The Shafarevich conjecture for

hyper-Kählerian manifolds

Yves André

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3
Federal Republic of Germany

Institut Henri Poincaré
11, rue Pierre et Marie Curie
F-75231 Paris Cedex 05
France

$$
1
$$

The Shafarevich conjecture for hyper-Kählerian manifolds

Yves André

Abstract

1. Introduction. Simply connected projective complex manifolds with trivial canonical class may be considered as the natural higher dimensional generalizations of K_{3} surfaces. Any such manifold is a finite product of (simply connected) Calabi-Yau manifolds and hyperkählerian manifolds (Bogomolov-Calabi), the latter class being characterize) by the existence of a unique (up to constant) holomorphic two-form, which is non-degenerate at every point.

In a recent paper [6] A. Todorov studies the arithmetic structure of moduli spaces for each of these classes of manifolds, and proposes a number of conjectures, among them the analog of the Shafarevich conjecture. The present note settles the hyperkählerian case.

Theorem 1. Let R be an integral finitely generated \mathbb{Z}-algebra, with fraction field k . For any positive integers N, d, there exist only finitely many isomorphy classes of hyperkählerian varieties Y of dimension N defined over K , endowed with the numerical equivalence class of a very ample divisor of degree d, such that Y has good reduction at all primes of R of height one.

We shall prove this by reduction to the Shafarevich conjecture for abelian varieties (solved by G. Faltings [3]). The deduction uses P. Deligne's technique of big monodro-
my groups [1] [2], applied to a suitable version of the Kuga-Satake construction (see § 4 below). Here the main technical point is:

Theorem 2. Let (Y, η) be a polarized hyperkählerian variety defined over some subfield k of \mathbb{C}, and assume that for some integer $\mathrm{n}>2$, the Galois module $\mathrm{H}_{3 \mathrm{t}}^{2}\left(\mathrm{Y}_{\mathrm{K}}, \not \eta / \mathrm{n} \not \mathbb{Z}\right)(1)$ is trivial. Then the Kuga-Satake variety attached to (Y, η) is defined over \mathbf{k}.

We conclude the proof using Todorov's deep results about the Torelli mapping [5], which generalize the work of I. Piatetski-Shapiro and I. Shafarevich on K_{3} surfaces. In order to make the exposition clearer, we shall have to recall a substantial amount of known results; new material first occurs in § 8.

The paper was written down during a stay at the Max-Planck-Institut für Mathematik, Bonn, under support of the A.-v.-Humboldt-Stiftung. The author thank both institutions for excellent working conditions, and is grateful to A. Todorov for motivating discussions and introduction to the subject of Calabi-Yau and hyperkählerian manifolds.
2. Polarization. Let (Y, η) be a polarized complex hyperkählerian manifold of (necessarily even) dimension $\mathrm{N} \geq 2$ and degree d; here $\eta \in \mathrm{NS}(\mathrm{Y}) \subset \mathrm{H}^{2}(\mathrm{Y}, \mathbb{I})(1)$ is the class of some ample line bundle on Y. The lattice $H^{2}(Y, I)(1) \simeq I^{b_{2}}$ carries a Hodge structure of type $(-1,1)+(0,0)+(1,-1)$ with $h^{1,-1}=1$. Let us consider the scalar product $\langle\dot{x}, \mathrm{y}\rangle=-\mathrm{x} \wedge \mathrm{y} \wedge \underbrace{\eta \wedge \ldots \mathrm{factors}}_{\mathrm{N}-2} \boldsymbol{\eta \wedge \wedge \eta} \in \mathrm{H}^{2 \mathrm{~N}}(\mathrm{Y}, \mathbb{I})(\mathrm{N}) \simeq \mathbb{Z}$. One has $\langle\eta, \mathrm{y}\rangle=\mathrm{d}$, and $\langle>$ induces polarization on the orthogonal complement $\mathrm{P}^{2}(\mathrm{Y}, \eta, \Pi)(1)$ of η inside $\mathrm{H}^{2}(\mathrm{Y}, \Pi)(1)$, i.e. a non-degenerate bilinear form on
$\mathrm{P}^{2}(\mathrm{Y}, \eta, \mathbb{I})(1) \otimes_{\mathbb{I}^{\mathbb{R}}}^{\mathbb{R}}$, positive on the (0,0)-component and negative on the $(-1,1)+(1,-1)$-component (which is a plane).
3. Torelli mapping. Let $\mathrm{V}_{\mathbb{I}}=\left(\mathbb{Z}^{\mathrm{b}_{2}-1},<>\right)$ be a non-degenerate quadratic module of signature $\left(\left(\mathrm{b}_{2}-3\right)+, 2-\right)$, and let us write V for $\mathrm{V} \otimes_{\mathbb{Z}} \mathrm{Q}$. The Hodge structures of type $(-1,1)+(0,0)+(1,-1)$ on $\mathbb{1}^{b_{2}-1}$ polarized by $<>$, with $h^{1,-1}=1$, are parametrized by $\Omega^{ \pm}:=\mathrm{SO}\left(2, \mathrm{~b}_{2}-3\right) / \mathrm{SO}(2) \times \mathrm{SO}\left(\mathrm{b}_{2}-3\right)$, which is a sum of two copies of a hermitian symmetric domain. Given (Y, η) as before, and an isomorphism $\gamma:\left(\mathrm{P}^{2}(\mathrm{Y}, \eta, \mathbb{Z})(1),<>\right) \xrightarrow{\sim} \mathrm{V}_{\mathbb{I}}$, one thus attaches a point in $\mathrm{\Omega}^{ \pm}$. A weak version of the main result in [5] II, which will suffice here, states that this mapping $((\mathrm{Y}, \eta), \gamma) \longrightarrow$ point in $\Omega^{ \pm}$(the so-called Torelli mapping) has finite fibers.

From this it follows that the induced mapping $(\mathrm{Y}, \eta) \longrightarrow$ point in $\Omega^{ \pm} / \mathrm{SO}\left(\mathrm{V}_{I}\right)$ also has finite fibers. We note that the stabilizer $\Gamma \subset \operatorname{SO}\left(\mathrm{V}_{\mathbb{I}}\right)$ of each component of $\Omega^{ \pm}$has index 2 (in fact $S O\left(V_{I I}\right)$ is a semi-direct product of $\pi / 2 \pi$ and Γ), and the quotient $\Omega^{+} / \Gamma \simeq \Omega^{-} / \Gamma$ is a connected algebraic variety.
4. The Kuga-Satake construction applies to any polarized Hodge structure as before on $\mathrm{V}_{\mathbb{Z}}$, see e.g. [1] 4. Let us briefly describe it. The morphism $\mathrm{h}: \underset{\mathbb{C} / \mathbb{R}}{ } \mathbb{G}_{\mathrm{m}} \longrightarrow \mathrm{SO}\left(\mathrm{V}_{\mathbb{R}}\right)$ describing the Hodge decomposition on $\mathbb{C}^{\mathrm{b}_{2}-1}$ lifts naturally to a morphism $\tilde{\mathrm{h}}: \underset{\mathbb{C} / \mathbb{R}}{ } \mathbb{G}_{\mathrm{m}} \longrightarrow \mathrm{G}_{\mathbb{R}}$, where G denotes the Clifford group C Spin V. Via the action of G on the even Clifford algebra $C^{+}\left(V_{\mathbb{R}}\right)$ by left translations, this gives a polarizable Hodge structure $\mathrm{C}^{+}(\mathrm{V})_{\text {sin }}$ of type $(1,0)+(0,1)$ on $\mathrm{C}^{+}(\mathrm{V})$.

Let us denote by Γ the preimage of Γ in G relative to the exact sequence $0 \longrightarrow \mathbb{G}_{\mathrm{m}} \longrightarrow \mathrm{G} \longrightarrow \mathrm{SO}(\mathrm{V}) \longrightarrow 0$; one has a (non-split) exact sequence $0 \longrightarrow \mathbb{Z} / 2 \boldsymbol{Z} \longrightarrow \Gamma \longrightarrow \Gamma \longrightarrow 0$. Let $C_{\underline{Z}}^{+}$be any lattice in $\mathrm{C}^{+}(\mathrm{V})$ stable under the action of Γ. The equality of Hodge structures

$$
\begin{equation*}
\mathrm{C}_{\bar{Z}, \sin }^{+}=\mathrm{H}^{1}(\mathrm{~A}, \mathbb{Z}) \tag{*}
\end{equation*}
$$

defines an abelian manifold $\mathrm{A}=\mathrm{A}\left(\mathrm{Y}, \eta, \mathrm{C}_{\mathbb{Z}}^{+}\right)$up to isomorphism, called "the" Kuga-Satake variety of (Y, η). Moreover the self-action of $\mathrm{C}^{+}(\mathrm{V})$ by right translations respects the Hodge structure, so that A has complex multiplication by $\mathrm{C}^{+}(\mathrm{V})$. One then has a canonical isomorphism of rational Hodge structures

$$
\begin{equation*}
\stackrel{\text { even }}{\Lambda} \mathrm{P}(\mathrm{Y}, \eta, Q)(1) \simeq \mathrm{End}_{\mathrm{C}^{+}} \mathrm{H}^{1}(\mathrm{~A}, Q), \text { see [1] } 3.3 . \tag{**}
\end{equation*}
$$

In particular $\mathrm{P}^{2}(\mathrm{Y}, \eta, Q)(1)$ occurs as a factor of the Hodge structure Hom(End $\left.C^{+} H^{1}(A, Q), Q(0)\right)$, since b_{2} is even.
5. Families. The Kuga-Satake construction also applies in a relative context: let S be a connected algebraic complex manifold, $f: \underline{Y} \longrightarrow S$ a flat morphism whose fibers are hyperkählerian manifolds, and η a polarization of f , i.e. a section of NS $Y / S \subset R^{2} f_{*}^{(a n)} \mathbb{Z}(1)$ which is a polarization of $Y_{s}=f^{-1}(s)$ for every $s \in S$. We denote by $\mathrm{P}^{2} \mathrm{f}_{*} \not \mathbb{I}(1)$ the orthogonal complement of η inside $\mathrm{R}^{2} \mathrm{f}_{*} I(1)$, and by $\mathrm{V}_{I I}$ the constant quadratic module obtained from ($\left.\mathrm{P}^{2} \mathrm{f}_{*} \mathbb{I}(1),<>\right)$ by pull-back to the universal covering \mathbf{S} of \mathbf{S}. The equality of variations of Hodge structure

$$
\underline{\mathrm{C}}_{\underline{l} \sin }^{+}=\mathrm{R}^{1} \tilde{\mathrm{~g}}_{*} \mathbb{I}
$$

first defines an analytic family $\tilde{\mathrm{g}}$ of abelian manifolds on \mathbf{S}, whose fibers are the Kuga-Satage varieties attached to the corresponding fibers of $\mathcal{f}=f \times{ }_{S} \mathbb{S}$.

But the fact that there is no splitting of the exact sequence $0 \longrightarrow \mathbb{Z} / 2 \mathbb{I I} \longrightarrow \tilde{\Gamma} \longrightarrow \Gamma \longrightarrow 0$ prevents us from descending $\tilde{\mathrm{g}}$ to S in general. (Note that the problem disappears if one replaces $\tilde{\mathbb{g}}$ by the "Kummer family" $\tilde{\mathrm{g}} /\{ \pm \mathrm{id}\}$). However if for some $n>2, \mathrm{R}^{2} \mathrm{f}_{*} \mathbb{I} / \mathrm{n} \mathbb{I}$ is a constant local system on S , then $\tilde{\mathbf{g}}$ descends to an abelian scheme $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{S}$ with complex multiplication by $\mathrm{C}^{+}(\mathrm{V})$, the Kuga-Satake family attached to f . Indeed let Γ_{n} (resp. $\tilde{\Gamma}_{\mathrm{n}}$) be the principal congrience subgroup of Γ (resp. $\tilde{\Gamma}$) of level n. It is easily checked that the map $\Gamma_{n} \longrightarrow \Gamma_{n}$ induced by $G \longrightarrow S O(V)$ is an isomorphism, moreover, our assumption about $R^{2} f_{*} \mathbb{I} / n \not \subset$ implies that the Torelli mapping $S \longrightarrow \Omega^{ \pm} / \Gamma$ factorizes through the smooth quasi-projective variety $\Omega^{ \pm} / \Gamma_{n}=\Omega^{ \pm} / \Gamma_{n}$, and one can argue as in [1] 5.7.
6. Hilbert schemes. By the theory of Chow coordinates or bounded sheaves, one knows that the scheme which parametrizes hyperkählerian varieties Y of dimension N endowed with a very ample divisor of degree d is an open subscheme of a finite disjoint union of suitable Hilbert schemes, hence is quasiprojective. Moreover it follows from the smoothness of the Kuranishi families that the geometric connected components $S_{(j)}$ are smooth ([5] 2.5.2).

We now fix a point $s \in S_{(j)}$, and drop the subscript j. Because the Torelli mapping $S \longrightarrow \Omega^{ \pm} / \Gamma$ is dominant ([5] 2.5.5), the monodromy group of the universal flat family
of hyperkählerian varieties $f: \underline{Y} \longrightarrow S$ at s has finite index in Γ. Define the Galois cover $S_{n} \longrightarrow S$ via the kernel of the map $\pi_{1}(S, 8) \longrightarrow$ Aut $H^{2}\left(\underline{Y}_{8}, \mathbb{Z} / \mathrm{n} \mathbb{I}\right)(1)$, so that the local system $R^{2} f_{*} \mathbb{Z} / n \mathbb{Z}$ becomes constant on S_{n}; it follows that the monodromy group of the associated Kuga-Satake family g_{n} is Zariski-dense in Spin V (with the notations of § 5).
7. The Shimura variety attached to the data ($G, \Omega^{ \pm}$) is the complex pro-algebraic variety with complex points

$$
\operatorname{Sh}\left(G, \Omega^{ \pm}\right)(\mathbb{C})=G(\mathbb{Q}) \backslash \Omega^{ \pm} \times G\left(A^{f}\right)
$$

where $A^{f}=\hat{l} \otimes_{\mathbb{Z}} \mathbf{Q}, \hat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{\mathrm{p}}$. Let ($\mathrm{t}_{\boldsymbol{\alpha}}$) be a family of tensors for $\mathrm{C}^{+} \mathrm{V}$ such that G is the subgroup of $G L\left(C^{+} V\right) \times \mathbb{G}_{m}$ fixing the t_{α} (the second projection $G \longrightarrow \mathbb{G}_{\mathrm{m}}$ being the inverse of the Spin norm). We assume for convenience that this collection of tensors includes a basis of $\mathrm{C}^{+} \mathrm{V}$ as endomorphism of $\mathrm{C}^{+} \mathrm{V}$ by translation on the right. It turns out that $\operatorname{Sh}\left(\mathrm{G}, \Omega^{ \pm}\right)$is a fine moduli scheme for triples $\left(\mathrm{A},\left(\mathrm{s}_{\alpha}\right), \gamma\right)$ up to "isogeny", where A is a complex abelian variety, \boldsymbol{s}_{α} are Hodge cycles on A, and γ is an isomorphism $H_{e t}^{1}\left(A, A^{f}\right) \xrightarrow{\sim} C^{+}(V) \otimes_{Q} A^{f}$ mapping each s_{α} to t_{α}, satisfying the following condition:
$(* * *)$ there exists an isomorphism $\mathrm{i}: \mathrm{H}_{\mathrm{B}}^{1}(\mathrm{~A}, \mathbf{Q}) \longrightarrow \mathrm{C}^{+} \mathrm{V}$ mapping each s_{α} to t_{α}, such that $\mathrm{i}^{-1} \circ \mathrm{~h} \circ \mathrm{i} \in \mathrm{R}^{ \pm}$(notation h from § 3), see [4] II 3.11 for more details.

The choice of a lattice inside $C^{+} V \otimes A^{f}$, for instance in the form $C_{\underline{Z}}^{+} \otimes \hat{I}$, fixes the universal abelian scheme $\underset{A}{\longrightarrow} \operatorname{Sh}\left(\mathrm{~g}, \Omega^{ \pm}\right)$inside the isogeny class. Let $\underset{S}{\tilde{S}}$ be the pro-
jective limit of commutative diagrams $s \longrightarrow S^{\prime}$ with S^{\prime} étale finite over S; the S profinite group $\pi_{1}^{\mathrm{et}}(\mathrm{S}, \mathrm{s})$ acts on $\underset{\mathrm{S}}{\boldsymbol{\approx}}$, with quotient S . The same construction applied to S_{n} provides the same proalgebraic variety: ${\stackrel{\approx}{S_{n}}}_{\sim}^{\tilde{S}}$.

By the Kuga-Satake construction and the modular property of $\operatorname{Sh}\left(\mathrm{g}, \Omega^{ \pm}\right)$, we get a morphism

$$
\chi: \stackrel{\approx}{\mathrm{S}} \longrightarrow \operatorname{Sh}\left(\mathrm{G}, \Omega^{ \pm}\right)
$$

and the pull-back of the universal abelian scheme is a Kuga-Satake gamily \mathbb{g}. Furthermore $\dot{\chi}$ passes to the quotient S_{n} to give a morphism

$$
\chi_{\mathrm{n}}: \mathrm{S}_{\mathrm{n}} \longrightarrow \mathrm{Sh}_{\mathrm{K}_{\mathrm{n}}}\left(\mathrm{G}, \Omega^{ \pm}\right):=\operatorname{Sh}\left(\mathrm{G}, \Omega^{ \pm}\right) /_{\mathrm{K}_{\mathrm{n}}}, \mathrm{n}>2,
$$

where K_{n} denotes the preimage of the principal congruence subgroup of $\mathrm{SO}\left(\mathrm{V}_{\mathbb{Z}} \otimes \hat{\mathbb{I}}\right)$ of level n inside $G\left(A^{f}\right)$ (which is isomorphic to its image into $\operatorname{SO}\left(V \otimes_{Q} A^{f}\right.$) and is a torsion-free congruence subgroup of $G\left(A^{f}\right)$).
8. Descent. It is known that $\operatorname{Sh}\left(G, \Omega^{ \pm}\right)$admits a canonical model over the reflex field $\mathrm{E}\left(\mathrm{G}, \mathrm{\Omega}^{ \pm}\right)$, see e.g. [4] .

Lemma 1: $\mathrm{E}\left(\mathrm{G}, \mathrm{\Omega}^{ \pm}\right)=\mathbf{Q}$.

Proof: One has $E\left(G, \Omega^{ \pm}\right) \subset E(\tilde{T}, x)$ for any special point x with associated rational torus \mathcal{T}. We construct a special point in the following way: let us choose an orthogonal decomposition $V_{Q}=\mathrm{V}^{+}{ }_{\perp} \mathrm{V}^{-}$where V^{+}(resp. V^{-}) is a positive (resp. negative) quadratic subspace. By the inertia theorem, V^{-}has dimension 2, and thus may be identified with the quadratic space defined by the opposite of the norm N on some imaginary quadratic extension E of Q. Let the rational torus $T=$ Ker N act on V trivially upon V^{+}and by homotheties upon $\mathrm{V}^{-} \simeq(\mathrm{E},-\mathrm{N})$, so that $\mathrm{T} \subset \mathrm{SO}(\mathrm{V})$; let \mathcal{T} denote the preimage of T inside G. The natural lifting $\underset{\mathbb{C} / \mathbb{R}}{ } G_{m} \longrightarrow \mathbb{T}_{\mathbb{R}}$ of the obvious projection $\underset{\mathbb{C} / \mathbb{R}}{ } \mathbb{G}_{\mathrm{m}} \longrightarrow \mathrm{T}_{\mathbb{R}} \simeq \mathrm{U}(1, \mathbb{R})$ defines a special point x for which $E(\mathcal{X}, x)=E$. Furthermore it is plain to change E by moving the subspace V^{-}, so that $\mathrm{E}\left(\mathrm{G}, \mathrm{\Omega}^{ \pm}\right) \neq \mathrm{E}$. The lemma follows.

The universal triple ($\left.\underline{A},\left(\mathbf{s}_{\alpha}\right), \gamma\right)$ descends to the canonical model ${ }_{k} \operatorname{Sh}\left(G, \Omega^{ \pm}\right)$over any subfield \mathbf{k} of $\mathbb{C}\left(s_{\alpha}\right.$ descends to an absolute Hodge cycle). In particular, one obtains an abelian scheme ${ }_{k} \mathrm{~g}:{ }_{k} \underline{A} \longrightarrow{ }_{k} \operatorname{Sh}\left(G, \Omega^{ \pm}\right)$.

Similarly the representation $C^{+} V$ (by left translations) defines a A^{f}-sheaf $C^{+} V\left(A^{f}\right)$ on $k^{\operatorname{Sh}}\left(G, \Omega^{ \pm}\right)$, see e.g. [4] III 6. In fact, using the lattice $C_{\mathbb{I}}^{+}$, one obtains a \dot{I}-sheaf

Furthermore all these objects pass through the quotient
${ }_{k} \mathrm{Sh}_{\mathrm{K}_{\mathrm{n}}}\left(\mathrm{G}, \Omega^{ \pm}\right):={ }_{\mathrm{k}} \mathrm{Sh}\left(\mathrm{G}, \Omega^{ \pm}\right) /_{K_{\mathrm{n}}}$.
9. Further descent. Let us assume that the Hilbert point 8 is defined over $k \subset \mathbb{C}$. The geometric connected component containing s, that is to say S, is then defined over k;
let us write $S={ }_{\mathbf{k}} S \otimes_{\mathbf{k}} \mathbb{C}$, where ${ }_{\mathbf{k}} \mathbf{S}$ denotes a \mathbf{k}-component of the open Hilbert scheme introduced in §6. One has an exact sequence
$0 \longrightarrow \pi_{1}^{\mathrm{et}}(\mathrm{S}, \mathrm{s}) \longrightarrow \pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}, \mathrm{~s}\right) \xrightarrow{\stackrel{8}{\longrightarrow}} \mathrm{Gal}(\mathrm{k} / \mathrm{k}) \longrightarrow 0$. Let us now assume that the $\operatorname{Gal}(\mathrm{k} / \mathrm{k})$-module $\mathrm{H}_{\mathrm{et}}^{2}\left(\underline{Y}_{8}, \mathbb{Z} / \mathrm{n} \mathbb{Z}\right)(1)$ is trivial. Define the Galois cover ${ }_{k} \mathrm{~S}_{\mathrm{n}} \longrightarrow{ }_{\mathbf{k}} \mathrm{S}$ via the kernel of the map $\pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}, \mathrm{~s}\right) \longrightarrow$ Aut $\mathrm{H}_{\mathrm{et}}^{2}\left(\underline{Y}_{\mathrm{s}}, \not / / \mathrm{n} \nexists\right)(1)$; with the notation of $\S 6$, one has ${ }_{k} S_{n} \otimes_{k} \mathbb{C}=S_{n}$.

Lemma 2. The morphism $\chi_{\mathrm{n}}: \mathrm{S}_{\mathrm{n}} \longrightarrow \mathrm{Sh}_{\mathrm{K}_{\mathrm{n}}}\left(\mathrm{G}, \mathrm{n}^{ \pm}\right)$descends to a morphism ${ }_{k} \chi_{\mathrm{n}}:{ }_{\mathbf{k}} \mathrm{S}_{\mathrm{n}} \longrightarrow{ }_{\mathbf{k}} \mathrm{Sh}_{K_{\mathrm{n}}}\left(\mathrm{G}, \Omega^{ \pm}\right)$.

Proof: By a standard argument od descent (see [2] 2.3 for details), it is enough to show that χ is the unique equivariant morphism $\stackrel{\approx}{\mathrm{S}} \longrightarrow \mathrm{Sh}\left(\mathrm{G}, \Omega^{ \pm}\right)$which is equivariant with respect to the map $\pi_{1}^{\mathrm{et}}(\mathrm{S}, \mathrm{s}) \longrightarrow \mathrm{K}_{\mathrm{n}}$ induced by the original χ_{n} (this property being invarinat under $\operatorname{Aut}(\mathbb{C} / \mathbf{k})$). As explained before, such an equivariant morphism is equivalent to a triple consisting in an abelian scheme $g: \underline{A} \longrightarrow \widetilde{S}$, a collection of horizontal Hodge cycles $\left(\mathrm{s}_{\boldsymbol{a}}\right)$ on \underline{A} including a basis for $\mathrm{C}:=\mathrm{C}^{+}(\mathrm{V}) \cap$ End $\mathrm{C}_{\hat{\boldsymbol{l}}}^{+}$(acting on the right on $\underline{\mathrm{C}}_{\hat{I}}^{+}$) and satisfying a certain condition ($* * *$), together with a $\pi_{1}^{\mathrm{et}}(\mathrm{S}, \mathrm{s})$-equivariant isomorphism of $\hat{\boldsymbol{Z}}$-sheaves $\gamma: \mathrm{R}^{1} \mathrm{~g}_{*} \hat{\bar{I}} \xrightarrow{\sim} \mathrm{C}_{\hat{\boldsymbol{I}}}^{+}$mapping each s_{α} on t_{α} (and in particular commuting with the action of C on the right). Because such a triple has no non-trivial automorphism, the unicity of μ follows from the following statement
$(* * * *)$ if g_{1} and g_{2} are two abelian schemes over $\underset{\mathrm{S}}{\approx}$ such that there are isomorphisms of $\hat{I}\left[\pi_{1}^{\mathrm{et}}(\mathrm{S}, \mathrm{s})\right]$-C-bimodules $\mathrm{R}^{1} \mathrm{~g}_{1^{*}} \hat{I} \xrightarrow{\text { X }} \mathrm{R}^{1} \mathrm{~g}_{2^{*}} \hat{I} \xrightarrow{\sim} \mathrm{C}_{\hat{I}}^{+}$, then
$\mathrm{g}_{1} \simeq \mathrm{~g}_{2}$. Let us now prove ($* * * *$).

For any prime ℓ, the set of bimodule-isomorphisms $R^{1} g_{1^{*} Q_{\ell}} \longrightarrow R^{1} g_{2} Q_{\ell}$ (resp. $R^{1} g_{1^{*} Q} \longrightarrow R^{1} g_{2^{*}} Q$) up to constant is a non-empty open subset U_{ℓ} (resp. U) of a projective space over $\mathbf{Q}_{\boldsymbol{\ell}}$ (resp. \mathbf{Q}); indeed it contains (the multiples of) $\hat{u} \otimes 1_{\mathbf{Q}_{\ell}}$ (resp. it is dense in U_{ℓ}). We want to show that U_{ℓ} (hence U) is reduced to one point; this will follow from the absolute irreducibility of the bimodule $\underline{G}_{\boldsymbol{Q}_{\boldsymbol{\ell}}}^{+}$. Indeed, the image of $\pi_{1}^{e t}\left(S_{n}, s\right)$ in $\operatorname{Aut}\left(\underline{C}_{Q_{\ell}}^{+}\right)_{s}$ is Zariski-dense in the Spin group, and $\bar{Q}_{\ell}[$ Spin $V]=\mathrm{C}^{+}\left(\mathrm{V}_{\mathbb{Q}_{\ell}}\right)$ because $\operatorname{dim} \mathrm{V}$ is odd. Now $\mathrm{C}^{+}\left(\mathrm{V}_{\mathbb{Q}_{\ell}}\right)$ is isomorphic to End W, where W stands for the spin representation over \mathbb{Y}_{ℓ}, and the described irreducibility reduces to the irreducibility of End W as an End W-End W-bimodule, which is obvious.

Since U_{ℓ} and U are reduced to one point, one can normalize \hat{u} so that $\hat{\mathbf{u}} \otimes_{\hat{\boldsymbol{Z}}}{ }^{1} \mathbf{A}^{\mathrm{f}}=\mathrm{u} \otimes_{Q}{ }^{1}{ }_{\mathbf{A}}^{\mathrm{f}}$ for some $\mathrm{u} \in \mathrm{U}$. Then u induces an isomorphism of local systems $\mathrm{R}^{1} \mathrm{~g}_{1^{*}} \bar{I} \xrightarrow{\sim} \mathrm{R}^{1} \mathrm{~g}_{2^{*}} I I$, unique up to sign, thus respecting the Hodge structure, hence coming from an isomorphism of abelian schemes. This proves ($* * * *$), and the lemma.
10. Proof of theorem 2. Let (Y, η) be a polarized hyperkāhlerian variety of dimension N over a field $\mathrm{k} \subset \mathbb{C}$ satisfying the assumption in theorem 2 . Let $\delta . \eta$ be a very ample multiple of η. To the Jata $\left(\mathrm{Y}, \delta_{\eta}\right)$, one attaches its Hilbert point $\mathrm{s}_{1} \in_{\mathrm{k}} \mathrm{S}(\mathrm{k})$, and a suitable geometric point $s \in_{k} S_{n}(k)$ lying above ε_{1}.

Lemma 3. The point s comes from a rational point $s_{n} \in_{k} S_{n}(k)$.

Proof: From the exact sequence

$$
0 \longrightarrow \pi_{1}^{\mathrm{et}}\left(\mathrm{~S}, \overline{\mathrm{~s}}_{1}\right) \longrightarrow \pi_{1}^{\mathrm{et}}\left({ }_{\mathrm{k}} \mathrm{~S}, \overline{\mathrm{~s}}_{1}\right) \xrightarrow{\stackrel{\overline{\mathrm{s}}_{1}}{\longrightarrow} \mathrm{Gal}(\mathrm{k} / \mathrm{k}) \longrightarrow 0}
$$

and the assumption that $\overline{\mathrm{s}}_{1}(\operatorname{Gal}(\mathrm{k} / \mathrm{k}))$ acts trivially on $\left.\left(\mathrm{R}_{\mathrm{et}}^{2} \mathrm{f}_{*} \Pi / \mathrm{n} \mathbb{I}(1)\right)_{\bar{s}_{1}} \simeq \mathrm{H}_{\mathrm{et}}^{2}\left(\mathrm{Y}_{\overline{\mathrm{F}}}, \Pi / \mathrm{n} \Pi\right]\right)(1)$, one deduces a split exact sequence $0 \longrightarrow \pi_{1}^{\mathrm{et}}\left(\mathrm{S}_{\mathbf{n}}, \mathrm{s}\right) \longrightarrow \pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}_{\mathbf{n}}, \mathrm{s}\right) \xrightarrow{\leftarrow---つ} \operatorname{Gal}(\mathrm{k} / \mathrm{k}) \longrightarrow 0$, the splitting being given by s; this means that the decomposition group of s in $\pi_{1}^{e t}\left({ }_{k} S_{n}, s\right)$ projects isomorphically onto the full Galois group $\operatorname{Gal}(\overline{\mathrm{k}} / \mathbf{k})$, hence s is rational over k .

Remark. More generally, any \mathbf{k}-family of polarized hyperkählerian varieties $\mathrm{f}: \underline{\mathrm{Y}} \longrightarrow \mathrm{T}$ of the right dimension and degree, such that $\mathrm{R}_{\mathrm{et}}^{2} \mathrm{f}_{*} \not \mathbb{Z} / \mathrm{n} \not \mathbb{Z}(1)$ is a constant torsion sheaf, gives rises to a morphism $T \longrightarrow S_{n}$ such that f is the pull-back of the standard hyperkählerian family over ${ }_{k} S_{n}$.

Indead, let t be a geometric point of T (which we assume to be connected), and let $\underset{T}{\approx}$ (resp. $\underset{\mathbf{k}}{\stackrel{\approx}{S}}$) be the projective limit of commutative diagrams

$t \longrightarrow S^{\prime}$) with T^{\prime}, resp. S^{\prime} étale finite over T, resp. ${ }_{k} S$. There is a commutative diagram with exact rows

$$
\begin{aligned}
& 0 \rightarrow \pi_{1}^{\mathrm{et}}(\mathrm{~T}, \mathrm{t}) \xrightarrow{\sim} \pi_{1}^{\mathrm{et}}(\mathrm{~T}, \mathrm{t}) \\
& 0 \rightarrow \pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}_{\mathrm{n}}, \mathrm{t}\right) \longrightarrow \pi_{1}^{\mathrm{et}}\left(\mathbf{k}^{\mathrm{S}}, \mathrm{t}\right)
\end{aligned}
$$

which shows that the Hilbert map $T \longrightarrow{ }_{\mathbf{k}} \mathbf{S}$ induces a map of étale fundamental groups $\pi_{1}^{\mathrm{et}}(\mathrm{T}, \mathrm{t}) \longrightarrow \pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}_{\mathrm{n}}, \mathrm{t}\right)$.

Therefore the universal covering $\underset{\mathbf{T}}{\boldsymbol{\sim}} \underset{\mathbf{k}}{\boldsymbol{\sim}}$ of the Hilbert map passes to the quotient $\stackrel{\approx}{\mathrm{T}} / \pi_{1}^{\mathrm{et}}(\mathrm{T}, \mathrm{t}) \longrightarrow{ }_{\mathbf{k}}^{\mathrm{S}} / \pi_{1}^{\mathrm{et}}\left({ }_{k} \mathrm{~S}_{\mathrm{n}}, \mathrm{t}\right)$, i.e. furnishes a lifting $\mathrm{T} \longrightarrow{ }_{k} \mathrm{~S}_{\mathrm{n}}$ of the Hilbert map. (We refer to [4] II 10 for details about $k-s c h e m e s$ with a continuous action of a locally profinite group).

Applying the previous two lemmata, one obtains a composed morphism

$$
\text { Spec } k \xrightarrow{s_{n}}{ }_{k} S_{n} \xrightarrow{k_{n} \chi_{n}}{ }_{k} S_{K_{n}}\left(G, \Omega^{ \pm}\right) .
$$

Pulling back the standard abelian scheme on $\mathbf{k}^{\mathrm{Sh}_{\mathrm{K}}}{ }_{\mathrm{n}}\left(\mathrm{G}, \Omega^{ \pm}\right)$(attached to a suitable lattice $\mathrm{C}_{\bar{I}}^{+}$) gives a $\mathrm{k}-$ model of the Kuga-Satake variety $\mathrm{A}\left(\mathrm{Y}, \delta, \eta, \mathrm{C}_{\bar{I}}^{+}\right)$, with $\mathrm{C}_{\mathbb{I}}^{+} \otimes \mathbb{Q}=\mathrm{C}^{+}\left(\mathrm{V},<>_{\delta_{\eta}}\right)$.

It remains to remark that $<>_{\delta_{\eta}}=\left(\delta^{\frac{\mathrm{N}}{2}-1}\right)^{2}<>_{\eta}$, so that the publication by $\delta^{\frac{\mathrm{N}}{2}-1}$ provides an isomorphism $\mathrm{C}^{+}\left(\mathrm{V},<>_{\delta_{\eta}}\right) \simeq \mathrm{C}^{+}\left(\mathrm{V},<>_{\eta}\right)$. If we still denote by
$\mathrm{C}_{\bar{I}}^{+}$the image of $\mathrm{C}_{\bar{I}}^{+}$under this isomorphism, we obtain that the Kuga-Satake variety $\mathrm{A}\left(\mathrm{Y}, \eta, \mathrm{C}_{\bar{I}}^{+}\right)$is defined over k , in conformity with theorem 2.
11. Good reduction. In fact, the k-model A of the Kuga-Satake variety just constructed enjoys a nice extra property: the pull-back of ${ }_{k} \gamma$ by ${ }_{k} \chi_{\mathrm{n}} \circ \mathrm{s}_{\mathrm{n}}$ is an isomorphism of $\operatorname{Gal}(\bar{k} / \mathrm{k})$-modules $\mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\mathbf{k}}, \hat{\bar{I}}\right) \xrightarrow{\sim} \mathrm{s}_{\mathrm{n}}{ }_{\mathrm{k}} \chi_{\mathrm{n}}^{*} \mathrm{C}_{\hat{I}}^{+}$.

Lemma 4. In the situation where $H_{e t}^{2}\left(Y_{\bar{K}}, ~ I / n I I\right)(1)$ is a trivial Galois module for some $n>2$ and Y has good reduction at a prime p of K which does not divide n, A has good reduction at p .

Proof: Replacing n by a factor, one may assume that n is prime. The torsion sheaf $\underline{C}_{\hat{I}}^{+} \otimes \mathbb{I} / \mathrm{n} \mathbb{I}$ is constant, so that the Galois module $\mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\bar{k}} \mathbb{I} / \mathrm{n} \mathbb{I}\right)$ is trivial. Therefore the n-torsion points of A_{k} are rational over k, and by the theory of semi-stable reduction, the action of the inertia group I at p is unipotent on $H_{e t}^{1}\left(A_{\bar{k}}, Z_{n}\right)$. On the other side I acts trivially on $H_{e t}^{2}\left(Y_{\bar{k}}, I_{n}\right)(1)$ because Y has good reduction at p, hence I acts trivially on the even Clifford algebra $\mathrm{C}^{+}\left(\mathrm{P}_{\mathrm{et}}^{2}\left(\mathrm{Y}_{\bar{k}}, \mathbb{I}_{\mathbf{n}}\right)(1),\langle \rangle_{\eta}{ }^{\otimes} 1_{\mathbb{Z}_{\ell}}\right)$, which is isomorphic to the Galois module of all endomorphisms of $H_{e t}^{1}\left(A_{K_{k}}, I_{n}\right)$ which commute to the complex multiplication C (see [1] 6.6 for more details); therefore I acts on $\mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\mathrm{K}}, I_{\mathrm{n}}\right)$ through the center of C . At last, we find that I acts trivially on $H_{e t}^{1}\left(\mathrm{~A}_{\mathrm{E}}, I_{\mathrm{n}}\right)$, it follows that A has good reduction at p .
12. Proof of theorem 1. We turn back to the notations and assumptions of theorem 1. Let us first remark that by localization, we may assume that R is a regular ring; we
choose a prime number $n>2$, and we also assume that n is invertible in R. Since Y has good reduction at all primes of R of height one, it then follows from the purity of the branch-locus that the representation of $\mathrm{Gal}(\mathrm{K} / \mathrm{K})$ on $\mathrm{H}_{\mathrm{et}}^{2}\left(\mathrm{Y}_{\mathrm{K}}, \mathbb{I}_{\mathrm{n}}\right)(1)$ factors through $\pi_{1}(\operatorname{Spec} R)$.
On the other side, since we fixed the pair (N, d) , there may occur only finitely many quadratic lattices $\mathrm{V}_{\Pi,(\mathrm{j})}=\left(\mathbb{I}^{\mathrm{b}^{-1}},<>\right)$ (notation of § 2); this follows from the Hilbert scheme argument of $\S 6$. According to Hermite-Minkowski, there exists only
 Denoting by r the (unramified) finite extension of R determined by the intersection of the kernels of these homomorphisms, and by \mathbf{k} its fraction field, we have proved the following

Lemma 5. There exists a finite extension r of R, depending only on the pair (N, d), such that for any (Y, η) as in theorem 1, the $\operatorname{Gal}(\mathrm{k} / \mathrm{k})$-module $H_{\mathrm{et}}^{2}\left(\mathrm{Y}_{\mathrm{E}}, \eta / \mathrm{n} \nexists\right)(1)$ is trivial.

Using lemma 4, we see that the representation of $\mathrm{Gal}(\bar{k} / \mathrm{k})$ on $\mathrm{H}_{\mathrm{et}}^{1}\left(\mathrm{~A}_{\overline{\mathrm{E}}}, \bar{l}_{\mathbf{n}}\right)$ factors through $\pi_{1}(\operatorname{Spec} r)$, i.e. A has good reduction at any prime p of the integral closure of r in \bar{K}. By Falting's theorem [3], there are only finitely many such abelian varities A.

Note that the complex abelian manifolds $A_{\mathbb{C}}$ which occur are described by a Hodge structure $\mathrm{C}_{\bar{l}, \mathrm{sin}}^{+}$(formula (*)) on a previously chosen lattice $\mathrm{C}_{\bar{Z},(\mathrm{j})}^{+}$inside $\mathrm{C}^{+}\left(\mathrm{V}_{(\mathrm{j})}\right)$. Using formula (**), we know that there are only finitely many rational Hodge structures $\mathrm{P}^{2}(\mathrm{Y}, \eta, \mathrm{Q})(1)$ on $\mathrm{V}_{(\mathrm{j})}$ which are the image under the Torelli mapping, tensored with \mathbb{Q}, of polarized hyperkähler varieties satisfying the assumptions of theorem 1 ; this leaves only finitely many integral polarized Hodge structures
$\mathrm{P}^{2}(\mathrm{Y}, \eta, \mathbb{Z})(1)$ on $\mathrm{V}_{\Pi,(\mathrm{j})}$. Because the Torelli mapping has finite fibres, we see that there are only finitely many possibilities for $\left(\mathrm{Y} \otimes_{\mathrm{K}} \mathbb{C}, \eta \otimes_{\mathrm{K}} \mathbb{C}\right)$. By Galois descent, K-forms of $\left(\mathrm{Y} \otimes_{\mathrm{K}} \mathbb{C}, \eta \otimes_{\mathrm{K}} \mathbb{C}\right)$ are described by the set $\mathrm{H}^{1}(\operatorname{Gal}(\mathbb{E} / \mathbf{k}), \underline{\operatorname{Aut}}(\mathrm{Y}, \eta))$, which is finite (like $\underline{\operatorname{Aut}}(Y, \eta)$). We conclude that there are only finitely many isomorphy classes of hyperkählerian varieties Y of dimension N defined over K , endowed with the numerical class of a very ample divisor of degree d, such taht Y has good reduction at all primes of R of height one.

References

[1] Deligne P., La conjecture de Weil pour les surfaces K_{3}, Inventiones Math. 15, 206-226 (1972).
[2] Deligne P., Les intersections complètes de niveau de Hodge un, Inventiones Math. 15, 237-250 (1972).
[3] Faltings G., Wüstholz G., Rational points, Aspects of Math. EG, Vieweg Verlag Wiesbaden, $2^{\text {nd }}$ edition 1986.
[4] Milne J., Canonical models of (mixed) Shimura varieties and automorphic vector bundles, preprint (part of a forthcoming book).
[5] Todorov A., Moduli for hyper-Kählerian manifolds, I, II; preprints Max-Planck-Institut für Mathematik, Bonn, 1990.
[6] Todorov A., Arithmetic height on the moduli space of Calabi-Yau manifolds; preprint Max-Planck-Institut für Mathematik, Bonn, 1990.

