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Abstract

Let P be an elliptic differential operator of order p with real analytic
coefficients on an open set X C R". Given a compact set K C X, we describe
the closure in BMO(K) of the space of solutions to P f = 0 on neighborhoods
of K.
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1 Introduction

Let P be an elliptic differential operator of order p on an open set X in R"; suppose
that the coeflicients of P are real analytic. Let K be a compact subset of X. We
denote the space of C® functions f which are solutions of the equation Pf = 0 in
at least some neighborhood of K by sol(K).

If we are given a topological vector space L(K) in which the C* functions near
K form a subspace, then sol(K) can be considered as a subspace of L{K). The
general approzimation problem consists in describing the closure of the subspace of
solutions.

Problem 1.1 Describe the closure of sol(K') in L(K).

If L(K) = C(K), the space of continuous functions on K under the supremum
norm, then one speaks of “uniform approximation,” and if L(K) = LY(K) for some
g < oo, of “approximation in the mean.” The former is the more difficult of the
two settings. The crucial reason for this is that the spaces LY(R") (1 < ¢ < o0) are
locally invariant under Calderon-Zygmund operators, whereas L>(R"} is not.

This difference notwithstanding, it is possible to give a rather unified treatment
of the approximation problem in these two settings. A theme emphasized in the
paper of Gauthier and Tarkhanov [6] was the parallel between approximation in
uniform norms and approximation in Sobolev norms.

It is well-known that the space of functions of bounded mean oscillation (BMO)
is often an effective substitute for L. As but one instance of this, we recall that
BMO is locally invariant under such classical Calderon-Zygmund operators as the
Hilbert and Riesz transforms. With this as our starting point, we examine in this pa-
per in what sense approximation within BMO may be seen as intermediate between
the approximation theories in uniform and Sobolev spaces.

On the other hand, BMO can be thought of as the limit as s — 0 of the Lipschitz
classes A®. Thus it is to be expected that in the context of qualitative approximation
the BMO-theorems should be obtained by replacing s by 0 in the A’-theorems, for
0 < 8 < 1. This is true for P = § or for P = A in dimension 2 (see Verdera [23]) but
nothing else has been known. Our viewpoint sheds some new light on the position
of the BM O approximation in the scale of Lipschitz approximations.

We mention yet another aspect of our interest in BMQ approximation. One of
the problems now intensively discussed in approximation theory is whether, given
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any compact set K C C', each continuous function on K that is biholomorphic in
the interior of K can be approximated uniformly on K by biholomorphic functions
on neighborhoods of K (see Verdera [24] and references there). That this is the case
for nowhere dense compacta is proved in Trent and Wang [22]. (For this reason, the
above problem is referred to as Trent and Wang’s problem.)

Note that the natural L? version of this result fails for 2 < ¢, owing to a clever
example of Hedberg [9, p.77]. Gauthier and Tarkhanov [6] showed that Hedberg’s
construction also provides a counterexample to an analogous problem in R" (for
n > 2). On this basis, one might conjecture that the answer to the above uniform
biholomorphic approximation problem is negative.

Mateu and Verdera [12], however, gave some suggestive evidence to the contrary.
They considered the subspace VMO of BMO and showed, given any compact set
K ¢ C', that each function in VMO(K) that is harmonic in the interior of K can
be approximated in the norm of BMO(K) by functions harmonic near K. Hence,
the formal reasoning above can be disputed because BMO is “between” L? and C.

It is worth pointing out that in this research we are not able to catch any
argument on behalf of a counterexample in Trent and Wang’s problem. Moreover,
we show that the result of Mateu and Verdera [12] is of purely “two-dimensional”
character in the sense that to the BMO approximations in R"™ for n > 2 there always
is a counterexample. This demonstrates rather strikingly that one should expect the
affirmative answer in Trent and Wang'’s problem.

For a deeper discussion of approximation by solutions of an elliptic equation,
we refer the reader to the survey of Tarkhanov [19].

The important point to note here is a new type of BMO spaces. They are
obtained by localizing the space BMO(R") (see, for instance, Stein [18]). BMO(R™)
is suitable for pure Fourier analysis while BMOy,.(R™) is more suited to problems
associated with partial differential equations. The main advantage of this space over
the classical one is that pseudodifferential operators are bounded on it. In addition,
the above spaces are well-defined on manifolds.

We now sketch the contents of this paper. The next section introduces the
space BMOQ, its restriction to compact sets K, and its higher-order variants. The
important point is that BMO is here given a topology which makes it a semi-local
space; that is, multiplication by smooth functions becomes a continuous operation.
Section 3 presents the corresponding VMO spaces (for “vanishing mean oscillation”);
these play a role within BMO analogous to that played by the closure of D in L*.
Section 4 discusses the local Hardy spaces of Goldberg [7] and adapts the classical
results of C.Fefferman and Stein [5] and of Coifman and Weiss [4] on the dual and
pre-dual of the Hardy space H! (BMO and a form of VMO, respectively) to the local
setting considered here. The local continuity of pseudodifferential operators on BMO
spaces is the key result of the following section; it is dual to Goldberg’s result for
local Hardy spaces. The final three sections treat the approximation problem in
BMQO spaces; we argue that the situation is much closer to Sobolev approximation
than to uniform. In Section 6 we show that the approximation problem in higher
order BMO spaces is easily answered in terms of spectral synthesis in these spaces.
Section 7 establishes the relation between lower order approximations in BMO spaces



4 Section 2

and the dual problem of spectral synthesis in local Hardy spaces. Section 8 deals
with the case of nowhere dense compact sets K; in particular, we show that if the
order of P is equal to n (the dimension of R"), then any function in VMO(K) can
be approximated in the norm of BMO(K) by solutions of the equation P f = 0 near
K. This extends a result of Mateu and Verdera [12] for the case when K has empty
interior to the multi-dimensional setting.

2 The space BMO*(K)

A locally integrable function f on R™ has bounded mean oscillation if the quantity

1
71l = sup 1o /Q \f = fal (2.1)

is finite. The supremum here runs over all cubes @) with sides ‘parallel’ to the
coordinate axes, the symbol |Q] denotes the Lebesgue measure of |Q|, and fg =
]%[ Jq f is the average of f over Q. The space of all such functions is denoted
BMO(R™) or simply BMO. Every bounded function is, of course, in BMO, but
the converse is not true; the (even) logarithm f(z) = log|z| is the paradigmatic
example of an unbounded BMO function.

Since the mean oscillation of every constant function vanishes, it is customary
- to identify any two functions in BMO that differ by a constant almost everywhere;
the resulting quotient space becomes a Banach space under the norm (induced by)
|||l This (otherwise extremely useful) topology has the disadvantage in the present

context that it is not semilocal. In this paper, we choose instead to topologize the
(full) space BMO under the norm

= [ 11+ (22)

where Qo is the unit cube [-3,1]" in R".

Lemma 2.1 The norm (2.2) is equivalent to any norm of the form

V(1) = [ A1+

for Q' an arbitrary cube in R".

Proof. Indeed, there is a constant ¢ = ¢(Qo, Q') such that |fg, — fo'| < ¢||f]l.
for all f € BMO. (This follows, for instance, from inequality (2.7) below and the
triangle inequality.) Since || |f] ||« £ || fll«, then this implies that

L = 1@101e)
< 1Q1(flgw +<lfIl.)
97 g+ el

IQO' Qo
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A similar inequality controls [, |f] by fo: |f]-

BMOQ is actually a complete space with norm v.

Lemma 2.2 BMO is a Banach space under the norm v.

Proof. Let {f;} be a Cauchy sequence, i.e., suppose
L= fl 1= il <€
Qo

for i, j sufficiently large (i.e., 1,7 > N(¢)). Then there is a function f(® € L}(Qo)
such that f; — f© in L'(Qy), and there is a subsequence {f;, } such that f;, — f©)
a.e. in Q.

Note that the L! convergence implies convergence of the mean values: (f;)q —
(f()q for any cube Q C Qo. Hence, for any such @,

'I_fl;flfol(f‘ = fO) = (fi = fO)ql
= 7 Jyimint 10— f) = (= fual

<timind = [ 10~ fu)+ (= fual  (by Fatou's lemma)

< limglf Il fi = firlle
<e,

for 1 sufficiently large (i.e., 1 > N(¢)).

We thus have a suitable limiting function in Q. We can use Lemma 2.1 to
get a limiting function defined elsewhere in R™. Indeed, for any cube Q' O @, the
Cauchy sequence {f;} in v must also be Cauchy in L'(Q’). Hence, there is a function
f € LY(Q") with fi — f"in LY(Q') and f;, — f’ a.e. in @', for some subsequence
{f:..}. Repeating the argument in the first part shows that

Klg—,/Q i = 1) = (fi = Mol <€

for any cube @ C @' and any : sufficiently large.

This procedure leads to a unique limiting function. Indeed, if Qo C @' C Q"
and f’ and f” are two functions constructed as above, then f; — f’ in L'(Q’) and
fi = f" in L'(Q"). Hence f' = f” a.e. in @', as desired.

Exhausting R™ by an expanding sequence of cubes thus leads to a limiting
function f € L},.(R™) such that

/Qo!f—fe|+llf—fsll~<6

for i > N(¢), as desired. Thus, {f;} converges to f in v. (]
This topology has the advantage of making multiplication by smooth functions
into a continuous operator, which is the content of the following result.
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Lemma 2.3 Let ¢ € D. Then the multiplication operator f — f i3 a contin-
uous mapping of BMO — BMO.

Proof. We wish to show that for each ¢ € D there is a constant C, so that
vief) < C,v(f) forall fe BMO.

Since fg, lof| < ll¢lleo fg, 1], we need really only show that

leflle <, ([ 191+11.). (23

One further simplification arises from the triangle inequality and allows us to
measure the mean oscillation of a function F on ¢ about any constant, not just Fg.
That is,

—-F <su 1nf— F—¢| < ||F|.. 2.4
IF1. < supinf o [ 1F =l < P (2.4)

(Indeed, for any cube @ and any c € R,

1 1 2
Q1 o IF = Fal < i [1F = el + le= Fal < 1 [[IF =l

With F = ¢f, it proves convenient to take ¢ = g fg rather then (¢ f)q. For
then

1 1 1
101 o1 —vatal < o (17 = fallel + 1o [ I = el lfel
< lplloll I + 17 o = eal lfal.

It remains to dominate iai Ja I — #q| | fq| by the right-hand side of (2.3) uniformly
over all cubes Q. The key observation here is that the mean values of any BMO
function can only vary slowly as we change the scale. In particular,

|fq = faql L ca I fll. (2.5)

for all cubes @, where 2Q) is any cube containing @ with twice the latter’s side
length. (This is simply just another application of the triangle inequality:

1
o= ol = |7 fotf = o)
1
< @jq”*fzd
1
< @LQ |f — faq!
< 2°|ifll., (2.6)

as desired.)
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Iterating (2.5) yields |fq — faig| £ ¢n 7 I fll» and, in general,

fa - fal < o (1 +log %l) T 27)
whenever () C Q'.

Now let Q" be a fixed cube containing the support of ¢ and Q. Then, for any
cube @ within Q" of side length at least 1, we have from (2.7) that

|fo — farl < Co |l £l

With Qo the unit cube, it follows that |fg — fg,| < 2C, |||, so that |fg| <
|fael + 2C, |1 fll« € 2C,v(f) for all cubes Q within Q" of side length at least 1.
Hence, for any such cube @,

57 b = pallfal < (2liglhe) 2C, (1), (2.8)

as desired.
It remains only to bound the left-hand side of (2.8) for all smaller cubes which

intersect the support of ¢. For any such cube @, let Q' be a cube of side length 1,
with Q C Q' C Q". (Here Q" is as above.) Now,

51 L, e —pal < e IV0llo 1, 29)
and

lfol < lfqrl+1fe = forl

< 20, u(f) +en (1+log l—é—,) T (2.10)

by (2.7). Since |Q| < 1, then |Q|" (1 + log ]—5—|) < ¢, < 0o, and hence combining
(2.9) and (2.10) yields

ﬁ J, e = wallfal < CLu(£),

as desired.
a
This observation is likely not new. The estimate (2.5) has been frequently used,
beginning with the original paper of John and Nirenberg [11] introducing BMO.
Estimate (2.7) appears in Christ {3]. Reimann and Rychener [15] prove a statement
on the tensor product of a BM O function and a smooth function that is analogous
to Lemma 2.3. There may well be an earlier source.
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Remark 2.4 The proof shows that ¢ need not be infinitely differentiable for the
result to hold. For instance, if ¢ is merely in Aémp, that is, ¢ has compact support
and is Holder continuous of indez X for some 0 < A < 1, then estimate (2.9) becomes

1 " -3
a1 Lo le—wal s CL 11

Since z* logi <cy<oo forall 0 <x <1 and each 0 < A < 1, then the argument
goes through as before.

This observation goes back at least as far as Stegenga [17], who gave a necessary
and sufficient condition on a bounded function ¢ on the unit circle S in R? in order
that the multiplication by ¢ be a continuous operator in BMO(S) endowed with a
norm topology equivalent to ours.

As a consequence of the lemma, we can consider for any open set X C R" the
spaces

BMOL,.(X) = {feD(X): ¢of € BMO for all ¢ € D(X)},
BMOcomp(X) = {of: ¢ € D(X), f € BMO}

with the standard topology on local and compact spaces (relative to the norm v).
The lemma then extends to this setting.

Corollary 2.5 For every ¢ € D(X), the multiplication operator f v of is a
continuous mapping of BMOjoe(X) = BMO omp(X).

We can then proceed to define higher-order BM O spaces by the usual construc-
tion. That is, for any s € Z, = NU {0}, we set

BMQO® = BMO*(R™)
={feD: D°fe€ BMO for all a with |a| < s}.

Imposing the topology of convergence in the norm »(:) in all derivatives up to order
s turns BMO? into a semilocal Banach space.

The spaces BMO},.(X) and BMO;,,.,(X) can be constructed analogously. If
X =R", we denote these simply by BMO},, and BMO;,, ..
Note that (BMO?*);,. = (BMOi,)?, etc., so that the notation is unambiguous.
- For this and other aspects of the general theory, see Tarkhanov {20, Ch.1].

We next define the spaces L* for negative integers s, where L is one of the spaces
BMO, BMO,.(X) or BMOmp(X). As there is no way to do this canonically, we
opt for a method which allows us to remain in the framework of the foregoing
approach. Namely, given any negative integer s, the space L* is defined to consist

of all distributions of the form 3", 1<, D® fa, where f, € L.

Proposition 2.6 For every s = —1,-2,..., it follows that

(BMO")1o(X) = (BMOu(X)),
(BMO")eomp(X) = (BMOcomp(X))"-
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Proof. We only prove that (BMO*);o(X) C (BMOi,(X))’. The other in-
clusions may be handled in the same way as in the proof of Proposition 1.1.17 in
Tarkhanov [20].

Let f € (BMO*)i.(X). Fix a covering {U;} of X by relatively compact open
subsets such that U; CC U;yy and such that X \ U; has no compact connected
components. For every i, choose a function ¢; € D(X) which is equal to 1 in a
neighborhood of U;.

By assumption, to each number i there correspond functions f{) € BMO (|a] <
—s) such that ¢;f = Tj,i<-s Do f®). The differences f{+" — f{) (Ja| < —s) are
therefore in BMO and satisfy ¥ja <, D= (f4+D — f0) = 0 in a neighborhood of T;.

Since the differential operator {fa} — F4<-, D fo has surjective symbol,
it follows from Tarkhanov [20, Ch.5] that there are functions a{) (|a| < —s) in
BMOoc(X) satisfying Yo <, D*al) = 0 on X, such that

v (G50 = 90 = al9)) < £

Therefore, the series
o= I8+ 205 180~ ol
=1

converges in the topology of BMOi,.(X). Moreover, as the differentiation operator
is continuous in the space of distributions, we get

Z D°f, = Z Daf(l)+ hm E( E D* f(t+l) f(n') __a‘(;‘)))

lal<—» lal<—s Jo|]<~a
— llm E Daf(f+1)
® Jalg-s
= Jim o1 f
= [
whence f € (BMO,,(X))*, as desired.
B
Thus, it will cause no confusion if we write BMO;, (X) and BMO?, (X) for

a negative integer s.
For negative integers s, the space L* is topologized in the following way. The
basis of neighborhoods of zero in L’ is declared to consist of the sets

{2 Da: fa€U (lal < ~9)},

lol <=2

where U varies over a basis of neighborhoods of zero in L.
The most important argument on behalf of this definition is that it immediately
makes differentiation continuous.
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Proposition 2.7 For every multi-indez a with |a| < s, the operator D* acts
from L to L™* continuously.

We close this section by defining the BMQ spaces on arbitrary compact sets
K C R". For a general semilocal space L of distributions on R" and an s € Z, we
would like to define L*(K) as the quotient of L* over the subspace of distributions
which are “flat” on K in some sense. How can we capture the degree of flatness?
The idea is to start with the space ¥ of distributions vanishing on at least some
neighborhood of K. Since this subspace might not be closed, we opt instead to use
its closure in L? and to define

L*(K) = L*/%.

One advantage of this approach is that the three spaces L*(K), Lj.(K) and
L},m,(K) are all topologically isomorphic. (See Tarkhanov [20].) For concreteness,
we state this result for the BMO spaces considered here.

Lemma 2.8 Given any compact K C R™ and s € Z,, we have

-;

BMO*(K) £ BMOL (K) & BMO:,, (K).

3 The space VMO*(K)

What happens when we demand that the mean oscillation of a function is arbitrarily
small for all sufficiently small cubes? The first person to consider this question was
Sarason [16], who defined the space of functions of vanishing mean oscillation by
the condition

VMO = VMO(R")
={f e BMO: hmsup |Q|/ |f - fQI 0}.

Sarason [16] actually showed that (in the conventional topology on BM O, under
which functions which differ by a constant a.e. are identified) VMO is the closure
of those BM O functions which are uniformly continuous on R". We shall show that
the same is true under the topology induced by the norm v.

Let us look more closely at the regularization “a la Sarason.” To this end, set

Iflls = _sup o0 [L1f = fal

where § > 0 and {(Q) is the side length of the cube Q.
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Lemma 3.1 Let x be the characteristic function of the unit cube, and x*(z) =
e " x(z/e). Then

IX** f(z) =X+ f (W) S en [l fllezes  when [z —y| <e. (3.1)

Proof. As above, we denote by ()¢ the unit cube —5, -2-] in R". Given any z

and y with |z —y| < €, let @ be some cube of side length 2¢ containing both £ Qo+ =
and € Qo +y. (Here € Qo is the cube [-£, £]*.) Then

Ix** £ (z) —x°* f (y)
= |cho+z - cho+y|
< feqot= — fal + |feqoty — fal
<227 | £l 2e
by (2.6), as desired.
O
Lemma 3.1 shows that, for any f € VMO, the convolution x® * f is uniformly
continuous on all of R™ (written x°* f € UC). Note that rather than x** f, Sarason

[16] considers a piecewise constant function (i.e., a step function) which is equal on
each step to the average of f there.

~. Lemma 3.2 Under the assumptions of Lemma 8.1,

Ix** f = flls < e I flle e (3.2)

Proof. If the side length {(Q) of Q) exceeds ¢, then cover Q by nonoverlapping
cubes @,,...,Qxn of side length € such that

UL, Q| = U, 1Qil < CalQI-

Then
1 e
@/le f-11 < Ingf X * f — f|
< @k (/ X * S = Sl + [, Vo~ 11
< IQIZ 200 [Qil 1 flloze + 1Q:1 1 f 11ue) »
by Lemma 3.1.
So,
L € f — 2¢, +1 N '
S C’ ”f"-.?z- (33)
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Hence, if I(Q) > ¢, then
1 . . '
Q1 10 # 7 =) = (¢ £ = Dol < 2€ e
On the other hand, if {(Q) < ¢, then (with z, the center of Q)
1 . .
qul(x « f— )= (x* f(z0) — fo)l

1 . . 1
S@fqlx tf-x *f(:vo)|+@fqlf-fol

< 2| flleze + 11/ llse
< NI fllaszes

the second estimate being due to Lemma 3.1.

For such cubes @,

ﬁ LG £ =)= (¢ * T = Dal < 2" 1]

by (2.4), which completes the proof.
O
It is not the case in general, however, that ||x¢ * f — f|l. = 0 as ¢ — 0, as the
following example shows.

Example 3.3 Consider the BMO function f(z) = log ialTI on R'. An easy com-
putation shows that

. oz |4l 1 ]
X*f(a:)——elogx_%s—2log:c+2£:l: 25+1.
To see that :
sup — xf—f)—(x*f—- - 0,
w17 [ 106 £ = 1) = (¢ * £ = Dal

it’s enough to take @ = [—£, £]. Indeed, for all z € @, we have

1 2
log;—i—l Sx‘*f(:z:)slogg+l.
So, the same is true for the average:
1 2
log=+1< (x"*flg <log_+1.
Therefore, for all z € Q,

X * f(z) = (x* * flql < log2.



The space VMO*(K) 13

Since fq = x* * f(0) = log 2 + 1, we get
1 £ &
Q1 ol * =) = ¢+ f = al
1
> 17 [ 1f = fal = Tog2
2 1 2
=E/;(log;—(log;+1)|—log2)dm

2 ffr 1 de
2 [ (log~ -1 —)d
- | (los; — 105 ) o

for § = 6(¢) > 0 such that log} > log %, i.e., § < £. Thus,

v

i [10¢+ £ =N =+ = Do

2 e 4e
> = - — —_
_e(éloga 6log€)

[a—y

>
- 2e

for all € > 0, which is the desired conclusion.

a

Lemma 3.2 gives a regularization of VMO functions by uniformly continuous
BMO functions. We next obtain a regularization by smooth functions.

Let w € D, w > 0, and fw = 1, and suppose that w is supported in the unit
cube.

Lemma 3.4 For any BMO function f,

llw * x* % f = flle < e || fllo.2e- (3-4)
Proof. Using Lemma 3.1, we obtain the pointwise estimate
llw® * X % f = X* * flleo
[ oo (D) s re) - xS @) ay
< sup [w(2) (x* * f (@ +e2) = x° % £ (2))] d
< cllfllee (3-5)
Together with (3.2), this gives the desired result.

= sup

O

It easily follows from (3.1) that, for f € VMO and ¢ > 0, the smooth function

w®* x°* f is actually uniformly continuous on all of R®. We thus obtain the following
result, analogous to that of Sarason [16]:
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Corollary 3.5 VMO is the closure of C2NUC N BMO in the norm v.
Proof. If f € VMO, then (3.4) implies that

| *x* % f—flla =0 ase—0.

Since
|l xt =
Qo
Sl X s =X * St [ X% S =1,
0

then (3.3) and (3.5) combine to show that v(w** x** f— f) > 0ase — 0.
Conversely, since UC N BMO C VMO, any function f in the closure of UC' N
BMO in the norm v satisfies || f||.,s — 0 as § — 0, which finishes the proof.

a
Let

V MOu0(X)
VMO comp(X)

{feD(X): of e VMO for all p € D(X)},
{ef: peD(X), f€VMO},

with the usual topology on local and compact spaces derived from v. It now follows
that the smooth, compactly supported functions D(X) are dense in VM Oyo.(X).

Proposition 3.8 The closure of D(X) in BMOj,(X) is VMO (X).

Proof. Without loss of generality we can assume that X = R".
Let f € VMO, and ¢ € D be given. If ¢(z) = 0 for all |z| > R > 1, choose
@ € D, with g =1 for all |z| < 2R. So, for alle < 1,

vip (W xx* *(@f) ~ f)) = vip (W *xx" *+(3f) - (#f))
< Cov(w x X"« (3f) — (81)),
by Lemma 2.3. The last term vanishes as ¢ — 0, by Corollary 3.5. The other
inclusion is immediate.
O

For s € Z, we define the spaces VMO?*, (VMO,,.(X))* and (VMO.omp(X))* as
in Section 2.

Proposition 3.7 For every s = —1,-2,..., it follows that

(VMO )i0e(X) (VMOw(X)),
(VMO')WP(X) = (VMOcomv(X))’-

Proof. This is analogous to the proof of Proposition 2.6.
O
Thus, it will cause no confusion if we write VMO;,.(X) and VMO, (X) for
a negative integer s.
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4 Duality

It immediately follows from Proposition 3.6 that the subspace D(X) is dense in
VMO, . (X) for any integer s. Thus, every continuous linear functional F' on
VMO, (X), if restricted to D(X), is a distribution in X, and this correspondence
is one-to-one. Moreover, the inclusion map (VMO?,,. (X)) — D’'(X) is continuous.
Our next objective is to describe this dual space of distributions on X.

In the classical setting in which BMO is topologized as a quotient space under
the seminorm || - |i., a famous result is that BMQO is the dual of the Hardy space
H = H'(R") (see Fefferman and Stein [5]). On the other hand, H is the dual of the
space CMO, the closure in the norm ||- ||, of the space Ceomp of continuous functions
with compact support on R” (see Coifman and Weiss [4]).

The very property of the classical Hardy space H which enables the main the-
orems to hold (f € H = [ f = 0) also causes H to fail to behave properly with
respect to multiplication by functions in S (the space of rapidly decreasing func-
tions). To see this note that if ¢ € &, then f — ¢f is not bounded on H (since
Jof # 0). (In particular, Hi,. = {0}.) This map is a pseudodifferential operator
and also is a “patching” map of the kind necessary for working on a manifold.

David Goldberg [7] gave an account of a local version of Hardy space (deno-
ted k). The main advantage of this space over the classical one is that § C A
and that A is stable under multiplication by functions in §. Thus, A is suitable for
working with manifolds and pseudodifferential operators.

We begin with two definitions. First, the local Hardy space h = A!'(R") is
defined by

= {f € L'(R™) = Iflls = Ifllrm + 3 llrsfllzaqamy < 00} )
=
where r; is the “modified Riesz transform” given by 1-':7 & =01- w(f))j-l%lf(f), for

any fixed w € D with w(0) = 1.
Second, the local BM O space bmo is defined by

brio ={1 € LR Wl = sup 100 17 = fal+ s o [ U1 < o).

Goldberg’s results [7] include the following:

Theorem 4.1 ([7]) The dual of h is bmo; that is, every F in bmo defines a
linear functional f — [Ff on S (which is dense in h), and every linear functional
is of this form.

Theorems 4.1 and 5.2 (see below) imply that both 2 and bmo are semilocal
spaces, so we can consider their loc and comp variants as well as the corresponding
higher order spaces.
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Lemma 4.2 Given any open set X C R", it follows that

-~

BMOp,o(X)
BMO.omy(X)

bmo;oc(X),
bmogomp(X).

NEWNE]

Proof. We give the proof only for the second isomorphism; the first statement
is an easy consequence of the second one.

It is a simple matter to see that BMO.mp(X) and bmogmp(X) coincide as
vector spaces. What is left is to show that the topologies on these spaces are also
the same.

To this end, it suffices to prove that a set b is bounded in BMO, ,my(X) if
and only if it is bounded in dmo,mp(X). If however b is a bounded subset of
BMOcomp(X) or bmocemp(X), then there is a compact set K C X such that supp f C
K for all f € b. Hence it follows that we only need to show that for any compact
set K C R™ there are positive constants ¢;, c; with the property that

a v(f) < ||fllomo S c2 ¥(f) forall f € BMOk; (4.1)

the subscript K of BMQ indicates that the functions are supported in K.
We begin by proving the right estimate in (4.1). To do this, pick any cube @’
containing K U Q. It follows from (2.7) that

[f@o — S| < en (1 +10g|Q') [| £,

where ¢, is independent of f € BMO.
Given any f € BMQg, we have

1
e e WAL

We restrict attention to those cubes which intersect K and which have side length
at least 1. A geometric argument shows that, for any such cube @, there exists a
larger cube Q" with the following properties: Q U Q' C Q" and |Q"| < C|@Q|, the
constant C depending only on K and n. Then

ﬁqu

<Al + 1fq ~ forl + | fou = forl + | for = faol + | fqol
Su(f)+en (L+1og C) |Iflle + | for — forl + en (1 + 1og |Q']) [ F1l-

SCV(f)—l—lan-—fQol, N (42)
where ¢ depends only on K and n. Since supp f C Q' and Q' C Q”, then
lfor — fal < fgl

< Ufgr = faol + gl
< o (1+10g|Q') v(S)- (4.3)
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Combining (4.2) (4.3) yields the right estimate in (4.1).
The left estimate in (4.1) is much easier and holds uniformly over all functions

f € BMO. Indeed,

1
A1) S Wlomet sup jQ \f - fal

2
f ot sup — f
” "bm Q:[QI>1 |Q|'/Ql I
< 31 lemos

IA

as desired. This completes the proof.

O
Combining this lemma with Theorem 4.1 we see that our BMO spaces are in
fact dual spaces.

Proposition 4.3 For every s € Z,, it follows that

hioe(X)'
homp(X)

BMOc-o:'np(X):
BMO2(X).

top.
&
top.
= loc

‘Proof. We give the proof only for the first -isomorphism; the second isomor-
phism is proved analogously.

A simple argument from functional analysis (cf. Proposition 1.1.19 in Tarkha-
nov [20]) shows that the dual space to  h],(X) is topologically isomorphic to
(hioc(X))™*. The dual space to hi,c(X) is nothing other than BMO my(X), by
Theorem 4.1 and Lemma 4.2.

O

Letting cmo be the closure of Ceomp in bmo, we see at once, with the help of
standard regularization, that D is dense in ¢mo. The following theorem is a local
version of the result of Coifman and Weiss [4] mentioned above.

Theorem 4.4 h is the dual of cmo. More precisely, each continuous linear
functional on cmo has the form F — [ fF for all F € Ceomp, where f € k, and
| flln is equivalent to the linear functional norm.

Proof. This is analogous to the proof of Coifman and Weiss [4, Theorem
4.1) that H! is the dual of CMO (the closure of Ceomp in BMO in the seminorm
topology). We merely substitute the atomic decomposition of k given in [7] for that
given in [4, Theorem 4.1].

O

We can now proceed analogously to the proof of Proposition 4.3 in describing
the dual spaces for our VMO spaces.



18 Section 4

Lemma 4.5 Given any open set X C R", it follows that

top.
= cmopos( X ),

op.
o

VMO,.(X)
VMO omp(X)

-

CMOomp( X).

Proof. This follows immediately from Lemma 4.2 and Proposition 3.6.

Proposition 4.8 For every s € Z,, it follows that

VMO"OC(X)' tg. h:o:np(X)'f
top.
VMO:, (XY = h2(X).

Proof. We give the proof only for the first isomorphism; the second isomor-
phism is proved analogously.

A simple argument from functional analysis (cf. Proposition 1.1.19 in Tarkha-
nov [20]) shows that the dual space to VMO;, (X) is topologically isomorphic to
(VMO;OC (X)')_'.

The only point remaining concerns the dual space to VMO, (X), which is
heomp(X) by Theorem 4.4 and Lemma 4.5.

O
- Given any compact set K C R”, we define the VMO spaces on K within the
abstract framework of Section 2. Namely, for an s € Z,., we set

VMO'(K) = VMO'/T,

where ¥ is the subspace of VMO* consisting of distributions vanishing near K.
As mentioned, we obtain the same quotient if we begin with one of the spaces
VMO},(X) and VMO, (X), provided K C X.
As for the dual space for VM O?*(K), we have the following result.

Proposition 4.7 Let K be a compact subset of X, and let s € Z.. Then

top.
VMO’ (K)' = hi'(X),

where hy’(X) is the subspace of h )}, (X) consisting of distributions supported in
K.

Proof. Using the duality theory for normed spaces (see Bourbaki [2, IV.8]),
we conclude that VMO’(K)' is topologically isomorphic to the annihilator of the
subspace in VM O?* consisting of the functions which vanish in a neighborhood of K.
Since K is closed, this annihilator is just the subspace of (VMO*) consisting of the
distributions supported on K. To finish the proof, it suffices to invoke Propositi-
on 4.6.

0
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5 A boundedness theorem

The key result of this section is that pseudodifferential operators are continuous on
the local Hardy and BMO spaces.

Let X be an open set in R®, and m a nonnegative integer. We recall that a
smooth function p € C2(X x R") is termed a symbol in the class S™(X) if, for all
compact K in X and all multi-indices o, 8 € Z1}, there is a constant ck,a,5 such that

| D2 DEp(z, €)] < exco (14 )™ HH1, (5.1)

Such a symbol p induces an operator op(p) on D(X), defined via the Fourier
transform:

(op() )(z) = =

(27)"

where f(f) = [e V-T2 f(z) dzx.

A result of fundamental importance is that L?*(X) is locally invariant under
op(p), for p € S°(X). In other words, op(p) maps LZ,, . (X) continuously into
L% (X). For the local Hardy space k, an analogous result holds.

/ /(2 6)f(€6)dE (f € D(X)),

Theorem 5.1 Letp € S%(X). Then op(p) : heomp(X) = hioe(X) is continuous.

This theorem follows readily from the main result of Goldberg [7], which we
now state.

Theorem 5.2 ([7]) If ¢ € S°(R") satisfies (5.1) with ckp independent of K,
then jop(p) flln < C||fll»-

Proof of Theorem 5.1. The proof is simply a standard adaptation of Gold-
berg’s result to the local setting.

Fix a bounded set B in Acomp(X). By definition, B C ¢ B for some bounded set
B in k and some ¢ € D(X). To prove that the image of B under op(p) is bounded
in hie(X), it suffices to show that the set (x op(p) ) B is bounded in h for each
function x € D(X).

To this end, we denote by ¢ the symbol in S°(R") such that

op(g) = x op(p) -

The existence and uniqueness of such a symbol on R" is well-known (see, for instance,
Taylor {21]). Moreover, ¢ satisfies the estimate (5.1) with ¢k . s independent of K.
According to Theorem 5.2, op(q) is a bounded operator in h. Therefore, the set
(xop(p)¥) B= op(q) B is bounded in h, as desired.
Q
With BMO topologized as a semilocal space via the norm v, as in Section 2,
then an analogous result holds.
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Corollary 5.3 Let p € S°(X). Let BMQ be topologized as in Section 2. Then
op(p) : BMOcomp(X) = BMOo(X) is continuous.

Proof. Fix a bounded set B in BMO.omp(X). By definition, there is a function
¢ € D(X) such that B = ¢B. OQur goal is to prove, given any x € D(X), that the
set x op(p) B = x op(p) ¢ B is bounded in BMO under the norm v(-).

To this end, we denote by ¢ the symbol in S°%(R™) such that op(q) is the trans-
posed operator to xop(p); that such a symbol exists and is unique is a basic
fact from pseudodifferential operators (see, for instance, Taylor {21]). Moreover, ¢
satisfies the estimate (5.1) with ¢k o independent of K.

According to Theorem 5.2, op(q) is a bounded operator in the local Hardy
space h. Combining this with Theorem 4.1, we conclude by duality that x op(p)¢
is a bounded operator in bmo. By Lemma 4.2, B is a bounded set in bmocomp.
Therefore, B is a bounded set in bmo, hence the image of B under xop(p) b is
bounded in bmo. Lemma 4.2 also shows that bmo — BMO,.. (The latter inclusion
is strict; the identity function, f(z) = z, lies in BMO,., but not in bmo.) Hence
x op(p) ¢ B is a bounded subset of BMO,,, and so bounded in BMQ. This proves
the corollary.

O

Our next concern will be the behavior of pseudodifferential operators in the the
higher-order Hardy and BM O spaces, which we constructed in Sections 2 and 4. To
this end, it is convenient to use an abstract framework suggested by O’Farrell [13]
and Tarkhanov [19].

Let L be a semilocal space of distributions on an open set X C R", with

continuous embeddings D(X) — L — D'(X).

Definition 5.4 The space L is locally invariant under the operatorT : £'(X) —
D(X), if T maps Leomp continuously into Li.

We also say that L is locally invariant under op S°(X) if it is under each operator
in op S°(X).

In order to simplify the statements of our next results, we adopt the clever
notation of O’Farrell [13] who suggested writing [ L for L! and DL for L.

Proposition 5.5 If L is locally invariant under op S°(X), then so are { L and
DL.

Proof. Fix p € S%X). For 1 € j < n, the commutator [op(p), D;] is a
pseudodifferential operator of order 0, and hence maps Lomp continuously into Li,.
This is enough.

O

Repeated application of Proposition 5.5 gives that if L is locally invariant under
op S°(X), then so is L* for any integer s.

In order to handle pseudodifferential operators of any order, we need the fol-
lowing “fundamental theorem of calculus.” This result appears in various guises in
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the context of partial differential equations and function spaces. We state and prove
a specific version.

Theorem 5.6 If L is locally invariant under op S°(X), then

Leomp = j DLemy, = D j Leomp- (5.2)

Proof. For general spaces L, we have L C f{ DL and D fL C L.

To see that [ DLcomp C Leomp, fix f € [ DLcomp. For |a] £ 1, we have D*f =
Tisi< Dﬁféa) for some f},o') in Leomp. Note that (from o = 0) this implies that f
has compact support.

If G(z) is the Newtonian potential in R", then, as distributions,

f=G+Af=- S G«D;D°f.
1<i<n
[8i<1
Here ¢; denotes the multi-index with 1 in the j th place, and zeroes elsewhere.
Since G * D is in op S°(X) provided |a| < 2, we conclude by assumption that
f € Lo, and hence f € Leomp, as desired.
To show that Lesmp C D f Leomp, pick f € Leomp. Let ¢ € D(X) be identically
1 in a neighborhood of supp f. Writing

F=AG*f=A@Gx*f)+A(1=¢)G* )

and invoking our assumption on L, we have A(pG * f) € D [ L.omp, as above, and
A((1 — )G * f) € D(X). It follows that f € D [ Leomp-
This completes the proof.

ad
Let us mention two important consequences of the theorem.

Corollary 5.7 Let p € S™(X), form € Z. Let h* be topologized as in Section
4, for s € Z. Then op(p) : A, (X) = hp."(X) is continuous.

loc
Proof. Given any nonnegative integer m,, we are able to write op(p) in the
form _
op(p) = p2(z, D) oop(p1) modulo smoothing operators,

p2(z, D) being a differential operator of order m; and p, being in S™~™2(X). This
reduces the proof to the case of m < 0, because for differential operators the result
follows from Proposition 2.7.
Suppose now that m < 0. Given any multi-index o with |a] < —m, the
composition
op(p) o D*

is a pseudodifferential operator of order 0. Therefore, op(p)o D maps A2 7 (X) con-
tinuously into A}, ™ (X), as follows from Proposition 5.5 and Theorem 5.1. Theorem

5.6 now shows that op(p) maps kZ,,,(X) continuously into kj; ;™ (X), as desired.
O



22 Section 6

Corollary 5.8 Let p € opS™(X), for m € Z. Let BMO’ be topologized as in
Section 2, for s € Z. Then op(p) : BMOZ,, (X) = BMO; ™ (X) is continuous.

loc

Proof. We apply the argument of the proof of Corollary 5.7 again, with The-
orem 5.1 replaced by Corollary 5.3.
O
In addition, since D(X) is dense in VMO{,.(X), then the boundedness result
extends to VMO spaces, as well.

Corollary 5.9 Let p € opS™(X), form € Z. Let VMO’ be topologized as in
Section 8, for s € Z. Then op(p) : VMO, (X) — VMO, ™(X) is continuous.

loc

Proof. Proposition 3.6 shows that VMO?, (X) is the closure of D(X) in
BMO;,,,,(X), and likewise for VMO, .(X). To finish the proof, use Corollary 5.8
and the fact that C;2(X) is locally invariant under pseudodifferential operators.

O

6 Higher order approximation

Let P be an elliptic differential operator of order p and sol(K') the space of smooth
solutions to Pf = 0 near the compact set K, as described in Section 1.

What are the necessary conditions in order that a function f € BMO*(K)
be approximable with arbitrary degree of accuracy in the topology of this space
by elements of sol(K)? First of all, since BMO*(K) is continuously embedded in

'D’(I%), the condition f € sol(}o{) is necessary. Moreover, if s > p, then Pf must
vanish along with its derivatives up to order s — p on K. However, since £(K) is
not dense in BMO*(K), there is an additional necessary condition, namely, that
f e VMO*(K).

The problem of approximation in BMO*(K) by solutions of the equation Pf =
0 is, in the first instance, the problem of describing those compact sets K C X for
which the conditions mentioned above are also sufficient. A fundamental step in the
study of this problem is an adequate description of the annihilator of the subspace
sol(K) in VMO*(K). For this we need the space VMO;, (X) for integral negative
3, as it was defined in Section 3. The fact that the space VMO;,.(X) is locally
invariant under pseudodifferential operators of order 0 (see Corollary 5.9) is crucial
here.

Lemma 6.1 The transpose mapping P': h22> (X) — h_; (X) defines a (topo-
logical) isomorphism of hi °(X), the subspace in hZ;? (X) consisting of distribu-
tions with supports in K, onto sol(K)', the annihilator of the subspace sol(K) in
VMO’ (K).
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Proof. If v € AZ;: (X) is supported on K, then P'v € hz; (X) is supported
on K, too. According to Proposition 4.7, P'v can be considered as a continuous

linear functional on VMO*(K). Moreover, we have

(P'v,f) = (v, Pf) =0

for all f € sol(K), and so P'v € sol(K)*. Therefore, P’ actually maps the subspace
R% *(X) continuously into sol( K)t. This mapping is certainly injective, because P
is analytically hypoelliptic. It remains to prove that this mapping is surjective, and
that the inverse mapping is continuous.

Let ® be a fundamental solution of P. This is a pseudodifferential operator of
order —p on X, and its kernel ®(z,y) € T'(X x X) is a real analytic function away
from the diagonal of X x X.

According to Proposition 4.7, any continuous linear functional g on VMO*(K)
can be identified with a distribution in hAx’(X). Pick, then, any ¢ € hg'(X) that
vanishes on sol( K'). We see at once that g = P'v, where v = ®'(g).

By Corollary 5.7, the operator

' : gy (X) = A (X)
is continuous. Therefore, v € A},*(X).

Moreover, since P(z, D)®(z,y) = §(z—y), the function ®(-, y) belongs to sol( K)
for any fixed y € X \ K. It follows that v(y) = {¢,®(-,y)) = 0 for y € K, and so
suppv C K. This is the desired conclusion.

O

With the help of Lemma 6.1 and the Hahn-Banach Theorem, it is now simple
to describe the closure of the subspace sol(K) in BMO?*(K) for s > p. For any
compact K C X, it turns out that the necessary local conditions on f € BMO*(K)

at the beginning of this section also suffice for this function to be in the closure of
sol(K) in BMO*(K).

Theorem 6.2 Let s > p. A function f € BMO*(K) is in the closure of sol(K)
if and only if f € VMO*(K) and Pf =0 in VMO*"?(K}.

Proof. Necessity. Assume that f € BMQ},(X) is approximable in the norm
of BMO*(K) by elements of sol( K).

A simple argument shows that there is a Cauchy sequence {F,} in BM O}, (X)
with the following properties: '

e each F, is in C22(X) (even in D(X)) and satisfies PF, = 0 near K;

o there exist suitable functions ¢, € BMO; (X) vanishing near K such that
f—F,—¢p,—>0as v — o0.

Denote by F' the limit of {F,} in BMO},.(X). Proposition 3.6 implies that F is
actually in VMO;, (X).
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Our next claim is that f and F determine the same element in BMO*(K).
Indeed, the difference

f—F=(f"Fv-(Pu)"(F"Fu)+Sou

can be approximated in BMOj, .(X) by the functions ¢, vanishing near K. It follows
that f € VMO’(K).
Finally, since

Pf=P(f—Fu—(Pv)+P(Fy+‘Pu)s
then Pf can be approximated in BMO;,P(X) by the functions {P(F, + ¢,)} van-

foc
ishing near K. Hence the image of Pf in BMO*~?(K) is zero, which completes the
proof of the necessity.

Sufficiency. Choose a continuous linear functional g on VMO?(K') equal to zero
on sol(K). By Lemma 6.1, g = P'v for some distribution v € k% *(X). We have
8 > p, and so, in view of Proposition 4.7, we may consider v as a continuous linear
functional on VMO*P(K). Thus, if f € VMO’(K) and Pf =0 in VMO*"?(K),

then by the transposition rule,

(g’f) =<D’Pf) = 0.

The Hahn-Banach Theorem finishes the proof.
O
Note that whether or not the condition “Pf =0 in VMO*~?(K)” is equivalent
to “D°(Pf)|x = 0 for all |a] < s—p” (the trace of D*(Pf) on K being understood
in some reasonable sense) is unknown. This question relates to “spectral synthesis”

in the VMO spaces (cf. Hedberg and Wolff [10]).

7 Lower order approximation

On the other hand, if 0 < s < p, then the necessary conditions at the beginning of
Section 6 on the function f € BMO?*(K) are, in general, not sufficient.

Example 7.1 Gauthier and Tarkhanov [6, Example 4.1] constructed, for any
r=12...andr—n < § <r—1, a compact set K C X and a function v in
Wrn/{r=8)(R™) with support on K such that v does not belong to the closure of D(I;’)
in W+1n/(n=8}(R"). The compact set K was constructed as a slight modification of
Hedberg’s example [9, p.77]. Supposing n > 2, p > n and s < p — n, we apply this
construction withr =p—sand § =r —n + 1. Fix any ¢ > n. By Theorem 4.2 of
[6], there are measures m, (|a| < §) supported on the boundary of K such that the
potential

f=<b(2 D"ma)

lol<8
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does not belong to the closure of sol( K') in W*9(K). Note that this potential is in
WEZ*~19(X) and satisfies Pf = 0 in the interior of K. Now we observe, by the
Sobolev Embedding Theorem, that

W 1(X) o CR2=(X) = VMO (X),
Since p — 6§ — 2 > s, it follows that the potential f belongs to VMO*(K) N sol(}o().
However this potential cannot be approximated in BMO*(K) by solutions of sol( K)

because otherwise it would be approximated also in W*9(K') by solutions of sol(K).
O

A result of Mateu and Verdera [12] shows that the bounds on n are sharp in
Example 7.1.

Thus, it remains an open problem to describe those compact sets K C X for
which the above mentioned (necessary) local conditions on f € BMO*(K) are also
sufficient. The next result says that this problem is equivalent to a certain problem
on the density of functions with compact support in K in the space h *(X). The
importance of this result is that it gives a criterion which is independent of the
differential operator P.

Theorem 7.2 For 0 < s < p, the following condilions on the compact set K are
equivalent:
(1) sol(K) is dense in VMO*(K) N sol(}o() in the BMO*(K)-norm;
(2) ’D([o{) is dense in ki *(X) in the weak-* topology of the space VMO, P(X)'.

loc

Proof.
(1) = (2). In view of Lemma 6.1 it is sufficient to show that if condition (1)

holds, then P"D(Io() is dense in sol(K')* in the weak-* topology of the space dual to
VMO;,.(X). As above, sol(K)* denotes the annihilator of the subspace sol(K) in
VMO’ (K).

By the Hahn-Banach Theorem, P'D( K ) is dense in sol( K )t in the weak-* topol-
ogy of VMO;,.(X)', provided that each linear functional that is continuous in the
topology on VMO;, (X))’ and that vanishes on P'D( K ) also vanishes on sol( K)*.

Let f be such a functional. Then f € VMO],.(X), and Pf = 0 weakly on

K. By condition (1), there is a sequence {f,} in sol(K) that tends to f in the
BMO*(K)-norm. Thus, if g € sol(K)*, then

(gaf) = yll{g(gva) =0,

as desired.
(2) = (1). By the Hahn-Banach Theorem, it is sufficient to show that if con-
dition (2) holds, then each continuous linear functional on VMO?*(K), vanishing on

sol( K'), also vanishes on VMO*(K) N sol(]z').
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Let g be such a functional, i.e., ¢ € sol(K)*. By Lemma 6.1, there is a function
v € Ak °(X) such that ¢ = P'v. Thus, if f € VMO, (X) N sol(I:’), then (g, f} =
(v, Pf). Now we can invoke condition (2) and for every ¢ > 0 find a function
v € 'D(Io() such that
[{v— v, Pf}| <e.

But (v, Pf) = 0, from which we conclude that (g, f} = 0.
O
The results of Adams [1] show that functions in A} _°(X) can be well defined
except for sets of zero d-dimensional Hausdorff measure, where d = n — p+s. When
so “strictly defined,” they consequently enjojy some continuity properties measured

(o0

by the d-dimensional Hausdorff content A;™".

8 Approximation on nowhere dense compact sets

We begin with an example.

Example 8.1 Polking [14, Theorem 4] constructed, for any real number 1 <
r < 0o, a nowhere dense compact set K C X of positive Lebesgue measure and
a nonzero bounded function in W;;_"'(X) which is supported by K. The compact
set K was constructed as a modification of the standard Sierpinski curve or “Swiss
Cheese” in R%. (The term “Swiss Cheese” is traditionally applied to any compact
set K obtained by removing from the closed unit disc an infinite sequence {B,} of
disjoint open discs such that U, B, is dense in the unit disc.) Supposing s > p —n,
we apply this construction with r = p — s and obtain a compact set K in X of
positive Lebesgue measure for which W&~} (X) + {0}. Fixa 1 < ¢ < oo large
enough so that s > (p — n) + n/q. By Theorem 3.2 of [6], there exists a function
F € C22(X) such that the potential

f=®(xxF)

does not belong to the closure of sol( K) in W*?(K). Note that this potential is in
CP-Y(X), and so in VMOLZ'(X). All the more, f does not belong to the closure of
sol(K) in BMO?*(K), because the topology of the latter space is stronger than the
topology of W*?(K).

O

For compact sets K of zero measure, such an example is impossible. The theo-
rem of Hartogs and Rosenthal (8] can be also placed in the context of approximation
in BMQ spaces. A heuristric explanation of this fact is that if K has measure zero,
then the complement of K is “massive” in the sense of any reasonable capacity.

Theorem 8.2 Let K be a compact set of zero measure in X. Then, for any
0 < 8 < p, the subspace sol(K) is dense in VMO*(K) in the BMO*(K)-norm.
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Proof. The proof of the fact is essentially the same as that of Theorem 6.3.1

in Tarkhanov [20].
O

Let us now turn to some consequences of Theorem 7.2.

Theorem 8.3 Let K be a compact subset of X with empty interior. Let 0 <
8 < p. Then the subspace sol(K) is dense in VMO*(K) in the BMO*(K)-norm if
and only if A °(X) = {0}.

Proof. This immediately follows from Theorem 7.2, because for nowhere dense
compact sets K the condition (2) of Theorem 7.2 becomes

Wt (X) = {0},
The next result is a straightforward consequence of Theorem 8.3.

Corollary 8.4 Let K be a compact subset of X with empty interior. Then, for
any 0 < s < p — n, the subspace sol(K) is dense in VMO*(K) in the BMO*(K)-
norm.

Proof. if p — s > n, then

B (X) o Wik (X) o Cioel(X)

loc

by the Sobolev Embedding Theorem. Hence the functions in A, *(X) are continuous

provided that p— s > n.
Thus, for 0 < s < p—n, we have A% *(X) = {0}. Indeed, if g € A}, *(X) is
supported in K, then g = 0, because it is continuous and X \ K is dense in X.

Theorem 8.3 then completes the proof.
a

As follows from Example 8.1, the bounds on s here are sharp.
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