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APPLICATIONS OF KOSZUL HOMOLOGY TO
NUMBERS OF GENERATORS AND SYZYGIES

PETER seH ENZEL

ABSTRACT. Several spectral sequence teehniques are used in order
to derive information about the strueture of finite free resolutions
of graded modules. These results eover estimates of the minimal
number of generators of defining ideals of projeetive varieties. In fact
there are generalizations of a classical result of Dubreil. On the other
hand there are investigations about the shifts and the dimension of
Betti numbers. To this end there is a loeal analogue of Green 's
eonsiderations developed in (5].

1. INTRODUCTION

Let X C IPÄ: be an algebraic variety, J( an algebraically closed field.
Let :Tx denote the ideal sheaf of X. Then :Tx admitts afinite Ininimal
resolution

F. : °-+ F s -+ . . . -+ :Fi -+ ... -+ :F1 -+ :Jx -+ 0,

where :Fi ~ EBjEZOij (-j). Here only finitely Inany ij are non-zero.
The resolution :F. reflects scveral geolnetric and arithmetic properties

of X. For instance, the length S of :F. satisfics s '2: coclim X. The equality
characterizes when X Is arithmetically Cohen-Macaulay. On the other
hand

regM:= max{i j -j I jE Z and i j =f. O}
is called the Castelnuovo-Mumford regularity of X. It is determined by
the vanishing of the cohomology Hi(X, Ox(n)), see e.g., [9]. The rank of
F 1 Is detcnnined by the mininlal number of generators p(Jx) of Jx, the
sturated ideal of X in R = f<[xo, . .. 1 X n ].
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2 P. SCHENZEL

Tlhere is a classical result by P. Dubreil, see [3], that for X a set of
points in the projective plane PÄ· it follows that

f-l(Ix ) ::; a(Ix ) +1,

where a(Jx) denotes the smallest degree of a hypersurface that con
tains X. There is an extension of this result to the case of X arithlTIeti
cally Cohen-Macaulay of codimension two, see [2] or [12]. More recently
H. Martin and J. Migliore extended Dubrcil's TheorelTI to X a locally
Cohen-Macaulay scheme, see [7, TheorelTI 2.5]. One of the main points
of the present paper is an extension of their result to an arbitrary scheme
X C Pie In fact it turns out that

f-l(Ix ) ::; a(Ix) + 1 + C(Ix )

for a certain correcting term C(Ix ), see 4.1 and 4.3.
The integer C(Ix) is determined by the dimensions of the Koszul ho

ITIology of H;(X, Ox) with respect to a certain system of linear forms.
These kind of invariants have been considered by M. Green in his funda
mental paper [5]. In fact we develop a complete local analogue of these
modules for any finitely generated graded R-module M-. These invariants

IIi(l; H~(M)), i,j E Z,

I = 11, ... ,Ir, a system of generic linear forms, are graded R-modules
of finite length. We call them Green ITIodules of M with respect to L
As indicatcd in Green's paper, see [5], its graded componcnts play an
important röle in getting information about the minimal free resolution
of M over R. Under additional assumptions on X resp. M there are
explicit geometrie interpretations of the Green modules. So e.g. in the
case of X an arithmetically Cohen-Macaulay scheme of codimension three
it follows that f-l(Ix ) ::; a(Ix ) +1 +deg X.

On the other hand the Green modules are intimately related to the
stfucture of the Ininimal ffee resolution of :F. of :Ix. In fact thcy are
thc ingredients of a spectral sequence for computing Tod\I(, M), i E Z.
That is, they describe in a certain sense the Betti numbers and their
shifts. This is fiddeled out in more details in Section 5, wherc it is shown
that

regX = max{i j - j I j 2: codimX and i j i- ü},
see 5.2. That is, the regularity of X is completely determined by the
tail of :F•. More precisely, under certain additional assumption there is
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an explicit computation of i j in terms of the graded components of the
Green modules, see 5.5 for the precise statement. It turns out that this
is a generalization of M. Green's duality theorem, see [5, Section 2].

On the other hand our result is a {ar reaching generalization of P. Rao's
observation how much the resolution of thc Hartshorne-Rao module
Al(C) of a curve C C f'k determines the resolution of :Je at the tail,
see [11, (2.5)]. One application of this type concel'ns the resolution of
certain curves 0 C Ir/( of arithmetie genus 9(0) = 0, see 5.7.

While the applications of our results are IDotivated by geometrie ques
tions we formulate and prove them in terms of graded modules over Rand
its loeal eohomology Illodules IJ~(M). To this end we fix a few homolo
gical preliIllinaries in Seetion 2. These concern the Koszul homology, the
local eohomology, anel some basic facts about spectral sequences. The
speetral sequence related to a double complex is in several variations one
of the basic tools of our investigations. In Section 3 we summarize the
details about the Green modules. The most important result is 3.4. It
proves thc finite length of Hi(I; JJ~(M)) for a generic system of linear
forms, i.e., for almost all t E Z it follows that

Hi(l; H~(M))i+t = 0 for all i,j E Z.

Seetion 4 is devoted to the estitnates of the number of generators of Ix,
i.e., to the desired variations of Dubreil's theorem. The final Seetion
5 coneerns the relation of the syzygies of the modules of 'def-iciencies'
JJ~(M) to those of M. In particular it yields the new charaeterization of
reg M resp. the generalization of Green's duality theorem.

2. !(OSZUL HOMOLOGY AND LOCAL COHOMOLOGY

First fix a few notation anel conventions. Let A = EBn:2:oAn denote
a graded Noetherian ring such that Ao = !{ is an infinite field and
A = 1{[Ad. Then A is an epimorphie image of the polynomial ring R =
!( [Xl, •.. , x r] in the variables Xl, ... ,Xr, r = dimK A I. Let M = EBnEzMn
denote a graded A-module. For k E Z let M(k) dcnote the nlodule Al
with the grading given by [M(k)]n = Mk+n, n E Z. Mostly we consider
a graded A-IDodule as an module over R. For more details about graded
nl0dules and rings see [1, 1.5].

Let X·, Y· denote two cOITIplexes of graded A-ITIodules. Let Z· denote
the single complex associated to the double complex X· 0A Y·. Then
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there are the following two spectral sequences

E;i = Hi(X· 0A Hi(Y·)) =} Ei+i
'E~i = Hi(Hi(X·) 0A Y·) =} 'Ei+i

fJi+i(Z·) and
ffi+i (Z·).

Sec e.g. {4, Appendix A3] or [15, 5.6] for an introduetion and the ba
sic results concerning spectral sequences. Here we remark that by the
definitions all the hOlllolnorphisms are homogeneous of degree zero.

Let f = fl,' .. ,!~ denote a systeln of hOlnogeneous elements. Then
1<.(f; A) denotes the Koszul complex with rcspect to f. Fix the following
defimtions -

1<.(f; !vI) := J(.(!; A) C9A M,
J<·(l; M) := HO~A(J(.C[jA), M),

Hi(f; M) := Hi(f{.(!; M)),
Eielj M) := JJi(J(.Q; M)),

where i E Z, see e.g. [1, 1.6] or [4, Section 17]. Note that all the lTIodulcs
resp. complexes are graded. The homomorphims are homogeneous of
degree zero. In particular let m = Xl, ... ,Xr denote a generating set of
m, thc ideal generated by all forms of positive degree. Then 1<.(.;f; R)
provides a finite ffee resolution of 1<, the residue field. Therefore

Hi(mj M) ~ Torf(J(, M) and .Ili (mj M) ~ Extk(J(, M), i E Z.

In the following split m into two subsets .;f and y. Then we compare their
Koszul homologies. -

Lelnma 2.1. PUt:f = Xl, ... ,Xs and JL = X~+h'" ,Xr JOi an integer
1 ::; s < r. Then

dimK fln (m; M) ::;

min{s,n}

L
i=max{O,n-(r-!l)}

fOi any finitely generated R-modulc M.

PiOOf. First note that

as follows by vicw of the construction of thc Koszul eomplex. But then
there is the following spectral sequence
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Moreover note that all the E[rterms are finite dimensional J(-vector
spaces. This follows because all of them are annihilated by m. The sub
sequent terms Er; are subquotients of El·. So they are also finite dimen
sional and

dirTIL" Er:· < dimK E~· for all n >_ 2.
n. tJ - tJ

Now for large none has Ei! = EIj. Furthermore it is known that

Ei+i = Hi+j(m; M)

adrnitts a finite filtration whose quotients are E~_i' i = 0,1, ... ,n. This
implies that

n

dirn/( Hn(m; M) = I: dimK Ef';-i'
i=O

So the claim follows because of the above estirnates. o
For further investigations the case of n = 1 is of a particular interest.

To this end formulate it as aseparate Corollary.

Corollary 2.2. Let ;f,Jb and M as in 2.1. Then

dirnK BI (m; A1) ::; dirnK HO(;f; H1(u.; 1\1)) + dirnK 111(;f; 11o(u.; 1\1)).

The general idea behind 2.1 is abound of the Betti numbers

bn(M) := dimK Tor~(I<, M).

For n = 1 and AI = R/1, j a homogeneous ideal of R, this yields abound
for the rninirnal nurTIber of generators J-L( I) of 11 see 4.1.

For several investigations we need the local cohomology modules
J{~(M), i E Z, of M with respect to m. To this end denote by I(j(A)
the complex °--+ A --+ AJ --+ 0, where f denotes a hOITIogeneous element
allel A J is the localization with respect to f. Thc middle homomorphisrTI
denotes the canonical map into the localization. For m = xl .... ,Xr

define

j(e := 0i=l J<;j anc! j(e(M):= j(e 0A M

the Cech complex of A and M. Then there are canonical isomorphisms

H~(M) ~ lli(j(e 0A M) for all i E Z.

For the details of this facts see e.g. [6] or [1, 3.5].
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3. THE GREEN MODULES

Let M denote a finitely generated graded R-ITIodule. In this seetion
wc introduce eertain invariants related to the loeal cohomology and the
Koszul hornology of AI. To this end we need the notion of a gencric
hyperplane.

Definition 3.1. A system of linear elements { = 11, ... ,/s is said to be
a generic linear system with respect tü NI provided

h rt p für all p E (AssR(M/(11, ... , [i-dM) \ {m}.

Here m denotes the ideal generated by the variables XI, • .• , X r in R.

Note that 1 is a generic system of linear elements if and only if the
following quotients

((/1, ... ,li-dM:M [i)/(/1 , .•. ,li-dM, i = 1, ... ,8,

are graded R-madules of finite length. This observation is helpful in
order ta check whcther a givcn 1 is a generic linear systeIll. The most
iInportant property of a general linear systenl is related ta a eertain
finitencss property of Hi (1j H~(M)) which we shall prove in this sectian.
Tnorder to do that we need anüther auxiliary stateInent.

Lemn1a 3.2. Let 1 = 11, • •. ,ls denote a generic linear system with 1'C

speet to M. Then Hi(l; M) is an R-rnodule oJfinite length in the Jollowing
two cases:

(a) i < s,
(b) JOT all i E Z, pTovided 8 2:: dimR M.

Proof. First prove the claim in (b). 1'0 this end note that

(1, AnnR M)Hi (1; !vI) = 0 for all i E Z.

'rherefore SUPPR ffi(1; M) ~ SUPPR M/1M. Since s 2:: dimR M it follows
that SUPPR M ~ V(m). Recall that 1is gcnerically choosen. This provcs
(b) sinee Jli ({; M) is a finitely generated R-module.

The stateInent in (a) will be shown by an induction on d := diIllR M.
First note that the case d = 0 is eovered by thc claim proved in (b). So
let d > O. For the first suppose that depthR NI > O. Then I = 11 is an
M-regular element. Thc short exact sequence

o ---+ M( -1) ---+ M ---+ M/IM ---+ 0
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ineluees short exaet sequenees

o--t Hi(1; M) --t JJi(1; MlllvI) --t ]Ji+1(1; Al)( -1) --t 0

for all i E Il. Note that IHi (1; M) = O. Henee the indueed maps on the
Koszul eohomology are trivial. Now put r = 12 , . •. ,l!j' Then

Hi(l; MJIM) ~ ]Ji(l'; MJIM) EB ]fi-I(1'; MIIM)( -1), i E Il,

see [1, 1.6]. Note that 1 aets trivially by multiplieation on MIIM, Now
by induction hypothesis Hi(l'; MI lA1) is of finite length for all i < s - 1.
Therefore Hi(I; MI1M) is of finite length for all i < s - 1. Whence thc
above short exact sequence proves the claim.

Finally let depthR A1 = O. Then f\l := Un >l (0 :M In) is an R-module of
finite length as follows by the definition of L Then depthR MIN > O. By
the first part of the inductive step and dimR A1IAr = d the claim is true
for MIN. Note that {forms a generie system of linear forms with respeet
to MJN as easily seen by a localization argument. By (b) the claim is
trlle for N anel aU i ~ 0 sinee dimn N = O. So the final statement for M
follows [rOln the induced long exact KOSZlll eoholnology sequence derived
from 0 --t N --t !vI --t AIIN --t O. 0

In the [ollowing consider the funetor Hom/{(O, ]() = OV on the cate
gory of graded R-modules. By the gradcd version of tbe Local Dllality
Theorem, see [1, 3.6.19], it turns out that there is a natural graded iso
morphism of degree zero

H~(M) ~ (Ext~-i(M,R( _r)))V, i E Il.

Put !(k .- Ext~-i(M,R(-r)), i E Il. Then !(lt = 0 for i < 0 anel
i > dimR M := d. In particular !(M := !(11 is called the canonieal
module of M. These tllodules are studied in a systelnatic way in [1.3, §3].
Here wc lnention only that

dimn ]<it ::; i, for 0 ~ i < d, anel dimn I(M = d,

see [13, 3.1.1] for the details.
For thc next results we need anothcr definition of gcncricity. It lS

related to the modules of 'deficiency' !<iw.
Definition 3.3. A generic linear SystClTI of elcments { = 11 , ••. ,1!J is
called a strongly generie linear systelll of elen1ents with respect to kf
provided it is a generic linear system of elements for all !<iJ, i = 0, ... ,d.



8 P. SCHENZEL

Because K is an infinite field it ls cleal' that stl'ongly genel'ic linear
systems of eleIl1ents with respect to A1 always exist. Their construction
is just an application of prime avoidance al'gu1l1ents.

Theoren1 3.4. Suppose that 1 = 11"" ,Is is a si'rongly generic lineal'
system 0/ elernents with respeet to A1. Then Hi (1; H~ (M)) is a 91'aded
R-module 0/ finite length in the Jollowing two cases:

(a) i < s, and
(b) for all i E Z p'rovided s ~ j.

Proof. First observe that there are canonical isomorphisms

Hi (1; N V) ~ (H i (1; N))V, i E Z.

This fo11ows because of the isolnol'phism of cOlnplexes

!(.(1 : M) fZ)n (N)V ~ (HOffiR(](.(Ii ll), J'.l)) V ,

which is weIl known. Hefe N denotes an arbitrary graded R-module.
Put N = !(Al' Then it follows that

!fi (1; Jl~(M)) ~ (Hi (1; !(il))V for all i, j E Z.

By 3.2 it is known that !li (Li ](Ät) is an l~-Inoduleof finite length for i < .5

resp. for a11 i E Z provided s 2: dimR ](il' Becausc of dilnR ](~ ::; j this
finishes the proof. 0

In his paper [5] M. Green considcred the following situation. Let F
denote a coherent sheaf on X, a con1pact cOlnplex manifold. Then he
considered the vector spaces K~,q(X,F). Let i 2: 1. Then it is easy to see
that

K~,q(X,F) ~ Hp(m; !f~+l(M))p+q,

where M denotes the associated graded Inodule to F. So in an obviollS
way the Koszul homology modules !fp(mi H~+' (M)))p+q are graded ana
logues of the invariants introduced by M. Green. As an application of
3.4 it turns out that JC~,q(X,F) = 0 for a11 q ~ 0 resp. for all q :::P 0
provided 1 is strongly generica11y chosen. For the numerical influence of
these finitely Inany nonvanishing JC~,q(X,F) on free resolutions see the
results in Section 5.

The most important feature of Hp(m;H~+l(M))) i8 that it is one of
the ingredients of a spectral sequence. Tu the fo11owing let !vI denote a
finitely generated graded R-modulc. Choose 1= 11, . .. ,ls, s 2: dinlR M,
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a generic linear system of elements with respect to Al. Thcn consider
the following cOlnpiexes 1(·, the Cech compIex, 1{.(Li M), the Koszul
cOll1plex of M with respect to 1, and C. := 1(· ®R 1(.(1i M). Then there
is the following spectral sequencc

]I~(Hj(L; M)) => Hj-i(C·).

Because of the choice of { it turns out that Hj(Li !vI) ~ H&-j(L; Al)( -8)
are R-modules of finite length for all j E Z, sec 3.2.' Becausc of the basic
properties of Ioeal cohomology it yields that

IJ~(Hj(L;M)) = { :j(I; M)
for i = 0

for i =f:. O.

Therefore the speetral scqucnee degcnerates partially to the iS01l10r
phisms Hj(C·) ~ Hj(LiAI) for all j E Z. The seeond speetral sequcnce
for the corresponding double complex is Hj(L; J1~(M)) => Hj-i(C·).
Putting this together it proves the following

Lemma 3.5. Let M be a finitely gene1'ated 91'aded R-module. Let I =
11 , ••• ,1&, 8 2:: dimR M be a generic linear system with respecl to M. Then
there is a speetral sequence

E;j,i = Hj(L; H~(M)) => E-j+i = Hj-i({; M),

where all the derived h01nomorphis1ns ll1'e h01nogeneous of degree zero.

In the more special situation of a strongly generic linear systeln with
respect to AI not only Hj-i(I; M) but also Hj({; H~(l\I)) are modules of
finite length for all i, j E Z, see 3.4. Therefore therc is an cstimate for
the length of Hj-i(L; M).

Corollary 3.6. Suppose that 1 = 11 , .•. ,1&, S 2:: dimR M, denales a
strongly generic li'nea1' system of ele'ments with respeet to AI. Then

min{s-n,d}

LA (]fn (I; 1\1))::; L LA (Hn+i (I; H~(M)),
i=O

fo1' aU n E Z, where d = dimR A1.

Proof. First note that lJ~ (M) = 0 for all i > d resp. flj (I; M) = 0 for
all j > s. Then the estimate follows by the same line of reasoning as in
the proof of 2.1. 0
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The speetral sequenee in 3.5 has several more applieations in Seetion 4
and Seetion 5. Here we want to add just two simple eonsequenees. They
are helpful also in different situations.

Corollary 3.7. Let M be a finitely generated graded R-module. Sup
pose that I = 11 , ••. ,l~, s ~ dilnR M denotes a generic linear sytc1n with
respeet to M. Then

(a) Il~-t(I; /vI) ~ H~(L; H~(M)), where 1 = depthn AI, and
(b) Ih-d(L; M) ~ Hi (1; H~(M)), for (LU i E Z, providcd M tS a d

dimensional Cohen~Macaulay ·module.

Proof. In order to prove (a) consider the speetral sequence in 3.5. Take
the terms E;i,i with j - i = s - t. Then

for j > S or i < t anel

for j = sand i = t.

But this means that the spectral scquence degenerates partially to the
clesired isomorphism.

The claim in (b) follows by a silnilar argument since lJ~(M) = 0 for
all i #- cl in the case of a Cohen-Macaulay Illodule M. D

For an extension of the results of this section to the situation of a
finitely generated module over a Ioeal ring, see [14].

4. BOUNDS ON TUE NUMBER OF GENERATORS

For homogeneous ideals I C R = j([Xl," . ,Xr ], r ~ 2, such that 1 is
aperfeet ideal of codimension two it is known that

p(J) ::; a(I) + 1,

where a(I) = min{n E Z Iin #- O}, the initial degree of I. Note that
a(I) is equal to the minimal degree of a non-zero fornl contained in
I. This estinlate is a generalization of a corresponeling bound given by
P. Dubreil in the case of r = 3, see [3]. For the proof see e.g. [2] resp.
[12]. An approach related to Hilbert funetions is developed in [2], whilc
[12] contains a proof based on the Hilbert-Burch Theorem.

In the following put .f. = XI, Xz, Y = X3, •.. ,Xr, r ~ 3, where Xl, ... ,Xr

denotes a generating the of m. [n a: certain sense the following result is a
generalization of Dubreil's Thcorenl.
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D

Theorem 4.1. Let J eRdenote a homogeneous ideal of codimension
at least two. Then

p(J) ~ a(I) + 1 + /t(H1 (lLi R/J)),

where lL is chosen generically with respect to R/J.

Proof. First put S = R/lI...R anel J = J S. Then we obtain the bound

f.L(I) ::; f-l(J) + dimK Ho(:f.; fI1 (!Li R/I)),

as follows by 2.2. By the generic choice of lL it is known that a(J) = a(J).
Now J is a perfect ideal of codimension two in S. Therefore fJ.(J) ::;
a( J) + 1. Finally the dimension of the vector space Ho([f; H1 (lLi R/J))
coincides with the number of generators of fI1ÜD R/I). D

In fact 4.1 is a generalization of J. Migliore's reslllt, see [8, Corollary
3.3], in the case of the defining ideal Je of a curve C e Pj\". Here we
extend his result to an arbitrary projective scheme.

Corollary 4.2. Let J eRdenote a homogeneous ideal with codim I 2:: 2.
Put t = depth R/J. Then

/L(J) ::; a(I) + 1 + f-l(Ift+1 (11...; ,H~(R/ J))),

wher'e ?L is chosen slrongly generic with respecl to R/1.

Proof. By 3.7 there is the following isomorphism

1ft (lLi R/I) ~ IIt+1 (1L; Jf~ (R/J).

Therefore the claim is a consequence of 4.1.

In the situation of 1 the saturated definlng ideal of curve C e Pl it
follows that t = 1. Therefore H7.(ll, 17. i H~(R/ I)) is just the submodule
of H; (Je) annihilated by It , /7., see [8, Corollary 3.3].

Besides of its vanishing it is known that Koszul homology is difficult
to handle. So for the rest of this Section there are several approaches in
order to estilnate thc tenn fJ.(f11 ('ILi .Tl/I)) in 4.1.

Corollary 4.3. Let 1 eRdenote a homogeneous ideal oJ codimension
at least two with d = dirn R/I. Then

d

jL(l) ::; a(I) +1 +L LR (Hi+1 (?Li H~(R/ I))).
i=O
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Moreover} suppose that H~(RJI) are graded R-modules oj finite lenglh
jor i = 0, 1, ... ,d - 1. Then

d-l ( )
p,(I) ::; a(l) + 1 +'" ~ - 2 LR(Ij~(RJ I)) +LR(Ild+1 (Yi Ij~(RJl))).

~ z+ 1 -
1=0

Here y... is chosen strongly generic wilh respecl lo R/J.

Proo/. Under the additional assumption that Y... is a strongly generic sys
tem of linear forms with respect to RJI it follows that Ili+1(y; H~(R/ J))
are graded R-lllodules of finite length, see 3.4. Then the spectt:al sequence
in 3.5 provides the following estimate

d

LR(H1(llj RJ1)) ::; L LR(Hi+1(1i; H~(RJ I))).
i=O

By virtue of 4.1 this proves the first part of the elailll.
Under the additional assumption of the finite length of II~(RJJ) for

i = 0, 1, . .. ,d - 1, i t is easy to see t hat

LR(Hi+l ÜL;IJ~(R/ J))) S (: ~DLR(H~(RfI)), i = 0, ... , d - 1.

To this end consider the definition of the Koszul homology. There[ore
the second bouud follows. 0

Note that 4.3 was shown by H. Martin anel J. Migliore, see [7, Theoreln
2.5], under the additional assllInption that Proj R/l is equidilnensional
and a Cohen-Macaulay scheIne. Of a. particular interest is the case of
codim I = 2. In this situation the tenn Hd+1(Yi H~(R/ J)) does not occur
since d + 1 = r - 1 > r - 2, the number of elements of y.

In the following let a(N) denote the soele dimension of N. That means
a(N) = dimK HomR(RJm, N) for an arbitrary R-module N.

Corollary 4.4. Let I c R denole a perjcct homogeneous ideal 0/ codi
mension at least th1'ee. Thcn

wherc 1i is chosen s17'ongly generic with respecl to RJJ. [fere I(Rf I denotes
the canonical module 0/ RJJ.
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Proof. Beeause RI] is a Cohen-Maeaulay ring we have to estimate
IL(Hd+le1!..;H~(RIJ)),d= dimRl1, see 4.2. But now

Hd+1 (JL; H~(RI I)) ~ (H d+1 (JLj !(RjI))v.

Therefore the dimension of llim ®R lId+I eID jJ~(RI I)) is equal to thc
socle dimension of jjd+lCJD !(RjI) as easily seen. 0

Of a partieular interest is the ease of a Gorenstein ideal of eodimension
three. In this situation it folIows:

Corollary 4.5. Let I C R, y be as in 4.4. Suppose thai RII is a Goren
stein ring and eodinl I = 3. Then p(I) ::; 2a(I) + l.

Proof. Beeause RI] is a Gorenstein ring it is known that ,RI1 ~ !(RjI'
Put ~ = X3"" ,Xr-l, Y = X r . Now define S = R/~R, J = IS. Then
]fd+1 (Yi ](Rj I) ~ SI(J, yS). But now the socle dimension of SI(J, yS)
is equ~l to the type of SI (J, yS), or what is thc sanlC, to the 111inimaJ
number of generators of L minus one, p(L) - 1, where T = SlyS anel
L = JT. Reeall that L is aperfeet ideal of eodilnenssion two in T. But
then Il( L) ::; a(L) + 1 by Dubreil 's Theoreln. Finally a(1) = a(L) si nee y
is chosen generieally. Therefore by 4.4 the claim is shown to be true. 0

Note that this result follows also by the Buehsbaum-Eisenbud strueture
theoreln for Gorenstein ideals of codimension three. For thc details see
[12). A [urther result including the degree is the following:

Corollary 4.6. Let I C R, JL be as in 4.4. Suppose eodim i = 3. Then

p(!) ::; a(l) + 1 + e(RII),

where e(RI]) denotes the multiplicity 01 RII.

Proof. First note that by 4.4 it is obviously true that

0'( H d+1 ('!Li ](Rj I)) ::; L R(.fld+1 ('!L; ](Rj I)) ::; LR(](Rj/ I~J<Rj I)'

Here le JL be generated by Y1,··· ,Yd+1 and ?. = Yh'" ,Yd. Then .±.
forms a system of paral11eters for !(RjI anel RI] as well. Furthermore
LR(]{RjIIY!{RjI) ::; LR(](Rjll?"]{Rjr). Beeause RI] is a Cohen-Maeaulay
ring, ](Rjl-is a Cohen-Maeaulay module and therefore

LR(J(RjlIKJ<Rj J) = e(?.j I<Hj I) = e(.±.i RI])·

Because of the generie ehoiee or the linear elel11cnts in K this eOlnpletes
the proof. 0
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The bound in 4.6 is rather rough. It would be of some interest to find
a common generalization of 4.5 and 4.6.

5. I(OSZUL HOMOLOGY AND SYZYGfES

As before let R = .I([Xl,' .. ,xr ] denote tbe polynomial ring in ; vari
ables. For a graded R-module M deflne

a(M) = min{n E Z I Mn =I O} and e(M) = tnax{n E Z I Mn =I O}.

Tt is weil known that e(H~ (M) < 00 for all i E Z.

Definition 5.1. The Castelnuovo-Mulnford rcgularity reg M of AI is de
fined by

regM = n1ax{e(H~(M)) +i li E Z}.

Note that e(O) = -00.

It is a weil knawn fact that

reg M = max{ e(TorF(I(, M)) - i I 0 ~ i ~ ; }.

So reg M yields abound on the 111aximal degree in a Ininimal generating
set of the syzygy modules of M. It reßects thc structure of the lninimal
ffee resol ution F. of M over R, where

F. : 0 ---+ F3 ---+ . • . ---+ Pi ---+ • • . ---+ Fa ---+ M ---+ 0,

with Fi ~ ffijEZJrj(-j) and i j = dimJ(Torf(K,M)j. Suppose that
M is a Cohen-~1acaulay module. Then reg IvI = e(Tor~(J(, M)) - c,
where c = ; - diffiR M denotes the codimension of M. This follows eas
ily since HOffiR(F.,R(-r)) gives a minimnal free resolution of J<Al =
ExtR(M ,R( -I)), thc canonieal module of M.

On the other hand it was observed by P. Raa, see [11, (2.5)], that in
thc ease of I the defining ideal of a curve C C IP~( the Hartshorne-Rao
module M(C) ~ H~(R/1) gives certain infornlation on the tail of thc
111inimal free resolution of R/I.

Tn the following we shall generalize both of these observations. Firstly
we describe feg M in terms of the Tor's in a certain range. Seeondly we
shall clarify how the minimal ffee resolutions of H~(lVl), the 'n10dules
of deficieney', determine the lninilnal ffee resolution of M. Both consid
erations turn out by a eareful study of the speetral sequence given in
3.5.
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Theoren1 5.2. Let NI denote a finitely generated graded R-'1nodule. Let
sEN. then the following two intege1's coincide

(a) max{e(H~(M)) + i 10::; i::; s} and

(b) max{e(Torf(I<,l\1)) - j !r - s::; j::; r}.
In particular JOT 8 = dilnR M it lollows thal

reg M = tnax{ e(Torf(I{, M)) - j I c ::; j ::; 1'},

where c = r - dimR 1\1 denales the codimension 01 M.

Before we shaU prove 5.2 we fix two partially results as separate Leol
01as. They concern results in this direction which seenl to be of some
independent interest.

Lemma 5.3. Suppose that lf~(m; M).9+t =f. 0 for a cerlain t E Z and
l' - i ::; 8 ::; 1'. Then lhere exists an j E Z such that 0 ::; j ::; i and

H/n(M)t-j =f. O.

Proof. Assurne the contrary, i.c., IJ~(M)t_j = 0 for all 0 ::; j ::; 1:. Then
consider the spectral sequence

[E;-.9-
j
,j]t+.9 = H~+j(m; JJ~(M))t+~ => [E-"]t+~ = Jl s (m; A1)t+.9

as defined in 4.5. Recall that aU the homomorphisIns are homogeneous
of degree zero. Now thc corresponding E 2-term is a subquotient of

[EBH~(NI)C~i)(-8 - j)]t+.9'

Let j ::; i. Then this vectorspace is zero by the assumpt10n about the
local cohomology. Let j > i. Then c + j >..8 + i ~ rand C: j ) = O.

Thereforc the corresponding E 2-tenn [E;-.9-J,J]t+s 1S zero for all j E Z.
But then also all the subsequent stages are zero, i.e., [E~~-j,j]t+s = 0
for aU j E Z. Therefore [E-~]t+~ = Hs(m; M)t+.'l = 0, contracting the
assumption. 0

The second partialresult shows that a certain non-vanishing or H~(.f.1)

yields the existence of a mininlal generator of a lügher syzygy Inodule.

Lemma 5.4. Suppose that there are integers s, b such that the Jollowing
conditions are satisfied:

(a) H~(Mh+I-i = 0 for all·i < sand
(b) Hr (m; H~ (!vI) h+r-.9 =f. 0

Then it Jollows that H r-.9(m; A1h+r-s =f. O.
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Note that thc condition (b) in 5.4 Ineans that H;' (M) possesses a sode
generator in degree b- s. Recall that r denotes the number of generators
ofm.

Proof. As above we consider the spectral sequence

E~r,ß = Hr(m; JI;(M)) => E-r+
ß= Hr-ß(m; M)

in degree b+r - s. The subsequent stages of [E2
r,.'l]b+r_.'l are derived by

the cohomology of the following sequence

[E~r-n,.'l+n-l]b+r-ß -+ [J.E~r,.'lJb+r_ß -+ [E~r+n,.'l-n+1] b+r-.'l

for n '2: 2. But now [E;r-n,.'l+n-t ]b+r-.'l resp. [E;r+n,ß-n+l h+r-ß are sub
quotients of

.Hr+n(mj H~+n-l(M)h+r_ß = 0 resp. Hr-n(mj H~-n+l(M)h+r_.'l = O.

For the second module recall that it is a subquotient of

[EBH~-n+l (M) (r':n) (-r +n) ]b+r-ß = 0, n 2:: 2.

Therefore [E~r,.'lh+r_ß = [E~r,ßh+r_ß =I 0 and

[E-r+ß]b+r_ß ~ IJr-ß(mj Mh+r-ß =I 0

as follows by the filtration with the corresponding Eoo-terms. D

Proof. (Theore1n 5.2). First of all let us introduce two abbreviations.
Put a := Inax{ e(Torf(J<, M)) - j Ir - s ::; j ::; r}. Then by 5.3 it follows
that a ::; b, where b := max{ e(H~(A1) +i I 0 'S ·i 'S s}. On the other
hand choose j an integer 0 'S j 'S s such that b = e(H~(M)) + j. Then
H~(Mh-j =I 0, H~(M)c_j = 0 far all c > b, and I{~(Mh+l-i = 0 for all
i < j. Recall that this means that H~(M) has a sode generator in degree
b - s. Therefore Lemma 5.4 applies anel Tor~_j(I<, Mh+r-j #- O. In other
words, b ::; a, as required. D

An easy byproduct of our investigations is the above Inentioned fact
that

regM = e(Tor~(I(, M)) - c, c = r - dimM,

provided M is a Cohen-Macaulay module.

TheorelTI 5.5. Let M be a finitely generated graded R-module. Suppose
there is an integer j E Z such that for aU q E Zeither

(a) H~(A1)j_q = 0 0"1'
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(b) H~(M)j+l-q = 0 for all p < q and 1/~(M)j_l_q = 0 for all p > q.
Then for sEil it follo1DS that
(1) Tor~(!(, M)s+j ~ EBi::~ Tor~+i(!(' H~(M)~+j provided S > C, and
(2) Tor~(J(, M)s+j ~ EB1::ci Tor~+i(K, H~(lvJ)~+j EB Tor~_s(!(, !(M )~-s-j'

providcd 5 ~ C,

1Dhere !(M = Extn(J\.rJ, R( -r)), c = codim 1\1, denoles the canonical mo
dule 0/ M.

Proof. As above consider the spectral sequence

E:;~-i,i = lJ!J+i(m; J!~(M)) =} E-s = H!J(m; !vI)

in degree 5 + j, see 3.5. Firstly we claim that [E;S-t,1]!J+j ~ [,E~!J-i,i]s+j

for all 5 E Il. Becausc [E;~-i,i]!J+j is a su bquotient of

[EBH~(M)C~i)(-5 - i)]!J+i

The claim is true pravided H~(M)j_i = O. Suppose that H~(M)j-i i= O.
In order ta prove the claim in this case too note that [E~;~i,i]!J+j is the
cohomology at

[E -!J-i-n,i+n-l] . [E-s-i,i]. [E-!J-i+n,i-n+l].
n s+J -7 n 3+J -7 2 S+J •

Then the nlodule at the left rcsp. the right is a subquotient of

H!J+i+n(m; H~+n-l (M))!J+j resp. H!J+i-n(m; JI~-n+l (A1))s+j.

Thereforc both of them vanish. But this Ineans that the E2-term co
incides with the corresponding Eoo-term. So the target of the spec
tral sequence Hll(m; A1)!J+i admitts a finite filtration whose quotients are
Hs+i(m; JI~(M))~+j. Because all of these Inodules are finite dimensional
vectorspaces it follows that

H!J(m; M)~+j ~ EBi::~I[!J+i(m; H~(A1))!J+j

for all 5 E Z.
In the ease of 5 > c it is known that r-5 < d. Hencc the first part of the

claim i8 shawn to be true. In the relnaining ease 5 ~ c the sumInation i8
taken from i = 0, ... ,d. Therefore we have to intepredate thc 8lunmand
!J!J+d(mj IJ~(M))s+j. By the Local Duality Theorem .!f~(1\1) ~ (.!(M)v.
Therefore there are the following isomorphisms

H!J+d(m; (J(M )V)!J+j ~ (H~+d(m; !(M )V)s+j ~ Hr-d_!J(mj !(M ):-8-j,

which provcs the second part of the clailn. 0
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As an application of 5.5 we derive M. Green's duality theorem [5,
Section 2], see also [10, Theorem 1.2] for a similaI' approach of the original
statement.

Corollary 5.6. Suppose there exists an integer j E Z such that

Hin(M)j_q = JJ~(M)j+l_q = 0

for alt q < dimR M. Then

Tor~(!(, NI)8+j ~ Tor~_8(!(' !(M ):-8-j,

/01' all s E Z, whc1'e c = codim M.

Proof. It follows that thc assumptions of Theorem 5.5 are satisfied for
j because of H~(M)j_l_P = 0 for all p > diInM. Therefore the isomor
phism i8 a cOllsequence of (1) and (2) in 5.5. 1'0 this end recaJl that

R i iTor8 +i(1(, Hm(M))s+j ~ H,,+i(mj 1Jm(JVf)),,+j = 0,

as follows by the vanishing of JI~(M))j_i for all i E Z. D

The original duality theorem in 5.6 relates the Betti numbers of M to
those of !(M. Because of the strong vanishing assuITIptions in 5.6 very
often it does not glve strong information about Betti numbers. Often it
says just the vanishing which follows also by different arguments, e.g.,
the regularity of NI.

Theorem 5.5 is more subtle. In a certain sense it is an extension of
P. R. Rao's argument, see [11, (2.5)]. We shall illustrate its usefulness
by the following examplc.

Example 5.7. Let C c Pi{ denote a reduced integral non-degenerate
curve over an algebraically closed field 1(. Suppose that C is non-singular
and of genus g(C) = O. Let A = R/1 denote its coordinate ring, l.e.,
R = ]([xo,. " ,xn ] and I its hOInogeneous defining ideal. Then

Tar~(](,R/!),,+j ~ Tor~+l (!(,H~(R/ 1))8+j

for all s ~ 1 anel all j ~ 3. To this end recall that A is a two-diInensional
domain. Moreover it is well-known that Ifin(R/1) = 0 for all q ::; 0 and
q > 2. FurthenTIore it is easy to see that JJ~(R/1)j_1 = 0 for all j ::; 1.
~1oreover H;(R/1)j-I_2 = 0 for all j ;::: 3 as follows because of g(C) = O.
That is for j ;::: 3 one might apply 5.5. In order to conclude we have ta
show that Tor~_s(J(,!{Rj I )r-8-j = 0 for j ;::: 3. To this end note that

HC- 8(mj ]{R/I ):-8-j ~ If,,+2(mj 1J~(R/ 1))8+j



l<OSZUL HOMOLOGY AND SYZYGIES ]9

as shown in the praaf af 5.5. But this vanishes far j 2 2 as easily seen.
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