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Introduction

The object of this paper is to elucidate a certain twistor correspondence which facilitates

the study of null holomorphic curves in (]J3. This correspondence is most successfully

employed when dealing with null meromorphic curveB, in which case projection to R3

yields complete, branched minimal surfaces 'of finite total Gaussian curvature. There are

some examples discu8sed in section 6; in particular we describe there a branched minimal

immersion of a Klein bettle into R3 that has 2 ends, 6 branch points and total Gaussian

curvature -4~ .

We begin in section 1 by reviewing the integration of the Weierstrass representation for­

mulae for a null curve in ~3 and the resulting "Iree" formulae.

Now, a plane in (]J3 that contains a single nullline ia said to be null, and the collection of

affine translatea of such planes forms a holomorphic line bundle of degree 2 over the qua­

dric curve, ~1' The affine null planes in '(t3 that pass through a fixed z E (]J3 comprise

a global holomorphic section of this line bundle and thus (D3 is identified with the set of

its global sectionB. The nullity, or otherwise, of z can be understood in terms of the inter­

section of the corresponding global section with the zero section. This is explained in

section 2 where however, following Hitchin [BI], we approach this correspondence from the

opposite direction, Le. starting with T, the holomorphic tangent bundle of PI ' we derive

the conformal structure in BO(Pl' T) ~ (]J3 and interpret points of T as affine null planes

there. This eases the exposition of section 3.

Section 3 is essentially an amplification of the appendix of [BI]. Viewing (D3 as

BO(Pl' T), we describe there a natural lift into T of the Gauss map of a non-eonstant

null curve in (D3. We show that the null curve may be viewed as the collection of global
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sections of T that osculate this lift and thus establish a correspondence, described 3.7,

between curves on T and null cu~es in HO(Pl' T) . This manifests itself locally aB the

Weierstrass formulae in free form.

In section 4 we explain how to "compactify" the correspondence and view it in terms of the

duality between curves in P3 and P;: Theorem 4.9 describes the correspondence as it

was understood by Lie [D], [Li]. In this context we study the behaviour of osculating

sections in the vicinity of a branch point, and at the points at infinity, of an algebraic

curve on T: in particular we show that this determines the asymptotic structure of the

corresponding null curve.

Corollary 4.10 describes the correspondence in terms of the compactification of T to the

Hirzebruch surface S2 = P(T e 0) . This enables UB to show that the moduli spaces of null

meromorphic curves in ~3 compactify naturally to complete linear systems on S2' In

addition the numerical data. associated to such a system is interpreted in terms of the geo­

metry of the null curves thus parameterized: this is explained in section 5.

There are a number of ways in which one might hc;>pe to generalize the constructions

described in this paper, we mention two. Firstly, there exists a elose analogue for curves in

(D4 . This ia implicit in work of Eisenhart but was first made explicit by Shaw [Sh], [SI].

(In [H-S] the analogue is pursued in dimension 6, however an inter~esting generalization to

CVn is not obvious.) Secondly, Hitchin's construction of Einstein-Weyl geometries as

moduli of ra.tional curves on complex surfaces provides the natural context in which to

view the constructions described in this paper [H2], [S2]. An interesting example is given

by the correapondence between curves on a non-singular quadric surface in P3 and null

curves in SL(2,(D): the latter were shown by Bryant [B] to project to surfaces of constant

mean curva.ture 1 in the hyperbolic space of curvature-1.
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§ 1. The Weierstrass Representation Formulae in Free Form

(1.1) Let M be aRiemann surface and suppose that n: M ---+ (3 is a null holomorphic

curve, Le. (0' ,0') = 0, where (z,z) = z~ + z~ + z~ and primes denote differentiation. If

o ia non~onstant then the Gauss map "0 = [0"] ia well-defined on M and takes values

in the quadric curve Ql ( IP2' Furthermore, ~ = Re(O) is a branched minimal immersion

into 1R3. Every branched minimally immersed surface in 1R3 may be parametrized in this

way. Identifying Ql with the unit sphere in oriented (R3 identifies "0 with the

Euclidean Gauss map of ;. For further details see [L], [0].

(1.2) Let gn = X-1 0 "n ,where X: a: U {m} --+ Ql is given by

X( () = [1 - (2,i(1 + (2) ,2 C]. Provided t hat 1n ia not the constant map taking the value

[-l,i,O], there exists for every eOE MJ a holomorphic function F, defined on a

neighbourhood U of eO such that for eE U
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e
nw = ~JFW(l- g2,i(1 + g2),2g)de .

Away from the branch locus of g, n may be locally reparameterized by the 'Gauss map

variable' ,. Suppose that g-1 and F, as above, exist on an open set U ( IP1 and

g-1(U) respectively and that f: U --+ ( holomorphic, satisfies

The substitution of pli into the above, together with the change of variable to (= g( ~),

facilitates integration by parts over U. Correcting f up to a quadratic term, this yields

the following Veierstrass representation formulae in free form for 00 g-1

on U:

01 0 g-1( () = 1/2(1 - (2)f"( () + (f"'( () - f( ()

~ 0 g-1( () = i/2(1 + (2)f"( () - i (f"( () + if( ()

03 0 g-1( () = Cf'I( C) - f"( C) .

These formulae first appeared in [W] and are discussed at length in [D], see also [E], [Li]

and [N].

(1.3) Rernarks. (i) Substitution of any holomorphic function f into the above fonnulae

yields a null holomorphic curve in (3; provided that f ia not merely quadratic in , this

projects to a branched minimal immersion into 1R3 .

(ü) The collection of null curves mapping U ( ( into (3 and deacribed by formulae cf

the above type haa a vector space structure. This ia an immediate consequence of the fact
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that such a eurve is parameterized by its Gauss map. This is the strueture that was studied

in [R-T]. Note that the addition of a qnadratic function to f simply translates n in (3.

*(ili) If f generates a branched minimal immersion ~, then c.tf, where Q E( , generates a

(rescaled) associate surface of ;.

(iv) The (branched) metrie induced on M by n ia given, with respect to the Ioeal

coordinate (, by:

and the Gaussian eurvature by: K( C) = - ~ 2 4 .
IfItt '(,)I (1+1 (I )

Note that ( is a braneh point of n irr f"l( () = o.

(v) 1t ean be shown that n has a Weierstrass representation in free form on some

neighbourhood of eOE M precisely when any branching in the Gauss map at {o arises

solely from ramifieation in the parameterization of n at {o.

(1.4) Enmples. (i) f( () = ~ ~ generates Enneper'a surface. (It follows easily from

Lemma 9.6 in [0] that a minimal surface ;: (---i!R3 whieh is complete, free of braneh

points and generated via 1.2 by an entire funetion is a sealed associate surface of Enneper.)

(ii) f( () =~(4 generates Re(n): 4: ---i!R3 where n( () = ((2 _ ~(4,i( (2 + !(4),jf).

This surface ia eomplete, has total Gaussian eurvature --411" and a branch point at ,= o.
The geometry at ,= 0 ia diseussed in II.3 in [L].

(ili) f( () = ~~ + if c4) generates a eomplete minimal surface with total Gaussian

curvature --4"" possessing a braneh point at -1/ f.

For further examples see the referenees cited above and refer to §6.
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§2. Duality

(2.1) With respect to an affine coordinate , on IP1 a global holomorphic section of the

holomorphic tangent bundle :l'": T -+ IPl' takes the form (a + b( +cf) h-, where

a,b,c E (; thus a choice of , permits us to identify (3 with HO = HO(IPl'T). A non-zero

global section of T has a double root iff b2 - 4ac = 0, so the set of such sections together

with the zero section comprise the null cone, C(Ql)' of the confonnal structure on HO. A

global section of T whose discrlminant is zero ia said to be nu ll.

There exists a canonical identification, q, between IP1 and the quadric, Ql' of null direc­

tions in HO where q( ( ) = {tT E HO ; tT has a double root at (}.

(2.2) If a global section tT vanishes at ( then it cannot possess a double root elsewhere on

lP1 . Consequently the plane 11 ( = {tT E HO; tT( () = O} enjoys tangential intersection with

C(Q1) &long q((), Le. TI, nC(Qt) = q('). Such a plane ia said to be null (or

iso trop i cl. In terms of the conformal structure, 11, is simply the polar space of q( (),

and the restriction of the confonnal structure to such aplane is degenerate. Note that a

null line lies on a unique null plane.

TI = U TI (' viewed aB a subbundle of the trivial bundle HO on D'l' is the kernel of the
'ElP1

map HO ---t T, ("tT) t--+ tT( (), and hence there is the following isomorphism:

T ~ HO ITI = {affine null planes in HO}.

Gf course, t E T corresponds with the affine plane in HO of sections that pass through t.

Consequently t lies on the image of a global section tT iff tT lies on the affine null plane
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in HO corresponding to t.

(2.3) Remarks (i) Hy viewing (2 as HO(J'l' &'(1)) one 0 btains a similar correspondence

which compactifies to the UBUal duality between IP2 and IP;. (Since every global section of

0(1) has precisely one zero there is no constraint on the planes thus obtained in

HO(P1'0(1)).)
3 0 2d . 2d d

(ü) Identifying ( with H via the basis {-1/2(1-( )~, -1/2(1+ ( )~, - (~}

gives the transformation a =-1/2(z1 + iz2), b = --z3' c = 1/2(zl -iz2) and hence the

discriminant takes the form zi + z~ + z~ .

The set of real sections with respect to this identification intersects C(Ql) in {O}; each

affine null plane intersects the real slice in an affine line and, together with a choice of

orientation on 1R3, induces an orientation thereon. T ia thus identified with the collection

of oriented affine lines in fR3 and areal section may be viewed as the set cf oriented affine

lines that pass through the corresponding point in 1R3.

(üi) Note that the essential feature of T in the above is that it ia a line bundle of degree 2

over IP1 ' it is this that gives the conformal structure on HO.

(The discriminant gives UB an inner product on HO, however this ia preserved only by

those bundle automorphisms induced by differentiating automorphisms of lP1 . Simply,

fixing a scale in the fihres of T corresponds to fixing ascale on HO.)

§3. Tbe Lie-Hitchin Correspondence

(3.1) Recall that the duality alluded to in 2.3(i) leads to a duality between curves in IP2

and p;. We describe here the analogue of this correspondence for T and HO.
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(3.2) By definition, a curve n: M -; HO is null if ~e, ) is always a null section of T.

(We rewrite 0 as a map from M)( IF\ simply for notational ease.) Suppose that 0 ia

non~onstant and identify Q1 with lP1 via q in order to view 10 as a map to IP l'

ThuB one obtains the following characterization of nullity: n, non~onstant, is null if for

any Ioeal coordinate ~ on M and any affine coordinate , on IPl' there exista a

holomorphic function A Buch that

(3.3) For 0 : M ---J HO a non~onBtant null curve let rn : M ---J T be given by

r O(~) = O( {, 1n( ~)). r n is called the Causs trans/orm of 0; clearly it is a globally

defined litt of the Gauas map of n. From the duality of 2.2 observe that r n(~) is the

(unique) affine null plane with null direetion 10(~) that passes through n(~, ) E HO.

(3.4) We show that n ia determined by ita Gauss transform.

Theorem.If O,"W: M~ HO are null curves such' that rn= f t and 10 ia non--eonstant

then n= t.

Proof. r0 = r t implies that 10 = 1w= 1 6ay. Let 1-1 be an inverse for 1 on some

-1 -1 1open proper subset U C IP1 and observe that r0 0 1 = r t 0 i as oeal seetion of T

over U. Working in an affine coordinate on U we caleulate the quadratie jet of r 0 0 1-1

at '0 E U and show that it equals O( ~O' (), where {O = 1-
1( (0)' which shows that

n= t on U and by uniqueness of analytie continuation this establishes the result. By

definition f n 0 1-1(() = 0(;-1((),(), therefore
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FlOm 3.2, ~ (7-1( (), () :: 0 and hence

2
Again from (3.2), ak O( 7-1( (), () :: 0, so the quadratic jet of r 0 0 7-1 at (0 is

Remark. If 10 ia constant, in which case the image of 0 lies on an affine nulllineJ rn ia

constant and does not determine 0 completely.

(3.5) It ia dear from the proof of 3.4 that in order to recover n from rn we roust

conatruct the curve in HO of global sections of T which each have the property that they

intersect r0 with multiplicity at least 3 at some pointj such sectians are said to

osculate rO. A natural way to formulate this, and hence descrilJe the process which
I

inverts the GaUS8 transform, ia to let Spe (T) denote the Etale space of the sheaf cf germs

of sectians of T and introduce the canonical map tU: Spe(T) ---i HO, which is given on

stalka by the following:

_1 N °
tU : C'(T) , -----+ C'(T) ,I Je S C'(T) , -----+ H .

Here J, ia the ideal aheaf of holomorphic function vanishing at ,,so the intermediate

object ia the module of 2-jets of local sections at (, and the identification with HO says
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simply that a global section of T is determined by its 2-jet anywhere on [Pland

conversely, that any 2-jet I extends 'over [PI to give a global section.

(3.6) It is clear that w is holomorphic, the other relevant properties of w are easily

established. Let 'J ( Spe (T) be the set of germs of global sections of T.

Theorem. (i) The curve w: Spe (T) ---+ HO is null.

(ii) The Ganss map ,.,w : Spe (T) - 1---+ lP1 ia ,.,w([o-] ,) = {.
(iii) The Gauss curve rw : Spe (T) - 1---+ T is given by evaluation, Le.

r w([ (T] () = u( ().

Proof. (i) and (ii) : by definition of w, for any [0-] '0 ESpe (T)

neighbourhood of '0 on which the following equation holds:

there eJOsts some

In the local chart [(Tl '0 ............-+ '0 on Spe (T), differentiation of this equation with respect

to {O gives

so from S; ([u) (T ) is a null sec on wo hen e w is a null curve N (ii) f

immediately from this and the identification of IP1 with Q1 via q.
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(iii) r w([ (T] '0) = w([ (T] '0,7t..,([ (T] '0))

= w([(T],0"0)

= 0\ (0) from the first equation above.

Remark. Clearly 1 W and r w may be defined on Spe (T). For (/' E HO, 1w and r w

respectively describe the IP1 of affine nulllines that pass through (/' and the IP1 of affine

null planes that pass through (/'.

(3.7) Theorem. If n ia null, with 1n non-eonstant, then nl M = w° r~, where

*
M* = {e E M; r n( e) is transverse to the fihre of T} and r~: M* ---+ Spe(T) is the

natural lift of r n over M*.

* *Proof.. It follows immediately from 1 r* = 1 ° rn that r r* =r ° rO' So !romwOn W wo n W

Theorem 3.6 (iii), rwor~ = rn over M* and the result follows !rom Theorem 3.4.

The geometrie signifieance of the auxiliary function f in the Weierstrass fonnulae for n is

now clear. If n: M ---+ HO has non-eonstant Gauss map then for eOE M, not a branch

point of rO' there exists a local inverse 'Tr/ and so r 00 rr/( () = f( () ~. f a

holomorphic function, on some neighbourhood of '0 = 1n(eO)' , is an affine coordinate

so the global section determined by the 2-jet at '0 ia obtained by Taylor expanding f at

'0 to order 2. It follows from Theorem 3.7 that

where
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2
a( (0) = f( (0) - 'OP·( (0) + 1/2 'Oftl

( (0)

b( (0) = f1'( (0) - 'of,t( (0)

c( (0) = 1/2f1'( (0)'

Viewing '0 aB variable and transforming to (zl'z2,z3) coordinates, as in 2.3 (ii), yields

the Weierstrass formulae 1.2. Thus observe that f is a local implicit description over IP1

of the GaUBs transform rn in T.

(3.8) For a bundle automorphism 8 of T, inducing 0 EPGL(2,(), the element of

GL(HO) given by (J'~ 8 0 (J' 0 trI preserves the null cone in HO and induces f) on

IP1 via q. Conversely, any conformal transformation of HO maps an affine null plane to

an affine null plane and so induces an automorphism of T. Thus we obtain an isomorphism

between automorphisms of T and conformal transformations of HO. Fixing a scale in the

fibres of T, (which fixes ascale on HO), this reduces to the isomorphism

PGL(2,() ~ SO(3,() which, in terms of the double cover SL(2,() --+ PGL(2,(), is simply

the adjoint representation. This leads to the following proposition in which the effect of

coordinate transformations is characterized.

. d
Proposition. Suppose that the local section 1] = f( ,)~ generates the null curve n via

osculationj for f) E SL(2,[) we have

11 0 f) = Of) 0 1] Hf f1 0 f) = Ad( f))O,

where fl is generated by ~. Writing e= [~ ~] we have more explicitly:
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iff

(3.9) Remarb. (i) f'1I (,) =0, in which case n has a branch point at ',Hf the osculating

section at ((,f( () h-) interseets with multiplicity at least 4 there, so it

hyperosculates the curve.

(ü) It is not hard to see that t7(n), the holomorphic line bundle of degree n on IPl' may

be viewed as the totality of affine hyperplan~s in HD(IPl' l?(n)) ~ (n+l which are

translates of hyperplanes that lie tangent to K, the cone over the rational normal curve in

IPn' There exists a canonical map, analogous to w, from the Etalt~ space of t7(n) to (n+l

whose tangent lines are translates of lines on K. Correspondingly, such a map to (n+l,

whose Gauss map to the rational normal curve is non-eonstant, possesses a Gauss

transform. on O(n) and derives from osculation of that curve. The analogous Weierstrass

formulae are easily written down. We will discuss this in more detail elsewhere.

§4. Compactification

(4.1) The Lie-Hitchin correspondence is described here in terms of the duality between

curves in IP3 and IP;. This change of viewpoint reveals the nature of osculation of an

algebraic curve A eTat points in the branch locus of it" IA and at infinitYi thus it

elucidates the elassical work of Lie and Darboux to which it is very elose, see [D], [Li].

(4.2) Let w--1T denote the pullback of T over the total space of T. T embeds into

IP(HO(T,I1("-lT))* ~ 1P3 ' where it ia compactified to ~(Ql)' the projective cone over the
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quadric curve, Q1-the image of the zero section of T.

(4.3) A hyperplane in 1P3 which does not pass through v, the vertex of ~(Ql)' cuts out

the image on ~(Ql) of a global section of T: the hyperplane Hm, that cuts out Ql is

thus distinguished. Hyperplanes that pass through v generically intersect ~(Ql) along a

pair of generators.

(4.4) A hyperplane in IP3 that intersects Ql at one point is said to be nu Zl: a null

hyperplane that passes through v lies tangent to ~(Ql)) any other cuts out the image of

a null section.

Viewing ~(Ql) as the compactification of the null cone in IP3- H
m

, (where v

determines an origin), observe that since Ql comprises the null directions at infinity in

IP3- H
m

, a null hyperplane is the compactification of an affine null plane in IP3- H
m

•

Thus the notion of a null hyperplane subsumes both that of a non-zero null section of T

and that of an affine null plane in (3.

* *(4.5) For p E IP3 and a hyperplane H CIP3 let p and H denote the dual hyperplane

and dual point in IP; respectively. The null hyperplanes in IP3' together with H:,
comprise a dual quadric cone ~(Ql) CIP;, where the distinguished quadric curve ~1

comprises the null hyperplanes through v. H: is the vertex of if(Ql) and Ql

parameterizes the hyperplanes in IP; that pass through it and are null (with respect to

~1)' Note that this construction is symmetrie, Le. ~(Ql) may be viewed as {null

hyperplanes in IP;} U{v} .

(4.6) It follows from 4.2 that IP; ~ HO(IPl'T) Uv*; '6 (Q1) ia thus identified with the
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compactification of the null cone in HO(IPpT).

(4.7) Recall that an algebraic curve A ( IP3 is said to be fu II if it does not lie on any

hyperplane and furthermore that such curves necessarily have degree at least 3. There is a

natural correspondence between full curves in IP3 and full curves IP; which for A ( IP3

is given by associating to each sIDooth point Q E A the hyperplane that intersects A at

Q with multiplicity at least 3; that hyperplane is said to oscu la te A at Q. This

determines abirational map between A and a dual curve A*( IP; :

Proposition. Let n: A--+ A ( IP3 be the normalization and let n*:A--+ A*( IP;

denote the map induced by osculation. Then (X,n*) gives the normallzation of A* and

**n = n.

For further details see [G-H), [Ha].

(4.8) Lemma. Suppose that A ( IP3 ia full.

(i) H A lies on ~(Ql) then at Q E A, which doea not lie in the branch locus of the

projection to Ql or equal v, the osculating section is cut out by the hyperplane that

osculatea A at a.

(ii) Suppose that A' = A - (A nv*) ia a null curve in IP; - v* (with respect to

C(~l))' For a smooth point a E A', the hyperplane that osculates A' at a gives the

value of the Gauss transform there viewed aB a map to ~(Ql)'

proof.. (i) is immediate. To prove (ii) let e be a loeal eoordinate on X with n(eO) = a

and recall that r n(e0) is the affine null plane that passes through a with null direction
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in(eo)' Generically, neither n' nor n fl equals zero so suppose that this is true at eO'

Since (n';,n'') = 0 implies that (nll,n") = 0, the polar in(eo)O = span({n'-(eO),nll(eO)}'

Expanding n at eO it is clear that u( e) - u( eO) intersects i n( {o)o with multiplicity

at least 3 and therefore the closure of rn( {O) in IP; in the hyperplane that osculates A

at Q.

Rema.tks. (i) The fullness of A ensures in (i) that A does not lie on a global section or a

fibre of T and in (ii) that the Gauss map ia non-eonstant. (Reca.ll that these are

degenerate cases.)

(ii) Observe that a section hyperosculates iff the corresponding hyperplane hyperosculates.

(4.9) It is now clear that for a full curve A (lP;, A' ia null in IP;- v* iff A*( ~(Ql):

accordingly we say that A ia nu II (with respect to ~1) if A*( ~(Ql)' Le. the

hyperplanes that osculate A are null.

The next result describes the Lie-Hitchin correspondence extrinsically.

Theorem. Osculation determines a correspondence between full curves on ~(Q1) ( IP3

and full curves in IP; that are null with respect to ~1' Furthermore, the obvious dual

statement holds.

(4.10) We now reformulate Theorem 4.9 intrinsically; however, note that in doing so we

break the inherent symmetry of the above statement.

Blowing up the vertex of ~(Q1) gives the Hirzebruch surface 82 ~ IP(T ED 0), which is a

rational ruled surface and the minimal smooth compactification of T: for details and

notation see § 4.3 of [G-H]. IP; is thus identified with the linear system IEOI on 82:
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1EOI ~ HO(lPl'T) U{reducible divisors}, where the reducible divisors are of the form

E
CD

+ Cl + C2 and result from blowing up hyperplane intersections of ~(Q1) that pass

through v. Q1 determines a distinguished irreducible element of 1EO1 and nullity is

defined in I EO1 with respect to that CUIve in the obvious way: note that the null divisors

at infinity are divisors of the form. E + 2C.
CD

We say that an algebraic curve A C82 ia fu II if it blowa down to a full CUIve

ß(A) ( ~(Q1)· For a full curve A ( 52' with normalization (A.n), osculation ia defined

on X via ß(A). Thus 4.9 givea

Corollary. There exists a natural correspondence between full algebraic curves on S2 and

full algebraic null curves in 1EOI·

Remarks. (i) Compactifying T to 52 the Gauss transform. extends over the poles of a

null meromorphic curve in (3 "

(ü) Thia reault simply reformulates Weierstrass' observation that in 1.2, n ia a

meromorphic curve iff f is an algebraic function.

(ili) For n: A--+ A ( 52' the Gams map of n* ia given by 1 *= J" 1Aon, where
n

r : 52 --+ IP1 is projection.

(4.11) We now consider, in more detail, osculation of n: A--+ A ( 52 at points in the

branch locUB of W" 1A and at points on E
CD

•

A null curve in IP; intersecta v*, the hyperplane at infinity. inside Q1" Consequently, if

the hyperplane that osculates ß(A) at ßon( e) passes through vitia null and hence A

esculates the fibre through n( e). In terms ef divisors: n*( e) = E
CD

+ 2C ron( e)·
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H n( t) lies on Ethen ßon(~) = v and the osculating hyperplane lies tangent tom

~(Ql) along 7ron({)t therefore n*({) = Em+ 2Cw-on({) and in particular n* is never

finite on E .
m

H pon({) is a singular point on ß(A), finiteness of n*({) depends on the nature of the

singularity there. Thia ca.n be made precise as follows. A can be described locally in 82 in

the form n( e) = (1n*( e)th( {)), where h ia a meromorphic function. Suppose that {, a

local coordinate on U CA, is centred at {O and such that 1n*( e) = {qj furthermore

suppose that , is centred at 1n*(eO)' Since h ia meromorphic there are Puiseux series

representations of n(U) in the vicinity of n( {O):

m

h 0 1~~( C) = 1: &m,m/
q

t where pE 1/..
m=p

. * *** l'}' 3 *Wnte n = (n l ,n2,n3) : 1\ --+ ( Uv . It follows from 1.2 that:

p/q > 2 implies that n*( {O) is finite, in which case {O' for q ~ 2, is simply a branch

point of the Gauss map of the curve in (3 j

* * *1<p/q<2 implies that n1(~O)=n2(eO)=m, n3(eO)<m. In this case the

corresponding end of the associated minimal surface in 1R3 is asymptotic to an affine

planej

p/q < 1 implies that n~({O) = m, k = 1,2,3.

Remarks. (i) These differences may be viewed as follows. If n(eO) E E(I) then, at {O' n*
osculates v* t the hyperplane at infinity of 0::3 . However, if n( {O) ~ Em then, at e0 ' n*
osculates a null hyperpl~e in 0::3 Uv*.For 0 < p/q < 2, n osculates the fibre through

n(eO) ,therefore n* osculates the null hyperplane determined by n( {O) at infinity.

p/q > 2 implies that n*( ~o) E (D3 and osculation occurs there.
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Clearly, the most significant difference between 0 < p/q < 1 and 1 < p/q < 2 concernB

the second order behaviour of the curve at n( ~O) , it is this that determines the difference

in the growth behaviour at the end.

(ii) It is clear that if a smooth point of A lies in the branch locus of r IA then A

osculates the fibre there.

(iii) Points of self-intersection on A contribute to the asymptotic structure of A* only if

a component there osculates the fibre.

(iv) The above trichotomy was known in the last century, see [D].

§5. Moduli for Null Curves

(5.1) A null meromorphic curve n: M -+ (3 extends over its poles to give a null curve

n:M-+ IP3' Now, i1 factors through X, the normallzation of A = f1(M) and hence the

natural data a8sociated to O{M), and the accompanyjng minimal surface Re n(M), derivea

from A. The total Gaussian curvature, genus, branching and number of ends should be

calculated there since tbis removes superfluous ramification in the parameterization of the

image. (E.g. tbis gives a sharper form of Ossermann's inequality in the presence of

branching. )

Corollary 4.10 gives the following diagram
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where A* ia the corresponding Gauss transform on 82, This suggests that natural moduli

for null meromorphic curves in (3 are given, not hy fixing a parameter domain M and

varying 0, hut rather by the moduli of the corresponding curves on 82 where there is no

nullity constraint to satisfy.

(5.2) A* is an irreducible algebraic curve on 82 and is determined up to linear

equivalence by the intersection numbers A* ·EO and A*. C, which yield natural

numerical data associated to A:

*A · C = k gives the degree cf r IA* and therefore equals the degree of the Gauss map of

n',

A*. EO= c is the cl ass of A, it counts (with multiplicity) the number of hyperplanes

osculating A that pass through a point cf IP3'

A* lies in the complete linear system IkEO+ (c-2k)C I, since A* ia full it does not

equal Em or a fibre and hence its irreducibility implies that k > 0 and c ~ 2k.

The linear systems IaEO+ bC I on 82, with a > 0, b ~ 0, provide natural

compactifications of the moduli spaces of null meromorphic curves in (3. The reducible

divisors in such a system correspond to (possibly degenerate) limits of sequenc~of null

meromorphic curves, see §6 for some simple examples.

Remarks. (i) Two curves on 82 are linearly equivalent iff they are homologous and hence

these moduli spaces may be viewed as homology ~asses of algebraic curves on 82, see

[G-H].

(ii) There ia no natural scale for the complex vector space IEOI-{reducible divisors},

only a null cone. However, fixing one gives a (branched) metric, induced by n, on the

complement in A of the set of poles of n. The total Gaussian curvature of this metric ia
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independent of the choice of scale and is we1l-known to be equal to -4if deg( 1n), [0] .

This gives another interpretation of A· C.

(5.3) The genus of a generic null meromorpbic curve of class c and with total curvature

-4rk is readily obtained: since 82 is smooth and IkEO+ (c-2k)C I is base point free,

Bertini's theorem implies that the generic element is smooth and the adjunction formula

gives g = k(c-k) - c + 1.

Rema.rks. (i) In general, singularities of A* will contribute to tbis formula to lower g, see

[G-H].

(ii) The Gauss map of a generic null meromorphic curve does not possess branch points off

the set of poles of the curve since from 4.1 the osculating hyperplane ia finite at a branch of

the Gauss transform only if the Gauss transform is singular there.

(5.4) On 82 there is the linear equivalence E
m

IV EQ - 2C. This gives A*. E
m

= c - 2k :

if k = 1, in which case A* ia simply a global meromorphic sectien ef· T, tbis is (6) of

§ 234 in [D]. Clearly, A*. E measures that part of the end structure of A that arises
ol

from E .
ol

The total number of poles of A, counted with multiplicity,equala d, the degree of A as a

curve in IP3' since it gives the intersection number of A with the hyperplane at

infinity.We wou1d like to compute d from data on A*. Blowing down A* to

ß(A*) ( ~(Ql) there is the Plücker formula:

*d - 2d1 + d = 2g - 2 + PI'

where d* = degree of A* as a CUIve in IP3 and therefore equals c; d1 = degree of the
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first associate curve n1 : A--+ G(2,(4); g = genus of A and ß1 = total branching of

n1 : see [G-H] for details.

§6. Examples

(6.1) Let p,q E IN be coprime with p+q ~ 3. t4'p,q' the curve on 82 obtained by

completing the curve in (2 given by f]q = ,P, is irreducible and rational and its

normalization is given by extending u l---t (uqJup). Osculation of '6p,q yields a

non-<:onstant null meromorphic curve in (3. Differentiation of f(uq) = uP and

substitution into 1.2 gives the following global formulae:

For p > 2q this curve is defined on ( and (* otherwise. fl,q = Re(OP,q) is a

complete branched minimal surface in 1R3 with total Gaussian curvature -41rq.

The branch points on ~ sit over 0 and fI) on IP1; the branch point over fI) alwaysp,q

corresponds to an end of ~,q. If p < 2q then the branch point over 0 gives an end and

the surface haB 2 ends. If p > 2q then ;p,q(O) is finite and for q > 1, U = 0 ia a

branch point of the Gauss map. Since t4' is described in (w,Jl~) - coordinates on T,p,q uW
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where w= 11 (, by the curve P,q = (-1)qw
2q

-
p

, observe that p > 2q iff ~p,q

intersects E . So having only one end forces greater growth there.
m

In fact , since we also have 1 < p/q < 2 Hf 0 < 2 - p/q < 1 and 0 < p/q < 1 Hf

1 < 2 - p/q < 2, the growth behavioUI at u = 0 1s coupled in a simple way to that at

u = lD.

For p > 2q + 1, u = 0 is a branch point in the metric since quQ- 1rll '(uq) N uP-2q-1,

however the sunace is immersed for p ~ 2q + 1. The surfaces with p = 2q+1 may be cf

special interestj for q = 1 this is Enneper's surface.

(6.2) Let p be the Weierstrass p-function associated with a lattice A C ( and g2,g3 be

the usual constants derived from the Eisenstein series for A. The CUIve

TJ2 = 4(3 - g2( - g3 in (2 completes in T to a smooth elliptic curve t, which lies in

the linear system 12EO I. (p,pl:) : G:IA- {O} ---+ (2 extends to give a parameterization cf

8.

Since 6· EO= 4 and 6· C = 2, osculation cf 6 gives a null meromorphic curve

n: 8---+ (3 UIP2 of dass 4 and wit h total Gaussian curvature -8 'Jr. The map 'Jr I 6 has

4 branch points and since , is smooth they each give rise to a pole of n.

As a curve on tf(Ql)' 6 is embedded in IP3 and has degree 4. It follows from Hurwitz's

theorem (see Ex. 4.6 [Ha]) that there are 16 points of hyperosculation on 8. (These are

distinct because deg 6= 4 means that any point of t can count at most 4 times in the

intersection with a hyperplane. ) Each of the 4 branch points of 7r lEis a point of

hyperosculation: for, the osculating hyperplane at a branch point b E t lies tangent to

'i!(Ql) along the fibre through b and hence it intersects 8 only at b and so it must

intersect there with multiplicity 4. Consequently it follows tram Remark 3.9 (i) that there
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are 12 zeros in the metric induced by n on Hpoles of O}.

Recall that pI (z) = 0 for z = w1/2,w2/2,wg/2 where {wl'w2} is a basis for A and

w3 = "'1 + 612, Differentiation of the equation f,?p = pI together with some elementary

calculations yields the following global formulae for

(6.3) There is a natural real structure T : T --+ T given in coordinates by

T((,1]) = (-1/""",,1]/""",2) which, viewing T as the set of oriented lines in 1R3, simply

reverses the orientation along lines [BI]. For (Tz EBO~ (3 (via (zl'z2,zg)-eoordinates,

see Remark 2.3 (ii)), it is easy to see that T 0 (T = (T-.z z

Suppose that A CT ia T-invariant, for example A could be the spectral curve of a

magnetic monopole [H1]. H (Tz osculates A at athen (Tz osculates A at T( 0).

Consequently, O( ,-(0)) =n(Q) and hence ;(0) = ~n(o) + O(T(a))) and satisfies

;( r(a)) = '(a). Thus , fattors through A/ T.
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Clearly, a is a pole of n iff T(a) is, and Q is a point of hyperosculation iff r(a) iso So

if an elliptic curve 6 E 12EO I ia 'T-invariant then tP: ~ / 'T - {2 points} --+ 1R3 gives a

complete branched minimal immersion of a Klein bottle into 1R3 with total Gaussian

curvature --4if, 6 branch points in the metnc and 2 ends.

Remarks (i) Monopole spectral curves are T-invariant and those of charge 2 enjoy (at

least) 112 )( 112 symmetry [Hu]. This symmetry is reflected in the geometry of the

associated minimal surlace. For example 1]2 = 4(( (2 - 1) is invariant under the action of

the bundle automorphisms of T induced by differentiating elements in the following

subgroup of PGL(2,{):

{'~ " ,~-" (~,-1, (.--..-.+_,-1}. This subgroup corresponds to

112 )( 112 (SO(3,1R) given by the rotations through r-degrees about the coordinate axes in

1R3. This might be exploited in the graphical construction of such surfaces.

(ü) There does not exist a complete non-orientable minimal immersion with total Gaussian

curvature --4r, [M). The branch points of f/J above contribute to the Chern-osserman

inequality and remove the obstruction.

(iii) Any 'T-invariant algebraic curve on T gives rise to a complete non-orientable

branched minimal immersion in 1R3. A familiar example is Henneberg'8 sunace, whose

Gaus8 transform ia given by the meromorphic section 1] = 1/3{ ,-1 + ~).

(iv) In order to have an explicit example of a complete branched minimal surface in (R3

which is genuinely a punctured Klein bottle it remains to check that f/J constructed from a

'T-invariant elliptic curve does not factor through IRIP2'

(v) Note that ~3 2 lies in 12EOI· Also, a family of elliptic curves in 12EO1 may,
degenerate into a pair of global sectionSi for example this phenomena is associated with

monopole scattering [A-H). Osculation of a reducible divisor in 12EO 1 gives a pair of

points in (3: if the sections are T-invariant then the pair lies in 1R3.



-26-

(vi) It is not hard to see that osculation of the spectral curve of a monopole of charge k

induces ametrie whose total Gaussian curvature is -4w-k: we discuss tbis in more detail in

[S3].
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