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Abstract

Let P be an elliptic differential operator of order p with real analytic
coefficients on an open set X C Rn. Given a compact set K C X, we describe
the closure in BMO(K) of the spa.ce of solutions to P / = 0 on neighborhoods
of K.
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Let P be an elliptic differential operator of order p on an open set X in Rn; suppose
that the coefficients of P are real analytie. Let K be a compact subset of X. We
denote tbe space of Coo functions / whieh are solutions of the equation P / = 0 in
at least some neighborhood of K by sol(K).

If we are given a topological vector space L(K) in which the Coo functions near
K form a subspace, then sol(K) ean be considered as a subspace of L(K). The
general approximation problem consists in describing the closure of the subspace of
solutions.

Problem ~.1 Describe the closure 0/ sol(K) in L(K).

If L(K) = C(K), the space of continuous functions on K under the supremum
norm, then one speaks of "uniform approximation," and if L(K) = Lq(K) for some
q < 00, of "approximation in tbe mean." Tbe former is the more difficult of the
two settings. The crucial reason for this is that the spaces Lq (Rn) (1 < q < 00) are
locally invariant under Calderon-Zygmund operators, whereas Loo(IRn) is not.

This differenee notwithstanding, it is possible to give a rather unified treatment
of the approximation problem in these two settings. A theme emphasized in the
paper of Gauthier and Tarkhanov (6] was the parallel between approximation in
uniform norms and approximation in Sobolev norms.

It is well-known that tbe space of functions of bounded mean oscillation (BMO)
is often an effective substitute for Loo. As but one instance of this, we recall tbat
BMO is locally invariant under such c1assical Calderon-Zygmund operators as the
Hilbert and Riesz transforms. With this a.s our starting point, we examine in this pa
per in what sense approximation within EMD may be seen as intermediate hetween
tbe approximation theories in uniform and Sobolev spaces.

On tbe other hand, BMO can be thought of as the limit as s ~ 0 of the Lipschitz
c1asses AIJ. Thus it is to be expected that in the context of quali tative approximation
the BMO-theorems should be obtained by replacing s by 0 in tbe A--theorems, for
o< s < 1. This is true for P =aor for P = ß in dimension 2 (see Verdera (23]) hut
nothing else has been known. Dur viewpoint sheds some new light on tbe position
of the BMO approxima.tion in tbe sc~le of Lipsebitz approximations.

We mention yet another aspect of our interest in BMD approximation. One of
the problems now intensively discussed in approximation theory is whether, gjven
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any compact set K C Cl, each eontinuous function on K that is biholomorphic in
the interior of K ean be approximated uniformlyon K by biholomorphic funetions
on neighborhoods of K (see Verdera [24] and references there). That this is the case
for nowhere dense compacta is proved in Trent aod Waog [22]. (For this reason, the
a.bove problem is referred to as Trent and Wang's problem.)

Note that the natural Lq version of this result fails for 2 ~ q, owing to a clever
example of Hedberg [9, p.77]. Gauthier and Tarkhanov [6] showed that Hedberg's
construction also provides a eounterexample to an analogous problem in Rn (for
n > 2). On this basis, one might eonjecture that the answer to the above uniform
biholomorphie approximation problem is negative.

Mateu and Verdera [12], however, gave some suggestive evidenee to the contrary.
They eonsidered the subspace VMO of BMO and showed, given any eompaet set
K C Cl, that each funetion in V MO(K) that is harmonie in the interior of K ean
be approximated in the norm of BMO(K) by funetions harmonie near K. Hence,
the formal reasoning above can be disputed beeause BMO is "between" Lq and C.

It is worth pointing out that in this research we are not ahle to catch any
argument on behalf of a counterexample in Trent and Wang's problem. Moreover,
we show that the result of Mateu and Verdera [12] is of purely "two-dimensional"
character in the sense that to the BMO approximations in Rn for n > 2 there always
is a counterexample. This demonstrates rather strikingly that one should expect the
affirmative answer in Trent and Wang's problem.

For a deeper diseussion of approximation by solutions of an elliptic equation,
we refer the reader to the survey of Tarkhanov [19].

The important point to note here is a new type of BMO spaces. They are
obtained hy localizing the space BMO(Rn) (see, for instanee, Stein [18]). BMO(lRn)
is suitahle for pure Fourier analysis while BMO'oc(lRn) is more suited to problems
associated with partial differential equations. The main advantage of this space over
the classical one is that pseudodifferential operators are bounded on it. In addition,
the ahove spaces are well-defined on manifolds.

We DOW sketch the contents of this paper. The next section introduces the
space BMO, its restrietion to compact sets K, and its higher-order variants. The
important point is that BMO is here given a topology which makes it a semi-local
space; that is, multiplication by smooth funetions becomes aeontinuous operation.
Seetion 3 presents the corresponding VMO spaces (for "vanishing mean oscillation");
these playa role within BMO analogous to that played by the closure of V in LOO.
Seetion 4 discusses the local Hardy spaees of Goldberg [7] and adapts the classical
results of C.Fefferman and Stein [5] and of Coifman and Weiss [4] on the dual and
pre-du;al of the Hardy space H1 (BMO and a form of VMO, respectively) to the local
setting considered here. The loeal continuity of pseudodifferential operators on BMO
spaces is the key result of the following section; it is dual to Goldberg's result for
local Hardy spaces. The final three sections treat the approximation problem in
BMO spaces; we argue that the situation is much closer to Sobolev approximation
than to uniform. In Section 6 we show that the approxima.tion problem in higher
order BMO spaces is easily answered in terms of spectral synthesis in these spaees.
Section 7 establishes the relation between lower order approximations in BMO spaces
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and the dual problem of speetral synthesis in loeal Hardy spaees. Section 8 deals
with the case of nowhere dense compact sets K; in particular, we show that if the
order of P is equal to n (the dimension of Rn), then any fun~tion in V MO(K) can
be approximated in the norm of BMO(K) by solutions of the equation Pf = 0 near
K. This extends a result of Mateu and Verdera [12] for the case when K has empty
interior to the multi-dimensional setting.

2 The space BMOS(K)

A locally integrable function f on Rn has bounded mean oscillation if the quantity

11111. = s~p I~I 10 11 - Iql (2.1 )

is finite. The supremum here runs over all eubes Q with sides 'parallel' to the
coordinate axes, the symbol IQI denotes the Lebesgue measure of IQI, and fQ =
~ fq f is the average of f over Q. The space of all such functions is denoted
BMO(Rn) or simply BMD. Every bounded funetion is, of course, in BMD, but
the converse is not true; the (even) logarithm /(x) = log lxi is the paradigmatic
example of an unbounded BMD function.

Since the mean oscillation of every constant function vanishes, it is customary
- to identify any two functions in EMD that differ by a constant almost everywhere;

the resulting quotient spaee becomes a Banach space under the norm (induced by)
11·11 •. This (otherwise extremely useful) topology has the disadvantage in the present
context that it is not semilocal. In this paper, we choose instead to topologize the
(full) space BMD under the norm

v(/) = f I/I + 11/11.,lQo
where Qo is the unit cube [-~, ~]n in Rn.

Lemma 2.1 The nonn (2.2) is equivalent to any norm 0/ the lorm

v'(/) = f 1I1 + 11/11.,lQI

(2.2)

for Q' an arbitrary cube in IRn.

Proof. Indeed, there is a constant c = c(Qo, Q') such that I/Qo - IQ'I ~ c 11/11.
for all lEBMD. (This follows, for instance, from inequality (2.7) below and the
triangle inequality.) Since 111/111. ~ 11/11., then this implies that

10, 111 - IQ'I (IIlq')

< IQ'1 (1/IQo +eil/li.)
IQ'\ ,

= lQJ 10YI + c IQ 111111.·
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A similar inequality controls JOo III by JO' 1/1·

BMO is actually a complete space with norm 11.

5

o

(by Fatou's lemma)

Lemma 2.2 BMO is a Banach space under the nonn 11.

Proof. Let {I;} be a Cauchy sequence, i.e., suppose

f I/i - Ij I+ 11li - Ij 11. < e100

for i, j sufficiently large (Le., i, j > N(e)). Then there is a function 1(0) E LI (Qo)
such that /i -+ /(0) in LI (Qo), and there is a subsequence {/i..J such that /ile -+ /(0)

a.e. in Qo.
Note that the LI convergence implies convergence of the mean values: (!i)O -+

(/(0»)0 for any cube Q c Qo. Hence, for any such Q,

·I~I h1(1; - f(O)) - (I; - jlO))QI

= I~I hliE~f 1(1; - f;.) - (I; - f;.)QI

S liE~f I~I h1(1; - f;.) + (I; - f;.)QI

< lim inf Il/i - file 11.
- k-oo

< e,

for i sufficiently large (i.e., i > N(e)).
We thus have a suitable litniting function in Qo. We can use Lemma 2.1 to

get a limiting function defined elsewhere in Rn. Indeed, for any cube Q' ::l Qo, the
Cauchy sequence {I;} in 11 must also be Cauchy in L 1(Q'). Hence, there is a function
I' E L1(Q') with /i -+ I' in L1(Q') and li/f -+ I' a.e. in Q', for some subsequence
{/i/f }. Repeating the argument in the first part shows that

I~I h1(1; - 1') - (I; - J')QI < e:

for any cube Q c Q' and any i sufficiently large.
This procedure leads to a unique limiting function. Indeed, if Qo C Q' c Q"

and f' and f" are two functions constructed as above, then fi -+ I' in LI (Q') and
fi -+ f" in LI (Q"). Hence I' = I" a.e. in Q', as desired.

Exhausting lRn by an expanding sequence of cubes thus leads to a limiting
function f E LloARn) such that

f 1I - lil + 1II - /ill. < e100

for i > N(e), as desired. Thus, {li} converges to I in 11. 0
This topology has the advantage of making multiplication by smooth functions

into a continuous operator, which is the content of the following result.
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Lemma 2.3 Let'P E V. Then the multiplication operator I ......-+ 'PI is a contin
uous mapping 0/ BMD ~ EMD.

Proof. We wish to show that for each 'P E V there is a constant C", so that

1I('Pf) ~ C", 11(/) for all f E BMD.

Since fOo I'PI1 ~ 1I'Plloo JOo 1/1, we need really only show that

Ilcp111. ~ c'" (10. 1I1 + 11/11.) . (2.3)

One further simplification arises from the triangle inequality and allows us to
measure the mean oscillation of a function Fon Q about any constant, not just Fo.
That is,

! IIFII. ~ sup inf IQ11 { IF - cl ~ IIFII.·2 Q ce. Jo
(Indeed, for any cube Q and any c E IR,

(2.4)

With F = 'PI, it proves convenient to take c = 'Polo rather then ('P1)0' For
then

I~I kI'PI - 'PQIQI < I~I k(11 - IQII'PI) + I~I kI'P - 'PQIIIQI

< IIcplloolIIII. + I~I 10 I'P - 'PQIIIQI·

It remains to dominate I~l fo I'P - 'PQll/ol by the right-hand side of (2.3) uniformly
over all cubes Q. The key observa.tion here is that the mean values of any EMD
function can only vary slowly as we change the seale. In particular,

(2.5)

for all cubes Q, where 2Q is any cube containing Q with twice the latter's side
length. (This is simply just another application of the triangle inequality:

1/0 - /201 - II~I 10(/ - 12Q)1

< I~I 10 11 - I2QI

< I~I J.Q1I - f,QI
< 2n 11/11., (2.6)

a.s desired.)
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Iterating (2.5) yields 1/0 - /zjQI ~ Cn j li/li. and, in general,

( IQII)I/Q - /0,1 ~ Cn 1+ log IQT li/li.

7

(2.7)

wbenever Q c Q'.
Now let Q" be a fixed cube containing the support of <p and Qo. Then, for any

cube Q within Q" of side lengtb at least 1, we have from (2.7) that

1/0 - /Q"I ~ C~ li/li.·

With Qo the unit cube, it follows that 1/0 - /001 ~ 2C~ lI/lI., so that 1/01 ~

1/00 I+ 2Clp 11/11. ~ 2C<p v(/) for all cubes Q within Q" of side length at least 1.
Hence, for any such cube Q,

(2.8)

as desired.
It remains only to bound the left-hand side of (2.8) for all smaHer cubes which

intersect the support of <po For any such cube Q, let Q' be a cube of side length 1,
with Q c Q' c Q". (Here Q" is as above.) Now,

and

1/01 < I/o'l + 1/0 - /Q/I

< 2C", 1/(/) + c" (1 + log I~I) 11/11.

(2.9)

(2.10)

by (2.7). Since IQI ~ 1, then IQI: (1 + log~) < c'n < 00, and hence combining
(2.9) and (2.10) yields

as desired.
o

This observation is likely not new. The estimate (2.5) has been frequently used,
beginning with the original paper of John and Nirenberg [11] introducing BMO.
Estimate (2.7) appears in Christ [3]. Reimann and Rychener [15] prove a statement
on the tensor product of a BMO function and a smooth function that is analogous
to Lemma 2.3. There may weH be an earlier source.
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Remark 2.4 The proof shows that c.p need not be infinitely differentiable for the
resuIt to hold. For instanee, if c.p is merely in A~p, that is, c.p has eompaet support
and is Hölder eontinuous of index A for some 0 < A < 1, then estimate (~.9) beeomes

I~I k110 - 'PQI $ C= IQI~.

Sinee x'" log ~ < c", < 00 for all 0 < x < 1 and eaeh 0 < ,\. < 1, then the argument
goes through as before.

This observation goes ba.ck at least as far as Stegenga [17], who gave a necessary
and sufficient condition on a bounded function c.p on the unit circle S in l[t2 in order
that the multiplication by c.p be a continuous operator in BMO(S) endowed with a
norm topology equivalent to ours.

As a consequence of the lemma, we can consider for any open set X C lRn the
spaces

BMD1oc(X) = {f E V'(X): c.pf E BMD for all c.p E V(X)},
BMOcomp(X) = {c.pf: CI' E V(X), f E BMD}

with the standard topology on loeal and eompaet spaces (relative to the norm v).
The lemma then extends to this setting.

Corollary 2.5 For every c.p E V(X), the multiplication operator I ....... <pI is a
eontinuous mapping 0/ BMO,oc(X) --+ BMOcomp(X).

We can then proceed to define higher-order BMD spaces by the usual construc
tion. That is, for any s E Z+ = NU {O}, we set

BMO' = BMO"(l[tn)

= {f E V': DO JE BMD for all a with laI::; s}.

Imposing the topology of convergence in the norm v(·) in all derivatives up to order
s turns BMO' into a semilocal Banach spa.ce.

The spaces BMOioc(X) and BMO~p(X) can be constructed analogously. If
X = Rn, we denote these simply by BMD/oe and BMD:omp'

Note that (BMO')loc = (BMDloe )', etc., so that the notation is unambiguous.
For this and other aspects of the general theory, see Tarkhanov [20, eh.l].

We next define the spaces L' for negative integers s, where L is one of the spaces
BMD, BMO,oc(X) or BMOccmp(X). As there is no way to do this canonically, we
opt for a method which allows us to remain in the framework of the foregoing
approach. Namely, given any negative integer s, the space L' is defined to consist
of all distributions of the form Llol:5-' DO /0' where /0 E L.

Proposition 2.6 For every s = -1, -2, ..., it follows that

(BMO")loc(X) = (BMOloc(X))',
(BMO")comp(X) = (BMOcomp(X))".
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=

Proof. We only prove that (BMO·),oc(X) c (BMO,oc(X))·. The other in
clusions may be handled in the same way as in the proof of Proposition 1.1.17 in
Tarkhanov [20].

Let I E (BMO·),oc(X). Fix a covering {Ui } of X by relatively compact open
subsets such that Ui ce Ui+l and such that X \ Ui has no compact connected
components. For every i, choose a function <Pi E V(X) which is equal to 1 in a
neighborhood of Ui.

By assumption, to each number i there correspond functions I~i) E BMO (Ial ~
-s) such that <Pil = Elal~-. Da I~i). The differences I~i+l) - /~i) (10'1 ~ -8) are
therefore in BMO and satisfy Elal~-. Da(/~i+l) - f~i)) = 0 in a neighborhood of IJ;.

Since the differential operator {la} 1-+ Elal~-. Da la has surjective symbol,
it follows from Tarkhanov [20, Ch.5] that there are functions a~) (10'1 ~ -s) in
BMO,oc(X) satisfying Llal~-. Daa~) = 0 on X, such that

v ({,,,.( ((i+l) _ J.(i) _ a(i))) < ~
TI Ja a a 2i '

Therefore, the series

00
Ja = f~l) + L(f~i+l) - f~i) - a~i))

i=1

converges in the topology of BMOloc(X). Moreover, as the differentiation operator
is continuous in the space of distributions, we get

I: DO f~l) +}~~t (E Da (11i+1
) - Ili

) - a~)))
lal~-. ,=1 lal:5-"

lim E Da 111+1
)

1-00
10'1:5-6

lim <Pl+1J
1-00

= I,

whence / E (BMO,oc(X))\ as desired.
o

Thus, it will cause no confusion if we write BMOioc(X) and BMO~omp(X) for
a negative integer s.

For negative integers s, the space L· is topologized in the following way. The
basis of neighborhoods of zero in L· is declared to consist of the sets

{E DO'/a: Ja E U (10'1 ~ -S)},
10'1:5-6

where U varies over a basis of neighborhoods of zero in L.
The most important argument on behalf of this definition is that it immediately

makes differentiation continuous.
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Proposition 2.7 For every multi-index Q' with lai ~ s, the operator DQ acts
Irom L to L -. continuously.

We elose this section by defining the BMO spaces on arbitrary compact sets
KeRn. For a general semilocal space L of distributions on Rn and an s E Z+, we
would like to define L·(K) as the quotient of L· over the subspace of distributions
which are "flat" on K in same sense. How can we capture the degree of flatness?
The idea is to start with the space E of distributions vanishing on at least some
neighborhood of K. Since this subspace might not be c1osed, we opt instead to use
its elosure in L6 and to define

One advantage of this approach is that the three spaces L·(K), LioAK) and
L~omp(K) are all topologieally isomorphie. (See Tarkhanov [20].) For concreteness,
we state this result for the BMG spaces considered here.

Lemma 2.8 Given any compact KeRn and s E Z+, we haue

3 The space VMOS(K)

What happens when we demand that the mean oscillation of a function is arbitrarily
small for all sufficiently small cubes? The first person to consider this question was
Sarason [16], who defined the space of lunctions 01 uanishing mean oscillation by
the condi tion

VMO = VMO(Rn
)

= {I E BMO: limsup IQljl11 - IQI = O}.
101-0 Q .

Sarason [16] actually showed that (in the conventional topology on BMG, under
which functions which differ by a constant a.e. are identified) V MO is the elosure
of those BMO functions which are uniformly continuous on Rn. We shall show that
the same is true under the topology induced by the norm v.

Let us look more closely at the regularization "a la Sarasoll." To this end, set

11/11.,6 = sup IQl1 { 1I - 101,
0:1(Q)$6 JO

where 8 > 0 and I(Q) is the side length of tbe cube Q.
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Lemma 3.1 Let X be the characteristic lunction 01 the unit cube, and Xe(x) =
e-n x(x/e). Then

Ixe* I (x) - X~ * I (y)1 ~ Cn 1l/1l.,2e, when Ix - yl < e. (3.1)

Proof. As above, we denote by Qo the unit cube [-~, ~]n in Rn. Given any x
and y with Ix -Yl < e, let Q be some cube of side length 2e containing both e Qo+x
and e Qo + y. (Here e Qo is the cube [-~, i]n.) Then

IXe * I (x) - Xe * I (y )I
= I/eQo+z - leQo+vl
~ I/eQo+x - IQI + I/~Qo+JI - IQI
~ 2 2nII/II.,2e

by (2.6), as desired.
o

Lemma 3.1 shows that, for any I E V MO, the convolution Xe * f is uniformly
continuous on all of lRn (written Xe *I E UC). Note that rather than Xe *I, Sarason
[16] considers a piecewise constant function (i.e., a step function) which is equal on
each step to the average of I there.

....... Lemma 3.2 Under the assumptions 01 Lemma 9.1,

IIx~ * I - 111. ~ c IIfll.,2t!· (3.2)

Proof. If the side length l(Q) of Q exceeds e, then cover Q by nonoverlapping
cubes Q 1, ... , QN of side length e such that

Then

_1 {Ixe * I - II
IQI1Q

by Lemma 3.1.
So,

2Cn + 1 N

< lQI ~ lQilllfll.,2e

< c' 11/1I.,2e' (3.3)
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Hence, if l(Q) ~ c, then

I~IkIV *1 - J) - (X' *1 - J)QI ~ 2 c' 11/11.,2•.

On the other hand, if I(Q) < c, then (with Xo the center of Q)

I~I kI(x' *1 - J) - (X' * I(xol - IQll

~ I~I kIx' *1 - X· *1 (xoll + I~I k1I - IQI

~ 2
11+1 IIfll.,2e + 11fll.,e

~ eil IIfll.,2e,

the second estimate being due to Lemma 3.1.
For such cubes Q,

I~I kI(x' *1 - J) - (X· *1 - J)QI ~ 2c" IIf11.,2.

by (2.4), which completes the proof.

Section 3

o
It is not the case in general, however, that Ilxe * f - 111. --+ 0 as e --+ 0, as the

following example shows.

Exarnple 3.3 Consider the BMD function f(x) = log I~I on R 1
. An easy com

putation shows that

x Ix + !c I 1 1 1 11 1 1Xe * f (x) = - ~ log x _ !c - 2log X +2c X - 2c + 1.

To see that

s~p I~I JI(x' *1 - J) - (X· *1 - J)QI ..... 0,

it's enough to take Q = [-~, ~]. Indeed, for all X E Q, we have

1 2
log - + 1 ~ Xe * f (x) ~ log - + 1.

€ e

So, tbe same is true for the average:

1 2
log - + 1 ~ (Xe * f)Q ~ log - + 1.

e €

Therefore, for all X E Q,
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Since IQ = Xe * I{O) = log: +1, we get

I~I kI(x' *1 - J) - (X' *1 - J)QI

~ I~I 11I - IQI-log2

= ~ k(Ilog ~ - (log ~ + 1) 1- log 2) dx

2106 (1 4e)2:: - log - - log - dx
e 0 X e

for 0 = o{e) > °such that log ~ 2:: log ~e, Le., 0 ::; <tee' Thus,

I~I1I(x' * f - J) - (x· *1 - J)QI

~ ~ (0 log:' - 0log 4e)
€ 0 e
1

>-- 2e

for all e > 0, wbich is the desired conclusion.

13

o
Lemma 3.2 gives a regularization of V MO functions by uniformly continuous

EMO functions. We next obtain a regularization by smooth functions.
Let w E V, w 2:: 0, and f w = 1, and suppose that w is supported in the unit

cube.

Lemma 3.4 For any EMO function I,

(3.4)

Proof. Using Lemma 3.1, we obtain the pointwise estimate

lIwe * Xe *1 - Xe * 11100

= s~p 11 ein W C~ y) (x· *1 (y) - x· * 1(x)) dyl

::; s~p1w{z) !{xe* / (x +ez) - xe * / (x))1 dz

::; C IIfll.,2e' (3.5)

Together with (3.2), this gives the desired result.
o

It easily follows from (3.1) that, for / E VM 0 and € > 0, the smooth function
we*xe */ is actually uniformly continuous on all of Rn. We thus obtain the following
result, analogous to that of Sarason [16]:



14 Sectjon 3

Corollary 3.5 V MO is the closure 0/ G,:: n UC n BMO in the norm v.

Proof. If I E V MO, then (3.4) implies that

lIwe* Xe * I-lU. -+ 0 a.s e --. O.

Since

{ Iwc * XC * I - I1
lQo

:$ Ilwe * Xe * I - Xe * 11100 + ( Ixe * I - 11,
lQo

then (3.3) and (3.5) combine to show that v(wl: * Xe * I - I) -+ 0 as e -+ o.
Conversely, since UC n BMO c V MO, any function I in the closure of UG n

BMO in the norm v satisfies 11/11.,6 -+ 0 a.s 8 -+ 0, which finishes the prool.
o

Let

v M01oc(X) = {I E V'(X): r.pl E V MO for all r.p E V(X)},
VMOcomp(X) = {r.p/: r.pEV(X), IEVMO},

with the usual topology on loeal and eompaet spaces derived from v. It now follows
that the smooth, compactly supported functions V(X) are dense in V MO,oc(X).

Proposition' 3.6 The closure 0/ V(X) in BMO,oc(X) is V MO,oc(X).

Proof. Without loss of generality we can assurne that X = Rn.
Let / E V MO,oc and r.p E V be given. Ir r.p(x) = 0 for all lxi> R > 1, choose

~ E V, with 'P = 1 for all lxi ~ 2R. So, for all e < 1,

v(r.p (we * Xe * (~/) - I)) - v(r.p (we * Xe * ('PI) - ('P/)))

~ Cl/) lI(we * Xe * ('PI) - ('PI)),

by Lemma 2.3. The last term vanishes as e --t 0, by Corollary 3.5. The other
inclusion is immediate.

o
For s E Z, we define the spaces VMO~, (V MO'oc (X))6 and (V MOcomp(X))" as

in Section 2.

Proposition 3.7 For every s = -1, -2, ..., it follows that

(V M06)loc(X) = (V MO,oc(X))",
(V M06)comp(X) = (V MOcomp(X))".

Proof. This is analogous to the proof of Proposition 2.6.
o

Thus, it will cause no confusion if we write V MOioc(X) and VMO~omp(X) for
a negative integer s.
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It immediately follows from Proposition 3.6 that the subspaee V(X) is dense in
V MO:amp(X) for auy integer s. Thus, every continuous linear functional F on
VMO~p(X), if restrieted to V(X), is a distribution in X, and this correspondenee
is one-to-one. Moreover, the inclusion map (VMO:amp(X))' '---+ V'(X) is eontinuous.
Dur next objective is to deseribe this dual space of distributions on X.

In the classical setting in which BMO is topologized as a quotient space under
the seminorm 11 . 11., a famous result is that BMD is the dual of the Hardy spaee
H = H1(Rn) (see Fefferman and Stein [5]). On the other hand, H is the dual of the
space C MO, the closure in the norm 11·11* of the space Ccomp of continuous funetions
with eompact support on lRn (see Coifman and Weiss [4]).

The very property of the classical Hardy space H which enables the main the
orems to hold (/ E H ~ f I = 0) also causes H to {ail to behave properly with
respeet to multiplieation by functions in S (the spaee of rapidly decreasing func
tions). To see this note that if cp ES, then / .-. cp/ is not bounded on H (since
f <pI # 0). (In partieular, Hloc = {O}.) This map is a pseudodifferential operator
and also is a "patehing" map of the kind neeessary for working on a manifold.

David Goldberg [7] gave an aecount of a loeal version of Hardy space (deno
ted h). The main advantage of this space over the classieal one is that S C h
and that h is stable under multiplieation by funetions in S. Thus, h is suitable for
working with manifolds and pseudodifferential operators.

We begin with two -definitions. First, the loeal Hardy space h = h1(R7l) IS
defined by

where rj is the "modified Riesz transform" given by ;;] (~) = (1 - w(enlft( fee), for
any fixed w E V with w(G) = 1.

Second, the loeal EMO space bmo is defined by

bmo = {I E Ll(R
n
): 1I/IIbmo:= sup IQ11 f 1/ - 101 + sup IQ11 f I/I < oo}.

0: 101:51 10 Q: 1012:1 10

Goldberg's resuIts [7] inc1ude the following:

Theorem 4.1 ([7]) The dual 0/ h is bmo; that is, every F in bmo defines a
linear functional f .-. J F f on S (which is dense in h), and every linear functional
is of this form.

Theorems 4.1 and 5.2 (see below) imply that both hand bmo are semilocal
spaces, so we ean eonsider their loe and comp variants as weil as the eorresponding
higher order spaces.
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Lemma 4.2 Given any open set X C Rn, it follows that

Section 4

Proof. We give the proof only für the second isomorphism; the first statement
is an easy consequence of the second one.

It is a simple matter to see that BMDcomp(X) and bmocomp(X) coincide as
vector spaces. What is left is to show that the topologies on these spaces are also
the same.

To this end, it suffices to prove that a set b is bounded in BMDcomp(X) if
and only if it is bounded in bmocomp(X). Ir however b is a bounded subset of
BMOcomp(X) or bmocomp(X), then there is a compact set K C X such that supp I c
K for all 1 E b. Hence it follows that we only need to show that for any compact
set KeRn there are positive constants Cl, C2 with the property that

Cl 11(/) ~ Jl/lIbmo ~ C2 11(/) for all 1 E BMOKj (4.1 )

the subscript K of BMO indicates that the functions are supported in K.
We begin by proving the rightest imate in (4.1). To do this, pick any cube Q'

containing K U Qo. It follows from (2.7) that

I/Qo - fQ11 ~ Cn (1 + log IQ'I) 11/11.,

where Cn is independent of 1 E BMD.
Given any I E BMOK , we have

II/l1bmo :$ 11/11. + sup IQl I ( I/I·
Q: IQI~l lQ

We restriet attention to those cubes which intersect K and which have side length
at least 1. A geometrie argument shows that, for any such cube Q, there exists a
larger cube Q" with the following properties: Q U Q' c Q" and IQ"I ~ c IQI, the
constant C depending only on K and n. Then

1~lklfl
:$ 11/11. + I/Q - IQul + I!Q" - !Q,I + I/Q' - IQol + IfQol
:$ 11(/) +Cn (1 + log C) li/li. + I!Q" - /Q,l + Cn (1 + log IQ'I) li/li.
:$ C 11(/) + I/Q" - /Q,I, (4.2)

where C depends only on K and n. Since supp / c Q' and Q' C Q", then

I!Q" - IQlf < I!Q,I
< I/Q' - /Qol + I/Qol
< Cn (1 + log IQ'I) 11(/). (4.3)
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Combining (4.2) (4.3) yields the right estimate in (4.1).
The left estimate in (4.1) is much ea.sier and holds uniformly over all funetions

f E BMO. Indeed,

v(/) < II/l1bmo + Sup 1Q11 f 1I - IQI
Q: IQI~l JQ

< lIfllbmo + Sup 1Q21 f III
Q: IQI~l JQ

< 311/11bmo,

as desired. This eompletes the proof.
o

Combining this lemma with Theorem 4.1 we see that our BMO spaces are in
fact dual spaees.

Proposition 4.3 For every s E Z+, it lollows that

top.
~ BMO~p(X),

top.

::=: BMOIo~(X),

··Proof. We' give theproof only for the first· isomorphism; the seeond isomor
phism ia proved analogously.

A simple argument from funetional analysis (cf. Proposition 1.1.19 in Tarkha
nov [20]) shows that the dual space to hioAX) is topologically isomorphie to
(h1oc(X)')-'. The dual space to h,oc(X) is nothing other than BMOoomp(X), by
Theorem 4.1 and Lemma 4.2.

o
Letting cmo be the closure of Coomp in bmo, we see at onee, with the help of

standard regularization, that V is dense in cmo. The following theorem is a local
version of the result of Coifman and Weiss [4] mentioned above.

Theorem 4.4 h is the dual 01 cmo. More precisely, each continuous linear
lunctional on cmo has the lorm F 1--+ f I Flor all F E Ccomp , where. I E h, and
II/l1h is equivalent to the linear functional norm.

Proof. This is analogous to the proof of Coifman and Weiss [4, Theorem
4.1] that H 1 is the dual of CMO (the closure of Ccomp in BMO in the seminorm
topology). We merely substitute the atomic decomposition of h given in [7] for that
given in [4, Theorem 4.1].

o
We can now proceed analogously to the proof of Proposition 4.3 in describing

the dual spaces for our V MO spaces.
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Lemma 4.5 Given any open set X eRn, it /ollows that

V MO,oc(X)

V MOeqmp(X)

top.

~ cmoloc(X),
top.

;=: cmocomp(X).

Proof. This follows immediately from Lemma 4.2 and Proposition 3.6.
o

Proposition 4.6 For every s E Z+, it follows that

vMOioc(X)'

VMO~p(X)'

Proof. We give the proof only for the first isomorphism; the seeond isomor
phism is proved analogously.

A simple argument from funetional analysis (cf. Proposition 1.1.19 in Tarkha
nov [20]) shows that the dual spaee to V MOioc(X) is topologieally isomorphie to
(V MO,oc(X)')--.

The only point remaining eoneerns the dual spaee to V M01oc(X), which is
hcomp ( X) by Theorem 4.4 and Lemma 4.5.

o
.. Given any eompaet set K C lRn, we define the V MO spaces on K within the

abstract framework of Seetion 2. Namely, for an s E Z+, we set

VMO-(K) = VMOtJ/~,

where E is the subspaee of V MO- eonsisting of distributions vanishing near K.
As mentioned, we obtain the same quotient if we begin with one of the spaces

VMOfoAX) and VMO:omp(X), provided K C X.
As for the dual spaee for V MO-(K), we have the following result.

Proposition 4.7 Let K be a compact subset 0/ X J and let s E Z+. Then

where hKtJ(X) is the subspace 0/ h~p(X) consisting 0/ distributions supported in
K.

Proof. Using the duality theory for normed spaees (see Bourbaki [2, IV.Sl),
we conclude that V MOtJ(K)' is topologieally isomorphie to the annihilator of the
subspaee in VMOtJ consisting of the funetions which vanish in a neighborhood of K.
Since K is closed, this annihilator is just the subspace of (VMOtJ)' consisting of the
distributions supported on K. To finish the proof, it suffiees to invoke Propositi
on 4.6.

o
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The key result of this section is that pseudodifferential operators are continuous on
the local Hardy and B M 0 spaces.

Let X be an open set in Rn, and m a nonnegative integer. We recall that a
smooth function p E C~(X x Rn) is termed a symbol in the dass sm(x) if, for all
compact K in X and all multi-indices 0, ß E Z+., there is a constant CK,o,ß such that

(5.1 )

Such a symbol p induces an operator op(p) on V(X), defined via the Fourier
transform:

(op(p) J)(x) = (2:)n Je..Ff(x.{)p(x, of(o d~ (J E V(X)),

where l(~) = f e-Ff({,x)/(x)dx.
A result of fundamental importance is that L2(X) is locally invariant under

op(p), for p E SO(X). In other words, op(p) maps L~p(X) continuously into
LloAX). For the local Hardy space h, an analogous result holds.

Theorem 5.1 Let p E SO(X). Then op(p): hcomp(X) --t h1oc(X) is continuous.

This theorem follows readily from the main result of Goldberg [7], which we
now state.

Theorem 5.2 ([7]) If q E SO(IRn) satisfies (5.1) with eK,o,ß independent 0/ [(,
then 1I 0 p(p) fllh ~ C II/Ilh.

Proof of Theorem 5.1. The proof is simply a standard adaptation of Gold
berg's result to the IDeal setting.

Fix a bounded set B in hcomp(X). By definition, B C c.pB for same bounded set
B in hand same c.p E V(X). To prove that the image of B under op(p) is bounded
in h1oc(X), it suffices to show that the set (xop(p) c.p) B is bounded in h for each
function X E V(X).

To this end, we denote by q the symbol in SO(R") such that

op(q) = xop(p)<p.

The existence and uniqueness of such a symbol on Rn is well-known (see, for instance,
Taylor [21]). Moreover, q satisfies the estimate (5.1) with CK,o,ß independent of K.

According to Theorem 5.2, op(q) is a bounded operator in h. Therefore, the set
(X op(p) <p) B = op(q) B is bounded in h, as desired.

o
With BMD topologized as a semilocal space via the norm v, as in Section 2,

then an analogous result holds.
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Corollary 5.3 Let p E SO(X). Let BMO be topologized as in Section 2. Then
op(p): BMOcomp(X) --+ BMO,oc(X) is continuous.

Proof. Fix a bounded set B in BMOCOfflP(X). By definition, there is a function
<p E V(X) such that B = <pB. Dur goal is to prove, given any X E V(X), that the
set xop(p) B = xop(p) <p B is bounded in BMO under the norm v(·).

To this end, we denote by q the symbol in SO(lRn ) such that op(q) is the trans
posed operator to X op(p) <p; that such a symbol exists and is unique is a basic
fact from pseudodifferential operators (see, for instanee, Taylor (21)). Moreover, q
satisfies the estimate (5.1) with CK,QJJ independent of K.

Aecording to Theorem 5.2, op(q) is a bounded operator in tbe loeal Hardy
space h. Combining this wi th Theorem 4.1, we eonclude by duality that X op(p) <p
is a bounded operator in bmo. By Lemma 4.2, B is a bounded set in bmocomp •

Therefore, B is a bounded set in brno, henee the image of B under X op(p) <p b is
bounded in bmo. Lemma 4.2 also shows that bmo L-+ BMO,oc' (The latter inclusion
is strict; the identity function, f(x) = x, lies in BMO,oc , but not in bmo.) Hence
xop(p)c.pB is a bounded subset of EMOloe , and so bounded in BMO. This proves
the corollary.

o
Dur next concern will be the behavior of pseudodifferential operators in the the

higher-order Hardy and BMO spaees, which we eonstructed in Sections 2 and 4. To
this end, it is convenient to use an abstract framework suggested by O'Farrell [13]
and Tarkhanov [19].

Let L be a semilocal space of distributions on an open set X c Rn, with
continuous embeddings D(X) ~ L C-....+ V'(X).

Definition 5.4 The space L is locally invariant under the operator T : E'(X) --+

V'(X), if T maps Lcomp continuously into L,oe •

We also say that L is locally invariant under op SO(X) if it is under each operator
in op SO(X).

In order to simplify the statements of our next resuIts, we adopt the clever
notation oI O'Farrell [13] who suggested writing f L for L1 and DL for L-1.

Proposition 5.5 If L is locally invariant under op SO(X), then so are f Land
DL.

Proof. Fix p E SO(X). For 1 ~ j :::; n, the commutator [op(p), Dj ] is a
pseudodifferential operator of order 0, and hence maps Loomp continuously into L ,oc .
This is enough.

o
Repeated application of Proposition 5.5 gives that if L is locally invariant under

op SO(X), then so is L· for any integer s.
In order to handle pseudodifferential operators of auy order, we need the fol

lowing "fundamental theorem of calculus." This result appears in various guises in
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the context of partial differential equations and function spaces. We state and prove
a specific version.

Theorem 5.6 lf L is locally invariant under op SO(X), then

Lcomp = JDLcomp = DJLcomp • (5.~)

Proof. For general spaces L, we have L C f DL aod D f L C L.
To see that JDLcomp C Lcomp , fix ! E JDLcomp. For 10'1 :s; 1, we have Da! =

LIßI:51 Dß!ba) for some !ba) in Lcomp . Note that (from 0' = 0) this implies that !
has compact support.

If G(x) is the Newtonian potential in Rf\ then, as distributions,

/=G*6o!=- E G*DjDß!bej
).

l<j<n
IßI$"1

Here ej denotes the multi-index with 1 in the j th place, aod zeroes elsewhere.
Since G * Der is in op SO(X) provided jod :$ 2, we conc1ude by assumption that

f E L,oc, and hence / E Lcomp , as desired.
To show that Lcomp C D f Lcomp , pick! E Lcomp • Let er E D(X) be identically

1 in a neighborhood of supp f. Writing

! = 60G * / = 6o(epG * f) + 60((1 - ep)G * f)

and invoking our assumption on L, we have 6o(epG * f) E D f Lcomp , as above, and
60((1 - ep)G * /) E V(X). It follows that / E D f Lcomp .

This completes the proof.
o

Let UB mention two important consequences of the theorem.

Corollary 5.7 Let P E sm(x), for mEZ. Let h6 be topologized as in Section
4, for s E Z. Then op(p): h~p(X) -+ hi:Cffl(X) is continuous.

Proof. Given any nonnegative integer m2, we are able to write op(p) in the
form

op(p) = P2(x, D) oop(Pt) mooulo smoothing operators,

P2(x, D) being a differential operator of order m2 and PI being in Sm-m1 (X). This
reduces the proof to the case of m < 0, because for differential operators the result
follows from Proposition 2.7.

Suppose now that m < O. Given any multi-index 0' with 10'1 :$ -m, the
composition

op(p) 0 Der

is a pseudodifferential operator of order O. Therefore, op(p)oDer maps h=p(X) con
tinuously into hi~m(x), as follows from Proposition 5.5 and Theorem 5.1. Theorem
5.6 now shows that op(p) maps h~omp(X) continuously into hio~m(x), as desired.

o
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Corollary 5.8 Let p E op sm(x), for mEZ. Let BM06 be topologized as in
Section fl, for s E Z. Then op(p): BMO~p(X) -+ BMOj;;m(x) is continuous.

Proof. We apply the argument of the proof of CoroHary 5.7 again, with The
orem 5.1 replaced by CoroHary 5.3.

o
In addition, since V(X) is dense in V MO;oc(X), then the boundedness result

extends to V MO spaces, as weH.

Corollary 5.9 Let p E opsm(x), for mEZ. Let V MO- be topologized as in
Section 3, for s E Z. Then op(p): V MO:omp(X) -+ V MO;o~m(x) is continuous.

Proof. Proposition 3.6 shows that VMO~p(X) is the closure of V(X) in
BMO~p(X), and likewise for V MO;oc(X). To finish the proof, use Corollary 5.8
and the fact that C;:(X) is locally invariant under pseudodifferential operators.

o

6 Higher order approximation

Let P be an elliptic differential operator of order p and sol(K) the space of smooth
solutions to P/ = 0 near the compact set K, as described in Section 1.

What are the necessary conditions in order that a function f E BM06(K)
be approximable with arbitrary degree of accuracy in the topology of this space
by elements of sol(K)? First of all, since BM06(]() is continuously embedded in

o 0

V'(K), the condition f E sol(K) is necessary. Moreover, if s ;?: p, then Pf must
vanish along with its derivatives up to order s - p on K. However, since f( K) is
not dense in BMO-(](), there is an additional necessary condition, namely, that
JE VM06(K).

The problem of approximation in BM06(K) by solutions of the equation Pf =
Dis, in the first instance, the problem of describing those compact sets K C X for
which the conditions mentioned above are also sufficient. A fundamental step in the
study of this problem is an adequate description of the annihilator of the subspace
sol(K) in V MO-(K). For this we need the space V MOioc(X) for integral negative
s, as it was defined in Section 3. The fact that the space V M01oc(X) is locally
invariant under pseudodifferential operators of order 0 (see Corollary 5.9) is crucial
here.

Lemma 6.1 The transpose mapping P': h~p(X) -+ h~p(X) defines a (topo
logieal) isomorphism of hk- 6 (X), the subspace in h~p(X) consisting of distribu
tions with supports in K, onto sol(K)l., the annihilator of the subspace sol( K) in
VM06(K).
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Proof. If v E h~-~p(X) is supported on K, then P'v E h~p(X) is supported
on K, too. According to Proposition 4.7, P'v can be considered as a continuous
linear functional on V Moa(K). Moreover, we have

(PIv, f) = (v, P f) = 0

for all / E sol(K), and so P'v E sol(K)l.. Therefore, P' actually maps the subspa.ce
hk-a(X) continuously into sol(K)l.. This mapping is certainly injective, because P
is analytically hypoelliptic. It remains to prove that this mapping is surjective, and
that the inverse mapping is continuous.

Let ~ be a fundamental solution of P. This is a pseudodifferential operator of
order -p on X, and its kernel tP(x, y) E 1Y(X X X) is areal analytic function away
from the diagonal of X x X.

According to Proposition 4.7, any continuous linear functional 9 on V Moa(K)
can be identified with a distribution in hJ/(X). Pick, then, any 9 E hJ/(X) that
vanishes on sol(K). We see at onee that 9 = P'v, where v = tP/(g).

By Corollary 5.7, the operator

tP / · h-a (X) --+ hP-a(X)• camp (oe

is continuous. Therefore, v E hr~a(X).

Moreover, since P( x, D)tP(x, y) = ö(x-y), the function ~(', y) belongs to sol(K)
for any fixed y E X \ K. It follows that v(y) = (9, tP(', y)) = 0 for y tt. K, and so
supp v C K. This is the desired conclusion.

o
With the help of Lemma 6.1 and the Hahn-Banach Theorem, it is now simple

to describe the closure of the subspace sol(K) in BMoa(K) for s ~ p. For any
compact K C X, it turns out that the necessary local conditions on f E BM06(K)
at the beginning of this section also suffice for this function to be in the c10sure of
sol(K) in BM06(K).

Theorem 6.2 Let s ~ p. A lunction / E BMoa(K) is in the closure 01 sol(K)
if and only if f E V MO!J(K) and P f = 0 in V MO!J-P(K).

Proof. Necessity. Assume that f E BMOioc(X) is approximable in the norm
of B M0 6 (K) by elements of sol( K).

A simple argument shows that there is a Cauchy sequence {Fv } in B M0ioc(X)
with the following properties: .

• eaeh Fv is in C{~(X) (even in V( X)) and satisfies P Fv = 0 near K;

• there exist suitable functions cpv E BMOioc(X) vanishing near K such that
/ - Fv - 'Pv --+ 0 as v --+ 00.

Denote by F the limit of {Fv} in BMOioc(X), Proposition 3.6 implies that F is
actually in V MOioc(X),



24 Section 7

Our next claim is that land F determine the same element in BMOIJ{K).
Iodeed, the difference

I - F = (I - Fv - '{}v) - (F - Fv ) + '()V

cao be approximated in BMOioc{X) by the functions 'Pv vanishing near K. It follows
that I E V MO·{K).

Finally, since

PI = P{I - Fv - '()v) +P{Fv + '()v),

then PI can be approximated in BMO;:/{X) by the functions {P(Fv + 'Pv)} van
ishing near K. Hence the image of PI in BMO·-P{K) is zero, which completes the
proof of the necessi ty.

Sufficiency. Choose a continuous linear functional 9 on V MOIJ{K) equal to zero
on sol{K). By Lemma 6.1, 9 = P'v for same distribution v E h~-·(X). We have
s :2: p, and so, in view of Proposition 4.7, we may consider v as a. continuous linear
functionalon V MOIJ-P{K). Thus, if I E V MOIJ{K) and PI = 0 in V MOIJ-P{K),
then by the transposition rute,

(9, I) = (v, P I) = O.

The Hahn-Banach Theorem finishes the proof.
o

Note that whether or not the condition "Pf = 0 in V MO"-P(K)" is equivalent
to "DO (P I) IK = 0 for all 10'1 ~ s - p" (the trace of DO (PI) on K being understood
in some reasonable sense) is unknown. This question relates to "spectral synthesis"
in tbe V MO spaces (cf. Hedberg and Wolff [10]).

7 Lower order approximation

On the other hand, if 0 < s < p, tben the oecessary conditions at the beginning of
Section 6 on the function f E BMO"(K) are, in general, not sufficient.

Example 7.1 Gauthier and Tarkhanov [6, Example 4.1] constructed, for any
r = 1,2, ... and r - n < Ö ~ r - 1, a compact set K c X and a function v in

wr,n!(r-6)(Rn) with support on K such that v does not belong to the closure of V{K)
in w6+1,n!(n-6)(Rn). Tbe compact set K was constructed as a slight modification of
Hedberg's example [9, p.77]. Supposing n > 2, p ~ n and s ~ p - n, we apply this
construction with r = p - sand Ö = r - n + 1. Fix auy q > n. By Theorem 4.2 of
[6], there are measures m o (10'1 ~ ö) supported on the boundary of K such that the
potential
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does not belong to the closure of sol(K) in W",q(K). Note that this potential is in
wr~6-1,q(X) and satisfies Pf = 0 in the interior of K. Now we observe, by the
Sobolev Embedding Theorem, that

W p - c5- 1,q(X) Cp - 6-'J(X) V MOf- e5-'J{X)loe ~ loe t.....+ loe •

o
Sinee p - 6 - 2 ~ s, it follows that the potential f belongs to V MO·(K) n sol(K).
However this potential eannot be approximated in BMO·(K) by solutions of sol(K)
because otherwise it would be approximated also in W",q(K) by solutions of sol(K).

o

A result of Mateu and Verdera [12] shows that the bounds on n are sharp in
Example 7.1.

Thus, it remains an open problem to deseribe those compaet sets K C X for
whieh the above mentioned (neeessary) Ioeal conditions on f E BMO·(K) are also
sufficient. The next result says that this problem is equivalent to a eertain problem

o
on the density of funetions with eompaet support in K in the spaee h'K·(X). The
importanee of this result is that it gives a eriterion whieh is independent of the
differential operator P.

Theorem 7.2 For 0 ~ s < p, the following conditions on the compact set K are
equivalent:

o

(1) sol(K) is dense in V MO·(K) n sol(K) in the BMO"(K)-norm;
o

(f) V(K) is dense in hk-·(X) in the weak·· topology of the space V MO;o-;P(Xl'.

Proof.
(1) => (f). In view of Lemma 6.1 it is sufficient to show that if eondition (1)

o
hoIds, then P'V(I<) is dense in soI(K)l. in the weak-· topology of the space dual to
V MOioc(X), As above, sol(K)l. denotes the annihilator of the subspace sol(K) in
VMO·(K).

o

By the Hahn-Banach Theorem, P'D(K) is dense in sol(K)l. in the weak-· topol-
ogy of V M O;oc( X)', provided that ea.ch linear functional that is continuous in the

o
topology on V MOioe(Xl' and that vanishes on P'V(K) also vanishes on sol(K)l..

Let I be such a functional. Then I E V MOioc(X), and PI = 0 weakly on
o
K. By condition (1), there is a sequence {Iv} in sol(K) that tends to I in the
BMO·(K)-norm. Thus, if 9 E sol(K)l., then

(9, I) = Iim (g, 11') = 0,
1'-00

as desired.
(f) => (1). By the Hahn-Bana.ch Theorem, it is sufficient to show that if con

dition (2) holds, then each continuous linear functional on V MO"(K), vanishing on
o

sol(K), also vanishes on V MO"(K) n sol(K).
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Let 9 be such a functional, i.e., 9 E sol(K).l.. By Lemma 6.1, there is a function
o

v E hk-"(X) such that 9 = P'v. Thus, if f E V MOioc(X) n sol(K), then (9, f) =
(v, P f). Now we can invoke condition (2) and for every e > 0 find a function

o
Vt: E V(K) such that

I(V - Vt:, P f)l < F:.

Hut (vt:, P f) = 0, from which we conclude that (9, f) = O.
o

The results of Adams [1] show that functions in hr;/ (X) can be wen defined
except for sets of zero d-dimensional Hausdorff mea.sure, where d = n - p+ s. When
so "strictly defined," they consequently enjor some continuity properties measured
by tbe d-dimensional Hausdorff content A~oo .

8 Approximation on nowhere dense compact sets

We begin with an example.

Example 8.1 Polking [14, Theorem 4] constructed, for auy real number 1 <
r < 00, a nowhere dense compact set K C X of positive Lebesgue measure and
a nonzero bounded function in W,::/r(X) which is supported by K. The compact
set K was constructed as a modification of the standard Sierpinski curve or "Swiss
Cheese" in lR2

• (Tbe term "Swiss Cheese" is traditionally applied to any compact
set K obtained by removing from the closed unit disc an infinite sequence {Bv } of
disjoint open discs such that uvBv is dense in the unit disc.) Supposing s > p - n,
we apply this construction with r = p - sand obtain a compact set K in X of
positive Lebesgue measure for which wx.-a,n/(p-a)(X) =1= {O}. Fix a 1 < q < 00 large
enough so that s 2:: (p - n) + n/q. By Theorem 3.2 of [6], there exists a function
F E C,:(X) such that the potential

f = 4>(XK F)

does not belong to the closure of sol(K) in W",q(l(). Note that this potential is in
Cr~l(X), and so in VMOr~l (X). All the more, f does not belong to the closure of
sol(K) in BMO·(K), because the topology of the latter space is stronger tban tbe
topology of W",q(K).

o
For compact sets K of zero measure, such an example is impossible. The theo

rem of Hartogs and Rosenthai [8] can be also placed in the context of approximation
in BMO spaces. A heuristric explanation of this fact is that if K has measure zero,
then the complement of K is "massive" in the sense of any reasonable capacity.

Theorem 8.2 Let K be a compact set of zero measure in X. Then, for any
o:$ s < p, the subspace sol(K) is dense in V MO"(K) in the BMO"(K)-norm.
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Proof. The proof of the fact is essentially the same a.s that of Theorem 6.3.1
in Tarkhanov [20].

o
Let us now turn to some consequences of Theorem 7.2.

Theorem 8.3 Let K be a compact subset 0/ X with empty interior. Let 0 ~

s < p. Then the subspace sol(K) is dense in V MOIJ(K) in the BMO·(K)-nonn i/
and only i/ h'K-IJ(X) = {O}.

Proof. This immediately follows from Theorem 7.2, because for nowhere dense
compact sets K the condition (2) of Theorem 7.2 becomes

o
The next result is a straightforward consequence of Theorem 8.3.

Corollary 8.4 Let K be a compact subset 0/ X with empty interior. Then, for
any 0 ~ s ~ p - n, the subspace sol(K) is dense in V M08(K) in the BMO·(K)
nonn.

Proof. lf p - s ~ n, then

by the Sobolev Embedding Theorem. Hence the functions in hro~IJ(X) are continuous
provided that p - s ~ n.

Thus, for 0 ~ s ~ p - n, we have h'K-· (X) = {O}. Indeed, if 9 E hro~1J (X) is
supported in K, then 9 =0, because it is continuous and X \ K is dense in X.

Theorem 8.3 then completes the proof.
o

As follows from Example 8.1, the bounds on s here are sharp.
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