The Shafarevich conjecture for hyper-Kählerian manifolds

Yves André

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Federal Republic of Germany

Institut Henri Poincaré 11, rue Pierre et Marie Curie F-75231 Paris Cedex 05

France

MPI/91-8

·

.

| |

The Shafarevich conjecture for hyper-Kählerian manifolds

Yves André

1. Introduction. Simply connected projective complex manifolds with trivial canonical class may be considered as the natural higher dimensional generalizations of K_3 surfaces. Any such manifold is a finite product of (simply connected) Calabi-Yau manifolds and hyperkählerian manifolds (Bogomolov-Calabi), the latter class being characterize) by the existence of a unique (up to constant) holomorphic two-form, which is non-degenerate at every point.

In a recent paper [6], A. Todorov studies the arithmetic structure of moduli spaces for each of these classes of manifolds, and proposes a number of conjectures, among them the analog of the Shafarevich conjecture. The present note settles the hyperkählerian case.

Theorem 1. Let R be an integral finitely generated \mathbb{Z} -algebra, with fraction field k. For any positive integers N, d, there exist only finitely many isomorphy classes of hyperkählerian varieties Y of dimension N defined over K, endowed with the numerical equivalence class of a very ample divisor of degree d, such that Y has good reduction at all primes of R of height one.

We shall prove this by reduction to the Shafarevich conjecture for abelian varieties (solved by G. Faltings [3]). The deduction uses P. Deligne's technique of big monodro-

my groups [1] [2], applied to a suitable version of the Kuga-Satake construction (see § 4 below). Here the main technical point is:

Theorem 2. Let (Y,η) be a polarized hyperkählerian variety defined over some subfield $k \text{ of } \mathbb{C}$, and assume that for some integer n > 2, the Galois module $H_{3t}^2(Y_{\overline{k}}, \mathbb{Z}/n\mathbb{Z})(1)$ is trivial. Then the Kuga-Satake variety attached to (Y,η) is defined over k.

We conclude the proof using Todorov's deep results about the Torelli mapping [5], which generalize the work of I. Piatetski-Shapiro and I. Shafarevich on K_3 surfaces. In order to make the exposition clearer, we shall have to recall a substantial amount of known results; new material first occurs in § 8.

The paper was written down during a stay at the Max-Planck-Institut für Mathematik, Bonn, under support of the A.-v.-Humboldt-Stiftung. The author thank both institutions for excellent working conditions, and is grateful to A. Todorov for motivating discussions and introduction to the subject of Calabi-Yau and hyperkählerian manifolds.

2. <u>Polarization</u>. Let (Y,η) be a polarized complex hyperkählerian manifold of (necessarily even) dimension $N \ge 2$ and degree d; here $\eta \in NS(Y) \subset H^2(Y,\mathbb{Z})(1)$ is the class of some ample line bundle on Y. The lattice $H^2(Y,\mathbb{Z})(1) \simeq \mathbb{Z}^{b_2}$ carries a Hodge structure of type (-1,1) + (0,0) + (1,-1) with $h^{1,-1} = 1$. Let us consider the scalar product $\langle x,y \rangle = -x \land y \land \eta \land \ldots \land \eta \in H^{2N}(Y,\mathbb{Z})(N) \simeq \mathbb{Z}$. One has N-2 factors

 $\langle \eta, y \rangle = d$, and $\langle \rangle$ induces polarization on the orthogonal complement $P^{2}(Y,\eta,\mathbb{Z})(1)$ of η inside $H^{2}(Y,\mathbb{Z})(1)$, i.e. a non-degenerate bilinear form on

 $P^{2}(Y,\eta,\mathbb{Z})(1) \otimes_{\mathbb{Z}} \mathbb{R}$, positive on the (0,0)-component and negative on the (-1,1)+(1,-1)-component (which is a plane).

3. <u>Torelli mapping</u>. Let $V_{\underline{I}} = (\underline{I}^{b_2-1}, <>)$ be a non-degenerate quadratic module of signature $((b_2-3)+, 2-)$, and let us write V for $V \otimes_{\underline{I}} Q$. The Hodge structures of type (-1,1) + (0,0) + (1,-1) on \underline{I}^{b_2-1} polarized by <>, with $h^{1,-1} = 1$, are parametrized by $\Omega^{\pm} := SO(2, b_2-3)/SO(2) \times SO(b_2-3)$, which is a sum of two copies of a hermitian symmetric domain. Given (Y,η) as before, and an isomorphism $\gamma : (P^2(Y,\eta,\underline{I})(1), <>) \xrightarrow{\sim} V_{\underline{I}}$, one thus attaches a point in Ω^{\pm} . A weak version of the main result in [5] II, which will suffice here, states that this mapping $((Y,\eta),\gamma) \longrightarrow$ point in Ω^{\pm} (the so-called Torelli mapping) has finite fibers.

From this it follows that the induced mapping $(Y,\eta) \longrightarrow \text{point in } \Omega^{\pm}/_{SO(V_{\overline{U}})}$ also has <u>finite fibers</u>. We note that the stabilizer $\Gamma \subset SO(V_{\overline{U}})$ of each component of Ω^{\pm} has index 2 (in fact $SO(V_{\overline{U}})$ is a semi-direct product of $\overline{U}/_{2\overline{U}}$ and Γ), and the quotient $\Omega^{\pm}/_{\Gamma} \simeq \Omega^{-}/_{\Gamma}$ is a connected algebraic variety.

4. <u>The Kuga-Satake construction</u> applies to any polarized Hodge structure as before on $V_{\underline{U}}$, see e.g. [1] 4. Let us briefly describe it. The morphism $h: \prod_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \longrightarrow SO(V_{\mathbb{R}})$ describing the Hodge decomposition on \mathbb{C}^{b_2-1} lifts naturally to a morphism $\tilde{h}: \prod_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \longrightarrow \mathbb{G}_{\mathbb{R}}$, where G denotes the Clifford group C Spin V. Via the action of G on the even Clifford algebra $C^+(V_{\mathbb{R}})$ by left translations, this gives a polarizable Hodge structure $C^+(V)_{sin}$ of type (1,0) + (0,1) on $C^+(V)$.

Let us denote by $\tilde{\Gamma}$ the preimage of Γ in G relative to the exact sequence $0 \longrightarrow \mathbb{G}_{m} \longrightarrow G \longrightarrow SO(V) \longrightarrow 0$; one has a (non-split) exact sequence $0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \tilde{\Gamma} \longrightarrow \Gamma \longrightarrow 0$. Let $C_{\mathbb{Z}}^{+}$ be any lattice in $C^{+}(V)$ stable under the action of $\tilde{\Gamma}$. The equality of Hodge structures

(*)
$$C^+_{\overline{\mathcal{U}},\sin} = H^1(A,\overline{\mathcal{U}})$$

defines an abelian manifold $A = A(Y, \eta, C_{\underline{I}}^+)$ up to isomorphism, called "the" <u>Kuga-Sa-take variety</u> of (Y, η) . Moreover the self-action of $C^+(V)$ by right translations respects the Hodge structure, so that A has complex multiplication by $C^+(V)$. One then has a canonical isomorphism of rational Hodge structures

(**)
$$\overset{\text{even}}{\Lambda} P(Y,\eta,\mathbf{Q})(1) \simeq \text{End}_{C} + H^{1}(\Lambda,\mathbf{Q}), \text{ see [1] 3.3.}$$

In particular $P^2(Y,\eta,Q)(1)$ occurs as a factor of the Hodge structure Hom(End $H^1(A,Q), Q(0)$), since b_2 is even.

5. <u>Families</u>. The Kuga-Satake construction also applies in a relative context: let S be a connected algebraic complex manifold, $f: \underline{Y} \longrightarrow S$ a flat morphism whose fibers are hyperkählerian manifolds, and \underline{n} a polarization of f, i.e. a section of <u>NS</u> Y/S $\subset \mathbb{R}^2 f_*^{(an)} \overline{\mathbb{I}}(1)$ which is a polarization of $Y_s = f^{-1}(s)$ for every $s \in S$. We denote by $\mathbb{P}^2 f_* \overline{\mathbb{I}}(1)$ the orthogonal complement of \underline{n} inside $\mathbb{R}^2 f_* \overline{\mathbb{I}}(1)$, and by $\mathbb{V}_{\underline{\mathbb{I}}}$ the constant quadratic module obtained from $(\mathbb{P}^2 f_* \overline{\mathbb{I}}(1), < >)$ by pull-back to the universal covering \tilde{S} of S. The equality of variations of Hodge structure

$$\underline{\mathbf{C}}_{\mathbb{Z}}^{+}\sin=\mathbf{R}^{1}\mathbf{\widetilde{g}}_{*}\mathbb{Z}$$

first defines an analytic family \tilde{g} of abelian manifolds on \tilde{S} , whose fibers are the Kuga–Satage varieties attached to the corresponding fibers of $\tilde{f} = f \times_S \tilde{S}$.

But the fact that there is no splitting of the exact sequence $0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{\Gamma} \longrightarrow \Gamma \longrightarrow 0$ prevents us from descending \widetilde{g} to S in general. (Note that the problem disappears if one replaces \widetilde{g} by the "Kummer family" $\widetilde{g}/\{\pm id\}$). However if for some n > 2, $\mathbb{R}^2 f_* \mathbb{Z}/n\mathbb{Z}$ is a constant local system on S, then \widetilde{g} descends to an abelian scheme $g : A \longrightarrow S$ with complex multiplication by $C^+(V)$, the <u>Kuga-Satake family</u> attached to f. Indeed let Γ_n (resp. $\widetilde{\Gamma}_n$) be the principal congruence subgroup of Γ (resp. $\widetilde{\Gamma}$) of level n. It is easily checked that the map $\widetilde{\Gamma}_n \longrightarrow \Gamma_n$ induced by $G \longrightarrow SO(V)$ is an isomorphism, moreover, our assumption about $\mathbb{R}^2 f_* \mathbb{Z}/n\mathbb{Z}$ implies that the Torelli mapping $S \longrightarrow \Omega^{\pm}/\Gamma$ factorizes through the smooth quasi-projective variety $\Omega^{\pm}/\Gamma_n = \Omega^{\pm}/\widetilde{\Gamma}_n$, and one can argue as in [1] 5.7.

6. <u>Hilbert schemes</u>. By the theory of Chow coordinates or bounded sheaves, one knows that the scheme which parametrizes hyperkählerian varieties Y of dimension N endowed with a <u>very ample</u> divisor of degree d is an open subscheme of a finite disjoint union of suitable Hilbert schemes, hence is quasiprojective. Moreover it follows from the smoothness of the Kuranishi families that the geometric connected components $S_{(j)}$ are <u>smooth</u> ([5] 2.5.2).

We now fix a point $s \in S_{(j)}$, and drop the subscript j. Because the Torelli mapping $S \longrightarrow \Omega^{\pm}/\Gamma$ is <u>dominant</u> ([5] 2.5.5), the monodromy group of the universal flat family

of hyperkählerian varieties $f: \underline{Y} \longrightarrow S$ at s has finite index in Γ . Define the Galois cover $S_n \longrightarrow S$ via the kernel of the map $\pi_1(S,s) \longrightarrow \operatorname{Aut} \operatorname{H}^2(\underline{Y}_s, \mathbb{Z}/n\mathbb{Z})(1)$, so that the local system $\operatorname{R}^2 f_* \mathbb{Z}/n\mathbb{Z}$ becomes constant on S_n ; it follows that the monodromy group of the associated Kuga-Satake family g_n is Zariski-dense in Spin V (with the notations of § 5).

7. The Shimura variety attached to the data (G, Ω^{\pm}) is the complex pro-algebraic variety with complex points

$$\operatorname{Sh}(G, \Omega^{\pm})(\mathbb{C}) = G(\mathbb{Q}) \setminus \Omega^{\pm} \times G(\mathbb{A}^{\mathrm{f}})$$
,

where $A^{f} = \hat{\mathcal{I}} \otimes_{\mathcal{I}} Q$, $\hat{\mathcal{I}} = \prod_{p} \mathcal{I}_{p} \mathcal{I}_{p}$. Let (t_{α}) be a family of tensors for $C^{+}V$ such that G is the subgroup of $GL(C^{+}V) \times G_{m}$ fixing the t_{α} (the second projection $G \longrightarrow G_{m}$ being the inverse of the Spin norm). We assume for convenience that this collection of tensors includes a basis of $C^{+}V$ as endomorphism of $C^{+}V$ by translation on the right. It turns out that $Sh(G,\Omega^{\pm})$ is a fine moduli scheme for triples $(A,(s_{\alpha}),\gamma)$ up to "isogeny", where A is a complex abelian variety, s_{α} are Hodge cycles on A, and γ is an isomorphism $H^{1}_{et}(A,A^{f}) \xrightarrow{\sim} C^{+}(V) \otimes_{Q} A^{f}$ mapping each s_{α} to t_{α} , satisfying the following condition:

(***) there exists an isomorphism $i: H^1_B(A, \mathbb{Q}) \longrightarrow C^+ V$ mapping each s_{α} to t_{α} , such that $i^{-1} \circ h \circ i \in \Omega^{\pm}$ (notation h from § 3), see [4] II 3.11 for more details.

The choice of a lattice inside $C^+ V \otimes A^f$, for instance in the form $C^+_{\overline{\mathcal{U}}} \otimes \hat{\overline{\mathcal{U}}}$, fixes the universal abelian scheme $\underline{A} \longrightarrow Sh(g, \Omega^{\pm})$ inside the isogeny class. Let $\overset{\approx}{S}$ be the pro-

jective limit of commutative diagrams $s \longrightarrow S'$ with S' étale finite over S; the

profinite group $\pi_1^{\text{et}}(S,s)$ acts on $\overset{\approx}{S}$, with quotient S. The same construction applied to S_n provides the same proalgebraic variety: $\overset{\approx}{S}_n \simeq \overset{\approx}{S}$.

By the Kuga–Satake construction and the modular property of $Sh(g,\Omega^{\pm})$, we get a morphism

$$\chi: \overset{\approx}{\mathbb{S}} \longrightarrow \mathrm{Sh}(\mathrm{G}, \Omega^{\pm})$$

and the pull-back of the universal abelian scheme is a Kuga-Satake gamily \tilde{g} . Furthermore χ passes to the quotient S_n to give a morphism

$$\chi_{n}: S_{n} \longrightarrow Sh_{K_{n}}(G, \Omega^{\pm}) := Sh(G, \Omega^{\pm})/_{K_{n}}, \quad n > 2$$

where K_n denotes the preimage of the principal congruence subgroup of $SO(V_{\overline{u}} \otimes \hat{\overline{u}})$ of level n inside $G(A^f)$ (which is isomorphic to its image into $SO(V \otimes_{\mathbb{Q}} A^f)$ and is a torsion-free congruence subgroup of $G(A^f)$).

8. <u>Descent</u>. It is known that $Sh(G, \Omega^{\pm})$ admits a canonical model over the reflex field $E(G, \Omega^{\pm})$, see e.g. [4].

<u>Lemma</u> 1: $E(G, \Omega^{\pm}) = \mathbf{Q}$.

Proof: One has $E(G,\Omega^{\pm}) \subset E(\tilde{T},x)$ for any special point x with associated rational torus \tilde{T} . We construct a special point in the following way: let us choose an orthogonal decomposition $V_{\mathbb{Q}} = V^+ \perp V^-$ where V^+ (resp. V^-) is a positive (resp. negative) quadratic subspace. By the inertia theorem, V^- has dimension 2, and thus may be identified with the quadratic space defined by the opposite of the norm N on some imaginary quadratic extension E of \mathbb{Q} . Let the rational torus T = Ker N act on V trivially upon V^+ and by homotheties upon $V^- \simeq (E, -N)$, so that $T \subset SO(V)$; let \tilde{T} denote the preimage of T inside G. The natural lifting $\overrightarrow{C/R} \xrightarrow{G_m} \xrightarrow{T_R} of$ the obvious projection $\overrightarrow{C/R} \xrightarrow{G_m} \xrightarrow{T_R} \simeq U(1, \mathbb{R})$ defines a special point x for which $E(\tilde{T}, x) = E$. Furthermore it is plain to change E by moving the subspace V^- , so that $E(G, \Omega^{\pm}) \neq E$. The lemma follows.

The universal triple $(\underline{A},(s_{\alpha}),\gamma)$ descends to the canonical model $_{k}Sh(G,\Omega^{\pm})$ over any subfield k of \mathbb{C} (s_{α} descends to an absolute Hodge cycle). In particular, one obtains an abelian scheme $_{k}g:_{k}\underline{A} \longrightarrow _{k}Sh(G,\Omega^{\pm})$.

Similarly the representation C^+V (by left translations) defines a A^{f} -sheaf $C^+V(A^{f})$ on ${}_{k}Sh(G,\Omega^{\pm})$, see e.g. [4] III 6. In fact, using the lattice C^{\pm}_{II} , one obtains a \hat{I} -sheaf $\underline{C}^{\pm}_{II} \subset C^+V(A^{f})$, together with an isomorphism ${}_{k}\gamma : \mathbb{R}^{1}_{k}g_{*} \xrightarrow{\sim} \underline{C}^{\pm}_{II}$.

Furthermore all these objects pass through the quotient

$$_{k}\mathrm{Sh}_{\mathrm{K}_{n}}^{\mathrm{G},\Omega^{\pm}} := {}_{k}\mathrm{Sh}(\mathrm{G},\Omega^{\pm})/{}_{\mathrm{K}_{n}}^{\mathrm{L}}.$$

9. <u>Further descent</u>. Let us assume that the Hilbert point s is defined over $k \in \mathbb{C}$. The geometric connected component containing s, that is to say S, is then defined over k;

let us write $S = {}_{k}S \bigotimes_{k} \mathbb{C}$, where ${}_{k}S$ denotes a k-component of the open Hilbert scheme introduced in § 6. One has an exact sequence

 $0 \longrightarrow \pi_1^{\text{et}}(S,s) \longrightarrow \pi_1^{\text{et}}({}_kS,s) \xrightarrow{\overset{\mathbb{R}}{\longrightarrow}} \operatorname{Gal}(\overline{k}/k) \longrightarrow 0 \text{. Let us now <u>assume</u> that the Gal(\overline{k}/k)-module <math>\operatorname{H}^2_{\text{et}}(\underline{Y}_s, \overline{\mathbb{Z}}/n\overline{\mathbb{Z}})(1)$ is trivial. Define the Galois cover ${}_kS_n \longrightarrow {}_kS$ via the kernel of the map $\pi_1^{\text{et}}({}_kS,s) \longrightarrow \operatorname{Aut} \operatorname{H}^2_{\text{et}}(\underline{Y}_s, \overline{\mathbb{Z}}/n\overline{\mathbb{Z}})(1)$; with the notation of § 6, one has ${}_kS_n \overset{\mathfrak{S}}{\cong}_k \mathbb{C} = S_n$.

<u>Lemma</u> 2. <u>The morphism</u> $\chi_n : S_n \longrightarrow Sh_{K_n}(G, \Omega^{\pm})$ <u>descends to a morphism</u> ${}_k\chi_n : {}_kS_n \longrightarrow {}_kSh_{K_n}(G, \Omega^{\pm})$.

Proof: By a standard argument od descent (see [2] 2.3 for details), it is enough to show that χ is the <u>unique</u> equivariant morphism $\overset{\approx}{S} \longrightarrow Sh(G, \Omega^{\pm})$ which is equivariant with respect to the map $\pi_1^{\text{et}}(S,s) \longrightarrow K_n$ induced by the original χ_n (this property being invariant under $\operatorname{Aut}(\mathbb{C}/k)$). As explained before, such an equivariant morphism is equivalent to a triple consisting in an abelian scheme $g: \underline{A} \longrightarrow \overset{\approx}{S}$, a collection of horizontal Hodge cycles (s_α) on \underline{A} including a basis for $C := C^+(V) \cap \operatorname{End} C^+_{\widehat{\mathcal{U}}}$ (acting on the right on $\underline{C}^+_{\widehat{\mathcal{U}}}$) and satisfying a certain condition (***), together with a $\pi_1^{\text{et}}(S,s)$ -equivariant isomorphism of $\widehat{\mathcal{U}}$ -sheaves $\gamma: \operatorname{R}^1g_*\widehat{\mathcal{U}} \xrightarrow{\sim} \underline{C}^+_{\widehat{\mathcal{U}}}$ mapping each s_α on t_α (and in particular commuting with the action of C on the right). Because such a triple has no non-trivial automorphism, the unicity of μ follows from the following statement

(****) if g_1 and g_2 are two abelian schemes over $\overset{\approx}{S}$ such that there are isomorphisms of $\hat{\mathbb{Z}}[\pi_1^{\text{et}}(S,s)]$ -C-bimodules $R^1g_{1*}\hat{\mathbb{Z}} \xrightarrow{\hat{\mathbb{Z}}} R^1g_{2*}\hat{\mathbb{Z}} \xrightarrow{\sim} C^+_{\hat{\mathbb{Z}}}$, then

 $g_1 \simeq g_2$. Let us now prove (****).

For any prime ℓ , the set of bimodule--isomorphisms $R^1g_{1*}Q_{\ell} \longrightarrow R^1g_2Q_{\ell}$ (resp. $R^1g_{1*}Q \longrightarrow R^1g_{2*}Q_{\ell}$ (resp. U) of a projective space over Q_{ℓ} (resp. Q); indeed it contains (the multiples of) $\hat{u} \otimes 1_{Q_{\ell}}$ (resp. it is dense in U_{ℓ}). We want to show that U_{ℓ} (hence U) is reduced to one point; this will follow from the absolute irreducibility of the bimodule $\underline{C}_{Q_{\ell}}^+$. Indeed, the image of $\pi_1^{\text{et}}(S_n,s)$ in $\operatorname{Aut}(\underline{C}_{Q_{\ell}}^+)_s$ is Zariski-dense in the Spin group, and \overline{Q}_{ℓ} [Spin V] = $C^+(V_{\overline{Q}_{\ell}})$ because dim V is odd. Now $C^+(V_{\overline{Q}_{\ell}})$ is isomorphic to End W, where W stands for the spin representation over \overline{Q}_{ℓ} , and the described irreducibility reduces to the irreducibility of End W as an End W-End W-bimodule, which is obvious.

Since U_{ℓ} and U are reduced to one point, one can normalize u so that $\hat{u} \otimes_{\mathcal{I}} 1_{A} f = u \otimes_{\mathbb{Q}} 1_{A} f$ for some $u \in U$. Then u induces an isomorphism of local systems $R^{1}g_{1*}\mathcal{I} \xrightarrow{\sim} R^{1}g_{2*}\mathcal{I}$, unique up to sign, thus respecting the Hodge structure, hence coming from an isomorphism of abelian schemes. This proves (****), and the lemma.

10. <u>Proof of theorem</u> 2. Let (Y,η) be a polarized hyperkählerian variety of dimension N over a field $k \in \mathbb{C}$ satisfying the assumption in theorem 2. Let $\delta.\eta$ be a very ample multiple of η . To the Jata (Y,δ_{η}) , one attaches its Hilbert point $s_1 \in {}_kS(k)$, and a suitable geometric point $s \in {}_kS_n(k)$ lying above s_1 . <u>Lemma</u> 3. <u>The point</u> s <u>comes from a rational point</u> $s_n \in {}_kS_n(k)$.

Proof: From the exact sequence

$$0 \longrightarrow \pi_1^{\text{et}}(S,\bar{s}_1) \longrightarrow \pi_1^{\text{et}}({}_kS,\bar{s}_1) \xrightarrow{\bar{s}_1} \text{Gal}(\bar{k}/k) \longrightarrow 0$$

and the assumption that $\bar{s}_1(\operatorname{Gal}(\overline{k}/k))$ acts trivially on $(\operatorname{R}^2_{\operatorname{et}}f_*\mathbb{Z}/n\mathbb{Z}(1))_{\bar{s}_1} \simeq \operatorname{H}^2_{\operatorname{et}}(\operatorname{Y}_{\overline{k}},\mathbb{Z}/n\mathbb{Z})(1)$, one deduces a <u>split</u> exact sequence $0 \longrightarrow \pi_1^{\operatorname{et}}(\operatorname{S}_n, s) \longrightarrow \pi_1^{\operatorname{et}}({}_k\operatorname{S}_n, s) \xrightarrow{\leftarrow - - - -} \operatorname{Gal}(\overline{k}/k) \longrightarrow 0$, the splitting being given by s; this means that the decomposition group of s in $\pi_1^{\operatorname{et}}({}_k\operatorname{S}_n, s)$ projects isomorphically onto the full Galois group $\operatorname{Gal}(\overline{k}/k)$, hence s is rational over k.

<u>Remark</u>. More generally, any k-family of polarized hyperkählerian varieties $f: \underline{Y} \longrightarrow T$ of the right dimension and degree, such that $\operatorname{R}^2_{et} f_* \mathbb{Z}/n\mathbb{Z}(1)$ is a constant torsion sheaf, gives rises to a morphism $T \longrightarrow_k S_n$ such that f is the pull-back of the standard hyperkählerian family over ${}_kS_n$.

Indead, let t be a geometric point of T (which we assume to be connected), and let T (resp. $\overset{\approx}{k}$) be the projective limit of commutative diagrams t $\xrightarrow{}$ T' (resp.

 $t \xrightarrow{} S'$) with T', resp. S' étale finite over T, resp. k^S . There is a commute k

tative diagram with exact rows

$$0 \longrightarrow \pi_1^{\text{et}}(\mathbf{T}, \mathbf{t}) \xrightarrow{\sim} \pi_1^{\text{et}}(\mathbf{T}, \mathbf{t})$$

$$Aut(\mathbf{R}_{\text{et}}^{e} \mathbf{f}_* \mathbb{Z}/n\mathbb{Z})(1)_{\mathbf{t}}$$

$$0 \longrightarrow \pi_1^{\text{et}}(\mathbf{k}^{S_n}, \mathbf{t}) \longrightarrow \pi_1^{et}(\mathbf{k}^{S}, \mathbf{t})$$

which shows that the Hilbert map $T \longrightarrow {}_kS$ induces a map of étale fundamental groups $\pi_1^{et}(T,t) \longrightarrow \pi_1^{et}({}_kS_n,t)$.

Therefore the universal covering $\overset{\approx}{T} \longrightarrow_{k} \overset{\approx}{S}$ of the Hilbert map passes to the quotient $\overset{\approx}{T}/\pi_{1}^{\text{et}}(T,t) \xrightarrow{\longrightarrow} \overset{\approx}{k}^{S}/\pi_{1}^{\text{et}}({}_{k}S_{n},t)$, i.e. furnishes a lifting $T \longrightarrow_{k}S_{n}$ of the Hilbert map. (We refer to [4] II 10 for details about k-schemes with a continuous action of a locally profinite group).

Applying the previous two lemmata, one obtains a composed morphism

Spec k
$$\xrightarrow{s_n} k^{S_n} \xrightarrow{k^{\chi_n}} k^{Sh} K_n^{(G,\Omega^{\pm})}$$

Pulling back the standard abelian scheme on ${}_{k}Sh_{K_{n}}(G,\Omega^{\pm})$ (attached to a suitable lattice $C_{\underline{I}}^{\pm}$) gives a k-model of the Kuga-Satake variety $A(Y, \delta.\eta, C_{\underline{I}}^{\pm})$, with $C_{\underline{I}}^{\pm} \otimes \mathbb{Q} = C^{\pm}(V, <>_{\delta_{\eta}})$.

It remains to remark that $< >_{\delta_{\eta}} = (\delta^{\frac{N}{2}-1})^2 < >_{\eta}$, so that the publication by $\delta^{\frac{N}{2}-1}$ provides an isomorphism $C^+(V, <>_{\delta_{\eta}}) \simeq C^+(V, <>_{\eta})$. If we still denote by $C_{\underline{I}}^+$ the image of $C_{\underline{I}}^+$ under this isomorphism, we obtain that the Kuga-Satake variety $A(Y,\eta,C_{\underline{I}}^+)$ is defined over k, in conformity with theorem 2.

11. <u>Good reduction</u>. In fact, the k-model A of the Kuga-Satake variety just constructed enjoys a nice extra property: the pull-back of $_k \gamma$ by $_k \chi_n \circ s_n$ is an isomorphism of $\operatorname{Gal}(\overline{k}/k)$ -modules $\operatorname{H}^1_{\mathrm{et}}(A_{\overline{k}}, \overline{\mathcal{I}}) \xrightarrow{\sim} s_n^* {}_k \chi_n^* \subseteq_{\overline{\mathcal{I}}}^+$.

Lemma 4. In the situation where $H^2_{et}(Y_{\overline{k}}, \mathbb{I}/n\mathbb{I})(1)$ is a trivial Galois module for some n > 2 and Y has good reduction at a prime p of \overline{k} which does not divide n, A has good reduction at p.

<u>Proof</u>: Replacing n by a factor, one may assume that n is prime. The torsion sheaf $\underline{C}_{\hat{\mathcal{I}}}^+ \otimes \mathbb{Z}/n\mathbb{Z}$ is constant, so that the Galois module $\mathrm{H}_{\mathrm{et}}^1(A_{\overline{k}}, \mathbb{Z}/n\mathbb{Z})$ is trivial. Therefore the n-torsion points of $A_{\overline{k}}$ are rational over k, and by the theory of semi-stable reduction, the action of the inertia group I at p is unipotent on $\mathrm{H}_{\mathrm{et}}^1(A_{\overline{k}}, \mathbb{Z}_n)$. On the other side I acts trivially on $\mathrm{H}_{\mathrm{et}}^2(\mathrm{Y}_{\overline{k}}, \mathbb{Z}_n)(1)$ because Y has good reduction at p, hence I acts trivially on the even Clifford algebra $\mathrm{C}^+(\mathrm{P}_{\mathrm{et}}^2(\mathrm{Y}_{\overline{k}}, \mathbb{Z}_n)(1), <>_{\eta} \otimes \mathrm{I}_{\mathbb{Z}_{\ell}})$, which is isomorphic to the Galois module of all endomorphisms of $\mathrm{H}_{\mathrm{et}}^1(A_{\overline{k}}, \mathbb{Z}_n)$ which commute to the complex multiplication C (see [1] 6.6 for more details); therefore I acts trivially on $\mathrm{H}_{\mathrm{et}}^1(A_{\overline{k}}, \mathbb{Z}_n)$ through the center of C. At last, we find that I acts trivially on $\mathrm{H}_{\mathrm{et}}^1(A_{\overline{k}}, \mathbb{Z}_n)$, it follows that A has good reduction at p.

12. <u>Proof of theorem 1</u>. We turn back to the notations and assumptions of theorem 1. Let us first remark that by localization, we may assume that R is a regular ring; we

choose a prime number n > 2, and we also assume that n is invertible in R. Since Y has good reduction at all primes of R of height one, it then follows from the purity of the branch-locus that the representation of $Gal(\overline{K}/K)$ on $H^2_{et}(Y_{\overline{K}},\overline{Z}_n)(1)$ factors through $\pi_1(\operatorname{Spec} R)$.

On the other side, since we fixed the pair (N,d), there may occur only finitely many quadratic lattices $V_{\mathbb{Z},(j)} = (\mathbb{Z}^{b_2-1}, <>)$ (notation of § 2); this follows from the Hilbert scheme argument of § 6. According to Hermite-Minkowski, there exists only finitely many continuous homomorphisms $\pi_1(\operatorname{Spec} R) \longrightarrow \prod O(V_{\mathbb{Z},(j)} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z})$. Denoting by r the (unramified) finite extension of R determined by the intersection of the kernels of these homomorphisms, and by k its fraction field, we have proved the following

Lemma 5. There exists a finite extension r of R, depending only on the pair (N,d), such that for any (Y,η) as in theorem 1, the $Gal(\overline{k}/k)$ -module $H^2_{et}(Y_{\overline{k}}, \overline{l}/n\overline{l})(1)$ is trivial.

Using lemma 4, we see that the representation of $\operatorname{Gal}(\overline{k}/k)$ on $\operatorname{H}^{1}_{\operatorname{et}}(A_{\overline{k}}, \mathbb{Z}_{n})$ factors through $\pi_{1}(\operatorname{Spec} r)$, i.e. A has good reduction at any prime p of the integral closure of r in \overline{k} . By Falting's theorem [3], there are only <u>finitely many</u> such abelian varities A.

Note that the complex abelian manifolds $A_{\mathbb{C}}$ which occur are described by a Hodge structure $C_{\mathbb{Z},sin}^+$ (formula (*)) on a previously chosen lattice $C_{\mathbb{Z},(j)}^+$ inside $C^+(V_{(j)})$. Using formula (**), we know that there are only finitely many rational Hodge structures $P^2(Y,\eta,\mathbb{Q})(1)$ on $V_{(j)}$ which are the image under the Torelli mapping, tensored with \mathbb{Q} , of polarized hyperkähler varieties satisfying the assumptions of theorem 1; this leaves only finitely many integral polarized Hodge structures $P^{2}(Y,\eta,\mathbb{I})(1)$ on $V_{\mathbb{I},(j)}$. Because the Torelli mapping has finite fibres, we see that there are only finitely many possibilities for $(Y \otimes_{K} \mathbb{C}, \eta \otimes_{K} \mathbb{C})$. By Galois descent, K-forms of $(Y \otimes_{K} \mathbb{C}, \eta \otimes_{K} \mathbb{C})$ are described by the set $H^{1}(Gal(\mathbb{K}/k), \underline{Aut}(Y,\eta))$, which is finite (like $\underline{Aut}(Y,\eta)$). We conclude that there are only finitely many isomorphy classes of hyperkählerian varieties Y of dimension N defined over K, endowed with the numerical class of a very ample divisor of degree d, such taht Y has good reduction at all primes of R of height one.

References

- Deligne P., La conjecture de Weil pour les surfaces K₃, Inventiones Math. 15, 206-226 (1972).
- [2] Deligne P., Les intersections complètes de niveau de Hodge un, Inventiones Math. 15, 237-250 (1972).
- [3] Faltings G., Wüstholz G., Rational points, Aspects of Math. EG, Vieweg Verlag Wiesbaden, 2nd edition 1986.
- [4] Milne J., Canonical models of (mixed) Shimura varieties and automorphic vector bundles, preprint (part of a forthcoming book).
- [5] Todorov A., Moduli for hyper-Kählerian manifolds, I, II; preprints Max-Planck-Institut für Mathematik, Bonn, 1990.
- [6] Todorov A., Arithmetic height on the moduli space of Calabi-Yau manifolds; preprint Max-Planck-Institut für Mathematik, Bonn, 1990.