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Introductlon. It is a well-known fact that if X is a

cornpact cGlmplex sirnply connected Kähler manifold with

c 1 (X) = 0, then

where

a) for each j dirn HO(X, ,n2 ) = 1 and if ~, 15 a non-zero
J J

holomorphic two form on Xj' and at'each point x E Xj , 4'j i5 a

non-degenerate form, i.e. 4',A ••• A 4'j':* 0 i5 a holomorphic
l ] _ )

·n = 0 meZ form which has no i zeroes ano no poles.

o p
b) for each i and °< p < dim<tYi = n dirn H (Y i ,(2 ) = °
and dirn HO(y, ,nn) = 1 and it 1s spanned by a holornorphic

l.

n-form without zeroes and poles. Such manifolds will be called

CaLabi-Yau manifolds if n ~ 3.

Thi5 fact is due to Calabi and Bogolrnolov. See [2].

An elegant proof based on Yau's solution and Calabi con­

jecture was given by M.L. Michel50n in [12].

The aim of this article is to study the deformation5

of the Calabi-Yau rnanifold'X and narnely the so called

Teichmuller space T(X) of X which is defined in the



-1- .

§1. Preliminaries

Definition 1.1. Let X be a compact complex manifold with

a holonomy·group SU(n) (n = dim~X) then X will be

called a Calabi-Yau manifold.

Theorem 1.2. Let X be a Calabi-Yau manifold, then

a) X has a Ricci flat Kähler metric

b) dima:Ho (X ,nP) = 0 for 0 < p < n = dima:X and

HO(X,nn) i5 generated by a holomorphic form wx(n,O) * 0 which

has no zeroes and no poles on X.

Proof: a) Since the holonomy group is SU(n) we get

immediately that on X there is a Kähler, Ricci flat

metric. For more details see [ 10 ].

b) Fer the proof ef this fact see [2] and [12].

Q.E.D.

Cer. 1.2. 1 . Every Calabi-Yau rnanifold X is a prejective

algebraic manifold.

Proof: From theorem 1.2. ~ X is a Kähler manifold. See [10 ]

Kodaira proved that if X is a Kähler manifold and

2
H (X,Ox) = 0, then X is a projective manifold. Since X

22·
is Calabi-Yau rnanifeld, then HO(X,n) = H (X,Ox) = 0 and

so 1. 2. 1. is proved. See [11·].
Q.E.D.
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Definition 1.3. Let (gaß) be a Kähler metric on X

such that

Ricci (g) = a~log det (gaS) e 0

then (gaS) will be called a Calabi-Yau metric.

Remark. Since on a Calabi-Yau manifold X there is

a holomorphic n form (n = dima:X ) which has no zeroes

and no poles, it fellows that c 1 (X)z a 0 . On

each Kähler manifold X w~ith c 1 (X)71 = o, it follows

from the solution of the Calabi conjecture by Yau, that

on X we can find a Calabi-Yau metric. From now on we will

fix a Calabi-Yau metric (g ) on X [18].
aß

Lemma 1.4.

wx(n"O) is a parrallel form with respect to the

connection induced by the Calabi-Yau metric (ga~)' i.e.

where V is the covariant differentiation, induced by

the Calabi-Yau metric.

Proof: In [11] the fol~owing fermula is proved:

+ I r
~=1 \.1=1
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-LR~ tP - - -
Bv 0 1 , ••• ,0 ,B1'···'~1,···,BP t q

v

Let us put in thi s formula lP = Wx (n , 0). Since on

Kähler manifold every holomorphic form is harmonie one

we get that

DtP :: 0 .

On the other hand since (goS) is a Ricci flat metric, so

R
I _ • 0 and since ß

1
=••• =Bq ;;: 0 we get thatBv

On the other hand it 1s not difficult to prove that

(See [11]).

So since

<0 Wx(n, 0) , Wx (n, 0) > = 0

F~rom the last equality we conclude that

Vwx(n,O) ;;: 0

i.e. wx(n,O) is a parallel tensor with respect to

the Calabi-Yau metric.
Q.E.D.
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1 .5. Let lP t. H1 (X, 8) and lP be a harmonic representative

with respect to the Calabi-Yau metric· (gaß)' so locally

lP can be written in the following ~ay:

(1.5.1)

where

aq> = a*lP = 0, ä* is the conjugate of ä

with respect to (gaß) and ä* = -*V*,V is the connection of

on 8.
From (1.5.1.) it follows that

(1.5.2) q> t r(X,Hom((T*)1,0,(T*)1,0)

Definition 1.5.3. By AKlP t f(X,Hom(AK((T*) 1,9)~*((T*)1,0»

we will denote the encomorphism given by

K
(A lP) (9." /\ ••• /\

1.
1

9.., )
~K

§2. The main lemma.

,
[lP ] l H1 (X,8) L ~ dzß

"
aLemma. Let ° * and lP = --

3za

be the harmonic representative of [lP] with respect to

the Calabi-Yau metric that we fixed, then
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isa harmonie form of type (k., n - k ) wi th re speet to

Proof:

.:.... .......__-.......- .......... --
The proof of this lemma is based on

P . t . 2 1 I f In &- H1 (X, 0)roposl. l.on . . '+' '- Cl is a~harmonie

. f b Ak,nrepresentatl.ve 0 a Dol ault elass, then '+'

harmonie representative in Hk(X,AkS).

Proof: It is a well-known faet that

is a

where Dä is the Laplaee-Beltrami on nk,o 0 Ake defined

by the Calabi-Yau metric (gaS),a* 1s the adjoint operator

of ä.

k 0. 1 etk d d
A "tP lu = L (lP /\ ••• AlP .) " (-0.-/\ ••• /\-0.-)

a 1 < ••• <OK dZ 1 dZ K

where

0..
l.'

lP lu
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are the comp.onents of <.p. Since ä<.p = 0 ~ \I a<.pet = 0
et

we get that

a(Ak<.p) = o.

Next we need to prove that

(2.1.1.) if

In order to prove (2.1.1.) we will use the following

relation which is true in the case of a Kähler manifold:

-ia* ::: [/\,V] = AV- VA

where

and V is the covariant derivative on e induced by the

Calabi-Yau rnetric. For the proof of this relation see [sitil.

Frorn the definition of A and since A~lP is a form of

type (ü,k) with values in Ake we get that

so

We need to prove that:

(2.1.2.)
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Proof of (2 .. 1 .. 2) : Frorn the fact that (gaß) is a Kähler

rnetric it follows that at each point Xo we can choose

the local coordinates (z 1 n such that, ••• , z )

(* ) ~ 0 (I j2) 8 - f:.o a * ßg - =u - + Z where - 1aß aß ' aß l1 a = ß

and ''V = d at the point x O. For the proof of this fact

see [, 7 ] .. Frorn (*) it follows that

So if we prove that

then (2 .. 1.2.) will be proved. Next we need to prove (**).

First we need to compute

k a
a (A 'lP) (x 0 ) = L a ((J) 1x ••• x

a 1 < .. • .<cxK

== L
Cl, < •• • <cxk

i 0., '') Cl i ~k d a(L (-1) lP x ••• x olP A•••AlP ) IJ---A .... 1\--

i ' 0: 1 o.koz dZ

~Rernernber that lP: is a (0,1) form and it is a component of

lP f H' (X, e). We ~eed to orove

then clearly



-8-

So we need to show that (***) is true for eaeh point Xo ·

Proof of (***): Since X is a Kähler manifold we ean find

i nloeal coordinates in Xo (z , ... z) such that

i 1 °1) {dz} is an orthonormal basis in (T')
x O,

See [. 7 ].

at Xo ·

The eondition 2) means that at the point Xo we have

D = a •
a.

Since ~ 1 is a ä-closed form, it follows from Dalbault's
a.

lemma that there exists a function F 1 in a neighborhood of

such that

0.. a. C1. ß1 aF 1
L cßF

1 -
~ = = dz

0.. a. a. a.
Let F

1 Re F 1 i Im Fa where Re F
1 and Im F

1= + ,

real
co

functions. Clearlyare C

a. a. 0..
1 aRe F 1

+ ia Im F 1
<.p =

From here we get that

Next we will prove that:
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. . 0., _. o. i a
K

0., _ .ai o.
K

'(****)a)A(~ A..• A(aa Re F )A .•. Atp ).(xo)=(tp ·A ...A[A(aa Re-F )]A ••• Atp. )(~o)

0., • _ 0. i ~ a, .' _ 0. i aK
b) A (tp A••• A(~ Cl a Im F ) A•• Atp ) (xo) =(tp A••• A[A (1.aCl. n:n F )] A• • A<,p ) (xo)

o..
matrix A = (Clo.aßRe F 1.)

is areal function, then. theProof of (****): Since

is such that -tA = A . From the

standart fact of linear algebra we can make
, 0

change of the orthogonal basis in (T ~ )*
~O

will be a diagonal matrix, where U E U(n)
, u

we can find orthogonal basis (dz , .•• dz )

that

aäRe F
ai

= Ir.pa~dzßAdzß
ßß

an orthogonal

such that UAUt

• This means that
, ,0

of (T )* suchx o

Since in this basis iIgaädZaAdzß = LdzßAdz ß , the

definition of the operator A, and the fact that
Ct 1 Ct

Kr.p , .•• ,tp are forms of type (0,1) we get that

CX 1 ,cx i ß -8 o. K a Cl 0. 1A(<.p 1\ ••• A(1 _dz Adz )1\ •• • Ar.p ) = (1-ß1\-a) ~ (r.p A..• 1\
aß . dZ Clz

\ a i p -p a K 0. 1 o.i ß -ß a K(l..r.p _dz Adz )1\ •• • Ar.p ):= (r.p A• •• A[A(Lr.p _dz Adz ) ]A ••• Ar.p )
pp ßß

So (****)a) is proved. Repeating the same arguments we

get (****)b). So (****) is proved.

Q.E.D.

From (****)a) and b) we get (***). Since for each
0..

l.i r.p is
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a harmonie form we get,that

- Ka*(A 4» = O· •

So AKq> is a harmonie form.

Q.E.D.
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The end of the proof of the lemma.

The lemma will follow from the following formula:

(2 . 2 )

\

a* L(Ak(!»)J~ (n, 0)] ::;: [ä* (Ak((») ] _I u1

X
(~, 0) •

Proof 'of (2. 2 l )

From the well-known formula:

'V ( '!' I Uh.. (n , 0 )) ::;: ('V '!')a - --A a wx (n,O) ± \}I ( V' Wx (n, 0) )
0. ..

and the fact that 'Vawx(n,O) ::;: 0 we get that

(2.2.1.) ('V '!')
a

(2.2.) follows from (2.2.1.) and the following formula

for ä* that can be found in [15

::;: (-1) p+ 1 \' ij n 111 a
l. 9 v . 't" I .. .

~ ,J,J 1 ,··,J 1P q-

Q.E.D.

From (2.2.1.1.) and the fact that a* (1\klP ) ::;: 0

'We get that

Clearly

a[ (Ak(() ) I w (n , 0)] = 0
- X
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a(Ak~) = O. So this proves that

k
. (A lP) J ux (n,O)

is a harmonie form.

Q.E.D.

§3. Loeal deformation theory for Calabi-Yau manifolds.

Theorem. Let X be a Calabi-Xau manifold, then the

Kuranishi space U of loeal deformations of X is a non­

singular and has dimension equal to dim~H1 (X,G).

Proof: The proof of this theorem is based on the following

Proposition:

Proposition 3.1. Let lP E H1
(X, G) be a harmonie representa­

tive with respeet to the Calabi-Yau metric, then

[lP,lP] == 0

where [~,lP] means the Lie bracket.

Proof: From the definition of the Lie bracket it follows

n

L
J.1=1

T
d~

( lPJ.1 - ­
Cl dZJ.1

d~
ct

~ -) = 0
ß dZJ.1

for each a. * ß and T. The proof of Proposi tion 3. 1 is

based on the following observation:
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d T
_U ~lPß -j.1) = 0

dZ

'We will prove ,this observation:

··"From the definition of A2~ we get that

A2~ = L (~~ A ~T)
j.1<T

where

is a component of ~.

d d
" --A--

dZj.1 dZT

Let us fix a,ß,T and compute the,coefficient in

-a -ß 1 J.1 1 AT kfront of dz 1\ dz Adz A... Adz A... Adz 1\ ••• A" dz in the

form of type (n - 2,2) (A2~) J wx(n,O). We suppose that

1 n
= dz 1\ ••• 1\ dz

From the definition of (A2~) J wx(n,O) we get that

(3.1.1.)

= \ (_1)j.1+T({~ (~_ ~ T) d-a d-ß d 1 d A j.1L 'f(i '+'ß tPß lP<i z A Z -/\ Z A ••• A Z A •••.

~<T

d /\T n
A Z A ••• l\dz

Now let us compute the coefficient of



-13..:

in front of -0 -ß 1 Atdz A dz A dz A ••• I\ dz kdz . From

(3.1.1.) we get that this eoeffieient is

So this proves our observation.

From the faet that

form we get that

2
(A ~) J wx(n,O) is a harmonie

and so

Let be a basis of harmonie forms of

H' (X,G) with respeet to a fixed Calabi-Yau metrie. Let

N
t = ( t 1 ' • • • , t N) E er •

Clearly ~ (t) ~s sueh that

~ (0) = 0

a~ (t)
, .

2[~ (t) ,~ (t) ] = 0

Obviously sinee ~v are harmonie form we have
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On the other hand §2 we know that

[lP (t) ,lP (t)] == 0

Also·we have

From Newlander-Nirenberg theorem it follows that

lP(t) determines a complex analytic family of Calabi-Yau

rnanifolds for each t f:. a:N • Let us prove this for the

cornplete~ess of the paper.

as a vectorConsider tp (t) == I~ (t) d'Za 0 _d_
°u az ß

(O,1)-forrn defined on XX Be' wh~re Be == {t.t:. a:NI

Clearly tp(t) satisfies the integrability condition

(lP == L tvlP v tp i5 holomorphic in t.)

Thus lP deterrnines a cornplex structure X on X x Be.

The local cornplex coordinates of X are 501utions s'

of

This equation is satisfied if and only if

(**) a s'- L <J a· s 0 1 , ••• , n--
az ß == a ==-u er;oz ß

oe:
== 0 0 = 1 , ••• , N

at:\)
, .
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That (*) has a solution follows from Newlander-

Nirenberg theorem. Hence, on some coordinate chart

U. = U. x ß ',= X
] ] E:

we have n + N independent solutions

1 ,n
t 1 ' .... • , t N, l; j (z, t) , . . . , S j (z, t)

of (*). So X is a complex manifold such that the

projection:

TT:X ----;.. B
e:

is holomorphic of rank N and for each fixed t,

TT- 1 (t) = X t is a complex manifold with a complex structure

given by

where Ja is the complex structure operator on X and

At = (id + tl: (lP~))e (id + tL~)

Q.E.D.

§ 4. Construction of the moduli space of Calabi-Yau manifolds

Defini tion 4. 1. The Teichmüller space T (X) of a given

Calabi-Yau manifold i5 defined in the following way:

T(X} = {all cornplex structures

manifold } /Diffa(X}

co
on ,X as C
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where DiffO(X) = {all diffeomorphisms isotopic to the

identity} .

Theorem 4. Let X be a CalaThi-Yau manifol~, then

T (X) . exists and T (X) is a complex manifold of

dimension equal to. dim~H1 (X,G).

Proof.

Lemma 4.1. Let L tH1 ,1 (X,Z) and suppose that L ·is

fixed and L = [Im gas]' where

on X. Let

is a Kähler rnetric

Auto (X) = {~ € Aut (X) I~ acts as identity on

Hn(X,Z) and ~*(L) = L}

where Aut (X) =: {the group of the biholomorphic auto-

rnorphism of x} then

AutO(X) is a finite group.

Proof: Since HO (X,0) ~ HO (x,nn-1) (this isomorphism is

obtained by the following map ~ € HO(X,G) ~ ~ Iw (n,O»
- x

and on a ~alabi-Yau manifold

we get that Aut (X) i8 a discrete group and so Auto (X)

is also a discrete group. Since if ~ € Auto (X) ~ ~*(L) = L

and from the solution of the Calabi-Conjecture by Yau

in L there exi8ts a unique Ricci-flat metric we get

that if ~ E Auto (X) , then
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lP*(g ) = g
aß aß

where (g ) is the Calabi-Yau metric corresponding
aß

to the class L E H1
1

1 (X ,lR) n H2 (X I~). From lP* (g ) =.' g
aß aß

it follows that ~ is an isometry, which means that

Auto (X) i5 a discrete subgroup of a compact group. From

he~e we get that #IAutO(X) I < 00.

Q.E.D.

Lemma 4.2. Let ~ E AutO(X) and let n:X ~ U be the

Kuranishi family of X, then ~ induces an action on U

and this action is just the identity map.

Proof: If ~ ( Auto (X) I then lP induce5 the following

action on U:

Let 5 E U and let J t: r (X I Horn (TX I TX·» be the cornplex
s

structure operator that defines the complex manifold Xs '

then we define ~k(S) to be the point of U that

correspond to the complex structure operator ~*(Js).

Here we look at W as an element of Diff(X). We know

from §3 that all complex structures on X that correspond

to s E U are .. given by

where [tP] E H1
(X,G) and ~ is a harmonie representative

of [tP). If, we prove that

(4.2.1.)
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then lemma 4.2. wj,ll be proved

Proof of 4.2.1.: Since ~ E Auto (X) ~

1 )

2)

~*(gaß) = (gaS)' where

from the fact that ~

g~ß is the Calabi-Yau metric

induces the identity on Hn(X,~)

~ lP* (wX. (n , 0 )) :::: WX. (n , 0 ) and lP* (w (n -1 , 1 )) = w (n-1 , 1 ) ,

where w(n-1,1) is any harmonie form of type (n-1,1).

Sinee

~ ~..(n , 0 ) = wX (n- 1 , 1 )

is a harmonie form by the lemma in § 2 and from the

eanonical isomorphism:

given by:

we get that:

and so lemma ~.2. is proved.

Q.E.D.

Remark. Frorn loeal Torelli theorem it follows that

4.2 is true without the assurnption that ~*(L) = L.
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11
4.3. Construetion of the Teiehmuller space of Polarized

marked Calabi-Yau manifolds.

Definition 4.3.1. Let X be a Calabi-Yau manifold. We'

Calabi-Yau manifold if Y1' .•• 'Yb
n

and L = [Im ga~] , (where (ga~)'

will call the tripple (XiY1' ••. 'Yb ~L) a marked polarized
n
is a basis in H (X,~)

n

is a Kähler metrie) is

a fixed elass in 2H (X,~).

Clearly (Si Y1 ' · · · , Yb i L) and (X, Y1 ' · · · , Yb i L) are
n n

isomorphie if there exists a biholomorphic map

<,p:X ----;.. S

such that

lP*(y·) = y.
~ ~

and <p*(L) = L.

We want to construct a universal family of marked

polarized Calabi-Yau manifolds. In order to construct it

we will need the period map. For this construction we

will need some definitions.

Definition 4.3.2. Let H~ be a free abelian group

equipped with a) (if n is even)non-degenerate symmetrie

bilinear form <,>:H
Z

x HZ ~ Z

skew symmetrie non-degenerate form

b) (if n is odd )bilinear

Then we define the Hodge strueture on HZ in the following
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way: This is a filtration, the so ealled Hodge filtration

(4.3.2.1)

whieh fulfills the following eonditions:

a) The Hodge filtration is isotropie, whieh means that:

(4.3.2.2) (Fq)~ = Fn- q - 1 (~ means orthogonal with

with respeet to <,> indueed on HZ 0 ~)

b) We have the Hodge deeornposition

n
lB

q=O

where

(4.3.2.3)

e) The following Riemann bilinear relations

<Fn-q,q ,Fn-p,P> = 0 (p * q)

nemark If X i8 an algebraie rnanifold, L is the

polarization clas~, then for eaeh k on the primitive

eohomology
k '

H (x,Zn
O

we ean define in a natural way a

Hodge strueture of weight k in the following way

1) the bilinear form on is defined as follows:

J n-k<u,v> = . L AU "n
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2) the Hodge filtration is defined kn:H (X,([)O as

Fp d~f Hk,Q + Hk-1,1+ k-p,p• •• + H •

Now it is easy to check that in such a way we get a

Hodge structue of weight k on

4.3.3. Classifying spaces for Hodge structure8.

Let ~ be a free abelian group equiped with non-

singular bi linear form <,> :~x HZ ----)0- ~ such that if

a) n is odd, then <,> i8 skew-syrnrnetrie

b) n is even, then <,> is symmetrie. Let

be an inereasing sequence of integers whieh 1s self-dual in

the sense that

h = hn-q-1 n h
q

for 0 ~ q :i n

Consider the set Gr of all filtrations

H 0~, dirn Fq = h
~ q

whieh satisfy
\ \

(Fq).l = F n - q - 1

q n-q-1
<E ,'E > = 0

(_i)n <~,Ea> is non-singula

( i ) q (- i ) n <E a , 'Ea > > 0
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Proposition 4.3.3.1 Gr 1s a homogeneous complex manifold

Gr = G/H

of a real, simple, non-compa~t Lie group G· divided by a

compact subgroup H. See [6 J.

Examples. a) When n = 2m is even,

G = SO(a,biffi) ° 2 2m 1 3 2rn-1(a = h + h + ... +h ,b=h +h + ... +h )

i5 the orthogonal group of the quadratic form

the cornpact isotropy group i5

U(h O) m-1 mH = x ••• U (h ) x so (h )

and the maximal cornpact 5ubgroup of G i5

K = SO(ai]R) x SO(biffi)

2m + 1 i5 odd G = Sp (2a i:IR) (a o m
b) when n = = h + ..• +h )

a
i5 the group leaving the skew-fonn j ~1 (x

j
A X. ) invariant,

J+a

the compact isot~opy group is H 0 U(hm) and the::::: U(h )x ••• x

maximal compact' group is K = U(a).

4.3.3.2. According to [6 ] we may identify, the tangent

bundle to Gr as

(4.3.3.2.1)
m m-q

TF(Gr) = m m Horn (Eq EP+q )
q=O p=1 <,> '
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where

F E: Gr and n-1m = [-]
2

The identification (4.3.3.2.1) is G-invariant, and

the positive definite metries (-1)Q<u,u> on Eq induce

aG-invariant Hermitian metric dS~r on Gr. Group

theoretically, dS~r is the metric induced by the Cartan­

Killing form on the Lie algebra of G. This rnetric we will

call standart.

Definition 4.3.3. Let n:X ~ U be the Kuranishi family

of a marked polarized Calabi-Yau manifold (XiY1' .•. 'Yb ;L)
n

then we can define the period map in the follow1~g way

p:U -----> Gr

p(t) d~f {The Hodge polarized structure of weight

Hn(X,~)O induced from the complex structure on Xt

where ,Hn(X,Z)o are the primitive cohomologies. p

holomorphic m~p [ 6 ] •

n on

= n- 1 (t)}

is a

Remark: From the theorem proved in §3 it follows that if

x~ U is the' Kuranishi family of the Calabi-Yau manifold

X, then U is a non-singular complex manifold of dimension

equal to dimcrH
1 (X,8). So from here it follows"that X as a

00

C rnanifold is just:

X - X x U
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H(X,Zl)
n

for all

we get that we have fixed

t E. U, where

(
j

After shrinking U we may suppose that for each t E: U we

can find a Kähler metric ga~(t) such that

So from this remark it follows that the period map

p:U --> G

is correctly defined.

The local Torelli theorem says that:

p:U ~ G

For the proof of this fact see [ J. Now using lemma 4.2.

we can " pa tch" together all Kuranishi families, i.e. we define

x
{-

F(X)
x

J.l (+ )/"-1
U. U.

1. 1.

where means that we idenify t f U. wi th s € U .
1. ]

if

Xt and Xs are ~isomorphic as marked polarized Calabi-Yau

manifolds. Notice that X~ F(X) is a universal family for

all marked polarized Calabi-Yau manifolds since. from the

proof of the theorem in § 3 it follows that the Kuranishi

family is complete in the sence of Kodaira-Spencer, i.e.
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and so from a theorem of Kodaira-Speneer and lemma 4.2.

it follows that X ---->- U, i.e. the Kuranishi family is the

loeal universal family of Xo• See [11].

From lemma 4.2. and the fact that if ~ ( DiffO(X),

then ~ induces the identity map on Hn(X,~) and ~*(L) = L

"we get that F(X) is really the Teiehmuller space of X.

Q.E.D.

1\

§ 5. The Weil-Peterson metric on the Teiehmuller spaee T(X)

5. 1 • Let and let -1= TT (sO), where

TT:X ~ T(X).

If 1s a basis of harmonie forms of type (0,1)

with values in Gs! i.e. a basis of H1 (X ,8) and let
u So

Ja be the eomplex strueture operator of X , then locallySo
around So the complex structure operator J

t
of

-1
X t = TT' (t) is given by:

5.1.1.

where
1 . N N

t = (t , ... ,t ) L ~ • So we can view
n

1 N
(t1 ,···,t)

as . Iocal coordinates of T(X) around the point

So ~ T(X). From (5.1.1.) it follows that the Kodaira-Spencer

map:

---;"'H 1 (X ,8)
So
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is given by:

a
P:at =

i
v. --;...

1.
4'.

1.

So we can identify T ,T(X);; H 1 (X,0).
So

5.3. Let dV denote the volume form of the Calabi-Yau

rnetric gaS. We define the Weil-Petersson metric

on T(X) by:

h ( t ) J ()E ( ) 9. ba dV
.7 := X ~i a ~J' b gp~q
1.) 0 t

o

5.4. In the case ofpolarized symplectic holornorphic manifolds,

i.e. compact Kähler manifold on which there exists a unique

up to a constant holomorphic two form u\ (2,0) which is a
X

non-degenerate at each point x E. X, i. e. if

then

it is proved in [17] that

T (X) =SO 0 ( 2 , b 2 - 3) / SO ( 2) x so (b 2 - 3)
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5.5. Theorem. Let X be a compact polarized symplectic

holomorphic manifold, then the Weil-Petersson metric on

T(X) ~ SOO(2,b2 - 3)/SO(2) x SO(b 2 - 3) is just the

Bergman rnetric. See also [13]&[14].

For the definition of the Berg~an metric see [ 9 ].

Proof. First we need some facts about the space

T (X) ~ SO0 ( 2 , b 2 - 3) / so (2 ) x so (b 2 - 3) •

Definition 5.5.1. The tripple (XiY1' ... 'Yb iL) will be
2

called a marked polarized syrnplectic holornorphic manifold

iff

a) Y1' .•. 'Yb is a basis of H2 (X,Z)
2

b) L t:. H1 , 1 (X, :R) n H2 (X,Zl) and L is the cohornology class

of the irnaginary part of a Kähler rnetric on X.

Definition 5.5.2. We can define a scalar product on

2
H (X,~) 0 lR in the following way:

and 1
n = 2" diffia:X.

In[17] the following proposition i5 proved.

Proposition 5.5.3. The scalar product <,> has signature

(3 ,b2 - 3), where b 2 = dirnJR H2 (X, JR) •
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The scalar product <,> defines a non-singular quadric

Q in F(H2(X,~) 0 ~ in the foll~wing way:

(5.5.4.) det { 2 I }Q::: uE:.JP(H (x,~» <u,u>::: 0

Let n be

(5.5.5.) n = {u t:IP(H 2 (X,G:» I <u,u> > o}

n is an open subset in Q. Let

(5.5.6.) n (L) :: {u t. n I <u,L> :: O} C ]I? (H 2 (X ,~».

It is easy to prove the following proposition.

Proposition (5.5.7.) n(L) == SOO(2,b2 -3)/SO(2) XSO(b2-3)[17J.

From the description (5.5.6.) of 500 (2,b2 - 3) /SO(2) x SO(b 2 - 3)

we get that if t t. n(L) = SOO (2,b2 - 3) /SO(2) x SO(b2 - 3)

then t corresponds to a line ~t in H2(X,~) and the

tangent space at the point t, i.e. Tt,n(L) can be

described in the following way:

(5.5.8.)

From this description of the tangent space Tt,n(L)

follows a very nice description of the Bergman metric

(5.5.9.) The Bergman" metric on Tt,n(L) can be des-

cribed in the following way: The Bermgna metric on Tt,n(L)'
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viewed as a subspaee in H2(X,~) is just defined in the

following way

<u v>, Bergman

on

After the geometrie deseiption of the Bergman metric

n (L) C->. lP (H
2

(X,a:» we need to eonneet it with

a geometry. Let n:X ~ U, be a family of non-singular

marked polarized holomorphie sympleetie manifolds, then

we ean define the period map

2P : S ----?Joo]l? (H (X, ~) )

in the following manner:

p(s):= ( ... ,I w (2,0), ... )y. s
~

sES and w (2,0)s is the unique holomorphie two form

defined up to a eonstant.

In [17] it is proved that p(S) cn(L). From
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(5.5.9.) it follows that

T = {u EH 1 ,1 (X ,0:) I :<u,R.>= O} = H1 ,1 (X,a:) 0
s,n(L) s

i.e. Ts,n(L) = H
1

,1 (X,a:)O = {all primitive (1,1) elasses.}

Lemma 5.5.10. Let wand ware two non-zero harmonie

elements of H1 (Xs ,8) with respeet to the Calabi-Yau metrie

gaß' such that [Im gaß]= L, ~hen

n-2
(w J Wx (2 , 0)) A (tlJ J Wx (2 , 0) ) A L

where we s u ppos e that JX (wx (2 , 0 ) ) n 1\ (w ( 2 , 0 )-) n = 1 I

S X
L ::: Im gaB and Ix dV = 1.

-s

Proof.

get that

Sinee w (2n, 0)
Xs

is a parallel form we

(* )

So from (*) we get that if we choose in one point xt.X the

coordinate 1 n in such that dz 1 , ••• ,dz 2n
(z , ••• ,z ) a way

1s an orthonorrnal basis, then we rnay suppose that

(**) w (2,0) =
X.

s

n

l.
i=1

i i+ndz 1\ dz . For the proof see [17J.
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So from (*) and (**) it follows that

(a\ ( 2 , 0)) 1\ (4J
Xs

by direet eomputation. So lemma 5.5.10 is proved.

Q.E.D.

Lemma 5.5.11. Let ~ be a harmonie non zero class in

H
1

(X,0) with respeet to the Calabi-Yau metric goß then

~_I wx(2,O) 1s a harmonie form of type (1,1) with r~speet

tö -go.ß.

Proof: The proof is exactly the same as the lemma.in § 2.

Q.E.D.

From lemma 5.5.10 and 5.5.11 if follows that

(5.5.12) f X ~ ( 4J )6 g pq g badV = - <~ _I ws ( 2 , 0) , 4J _I ws ( 2 , 0) > •
S

From (5.5.12) and (5.5.9) our theorem follows.

Q.E.D.

\\
Theorem 5.6. The Weil-Petersson metric on the Teiehmuller

space of a Calabi-Yau manifold has negative'holomorphic

sectional eurvature bounded away fram zero.

Proof: Let Gr = G/H, where G is a simple Lie group
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,l
and H is a ~rnpact and G and H are like examples

on page 20. On Gr we have the standart rnetric defined

in 4.3.3.2.

5.6.1. Review of some results of Griffiths and W. Schmid.

We have an equivariant fibering:

W:G/H -+ G/K

where K is a maximal compact-subgroup in G. Clearly the

fibre is K/H. Griffi ths proved in [6] that the fibre

through each point F E. G/H ZF is a cornpact complex sub-

manifold. Let F E Gr G/H, then the 2 (standard metric)dSGr

defines an equivariant splitting of T
F

(Gr) namely:

TF(Gr)= TV
+ TV

F F

where

The following theorem i5 proved in [ 8 ]

Theorem. The holornorphic sectional curvature in Gr = G/H

corresponding to directions in

bounded away from zero.

hT (Gr) are negative and
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5.6.2. Let X ~ U be the Kuranishi family of the'marked

CaIabi-Yau manifold with a fix elass of polarization.

From Ioeal Torelli theorem we knew that

5.6.2. a) p:U ~ Gr, i.e. the period map gives us

an embedding locally.

From Griffiths transversality theorem we know that:

5 . 6 .2. b) p* : T (U)~ T
h (Gr) .

So from 5.6.1. a and 5.6.2.b. fellows that if we preve

that Weil-Peterson metrie on Tt(U) is the restrietion

of the standart metric ds* on Gunder the map p*,

then our theorem will follow from the theorem of Griffiths

Gr fellows from theon

and Schrnid. That Weil-Petersson rnetric i5 the restrietion

of the standart metric ds 2

following proposition.

Proposition 5.6.2.1. We have the following equality on

each Calabi-Yau manifold with a fixed Calabi-Yau rnetric

(i)n,J (t,p I w. (n,O) 1\ (~J I Wv (n,O»)
X - ·x - ~

where J ~.(n,O) 1\ w (n,O) = J ~V = 1 and
X X X
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are harmonie representative with respeet

to the rnetrie

Proof: The proof is absolutely the same as the proof of:

5.5.10.

Q.E.D.

From the main lemma in §2 we know that ~

and 1lJ I' w (n,O) are harmonie forms of type (n-1,1) on
- x

x. So fram 5.6.2.1. we get that the Weil-Peterson metrie

is purelly topologieally defined. So it i9 invariant under

the action of the group G. This is so since the sealar

produet on n
H (X,Z)O is eoming from the interseetion of

cycles. From here we get that the Weil-Peterson metric is

just the restrietion of the standart metrie on G. So

aur theorem fellows frem Griffiths Schffiid's theorem.

Q.E.D.

§6. The Torelli problem for Calabi-Yau rnanifolds.

Theorem 6.1. The period rnap p:T(X) C-+ Gr is an

eIDbedding, where: X 1s a Calabi-Yau manifold, T(X) 1s

the Teichrnuller space of X and Gr is the Griffiths

domain that pararnetrizes all Hodge struetues o~ we1ght n

on nH (X, Z), where

Proof: Let Xo be a fixed Calabi-Yau manifold, gaS(O)

be'a Ricci flat Kähler metric on Xo and
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1 N 1lP I... I lP. E H ( X0 I e )
Xo

be a basis of harmonie forms with respeet to gaS(O).

In §2 we define for eaeh

new e~mplex strueture Xt on

. N
t = (t , ••• /t·) EBca: a

1 N
Xo in the following way:

Let {U. }
1.

be a eovering of' Xo and let

then

for each UE{U.}
1.

(* )
a= dz. +

will be a basis of (T1 ,O) * for each point z t. V, in
t

another words the new complex structure operator J t is

defined as follows:

where

and J O 1s the eomplex structure operator defining XO.

Definition 6.1.1. The Kuranishi fam1ly defined as above

will be called the standart Kuranishi family.
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Lemma 6.1.2. Let *~ U be the standart Kuranishi

family, then for each t E U c a:N the holornorphic

n-form wt(n,O) on Xt = n- 1 (t) is a harmonie form

with respect to the Ricci-flat metric. g~B(O) on

X = n- 1 (ü).
ü

Proof: Let

1 k
(~ .' ••• ' z )

{U
i

} be a covering of

be local coordinates in

and let

such that

Let and . l,p =Lt·, l,pi, where
1

Let

then

where nkl,p is defined as in §2, ~(k) is an integer >0,

which can be cornputed very easily. Since

I 1 nlWx (n,O) U = dz A••• Adz U
o

we get
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(6.1.2.2.)

From 6.1.2.2. we get that

since Wx (n,O) and
o

Frorn the definition ef

1 n8 t
A ••• A8 t is globally defined

are globally d~fined ferms.

it fellows that
1 ' n

0 t
A ••• A0 t on Xt is a form ef type (n,O)~ i.e.

In § 2 we preved that . (Ak~)

form with respeet to

From here we get that

Wx (n,O) 1s a harmonie
o

So this proves that for each t E B, wt (n, 0) is a

harmonie form in the standart Kuranishi family w±th respeet

Q.E.D.

6.2. Let L be the cohomology class of ImaS(O). Frorn

Yau's solution of the Calabi conjecture it follows that

for each t·E B L defines a uniqu~ Rieci flat Kähler metric

gaS(t) on Xt = n- 1 (t), where X ~ B is the standart

Kuranishi farnily. 5inee
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we have on Xo

6.2.1.

where ~t 1s areal one form on Xo~

Lemma 6.2.2. In the equality 6.2.1. d~t::: 0 for the

standart Kuranishi family.

Proof: We will need several propositions.

Proposi tion 6. 2. 2. 1. Für each t E B we have on Xo

-1 -n
1\ dz 1\ ••• l\rJz ::: tp(t) [Wx (n,O)I\Wx (n,O) llu

·0 0

for n::: 3 .

where tp(t»Ois·a function of Itl
2

which do not depend on

z and z. This equali ty is true on every open set U c Xo.

Here again wt(n,O) is the (n,O) holornorphic form on

X ::: n- 1 (t), where n:* ~ B is the standart Kuranishit

farnily.

Proof. Frorn (6!1.2.2.) it follows that

(6.2.2.1.1.)
1 n -1-

O 1\ 1\0 1\8 f\t ... t t

n ::: 3 •

Wo(n,O)] •

In order to prove 6.2.2.1. it will be enough to prove
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the following observation:

and w2 (n-1 ,1:)

and (n-1, l)

( 6 • 2 • 2. 1 . 3 • ) Le t w1 (1'., n -1 )

harmonie form of type (1 ,n-1 )

be two

on a

Calabi-Yau manifold with respeet to the Kähler Rieei­

flat metrie gaß' then w1 (1 ,n-l) A w2 (n- 1 ,1:) is a

harmonie form of type (n,n), i.e.

where e is a eonstant.

Proof: Repeating the arguments in §2 we see that there

is a natural isomorphism for eaeh k:

where k k is the spaee of harmonie forms ofE (XO' A 8x )
0 ktype (0 , k) with eoeffieients in A 8X ' IIP (x,n~-p) is the

0 0
spaee of harmonie forms of type (n-p,p) . In both eases the

forms are harmonie with respeet to gaS(O). The map ~k

is defined as follows:

~k(<l')
;... <l' W

x (n, 0)
0

Let

def -1 (w1 ('1, n-'1 ) ) t E n-:l (X An- t 8 )<l'1 =: ~n-.1- 0' X
0

-1
(w2 (n-1,l» ( E J :·1

<l'2 =: ~. (XO,A 8x )
1 0
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If

A '1 ~ '1 "'l.

l.P
1

= L l.P
1
_ n-, dz n-, ,,~z A "1
B 0 n-.,
n- t

where and

a
dZ CX

is a harmonie form of type (G,n)Sublemma. l.P 1 A ~2

eoeffieients in AneXo
with respeet to

with

Proof: Clearly since al.P 1 = ä~2 ~ a(~1 A ~2) = O.

So we need to prove that

where a* is the eonjugate operator of a with respeet

to gaß(O). For a* we have the following formula:

1fa* = [0 ,A] (See [15]).

For the notation see §2. Since l.P 1 A l.P 2 is a form

of type (G,n), then
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So we need to prove that

D is the connection on e induced by the metric

gaß(O) · Like in § 2 we can ehoose the coordinates in a point

1 u 1 4
Xo E Xo z , .•. ,z sueh that: a) dz , ..• ,dz is an ortho-

*normal basis in T b) D = 0 at the point Xo b) can be
xO,X O

done since gaß(O) is a Ricci-flat Kähler metrie. So after

these remarks and the following

(Proposition. Let X be a Calabi-Yau manifold and (gaß)

is a Rieei-flat Kähler rnetrie on X, let ~ E Hn - 1 (X,An - 1e)

and ~ be a harmonie form of type (O,n-1) with coeff. in

An - 1e then there exists E H1 (X,S) such that 1 ) n-1
4J A llJ = lP,

and 2) is a harmonie form in 1
= dima:X .)llJ H (X,S). Here n

(*) is' reduced to the following

n-1 n-1
(**) A[a~1AA llJ] = 0 and A[lP1A[ (0 (1\_ tp)] = 0

A in (**) is the eontraction with i,gßa __0_ 1\ aß
ozct. az

where ~1 E H 1 (X, 9) tp E H
1

(X, e) and both are harmonie

forms. Now (**) fellows from the arguments, repeated werd by

word in § 2 on p.?, 8 and 9.

Proof cf the proposition. Step 1. Let 1
tp E H (X,S) and
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be.a harmonie form, .then

P f f St 1 S th t AK,!! *' ° hutroo 0 ep. uppose a H ~

K < n . From the results of [1 ] and sinee

AK+ 1. w = ° ,
A

K
'P is a

harmonie form, then AKw 1s a non-zero form on an open

and everywhere dense subset of X . Let X be a point in

.this open set and let U be a small neighborhood of X •

Let 1 nz ·, ... ,z be loeal coordinates in U such that:

a) 1 nl Wx (n, 0) ludz A••• Adz V =

b) w(dz
j

) = ° j = K+1, ... ,n at the point X E V , here

(T 1 ,O) * (TO,1)*we look at 'P as a linear map, i.e. W . -+.

c) w(dZ
1

)A ••• Aw(dz
K

) * ° in U • Thi8 can be done since

from AKlp * 0 , A
K+1lp = ° ~ rklp = K •

We know from § 3 that for small t t~ defines an one

parameter family of eornplex struetures on X. Let X
1

is

a new eornplex structure defined by 1p , i.e. t = 1 • This

ean be done sinee we ean reseale 1p, i.e. eonsider

lp = 1/N lp , for N big enough. The basis of

the point X i8 given by:

at

N:
a a \' "li cx. -ß'9 = dz + L ~ -dz

ß=1 ß

dz~

a = 1, •.. ,K

1.1 = K+1, ... ,u •

Let w =
1

1 Ke A••• Ae • w 1 is a weIl defined form on U

of type (K,O) with respeet to X
1

.
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is a holomorphic form on U. with respect to . X
1

•

Proof. Since w1
is a form of type (K, 0) with respect to

X 1
it is enough to prove that ä1w

1
=O at each point y € U .

( Cl 1 is Cl for X 1 ) • First we will check that ä
1
w

1
=O at X .

We have proved that

(See 6. 1 . 2 . )

(wX (n,O) is the holomorphic form on X
1

.)
1

Since ä1wX (n,O)~O we get that at the point X
1

So from here it follows that at the point X E X

Now let

choose

1 KY be any point in U . Then we fix dz , ... ,dz and

K+ 1 . n 1 K K+ 1 ndy , ... dy such that dz , ..• ,dz , dy , ••• ,dy

fulfill a), b) & c) on p.42. Repeating the same arguments we

get that

-
d

1
W

1
= 0 at each point y EU.

Q.E.D.
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defines a K-fimensional subspace in ~*(X) ~ ~

E1 which has the following property:

E1 = {the maximum -dimensional subspace in T*(X) 0 ~ 1

E cT 1 ,O(X) and E
1

nT 1 ,o(X)=Ol. (T 1.,O(X) is the old
1 1

( 1 , °) 5 pace. )

ClearIy E1 is defined at those points X E X where AK~ * °
but AK+1~ a 0 and this is an open and everywhere dense subset.

co
Let us denote it by W. So we get a C family of K-dimensional

subspaces in T(X)* 0 ~ . Fact 1 shows that this family of

K-dimensional subspaces is compiex-analytical family with respect

to X1 •

Remark 2. Let us denote this complex analytic family of

K-dimensional subspaces in T*(X) ~ ~ on W by.K . Let

1 K
~ , ... , ~ are orthonormal vectors in U with respect to the

Ricci-flat metric gaS(1) on X
1

and 1 K
~ , ••• , r;. span Kl u .

Since w
1

is a holomorphic form of rank K we can find

a function f on U such that

1 K
w

1
= f I; A••• AI;

Let
1 K K+1 n

I; ' ••• '1;' 1;.,.••• ,~ be an orthonorrnal basis of

in U • We know that since(g -)
aß is a Ricci-f.lat

metric on X1

(*)
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Let F be a holomorphic function on X1 ,n U and

'*F * Const. F € r (u, 0 ) • Now we can find a function g such that
X

1

( 0) I (f 1 .K) (.K+1 n)FWX n, = ~ A••• At A g~ A••• At •
, :l lu

From ä1 (FwX ( n , 0) Iu) 0 ä1 (fg) 0 since - 1 n
0= 0::> = c1 (1; A ••• Ar; ) = .

1
- 1 .KSo we that a

1
f 0 and -

0 Sinceget = a1g = . aW1 = c1 (fC A •• A~ ) =0

and ä
1

f 0 ä( 1 .. K) 0 We have proved= ~ l; A ••• At = .

1 KFact 2. r; A ••• At is a holomorphic K

K+1 .n
(**) From (*) and fact 2 ~ s A••• At

form on U n w c x
1

•

is a holomorphic (n-K)

form on U n X1 .

From Fact 2 we will prove:

Fact 3. On X1 there exist globally defined holomorphic K-form

w(K,O) •

Proof. Let {u. } is a covering of W . On each U. we can
~ ~

define form 1 A... A K where 1 K ortho-a w. = /;;. /;;. t·,···,/;;· are
1 1 1 1 1

normal vectors that spanned Kl u . . For the definition of K.
1

see Rernark 1 and 2 .

1s a holomorphic formSince for each

on U. n u. we have
1 ]

function on U. n u.
1. ]

on Vi n u. so from
]

w. = f .. w. , where f.. is a holornorphic
1 1) J . ~J

. On the other hand we have w.Aw. = w.Aw.
~ 1 J J

2
here we get that If .. 1 = 1 and so from the

1.J

maximum principle we obtain that f .. = const. So from here we
1J

get that on an open and everywhere dense subset W c X1 we have

a holomorphic K-form w1 (K,O) • Since AK~ is defined on the
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whole X
1

and form the definition of K we get that w
1

(K,O)

00

1s defined as C -form on the whole x
1

• So from here we get

that w1 (K,0) 1s a holomorphic form defined everywhere on X1 •

From Bochner principle and the structure theorem we get that

1) w1 (K,O) is a parallel form on X1 2) X
1

= Z x Y as a

complex manifold, where on Y there exists a holomorphic (n-K)

form w2 (n-K,O)

the definition of

such that w1 (K,O) AW 2 (n-K,O) =w
X

(n,O) • From
1

K and so from the way we define w
1

(K,0)

we obtain that w2 (n-K,O) is a holomorphic form on X . So

from Bochner principle we get that the holonomy group of X 1s

SU(n-K) x SU(K) (K>O) . So we get a contradiction with the fact

that X is a Calabi-Yau manifold, i.e. it has a holonorny group

SU(n) So An~ * 0 • Frorn here and the fact that dirn~H1 (X,S) =

n-1 n-1
dim~H (X,A 8)' (Serre's duality) we get that the rnap

n-1
~ ~ A ~ i8 a one to one map.

Q.E.D.

Rernark. In the cornputation that follows we will.use the fact

that dirn~X = 3 in the following moment: We need to compute

just .wx (3,0) AWx (3,0), [lPJ W (3,0)] A[tpJW ( 3 ,0)] and
o ,0 Xo Xo

[(A2~w (3,0)A(A2tp~w (3,0» . In the computation of the second
Xo 'XO

term of this sequ~nce we will use the Proposition jU8t proved,

i.e. if ~ E Hn - 1 (X,An - 1e) , then ~. = An - 1<p •
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is a harmonie form of type (0 , n)

with eoefficients in we get that

isa ." harmonie form of type (0 , n), where n = dima:X, so

(*** ) Wx (n,O)
o

= a Wx (n,O), a eonstant
o

from (***) and the following easy formulas:

Wx (n,O)] A Wx (n,O)
o 0

we get that

where e is a eonstant.

Q.E.D.

The end of the proof of lemma 6.2.2.

Let n:X ~ B be the standart Kuranishi farnily.

Let {Ui} be a covering of X, where Ui = Uix Band

{Ui} be- a covering of XO. Let for eaeh t t B

f X Wt (n,O) A wt (n,O) = 1
t
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where Xt = n- 1 (t) .

. 1 - n -. 1 N) bLet ( si (2 ,2 ; t) , ... , Si (2 , 2 , t) , t , ... , t e

local coordinates in Ui such that for'each t we

have:

According to Kodaira-Spencer theory of deformation on

U
i

n Xo there exists areal vector field which induces

a diffeomorphism ~. (t) :U. ----;:... U.
~ 1. 1.

such that

.a -= dLj~ (Z,zit).
~

Let' for each t t:. B gaß (t) be the Calabi-Yau rnetric

on Xt such that

We have for each t

and

where f(l;. ,~;t)
1. 1.

is a function on Ui . Let 2 0 t Ui n x O·



-49-

Since ~i(t)*(gaß(O) lu.> is a positive definite Kähler
~ 1 n

metric on Ui n Xo we choose the coordinates (z, ... , z >

in such a way that at the point zo for a fix t

Cl * ß

and

Ci - f 75"aß Ctp

So from here we get that:

(This follows from prop. 6.2.2.1.) So at the point

have

we

det ( ~2' \' d a d~ß)L. waß Gi A 'r;

(6.2.2.1.5)
n

=11
0.= 1

1 n -1 -n
(1+f -)dl; A ••• Adr;" Adr;~"- •• I\d~ =

aa

n -1 n -1 -n= 1IT (1+fa.ß)dz A••• Adz A ßz A ••• A dz •
0= 1

We have proved that is constant
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along the trajectories of the vector field that defines

the deformation of the standart Kuranishi farnily. rr:X ~ U

locally on U.. (This is reformulation of 6.2. 2.1 ). So from
1.

here we get that for each t we must have

(6.2.2.1.5.)
n

lrT (1 + f -) = 1 •aaa=1

we get that

Since f aa
co

depends C on t and f - = 0 whenaa
f - = tf 1- . So we must have thataa an

t = 0

n
TI
a=1

(1+tf 1_) = 1
aa

So fram here we get that f 1_ 5 0 . So we have proved that
an

for each t locally the Ricci-flat metric gaa(t) on Xt

that corresponds to .L1 is given locally on ·Ui by:

From this formula we get that on Ui C Xo we have

(6.2.2.1.6.)

Siu and Nannicini proved that Lv (iIwaß ~ ~d~ ) I t = 0,

where v is a vector field that defines the trivialization

(holomorphic) one, on U
i

defined by

1from a harmonie ~ t H (xo,exo )· Lv

The result of Siu and Nannacini rneans

the deformation coming

means the Lie derivative.

that (6.2.2.1.6) can
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be expressed in terms of the local coordinates

the following way:

(6.2.2.1.7.)

l' n(z , ••• , z. ) in

Again we fix a point Zo E Ui and we can choose the coordinates

1 n(z , •.. z) such that

(6.2.2.1.8.)

i 3 2 3 ~_~
= 2( L dzaAdza. + t L ~a~dz~Ad~~)

0.=1 0.=1

This can be done since the deformation defined the harmonie

is defined to first order deformation. This

K ~ 2 . Since in (6.2.2. 1 .7)

d
K

dtK(dr;a) = O(K ~ 2) that

form ~ E H1 (X,e)

d K
means that ~(d 0.) E 0 for

dt S·
d -
dt(ga.ß(z,z)) = 0 we get from

d
crt(W llV ) = 0 ·

5ince the volume form of

:3 2TI (1+t 1p -) - 1 •
0.=1 aa

i~ Cl-ß-l.g -dr; Adr;
2 0. ß

is const., i.e.

So form here we conclude that 1p0.~ = 0 . So our lemma is proved.

Q.E.D.
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6.3. Geodesics on T(X) with respect to the Weil-Petersson

metr1c.

Remark 6.3.1.

t t. ([ we def ine

1
Suppose that ~ t E (Xo ,ex)' then for each

o
At:T(XO) ~ ~ ,--> T(X O) ~ ~ as

From 6. 2. 2 . 1. i t follows tha t for each t € ([ 1 n ::: 3

1 -n
A az A ••• Adz

where c is a constant. So from here it follows that for

each t E. er the operator defines a new

complex structure on xO' which is integrable. The

-1
deformations defined by J t = AtJOAt for a fixed

1
~ (H (Xo,0x ) we will eall the standart line in T(X)

o
and will denote 'it by *t ~ S (t) .

Sinee for eaeh t € s (t) wt (n, 0) 1s a harmonie form with

respeet to 'gaS(O) it follows that the period map

p:S(t)~ Gr is an embedding. Clearly we have that S(t)~T(X).
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Lemma 6.3.2. The standart line is a complex geodesics

with respect to the Weil-Petersson metric on T(X).

Proof: The proof of 6.3.2. is based on the following

remark. For each t the imaginary part of the Calabi-

Yau metric gaS(t) defines a symplectic structure, i.e.

a skew symmetrie scalar product (')t on Xt , where

Xt = n- 1 (t) and TI:X ~ U is the standart Kuranishi

family. We have prove that for each t t::. U Im (ga"B' (t) )

defines one anq the same symplectic structure. So the

Riemannian str-ucture for each t defined by

given oy

(6.3.2.1.)

at each point x t. X
O

•

Using 6.3.2.1. we will prove

Proposition 6.3.2.2. WE have the following equality:

<S(t) ,S(t» = 11s(t)11 2 = wust for each tE 0:,w.p. w.p.

where S(t) is the tangent vector to the curve S(t) at

the point t t. S (t) •
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Proof: The proof is based on the following two remarks

Remark 1. dwt(n,O)

dt

is a harmonie form of type (n-1,1) with respeet to the

eomplex strueture J~ and the Ricei-flat metrie (gaS(sO».

Froof: From the forrnu"la:

dwt(n,O)
----It=s

dt 0

the faet that for eaeh q the form [Aq<,p] _I Wo (n, 0)

is a harmonie form with respeet to gaS(O) we get that

the form

dwt(n,O)
(d dt t=so

is a elosed form, i.e.

= o.

Let us reparametrize our eurve S (t) in such a

way that we get a eurve S(s) sueh that the family:

TI X~ S(s) is; the same as X~ S(t) and in the

reparametrized family we have: n- 1 (0) = Xs . This ean be
·0

done very easily. Let {U i } be a eovering of .Xo and

{u.} = {U. x a:} be a covering of X ~ S(s). Let
1. 1-

(~1 (Z,5), ••• ,s·n(k,s) ,s) be local coordinates in U
i

such that

1 nd 1:; (z , s) 1\ • •• I\d.l; (z, s) •
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From the fact that we have:

':t Cld r,: (z, s ) = d , ,( z , sO) \' Cl -ß 2+S L. 1JJ"B d l; (z, 5 0 ) + 0 (s )

we get that

dw ,(n,O))

ds I s=O =

dwt(n,O)

dt =

= ~s (d ~1
(z, s) 1\. • • /\ d r;n ( z , s) ) I =0 =

= L
a,ß

a ß 1 cx-l Cl+ 1'Pß d r; (z, 0) /\ d S (z, sO) 1\ • • • /\ d l; ( z , sO) 1\ d,~

a+2
nd l; ,( z , .sO) 1\. •• 1\ d r.,: ( z , SO)

and this is clearly a form of type (n-l,l) with respect

to the complex 5tructure J S • Since for each t E:. a:
o

wt(n,O) is a primitive form and the symplectic structure
dwt(n,O)
dt It=so is a primitve

is a closed primitive form of

does not change we get that
dwt(n,O)

form. So Idt t=s o
type (n-l,l) on X • From the following formula:

So

Let n be a primitive form of type (a,b), then

.a-b
~

*n = (n-a-b)! (-1)

(a+b) (a+b+1)
2 n-a-b

L n

we get that

respeet to since

is a harmonie form with



dwt(n,O)
*( dt l"t=S) =

o
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2 n(n+1)
i n - (-1) 2

dWt (n,O)
(dt It-s )- 0

form with respect to

is a harmonie

and so

get that

dwt(n,O)
*( I) is a elosed form. From here wedt t=s

O·
dW

t
(n, 0)

----It=s:

gaS(sgr. 0

Q.E.D.

Remark 2. n
1\ • •• ,,8 ,

where I '\ Cl -ß a
and lP U = L.lPß d Z ll9 aza ·

Proof: Loeally wt(n,O) can be wri~ten as:

(*) = dz 1
f\ ••• I\dzn

+
n
I

'1=1

we know that
1I -1 11

dz~ = A 8~. From the definition cf the
So So

operator At' i.e.

a a '\ a -ß
At(dz ) = dz + tLlPß dz

we get that At = id - tlP + •••• So from (*) we get
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In (**) we need to compute the (n-1, 1) part wi th respect ,;:.

1 n --1 n
to 8 s , ... ,8 5 ,85 , ••• ,85 taking into acount that

. 0 000

where _

.. and

So fram here we get after direct calculation that the

(n-1,1) part of wt(n,O)

n..• ,8 will be:So

with respect to 1 n 18. , ... ,8 ,8 ,
So So So

a+1 n
1\ 8 1\ • •• 1\8So So

a. -1-e -1 1 -1 a-1 -1 0.-1= ± 1. h-e(A 5 d z ) 1\ ( A c: d z ) 1\. • • 1\ ( A c: d z ) 1\ (A 5 d z ) 1\

o ""0 ""'0 '0

Q.E.D.

The end of the proot of 6.3.2.2.

From remark 2 it follows that

(6.3.2.2.1.) dwt(n,O)

dt It= 5o
= (L h~ eß

0
ß So

a

(8~ 1\ ••• 1\8~) •

o '0



"":58-

Since we have a natural map

1
J.L 1 : E (X s ' Gxo

) ~

o

is

is anJ.L1 (c.p) = c.p ~I W. so (n,O). Moreover J.L1

isometry 'with respect to the metric induced on

1
E (X s ' Gx ) and

'0 .SO
Moreover we know

JH 1
(X , nx

n - 1 ) by (g -ß ("~) ) •
.~ $ dw (R,O~ .

from remark 2 ~hat ~t It= so
a harmonie form with respeet ta gaß (s'O). So fram

where

(6.3.2.2.1.) we get that

-1 dwt(n,O)
J.l 1 ( dt I ) - \ ~ Gß 0 a =

t=s - L ß aGo a

"""-1
::= As o

where A~1
o

indueed by

1s a linear map from T* ~ T ~ T* ~ T

AS • From the fallawing formula (6.3.2.1.)
o

<u,v>
. So

= <A- 1 u,
So

-l
A s - v>O

. ·0

we get that

So 6.3.2.2. is praved.

Q.E.D.
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From 6.3.2.2. we get that

aäll S(t) 11 2 = 0 •

On the other hand we have:

. . .
aal\ S(t) I1 2 = -aa<S(t), S(t) > = -a<D' S(t) ,S(t) > =

. ..
= +. <D' S (t) , D I (S (t) > - <aD'S (t) , S (t) > = 1I DIS (t) 11 2 - <R ( S( t)) , S (t) >

where R is the curvature operator, which is negative.

So we get that

aa' 11 S ,( t) 11 2 = 0 = 11 DIS ,( t) 11 2 - <R S (t) , S (t) > ~ o.

So it follows that I1 D'~(t) 11 2 = 0 ~ D'8(t) = O. So 6.3.2.

is proved since a S(t) = 0 5ince S(t) i5 a holomorphic

curve in T (X) •

Q.E.D.

Now we need to prove that we have an embedding

p:T(X)~Gr.

The proof that the period map p:T(X) -~ Gr i5

an embedding i5 based on the following three remarks.



Remark 1. P is a loeal isomorphism this is just loeal

Torelli theorem for manifolds with e
1

a o.

Remark 2. Sinee the Weil-Petersson metrie has negative'

seetional holomorphie eurvature, the~ any two points of

T(X) ."p,q can be joint by a geodesid5. For the proof of

this fact see [9]. So let this geodesics be S(t), i.e.

the standart line.

Remark 3. Let p t. S (t), then p corresponds to a complex

Kähler Calabi-Yau manifold x with a fixed Calabi-Yau metric
p

gaS(g). We know that each Calabi-Yau manifold Xt has a

holomorphic form wt(n,O) where:

a) w (n,O) +p

n

L
q=1

w (n,O)Jtq
p

b) wt'i(n, 0) 15 a harmonique form wi th respect te the

Yau metric gaß-.(p).

So from alb) it fellows that

different from w (n,O)p in

each form wt(n,O) is

]P ( Rn (X , er) ) •

So from Rernarks 1,2 and 3 fellows that p is an

embedding. Since if p,q corresponds to two holomorphic

form w (n,O) and w (n,O) such thatp - q

[w (n , O)] g [w
q

(n , O)] in Rn (X , a:)p -



where p,q E T(X). Now we can joint p,q with a

geodesics S(t). From remark 3 it follows that

p a q •

So from here we get the weak version of

Global-Torelli theorem.

Q.E.D.
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