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Introduction

The object of this paper i8 to elucidate a certain twistor correspondence which facilitates
the study of null holomorphic curves in o . This correspondence is most successfully
employed when dealing with null meromorphic curves, in which case projection to R3
yields complete, branched minimal surfaces of finite total Gaussian curvature. There are
some examples discussed in section 6; in'p.a.rticula.r we describe there a branched minimal
immersion of a Klein bottle into R® that has 2 ends, 6 branch points and total Gaussian

curvature -4« .

We begin in section 1 by reviewing the integration of the Weierstrass representation for-

mulae for a null curvein €° and the resulting "free" formulae.

Now, a plane in €3 that contains a single null line is said to be null, and the collection of
affine translates of such planes forms a holomorphic line bundle of degree 2 over the qua-
dric curve, @, . The affine null planes in € that pass through a fixed z € c? comprise
a global holomorphic section of this line bundle and thus € is identified with the set of
its global sections. The nullity, or otherwise, of z can be understood in terms of the inter-
section of the corresponding global section with the zero section. This is explained in
section 2 where however, following Hitchin [H1], we approach this correspondence from the
opposite direction, i.e. starting with T , the holomorphic tangent bundle of P1 , we derive
the conformal structure in HO(PI, T) v C3 and interpret points of T as affine null planes

there. This eases the exposition of section 3.

Section 3 is essentially an amplification of the appendix of [H1]. Viewing c® s
HO(PI, T), we describe there a natural lift into T of the Gauss map of a non—constant

null curve in €5 . We show that the null curve may be viewed as the collection of global
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sections of T that osculate this lift and thus establish a correspondence, described 3.7,
between curves on T and null curves in HO(PI, T) . This manifests itself locally as the

Weierstrass formulae in free form.

In section 4 we explain how to "compacfify" the correspondence and view it in terms of the
duality between curves in P3 and P; : Theorem 4.9 describes the correspondence as it
was understood by Lie [D], [Li]. In this context we study the behaviour of osculating
sections in the vicinity of a branch point, and at the points at infinity, of an algebraic
curve on T : in particular we show that this determines the asymptotic structure of the

corresponding null curve.

Corollary 4.10 describes the correspondence in terms of the compactification of T to the
Hirzebruch surface S, = P(T ® ¢) . This enables us to show that the moduli spaces of null
meromorphic curves in c? compactify naturally to complete linear systems on S, . In
addition the numerical data associated to such a system is interpreted in terms of the geo-

metry of the null curves thus parameterized: this is explained in section 5.

There are a number of ways in which one might hope to generalize the constructions
described in this paper, we mention two. Firstly, there exists a close analogue for curves in
¢ . This is implicit in work of Eisenhart but was first made explicit by Shaw [Sh], [S1].
(In [H-S] the analogue is pursued in dimension 6, however an interesting generalization to
C¢® is not obvious.) Secondly, Hitchin's construction of Einstein—Weyl geometries as .
moduli of rational curves on complex surfaces provides the natural context in which to
view the constructions described in this paper [H2], [S2]. An interesting example is given
by the correspondence between curves on a non—singular quadric surface in P3 and null
curves in SL(2,C) : the latter were shown by Bryant [B] to project to surfaces of constant

mean curvature 1 in the hyperbolic space of curvature —1.
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§ 1. The Weierstrass Representation Formulae in Free Form

(1.1) Let M be a Riemann surface and suppose that 0: M — ¢3 is a null holomorphic
curve, i.e. (f1' Q1) =0, where (z,2) = z% + zg + zg and primes denote differentiation. If
Q1 is non—constant then the Gauss map 7 = [01"] is well-defined on M and takes values
in the quadric curve Q; CP,. Furthermore, ¢ = Re(f) is 2 branched minimal immersion
into R®. Every branched minimally immersed surface in RS may be parametrized in this

way. Identifying Q1 with the unit sphere in oriented R® identifies M with the
Euclidean Gauss map of ¢. For further details see [L], [O].

(1.2) Let g = x_l © 7q, where y: CU {o} — Q, is given by

WO =[1- (2,i(1 + (2),2 ¢]. Provided that 7 is not the constant map taking the value
[-1,i,0), there exists for every €y €M, a holomorphic function F, defined on a
neighbourhood U of {, such thatfor { €U



3
n(e) =3 | e -glit+ed)2epae.

Away from the branch locus of g, 1 may be locally reparameterized by the ' Gauss map
variable’ (. Suppose that g—l and F, as above, exist on an open set U C IP1 and

g_l(U) respectively and that f: U — € holomorphic, satisfies

-1
£ (0) = o g7 () PB—(0).

The substitution of f"' into the above, together with the change of variable to ¢ = g(¢),
facilitates integration by parts over U. Correcting f up to a quadratic term, this yields
the following Keierstrass representation formulae in free formfor flo g-l

on U:

0, 0 g7(¢) = 1/2(1 — AM(C) + ¢'(¢) —1(¢)
0, 0 g72(¢) = 1/2(1 + (A)P(¢) —i¢P(¢) + ()
0y 087(0) = (F'(Q) - T'(() .

These formulae first appeared in [W] and are discussed at length in [D], see also [E], [Li]
and [N].

(1.3) Remarks. (i) Substitution of any holomorphic function f into the above formulae
yields a null holomorphic curve in Cs; provided that f is not merely quadraticin ( this
projects to a branched minimal immersion into RS .

(ii) The collection of null curves mapping U C € into ¢® and described by formulae of

the above type has a vector space structure. This is an immediate consequence of the fact



that such a curve is parameterized by its Gauss map. This is the structure that was studied
in [R-T]. Note that the addition of a quadratic function to f simply translates Q1 in ¢,

(iii) If { generates a branched minimal immersion ¢, then af, where a € c*, generates a
(rescaled) associate surface of ¢.

(iv) The (branched) metric induced on M by Q is given, with respect to the local
coordinate ¢, by:

a” = |02+ | €| Reld¢ @4D),
4 .
(01 21 ¢ B

Note that ( is a branch point of 2 iff f""({) = 0.

and the Gaussian curvature by: K(() = -

(v) It can be shown that {1 has a Weierstrass representation in free form on some
neighbourhood of fO € M precisely when any branching in the Gauss map at {0 arises

solely from ramification in the parameterization of 1 at 50 .

(1.4) Examples. (i) f(¢) = % (3 generates Enneper’s surface. (It follows easily from
Lemma 9.6 in [O] that a minimal surface ¢: € — R® which is complete, free of branch
points and generated via 1.2 by an entire function is a scaled associate surface of Enneper.)

(i) £(¢) = é(’i generates Re(1) : € — R3 where 0(¢) = ((2 - %(4,i((2 + %C4),4(3).
This surface is complete, has total Gaussian curvature —4x and a branch point at { = 0.
The geometry at ¢ = 0 is discussed in IL.3 in [L].

(i) 1(¢) = é((s + %e (4) generates a complete minimal surface with total Gaussian
curvature —4x possessing a branch point at —1/e.

For further examples see the references cited above and refer to §6.



§2. Duality

(2.1) With respect to an affine coordinate ( on P, a global holomorphic section of the
holomorphic tangent bundle «:T —»IP1 , takes the form (a+ b{ + c(2) %Z’ where
a,b,c € €; thus a choice of { permits us to identify ¢3 with B = Ho([Pl,T). A non—zero
global section of T has a double root iff b2 — 4ac = 0, so the set of such sections together
with the zero section comprise the null cone, C(Ql), of the conformal structure on HC. A

global section of T whose discriminant is zero is said to be null.

There exists a canonical identification, q, between [P1 and the quadric, Ql’ of null direc-
tions in HY where qQ(¢)={s€ ik ; o has a double root at ¢ }.

(2.2) If a global section o vanishes at ( then it cannot possess a double root elsewhere on
P, . Consequently the plane II = {sr € HO; o({) =0} enjoys tangential intersection with
C(Ql) along q(¢), ie. ch C(Ql) = q(¢). Such a plane is said to be null (or
1sotropic). In terms of the conformal structure, Tl ¢ is simply the polar space of q(¢),
and the restriction of the conformal structure to such a plane is degenerate. Note that a

null line lies on a unique null plane.

n= u 1 ¢ viewed as a subbundle of the trivial bundle ﬂo on lPl, is the kernel of the
(EIPl

map EO — T, ({,0) — (), and hence there is the following isomorphism:
T & _110/]'[ = {affine null planes in HO} .

Of course, t € T corresponds with the affine plane in HO of sections that pass through t.

Consequently t lies on the image of a global section ¢ iff ¢ lies on the affine null plane



in HO corresponding to t.

(2-3) Remarks (i) By viewing e as HO(IPI,O(I)) one obtains a similar correspondence
which compactifies to the usual duality between P, and [P;. (Since every global section of
0(1) has precisely one zero there is no constraint on the planes thus obtained in
B(P},0(1)).

(ii) Identifying €3 with H® via the basis {-1/2(1-42)‘31? —i/2(1+¢3) gz,- cg-(}
gives the transformation a=-1/2(z; +iz,), b= —z4, ¢ =1/2(z,—iz,) and hence the

discriminant takes the form z% + zg + zg X

The set of real sections with respect to this identification intersects C(Q;) in {0}; each
affine null plane intersects the real slice in an affine line and, together with a choice of
orientation on IR3, induces an orientation thereon. T is thus identified with the collection
of oriented affine lines in RS and a real section may be viewed as the set of oriented affine
lines that pass through the corresponding point in RS,

(iii) Note that the essential feature of T in the above is that it is a line bundle of degree 2
over IP1 , it is this that gives the conformal structure on H.

(The discriminant gives us an inner product on HO, however this is preserved only by
those bundle automorphisms induced by differentiating automorphisms of [P1 . Simply,

fixing a scale in the fibres of T corresponds to fixing a scale on HO.)

§3. The Lie-Hitchin Correspondence

(3.1) Recall that the duality alluded to in 2.3(i) leads to a duality between curves in P,

and P;. We describe here the analogue of this correspondence for T and m.
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(3.2) By definition, a curve 1: M — HC is null if g%(g, ) is always a null section of T.

(We rewrite 1 as a map from M x IP1 simply for notational ease.) Suppose that 1 is
non—constant and identify Q with [P1 via q in order to view 7, as a map to P,
Thus one obtains the following characterization of nullity: 1, non—constant, is null if for
any local coordinate ¢ on M and any affine coordinate ( on IPl’ there exists a

holomorphic function A such that

TH60 = MO -0

(3.3) For 0:M—H" a non—constant null curve let Fn:M—T be given by
Fa(€) = 0(&,7q(€)). T is called the fauss transformof (I clearly it is a globally
defined lift of the Gauss map of Q. From the duality of 2.2 observe that I‘n( §) is the
(unique) affine null plane with null direction () that passes through (¢, ) € .

(3.4) We show that Q1 is determined by its Gauss transform.

Theorem. If Q¥ : M — A are null curves such that I'a=Tyg and 7 is non—constant

then N=19.

Proof. I‘n = F‘I’ implies that M= Ty =" say. Let 7_1 be an inverse for 9 on some
open proper subset U C P, and observe that I'ne 7_1 =Ty o 7_1 as local section of T
over U. Working in an affine coordinate on U we calculate the quadratic jet of I'no 7_1
at (€U and show that it equals (¢,,(), where €y = 7—1((0), which shows that
1=¥ on U and by uniqueness of analytic continuation this establishes the result. By

definition T'g o 7 1(¢) = A(7((), (), therefore
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%‘cpn ° 7_1( ) dﬂ fo: Co) a‘Z— (CO (fo:(g)

From 3.2, g% (7_1((),() = 0 and hence

a2 2
aTae 7l = n(eo,co)a%—(cowj—(? £0r€o)

d2 -1

Again from (3.2), Icaz n(7‘1(g),c) = 0, s0 the quadratic jet Qf I"n o7 " at (is

2
0(£5,¢o) + T2 (6 )¢~ ¢) +%§—C~?(fo,co)(c - () = A&y Q).

Remark. If Tq i8 constant, in which case the image of 1 lies on an affine null line, I‘n is

constant and does not determine ! completely.

(3.5) It is clear from the proof of 3.4 that in order to recover @1 from I we must
construct the curve in H0 of global sections of T which each have the property that they
intersect I‘n with multiplicity at least 3 at some point; such sections are said to
osculate [ A natural way to formulate this, and hence describe the process which
inverts the Gauss transform, is to let Spé (T) denote the étalé space of the sheaf of germs
of sections of T and introduce the canonical map w: Spé(T) — HO, which is given on

stalks by the following:
o(T) p — d(T)c/J‘:z @ o(T) i

Here J ¢ is the ideal sheaf of holomorphic function vanishing at (¢, so the intermediate
object is the module of 2—jets of local sections at ¢, and the identification with n? says
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simply that a global section of T is determined by its 2—jet anywhere on [P1 and

conversely, that any 2-jet ‘extends’ over P, to give a global section.

(3.6) It is clear that w is holomorphic, the other relevant properties of w are easily

established. Let % C Spé (T) be the set of germs of global sections of T.

Theorem. (i) The curve w: Spé (T) — A is null.

(ii) The Gauss map 7 : Spé (T)— §— P, is 7w([a] C) = (.

(iii) The Gauss curve TI' :Spé(T)— ¥— T is given by evaluation, i.e.
r(lel ) = o{0)

Proof. (i) and (ii) : by definition of w, for any [o] ¢ € Spé (T) there exists some

neighbourhood of {, on which the following equation holds:
o) = ullo] . ,0) + (¢~ ¢p)°)
0

In the local chart [o] ¢ (o on Spé (T), differentiation of this equation with respect
0 .

to (0 gives
at- (el 0 = al¢ = ¢,

so from 3.2 (al%’- (o] ¢ ) is a null section and hence w is a null curve. Now (ii) follows
0 0

immediately from this and the identification of IP1 with Q1 via q.
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(iii) r(d,) =«ld, 7, )
$o $o $o
= ”([a] CO:CO)

= a((o) from the first equation above.

Remark. Clearly Ty and Pw may be defined on Spé (T). For o € HO, 7y and Pw
respectively describe the P, of affine null lines that pass through o and the [P1 of affine
null planes that pass through o.

(3.7) Theorem. If Q is null, with 7y, non—constant, then 0|, =wo I“;;, where
*

M, = {{ EM;T(£) is transverse to the fibre of T} and I‘B : M, — Spé(T) is the
natural lift of I'y; over M,.

. . * *
Proof. It follows immediately from 5 % = 7y © l"n that T woT =T w® I"n. So from

on‘n

Theorem 3.6 (iii), ' wo[‘;; =T over M, and the result follows from Theorem 3.4.

The geometric significance of the auxiliary function f in the Weierstrass formulae for 1 is
now clear. If f2: M — H? has non—constant Gauss map then for £o € M, not a branch
point of 1), there exists a local inverse 751 and so Igo 761(() = {(¢) %—c, f a
holomorphic function, on some neighbourhood of (= 7n( EO). ¢ is an affine coordinate
so the global section determined by the 2—jet at { 0 is obtained by Taylor expanding f at
(0 to order 2. It follows from Theorem 3.7 that

10 79 (¢) = wo T 0 7' (¢g) = (a(€e) + B + <l )D)

where
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a((g) = 1(¢g) — o (o) + 1/2€3(¢p)
b( Co) = f“((o) - (of"( Co)
o(¢o) = 1/20(¢y):

Viewing (, as variable and transforming to (21’22'23) coordinates, a8 in 2.3 (ii), yields
the Weierstrass formulae 1.2. Thus observe that f is a local implicit description over IPl

of the Gauss transform I‘n in T.

(3.8) For a bundle automorphism B of T, inducing &€ PGL(2,C), the element of
GL(HO) givenby oc——Bocgo § 1 preserves the null cone in H® and induces 4 on
P, via q. Conversely, any conformal transformation of H° maps an affine null plane to
an affine null plane and so induces an automorphism of T. Thus we obtain an isomorphism
between automorphisms of T and conformal transformations of )i il Fixing a scale in the
fibres of T, (which fixes a scale on HO), this reduces to the isomorphism
PGL(2,C) ~ SO(3,C) which, in terms of the double cover SL(2,0) — PGL(2,L), is simply
the adjoint representation. This leads to the following proposition in which the effect of

coordinate transformations is characterized.

Proposition. Suppose that the local section 5 = () g-(- generates the null curve 1 via
osculation; for 4 € SL(2,C) we have

Mo b=20860nif floo=Ad(6)N,

where {1 is generated by 7. Writing 6 = [ g g ] we have more explicitly:

Y[ = e+ 70
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iff

flos —(f1. +ift,)o n ~(0,4iN,) B
[_:Zﬁl—inz)oﬂ —ﬁ3<1>:ﬁ2 0]=[ab][_?n1_inz) -n3l+ 2][-2 :]

(3.9) Remarks. (i) "' (¢) = 0, in which case 1 has a branch point at ¢, iff the osculating
section at (¢, f(¢) gz) intersects with multiplicity at least 4  there, so it
hyperosculates the curve.

(ii) It is not hard to see that ¢(n), the holomorphic line bundle of degree n on P,, may
be viewed as the totality of affine hyperplanes in HO(IPI,O(II)) v ¢l which are
translates of hyperplanes that lie tangent to K, the cone over the rational normal curve in
P - There exists a canonical map, analogous to «, from the ﬁ}ta.lé space of ¢(n) to ¢l
whose tangent lines are translates of lines on K. Correspondingly, such a map to ¢n+1,
whose Gauss map to the rational normal curve is non—constant, possesses a Gauss

transform on ¢(n) and derives from osculation of that curve. The analogous Weierstrass

formulae are easily written down. We will discuss this in more detail elsewhere.

84. Compactification

(4.1) The Lie-Hitchin correspondence is described here in terms of the duality between
curves in Pq and U’;. This change of viewpoint reveals the nature of osculation of an
algebraic curve A CT at points in the branch locus of =| A and at infinity; thus it

elucidates the classical work of Lie and Darboux to which it is very close, see [D], [Li).

(4.2) Let 7 IT denote the pullback of T over the total space of T. T embeds into
IP(HO(T,u'_lT))* v P, , where it is compactified to €(Q,), the projective cone over the
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quadric curve, Ql—the image of the zero section of T.

(4.3) A hyperplane in P, which does not pass through v, the vertex of ¢ (Q;), cuts out
the image on iﬁ’(Ql) of a global section of T : the hyperplane Hm, that cuts out Q1 is
thus distinguished. Hyperplanes that pass through v generically intersect ¢ (Ql) along a

pair of generators.

(4.4) A hyperplane in IP3 that intersects Q; at one point is said to be null: a null
hyperplane that passes through v lies tangent to #(Q,), any other cuts out the image of

a null section.

Viewing #(Q,) as the compactification of the null cone in P,—H , (where v
determines an origin), observe that since Q1 comprises the null directions at infirity in

P,— H_, a null hyperplane is the compactification of an affine null plane in P,—H .

Thus the notion of a null hyperplane subsumes both that of a non—zero null section of T

and that of an affine null plane in .

(4.5) For p € IP3 and a hyperplane H C IPs let p* and H* denote the dual hyperplane
and dual point in IP; respectively. The null hyperplanes in EP3, together with H:,
comprise a dual quadric cone S’(Ql) C [P’;, where the distinguished quadric curve Ql
comprises the null hyperplanes through v. H: is the vertex of ¢ (Ql) and Q
parameterizes the hyperplanes in lP; that pass through it and are null (with respect to
Ql). Note that this construction is symmetric, i.e. ?(Ql) may be viewed as {null
hyperplanes in [P’;} U{v}.

(4.6) It follows from 4.2 that IP; o HO(IPl,T) uv¥ U(Ql) is thus identified with the
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compactification of the null cone in HO(IPI,T).

(4.7) Recall that an algebraic curve A C P, is said to be full if it does not lie on any
hyperplane and furthermore that such curves necessarily have degree at least 3. There is a
natural correspondence between full curves in IP3 and full curves ﬂ’; which for A C IP3
is given by associating to each smooth point a € A the hyperplane that intersects A at
a with multiplicity at least 3; that hyperplane is said to osculate A at a. This

determines a birational map between A and a dual curve A*C IP?; :

Proposition. Let n:& — A C IP3 be the normalization and let n*:X — A% (C IP’;
denote the map induced by osculation. Then (K,n*) gives the normalization of A* and

*%
n = 1.

For further details see (G—H], [Ha].
(4.8) Lemma. Suppose that A C Py is full.

(i) If A lieson #(Q) then at a € A, which does not lie in the branch locus of the
projection to Q, or equal v, the osculating section is cut out by the hyperplane that
osculates A at a.

*

(ii) Suppose that A’ =A—(A nv*) is a null curve in IP; —v

C(Ql)). For a smooth point a € A’, the hyperplane that osculates A’ at a gives the

(with respect to
value of the Gauss transform there viewed as a map to ¢ Q)

Proof. (i) is immediate. To prove (ii) let ¢ be a local coordinate on X with n(§,) = a
and recall that I' (£,) is the affine null plane that passes through a with null direction
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Y n(EO). Generically, neither n' nor n" equals zero so suppose that this is true at EO'
Since (n",n") =0 implies that (n",n") =0, the polar 7,( 50)0 = spa.nc{n"(fo),n"(fo)}.
Expanding n at §, it is clear that u(£)—u({,) intersects 7n(£0)0 with multiplicity
at least 3 and therefore the closure of I‘n( 50) in [P; in the hyperplane that osculates A

at a.

Remarks. (i) The fullness of A ensures in (i) that A does not lie on a global section or a
fibre of T and in (ii) that the Gauss map is non—constant. (Recall that these are
degenerate cases.)

(ii) Observe that a section hyperosculates iff the corresponding hyperplane hyperosculates.

(4.9) It is now clear that for a full curve A C IP;, A’ isnull in IP’;— v iff A% C #(Q;):
accordingly we say that A is null (with respect to Ql) if A¥C ‘é’(Ql), i.e. the
hyperplanes that osculate A are null.

The next result describes the Lie—Hitchin correspondence extrinsically.

Theorem. Osculation determines a correspondence between full curves on  €(Q,) CP,
and full curves in {P’; that are null with respect to Ql' Furthermore, the obvious dual

statement holds.

(4.10) We now reformulate Theorem 4.9 intrinsically; however, note that in doing so we

break the inherent symmetry of the above statement.

Blowing up the vertex of #(Q;) gives the Hirzebruch surface S, ~P(T @ ¢), which is a
rational ruled surface and the minimal smooth compactification of T : for details and

notation see § 4.3 of [G—H]. E’* is thus identified with the linear system [|E on S,
3 y 0 2
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|Eq| 2 HO(IPI,T) U {reducible divisors}, where the reducible divisors are of the form
E + C1 + C, and result from blowing up hyperplane intersections of & (Ql) that pass
through v. Q; determines a distinguished irreducible element of |E0| and nullity is
defined in |E;| with respect to that curve in the obvious way: note that the null divisors

at infinity are divisors of the form E + 2C.

We say that an algebraic curve A CS, is full if it blows down to a full curve
B(A)C ¥ (Ql)' For a full curve A CS,, with normalization (X,n), osculation is defined
on X via B(A). Thus 4.9 gives

Corollary. There exists a natural correspondence between full algebraic curves on S and
full algebraic null curvesin |E,|.

Remarks. (i) Compactifying T to S, the Gauss transform extends over the poles of a
null meromorphic curve in €3 .

(ii) This result simply reformulates Weierstrass’ observation that in 1.2, 0 is a
meromorphic curve iff f is an algebraic function.

(iii) For n: X—AC 52, the Gauss map of n* s given by 7 .= 1r|Aon, where
n

T S2 — IP1 is projection.

(4.11) We now consider, in more detail, osculation of n: X — A C S, at points in the

branch locus of x|, and at pointson E .

A null curve in IP; intersects v*, the hyperplane at infinity, inside dl' Consequently, if
the hyperplane that osculates G(A) at Bon(¢) passes through v it is null and hence A
osculates the fibre through n(¢). In terms of divisors: n*(f) =E_+2C_, n(¢)
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If n(¢) lies on E_~then fon({)=v and the osculating hyperplane lies tangent to
#(Q,) along 7on(§), therefore n*(f) =E_ +2C ron(¢) and in particular ™ is never

finiteon E .
@

If Bon(¢) is a singular point on F(A), finiteness of n*({) depends on the nature of the
singularity there. This can be made precise as follows. A can be described locally in 82 in
the form n(¢) = (7,*(£),h(£)), where h is a meromorphic function. Suppose that ¢, a
local coordinate on U C X, is centred at £ and such that 7n*(£) = ¢9 furthermore
suppose that ( is centred at 7n*(fo). Since h is meromorphic there are Puiseux series

representations of n(U) in the vicinity of n({p):

®
ho 7;i(() = 2 am(m/q , where p € Z.

m=p

Write n* (n’;, ;, ;) X — €3 U v*. 1t follows from 1.2 that:

p/q > 2 implies that n ({0) is finite, in which case £, for q 2 2, is simply a branch
point of the Gauss map of the curve in ¢3;

1<p/qg<2 implies that n’{({o)=ng(§o)=m, n’;(fo) <o In this case the
corresponding end of the associated minimal surface in R® is asymptotic to an affine
plane;

p/q < 1 implies that n;(fo) =o, k=123

Remarks. (i) These differences may be viewed as follows. If n(£,) € E_ then, at £, n*
osculates v* , the hyperplane at infinity of ¢, However, if n( {0) ¢ E_ then,at £, ¥
osculates a null hyperpla.;le in €U v*. For 0 < p/q <2, n osculates the fibre through
n({,) , therefore n* osculates the null hyperplane determined by n({;) at infinity.

p/q > 2 implies that n*( £ 0) € €® and osculation occurs there.
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Clearly, the most significant difference between 0 < p/q <1 and 1 < p/q < 2 concerns
the second order behaviour of the curve at n(¢ 0) , it is this that determines the difference
in the growth behaviour at the end.

(ii) It is clear that if a smooth point of A lies in the branch locus of r| A then A
osculates the fibre there.

(iii) Points of self—intersection on A contribute to the asymptotic structure of A* only if
a component there osculates the fibre.

(iv) The above trichotomy was known in the last century, see [D].

§6. Modali for Null Curves

(5.1) A null meromorphic curve 1: M — €% extends over its poles to give a null curve

fl.: M — P, Now, fI factors through X, the normalization of A = f}(M) and hence the

3
natural data associated to f}(M), and the accompanying minimal surface Re (M), derives
from X. The total Gaussian curvature, genus, branching and number of ends should be
calculated there since this removes superfluous ramification in the parameterization of the

image. (E.g. this gives a sharper form of Ossermann’s inequality in the presence of

branching.)
Corollary 4.10 gives the following diagram
>
fi-Mm—X
R *

A
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where A™ is the corresponding Gauss transform on S,. This suggests that natural moduli
for null meromorphic curves in €3 are given, not by fixing a parameter domain M and
varying f, but rather by the moduli of the corresponding curves on S, where there is no
nullity constraint to satisfy.

(5.2) A* is an irreducible algebraic curve on S, and is determined up to linear
equivalence by the intersection numbers A* -E, and A¥:-C, which yield natural
numerical data associated to A:

A*.c=«k gives the degree of x| ,* and therefore equals the degree of the Gauss map of
n;

A*~E0 = ¢ 1is the class of A, it counts (with multiplicity) the number of hyperplanes
osculating A that pass through a point of IP3.

A* lies in the complete linear system |kE, + (c—2k)C|, since A* s full it does not
equal E_ or a fibre and hence its irreducibility implies that k > 0 and ¢ > 2k.

The linear systems |aEO+bC| on S, with a>0, b2>0, provide natural

2)
compactifications of the moduli spaces of null meromorphic curves in €3, The reducible
divisors in such a system correspond to (possibly degenerate) limits of sequencesof null

meromorphic curves, see §6 for some simple examples.

Remarks. (i) Two curves on S2 are linearly equivalent iff they are homologous and hence
these moduli spaces may be viewed as homology classes of algebraic curves on S, see
[G-H].

(ii) There is no natural scale for the complex vector space |E0|—{reducible divisors},
only a null cone. However, fixing one gives a (branched) metric, induced by n, on the

complement in X of the set of poles of n. The total Gaussian curvature of this metric is
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independent of the choice of scale and is well-known to be equal to —4= deg(7,), [0] .
This gives another interpretation of A-C.

(5.3) The genus of a generic null meromorphic curve of class ¢ and with total curvature
—47k is readily obtained: since S, is smooth and |kEg + (c—2k)C| is base point free,
Bertini’s theorem implies that the generic element is smooth and the adjunction formula

gives g =k(c-k)—c+ 1.

Remarks. (i) In general, singularities of A¥ will contribute to this formula to lower g, see
[G-H].

(ii) The Gauss map of a generic null meromorphic curve does not possess branch points off
the set of poles of the curve since from 4.1 the osculating hyperplane is finite at a branch of

the Gauss transform only if the Gauss transform is singular there.

(5.4) On S, there is the linear equivalence E_~ Egj—2C. This gives A*. E =c-2k:
if k=1, in which case A is simply a global meromorphic section of T, this is (6) of
§ 234 in [D]. Clearly, A*'Em measures that part of the end structure of A that arises
from Em.

The total number of poles of A, counted with multiplicity, equals d, the degreeof A asa
curve in IP3, since it gives the intersection number 6f A with the hyperplane at
infinity. We would like to compute d from data on A%, Blowing down A* to
AA*YC ¥ (Q;) there is the Pliicker formula:

d-2d, +d" =25-2+ 4,

where d* = degree of A* 252 curve in IP3 and therefore equals c; d1 = degree of the
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first associate curve n, : X— G(2,C4); g=genus of X and B, = total branching of
n, : see [G—H] for details.

§6. Examples

(6.1) Let p,q€N be coprime with p+q23. ¢ the curve on S2 obtained by

p,aq’
completing the curve in ¢? given by 5= (P, is irreducible and rational and its
normalization is given by extending u+—— (u%,uP). Osculation of b’p q yields a
. ’
non—constant null meromorphic curve in ¢®. Differentiation of f(ud) =vP and

substitution into 1.2 gives the following global formulae:

0 = (g 1) 0 [ 2

2q
nbd(u) = %ﬁ: [g— 1]111"2q +i [1 -§g+ 22 ]up
n29(u) = 2 [g - 2] "l

For p > 2q this curve is defined on € and €* otherwise. ¢P1 = Re(nP9)
complete branched minimal surface in R3 with total Gaussian curvature —4=q.

The branch points on ¢ sit over 0 and © on IPl; the branch point over o always

Pq
corresponds to an end of ¢™'%. If p < 2q then the branch point over 0 gives an end and
the surface has 2 ends. If p > 2q then ¢P9(0) is finite and for q>1,u=10 isa

branch point of the Gauss map. Since ¢ D, is described in (W‘gz) — coordinates on T,
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where w=1/(, by the curve pd = (—l)qwzq_p, observe that p > 2q iff ifp q

intersects Em. So having only one end forces greater growth there.

In fact, since we also have 1<p/q<2 iff 0<2-p/g<1l and O0<p/q<1 iff
1 <2-p/q <2, the growth behaviour at u=0 1is coupled in a simple way to that at

u4=m.

For p>2q+ 1, u=0 is a branch point in the metric since quq_lf"" (ud) ~ up—2q—1,
however the surface is immersed for p € 2q + 1. The surfaces with p = 2q+1 may be of
special interest; for q = 1 this is Enneper’s surface.

(6.2) Let p be the Weierstrass p—function associated with a lattice A CC and 89:83 be
the wusual constants derived from the Eisenstein series for A. The curve
1;2 = 4(3 —89{ —8g3 in ¢? completes in T to a smooth elliptic curve &, which lies in
the linear system |2E|. (pfp"*) : C/A - {0} — €% extends to give a parameterization of
&

Since & -E0 =4 and &-C =2, osculation of & gives a null meromorphic curve
fl: §— ¢3 U IP2 of class 4 and with total Gaussian curvature —8x. The map 7| P has

4 branch points and since & is smooth they each give rise to a pole of 1.

Asacurveon #(Q;), & isembeddedin P, and has degree 4. It follows from Hurwitz’s
theorem (see Ex. 4.6 [Ha]) that there are 16 points of hyperosculation on & (These are
distinct because deg §=4 means that any point of & can count at most 4 times in the
intersection with a hyperplane.) Each of the 4 branch points of 7| g 1s a point of
hyperosculation: for, the osculating hyperplane at a branch point b € & lies tangent to
#Q,) along the fibre through b and hence it intersects & only at b and so it must
intersect there with multiplicity 4. Consequently it follows from Remark 3.9 (i) that there
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are 12 zeros in the metric induced by Q1 on &-{poles of N1}.
Recall that p'(z) =0 for z=w,/2,6,/2,ws/2 where {wy,wy} i8 a basis for A and

Wy = w) + Wy Differentiation of the equation fop = p' together with some elementary

calculations yields the following global formulae for
0: €/A = {0,0,/2,05/2,u5/2} — €
{20° + 3(2+32)p4 + Bg3p3 —3g,(1 + 32/8)p2
2 N /0 113
_383(2 + 52/2)10 - (32/8 + 53)}/(:0 )
. 2
n,= i{-20% +3(2- 32)p4 - 8g3p3 — 3gy(1 —gy/8)p

—384(2 — 85/2)p — (85/8 — £3)}/ (0"’

= {-120°

3 2 2 3
+ 28,0 — 680" — 3/4g50 — 8983/2}/(p")” .
(6.3) There is a natural real structure 7:T— T given in coordinates by
7(¢,7) = (<1/T,7/T2) which, viewing T as the set of oriented lines in R°, simply
reverses the orientation along lines [H1]. For o, € i o ¢ (via (zl,zz,z3)—coordinates,

see Remark 2.3 (ii)), it is easy to see that 7o 7, = 05

Suppose that A CT is 7—invariant, for example A could be the spectral curve of a
magnetic monopole [H1). If o osculates A at a then o; osculates A at 7(a).
Consequently, Q(7(a)) =1i(a) and hence Q(Q a) + (7(a))) and satisfies
¢(r(a)) = ¢(a). Thus ¢ factors through A/7.
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Clearly, a isapoleof 1 iff 7(a) is, and e is a point of hyperosculation iff 7{a) is. So
if an elliptic curve & € |2E| is T—invariant then ¢: &/7 — {2 points} —R® gives a
complete branched minimal immersion of a Klein bottle into IR3 with total Gaussian

curvature —4r, 6 branch points in the metric and 2 ends.

Remarks (i) Monopole spectral curves are r—invariant and those of charge 2 enjoy (at
least) I, x I, symmetry [Hu]. This symmetry is reflected in the geometry of the
associated minimal surface. For example 172 = 4(( (2 —1) is invariant under the action of
the bundle automorphisms of T induced by differentiating elements in the following

subgroup of PGL(2,():

{¢—a ¢, (——( (— (_1, {— —('-1}. This subgroup corresponds to
I, x T, CSO(3,R) given by the rotations through z—degrees about the coordinate axes in
R®. This might be exploited in the graphical construction of such surfaces.

(ii) There does not exist a complete non—orientable minimal immersion with total Gaussian
curvature —4x , [M]. The branch points of ¢ above contribute to the Chern—Osserman
inequality and remove the obstruction.

(i) Any 7—invariant algebraic curve on T gives rise to a complete non—orientable
branched minimal immersion in R°. A familiar example is Henneberg’s surface, whose
Gauss transform is given by the meromorphic section 5 = 1/3( (—l + (3 ).

(iv) In order to have an explicit example of a complete branched minimal surface in RS
which is genuinely a punctured Klein bottle it remains to check that ¢ constructed from a
T—invariant elliptic curve does not factor through RP,.

(v) Note that 6’3,2 lies in |2E,|. Also, a family of elliptic curves in |2E;| may
degenerate into a pair of global sections; for example this phenomena is associated with
monopole scattering [A—H]. Osculation of a reducible divisor in |2E;| gives a pair of

points in €3: if the sections are 7—invariant then the pair lies in RS,
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(vi) It is not hard to see that osculation of the spectral curve of a monopole of charge k

induces a metric whose total Gaussian curvature is —4rk: we discuss this in more detail in

[S3].
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