hom(∧ng, g) ⊕ Hom(∧n−1g ⊗ V,V) → Hom(∧nV, g) is given by

(hT f )(v1, · · · , vn)

= (−1)n fg(Tv1, · · · ,Tvn) +

n∑
i=1

(−1)i+1T fV
(
Tv1, · · · ,Tvi−1,Tvi+1, · · · ,Tvn, vi

)
,(27)

where f = ( fg, fV), and fg ∈ Hom(∧ng, g), fV ∈ Hom(∧n−1g ⊗ V,V) and v1, · · · , vn ∈ V.

Proof. By Remark 2.2, it is convenient to view the elements of ⊕+∞
n=0C

n(g ⊕ V; g ⊕ V) as coderiva-
tions of S̄c(s−1(g ⊕ V)

)
. The coderivations corresponding to f and T will be denoted by f̄ and T̄

respectively. Then, by induction, we have

[· · · [[︸︷︷︸
n

f ,T ]NR,T ]NR, · · · ,T ]NR
(
(x1, v1), · · · , (xn, vn)

)
=

n∑
i=0

(−1)i

(
n
i

)(
T̄ ◦ · · · ◦ T̄︸       ︷︷       ︸

i

◦( f̄g + f̄V) ◦ T̄ · · · ◦ T̄︸    ︷︷    ︸
n−i

)(
(x1, v1), · · · , (xn, vn)

)
=

(
n! fg(Tv1, · · · ,Tvn), 0

)
+
(
(−1)n

n∑
k=1

(−1)n−i(n − 1)!T fV
(
Tv1, · · · ,Tvi−1,Tvi+1, · · · ,Tvn, vi

)
, 0

)
=

(
n! fg(Tv1, · · · ,Tvn), 0

)
+

(
n!

n∑
k=1

(−1)n−i+1T fV
(
Tv1, · · · ,Tvi−1,Tvi+1, · · · ,Tvn, vi

)
, 0

)
,

which implies that (27) holds. �

The formula of the coboundary operatorD can be well-explained by the following diagram:

· · · −→ Cn(g, ρ)
hT

''

∂ // Cn+1(g, ρ)
hT

((

∂ // Cn+2(g, ρ) −→ · · ·

· · · −→ Cn(T ) δ // Cn+1(T ) δ // Cn+2(T ) −→ · · · .

Theorem 4.5. Let ((g, µ), ρ,T ) be a relative Rota-Baxter Lie algebra. Then there is a short exact
sequence of the cochain complexes:

0 −→ (⊕+∞
n=0C

n(T ), δ)
ι
−→ (⊕+∞

n=0C
n(g, ρ,T ),D)

p
−→ (⊕+∞

n=0C
n(g, ρ), ∂) −→ 0,

where ι and p are the inclusion map and the projection map.
Consequently, there is a long exact sequence of the cohomology groups:

· · · −→ Hn(T )
Hn(ι)
−→ Hn(g, ρ,T )

Hn(p)
−→ Hn(g, ρ)

cn

−→ Hn+1(T ) −→ · · · ,

where the connecting map cn is defined by cn([α]) = [hTα], for all [α] ∈ Hn(g, ρ).
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Proof. By (25), we have the short exact sequence of chain complexes which induces a long exact
sequence of cohomology groups. Also by (25), cn is given by cn([α]) = [hTα]. �

4.2. Infinitesimal deformations of relative Rota-Baxter Lie algebras. In this subsection, we
introduce the notion of R-deformations of relative Rota-Baxter Lie algebras, where R is a local
pro-Artinian K-algebra. Since R is the projective limit of local Artinian K-algebras, R is equipped
with an augmentation ε : R → K. See [14, 31] for more details about R-deformation theory of
algebraic structures. Then we restrict our study to infinitesimal deformations, i.e. R = K[t]/(t2),
using the cohomology theory introduced in Section 4.1.

Replacing the K-vector spaces and K-linear maps by R-modules and R-linear maps in Defi-
nition 2.10 and Definition 2.11, it is straightforward to obtain the definitions of R-relative Rota-
Baxter Lie algebras and homomorphisms between them.

Any relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ) can be viewed as an R-relative Rota-
Baxter Lie algebra with the help of the augmentation map ε. More precisely, the R-module
structure on g and V are given by

r · x := ε(r)x, r · u := ε(r)u, ∀r ∈ R, x ∈ g, u ∈ V.

Definition 4.6. An R-deformation of a relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ) consists
of an R-Lie algebra structure [·, ·]R on the tensor product R ⊗K g, an R-Lie algebra homomor-
phism ρR : R ⊗K g → glR(R ⊗K V) and an R-linear map TR : R ⊗K V → R ⊗K g, which is
a relative Rota-Baxter operator such that (ε ⊗K Idg, ε ⊗K IdV) is an R-relative Rota-Baxter Lie
algebra homomorphism from ((R ⊗K g, [·, ·]R), ρR,TR) to ((g, [·, ·]g), ρ,T ).

Thereafter, we denote an R-deformation of ((g, [·, ·]g), ρ,T ) by a triple ((R⊗K g, [·, ·]R), ρR,TR).
Next we discuss equivalences between R-deformations.

Definition 4.7. Let ((R ⊗K g, [·, ·]R), ρR,TR) and ((R ⊗K g, [·, ·]′R), ρ′R,T
′
R) be two R-deformations

of a relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ). We call them equivalent if there exists
an R-relative Rota-Baxter Lie algebra isomorphism (φ, ϕ) : ((R ⊗K g, [·, ·]′R), ρ′R,T

′
R) → ((R ⊗K

g, [·, ·]R), ρR,TR) such that

(ε ⊗K Idg, ε ⊗K IdV) = (ε ⊗K Idg, ε ⊗K IdV) ◦ (φ, ϕ).(28)

Definition 4.8. A K[t]/(t2)-deformation of the relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T )
is call an infinitesimal deformation.

Let R = K[t]/(t2) and ((R⊗Kg, [·, ·]R), ρR,TR) be an infinitesimal deformation of ((g, [·, ·]g), ρ,T ).
Since ((R ⊗K g, [·, ·]R), ρR,TR) is an R-relative Rota-Baxter Lie algebra, there exist ω0, ω1 ∈

Hom(g ∧ g, g), %0, %1 ∈ gl(V) and T0, T1 ∈ Hom(V, g) such that

[·, ·]R = ω0 + tω1, ρR = %0 + t%1, TR = T0 + tT1.(29)

Since (ε ⊗K Idg, ε ⊗K IdV) is an R-relative Rota-Baxter Lie algebra homomorphism from ((R ⊗K
g, [·, ·]R), ρR,TR) to ((g, [·, ·]g), ρ,T ), we deduce that

ω0 = [·, ·]g, %0 = ρ, T0 = T.

Therefore, an infinitesimal deformation of ((g, [·, ·]g), ρ,T ) is determined by the triple (ω1, %1,T1).
Now we analyze the conditions on (ω1, %1,T1). First by the fact that (R ⊗K g, [·, ·]g + tω1) is an

R-Lie algebra, we get

dCEω1 = 0.(30)
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Then since (R ⊗K V; ρ + t%1) is a representation of (R ⊗K g, [·, ·]g + tω1), we obtain

ρ(ω1(x, y)) + %([x, y]g) = [ρ(x), %(y)] + [%(x), ρ(y)].(31)

Finally by the fact that T + tT1 is an R-linear relative Rota-Baxter operator on the R-Lie algebra
(R ⊗K g, [·, ·]g + tω1) with respect to the representation (R ⊗K V; ρ + t%1), we obtain

[T1u,Tv]g + [Tu,T1v]g + ω1(Tu,Tv) = T
(
ρ(T1u)v − ρ(T1v)u + %1(Tu)v − %1(Tv)u

)
(32)

+T1

(
ρ(Tu)v − ρ(Tv)u

)
.

Proposition 4.9. The triple (ω1, %1,T1) determines an infinitesimal deformation of the relative
Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ) if and only if (ω1, %1,T1) is a 2-cocycle of the relative
Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ).

Proof. By (30), (31) and (32), (ω1, %1,T1) is a 2-cocycle if and only if (ω1, %1,T1) determines an
infinitesimal deformation of the relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ). �

If two infinitesimal deformations determined by (ω1, %1,T1) and (ω′1, %
′
1,T

′
1) are equivalent,

then there exists an R-relative Rota-Baxter Lie algebra isomorphism (φ, ϕ) from ((R⊗K g, [·, ·]g +

tω′1), ρ + t%′1,T + tT ′1) to ((R ⊗K g, [·, ·]g + tω1), ρ + t%1,T + tT1). By (28), we deduce that

φ = Idg + tN, ϕ = IdV + tS , where N ∈ gl(g), S ∈ gl(V).(33)

Since Idg + tN is an isomorphism from (R ⊗K g, [·, ·]g + tω′1) to (R ⊗K g, [·, ·]g + tω1), we get

(34) ω′1 − ω1 = dCEN.

By the equality (IdV + tS )(ρ + t%′1)(y)u = (ρ + t%1)
(
(Idg + tN)y)(IdV + tS )u, we deduce that

(35) %′1(y)u − %1(y)u = ρ(Ny)u + ρ(y)S u − S ρ(y)u, ∀y ∈ g, u ∈ V.

By the equality (Idg + tN) ◦ (T + tT ′1) = (T + tT1) ◦ (IdV + tS ), we obtain

(36) T ′1 − T1 = −N ◦ T + T ◦ S .

Theorem 4.10. There is a one-to-one correspondence between equivalence classes of infinites-
imal deformations of the relative Rota-Baxter Lie algebra ((g, [·, ·]g), ρ,T ) and the second coho-
mology groupH2(g, ρ,T ).

Proof. By (34), (35) and (36), we deduce that

(ω′1, %
′
1,T

′
1) − (ω1, %1,T1) = D(N, S ),

which implies that (ω1, %1,T1) and (ω′1, %
′
1,T

′
1) are in the same cohomology class if and only if

the corresponding infinitesimal deformations of ((g, [·, ·]g), ρ,T ) are equivalent. �

Remark 4.11. One can study deformations of relative Rota-Baxter Lie algebras over more gen-
eral bases such as R = K[t]/(tn), R = K[[t]] = lim

←−−n
K[t]/(tn) or indeed over differential graded

local pro-Artinian rings. We will return to this more general context in a forthcoming paper [36].
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4.3. Cohomology of Rota-Baxter Lie algebras. In this subsection, we define the cohomology
of Rota-Baxter Lie algebras with the help of the general framework of the cohomology of relative
Rota-Baxter Lie algebras.

Let (g, [·, ·]g,T ) be a Rota-Baxter Lie algebra. We define the set of 0-cochains C0
RB(g,T ) to be

0, and define the set of 1-cochains C1
RB(g,T ) to be C1

RB(g,T ) := Hom(g, g). For n ≥ 2, define the
space of n-cochains Cn

RB(g,T ) by

C
n
RB(g,T ) := Cn

Lie(g; g) ⊕ C
n(T ) = Hom(∧n

g, g) ⊕ Hom(∧n−1
g, g).

Define the embedding i : Cn
RB(g,T ) → Cn(g, ad,T ) by

i( f , θ) = ( f , f , θ), ∀ f ∈ Hom(∧n
g, g), θ ∈ Hom(∧n−1

g, g).

Denote by Imn(i) = i(Cn
RB(g,T )). Then we have

Proposition 4.12. With the above notation, (⊕+∞
n=0Imn(i),D) is a subcomplex of the cochain com-

plex (⊕+∞
n=0C

n(g, ad,T ),D) associated to the relative Rota-Baxter Lie algebra ((g, [·, ·]g), ad,T ).

Proof. Let ( f , f , θ) ∈ Imn(i). By the definition ofD, we have

D( f , f , θ) = ((∂( f , f ))g, (∂( f , f ))V , δθ + hT ( f , f )).

By (7), we have (∂( f , f ))g = dCE f . And for any x1, · · · , xn+1 ∈ g, we have

(∂( f , f ))V(x1, · · · , xn+1)

=
∑

1≤i< j≤n

(−1)i+ j f ([xi, x j]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xn, xn+1) + (−1)n−1[ f (x1, · · · , xn), xn+1]g

+

n∑
i=1

(−1)i+1
(
[xi, f (x1, · · · , x̂i, · · · , xn, xn+1)]g − f

(
x1, · · · , x̂i, · · · , xn, [xi, xn+1]g

))
= (dCE f )(x1, · · · , xn+1).

Thus, we obtain D( f , f , θ) = (dCE f , dCE f , δθ + hT ( f , f )) = i(dCE f , δθ + hT ( f , f )), which implies
that (⊕nImn(i),D) is a subcomplex. �

We define the projection p : Imn(i) → Cn
RB(g,T ) by

p( f , f , θ) = ( f , θ), ∀ f ∈ Hom(∧n
g, g), θ ∈ Hom(∧n−1

g, g).

Then for n ≥ 0, we defineDRB : Cn
RB(g,T ) → Cn+1

RB (g,T ) byDRB = p ◦ D ◦ i. More precisely,

DRB( f , θ) =
(
dCE f , δθ + Ω f

)
, ∀ f ∈ Hom(∧n

g, g), θ ∈ Hom(∧n−1
g, g),(37)

where δ is given by (26) and Ω : Hom(∧ng, g) → Hom(∧ng, g) is defined by

(Ω f )(x1, · · · , xn) = (−1)n
(

f (T x1, · · · ,T xn) −
n∑

i=1

T f (T x1, · · · ,T xi−1, xi,T xi+1, · · · ,T xn)
)
.

Theorem 4.13. The mapDRB is a coboundary operator, i.e. DRB ◦ DRB = 0.

Proof. By Proposition 4.12 and i ◦ p = Id, we have

DRB ◦ DRB = p ◦ D ◦ i ◦ p ◦ D ◦ i = p ◦ D ◦ D ◦ i = 0,

which finishes the proof. �
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Definition 4.14. Let (g, [·, ·]g,T ) be a Rota-Baxter Lie algebra. The cohomology of the cochain
complex (⊕+∞

n=0C
n
RB(g,T ),DRB) is taken to be the cohomology of the Rota-Baxter Lie algebra

(g, [·, ·]g,T ). Denote the n-th cohomology group byHn
RB(g,T ).

Theorem 4.15. There is a short exact sequence of the cochain complexes:

0 −→ (⊕+∞
n=0C

n(T ), δ)
ι
−→ (⊕+∞

n=0C
n
RB(g,T ),DRB)

p
−→ (⊕+∞

n=0C
n
Lie(g; g), dCE) −→ 0,

where ι(θ) = (0, θ) and p( f , θ) = f for all f ∈ Hom(∧ng, g) and θ ∈ Hom(∧n−1g, g).
Consequently, there is a long exact sequence of the cohomology groups:

· · · −→ Hn(T )
Hn(ι)
−→ Hn

RB(g,T )
Hn(p)
−→ Hn

Lie(g, g)
cn

−→ Hn+1(T ) −→ · · · ,

where the connecting map cn is defined by cn([α]) = [Ωα], for all [α] ∈ Hn
Lie(g, g).

Proof. By (37), we have the short exact sequence of cochain complexes which induces a long
exact sequence of cohomology groups. �

Remark 4.16. The approach used to defineDRB, can be also used to obtain the L∞-algebra struc-
ture {lk}+∞k=1 on ⊕nC

n
RB(g,T ) controlling deformations of Rota-Baxter Lie algebras. By Theorem

3.14, we have the L∞-algebra (⊕nC
n(g, ad,T ), {lk}

+∞
k=1) which controls deformations of the relative

Rota-Baxter Lie algebra (g, ad,T ). Define lk by

lk(X1, · · · , Xk) := plk(i(X1), · · · , i(Xk)),

for all homogeneous elements Xi ∈ ⊕nC
n
RB(g,T ). Then (⊕nC

n
RB(g,T ), {lk}+∞k=1) is an L∞-algebra

embedded into (⊕nC
n(g, ad,T ), {lk}

+∞
k=1) as an L∞-subalgebra.

Remark 4.17. Similarly to the study of infinitesimal deformations of relative Rota-Baxter Lie
algebras, we can show that infinitesimal deformations of Rota-Baxter Lie algebras are classified
by the second cohomology groupH2

RB(g,R). We omit the details.

4.4. Cohomology and infinitesimal deformations of triangular Lie bialgebras. In this sub-
section, all vector spaces are assumed to be finite-dimensional. First we define the cohomology
of triangular Lie bialgebras with the help of the general cohomological framework for relative
Rota-Baxter Lie algebras. Then we establish the standard classification result for infinitesimal
deformations of triangular Lie bialgebras using this cohomology theory.

Recall that a Lie bialgebra is a vector space g equipped with a Lie algebra structure [·, ·]g :
∧2g −→ g and a Lie coalgebra structure δ : g −→ ∧2g such that δ is a 1-cocycle on g with
coefficients in ∧2g. The Lie bracket [·, ·]g in a Lie algebra g naturally extends to the Schouten-
Nijenhuis bracket [·, ·]SN on ∧•g = ⊕k≥0 ∧

k+1 g. More precisely, we have

[x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yq]SN =
∑
1≤i≤p
1≤ j≤q

(−1)i+ j[xi, y j]g ∧ x1 ∧ · · · x̂i · · · ∧ xp ∧ y1 ∧ · · · ŷ j · · · ∧ yq.

An element r ∈ ∧2g is called a skew-symmetric r-matrix [47] if it satisfies the classical Yang-
Baxter equation [r, r]SN = 0. It is well known [33] that r satisfies the classical Yang-Baxter
equation if and only if r] is a relative Rota-Baxter operator on g with respect to the coadjoint
representation, where r] : g∗ → g is defined by 〈r](ξ), η〉 = 〈r, ξ ∧ η〉 for all ξ, η ∈ g∗.

Let r be a skew-symmetric r-matrix. Define δr : g −→ ∧2g by δr(x) = [x, r]SN, for all x ∈ g.
Then (g, [·, ·]g, δr) is a Lie bialgebra, which is called a triangular Lie bialgebra. From now on, we
will denote a triangular Lie bialgebra by (g, [·, ·]g, r).
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Definition 4.18. Let (g1, [·, ·]g1 , r1) and (g2, {·, ·}g2 , r2) be triangular Lie bialgebras. A linear map
φ : g2 → g1 is called a homomorphism from (g2, {·, ·}g2 , r2) to (g1, [·, ·]g1 , r1) if φ is a Lie algebra
homomorphism and (φ ⊗ φ)(r2) = r1. If φ is invertible, then φ is called an isomorphism between
triangular Lie bialgebras.

The above definition is consistent with the equivalence between r-matrices given in [10].
Let g be a Lie algebra and r ∈ ∧2g a skew-symmetric r-matrix. Define the set of 0-cochains

and 1-cochains to be zero and define the set of k-cochains to be ∧kg. Define dr : ∧kg → ∧k+1g by

(38) drχ = [r, χ]SN, ∀χ ∈ ∧k
g.

Then d2
r = 0. Denote by H k(r) the corresponding k-th cohomology group, called the k-th coho-

mology group of the skew-symmetric r-matrix r.
For any k ≥ 1, define Ψ : ∧k+1g −→ Hom(∧kg∗, g) by

(39) 〈Ψ(χ)(ξ1, · · · , ξk), ξk+1〉 = 〈χ, ξ1 ∧ · · · ∧ ξk ∧ ξk+1〉, ∀χ ∈ ∧k+1
g, ξ1, · · · , ξk+1 ∈ g

∗.

By [53, Theorem 7.7], we have

(40) Ψ(drχ) = δ(Ψ(χ)), ∀χ ∈ ∧k
g.

Thus (Im(Ψ), δ) is a subcomplex of the cochain complex (⊕kC
k(r]), δ) associated to the relative

Rota-Baxter operator r], where Im(Ψ) := ⊕k{Ψ(χ)|∀χ ∈ ∧kg}.
In the following, we define the cohomology of a triangular Lie bialgebra (g, [·, ·]g, r). We

define the set of 0-cochains C0
TLB(g, r) to be 0, and define the set of 1-cochains to be C1

TLB(g, r) :=
Hom(g, g). For n ≥ 2, define the space of n-cochains Cn

TLB(g, r) by

C
n
TLB(g, r) := Hom(∧n

g, g) ⊕ ∧n
g.

Define the embedding i : Cn
TLB(g, r) → Cn(g, ad∗, r]) = Hom(∧ng, g) ⊕ Hom(∧n−1g ⊗ g∗, g∗) ⊕

Hom(∧n−1g∗, g) by

i( f , χ) = ( f , f ?,Ψ(χ)), ∀ f ∈ Hom(∧n
g, g), χ ∈ ∧n

g,

where f ? ∈ Hom(∧n−1g ⊗ g∗, g∗) is defined by

〈 f ?(x1, · · · , xn−1, ξ), xn〉 = −〈ξ, f (x1, · · · , xn−1, xn)〉.(41)

Denote by Imn(i) the image of i, i.e. Imn(i) := {i( f , χ)|∀( f , χ) ∈ Cn
TLB(g, r)}.

Proposition 4.19. With the above notation, (⊕nImn(i),D) is a subcomplex of the cochain complex
(Cn(g, ad∗, r]),D) associated to the relative Rota-Baxter Lie algebra ((g, [·, ·]g), ad∗, r]).

Proof. Let ( f , f ?,Ψ(χ)) ∈ Imn(i). By the definition ofD, we have

D( f , f ?,Ψ(χ)) = ((∂( f , f ?))g, (∂( f , f ?))g∗ , δΨ(χ) + hr]( f , f ?)).

By (7), we have (∂( f , f ?))g = dCE f . By (8), we can deduce that (∂( f , f ?))g∗ = (dCE f )?. By (26)
and (27), we can deduce that δΨ(χ) + hr]( f , f ?) ∈ Im(Ψ). Thus, we obtain

D(( f , f ?,Ψ(χ))) = (dCE f , (dCE f )?, δΨ(χ) + hr]( f , f ?)) = i
(
dCE f ,Ψ−1(δΨ(χ) + hr]( f , f ?)

))
,

which implies that (⊕nImn(i),D) is a subcomplex. �

Define the projection p : Imn(i) → Cn
TLB(g, r) by

p( f , f ?, θ) = ( f , θ[), ∀ f ∈ Hom(∧n
g, g), θ ∈ {Ψ(χ)|∀χ ∈ ∧n

g},
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where θ[ ∈ ∧ng is defined by〈θ[, ξ1 ∧ · · · ∧ ξn〉 = 〈θ(ξ1, · · · , ξn−1), ξn〉. Define the coboundary
operatorDTLB : Cn

TLB(g, r) → Cn+1
TLB(g, r) for a triangular Lie bialgebra by

DTLB = p ◦ D ◦ i.

Theorem 4.20. The mapDTLB is a coboundary operator, i.e. DTLB ◦ DTLB = 0.

Proof. Since i ◦ p = Id when restricting on the image of i, we have

DTLB ◦ DTLB = p ◦ D ◦ i ◦ p ◦ D ◦ i = p ◦ D ◦ D ◦ i = 0,

which finishes the proof. �

Definition 4.21. Let (g, [·, ·]g, r) be a triangular Lie algebra. The cohomology of the cochain com-
plex (⊕+∞

n=0C
n
TLB(g, r),DTLB) is called the cohomology of the triangular Lie bialgebra (g, [·, ·]g, r).

Denote the n-th cohomology group byHn
TLB(g, r).

Now we give the precise formula for the coboundary operator DTLB. By the definition of i, p,
D and (40), we have

DTLB( f , χ) =
(
dCE f ,Θ f + drχ

)
, ∀ f ∈ Hom(∧n

g, g), χ ∈ ∧n
g,(42)

where dr is given by (38) and Θ : Hom(∧ng, g) → ∧n+1g is defined by Θ f = Ψ−1(hr]( f , f ?)). The
precise formula of Θ is given as follows.

Lemma 4.22. For any f ∈ Hom(∧ng, g) and ξ1, · · · , ξn+1 ∈ g
∗, we have

〈Θ f , ξ1 ∧ · · · ∧ ξn+1〉 =

n+1∑
i=1

(−1)i+1〈ξi, f (r](ξ1), · · · , r](ξi−1), r](ξi+1), · · · , r](ξn+1))〉.(43)

Proof. By the definition of hr] given by (27), we have

〈Θ f , ξ1 ∧ · · · ∧ ξn+1〉 = Ψ−1(hr]( f , f ?))(ξ1, · · · , ξn+1)
= 〈hr]( f , f ?)(ξ1, · · · , ξn), ξn+1〉

= (−1)n〈 f (r](ξ1), · · · , r](ξn)), ξn+1〉 +
n∑

i=1

(−1)i+1〈r] f ?(r](ξ1), · · · , r](ξi−1), r](ξi+1), · · · , r](ξn), ξi), ξn+1〉

=

n+1∑
i=1

(−1)i+1〈ξi, f (r](ξ1), · · · , r](ξi−1), r](ξi+1), · · · , r](ξn+1))〉,

which finishes the proof. �

Theorem 4.23. Let (g, [·, ·]g, r) be a triangular Lie bialgebra. Then there is a short exact sequence
of cochain complexes:

0 −→ (⊕+∞
n=2 ∧

n
g, dr)

ι
−→ (⊕+∞

n=0C
n
TLB(g, r),DTLB)

p
−→ (⊕+∞

n=0C
n
Lie(g; g), dCE) −→ 0,

where ι(χ) = (0, χ) and p( f , χ) = f for all χ ∈ ∧ng and f ∈ Hom(∧ng, g).
Consequently, there is a long exact sequence of cohomology groups:

(44) · · · −→ Hn(r)
Hn(ι)
−→ Hn

TLB(g, r)
Hn(p)
−→ Hn

Lie(g, g)
cn

−→ Hn+1(r) −→ · · · ,

where the connecting map cn is defined by cn([α]) = [Θα], for all [α] ∈ Hn
Lie(g, g).
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Proof. By (42), we have the short exact sequence of cochain complexes which induces a long
exact sequence of cohomology groups. �

Remark 4.24. In a forthcoming paper [36], we will use the functorial approach to give the L∞-
algebra structure on ⊕+∞

n=0C
n
TLB(g, r) that control deformations of triangular Lie bialgebras, and

establish the relationship with the L∞-algebra (⊕+∞
n=0C

n(g, ad∗, r]), {lk}
+∞
k=1) given by Theorem 3.14.

We will now consider R-deformations and infinitesimal deformations of triangular Lie bial-
gebras using the above cohomology theory, where R is a local pro-Artinian K-algebra with the
augmentation ε : R → K. Any triangular Lie bialgebra (g, [·, ·]g, r) can be viewed as a triangular
R-Lie bialgebra with the help of the augmentation map ε.

Definition 4.25. An R-deformation of a triangular Lie bialgebra (g, [·, ·]g, r) contains of an R-
Lie algebra structure [·, ·]R on the tensor product R ⊗K g and a skew-symmetric r-matrix X ∈
(R ⊗K g) ⊗R (R ⊗K g) � R ⊗K g ⊗K g such that ε ⊗K Idg is an R-Lie algebra homomorphism from
(R ⊗K g, [·, ·]R) to (g, [·, ·]g) and (ε ⊗K Idg ⊗K Idg)(X) = r.

Definition 4.26. Let (R ⊗K g, [·, ·]R,X) and (R ⊗K g, [·, ·]′R,X
′) be two R-deformations of a trian-

gular Lie bialgebra (g, [·, ·]g, r). We call them equivalent if there exists an R-Lie algebra isomor-
phism φ : (R ⊗K g, [·, ·]′R,X

′) → (R ⊗K g, [·, ·]R,X) such that

ε ⊗K Idg = (ε ⊗K Idg) ◦ φ.(45)

Definition 4.27. A K[t]/(t2)-deformation of the triangular Lie bialgebra (g, [·, ·]g, r) is called an
infinitesimal deformation.

Let R = K[t]/(t2) and (R ⊗K g, [·, ·]R,X) be an infinitesimal deformation of (g, [·, ·]g, r). Since
(R⊗K g, [·, ·]R,X) is a triangular R-Lie bialgebra, there exist ω0, ω1 ∈ Hom(g∧ g, g) and X0,X1 ∈

∧2
Kg such that

[·, ·]R = ω0 + tω1, X = X0 + tX1.(46)

Since ε ⊗K Idg is an R-Lie algebra homomorphism from (R ⊗K g, [·, ·]R) to (g, [·, ·]g), we deduce
that ω0 = [·, ·]g. By (ε ⊗K Idg ⊗K Idg)(X) = r, we deduce that X0 = r. Therefore, an infinitesimal
deformation of (g, [·, ·]g, r) is determined by a pair (ω1,X1). By the fact that (R ⊗K g, [·, ·]g + tω1)
is an R-Lie algebra, we get

dCEω1 = 0.(47)

Then by the fact that r+tX1 is a skew-symmetric r-matrix of the R-Lie algebra (R⊗Kg, [·, ·]g+tω1),
we deduce that

2(drX1 + Θω1) = 0.(48)

Proposition 4.28. The pair (ω1,X1) determines an infinitesimal deformation of the triangular
Lie bialgebra (g, [·, ·]g, r) if and only if (ω1,X1) is a 2-cocycle of the triangular Lie bialgebra
(g, [·, ·]g, r), i.e. DTLB(ω1,X1) = 0.

Proof. By (47) and (48), we deduce that (ω1,X1) is a 2-cocycle if and only if (ω1,X1) determines
an infinitesimal deformation of the triangular Lie bialgebra (g, [·, ·]g, r). �

If two infinitesimal deformations of a triangular Lie bialgebra (g, [·, ·]g, r) corresponding to
(ω1,X1) and (ω′1,X

′
1) are equivalent, then there exists a triangular R-Lie bialgebra isomorphism

φ from (R ⊗K g, [·, ·]g + tω′1,R + tX′1) to (R ⊗K g, [·, ·]g + tω1,R + tX1). By (45), we deduce that

φ = Idg + tN, where N ∈ gl(g).(49)
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Since Idg + tN is an isomorphism from (R ⊗K g, [·, ·]g + tω′1) to (R ⊗K g, [·, ·]g + tω1), we get

(50) ω′1 − ω1 = dCEN.

By the equality
(
(Idg + tN) ⊗ (Idg + tN)

)
(r + tX′1) = (r + tX1), we obtain

(51) X′1 − X1 = −(Idg ⊗ N + N ⊗ Idg)(r) = ΘN.

Theorem 4.29. There is a one-to-one correspondence between the space of equivalence classes
of infinitesimal deformations of (g, [·, ·]g, r) and the second cohomology groupH2(g, r).

Proof. By (50) and (51), we deduce that

(ω′1,X
′
1) − (ω1,X1) = DTLB(N),

which implies that (ω1,X1) and (ω′1,X
′
1) are in the same cohomology class if and only if the

corresponding infinitesimal deformations of (g, [·, ·]g, r) are equivalent. �

5. Homotopy relative Rota-Baxter Lie algebras

In this section, we introduce the notion of a homotopy relative Rota-Baxter Lie algebra, which
consists of an L∞-algebra, its representation and a homotopy relative Rota-Baxter operator. We
characterize homotopy relative Rota-Baxter operators as MC elements in a certain L∞-algebra.
We show that strict homotopy relative Rota-Baxter operators induce pre-Lie∞-algebras.

5.1. Homotopy relative Rota-Baxter operators on L∞-algebras. Denote by Homn(S̄(V),V)
the space of degree n linear maps from the graded vector space S̄(V) = ⊕+∞

i=1Si(V) to the Z-graded
vector space V . Obviously, an element f ∈ Homn(S̄(V),V) is the sum of fi : Si(V) → V . We will
write f =

∑+∞
i=1 fi. Set Cn(V,V) := Homn(S̄(V),V) and C∗(V,V) := ⊕n∈ZCn(V,V). As the graded

version of the Nijenhuis-Richardson bracket given in [43, 44], the graded Nijenhuis-Richardson
bracket [·, ·]NR on the graded vector space C∗(V,V) is given by:

[ f , g]NR := f ◦̄g − (−1)mng◦̄ f , ∀ f =

+∞∑
i=1

fi ∈ Cm(V,V), g =

+∞∑
j=1

g j ∈ Cn(V,V),(52)

where f ◦̄g ∈ Cm+n(V,V) is defined by

f ◦̄g =
( +∞∑

i=1

fi

)
◦̄
( +∞∑

j=1

g j

)
:=

+∞∑
k=1

( ∑
i+ j=k+1

fi◦̄g j

)
,(53)

while fi◦̄g j ∈ Hom(Si+ j−1(V),V) is defined by

( fi◦̄g j)(v1, · · · , vi+ j−1) :=
∑

σ∈S( j,i−1)

ε(σ) fi(g j(vσ(1), · · · , vσ( j)), vσ( j+1), · · · , vσ(i+ j−1)).(54)

The following result is well-known and, in fact, cant be taken as a definition of an L∞-algebra.

Theorem 5.1. With the above notation, (C∗(V,V), [·, ·]NR) is a graded Lie algebra. Its MC ele-
ments

∑+∞
k=1 lk are the L∞-algebra structures on V.

�
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Definition 5.2. ([35]) A representation of an L∞-algebra (g, {lk}
+∞
k=1) on a graded vector space V

consists of linear maps ρk : Sk−1(g) ⊗ V → V , k ≥ 1, of degree 1 with the property that, for any
homogeneous elements x1, · · · , xn−1 ∈ g, v ∈ V , we have

n−1∑
i=1

∑
σ∈S(i,n−i−1)

ε(σ)ρn−i+1(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n−1), v)(55)

+

n∑
i=1

∑
σ∈S(n−i,i−1)

ε(σ)(−1)xσ(1)+···+xσ(n−i)ρn−i+1(xσ(1), · · · , xσ(n−i), ρi(xσ(n−i+1), · · · , xσ(n−1), v)) = 0.

Let (V, {ρk}
+∞
k=1) be a representation of an L∞-algebra (g, {lk}

+∞
k=1). There is an L∞-algebra structure

on the direct sum g ⊕ V given by

lk
(
(x1, v1), · · · , (xk, vk)

)
:=

(
lk(x1, · · · , xk),

k∑
i=1

(−1)xi(xi+1+···+xk)ρk(x1, · · · , xi−1, xi+1, · · · , xk, vi)
)
.

This L∞-algebra is called the semidirect product of the L∞-algebra (g, {lk}
+∞
k=1) and (V, {ρk}

+∞
k=1), and

denoted by g nρ V .
Now we are ready to define our main object of study in this section.

Definition 5.3. Let (V, {ρk}
+∞
k=1) be a representation of an L∞-algebra (g, {lk}

+∞
k=1). A degree 0 el-

ement T =
∑+∞

k=1 Tk ∈ Hom(S̄(V), g) with Tk ∈ Hom(Sk(V), g) is called a homotopy relative
Rota-Baxter operator on an L∞-algebra (g, {lk}

+∞
k=1) with respect to the representation (V, {ρk}

+∞
k=1) if

the following equalities hold for all p ≥ 1 and all homogeneous elements v1, · · · , vp ∈ V ,∑
k1+···+km=t

1≤t≤p−1

∑
σ∈S(k1 ,··· ,km ,1,p−1−t)

ε(σ)
m!
·

Tp−t

(
ρm+1

(
Tk1

(
vσ(1), · · · , vσ(k1)

)
, · · · ,Tkm

(
vσ(k1+···+km−1+1), · · · , vσ(t)

)
, vσ(t+1)

)
, vσ(t+2), · · · , vσ(p)

)
=

∑
k1+···+kn=p

∑
σ∈S(k1 ,··· ,kn)

ε(σ)
n!

ln

(
Tk1

(
vσ(1), · · · , vσ(k1)

)
, · · · ,Tkn

(
vσ(k1+···+kn−1+1), · · · , vσ(p)

))
.

A homotopy relative Rota-Baxter operator on an L∞-algebra is a generalization of an O-
operator on a Lie 2-algebra introduced in [48].

Definition 5.4. Let (g, {lk}
+∞
k=1) be an L∞-algebra. A degree 0 element T =

∑+∞
k=1 Tk ∈ Hom(S̄(g), g)

with Tk ∈ Hom(Sk(g), g) is called a homotopy Rota-Baxter operator on an L∞-algebra (g, {lk}
+∞
k=1)

if the following equalities hold for all p ≥ 1 and all homogeneous elements x1, · · · , xp ∈ g,∑
k1+···+km=t

1≤t≤p−1

∑
σ∈S(k1 ,··· ,km ,1,p−1−t)

ε(σ)
m!
·

Tp−t

(
lm+1

(
Tk1

(
xσ(1), · · · , xσ(k1)

)
, · · · ,Tkm

(
xσ(k1+···+km−1+1), · · · , xσ(t)

)
, xσ(t+1)

)
, xσ(t+2), · · · , xσ(p)

)
=

∑
k1+···+kn=p

∑
σ∈S(k1 ,··· ,kn)

ε(σ)
n!

ln

(
Tk1

(
xσ(1), · · · , xσ(k1)

)
, · · · ,Tkn

(
xσ(k1+···+kn−1+1), · · · , xσ(p)

))
.

Remark 5.5. A homotopy Rota-Baxter operator T =
∑+∞

k=1 Tk ∈ Hom(S̄(g), g) on an L∞-algebra
(g, {lk}

+∞
k=1) is a homotopy relative Rota-Baxter operator with respect to the adjoint representation.
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If moreover the L∞-algebra reduces to a Lie algebra (g, [·, ·]g), then the resulting linear operator
T : g −→ g is a Rota-Baxter operator.

Definition 5.6. (i) An L∞-algebra (g, {lk}
+∞
k=1) with a homotopy Rota-Baxter operator T =∑+∞

k=1 Tk ∈ Hom(S̄(g), g) is called a homotopy Rota-Baxter Lie algebra. We denote it
by

(
g, {lk}

+∞
k=1, {Tk}

+∞
k=1

)
.

(ii) A homotopy relative Rota-Baxter Lie algebra is a triple
(
(g, {lk}

+∞
k=1), {ρk}

+∞
k=1, {Tk}

+∞
k=1

)
, where

(g, {lk}
+∞
k=1) is an L∞-algebra, (V, {ρk}

+∞
k=1) is a representation of g on a graded vector space V

and T =
∑+∞

k=1 Tk ∈ Hom(S̄(V), g) is a homotopy relative Rota-Baxter operator.

A representation of an L∞-algebra will give rise to a V-data as well as an L∞-algebra that
characterize homotopy relative Rota-Baxter operators as MC elements.

Proposition 5.7. Let (g, {lk}
+∞
k=1) be an L∞-algebra and (V, {ρk}

+∞
k=1) a representation of (g, {lk}

+∞
k=1).

Then the following quadruple forms a V-data:
• the graded Lie algebra (L, [·, ·]) is given by (C∗(g ⊕ V, g ⊕ V), [·, ·]NR);
• the abelian graded Lie subalgebra h is given by h := ⊕n∈ZHomn(S̄(V), g);
• P : L → L is the projection onto the subspace h;
• ∆ =

∑+∞
k=1(lk + ρk).

Consequently, (h, {lk}+∞k=1) is an L∞-algebra, where lk is given by (16).

Proof. By Theorem 5.1, we obtain that (C∗(g⊕V, g⊕V), [·, ·]NR) is a graded Lie algebra. Moreover,
by (54) we deduce that ImP = h is an abelian graded Lie subalgebra and ker P is a graded Lie
subalgebra. Since ∆ =

∑+∞
k=1(lk + ρk) is the semidirect product L∞-algebra structure on g ⊕ V , we

have [∆,∆]NR = 0 and P(∆) = 0. Thus (L, h, P,∆) is a V-data. Hence by Theorem 3.7, we obtain
the higher derived brackets {lk}+∞k=1 on the abelian graded Lie subalgebra h. �

Theorem 5.8. With the above notation, a degree 0 element T =
∑+∞

k=1 Tk ∈ Hom(S̄(V), g) is a ho-
motopy relative Rota-Baxter operator on (g, {lk}

+∞
k=1) with respect to the representation (V, {ρk}

+∞
k=1)

if and only if T =
∑+∞

k=1 Tk is an MC element of the L∞-algebra (h, {lk}+∞k=1).

Proof. By Remark 2.2, we will view the elements of C∗(g⊕V, g⊕V) as coderivations of S̄c(g⊕V).
Moreover, we view ⊕n∈ZHomn(S̄(V), g) as an abelian graded Lie subalgebra of the graded Lie
algebra Coder(S̄c(g ⊕ V)) and we denote by P̄ the projection onto this Lie subalgebra. The
coderivations of S̄c(g ⊕ V) corresponding to

∑+∞
k=1 lk,

∑+∞
k=1 ρk and

∑+∞
k=1 Tk will be denoted by l̄, ρ̄

and T̄ respectively. Then T =
∑+∞

k=1 Tk is an MC element of the L∞-algebra (h, {lk}+∞k=1) if and only
if

(56) P̄
+∞∑
n=1

1
n!

[· · · [[︸︷︷︸
n

l̄ + ρ̄, T̄ ], T̄ ], · · · , T̄ ] = 0.

In fact, we have

[· · · [[︸︷︷︸
n

l̄ + ρ̄, T̄ ], T̄ ], · · · , T̄ ] =

n∑
i=0

(−1)i

(
n
i

)(
T̄ ◦ · · · ◦ T̄︸       ︷︷       ︸

i

◦(l̄ + ρ̄) ◦ T̄ ◦ · · · ◦ T̄︸       ︷︷       ︸
n−i

)
.

We denote by prg the natural projections from S̄(g⊕V) to g. Thus, for all v1, · · · , vp ∈ V , we have(
prg ◦ [· · · [[︸︷︷︸

n

l̄ + ρ̄, T̄ ], T̄ ], · · · , T̄ ]
)
(v1, · · · , vp)
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=
(
prg ◦ l̄ ◦ T̄ · · · ◦ T̄︸    ︷︷    ︸

n

)
(v1, · · · , vp) − n

(
prg ◦ T̄ ◦ ρ̄ ◦ T̄ · · · ◦ T̄︸    ︷︷    ︸

n−1

)
(v1, · · · , vp).

By (54), we obtain that(
prg ◦ l̄ ◦ T̄ · · · ◦ T̄︸    ︷︷    ︸

n

)
(v1, · · · , vp)

=
∑

k1+···+kn=p

∑
σ∈S(k1 ,··· ,kn)

ε(σ)ln

(
Tk1

(
vσ(1), · · · , vσ(k1)

)
, · · · ,Tkn

(
vσ(k1+···+kn−1+1), · · · , vσ(p)

))
and

n
(
prg ◦ T̄ ◦ ρ̄ ◦ T̄ · · · ◦ T̄︸    ︷︷    ︸

n−1

)
(v1, · · · , vp) = n

∑
k1+···+kn−1=t

1≤t≤p−1

∑
τ∈S(k1 ,··· ,kn−1 ,p−t)

ε(τ) ·

(
prg ◦ T̄ ◦ ρ̄

)(
Tk1

(
vτ(1), · · · , vτ(k1)

)
, · · · ,Tkn−1

(
vτ(k1+···+kn−2+1), · · · , vτ(t)

)
, vτ(t)+1), · · · , vτ(p)

)
= n

∑
k1+···+kn−1=t

1≤t≤p−1

∑
σ∈S(k1 ,··· ,kn−1 ,1,p−1−t)

ε(σ) ·

Tp−t

(
ρn

(
Tk1

(
vσ(1), · · · , vσ(k1)

)
, · · · ,Tkn−1

(
vσ(k1+···+kn−2+1), · · · , vσ(t)

)
, vσ(t+1)

)
, vσ(t+2), · · · , vσ(p)

)
.

Thus, (56) holds if and only if T =
∑+∞

k=1 Tk ∈ Hom(S̄(V), g) is a homotopy relative Rota-Baxter
operator on (g, {lk}

+∞
k=1) with respect to the representation (V, {ρk}

+∞
k=1). �

5.2. Strict homotopy relative Rota-Baxter operators on L∞-algebras and pre-Lie∞-algebras.

Definition 5.9. Let (V, {ρk}
+∞
k=1) be a representation of an L∞-algebra (g, {lk}

+∞
k=1). A degree 0 ele-

ment T ∈ Hom(V, g) is called a strict homotopy relative Rota-Baxter operator on an L∞-algebra
(g, {lk}

+∞
k=1) with respect to the representation (V, {ρk}

+∞
k=1) if the following equalities hold for all

p ≥ 1 and all homogeneous elements v1, · · · , vp ∈ V ,

lp
(
Tv1, · · · ,Tvp

)
=

p∑
i=1

(−1)(vi+1+···+vp)viTρp(Tv1, · · · ,Tvi−1,Tvi+1, · · · ,Tvp, vi).(57)

Remark 5.10. A strict homotopy relative Rota-Baxter operator is just a homotopy relative Rota-
Baxter operator T =

∑+∞
i=1 Ti ∈ Hom(S̄(V), g), in which Ti = 0 for all i ≥ 2.

Let V be a graded vector space. Denote by Homn(S(V) ⊗ V,V) the space of degree n linear
maps from the graded vector space S(V)⊗V to the graded vector space V . Obviously, an element
f ∈ Homn(S(V) ⊗ V,V) is the sum of fi : Si−1(V) ⊗ V → V . We will write f =

∑+∞
i=1 fi.

Set Cn(V,V) := Homn(S(V) ⊗ V,V) and C∗(V,V) := ⊕n∈ZCn(V,V). As the graded version of the
Matsushima-Nijenhuis bracket given in [9], the graded Matsushima-Nijenhuis bracket [·, ·]MN on
the graded vector space C∗(V,V) is given by:

[ f , g]MN := f � g − (−1)mng � f , ∀ f =

+∞∑
i=1

fi ∈ Cm(V,V), g =

+∞∑
j=1

g j ∈ Cn(V,V),(58)

where f � g ∈ Cm+n(V,V) is defined by

f � g =
( +∞∑

i=1

fi

)
�
( +∞∑

j=1

g j

)
:=

+∞∑
k=1

( ∑
i+ j=k+1

fi � g j

)
,(59)
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while fi � g j ∈ Hom(Si+ j−2(V) ⊗ V,V) is defined by

( fi � g j)(v1, · · · , vi+ j−1)

=
∑

σ∈S( j−1,1,i−2)

ε(σ) fi(g j(vσ(1), · · · , vσ( j−1), vσ( j)), vσ( j+1), · · · , vσ(i+ j−2), vi+ j−1)(60)

+
∑

σ∈S(i−1, j−1)

(−1)αε(σ) fi(vσ(1), · · · , vσ(i−1), g j(vσ(i), · · · , vσ(i+ j−2), vi+ j−1)),

where α = n(vσ(1) + vσ(2) + · · ·+ vσ(i−1)). Then the graded vector space C∗(V,V) equipped with the
graded Matsushima-Nijenhuis bracket [·, ·]MN is a graded Lie algebra.

The notion of a pre-Lie∞-algebra was introduced in [9]. See [42] for more applications of
pre-Lie∞-algebras in geometry.

Theorem 5.11. ([9]) Let
∑+∞

k=1 θk be a degree 1 linear map from the graded vector space S (V)⊗V
to the graded vector space V. Then (g, {θk}

+∞
k=1) is a pre-Lie∞-algebra if and only if

∑+∞
k=1 θk is an

MC element of the graded Lie algebra (C∗(V,V), [·, ·]MN).
�

Now we show that there is a close relationship between the graded Lie algebra (C∗(V,V), [·, ·]MN)
and (C∗(V,V), [·, ·]NR). Define a graded linear map Φ : C∗(V,V) → C∗(V,V) of degree 0 by

Φ( f ) =

+∞∑
k=1

Φ( f )k = Φ( fk), ∀ f =

+∞∑
k=1

fk ∈ Homm(S(V) ⊗ V,V),

where Φ( fk) is given by

Φ( fk)(v1, · · · , vk) =
∑

σ∈S(k−1,1)

ε(σ) fk(vσ(1), · · · , vσ(k)) =

k∑
i=1

(−1)vi(vi+1+···+vk) fk(v1, · · · , v̂i, · · · , vk, vi).

Theorem 5.12. Φ is a homomorphism from the graded Lie algebra (C∗(V,V), [·, ·]MN) to the
graded Lie algebra (C∗(V,V), [·, ·]NR).

Proof. It follows from a direct but tedious computation. We omit details. �

Corollary 5.13. Let (g, {θk}
+∞
k=1) be a pre-Lie∞-algebra and we define lk by

lk(x1, · · · , xk) = Φ(θk)(x1, · · · , xk) =

k∑
i=1

(−1)xi(xi+1+···+xk)θk(x1, · · · , x̂i, · · · , xk, xi).(61)

Then (g, {lk}
+∞
k=1) is an L∞-algebra. We denote this L∞-algebra by gC and call it the sub-adjacent

L∞-algebra of (g, {θk}
+∞
k=1). Moreover, (g, {θk}

+∞
k=1) is called the compatible pre-Lie∞-algebra struc-

ture on the L∞-algebra gC.

Proof. It follows from Theorem 5.1, Theorem 5.11 and Theorem 5.12. �

Let (g, {θk}
+∞
k=1) be a pre-Lie∞-algebra. For all k ≥ 1, we define Lk : Sk−1(g) ⊗ g → g by

Lk(x1, · · · , xk−1, xk) = θk(x1, · · · , xk−1, xk).(62)

Proposition 5.14. With the above notation, (g, {Lk}
+∞
k=1) is a representation of the sub-adjacent

L∞-algebra gC. Moreover, the identity map Id : g → g is a strict homotopy relative Rota-Baxter
operator on the L∞-algebra gC with respect to the representation (g, {Lk}

+∞
k=1).
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Proof. For all x1, · · · , xn ∈ g, by the definition of pre-Lie∞-algebras, we have
n−1∑
i=1

∑
σ∈S(i,n−i−1)

ε(σ)Ln−i+1(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n−1), xn)

+

n∑
i=1

∑
σ∈S(n−i,i−1)

ε(σ)(−1)xσ(1)+···+xσ(n−i) Ln−i+1(xσ(1), · · · , xσ(n−i), Li(xσ(n−i+1), · · · , xσ(n−1), xn))

(61),(62)
=

n−1∑
i=1

∑
τ∈S(i−1,1,n−i−1)

ε(τ)θn−i+1(θi(xτ(1), · · · , xτ(i−1), xτ(i)), xτ(i+1), · · · , xτ(n−1), xn)

+

n∑
i=1

∑
τ∈S(n−i,i−1)

ε(τ)(−1)xτ(1)+···+xτ(n−i)θn−i+1(xτ(1), · · · , xτ(n−i), θi(xτ(n−i+1), · · · , xτ(n−1), xn))

= 0.

Thus, we deduce that (g, {Lk}
+∞
k=1) is a representation of the sub-adjacent L∞-algebra gC. By

(61), we deduce that Id is a strict homotopy relative Rota-Baxter operator on gC with respect
to (g, {Lk}

+∞
k=1). �

Now we are ready to show that strict homotopy relative Rota-Baxter operators on an L∞-algebra
(g, {lk}

+∞
k=1) induce pre-Lie∞-algebras. This generalizes the result given in [2].

Theorem 5.15. Let T ∈ Hom(V, g) be a strict homotopy relative Rota-Baxter operator on an
L∞-algebra (g, {lk}

+∞
k=1) with respect to the representation (V, {ρk}

+∞
k=1). Then (V, {θk}

+∞
k=1) is a pre-

Lie∞-algebra, where θk : ⊗kV → V (k ≥ 1) are linear maps of degree 1 defined by

θk(v1, · · · , vk) := ρk(Tv1, · · · ,Tvk−1, vk), ∀v1 · · · , vk ∈ V.(63)

Proof. By the fact that ρk is a linear map of degree 1 from graded vector space Sk−1(g) ⊗ V to V ,
we deduce the graded symmetry condition of θk. Moreover, for all v1 · · · , vn ∈ V , we have∑

i+ j=n+1
i≥1, j≥2

∑
σ∈S(i−1,1, j−2)

ε(σ)θ j(θi(vσ(1), · · · , vσ(i−1), vσ(i)), vσ(i+1), · · · , vσ(n−1), vn)

+
∑

i+ j=n+1
i≥1, j≥1

∑
σ∈S( j−1,i−1)

(−1)vσ(1)+vσ(2)+···+vσ( j−1)ε(σ)θ j(vσ(1), · · · , vσ( j−1), θi(vσ( j), · · · , vσ(n−1), vn))

(63)
=

∑
i+ j=n+1
i≥1, j≥2

∑
σ∈S(i−1,1, j−2)

ε(σ)ρ j
(
Tρi(Tvσ(1), · · · ,Tvσ(i−1), vσ(i)),Tvσ(i+1), · · · ,Tvσ(n−1), vn

)
+

∑
i+ j=n+1
i≥1, j≥1

∑
σ∈S( j−1,i−1)

(−1)vσ(1)+vσ(2)+···+vσ( j−1)ε(σ)ρ j
(
Tvσ(1), · · · ,Tvσ( j−1), ρi(Tvσ( j), · · · ,Tvσ(n−1), vn)

)
=

∑
i+ j=n+1
i≥1, j≥2

∑
τ∈S(i, j−2)

i∑
s=1

(−1)vτ(s)(vτ(s+1)+···+vτ(i))ε(τ) ·

ρ j
(
Tρi(Tvτ(1), · · · , T̂ vτ(s), · · · ,Tvτ(i), vτ(s)),Tvτ(i+1), · · · ,Tvτ(n−1), vn

)
+

∑
i+ j=n+1
i≥1, j≥1

∑
τ∈S( j−1,i−1)

(−1)vτ(1)+vτ(2)+···+vτ( j−1)ε(τ)ρ j
(
Tvτ(1), · · · ,Tvτ( j−1), ρi(Tvτ( j), · · · ,Tvτ(n−1), vn)

)



28 ANDREY LAZAREV, YUNHE SHENG, AND RONG TANG

(57)
=

∑
i+ j=n+1
i≥1, j≥2

∑
τ∈S(i, j−2)

ε(τ)ρ j
(
li(Tvτ(1), · · · ,Tvτ(i)),Tvτ(i+1), · · · ,Tvτ(n−1), vn

)
+

∑
i+ j=n+1
i≥1, j≥1

∑
τ∈S( j−1,i−1)

(−1)vτ(1)+vτ(2)+···+vτ( j−1)ε(τ)ρ j
(
Tvτ(1), · · · ,Tvτ( j−1), ρi(Tvτ( j), · · · ,Tvτ(n−1), vn)

)
(55)
= 0.

Thus, (V, {θk}
+∞
k=1) is a pre-Lie∞-algebra. �

Corollary 5.16. With the above conditions, then linear map T is a strict L∞-algebra homomor-
phism from the sub-adjacent L∞-algebra VC to the initial L∞-algebra (g, {lk}

+∞
k=1).

Proof. It follows from Theorem 5.15 and Corollary 5.13. �

At the end of this section, we give the necessary and sufficient conditions on an L∞-algebra
admitting a compatible pre-Lie∞-algebra.

Proposition 5.17. Let (g, {lk}
+∞
k=1) be an L∞-algebra. Then there exists a compatible pre-Lie∞-

algebra if and only if there exists an invertible strict homotopy relative Rota-Baxter operator on
(g, {lk}

+∞
k=1).

Proof. Let T be an invertible strict homotopy relative Rota-Baxter operator on (g, {lk}
+∞
k=1) with

respect to a representation (V, {ρk}
+∞
k=1). By Theorem 5.15, (V, {θk}

+∞
k=1) is a pre-Lie∞-algebra struc-

ture, where θk is defined by (63). Since T is an invertible linear map, there is an isomorphic
pre-Lie∞-algebra structure {Θk}

+∞
k=1 on g given by

Θk(x1, · · · , xk) := Tθk(T−1x1, · · · ,T−1xk−1,T−1xk) = Tρk(x1, · · · , xk−1,T−1xk)(64)

for all x1 · · · , xk ∈ g. Since T is a strict homotopy relative Rota-Baxter operator, we have

lk(x1, · · · , xk−1, xk) =

k∑
i=1

(−1)(xi+1+···+xk)xiTρk(x1, · · · , xi−1, xi+1, · · · , xk,T−1xi)

=

k∑
i=1

(−1)(xi+1+···+xk)xiΘk(x1, · · · , x̂i, · · · , xk, xi).

Therefore (g, {Θk}
+∞
k=1) is a compatible pre-Lie∞-algebra of (g, {lk}

+∞
k=1).

Conversely, by Proposition 5.14, the identity map Id is a strict homotopy relative Rota-Baxter
operator on the sub-adjacent L∞-algebra gC with respect to the representation (g, {Lk}

+∞
k=1). �
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