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ON INNER PRODUCTS OF EIGENFUNCTIONS FOR THE
HYPERBOLIC PLANE

YJANNJS N. PETRlOJS

ABSTRACT. \Ve present an improved bound on the rate of decay of tbe
Fourier coefficients of tbe square of an elgenfuDetion cP of the Laplace op­
erator for a compact byperbolic surface. Jf tbe surface baB finite area., we get
a new bound for the Rankin-Selberg convolution L(cP0l/J.~) on its criticalllne
for arbitrary cofinite subgroups of SL(2,1R) and a new bound for tbe Fourier
coefficients of cP: om = O{lml:Zjll+e-). Tbe method followa the same steps as
[llJ.

1. INTRODUCTION

Various applications of L-series require knowledge of their behavior on their
critical line. One usually needs to know the loeation of tbe poles and the various
gamma factors that appear in the functional equation of the L-series. In [11) the
special case of the Rankin-Selberg convolution L(tP es> tP, 8) is treated without such
knowledge, where tP is an L 2-eigenfunction of the Laplace operator on the surface
r \ H, r a cofinite subgroup of SL(2, IR). The following bound is proved in {lI]

[T+l
(1) lT l(tP2

, E(z, 1/2 + it))1 2 dt <t: (T logT)2e-'l"T

as T -+ 00. The notation « means that the left-hand side is (for sufliciently large T)
less than a constant multiple of the right-hand side. Here E(z,s) is the Eisenstein
series corresponding to a cusp of r. Bq.(l) implies that the Fourier coefficients an
of an arbitrary Maaß cusp form tP satisfy the bound

(2) lan I «:t.~ InI 5
/

12+ t

for all f > O. Here ßtP + (l + ).,2)tP ::::: 0, )., E IR or )., E i[-1/2,l/2] and tP has the
following Fourier expansion at the cusp SI x [a,oo) with coordinates x, y:

(3) tP(x + iy) ::::: L anyl/2 K i>.(21Tlnly)e211"inz

n

\Ve can naturally assume that 4> is real-valued and A # ±i/2, since we are not
interested in the constant eigenfunction.

In [11] the case of compact surfaces is discussed as weIl. If tPj are an orthonormal
basis for L2 (r\IHl), ra cocompact subgroup of SL(2, IR) and ß4>j+(l/4+r;)tPj ::::: 0,
then

(4) (t/J2,tPj)« (rj logrj)e-lI"rj /2
1
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as j -+ 00.

In the case that 4> is a holomorphic cusp fonn of even integral weight k > 2
Good [3] proved that an <t: n k / 2 - 1/ 6 for arbitrary cofinite subgroup of SL(2, IR).
We see that (2) falls sbort of the corresponding bound for the holomorphic cusp
forms. This raises the issue of improving (1), (2) and (4). In this work we prove:

Theorem 1. I/ r i.! a cocompaet subgroup 0/ SL(2, IR) and A 1:- 0, i.e. the eigen­
value cofTe3ponding to <p is not 1/4, then

(5) (4)2,4>k) « ri/2e-1rrlo/2

os k -+ 00.

Theorem 2. Ifr is cofinite subgroup 0/ SL(2, R) and the eigenvalue corresponding
to </> is not 1/4, then there exi.5ts an f > 0 such that

(t+~

lt 1(</>2, E(z, 1/2 + is))12 ds « te-1ft
•

os t -+ 00.

Corollary 1. The Fourier coefficients an of Maap cusp form 4> satisfy

(7) lanl «-l,1i In12
/
IHt

fOT all f > O.

In the case r is an arithmetic group of a special kind, like SL(2,Z), much better
bounds than (7) are known, see [1]. Even in these cases the bounds do not prove
the Ramanujan conjecture lanl <t: Inl~. In [11] it is suggested that the Ramanujan
conjecture may hold for arbitrary cofinite subgroups and ia not a special feature of
arithmetic. This makes improvements on (2) and (7) interesting to pursue.

The restriction A 1:- 0, which follows from iA ~ !Z, is purely technical. Lemma
1 is not necessarily true for the eigenvalue 1/4. Eq.(14) that gives the analytic
continuation of the hypergeometrie function fails for iA E !Z. Similarly Eq.(2.17)
in [11] falls for iA E !Z. This problem first showed up in [5] and [7]. However, even
in the case A= 0, the sequence an in (12) increases at most polynomially in n, see
[8, Tb. 7.3] . The author has. not investigated the order of growth of the an that
follows from [8, Tb. 7.3] for A = O. In any case, a generic cofinite or cocompact
subgroup of SL(2, R) does not have 1/4 in its L2 spectrum, see (10].

2. SOME REMARKS ON POINT-PAIR INVARIANTS ON Iffi
1.. _ .. '1 2

If t(z, z/) =~, z, Zl E Iffi, then the hyperbolic distance r = r(z, Z/), between

z and z' satisfies: t = 4sinh2 ~ =2cosh r-2. A point-pair invariant is a K =80(2)
bi-invariant function k(t) = k(r) and its Selberg·Harisb·Chandra transfonn is given
by

(8)

h(s) =
h(s) =
g(u) =
Q(w} =

In k(t(i, z))yt+ü ~~l/

J~oo eing(u)du
Q(eU + e- U

- 2)

J: }t(~tdt
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and h(s) and g(U) are even functions (see (12, pp. 72]). It is important to under­
stand that the transform h(s) is the integral of k(r) with a spherical functian. This
is seen as folIows:

h(s) = 2['" cos(su)g(u)du

100 100 k(t)= 2 cos(su) dt du
o e-+e---2 Jt - (eu + e- U

- 2)

21
00

( ) 100 2 k(r) sinh r d d= cos su - r u
o U v'2 vcosh r - cash u

4 1001r
cos(su)= M du k(r) sinh r dr.

v 2 0 0 Vcosh r - cosh u

Using the integral representation for the Legendre function [2, 3.7 (8), pp. 156), we
see that

v'21r
cos(su)p_!+i.(cosh r) = - du

1r 0 vcash r - cash u

so

(9) h(s) = 271" ['0P_hi.(cosh r)k(r) sinh r dr

exactly as in [13, 3.27t pp. 149].
Let r be a cocompact or cofinite subgroup of PSL(2, R). \Ve set

K(w,w') = L k(th'w,w')) = L k(r(')'w,w')).
1Er 1Er

Then the conditions on k to assure absolute caDvergence of the series above and,
therefore, be able to define an operator K by

(K f)(w) = r K(w, w')J(w') dw'
Jr\H

= Lk(t(w, w'))f(w') dw'

are explained in [12, pp. 60). Theyare: k(r(x, V)) should have a majorant, k1(x, y)
such that (a) In k1(x, y)dy < 00 and (b) there are constants d > 0, A > 0 such that
for all x and y

kt{x,y) ::; Al k1(x,y')dy'.
r(l/,lI')<O

The Fourier expansion of K (w, w') is

(10) .

00 100

K(w, w') = L h(rj)tI'j (w)tI'j{w') + h(s)E(w, 1/2 + is)E(w', 1/2 - is) ds,
j=O 0

where the tl'j 's are an orthonormal basis of eigenfunctions for the discrete spectrum
with corresponding eigenvalues ~ + rl.



4 YIANNlS N. PETRlDlS

3. SOME REMARKS ABOUT FOURIER EXPANSIONS OF EIGENFUNCTIONS ON H

The metric on the disc model B2of hyperbolic space is ds2 = 4 (1~(;t:::»)2'

z = x + iy. \Ve use polar coordinates on B'J: r = r(O, z) = log (~), 0:::; r < 00,

8 E {0,27r]. Denote an eigenfunction on B2 again by tP, which satisfies

e:.4>+ (~H2)4>=O.

We separate variables in polar coordinates. Since the metric in polar coordinates
is given by: ds2 = dr2 + (sinh r)2d8'J, the Laplace operator is

82 8 1 82

ß =8r2 + coth r 8r + (sinh r)2 882 '

We write: 4J(r,8) = E~oo h(r)eij8
. Then for all j E Z

8
2
h(r) + cothr8h(r) _ j

2
h(r) + (~+ ,X2) J·(r) = O.

8r2 8r (sinh r)2 4 )

\Ve put q = - sinh'J r and we get, since ~ = - sinh(2r), Ir = (- sinh(2r)) iq and

~ =4q(q - I)~ - 2(1 - 2q)iq,

q2(q _ 1) 8
2
I; + q (~q _1) Bh + (i'2 + 2- + ,,\2 q) J. = O.

Bq2 2 Bq 4 16 4 )

Since the equation

x2(x - I)y" + [(a + b+ 1)x + (0' + ß - 1)]xy' + (abx - O'ß)y = 0

has the solution y = xQ F(a + Q, b+ Q, Q - ß+ 1, x) (see [6, (19), pp. 470]), where
F is the Gauss hypergeometric function, we get

I;(q) = Cjqtq F(I/4 + i,,\/2 + lil/2, 1/4 - i,,\/2 + lil/2, Ijl + 1, q)

and, since q = -4 (1 ~::::JN ))'1, we use the _quadratic transfonnation fonnula [2,

2.11 (1), pp. 110] to get

I;(r) =aj tanh1il (r/2) (cosh(r/2))-1-2i>' F(1/2+i"\+lil, 1/2+i'x, l+lil, tanh2 (r/2))

for some constants aj.

4. OUTLINE OF THE PROOF

Assume r is cocompact. If K is an integral operator as in Sect. 2, then

(Kq'>2)(w) = ( K(w,w')cj,,2(w')dw'
Jr\H
00

= Lh(rj)(q'>2,4Jj)tjJi(W),
j=O

which gives (using Parseval's equality)
00

IIKtjJ211~ = L Ih(rj)(tjJ2, <Pj )12.
j=O . t
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(12)

We will choose a family of operators K t given by point pair invariants kt{r) such
that the corresponding transforrns localize at rj, Le. Ihrj (rj)1 2: c for all sufficiently
large r j, where eisa constant independent of i. Then

co
(lI) IIKt4lll~ .vol(r\IHI) 2: IlKt(p2l1~ =Llh t {rj)(4)2,4>j)12.

j=O

Ir we prove that IIKt {4>2)!Ico « t i /1 exp{-1Tt/2), then

lIKr" (4)2)llco « (r~/2) exp( -1Trk/2)

and, by looking at one summand in (11),
co

rkexp(- 1Trk)::$> L Ihr. (rj)(4>2, 4>j)1
2
~ Ihr .(rk)1

2
1(4J2,4JAJI

2
2: c21(4J2,4JAJI2,

j=O

which implies tbat (f/J2, f/J,,:) « r~/2 exp( -1rr.t/2) and proves theorem 1. Tbe choice
of k t will be explained later. Tbe issue is to estimate the L oo norm of K t (4J2). Fix
w E Iffi. \Ve switch to the disc model of hyperbolic space by a transformation that
maps w to O. All bounds will be unifonn in w.

For 0 :5 r < 00 we define

\Ve set

Cj(r) = (cosh(r/2))-1-2i>' F(I/2 + 0. + lil,l/2 + iA, 1 + lil, tanh2(r/2))

so that
co

cj>(r,8) = L aj tanh1jl (r/2)Cj (r)eij9 .
j=-oo

The functions tanhlil (r/2)Cj (r) are the associated spherical functions. Parseval's
equality then gives

00

B(r) = L ]ajl2 tanh2j (r /2)ICj {r)12,
j=O

where laj 12 = lajl2 + la~jI2, i 2: O. The function B(r) extends on the realline as
an even function and, if 14>(r, 8)1 :5 M, then B(r) ~ 21rM. It extends to an analytic
function for 1ili'1 < 1T/2, see Lemma 2. The crucial point is a lower bound of Cj(rj)
as i -7 00 for a certain sequence r j that gives a rather sharp bound on Gj, see
Lemma 1 and an upper bound on Cj(r) as i -7 00 for all r with 19'r1 < 1T/2, see
Lemma 3. This lemma is a sharper version of [11, Eq. 2.21] and is the crucial new
ingrernent. Its proof is included in Appendix A.

The proof of Lemma 1 is exactly the same as in [5, Th. 4.24, pp. 66] and [7]
and is included only as a convenience to the reader. The main point is that if an
eigenfunction does not increase more than exponentially in the distance from the
origin of the hyperbolic disc, then it corresponds to a distribution on the boundary
of the disc and Lemma 1 gives abound on the order, as ~ong as iA rt ~Z. This is
issue is related to the question whether such an eigenfunction can be represented
ag a Poisson transfonn of its boundary values, see [5] and [1]. For general affine
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symmetrie spaces (no restrietion to the rank) this is true for A outside certain
hyperplanes, see [9].

5. PROOF OF THEOREM 1

5.1. We state the lemmas mentioned in Seet. 4.

Lemma 1. (see also [5, Th. 4.24, pp. 66] and [7]) Assume that iA f/. !Z. Then
the sequence aj is square integrable.

Proof. Using [2, 2.10(1), pp, 108) we get

F(1/2 + iA + j, 1/2 + iA, 1 + i, tanh2(r/2)) =

(13) = r(II~~~1~~/;~~)-iX) F(1/2 + iA + j, 1/2 + iA,1 + 2iA, eosh-2(r/2))

+(cosh(r /2))4iA r(lI;J:1~~~ii'~+i.\) F(1/2 - iA, 1/2 + j - iA, 1 - 2iA, eosh-2(r/2))

We have: limm -+oo F(a + m, b, C, ~) = 1Ft (b, C, x), where IFI ia the eonfluent
hypergeometric funetion. \Ve eonstruet a sequenee rj ~ 00 by setting eosh2(rj/2) =
j / a where a > 0 is to be determined later. \Ve also have

(14) 1· r(x + j) '-z - 1
.Im r( ') J -

)-+00 J

and

Therefore

olim tanhi (r)2)C'(r') =
)-+00 )) )

Sinee

-a/'l r( -'liA) F (1/2 + . \ 1 + 2' \ ) 1/2+iAe r(1/2-iA) 1 I JA, tA, a a

-a/2 r,2iA) F (1/2 . \ 1 2' \ ) 1/2-iA+e r(I'l+iA) 1 1 - tA, - tA, a a .

1· F (b ) -z b-c _ r(c)
z~~ 1 1 ,C,X e x - f(b)

[2, 6.13.1 (3), pp. 278L the terms on the right hand side of the previous equation
behave difIerently for a large a, In partieular we ean select a such that the last limit
is different from O. Then for a suitable constant CO ~ 0 and j sufficiently large, say
j :2: ja, we have

so
h 00 00

27rM :2: B(rj) = L + L !ajl'l tanh
2j

(rj/2)ICj(rj)12 :2: :E lajl2ca
j=O j=jo+1 j=jo+l

and the sequenee aj is in 12
, o

Lemma 2. The function B(r) extends to an even analytic function 0/ r in the
strip I~I < ~ and satisfies the bound

B(r) «: Ieosh(r/2)14
•
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co

B(r) = L laj 12 tauh} (r/2)tanhj (f/2)Gj (r)Gj (r)
j:;O

and we note that the hypergeometrie function F(a, b, c, z) is holomorphic in the
region Izl < 1 and that the map z = tanh (~) is a conformal map from I~rl < ~ to
Izl < 1. So we have aseries af holomorphic functions and we will prove that

(15)

1(cash(r/2))-3-2i.\ F(I/2 + iA + j,1/2 + iA,1 + j, tanh2 (r/2))I « 1

Le. IG(r)1 «: 1cosh(r /2)12
• Eq.(15) is equivalent to Eq.(16), which captures the

behavior of the hypergeometric function in (15) for large j:

Lemma 3. The following bound holda for Izl < 1

(16) 1(1- Z)3/2+i.\F (1/2 + iA + 1,1/2 + iA,1 + i, z)1 <t: l.

We also have for t > 0

(17) 1(1- Z)3/2 F (1/2,1/2,1- it, z)1 <t: 1.

The proof of lemma 3 is included in Appendix A.
We now have

co

B(r) « L laj 12 ltanh(r /2)1
2j

1cosh(r /2)14
•

j::O

Since 1tanh r /21 < 1 and the sequence aj is in l2 by lemma 1, the proaf of lemma
2 is complete. 0

Remark 1. We note that on the horizontal lines r = x + i (~ - t) and r = x ­
i (~- t), x E IR, we have the bound

(18) B(r) 4:: e2lzl .

This is so because a trivial calculation gives

Icosh(r/2)12 = cos2(rr/4 - 1/2t) + sinh2(x/2).

5.2. We now come to the choice of the point·pair invariants kt(r):

tP_ ;+it (cash r) sinh2 r
(19) kt(r) = cash8 (r)

Remark 2. The intuition behind the choice of the point-pair invariants is as folIows:
The inversion formula for the Harish-Chandra transform

1 1co

k(r) = fiC h(..\)P_ !+i.\ (cash r)lc(A)I-2 dA,
v2rr 0

where c(A) is the Harish-Chandra c functian, suggests that in order to localize ht (.\)

at t, say ht(.\) = dt(.\), kt(r) has to be essentially P-1/ 2+it(cosh r)jc(t)I-2
• One sees

that lc(t)[ is asymptotic to rr- 1
/

2 t- 1/ 2
1 see Eq.(52). However, since ~e do not want

to work with distributions and need to define integral operators as in Beet. 2, we
use aractor to make kt (r) rapidly decreasing. 'Ve choose it to be sinhm r / coshn r 1

for m and n natural numbers. These point~pairs are smoath at r = 0 and cau be
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odd or even funetions of r and have order of vanishing at 0 as high as needed by
adjusting m and n. These options are important in order to generalize to the other
rank one symmetrie spaces. ~'loreover the fact that we incorporate in the point­
pair invariants the spherical funetion, which is a hypergeometrie funetion, allows
to avoid the fractional integral in (8). \Vith the exeeption of the odd dimensional
real hyperbolie spaces all other rank oue spaces have Harish-Chandra transform
that involves fractional integration and multiple integrals, see [14, pp. 31]. The
advantage of using (19) is now obvious.

\Ve need to know that the point-pair invariants (19) satisfy the conditions ex­
plained in Sect. 2 in order that the series

Kt(w,w') = L kt (r(w,l'w' ))
1'Ef

converges absolutely. \Ve will show that kt has majorant k1(x, y) = te-yr, r =
r{x, y). \Ve study the behavior of P_,+it (cash r) for r E R, which we need later tao.
The Legendre function of the first kind P-,+it{Z) = F(I/2+it, 1/2-it, 1, (l-z)/2),
11 - zi < 2 is real for z real, since the hypergeometrie function is symmetrie in its
first two arguments and for zER we have

F(I/2 + it, 1/2 - it, 1, (I - z)/2) = F{I/2 - it, 1/2 + it, 1, (1 - z)/2).

Consequently P-,+it(Z) is real for z ~ -1. Formula (26), [2, pp. 128] gives

(20)
1 fL-it) e{1/2-it).. (/ • 1

p_!+it(eoshr) = V;-r(l)2-it) (e:Ir·_tj1)2F 1 2,1/2,1+~t, I-ei.. )

1 reit) e(tl +H).. (/ / . 1)+v;- r(lj2+it) (e::l"-1)1/2 F 1 2,1 2,1- tt, I-e::!"

for r > tin 2. \Ve note that the two hypergeometric functions in (20) are conjugate
numbers for r E IR. \Ve also have for r > In 2 and t > 1

F(I/2, 1/2, 1 + it,-11 2 ) = 1 + €(t, r),-er

where

(21)

This follows from the series expansion of the hypergeometrie funetion as folIows:

') ~ (1/2)% k
F(I/2, 1/2, 1+ tt, Z = 1 + L- ( . ) k' Z ,

4:=1 1 + tt k •

where we use Pochhammer's notation: (ah = a(a + 1) ... (a + k - 1). \Ve have
(tl" < k!, (~)k < 1(1 +it)k! and

~ Izlk = _lzl_ = _1_ < 2e-2r .
L- 1 -izi e2r - 2
k=l

\Ve note that the bound on €(t, r) is independent of t. PrOfi (20) we deduce that,
for fixed t,
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as T -+ R and the integral

(Xl e-!r .
Ja ~ smhrdr < 00

converges. This proves condition (a) in [12]. For fixed d small and r = r(x, y)

9

since k1(T) is decreasing. On the other hand, k1 (r(x, y)) = e-lfr :5 eyde-y(r+d),
so condition (b) is [12] is satisfied too.

5.3. Now we prove that ht(t) ~ CO for all t sufficiently large, Le. the Selberg­
Harish-Chandra transfonn of kt localizes at t. Using (9) ano the fact that the
spherical function P_ t+it (cosh r) is real, we get for m > ma

where m is to be determined later independently of t. The issue is to show that the
integral giving ht(t), which is positive and decreases as t -+ 00, decreases at most
like l/t and not more quickly. Using (20) and (21) we get

(22)

and

The idea suggested by the asymptotics of P-!+it (cosh T), as given by Eq.(22), is
that the main contribution comes from the integral

2 (;Q f( -it)f(it) 1 er d
t Jm f(I/2 - it)r(I/2 + it) cosh5 r e2r _ 1 r.
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By expanding the products and the squares in Eq.(23) we get nine integrals, which
we estimate using (21):

A = Iroo e" {(t,r)+(t,r) drl < ce-Sm
1 J m (e" - 1 c05h r 1

A = 1 roo e"I{(t,r)l:l drl < ce- 10m
2 Jm (e2"_I) cOl5h! r 2

-1f.00 e{l+:I11)"2(t,r) 1 -Sm
A3 - m (e 2"-I) c05hS r dr < C3e

-I roo e{l+:!ilj"({(t,r)):1 I -10mAt - J m (e'i"-l)C08hCr dr < C4,e

_I roo e(1-:I11)"2{(t,r) 1 -Sm
As - J m (e2"-1) co.hg r dr < C3e

-1 rOO e(l-:I11j"({(t,r)):1 1 -tOm
A6 - Jm (e2"-ljc08hS r dr < C4e

A - roo e" d > 1,00 -6rd _ 1 -6m
7 - Jm (e2"-1) cosh g r r _ m e r - äe

A - roo e°+:!iq.. d __1_ e{:Iit+l)",
S - J m (e'i"-ljcoshO r r - 2it+1 (l-e2"'lcol5hom

_I_ roo e(:I11+ I) .. [5 slnh r( e:l.. -1 )+2e:l.. cosh rl dr
+2it+l Jm (e'i"-l)'icoshü r

« cSt- 1e-6m

A rOO e(l-:Iit).. d -A -I -6m
9 ::= Jm (e2 .. -I) cOlhS r r = S« cst e .

" The asymptotic behavior of the Gamma function r(x + iy) for large lyl is described
by the fonnula

(24) lim jr(x + iy)lelflul/2Ivl ,-:I: = (21t')1/2,
lul--+oo

see [2, (6), pp. 47). Using (24) we see that

lim inf ht(t) > 0,
t--+oo

which concludes the claims about the choice of the point-pair invariants.

\Ve now choose m such that
1
"Be-6m > 2 ((CI + 2C3)e-8m + (C2 + 2C4)e-lOm)

and we use the last fourteen equations together with the triangle inequality and
(23) to deduce that

(25)

5.4. \Ve come back to estimate the Loo nonn of /(t(4>2). We have by using polar
coordinates

/.
00 /.00 tP_!+it(coshr)

K(fjJ2)(w) =/ = kt(r)B(r) sinh r dr = s B(r) sinb3 r dr.
o 0 cosh (r)

Formula 3.3.1 (3) in [2, pp. 140] gives

tan(-1/2 + it)1t' ( )
(26) 1t' Q-!+it(Z) - Q-t-it(z) = P-!+it(Z),
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where QII(Z) is the Legendre functioD of the second kind. Eq.(26) gives, since
tan(-t + it)1r = i coth(t1r) ,

1 = (OO II th(t) Q-1/::z+il (cash r) B( ) . h 3 d
JO 11' co 1r c08h8(r) r sm r r

(27) (OO it th(t) Q-l/:3-'1 (cash r) B( ) . h3 d
- JO 1r co 1r coshä(r) r sm r r
= lt - 12 ,

Tbe Legendre functions of the second kind Q~(z) and the Legendre functions of the
first kind Pt(z) are not single-valued in the plane. ODe roust introduce a cut from
-00 to 1. However, when JJ is an even integer, we can reduce the cut for Pt(z) to
(-00, -1]. This is explained in [2, pp. 143]. \Ve see that in the strip I~l < ~ the
cut [0, 1] corresponds to i{- ~, ~] and tbat the conformal map z = cash r opens the
cut [0, 1] so that approachiDg (O, 1] from above (below) corresponds to approaching
i[O,~] (i[-~,O]). \Ve denote the new brauches of Q~(z) when we go around the
branch point 1 clockwise (counterclockwise) by Q~ (z, 1-) (Q~ (z, 1+)). The relation
between Q~(z), Q~(z, 1±) and Pt(z) is described by the equations

Q~(z,1-) - e-iJlJrQ~(z) =1rieiJlJrPt(z)

(28) Q~(z,l+) - eiJlJrQ~(z) = -1rieiJl ll' Pt(z),

see [2, 3.3.2 (19), pp. 142]. For completeness we include the proof of the second
equation. \Ve have

e-ill'JlQ~ (z) - r(1+II+y)r(-y) (z-1).II/2 F( v 1 + v 1 + IL (1 z)/2), - 2t(1-Jl+II) (z+l).II}5 -, , r-, -

(29) +~ ~;~g:~: P( -v, 1 + v, 1 - JJ, (1 - z)/2),

see (2, 3.2 (32), pp.130]. \Ve continue analytically Eq.(29) to get

e-ill'JlQ~(z,1+) - r(1+v+y)r(-y) iJlff (::-lt
I2 p(_ 1+ 1 + (1- )/2)

v - 2r(I-Jl+ .... ) e (::+l).IIn v, v, }.L, z

!:.icl. -iJlJr (z+1).II/:I F( ()I )+ 2 e (z-I).II/~ -v,1 + v, 1 - JJ, 1 - z 2.

As a consequence of the last two equations it follows that

e-i'vQe(z, 1+) -Qe(z) = (e- iv' _eiv.) r~) ~; ~ ~~:;>(-v, 1+v, 1-1', (l-z)j2)

and now the equation: f(JJ)r(l - Ji) = sln
1fll'Jl together with

1 (z + 1)Jl/2
P:(z) = f(l _ JJ) (z _ l)Jl/~ F( -v, 1 + v, 1 - IJ, (1 - z)/2)

[2, 3.2 (3), pp. 122] gives the result.
In (28) we pass to the limit }.L -+ 0 to get

QII(Z, 1-) - Q.... (z) = 1riP.... (z)

QII(z,I+) - QII(Z) = -1riPIl(z)

which imply

(30)

Now we shift the contour of integration for 111 12 as folIows: For 11 we first go along
the negative real axis from 0 to -00 and on the lower cut of the plane (ca1led path
1'1) and then along the line 1'2 given by r = x-i (~ - t). For I~ we first go along
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the negative real axis from 0 to -00 and on the upper cut of the plane (called path
')'3) and then along the line ,4 given by r ;:; x + i (~ - t). \Ve set

- { Q_,±it(cosh r) Rr 2: 0
Q_!±it(coshr) ;:; Q_!±it(coshr, 1=t=) ~r < o.

Then

f it h( )Q- (h ) B(r)sinh
3

rdI ;:; "Yl +1'2 ;r cot t1r - ,+it cos r coahä r r

f 't - B(r) sinh3 r
- "Y~ -h'4 -; coth(t7l'")Q - , -it (cosh r )cOsh8 r dr

so that
I;:; - rO .ü. coth(t1r)Q 1 . (cosh r 1-) B(r) 1I1nh' r drJ-oo 'lf - ,+lt , coah' r

+ r<J g coth(t1r)Q 1 . (cash r 1+) B(r) IIlnh
3

r drJ -00 11' - ,-at , coah8 r

+ J"1'J - f,."4 .
Moreover,

(31)

1= Jooo *coth(t7l'") [Q-l/2-it(cosh r, 1+) - Q-l/2+it(cosh r,I-)] -BJj:~nrh' r dr

+ J"Y'J - J"Y4'

because B(r) is even. Since

tau( -1/2 - it)1r [ ]
p_!_it(eoshr) = 7f Q_!_it(eoshr) - Q_!+it(eoshr)

for T > 0, we get by analytic eontinuation when we cross the cut i[O, ~]

tan( -1/2 - it)1r [ ]
P_,_it(eoshr) = 1r Q_!_it(coshr, 1+) - Q_!+it(eoshr, 1+) ,

which gives together with (30), (31)

1= f r"Y:z - J"Y4
fOO it i 11' B(r) slnh3 r

- J 0 'i' coth(t1r ) COili("i1J P- ! - it (cash r) ca.h' r dr

- J; ~ coth(t1r) [Q_!+it(eosh T, 1+) - Q_!+it(coshT,l-)] B(;~Sll~~~3 r dr

and, therefore,

1= f f1'2 - "14

(32) roo P (h) B(r) sinh:J r d+ Ja t -!-it eos T cash!! r r
roo it h()( 2 ')P (h) B(r) slnh' rd- Ja 'i' eot t1r - 1rl - !+it eos r c06h' r T.

Since P_!_it(Z) = P-!+it(Z) (see (2, 3.3.1 (1), pp. 140)) we get from (32)

1=1 -1 +1 - 2 eoth(t1r)I
"r2 "Y4

or, equivalently,

\



EIGENFUNC'TIONS FOR THE HYPERBOLIC PLANE

Therefore, it is enough to prove that

1it - B(r) sinh3 r /
- coth(t7r)Q_!+it(Coshr) 8 dr = O(t 1

2e-i t )
~w ~hr

1it - B(r)sinh3 r / ~
- coth(tw)Q _ !_it(cosh r) 8 dr = O(t1

2e- 2 t).
~ w cash r

13

Since B(r) is real for real r > 0, we have B(r) = B(f) on the strip I~I < ~ and
we see that the integrand C(r) in f1"J is C(r) = V(f), where V(r) is the integrand

for f . So it is enough to look at f V(r)dr. \Ve have
~4 ~4

f(1/2 - it) eitr . 1
Q_-l_it(coshr) = Jw/2 f(l ') v'SIii"ilr F (1/2,l/2,l- zt, --2-)

2" - I t smh r 1 - e r

for r > ~ In 2 [2, 3.2 (44), pp. 136}. This fonnula holds by analytic continuation in
the domain: {rlf <~ < ~,-oo < Rr < In 2} U {rl-f < ~r < ~,1Rr ~ In 2}. On

this domain we have: Il_~:Ir 1 < 1, so we can apply (17). On the line ')'4 we have:

Isinh rl « el:l: l, JF(1/2,l/2, 1 - it, l-~:I,.)I « 11 - e-2r I3 /
2 <t: e31

:1: I, Icosh rl :» e1zl

for t > ~. Using (24), (18) we finally get

1it - B(r) sinh
3 r / ~ 100

I-I- coth(tw)Q_!_it(cosh r) 8 dr « t1 2 e- 2 t e- T dx
1'4 w cosh r -00

which gives the result. This completes the proof of theorem 1.

6. NON COMPACT SURFACES

\Ve need the following property of the point-pair invariants kt(r) defined in (19):
Claim: There exist € > 0, €o > 0 and to > °such that Iht(s)1 ~ fO for all t :2: to

and Is - tl < €.

This property will be proved in Appendix B.
The spectral decomposition of the integral kernel is in this ca.se given by (10),

where we have assumed that r\H has only one cusp and E(z, s) is the corresponding
Eisenstein series. The sum in this equation may actually be only a finite sumo
Parseval's identity now gives

The rest of the proof remains unchanged and we look now at the integral on the
right-hand side of (33) over the short interval [t, t + €] to deduce (6) and complete
the proof of theorem 2. In order to study the Fourier coefficients of Maaß cusp forms
for f, we follow the method used in (3, pp. 546] to study the Fourier coefficients of
holomorphic cusp forms. \Ve define 1/Ju, U sufficiently large, to be a Coo function
on IR with _{1 if r ~ 1 - 1/U

1/Ju(r)- 0 ifr~1+1/U
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and t/J~) (r) « Ui for j = 0,1, .... \Ve will work with the Mellin transfonn of tPu
given by

Ru{s) = L'o tPu{r)r'-1 dr

for (7 = ms > O. \Ve have

r1+1/ U r1+1/U

Ru(s) :;::= J
o

rs-1dr + J
o

(t/Ju(r) - 1)r,,-ldr

1 jl+l/U jl+l/U= - + r·-1dt + (1/Jv(r) - l)r·- 1dr.
s 1 I-I/V

The two integrals in the right-hand side of the last equation are O(I/U) unifonnly
on vertical strips. Since tPu(r) is bounded, this follows by applying the mean-value
theorem:

j

l+l/U 2
ru-1dr:;::= -(1 + €)U-l

l-I/U U

for some € between -1/U and I/U and (1 + E)U-I is bounded for (7 bounded. As
a result

(34)

Integration by parts gives

(35)

R ( ) _ (-I)i (Xl ,,+i-11/,(i)( )d 1 ( U )i-
1

U S - ses + 1) ... (8 + j _ 1) Jo r 'Pu r r« iST 1 + Isl

for j = 1, 2, . . .. This follows from the estimates

1 1
Js + kj « jsl + 1

for k = 1, . .. ,j - 1 and

100 . jl+I/U 2
r·+i-I1f'~)(r)dr « Ui r(1+i- I dr =Ui -(1 + e't+i - l = 0 (Ui- l )

o I-I/U U

for some €' between -1/U and I/U. Tbe estimates (34) and (35) are unifonn for
a bounded. Now by interpolation it is easy to see that for all c ~ 0 we have

(36) 1 ( U )C
Ru(s) «iST 1 + Isl

again unifonnly for (7 bounded. \Ve assurne the Maaß cusp form t,b(z) has the
Fourier expansion (3) at the cusp and its eigenvalue is 1/4 + A2 • The L-series
D(s) = L lanj 2Inj-" converges absolutely for ~s > 2 by the Hecke bound an =
O(lnl l / 2 ). Tbe Rankin-Selberg method provides the analytic continuation of D(s)
to the whole plane. A standard argument gives

27r·r(s) r 2

(37) D(s) = f(s/2)2f(8/2 + iA)f(s/2 _ jA) Jr\H 4J E(z, s) dz.
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(39)

On the critical line line !Rs = 1/2 the factor /(s) = 271'"·r{s)f{s/2)-2f{s/2 +
iA)-lf{s/2 -iA)-l is asymptotic to e fft

/
2t, as t ~ 00, as followB from Eq.(24). The

inversion fonnula für the Mellin transfonn gives

1/Ju{ln l/X) = -2
1

. ( lnl-"X·Ru{s) ds
1Tt J~.=2+t.

and, therefore,

(38)

L lan l2 ~ L lan J
2t!'u{lnl/X) =f: ( D(s)X·Ru{s) da.

InISX(l-l/U) Inl 1T1 1!?=2+t.

\Ve shift the countour of integration in the integral in (38) to the line !Rs = 1/2.
The function D{s) has poles coming from the residues of the Eisenstein series on
the interval (1/2, 1]. Let us assurne these are at the points Sj with residues the non
cuspidal eigenfunctions rj{z). \Ve estimate the integral along the line Rs = 1/2 as
folIows: we choose m an integer with I/rn< E. Then, using (6) and (24)I: D(1/2 + it)X' /Hit Ru (1/2 + it)dt =

00 m n+.Ia.

= n'foo {;;1+.~. 1(1/2 + it)( '1'2, E(z, 1/2 + it))X' /2+;'Ru (1/2 + it)dt

(

+.L n+.lL ) 1/2

« ~ 1:.~. 1('1'2, E(z, 1/2 + it»)1
2
dt 1+.~. 1/(1/2 + it)1

2
XI Ru(1/2 + it)1

2
dt

00 m ( +.lL 2c ) 1/2

« n~oo~ e-rlnllnll/2 1: .~. e
rl

' lt
2
X t-

2 C~ t) dt

« ~oo~e-'lnI/2Inll/2 (ewlnlX (l~n) 2C) '1'

00

= X 1
/ 2 L n 1

/
2 UC (1 + n)-C

n=-oo

To make the last series converge we choüse c > 3/2, say, c = 3/2 + E' with E' > O.
Then the integral is estimated by X 1/ 2U3/2+t.'. Therefore,

L lan l2 = L (rj, <jJ2)!{Sj)X·j sI. + O(X/U) + O{X3/2Ul/2+f'),
InlSX(l-l/U) 1/2:5l1j:51 )

since X·J <t: X and (34) holds. Coming from the pole of Eisenstein series at s = 1
we get the constant eigenfunction and we conclude

L lan l2 = cX + O{X/U + X I
/
2U3

/ 2+t.')
InISX(I-1/U}

\Ve choose U so that the two error terms are equaI, Le. U = X I /(5+2t.') = X I / 5 -t.
and then the error term becomes O{X4

/ 5+t.). Then am = O(lmI2/ S+l
). This proves

Corollary 1.
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7. ApPENDIX A

Prao/ 0/ Lemma 9. Using the fundamental integral representation for tbe hyperge­
ometrie function [2, 2.1.3(10), p. 59] we get

F(I/2 + iA + i, 1/2 + i>", 1 + j, z) = f(1 + j)f(I/2 + i>" + j)-l f(I/2 - i>.)-1 x

(40) x Jo18- 1/2+i>'+i[(1 - 8)(1 - Z8)]-I/~-i>'ds

\Ve can assume that 0 ~ ~>.. > -!' which is necessary for the integral representation
to he valid. We can also assurne that larg (1 - z)1 < 1r and larg (1 - 8z)1 < 1r.

\Ve study the hypergeometrie integral in Eq.(40) using Laplace's method. Für a
similar approach to get unifonn asymptotics of hypergeometrie integrals see [15].
\Ve fix lJ > 0 small and set u(s) = s-I/~+i>'+j, v(s) = (1 - S)-1/2-i>', P(s) =
(1 - ZS)-1/2-i>., U(8) =81/ 2+i>.+; /(1/2 + i>' + j). Then U(O) =0, v'(s) = (1/2 +
i>')(1 - s)-3n-i>. and PI(s) = z(I/2 + i>")(1 - ZS)-3/~-i>'. \Ve have

(41)

f~ uvP = fol
-

6
uvP + f11_6 uvP

= U(1 - lJ)v(1 - lJ)P(1 - lJ) - f~-6 U(v'P + vPI
) + fll_6 uvP.

The first tenn in (41) is O(I/j), sinee IP(1 - 0)1 is bounded, as Izl < 1. Since for
Izi < 1 and 0 :5 s :5 1, 11 - zl :5 211 - z81, we also have

1(1- Z)3/2+i>'p(S)1:5 11- zIel

1(1 - z)3/2+i>' P'(8) I :5 C2

and, therefore,

(42)

I 11-6 I 11
-

0

(1 - z)3/2+i>' 0 U(v' P + P'v) :5 C 0 jUllv'1 + jUllvl = O(I/j).

\Ve now look at the third tenn in (41).

/.

1 uvP =
1-0 .

(43)

L. uvP(l) + L. uv(P - P(l)]

P(I)11
uv - P(I)11

-

0

tiV + /.1 tiv(P - P(l)]
o 0 1-6

= (1 _ z)-1/2-i> r(1/2 + i~(: ~~~1/2 - i~) _ P(I)U(1 _ o)v(l _ 0)

+P(I)11

-

0

Uv' + /.1 uv(P - P(I)],
o 1-0

where we used the beta integral to evaluate J; uv. The second and third terms in
(43) multiplied by (1 - z)3/2+i>. are clearly O(I/j). Since

lim(P(s) - P(I))/(s - 1) = z(I/2 + i>')(1 - z)-3/2-i\
.-+1
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(48)

we have

(44)

(I UV[P _ P(I)} = -(Uv)(l- o)[P(1 _ 0) _ P(I)] - {I U{V'[P - P(I)] + VPI
}

ll-6 ll-o
The first term in (44) is O{I/j), when multiplied hy (1 - Z)3/2+i>.. Moreover,

(45) 1(1 - z)3/2+0. {I uVP/!:5 (I IUllvJ,
ll-0 ll-0

which is O(I/j), since v is integrable on [1 - 0, 1]' ns ~(-1/2 - i>') > -1. The last
term to consider in (44) is

(46) (I Uvl[P _ P(I)] = -(1/2 + i'\) (I Uv{P - P{I)JI{8 - 1)
ll-0 ll-6

and the function (1 - z)3/2+i>.[P - P(I)]/(8 - 1) is bounded for 8 elose to 1. Trus
completes the study of the various terms. \Ve now take into account the asymptotics
of the Gamma function (14) to see that

f{1 + j) '1/2-i>'
f(I/2 + i,\ + j) "-J J .

as j -+ 00. Since !R(1/2 - i'\) :5 1/2, all the terms in the expansion of tbe integral
representation of the hypergeometric function tend to 0 as j -+ 00, when we multiply
by (1 - Z)3/2+i>., except

(
1 _ )-1/2-i>. f(I/2 + i,\ + j)f(1/2 - i>')

z f(l + j)

wbich, when multiplied by

(1 - z)3/2+i>.r(1 + j)f(I/2 + i,\ + j)-lf(I/2 - i,\)-I,

remains bounded. This proves the estimate in (16). The second estimate in lemma
3 is proved similarly. Ivlore precisely:

Using the fundamental integral representation for the bypergeometric function
(2, 2.1.3(10), p. 59] we get

F(I/2, 1/2, 1 - it, z) = f(1 - it)f(I/2)-1 f{I/2 - it)-1 x

(47) x fo1
8-1/ 2 (1- 8)-1/2-it(1 - BZ)-1/2ds

\Ve fix 0 small, set U(8) = 8- 1/ 2 , v(s) = (1 - s)-1/2-it, P(s) = (1 - ZS)-1/2,
(1 )1/2-il /

V(s) = - ~j2-it . \Ve have P I (8) = ~(1- ZS)-3 J and V(I) = O. We bave

fol uvP = f: uvP + J01
uvP

= J; uvP - u(0)V(6)P(6) - fo1 V(u/ P + uPI
).

The second term in (48) is O(I/t) and, since 11 - zl :5 211 - szl for Izi < 1,

(1 - Z)3/21
1

Vu/ P «: 11 - zl11 IVllu'1 « ~ 1
1
(1 - 8)1/28- 3

/
2 « ! I

o 0 tot

(1- Z)3/21
1

VuP' « ! 1
1
(1 - 8)1/2 8 -1/2 « !.

o tot
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(1 - Z)3/211

uvP = (1- Z)31'16

uvP +°(D "
\Ve study the integral on the right-hand side of the previous equation:

16

uvP = 11
uv - /,1 uv + l' uv(P - 1)

(49) = [(1/2)f(I/2 - it) _ r1 r6 (P _ 1)
f(1 - it) J

6
uv + Jo uv ,

where we used the beta integral to evaluate Jo1 uv. The second integral in (49) is

J,'uv=U(J)V(J)-J,'u'V=OU) "

For the third term in (49) we have

(50) l' uv(P -1) =u(J)V(J)(P(J) -1) -1' V[u'(P -1) + uP'],

sinee lim.....o P(6;-1 = P'(O), which is bounded. The first term on the right of
Eq.(50) is O(I/t). Moreover, since the function (P(8) - 1)/8 is bounded on [0,8]
and 8-1/ 2 is integrable on [0,15],

l' Vu'(P - 1) =-il'Vu(P -1)/8 <t:: T"
Sinee (1 - Z)3/2 pi is bounded on [0,15],

(1 - Z)3/'l rr, VuP' <t:: ~.
Jo t

As a result, when multiplied by (1 - z)3/2, all terms are O(I/t), apart from
r(I/2)f(I/2 - it)f(1 - it)-I. In tbe end we multiply the hypergeometrie inte-

gral by r(IJ~f~(S~-it)' which, due to (24), is asymptotic to t 1
/
2

• The result now
folIows. 0

Remark 3. The estimate (16) in lemma 3 is tbe best possible as far as the bahavior
of the hypergeometrie funetion as j -.. 00 is eoncerned. This can be seen by setting
z =O. Since

-b zF(a, b, c, z) = (1- z) F(c - a, b, C, --1)
z-

[2, 2.10.(6), pp. 109] and

F(a, b, c, z) = 1 + O(lcl-1
)

as Icl ~ 00 ([2, 2.3.2 (10), pp. 76]) we see that

F(I/2 + iA + j, 1/2 + iA, 1 + j, z) = (1 - Z)-1/2-iA [1 + 0(1/ j)]

for jzl < Iz - 11, so the estimate cannot be improved in general. \Ve see also that
the estimate (17) is best possible.
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(53)

8. ApPENDIX B

In this section we prove the claim made at the beginning of Sect. 6. By Eq.(25)
there exist €o > 0 and to > 0 such that Iht(t)1 > 2€0 für all t > to. If we prüve that

Idh~~8)I :5 K

für Is - tl < €l, t sufficiently large and Kindependent of t, then the mean value
theorem allows to deduce Iht(s)1 > €o for Is - tl < € = min(fl' fotK), t sufficiently
large. Using (9) we get

dht(s) _ 100 d (h )tP_1/2+it(coshr)Sinh3r
-ds - 2rr dsP-1/'l+i. cos r 8 dr.

o cash r
\Ve will prove that, for 18 - tl < fl, the integrand is bounded by a function of r
which is integrable on [0,00) (independent of 8 and t). \Ve review some facts about
the spherical function on the symmetrie space I8I (see (4, p. 144, 15Q-152J). The
spherical function P- 1/2+i.dcosh r) can be split as

(51) P-1/2+ I>' (cosh r) = <p>. (r) = c('\) cf» >. (r) + c( -,\) cf» - >. (r ),

where c('\) is the Harish-Chandra c function and ~>.(r) is the unique solution of
the equation

82<p 8ep
8r2 + coth r 8r + (tl + ,\2)ep = 0

satisfying cI>>.(r) = e(i>.-g)r(1 +0(1)) as r -+ 00. Here e is the half surn of the roots,
in our case e= 1/2. We have

r(i'\)
(52) c('\) = f(I/2 + i'\)y'1r'

whose absolute value is asymptotic to rr- 1/2 ,\-1/2 as ,\ -+ 00, by (24). Moreover,
00

~>.(r) = e(i>.-g)r L rm('\)e-mr ,
m=O

where the f m('\) satisfy the following recursion formula

n-l

(54) 4n(n - i'\)f2n = L(2k - i,\ + e)2r21c

1c=0

with f o = 1 and f 2n- 1 = O. The convergence of (53) is uniform on [c,oo) for any
c> 0 by the estimate Irm('\)1 :5 K(1 + m)d, for same K, d> O. This is explained
in [4, Lemma 7) or {5, p. 57]. \Ve need more precise information. \Ve have the
following two lemmas:

Lemma 4. There ia a constant K > 0 such that Irm ('\)1 :5 K fOT oll ,\ > 0 and
mEN.

Proof. The proof is essentially in {4J. \Ve set an ('\) = f 2n ('\) and assurne that
la,l;:('\)1 :5 K for k < n. Then, since 14k - 2i,\ + 11 2 :S 161n - i,\12 , Eq.(54) gives

lan(")1 :5%14:nIn2~i:lll K:5 K.

o
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Lemma 5. For all d > 0, there exists a K I > 0 such that for all mE N, A> 0

I~ rm('\)1 ~ K[m
d

•

Proof. \Ve differentiate (54) to get

- 4inlln('\) + 4n(n - i'\) da~y) =~ (-2ia.('\) + (4k - 2i,\ + 1) da~i'\))

and aÖ(A) = O. Therefore

(55)

If we assume that

IdUk (A) I< K kd
dA - I

for k < n, we get using the previous lemma and (55)

I
dan(A) I 3K n-l kd

~ :S 2n +K1L n·
.1:=0

For n sufficiently large, say n > No, 3KI(2n) + K I EZ~ kdln :S Kind, since

E~:~(kln)dln -+ Jo
l

xddx = l/(d + 1) < 1. Eq.(55) shows that we can bound

doälA
) for all n :5 No independently from A, so we can start the induction and the

inductive step is complete. 0

\Ve are interested in the product

~6(r) d
~CPt(r) = ds {c(s)«Il 6 (r) + c(-s)c)_.(r)} . [c(t)«Ilt(r) + c( -t)«Il_t(r)).

The products Ic(s)c(t)I, le( -s)c(t)j, Ic(s)e( -t)! and le( -s)e( -y)1 are asymptotic to
1T-ls-l/~t-l/~ as t -+ 00, Is - tl < fl (s -+ 00). We study now

e/(s) .r'(is)r(1/2 + is) - r'(1/2 + is)r(is)
= I ,fiTr2(1/2 + is)

= y'1rri(~~i;~ is) [1,b(is) -1,b(1/2 + is)] ,

where 1,b(z) = r'(z)/r(z) is the logarithmic derivative of the gamma function. \Ve
have the following asymptotics for 1,b(z)

1
lj;(z) = logz - 2z + Q(z-2)

as Izi -+ 00, see (2, 1.18 (7), p. 47]. We have

log(1/2 + is) -log(is) =~ log(l + 1/(4s2
)) + i [arg(l/2 + is) - 7r/2]

and

r"



Moreover,
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arg{I/2 + is) - rr/2 =0{1/8),
which follows by substituting X =arg{1/2 + is) - 1r /2, Le. 2s = tan (x + 1r/2) I X --+
0-, and noticing that X = O(cot(x + rr/2)). Also -1/(2is) + 1/(1 + 2is) = 0(1/S2).
Finally Id(s)1 = 0(S-3/2) and the products Id{s)c(t)l, Id( -s)c(t)], Id(s)c( -t)1 and
Ic'(-s)c( -t)1 are 0(s-3/2t-1/ 2). Equation (53) gives together with Lemma 4

00

1cI>/I(r)1 ~ e- r
/
2 L Irm(s)le- mr ~ Ker

/
2 /(e r

- 1)
m=O

which blowB like K/r as r --+ O. \Ve take d = 1 in Lemma 5. Then

dc);;r) =e(i.-.l' (~o [irrrn(S) + dr;;:,(8)] e-rn ,)

and

Idc);;r)I:5 Kre-'/2 /(1- e-') + K,e-'/2 ; me-rn,

which behaves like Kdr2 as r --+ O. For r ~ c > 0 we get for ~.(r) and dcI>.(r)/ds
bounds by exponentially decreasing functions of r with no dependence on s. The
products ~,,(r)~t(r), ep_,,(r)cI>t{r), ~.(r).p-t(r) and cI>- .. (r)cIt_t(r) blow at most
like cl/r2 as r --+ 0 and the products dip/l/ds' cI>1l d~_,,/ds· ~t, d~./ds· cIt- t and
dcI>_./dB. ~-t blow at most like C2/r3 ar r --+ O. Away from zero all these products
can be bounded by a function of r that decreases exponentially a.s r --+ 00. Since
tO(S-I/2t- I/2) = 0(1) and tO(S-3/2t- I / 2 ) = O(I/t) as t --+ 00, 18 - tl < fl l the
function drp.(r)/ds·'Pt (r)t sinh3 r / cosh8 r can be bounded by an integrable function
of r independently from s and t. This concludes the claim in Sect. 6.

Remark 4. One canactually use (53) and Lemma 4 to provide an alternate proof
that lim inf ht(t) > O. Eq.(20) corresponds to (51).
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