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ON INNER PRODUCTS OF EIGENFUNCTIONS FOR THE
HYPERBOLIC PLANE

YIANNIS N. PETRIDIS

ABSTRACT. We present an improved bound on the rate of decay of the
Fourier coefficients of the square of an eigenfunction ¢ of the Laplace op-
erator for a compact hyperbolic surface. If the surface has finite area, we get
a new bound for the Rankin-Selberg convolution L{¢® ¢, ) on its critical line
for arbitrary cofinite subgroups of SL(2,K) and a new bound for the Fourier
coefficients of ¢: apm = O(Jm|3/5+¢). The method follows the same steps as
[11].

1. INTRODUCTION

Various applications of L-series require knowledge of their behavior on their
critical line. One usually needs to know the location of the poles and the various
gamma factors that appear in the functional equation of the L-series. In [11] the
special case of the Rankin-Selberg convolution L{¢ ® ¢, 8) is treated without such
knowledge, where ¢ is an L?-eigenfunction of the Laplace operator on the surface
'\ H, T a cofinite subgroup of SL(2,R). The following bound is proved in [11]

T+1
(1) _/T |(#%, E(z,1/2 + it))|* dt & (TlogT)%e~ "7

as T — oco. The notation < means that the left-hand side is (for sufficiently large T')
less than a constant multiple of the right-hand side. Here E(z, 8) is the Eisenstein
series corresponding to a cusp of I'. Eq.(1) implies that the Fourier coefficients ay,
of an arbitrary Maa8 cusp form ¢ satisfy the bound

) |an] Ke,g |n|®/13*

for all € > 0. Here Ag + (L + A%)¢ =0, A € R or X € i[-1/2,1/2] and ¢ has the
following Fourier expansion at the cusp S! x [a, 00) with coordinates x, y:

(3) $(z +iy) = Y any'*Kir(27|n|y)e? "=
n

We can naturally assume that ¢ is real-valued and A # =%i/2, since we are not
interested in the constant eigenfunction.

In [11] the case of compact surfaces is discussed as well. If ¢; are an orthonormal
basis for L2(I'\H), I a cocompact subgroup of SL(2, R} and Agi+(1/4+73)¢; = 0,
then

(4) (¢, ¢;) < (rjlog rj)e‘"f:'!'-’
1
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as j —+ oo.

In the case that ¢ is a holomorphic cusp form of even integral weight £ > 2
Good [3] proved that a, <« n*/2-1/8 for arbitrary cofinite subgroup of SL(2,R).
We see that (2) falls short of the corresponding bound for the holomorphic cusp
forms. This raises the issue of improving (1), (2) and (4). In this work we prove:

Theorem 1. If I is a cocompact subgroup of SL(2,R) and A # 0, i.e. the eigen-
value corresponding to ¢ is not 1/4, then

(5) (%, 68) € 1/ Pe /2
as k — oo.

Theorem 2. IfT is cofinite subgroup of SL(2,R) and the eigenvalue corresponding
to ¢ is not 1/4, then there ezists an € > 0 such that

(6) j: - (%, E(z,1/2 +i3))|* ds <« te™™.

ast = oo,

Corollary 1. The Fourier coefficients a, of Maafl cusp form ¢ satisfy
(7 |an| Keg |nf*/**

for all e > 0.

In the case I' is an arithmetic group of a special kind, like SL(2,Z), much better
bounds than (7) are known, see [1]. Even in these cases the bounds do not prove
the Ramanujan conjecture |a,| < |n|¢. In [11] it is suggested that the Ramanujan
conjecture may hold for arbitrary cofinite subgroups and is not a special feature of
arithmetic. This makes improvements on (2) and (7) interesting to pursue.

The restriction A # 0, which follows from i) ¢ %Z, is purely technical. Lemma
1 is not necessarily true for the eigenvalue 1/4. Eq.(14) that gives the analytic
continuation of the hypergeometric function fails for i\ € %Z. Similarly Eq.(2.17)
in [11] fails for iA € 3Z. This problem first showed up in [5] and [7]. However, even
in the case A = 0, the sequence a, in (12) increases at most polynomially in n, see
[8, Th. 7.3]. The author has.not investigated the order of growth of the a, that
follows from [8, Th. 7.3] for A = 0. In any case, a generic cofinite or cocompact
subgroup of SL(2,R) does not have 1/4 in its L? spectrum, see [10).

2. SOME REMARKS ON POINT-PAIR INVARIANTS ON H

If t(z,2") = L‘—;%E, z, z' € H, then the hyperbolic distance r = r(z, z'), between
z and 2’ satisfies: ¢ = 4sinh® £ = 2coshr—2. A point-pair invariant isa K = SO(2)
bi-invariant function k(t) = k(r) and its Selberg-Harish-Chandra transform is given
by
h(s) = [y k(t(i, 2))yd+is 2o
h(s)= [ e*“g(u)du
glu)= Qle*+e™-2)
Q)= [ Jkt

(8)



EIGENFUNCTIONS FOR THE HYPERBOLIC PLANE 3

and h(s) and g(u) are even functions (see [12, pp. 72]). It is important to under-
stand that the transform h(s) is the integral of k(r) with a spherical function. This
is seen as follows:

h(s) = 2‘/0mcos(su)g(u)du

00 L <] ’E(t)
= 2 cos{su) dtdu
0 evte=v—2 \/t - (eu +eH — 2)

o0 ® 2  k(r)sinhr
= 2 — drd
./0‘ cos(su)./; V2 /coshr — coshu rau

4 [ [T cos(su) ]
= — du k nhrdr.
\/5./0 ./o Vcoshr — coshu u k(r)sinhr dr

Using the integral representation for the Legendre function [2, 3.7 (8), pp. 156], we
see that

_ ﬁ T cos(su)
P_ytislcoshr) = T ./o Vcoshr — coshu
$0
9) h(s) = 2n [m‘P_i_H,(cosh r)k(r)sinhr dr
0

exactly as in {13, 3.27, pp. 149].
Let T be a cocompact or cofinite subgroup of PSL(2,R). We set

K(w,w') =Y kt(yw,w")) =Y k(r(yw,w')).
yel v€r
Then the conditions on & to assure absolute convergence of the series above and,

therefore, be able to define an operator K by

(Kf)(w) = F\HK(w,w’)f(w')dw’

/; E(t(w, ') f (') d’

are explained in [12, pp. 60]. They are: k(r(z,y)) should have a majorant, k,(z,y)
such that (a) f; k1(z,y)dy < oo and (b) there are constants § > 0, 4 > 0 such that
for all z and y '

ki(z,y) < A / ki(z,y")dy'.
r{v.y')<é
The Fourier expansion of K{w,w') is
(10) .
K(w,w'y = Z hir;)d;(w)e;(w') + /00 h(s)E(w,1/2+is)E(w’,1/2 - is)ds,
0

=0

where the ¢;'s are an orthonormal basis of eigenfunctions for the discrete spectrum
with corresponding eigenvalues } + r?.

i
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3. SOME REMARKS ABOUT F'OURIER EXPANSIONS OF EIGENFUNCTIONS ON H

The metric on the disc model B? of hyperbolic space is ds? = 4(7%'%5;)—),,
z = z + iy. We use polar coordinates on B%: r = r(0, z) = log (:'_" . ), 0<r < oo,
6 € {0,2x]. Denote an eigenfunction on B? again by ¢, which satisfies

A¢ + (41+/\2) ¢=0.

We separate variables in polar coordinates. Since the metric in polar coordinates
is given by: ds? = dr? + (sinhr)?d8?, the Laplace operator is

0% o 1 a2
T or2 +cothra (sinhr)2 862
We write: ¢(r,8) = 3% fi(r)e’®. Thenforall j€Z

2 . 2,
2 f’(r) + cothr agﬁ") - (Jsi:;f}Jl(:))2 + (Z + /\2) filr) =

We put ¢ = —sinh’r and we get, since 52 = —sinh(2r), 3‘97 = (—sinh(?r))z,% and
v 2
2 = 4q(q - V& - 201-29)2,

o2 2 2
2 fJ 3 _ 6fi_ ' l '\
tlo-05E +a(Fe-1) L+ (F+5+750) hi=
Since the equation

Xz - Dy" +[(a+ b+ 1)z + (a + 8 — 1)]zy’ + (abz — af)y =0

has the solution y = z*F(a + a,b + a,a — 8 + 1, z) (see [6, (19), pp. 470]), where
F is the Gauss hypergeometric function, we get

£i(@) = c;a' ¥ F(1/4+iM2+ [1/2,1/4 = i\/2 +11/2, 1] + 1,)

and, since ¢ = —4(1_'%",:%5,, we use the quadratic transformation formula (2,
2.11 (1), pp. 110] to get
fi(r) = aj tanh(r/2) (cosh(r/2)) ™' 7% F(1/2+iA+|j], 1/2+4), 1+(]], tanh®(r/2))

for some constants a;.

A=

4. OUTLINE OF THE PROOF

Assume I is cocompact. If K is an integral operator as in Sect. 2, then

(Két)(w) = [F K80 du

=0
which gives (using Parseval’s equality)
a0
KB 11G = D 1h(r) (@, 6.

j=0 X
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We will choose a family of operators K given by point pair invariants k.(r) such
that the corresponding transforms localize at rj, i.e. |h., (r;)| > ¢ for all sufficiently
large r;, where ¢ is a constant independent of j. Then

(11) IKeg?II2, - vol (T\H) > [[K.d?|13 = Y Ihelrs) (6%, 651",

j=0
If we prove that || K, (¢?)||eo < t}/? exp(—nt/2), then
1K (@*)lloo < (ri/*) exp(~rre/2)

and, by looking at one summand in (11),

rrexp(=r) > 3 |an ()@, 87)[° 2 hey ()P (8%, 00| 2 ¢ |6, 80",

=0

which implies that (¢%, ¢x) <« r,:/ 2 exp(—7rg/2) and proves theorem 1. The choice
of k, will be explained later. The issue is to estimate the L norm of K,(¢?). Fix
w € H. We switch to the disc model of hyperbolic space by a transformation that
maps w to 0. All bounds will be uniform in w.

For 0 < r < 0o we define

B0 = [ 1o a8
We set
C;(r) = (cosh(r/2)) ¥ F(1/2 + i + |jl, 1/2 + iA, 1 + |5, tanh?(r/2))
so that N
o(r,0) = 3 aftanh¥l(r/2)C;(r)e"’.

Jj=—00
The functions tanhm(r/?.)CJ-(r) are the associated spherical functions. Parseval’s
equality then gives

oo
(12) B(r) = ) _ |a;|* tanh® (r/2)|C;(r)?,

j=0

where |a;|* = |a}|? + |a_;|?, j > 0. The function B(r) extends on the real line as
an even function and, if |¢(r,8)| < M, then B(r} < 2xM. It extends to an analytic
function for |Qr| < 7/2, see Lemma 2. The crucial point is a lower bound of C;(r;)
as j — oo for a certain sequence r; that gives a rather sharp bound on aj, see
Lemma 1 and an upper bound on C;(r) as j = oo for all r with |97| < #/2, see
Lemma 3. This lemma is a sharper version of (11, Eq. 2.21] and is the crucial new
ingredient. Its proof is included in Appendix A.

The proof of Lemma 1 is exactly the same as in [5, Th. 4.24, pp. 66] and [7]
and is included only as a convenience to the reader. The main point is that if an
eigenfunction does not increase more than exponentially in the distance from the
origin of the hyperbolic disc, then it corresponds to a distribution on the boundary
of the disc and Lemma 1 gives a bound on the order, as long as i\ ¢ 3Z. This is
issue is related to the question whether such an eigenfunction can be represented
as a Poisson transform of its boundary values, see [5] and [7]. For general affine



8 YIANNIS N. PETRIDIS

symmetric spaces (no restriction to the rank) this is true for A outside certain
hyperplanes, see [9].

5. PROOF OF THEOREM 1
5.1. We state the lemmas mentioned in Sect. 4.

Lemma 1. (see also [5, Th. 4.24, pp. 66] and [7]) Assume that i\ ¢ 1Z. Then
the sequence a; i3 square integrable.

Proof. Using [2, 2.10(1), pp. 108) we get
F(1/24ix+7,1/2 + i), 1 + j, tanh?(r/2)) =
(13) = rrpb B P(1/2 4 A+ ,1/2 + i, 1 + 2i), cosh™2(r/2))

1/247—1
+(cosh(r/2))* rreih iy F(1/2 = i, 1/2 + j — iX, 1 = 2i), cosh™*(r/2))
We have: limy—o Fa + m,b,¢, %) = Fi(b,c,z), where 1 Fy is the confluent

hypergeometric function. We construct a sequence r; — 0o by setting cosh®(r;/2) =
j/a where a > 0 is to be determined later. We also have

(14) lim LE*9) -

. =1
j=oo  [(F)

and )
lim (tanh(r;/2)) =e™%/2.
j—roo

Therefore
lim tanh?(rj/2)Ci(r;) = e~/ i7amdy 1F1(1/2+iX, 1 + 2iA, 0)al/2+i*
j—o0

+emt/2 B R (1/2 - iA, 1 = 2i),a)at/2,

: -z p-c _ L(C)

T b—c _
zlergo 1Fi{b,c,z)e”%z" ¢ = T)
(2, 6.13.1 (3), pp. 278], the terms on the right hand side of the previous equation
behave differently for a large a. In particular we can select a such that the last limit
is different from 0. Then for a suitable constant ¢y # 0 and j sufficiently large, say

7 > 7o, we have

Since

tanh® (r; /DIC; (r;)I* > o

S0
Jo 00 _ 00
M > Br;) =Y+ Y losftanh® (ri/ICi(r)P = Y lasleo
i=0  j=jo+l J=je+l
and the sequence a; is in {2. a

Lemma 2. The function B(r) eztends to an even analytic function of v in the
strip |3r| < £ and satisfies the bound

B(r) « |cosh(r/2)[*.
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Proof. We have

jaid e — v p—
B(r) = |a;[* tanh? (r/2)tant’ (7/2)C; (r)C; (F)

j=0
and we note that the hypergeometric function F(a,b,¢,2z) is holomorphic in the
region |2} < 1 and that the map z = tanh (§) is a conformal map from [Sr| < § to
|z| < 1. So we have a series of holomorphic functions and we will prove that
(15)

|(cosh(r/2))~*~2AF(1/2 + iX + j,1/2 + iA, 1 + j, tanh*(r/2))| < 1

i.e. |C(r)] < |cosh(r/2)|*. Eq.(15) is equivalent to Eq.(16), which captures the
behavior of the hypergeometric function in (15) for large j:

Lemma 3. The following bound holds for |z] < 1

(16) '(1 — ZSDE (12 48X +4,1/2 + N1+ 5, z)| <1
We also have fort >0
a7 |(1 — 2R (1/2,1/2,1 - it, z)l <1

The proof of lemma 3 is included in Appendix A.
We now have

B(r) « i la;|? itanh(r/2)|% | cosh(r/2)|*.
J=0

Since |tanhr/2| < 1 and the sequence a; is in {* by lemma 1, the proof of lemma
2 is complete. (]

Remark 1. We note that on the horizontal lines r =z +i{(3 — 1) andr = z -
i(%Z - 1), z € R, we have the bound

(18) B(r) « ¥l
This is so because a trivial calculation gives
| cosh(r/2)|? = cos®(w/4 — 1/2t) + sinh®(z/2).
5.2. We now come to the choice of the point-pair invariants k;(r):
tP_j i (coshr) sinh? r
cosh®(r)

Remark 2. The intuition behind the choice of the point-pair invariants is as follows:
The inversion formuia for the Harish-Chandra transform

k(r) = ‘/% fo BVP_ 3 ix(coshr)|c(N)]~2 d,

where ¢(]) is the Harish-Chandra ¢ function, suggests that in order to localize i ()
at t, say he(A) = (), ki(r) has to be essentially P_., /344 (coshr)lc(t)|~*. One sees
that |c(t)| is asymptotic to m~1/2t~1/2 see Eq.(52). However, since we do not want
to work with distributions and need to define integral operators as in Sect. 2, we
use a factor to make ;(r) rapidly decreasing. We choose it to be sinh™ r/ cosh™ r,
for m and n natural numbers. These point-pairs are smooth at r = 0 and can be

(19) ke(r) =




8 YIANNIS N. PETRIDIS

odd or even functions of r and have order of vanishing at 0 as high as needed by
adjusting m and n. These options are important in order to generalize to the other
rank one symmetric spaces. Moreover the fact that we incorporate in the point-
pair invariants the spherical function, which is a hypergeometric function, allows
to avoid the fractional integral in (8). With the exception of the odd dimensional
real hyperbolic spaces all other rank one spaces have Harish-Chandra transform
that involves fractional integration and multiple integrals, see [14, pp. 31]. The
advantage of using (19) is now obvious.

We need to know that the point-pair invariants (19) satisfy the conditions ex-
plained in Sect. 2 in order that the series

Ki(w,w') = Z ky(r(w, yuw'))
~Y€er

converges absolutely. We will show that k, has majorant k;(z,y) = te~ %7, r =
r{z,y). We study the behavior of P_ — ptit (coshr) for r € R, which we need later too.

The Legendre function of the first kind P_jyu(z) = F(1/2+it,1/2-1t,1,(1-2)/2),
|1 — z| < 2 is real for z real, since the hypergeometric function is symmetric in its
first two arguments and for z € R we have

F(/2+it, 12—t 1, (1 - 2)/2) = F(1/2 — it,1/2 + it, 1, (1 — 2)/2).
Consequently P_j +it(z) is real for z > —1. Formula (26), [2, pp. 128) gives
(20)

Py palcoshr) = el S0 B0, 1/2,1 4 ity L)
e(ll +id)r
+7'1"?7(‘)_71I‘211u o F(1/2,1/2,1 - it, 1=e)

for r > 1In2. We note that the two hypergeometric functions in (20) are conjugate
numbers for r € R. We also have for r > ln2 and ¢t > 1

F(1/2,1/2,1+it, ——=) = 1 + £(t,7),

1~
where

(21) &2, 7)| < 277",

This follows from the series expansion of the hypergeometric function as follows:

—  (1/2)
F(1/2,1/2,1+it,2) = E———*——*
(1/2,1/2,1+it,2) 1-!-k=1 (1+:‘t)kk!z

where we use Pochhammer’s notation: (a)g = a(a +1)...(a + k — 1). We have
(3), <KL (3), <11 +it)e] and

1
Z |2f* = |Z| = < 2e7,

etr — 2
k=1

We note that the bound on £(¢,7) is independent of . From (20) we deduce that,
for fixed ¢,

P_) ir(coshr) € et
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as r — R and the integral
0 o—4r
[ " sinhrdr < co
0 e
converges. This proves condition (a) in [12]. For fixed é small and r = r(z, )
/ ky(r(z,y)) dy' > e~ Ft9vol B(5)
{#Ir(y.¥)<é}

since ky(r) is decreasing. On the other hand, ky (r(z,y)) = e~ 47 < e¥ée-H(r+d),
so condition (b) is [12] is satisfied too.

5.3. Now we prove that khi(t) > cq for all ¢ sufficiently large, i.e. the Selberg-
Harish-Chandra transform of k; localizes at ¢. Using (9) and the fact that the
spherical function P_ H_“(cosh r) is real, we get for m > mop

-};h,(t) >t /m ” [P_ H“(coshr)]z (coshr)5 dr,

where m is to be determined later independently of ¢£. The issue is to show that the
integral giving h,(t), which is positive and decreases as ¢ — co, decreases at most
like 1/t and not more quickly. Using (20) and (21) we get

—i ( J2=it)r
P_yiulcoshr) =  J=prizih (—c!l.-:—l)m (1 +&(t,r)
r {(1/24it)r
(22) + 7 e (s (1L + &t 7))
and
(23)

h(t) 2 77 r s Sy (1 +€(6r)° dr
it L(142i0)r - 2
+t fm F’il??'j:ti clgs:msrw (1 +£(t'r)) dr
—~1f it r -
+2t [ r(x/z( zt)}‘((l/;+|t) sy (L+E(t, 7)) (L + &(¢, 7)) dr.

The idea suggested by the asymptotics of P_ H,,(coah r), as given by Eq.(22), is
that the main contribution comes from the integral

[{—it)T'(it) 1 e’ dr.
[(1/2 = it)T'(1/2 + it) cosh® r €27 — 1

2t
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By expanding the products and the squares in Eq.(23) we get nine integrals, which

we estimate using (21):

I e < o

o = |77 ] < cpemom

Ay = | [ S i) | < cpemom
Ay = 'f: Tl gr| < ciemiom

As = |f,:° %ﬂdr < cae~Bm
Ag = U:,o ‘:—:%’-ﬂidr < cqe=10m
Ay = f: m;—rdr > f;o e~ Srdr = %e'ﬁ’"

_ oo e(l+2it}r _ 1 e{2it+1)m
Ag = fm {e?m—1) cosh® rdr T 2it+1 (1—e*™}cosh® m

1 o0 (31T (5 sinh r(e?”—1)+2e2" cosh r}
+amn I (eI =1)Tcosh® r dr

&« cgt~le~bm
L(1-2it)r

o0 vy P
Ag = fm md‘r = As & Cst I'C ﬁm.

The asymptotic behavior of the Gamma function I'(z + iy} for large |y| is described
by the formula

(24) Jim_ [N+ in)le /2y 1Eoz = @2,

A1=

see [2, (6), pp. 47]. Using (24) we see that

We now choose m such that

%e_em > 2 ((c1 + 2c3)e™ ™ + (¢ + 2¢4)e™10™)
and we use the last fourteen equations together with the triangle inequality and
(23) to deduce that
(25) liminf he(t) > 0,
t—o0
which concludes the claims about the choice of the point-pair invariants.

5.4. We come back to estimate the L™ norm of K,(¢?). We have by using polar
coordinates

K(@#)w) =1= /ow ke(r)B(r)sinhrdr = /oo tP—4ielcoshr)

A ppw T B(r) sinh® r dr.

Formula 3.3.1 (3) in [2, pp. 140] gives

E‘M_*‘_‘E)_"E (Q-h.,-,(z) - Q—i—it(z)) = P‘i"'“(z)'

(26) -
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where Q,(z) is the Legendre function of the second kind. Eq.(26) gives, since
tan(—3 + it)w = i coth(tr),

I= [ &coth(tr) bﬁiﬁ?‘ﬁB(ﬂ sinh® r dr

(27) = J57 & coth(tr) Q“c:,;l';‘ (';'_“h u B(r)sinh® r dr
= 11 - Iz.

The Legendre functions of the second kind Q%(z) and the Legendre functions of the
first kind P#(z) are not single-valued in the plane. One must introduce a cut from
—00 to 1. However, when p is an even integer, we can reduce the cut for P#(z) to
(—oc, —1]. This is explained in [2, pp. 143]). We see that in the strip [3r| < J the
cut [0, 1] corresponds to i{—%, 7] and that the conformal map z = coshr opens the
cut [0,1] so that approaching (0, 1] from above (below) corresponds to approaching
i[0, %] (i[-%,0]). We denote the new branches of Q4(z) when we go around the
branch point 1 clockwise (counterclockwise) by @4 (z,1-) (Q4(z,1+)). Therelation
between Q#(z), Q4(z,1+) and P#(z) is described by the equations

Q4(z,1-) — e~ Qb(2) = mie* P} (z)
(28) Qb(z,1+) — e%7QY(2) = —mie™ Pl (z),
see {2, 3.3.2 (19), pp. 142]. For completeness we include the proof of the second
equation. We have

—in —p) (z=1)#/3
emQi(z) = Dl o Py 1 40,14 s, (1~ 2)/2)
u/3
(29) + R L P, 1+ 0,1 -, (1 - 2)/2),
see {2, 3.2 (32), pp.130]. We continue analytically Eq.(29) to get

eTQU(z, 14) = TRIRCm inr (o0 Py, 1 40,14 4, (1 - 2)/2)

+ D i (T Py, 1 40,1 i, (1~ 2)/2).
As a consequence of the last two equations it follows that
D(p) (z + 1)/
2 (z-1)p2
and now the equation: I'(¢)['(1 - ) = T together with
1 (z+1)#?
1 —p) (2~ 1)p/2
(2, 3.2 (3), pp. 122} gives the result.
In (28) we pass to the limit g — 0 to get
Q.(z,1-) = Q.(z) = miP,(2)
Qu(z,14) = Qu(z) = —miP,(2)

eTTHQY(z, 14) —QL(2) = (747 €M) F(=v 14+, 1-p,(1-2)/2)

Pf(z)=r F(—V,1+V,1—].l,(1—-2)/2)

which imply
(30) Qu(z,1+) = Qu(z,1~) = —27iP,(2).

Now we shift the contour of integration for I), I, as follows: For I we first go along
the negative real axis from 0 to —oo and on the lower cut of the plane (called path
7 ) and then along the line v, given by r =z —i (% - %) For I; we first go along
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the negative real axis from 0 to ~oc and on the upper cut of the plane (called path
73} and then along the line v4 given by r =z + i (— - —) We set

< _ Q_y1ilcoshr) Rr2>0
Q_jzir(coshr) = { Q_iii:(coshr, 1¥) Rr<O0.

Then
I= Ly Seothtr)Q_y oooshr) 2330
f-ra+74 % coth(tm)@_ y—it(coshr %d
so that
I= fO £ coth(tm)Q_y 1 (coshr, 1- )%dr
+f0 % coth(tm)Q_ i"‘(co”h"’l*’)%d
=T
Moreover,
(31)

I= fom £ coth(tm) [Q-llg_u(cosh r,14) = Q_y/24it(coshr, 1-)] _—Bc(gﬁg’}'idr
+ fﬂr: Ty
because B(r) is even. Since

tan(—1/2 — it)w
™

P_*,_u(coshr) = [Q_%_“(cosh ) — Q-4 (cosh r)]

for r > 0, we get by analytic continuation when we cross the cut [0, ]

tan(~1/2 - it)w
=

P_*_“(COSh 1') = Q—%—it(COSh r, 1+) - Q-i.ﬁ'g(COShf, 1+)] s

which gives together with (30), (31)

I = f"f? fq,. 5 1 hs
o
“Jo = COth(tﬂ)cotFixﬁP }—:t(COShr)%dr
- f57 & coth(tm) [Q y+it(coshr, 14}~ Q_y 4y (coshr, 1- )] %dr

and, therefore,

I= |.-1,
(32) + Jo. tP_y_y(coshr) B(r)sinhlr :o:l;“’; T dr
—fo % coth(tr)(—2mi)P_ Jit (coshr) B;:ml s;nt; r dr.

Since P_i_“(z) = P_j1i(2) (see (2, 3.3.1 (1}, pp. 140]) we get from (32)

I=/ —/ +I — 2coth(tw)I
r2 Y4

etn _ e—t:r
=g (L)

or, equivalently,
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Therefore, it is enough to prove that

it = B(r)sinh®r _
-[“ ; COt.h(tTl')Q_&_Ht(COSh T)COSTdT = O(t”ze it)

. 13

i coth(tm)Q_ _(cosh r)m-f—dr = O(t!/2e~ ).
v cosh” r

Since B(r) is real for real r > 0, we have B(r) = B(¥) on the strip |97| < £ and

we see that the integrand C(r) in f-u is C(r) = D(F), where D(r) is the integrand
for f... So it is enough to look at [ D(r)dr. We have

U(1/2 -it) eitr L1
Q_4_ulcoshr) = V/a]2 O st /121t )

for » > £1In2 [2, 3.2 (44), pp. 136]. This formula holds by analytic continuation in
the domain: {r|f <Qr < §,—co <Rr <In2}U{r|]-5 <Qr< %, Rr >In2}. On

this domain we have: |ﬁ-;| < 1, so we can apply (17). On the line vy, we have:
Isinhr] « e, |F(1/2,1/2,1 = it, ;25)| € 1 ~ e 213/2 & %1, | coshr| > el
fort > % Using (24), (18) we finally get

) 13 o
/ gcoth(tﬂ)é_*_u(coshr)wdr 24 tlﬁe'%t_/ e Fdz
Y4

cosh® r —oo

which gives the result. This completes the proof of theorem 1.

6. NON COMPACT SURFACES

We need the following property of the point-pair invariants k(r) defined in (19):

Claim: There exist € > 0, €9 > 0 and tg > 0 such that |hy(s)| > e forall t > g
ond |s —t| <e.

This property will be proved in Appendix B.

The spectral decomposition of the integral kernel is in this case given by (10),
where we have assumed that I'\H has only one cusp and E(z, 8) is the corresponding
Eisenstein series. The sum in this equation may actually be only a finite sum.
Parseval’s identity now gives

(33)

K = S RI o)l + g [ M1, Bla, 172 + i) ds.

i=0

The rest of the proof remains unchanged and we look now at the integral on the
right-hand side of (33) over the short interval {¢,t + ¢] to deduce (6) and complete
the proof of theorem 2. In order to study the Fourier coefficients of Maa8 cusp forms
for ", we follow the method used in [3, pp. 546] to study the Fourier coeficients of
holomorphic cusp forms. We define ¥y, U sufficiently large, to be a C* function
on R with
(1 ifr<1-1/U

“’U(”)“{ 0 ifr>141/U
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and w,(,j )(T) & UJ for j =0,1,.... We will work with the Mellin transform of iy
given by

Ry(s) = -/Om vy (r)r*~dr

for ¢ = Rs > 0. We have

14+1/U 1+1/U
e [T oo - et
0 0

1 14+1/U L+1U
- +/ *dt +f (Yu(r) = Dr*dr.
8 1 1-1/U

Ry(s)

i

The two integrals in the right-hand side of the last equation are O(1/U) uniformly
on vertical strips. Since ¥y(r) is bounded, this follows by applying the mean-value
theorem:
141/U 9
/ My = (14 €)°!
1-1/U U

for some £ between —1/U and 1/U and (1 + €)°~! is bounded for o bounded. As
a result

1 1
(34) Ru(s)= - +0 (U) .
Integration by parts gives
(35)
- (-1 /“’ simt () 1 ( U )’"1
B =D wri-nh 7 WO T
for  =1,2,.... This follows from the estimates

1 <« 1
|s + ki ls] +1

fork=1,...,7—1and

o« - .
f T'+j'l¢8)(r)dr & U’f
0

1-1/U

1+1/U . .9 . .
"ty = U7 7+ gyt-t=0(U)

for some £’ between —1/U and 1/U. The estimates (34) and (35) are uniform for
o bounded. Now by interpolation it is easy to see that for all ¢ > 0 we have

1 U \°
(36) rote) < o (1)
again uniformly for ¢ bounded. We assume the Maall cusp form ¢(z) has the
Fourier expansion (3) at the cusp and its eigenvalue is 1/4 + A%, The L-series
D(s) = Y |anl*n|™* converges absolutely for ®s > 2 by the Hecke bound a,, =
O(|n]*/?). The Rankin-Selberg method provides the analytic continuation of D(s)
to the whole plane. A standard argument gives

2n*T(9)
(8/2)2T'(s/2+iMT(s/2 = i)) Jru

(37) D(s)= ¢ $*E(z,8)dz.
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On the critical line line Rs = 1/2 the factor f(s) = 2n*I'(s)['(s/2)~*T(s/2 +
iA)TIT(8/2 —iX)~} is asymptotic to e™/2¢, as t = o0, as follows from Eq.(24). The
inversion formula for the Mellin transform gives

Yu(ln|/X) = In|~*X*Ry(s) ds

2m Re=2te
and, therefore,
(38)

Y el <Y lenlfdu(in/X) =

[nISX{1-1/U) [n|

2'.«1’1 — D(S)X Ru(s) ds.

We shift the countour of integration in the integral in (38) to the line Rs = 1/2.
The function D(s) has poles coming from the residues of the Eisenstein series on
the interval (1/2,1]. Let us assume these are at the points 8; with residues the non

cuspidal eigenfunctions r;(z). We estimate the integral along the line £s = 1/2 as
follows: we choose m an integer with 1/m < e. Then, using (6) and (24)

[ D(1/2+ it)X‘/““RU(l /2 +it)dt =

m

= Z Z/ F/2+it)(?, E(2,1/2 +it)) X3+ Ry (1/2 + it)dt

n=—00 k=1 nt izl

n+ﬁ- ndd

n,k -
oo m Iy ntd I U 2 1/2
& ;_m’;e |n| (/Mh_"_‘le £2Xt (1—+t) dt)
o0 m U 2c l/2
& Z Ze minl/2|,|1/2 (e"'“'X(1+n) )
n=-— cok:l

= X\ Z n2U(1 +n)"¢

n=—oQ

To make the last series converge we choose ¢ > 3/2, say, c = 3/2 + ¢ with ¢ > 0.
Then the integral is estimated by X1/2U/3/2+¢ | Therefore,

T lal= T (5,60 ()X — + O(X/U) + O(X¥3UMH),
Inl< X (1-1/U) 1/2<8;<1 %
since X% « X and (34) holds. Coming from the pole of Eisenstein series at s = 1
we get the constant eigenfunction and we conclude

(39) ST lanl? =cX + O(X/U + X 12U+
In|€X(1-1/U)

We choose U so that the two error terms are equal, i.e. U = X1/(5+2¢) = x1/5-¢
and then the error term becomes O(X*/5+¢). Then a,, = O(Jm[?/5+¢). This proves
Corollary 1.

1/2
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7. APPENDIX A

Proof of Lemma 8. Using the fundamental integral representation for the hyperge-
ometric function [2, 2.1.3(10), p. 59] we get

F(1/2+iA+4,1/2+i\1+j,2) = T+ )T(1/2+ix+ )7 T(1/2-iA)"! x
(40) X fy s7VHOTI[(1 — 5)(1 - 25)]71/3~Mds

We can assume that 0 > QA > —%, which is necessary for the integral representation
to be valid. We can also assume that |arg (1 — z)| < « and |arg (1 — s2)| < =.
We study the hypergeometric integral in Eq.(40) using Laplace’s method. For a
similar approach to get uniform asymptotics of hypergeometric integrals see [15].
We fix § > 0 small and set u(s) = s~1/2+HA | y(s) = (1 - 5)~1/2-P P(s) =
(1 — 28)~ 121 [J(s) = 8!/2+¥+i /(1/2 4 i) + ). Then U(0) = 0, v'(s) = (1/2 +
iAN1 — 5)73/3 and P'(s) = 2(1/2 4 iA)(1 — 28)~3/2~i*, We have

(41)

fwpP = fl-s wwP + f,_ uvP

0
U(l-8v(l-686)P(1-6) - 01_6 UW'P +vP')+ fll_auvP.

The first term in (41) is O(1/j), since |P(1 — d)| is bounded, as |z| < 1. Since for
[zl <land 0 <3< 1, |1 - z| <2|1— 28], we also have
|2 = 23722 P(s)| < 11 - 2ley
‘(1 _ 2)3/2+iAPr(s)| < e

and, therefore,

(42)
1-5

1-6
(=2 [ g Py Py <C / Ul +U][o] = O(1/5).
0 [}]

We now look at the third term in (41).

./1’l wP = /11 uwwP(1} + /1; uv[P — P(1})]

-5 - 5

P(l)/luv—P(l)/l—Juv+/l w[P = P(1)]
1] Q 1-4

12-aa L(1/2 +3A + J)(1/2 = i)

(=2 T+ 7)

~ P(YU(1 - 6)u(1 — 6)

1-6 1
(43) +Pp) [ U+ / wo[P = P(1)),
o 1-§

where we used the beta integral to evaluate fol uv. The second and third terms in
(43) multiplied by (1 — z)3/2+ are clearly O(1/;). Since

lim (P(s) — P1))/(s = 1) = 2(1/2 + iA)(1 — 2)~3/3=3
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we have
(44)

1 1
/ w[P - P(1)} = ~(Uv)(1 - §)[P(1 - §) — P(1)] - [ U{v'[P - P(1)] +vP'}
1-5 1-6
The first term in (44) is O(1/7), when multiplied by (1 — 2)3/2+*, Moreover,
1 1
_ )3/2+ix UvP' v
-z [ vep|< [ i,

which is O(1/7), since v is integrable on [1 — §,1], as £(—1/2 — 1) > —1. The last
term to consider in (44) is

(45)

1 1
(46) Uv'[P-P(1))=—-(1/2+ i)\)/ Uv(P - P(1)])/(s—1)

1-4 1-4
and the function (1 — z)3/2*%[P — P(1))/(s — 1) is bounded for s close to 1. This
completes the study of the various terms. We now take into account the asymptotics
of the Gamma function (14) to see that

Fi+5) jHix
T(/2+ir+7) ‘

as j —» 00. Since R(1/2 —iA) < 1/2, all the terms in the expansion of the integral
representation of the hypergeometric function tend to 0 as § = 00, when we multiply
by (1 = 2)3/2+62 | except

(1—-2)~
which, when multiplied by

(1 —2)32 201 + HTA/2+ A+ §)7I0(A/2 = iA) 7Y,

remains bounded. This proves the estimate in (16). The second estimate in lemma
3 is proved similarly. More precisely:

Using the fundamental integral representation for the hypergeometric function
(2, 2.1.3(10), p. 59] we get

1/2-ia D(1/2+ A + )T (1/2 - iA)
I'(1+j)

F(1/2,1/2,1-it,z) = DL(1 - i)[(1/2)71r(1/2 —it) ™! x
(47) % fl 3—1/2 1 _3)—1/2—n( ) 1/244
We fix 6 small, set u(s) = s~/ v(s) = (1 - 8)~"V/3-it P(3) = (1 — 25)~1/2,
Vis) = —K%J:,T We have P/(s) = £(1 - 25)~*? and V( ) = 0. We have

JiwP = fo uvP+f& uvP
fo uvP — u(8)V(8)P(8) Ia V{u'P + uP").

The second term in (48) is O(1/t) and, since |1 — z| € 2|1 — sz for |2| < 1,
1 1 1 1 1
(1- z)3/2/ VP« |l - zl/ W' « 2—_/ (1-38)/2s732 ¢ T
] ] ]

(1—2)3/2f VuP' < ?/ (1-9)!/25712 g %
s 5

(48)

It
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Consequently
1 7] 1
(1- 2)3/2/ wP = (1 —z)3/2/ wP + 0 (-) .
0 ) t
We study the integral on the right-hand side of the previous equation:

./:uvP = /uv—/ uv+fuv(P~1

(49) = 1/21_1—/13—:»: juv-i-f up(P - 1),

where we used the beta integral to evaluate fo uv. The second integral in (49) is

/51 v = w(B)V(6) —fdlu'v =0 G) .

For the third term in (49) we have
'] s
(50) f w(P 1) = w(@)V()(P() - 1) - / V(P - 1) + uP,
0 0
since lim,_o ﬂ—?:l = P'(0), which is bounded. The first term on the right of

Eq.(50) is O(1/t). Moreover, since the function (P(s) — 1)/s is bounded on [0, J]
and s~'/2 i3 integrable on (0, 8],

5
/ Ve/(P—1) = _1/ Vu(P - 1)/s < 1.
0 2Jo t
Since (1 — z)*/2P' is bounded on [0, 5],
s 1
(1- 2)3/2/ VuP' < .
A t

As a result, when multiplied by (1 — 2)%/2, all terms are O(1/t), apart from
T{1/2)I(1/2 — it)['(1 — it)~!. In the end we muitiply the hypergeometric inte-

gral by ﬂﬂg%)ﬁiv which, due to (24), is asymptotic to ¢!/2. The result now
follows. =

Remark 3. The estimate (16) in lemma 3 is the best possible as far as the bahavior
of the hypergeometric function as j —+ oo is concerned. This can be seen by setting
z = 0. Since
F(a,b,c,2) = (1 — 2)"*F(c - a,b,c, z—é—l)
2, 2.10.(6), pp. 109] and
Fla,b,c,z) = 1+ O{|c|™)

as [c| = oo ([2, 2.3.2 (10), pp. 76]) we see that

F(1/2+ix+4,1/2+iX1+4j,2) = (1 - 2) 72 1+ O(1/4)]

for |z| < |z — 1], so the estimate cannot be improved in general. We see also that
the estimate (17) is best possible.
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8. ApPPENDIX B

In this section we prove the claim made at the beginning of Sect. 6. By Eq.(25)
there exist ¢p > 0 and ¢p > 0 such that [h,(2)] > 2¢¢ for all t > ¢g. If we prove that
dhg(S)

ds
for |s — t| < €, t sufficiently large and K independent of t, then the mean value
theorem allows to deduce |hs(s)| > ¢ for |8 — t] < € = min(e), €0/ K), t sufficiently
large. Using (9) we get

<K

dhe(s) /°° d ‘ tP_y/94i(coshr)sinh®r
e 27 A dsP_,/ng.,(coshr) o dr

We will prove that, for |8 — ¢| < €, the integrand is bounded by a function of r
which is integrable on [0, o0} (independent of s and t). We review some facts about
the spherical function on the symmetric space H (see (4, p. 144, 150-152]). The
spherical function P_, /9.5 (coshr} can be split as

(51) P_yapia(coshr) = pa(r) = c(A)@a(r) + c(~A)2_a(r),

where ¢(A) is the Harish-Chandra ¢ function and ®,(r) is the unique solution of
the equation
Py 80 2 2
. W+cothr—87+(g + 2%} =0
satisfying ®a(r) = e(*~97(140(1)) as r = 0o. Here g is the half sum of the roots,
in our case p = 1/2. We have

TGN
(52) ‘N = FiEr g
whose absolute value is asymptotic to 7~1/2A=1/2 ag A - o0, by (24). Moreover,
oQ
(53) &r(r) = P07 ST (N)e ™
m=0

where the I';, (A) satisfy the following recursion formula

n—1
(54) dn(n —i\Tan = 3 _(2k —iX + 0)2T2

k=0
with I'y = 1 and 2, = 0. The convergence of (53) is uniform on [, 00) for any
¢ > 0 by the estimate |T'\, (A)] < K(1 +m)?, for some K, d > 0. This is explained
in [4, Lemma 7] or {5, p. 57). We need more precise information. We have the
following two lemmas:

Lemma 4. There is a constant K > 0 such that [[,(A)] < K for all A > 0 and
m € N.

Proof. The proof is essentially in [4]. We set a,(A) = I'2,(A) and assume that
lax(A)} < K for k < n. Then, since |4k — 2iX + 1|2 < 16|n — i)|%, Eq.(54) gives

n—1 .
|4k — 244 +1|
< —_— K < K.
lan (M < kgo 4n|n ~i)| KsK
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Lemma 5. For alld > 0, there exists a K| > 0 such that forallm e N, A>0

|—'—Fm(/\ | < Klmd.

Proof. We differentiate (54) to get

: dan(A) SR _ dag()
—dina,(A\) + 4n(n - iA) = —2iar(A) + (dk - 2iA + 1)
dA é ( y X )

and ag(A) = 0. Therefore
(55)
daal2) dax(3)| . Jan(V)]
dX =i

Z lax (M) "Z':‘ |4k = 2iA + 1
2n|n — i) = 4n|n — iA|

dai())
dx
for k < n, we get using the previous lemma and (55)

dan(M)| _ KZ

dA
For n sufficiently large say n > No, 3K/(2n) + K1 3, k“/n < Kin%, since
i (k/n)dn - fo z9dz = 1/(d + 1) < 1. Eq.(55) shows that we can bound

%‘{—l for all n < Ny independently from A, so we can start the induction and the
inductive step is complete. O

If we assume that

)51{1.&“

We are interested in the product

e(0) 1y (1) = L (ela)a(r) + (=) -s(r)} - [e()1(r) + =) B_((r)].
The products |c(3)c(t)|, |c(—3)c(t)], le(8)e(~t)| and |¢(—4g)e(—y)| are asymptotic to
7 lg7 312 a5t 5 o0, |8 — t| < € (8 =+ 00). We study now

, _ P’(zs)F(l/2 +18) = ['(1/2 + is)T'(is)

c(s) = /aT2(1/2 + is)
_ il'(is) . ,

= JAT(/2+) [#(is) - ¥(1/2 + is)],

where ¢(z) = ['(2)/T'(z) is the logarithmic derivative of the gamma function. We
have the following asymptotics for ¥(z)

¥(z) = logz — % +0(z7%)
as |z| = oo, see (2, 1.18 {7}, p. 47). We have
log(1/2 + is) — log(is) = % log(1 + 1/(48%)) + i [arg(1/2 + is) — 7/2]
and

1
2

a
l
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Moreover,

arg(1/2+1is) — n/2 = 0O(1/s),
which follows by substituting z = arg(1/2 +1s) — 7/2, i.e. 28 = tan(z + 7/2),z -
0~, and noticing that z = O(cot(z + 7/2)). Also ~1/(2is) +1/(1 +2is) = O(1/s%).
Finally |¢/(s)| = O(s~%/?) and the products |¢'(s)c(t)], |¢'(—8)c(t)], |¢'(s)e(—t)| and
|c'(—8)e(—t)| are O(s~3/2t~1/2). Equation (53) gives together with Lemma 4

oo
1B5(r)] <e™/2 Y [Trm(s)le™™ < Ke™/?/(e" — 1)
m=0

which blows like K/r as r — 0. We take d = 1 in Lemma 5. Then
d®,(r ooy [ o= . dT (8
ﬁ = e(u er (Z I:Ifrm(s) + —:‘8'('—)] e—""')

ds =
and -
d‘rl(r) —-r/2 - ~-r/2 -
|T <KreT*[/(1-e ")+ Kje™" Zme mr

m=0

which behaves like K /7% as r = 0. For r > ¢ > 0 we get for ®,(r) and d®,(r)/ds
bounds by exponentially decreasing functions of r with no dependence on s. The
products ®,(r)®:(r), P-,(r)®:(r), $,(r)P-¢(r) and &_,(r)®_,(r) blow at most
like ¢; /r* as r — 0 and the products d®,/ds - ®,, d®_,/ds - &;, d®,/ds - ¢_, and
d®_,/ds - ®_; blow at most like ca/r? ar r = 0. Away from zero all these products
can be bounded by a function of r that decreases exponentially as r = oo. Since
tO(s~1/2t=1/2) = O(1) and tO(s~3/2t~'/?) = O(1/t) as t = o0, |s — t| < €, the
function dy,(r}/ds-;(r)tsinh® r/ cosh® r can be bounded by an integrable function
of r independently from s and t. This concludes the claim in Sect. 6.

Remark 4. One can actually use (33) and Lemma 4 to provide an alternate proof
that lim inf 4, (t) > 0. Eq.(20) corresponds to (51).

Acknowledgment

The author would like to acknowledge the hospitality and financial support of
the Max-Planck-Institut fiir Mathematik, where the research was conducted. The
author would also like to thank F. Hirzebruch for his encouragement, P. Sarnak for
suggesting the problem and W. Miiller, A. Venkov and D. Maslen for their helpful
suggestions.

REFERENCES

[1] Bump, D., Duke, W., Hoffstein, J. and Iwaniec, H., ‘An estimate for Hecke Eigenvalues
of Maass Formg’, IMRN (Duke Math. Journal), No. 4, 75-82, (1992).

(2} Erdélyi, Magnus, Oberhettinger, Tricomi ‘Higher transcendental functions’, vol. 1,
McGraw-Hill, 1953.

[3] Good, A. ‘Cusp Forms and Eigenfunctions of the Laplacian’, Math. Ann. 285, 523-548
(1981).

[4] Flensted-Jensen, M. ‘Paley-Wiener type theorems for a differential operator connected
with symmetric spaces’, Ark. Mat. 10, 143-162 (1972).

[5) Helgason, S. ‘Groups and Geometric Analysis: Integral Geometry, Invariant Differential
Operators and Spherical Functions’, Academic Press, 1984.

[6] Kamke, E. ‘Differentialgleichungen, Losungsmetheden und Lésungen’, vol. 1, 1943.

{7] Lewis, J. ‘Eigenfunctions on Symmetric Spaces with Distribution-Valued Boundary
Forms', J. Funct. Anal., 20, 287-307 (1978).



22 YIANNIS N. PETRIDIS

[8] Mazzeo, R. * Elliptic Theory of Differential Edge Operators I', Comm. in P.D.E. 16
(10), 1615-1664 (1991).

[9] Oshima, T. and Sekiguchi, J. 'Eigenspaces of invariant differential operators on an affine
symmetric space’. /nvent. Math 57, 1-81 (1980).

{10] Petridis, Y. ‘Spectral data for finite volume hyperbolic surfaces at the bottom of the
continuous spectrum’, J. Funct. Anal. 121, 61-94 (1994).

{11] Sarnak, P. ‘Inner products of eigenfunctions’, IMRN (Duke Math. Journal), No. 6,
(1994).

[12) Selberg, A. ‘Harmonic Analysis and discontinucus groups in weakly symmetric Rie-
mannian apaces with applications to Dirichlet series’, J. Indian Math. Soc. B. 20 (1956),
47-87.

(13] Terras, A. ‘Harmonic Analysis on Symmetric spaces and Applications I, Springer-Verlag,
New York/Berlin, 1985.

[14) Venkov, A. ‘Expansion in Automorphic Eigenfunctions of the Laplace-Beltrami Operator
in classical Symmetric spaces of rank one, and the Selberg trace formula’, Proc. Sieklov
Inst. Math. 125, 1-48 (1973).

[15] Wolpert, S. ‘Spectral limits for hyperbolic aurfaces’, Invent. math 108, 67-89 (1992).

MAX-PLANCK-INSTITUT FUR MATHEMATIK, GOTTFRIED-CLAREN-STRASSE 26, 53225 BONN,
GERMANY

Current address: Department of Mathematics, University of California, Santa Barbara, CA
93103

E-mail address: petridistmath.ucsb.edu



