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"Applications of Calabi-Yau metric to the Weil-Petersson
metric and the Teichmuller space of complex manifolds

with c, = o"

Andrey N. Todorov

Introduction. It is a well-known fact that if X is a

compact complex simply connected Kdhler manifold with

c1(X) = 0, then
X = TTxy x TTy;

where

a) for each j dim HO(Xj,QZ) = 1 and if wj is a non-zero
holomorphic two form on Xj -dand at'each point X € Xj ' le is a
non-degenerate form, i.e. leh...h wjj* 0 is a holomorphic

1
-2n = dim_X form which has no zeroes and no poles.,

C

- o A1 10 Py _
in = n dim H (Yi,Q ) =0

and dim HO{Yi,Qn) = 1 and it is spanned by a holomorphic

b) for each i and 0<p<dim

n-form without zeroces and poles. Such manifolds will be called

Calabi-Yau manifolds if n 2 3.

This fact is due to Calabi and Bogolmolov. See [ 2 ].
An elegant proof based on Yau's solution and Calabi con-

jecture was given by M.L. Michelson in [12].

The aim of this article is to study the deformations
of the Calabi-Yau manifold "X and namely the so called

Teichmliller space T(X) of X which is defined in the



§1. Preliminaries

Definition 1.1. Let X be a compact complex manifold with

a holonomy group SU(n} (n = dim X) then X will be

called a Calabi-Yau manifold.

Theorem 1.2. Let X be a Calabi-Yau manifold, then

a) X has a Ricci flat K&hler metric
b) dim¢H°(X,Qp) =0 for 0<p<n = dim X and
H (X,Q") is generated by a holomorphic form wx(n,0)¢ 0 which

has no zeroes and no poles on X.

Proof: a) Since the holonomy group is §8U(n) we get
immediately that on X there is a Kdhler, Ricci flat
metric. For more details see [ 10 ].

b) For the proof of this fact see [2] and [12].

Q.E.D.

Cor. 1.2.1. Every Calabi-Yau manifold X 1is a projective

algebraic manifold.

Proof: From theorem 1.2. »® X is a Kihler manifold. See {10 ]
Kodaira proved tﬁat if X 1is a Kdhler manifold and

HZ(X,OX) = 0, then X is a projective manifold. Since X

is Calabi-Yau manifold, then H°(X,Q2) = H2(X,Ox) = 0 and

so 1.2.1. is proved. See [11°].
Q.E.D.



Definition 1.3. Let (gaﬁ) be a Kdhler metric on X

such that
Riceci {(g) = 39log det (gdg)a 0

then (gaE) will be called a Calabi-Yau metric.

Remark. Since on a Calabi—fau manifold X there is

a holomorphic n form (n = dimmx) which has .no zeroes
and no po;es, it follows that c1(X)x 2 0, On

each Kédhler manifold X with c.l(X)Z = 0, it follows

from the solution of the Calabi conjecture by Yau, that

on X we can find a Calabi-Yau metric. From now on we will
fix a Calabi-Yau metric (g _) on X [18].

afl

Lemma 1.4.

wx(n,O) is a parrallel form with respect to the

connection induced by the Calabi-Yau metric (gaB)' i.e.
me(n,O) =0

where V 1is the covariant differentiation, induced by

the Calabi-Yau metric.

Proof: In [11] the following formula is proved:

aB =
= = = = - Y - -
( )Cl.lro-.p(lp,B.l,...,Bq g B (Iw(l1,...,ap,81,...,8q
13 % K, L
vl Ra B, “o Kyeena BireeeTye.,B

p':.l \)=1 u ) 1'.-.- )1‘ . . p . . + . q



—ZRR' ®

v a1,...,ap,81,...,i1,".,8q‘

v

Let us put in this formula ¢ = wx(n,O). Since on
Kdhler manifold every holomorphic form is harmonic one

we get that
o = 0

On the other hand since (gag) is a Ricci flat metric, so

R%> =0 and since B, =...=B_ = 0 we get that
Bv 1 g
. _.0Bg -
umx(n,O) = =g vaan(n’o) 0
<u(f.)x(nro)lwx(nro)> = <_ga8v6vawx(n:0)rwx(n10)> = 0

On the other hand it is not difficult to prove that

— n '
<—gaBVEVawx(n,0),wx(n,0)> = ¥ []Vapx(n,O)H2 . (see [11])
a=1
So since

<nwx(n,0),wx(n,0)> =0 =
7l &
V. w,(n,0) =0 .

o=1 o X

]

From the last equality we conclude that

wa(n,O) = 0

i.e. wy(n,0) is a parallel tensor with respect to

the Calabi-Yau metric.
Q.E.D.



1.5. Le£ wt:H1(x,0) and ¢ be a harmonic representative
with respect to the Calabi-Yau metric- (gaE)' so locally

¢ can be written in the following way:

(1.5.1) |y = of az’ &

3z

where

Jp = 9*p = 0, O°* is the conjugate of 9
with respect to (gag) and 3% = -*yY*,V is the connection of
gaﬁ on 0O,

From (1.5.1.) it follows that

(1.5.2) © € T(x,Hom((T*) 0, (1%) 10,

Definition 1.5.3. By AXe € I (x,Hom(AK((T*) 1 Q)ax( (%) 179))

we will denote the endomorphism given by

K
(M) (L, Acoer L. ) = @8, dAa...An (R, ) .
11 lK l.i lK

§2. The main lemma.

Lemma. Let 0 # [@] € H'(X,0) and ¢ = T oS az® » —EE
92z
be the harmonic representative of l¢] with respect to

w0

the Calabi-Yau metric that we fixed, then

(") 1 wy(n,0)



is a harmonic form of type (k,n - k) with respect to

(gag) .
Proof: The proof of this lemma is based on
Proposition 2.1. If o ¢ H1(X,O) is a :harmonic

representative of a Dolbault class, then Akw is a

harmonic representative in Hk(X,AkG).
Proof: It is a well-known fact that
k k -
Dg(A @) =0 ® 3J(A o) =0 and 3*(Akm) = 0

where n§ is the Laplace-Beltrami- on ® nko defined

by the Calabi-Yau metric (gaE),ﬁ* is the adjoint operator

of 9 .

From the definition of Ao it follows that locally
Akw can be written in the following manner:
oy a

Mol = | (© "A..h0 K)o (8
... <0 z

3 A A d
GT azaK

)

where



are the components of ¢. Since 3¢ = 0 = A 9% = 0

we get that
’J(Akw} = 0.

Next we need to prove that

(2.1.1.) (K@) =0 if T*e = 0

In order to prove (2.1.1.) we will use the following

relation which is true in the case of a Kdhler manifold:

-i3* = [A,V] = AV~ VA
where
ror= (Igt) —'a—if\ ) o
2z 823

and V 1is the covariant derivative on @ induced by the

Calabi-Yau metric. For the proof of this relation see [Siul.
k

From the definition of A and since A v 1is a form of

type (0,k} with values in 7 Ko we get that
Ao =0

S0

-i%*% = 1A,v] (o) = Alv(aKe) ]
We need to prove that:

(2.1.2.) AlvinKe) ] = 0



Proof of (2.1.2): From the fact that (gaE) is a Kdhler

metric it follows that at each point Xy We can choose

the local coordinates (z1,...,zn) such that

(*) g,z =6 =% + 0(|Z]2) where § =
af “aB ' o8 U

and V=0 at the point x For the proof of this fact

0
see {7 ]. From (*) it follows that

Vi) (xg) = 2(1%) (x)
So if we prove that
Kk k
(**) ALV (A 9) D (x,) =AT3 (AT9) ] (xy) = 0

then (2.1.2.) will be proved. Next we need to prove (**).

First we need to compute

3 (159) (%)
k o o
(N @) (xo) = 3l 1x ... x @ N 2 i -
0‘1< <GK BZ 1 32 k
. ' . a
= N (Y(-1) Yo T x 3p Ta Aw”k)o—aa‘ﬂ-..h aa
a1<. ’<ak * éz 1 2z k

Remember that w?i is a (0,1) form and it is a component of

o € H1(X,O). We need to prove

o, o a T, o
ln",nw k) (xo) = (¢ 1A...A(A3w YA . .hp k)(xo)

a
(**%) A(p A...n9Q
then clearly

3+ (4Ke) = 0.



So we need to show that (***) is true for each point X0

Proof of (***): Since X 1is a Kihler manifold we can find

local coordinates in xo (zl,...zn) such that
1,0
1) {dzi} is an orthonormal basis in (Tx ) .
0
2) g =(z) = 6 = + 0(|ziz) at x
.. JoaB ofB 0
Ssee [ 7 1].
The condition 2) means that at the point XO we have
D=3 .
o _
Since ¢ is a 3-closed form, it follows from Dalbault's

a.
lemma that there exists a function F 1 in a neighborhood of

Xg such that
i =% = %i.-8
@ ~ = 3F T =} 2gF “dz” .
&3 %4 a Ol'i @3
Let F = Re F + i Im F , where Re F and Im F
are real C  functions. Clearly
oy _ @y _ oy
0] = 3Re F + i3 Im F
From here we get that
a a . [s4 a a. s ]
(@ "Av..A30 YA...ho K)(xo) = (@ '"A...A(33 Re.F Z)A...Ap K)(xo) +
o . ¢}

+ (o 1A...A(ia§ Im F T)A...AQ K](xol .

Next we will prove that:



a a a a a Q.

(**%)a) A (@ 'A...A(33 Re F D)A...Ao K){x0)=(w "he. AIA(33 Re F i)]n...Aw.K)(xo)

%4 - ¢, ax a4 " o, e
BYA(P "A...A(133 Im F M)A..h9 ) (Xg)=(@ A...A[A(L33 Im F ) ]A. 00 ) (%)

' a
Proof of (****): Since Re F i is a real function, then: the
: [ N
matrix A = (aaaBRe F l) is such that At = A . From the

standart fact of linear algebra we can make an orthogonal

: 1,0 -
change of the orthogonal basis in (T, )* such that uag*t

..0 )
will be a diagonal matrix, where U € U(n) . This means that
1,0
)* such
"0

we can find orthogonal basis (dz1,...dzu) of (T
that

TN | i, 8, .8
23Re F = = Yo 1dz"paz® .

BB
since in this basis ifg_zdz*adz® = yazfaaz® , the
definition of the operator A , and the fact that

o3 o
Q 1,...,@ K are forms of type (0,1} we get that

o [s. 30 a o
Mo Taa.a(] ZazPraztya. e ) = (2 o (0 ThlL
BB . 0z~ 2d2
a, ' a a . e
(Jo 2azPrazf)a...ne Xy:= (0 "a..oata(lo azPrazbyin..ne © .
PP BB

So (****)a) is proved. Repeating the same arguments we

get (****)b), So (*¥***) is proved.

From (****)a) and b) we get (***), Since for each i ¢ is
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a harmonic form we get that

3% (A%g) = 0.

So AKw is a harmonic form.
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The end of the proof of the lemma.

The lemma will follow from the following formula:

1

(2.2)  T*L(450) lu, (0,001 = (3% (4%0) 1 lwy, (n,0).

Proof of (2.2:)

From the well-known formula:

VQ(W_JwX(n,O)) = (VQT) _ Wye (n,0) + ¥ _}(Vawx(n,O))
and the fact that Vawx(n,O) = 0 we get that
(2.2.1.) Va(T_wa(n,O)) = (VGW) i wx(n,O)

(2.2.) follows from (2.2.1.) and the following formula

for 9* that can be found in [15 ]

o _ - (-1 Pty 13 “© —
(3*¢™) L 3 3 (-1 ) g77 v 3T,3

g ey
P, q-1

Q.E.D.

From (2.2.1.) and the fact that 3*(AXg) = 0

we get that
ot ok _ ot menk |
ax[ (A7) | thn,O)] = L(3* %) e, (n,0)] =0
Clearly

3L (A%o) Jw (0,0 =0



e

since 3(AXQ) = 0. so this proves that

- (450) 1wy (n,0)

is a harmonic form.

§3. Local deformation theory for Calabi-Yau manifolds.

Theorem. Let X be a Calabi-Yau manifold, then the
Kuranishi space U of local deformations of X 1is a non-

singular and has dimension equal to dimmH1(X,O).

Proof: The proof of this theorem is based on the following

Proposition:

Proposition 3.1. Let wEIH1(X,O) be a harmonic representa-

tive with respect to the Calabi-Yau metric, then
lo,9] = 0
where {o,p] means the Lie bracket.

Proof: From the definition of the Lie bracket it follows

] d

| 5.
o7

1}
o

nNe--13

(o,0] = 0 &=

o

-
=

(!
(o4

1 3z 0z

M

for each a#*B and Tt. The proof of Proposition 3.1 is

based on the following observation:




u Bwl Bwl
30 (A%0) | wg(n,0)] = 0 = ) (of —B - o % - g
4 ¥x e N LT

‘We will prove this observation:

- From the definition of Azw we get that

D W (A QLALT
p<T azt 2z

where

Koo
w” = 2 w; dzv

is a component of ¢ .

Let us fix «a,B,T and compute the coefficient in

B, 1 Hq k

front of dz% Adz"adz A...Adz A...AdZVA...A dz in the

form of type (n - 2,2) (Azw) | wx(n,O). We suppose that

_ 1 n
mx(n,0)|U = dz A... Adz

From the definition of (Azw) N wy(n,0) we get that

3 3

(3.1.1.) LI (e" a0 @ —=a—1 | wy(n,0)
<t 9z' oz
_ +T, U T T - — 1 A
=) (-1)H (o wg T 9g e ) dz” A az® A az'a...ad2ta. ..
U<T
AT

A dz A,,.Agd2l

Now let us compute the coefficient of
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3L (A%0) | @, (n,0)]

in front of dz® a az® A daz' a...a a2" a...a azf. From
{(3.1.1.) we get that this coefficient is
n dop= Yy
(DT ] (el Bt Ey

Q2
N
=
[P
N
=

S0 this proves our observation.

From the fact that (Azw) | wx(n,O) is a harmonic

form we get that

2 =
al (A%p) ] mX(n,O)] = 0
and so
lo,9] = 0.

Let w1,...,wN be a basis of harmonic forms of

H1(x,e) with respect to a fixed Calabi-~Yau metric, Let

_ N
e(t) = ) t @, where t (t1,...,tN)€(E .

Clearly w(t) 1is such that

@(0) =0

3o (t) - %[w(ti,w(t)] =0

Obviously since ®, are harmonic form we have



-14-

de(t) = § t 3o, =0 .

On the other hand §2 we know that
[(D(t) :‘D(t) ] = 0

Also. we have

(M = (pv c H1 (X,O) .

atv t=0

From Newlander-Nirenberg theorem it follows that
¢(t) determines a complex analytic family of Calabi-Yau
manifolds for each t&CN. Let us prove this for the
completeness of the paper.

Consider w(t)=2@§ (t)az% e _EE as a vector
(0,1)-form defined on XXxB_, whergz B, = {t#.¢N| |t]<e}.

Clearly w(t) satisfies the integrability condition
To(t) - slo(t) ,0(t)] = 0.

(¢ =) t 9, ¢ is holomorphic in t.)
Thus ¢ determines a complex structure X on X X Be'

The local complex coordinates of X are solutions 7 -

of

(*) 3c-1 0P 255 - 0.
9z

This equation is satisfied if and only if

(%) -V e 2o 4=-1,...,n
B o
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That {(*) has a solution follows from Newlander-

Nirenberg theorem. Hence, on some coordinate chart '

we have n + N independent solutions
1
t1,...,tN,z;j(z,t),...,c?(z,t)

of (*). So X 1is a complex manifold such that the

projection:
m: X — B€

is holomorphic of rank N and for each fixed t,

n—1(t) = X, is a complex manifold with a complex structure

given by
-1

AtJOAt =J

t

where JO is the complex structure operator on X and

s o] . o
AL =(id + t](eghe (id+ tlog)

Q.E.D.

§ 4. Constructibn of the moduli space of Calabi-Yau manifolds

Definition 4.1. The Teichmiiller space T (X) of a given

Calabi-Yau manifold is defined in the following way:

T(X) = {all complex structures on X as C

manifold } /DiffO(X)
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where Diff,(X) = {all diffeomorphisms isotopic to the

identity}.

Theorem 4. Let X be a Calabi-Yau manifold, then
T(X) . exists and T(X) 1is a complex manifold of

dimension equal to. dimmH1(X,O).

Proof.
Lemma 4.1. Let L tH1’1(X,x) and suppose that L 'is
fixed and L = [Im gaE]’ where gy 1is a Kdhler metric

on X. Let

Aut ) (X) {¢ € Aut (X)|w acts as identity on

2" (X,Z) and ©*(L) = L}

where Aut (X) =: {the group of the biholomorphic auto-

morphism of X } then

Auto(x) is a finite group.

Proof: Since HO(X,O)s HO(X,Qn_1

) (this isomorphism is
obtaified by the following map © € H'(X,0) —> ¢l o_(n,0))

and on a Calabi-Yau manifold

i x, ™) =0

we get that Aut (X) 1is a discrete group and so AutO(X)
is also a discrete group. Since if ¢ € AutO(X) = @*{L) =L
and from the solution of the Calabi-Conjecture by Yau

in L there exists a unique Ricci-flat metric we get

that if ¢ € Auto(x), then
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o*(g ) =g =

oB B
where (g _) 1is the Calabi-Yau metric corresponding
afB
to the class 1,€H1'1(x,nu n HZ(X,%). From ©*(g ) =g

aB aB
it follows that ¢ 1is an isometry, which means that

Auto(x) is a discrete subgroup of a compact group. From

here we get that #|Aut,(X)]| < =.
’ Q.E.D:

Lemma 4.2, Let ¢ E Auto(x) and let w:X — U be the

Kuranishi family of X, then ¢ induces an action on U

and this action is just the identity map.

Proof: If ¢ € Auto(x), then ¢ induces the following

action on U:

Let s €U and let JSE (X, Hom(TX,TX)) be the complex
structure operator that defines the complex manifold Xgo
then we define ¢*(s) to be the point of U that
correspond to the complex structure operator w*(JS).

Here we look at ¢ as an element of Diff(X).IWe know
from §3 that all complex structures on x that correspond

to s€&€U are given by

‘l _ -
JS ,('Do]-(p'*'w

f1

(id + a@JO(id + w@

where {o] € H1(X,G) and ¢ 1s a harmonic representative

of [¢l}. If we prove that

(4.2.1.) P*(e) =2 @
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then lemma 4.2. will be proved
Proof of 4.2.1.: Since ¢ € Auto(x) =

1) w*(gaﬁ) = (gag), where 948 is the Calabi-Yau metric

2) from the fact that ¢ induces the identity on H"(X,C)

'?(p*(wx‘(nro)) = xt(nro) and (p*(w(n_1r1)’ = m(n_1r1)l
where w(n-1,1) 1is any harmonic form of type (n-1,1).
Since

¢ _| w(n,0) = wyln=-1,1)

is a harmonic form by the lemma in § 2 and from the

canonical isomorphism:

1 (x,0) =1 (x,0""

)
given by:

© — v _| wg(n,0)
we get that:

Pr() = ¢

and so lemma 4.2. is proved.

Remark. From local Torelli theorem it follows that

4.2 is true without the assumption that ¢*(L) = L.
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4.3. Construction of the Teichmuller space of Polarized

marked Calabi-Yau manifolds.

Definition 4.3.1. Let X be a Calabi-Yau manifold. Ve
will call the tripple (X;Y1,...,yb ;L) a marked polarized
N

Calabi~Yau manifold if ICRERREALS is a basis in Hn(X,Z)
. n

and L = [Im gaFJ , {(where (gaﬁ)' is a Kihler metric) is
a fixed class in HZ(X,E).
Clearly (S;Y1,...,Yb ;L)  and (X,y1,...,yb ;L) are
n n

isomorphic if there exists a biholomorphic map
@:X — S

such that
(D*(Yi) = vy and e*(L) = L.

We want to construct a universal family of marked
polarized Calabi~-Yau manifolds. In order to construct it
we will need the period map. For this construction we
will need some definitions.

Definition 4.3.2. Let Hy be a free abelian group

equipped with a) (if n is even)non-degenerate symmetric

bilinear form <,>:Hz><Hz —> Z b) (if n is odd)bilinear

skew symmetric non-degenerate form

xH, — Z.

>
<y>iHg X Hy

Then we define the Hodge structure on Hz in the following
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way: This is a filtration, the so called Hodge filtration

(4.3.2.1) FOCF1CF2C...CFH=F=HZGGJ

which fulfills the following conditions:
a) The Hodge filtration is isotropic, which means that:

(4.3.2.2) (Fq)‘L = Fn—q-1 {L means orthogonal with

with respect to <,» induced on Hx ® T)

b) We have the Hodge decomposition

Fn_q lq
0

@ o

HZ o T =
' g
where

- — _ g
(4.3.2.3) p™9/9 _ pdppn~q 7 F7 4 (F

c) The following Riemann bilinear relations

<MD FTPRs 2 g (peq)

(4.3.2.4) (-1)"(-1)% < P9 pT99, 5

Remark If X 1is an algebraic manifold, L. 1is the
polarization class, then for each k on the primitive
cohomology Hk(x,Z)0 we can define in a natural way a

Hodge structure of weight k in the following way
1) the bilinear form on Hk(X,Z)O is defined as follows:

<u,v> = [ Pk AuAn (u = dimmx)
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2) the Hodge filtration is defined n:Hk(X,E)O as

pP dgf gk 0 o gkt 0y wkRPeR

Now it is easy to check that in such a way we get a

Hodge structue of weight k on Hk(X,Z)O.
4.3.3., Classifying spaces for Hodge structures.

Let Hy be a free abelian group equiped with non-
singular bilinear form <,> :Hzx Hz —> %Z such that if
a) n is odd, then <,> 1is skew-symmetric

b) n is even, then <«,> is symmetric. Let

0<h0$h1 S ... Shn—1<hn = dlmq:Hz qsx(I:

be an increasing sequence of integers which is self-dual in

the sense that

h = h_ - h for 0sgsn .

Consider the set Gr of all filtrations

F'c...cF?’ = H_ o €, dim F2 = h
Z q

which satisfy

!(Fq).l. = Fn—q_1

n-g-1,

|<E%,E =0

(-1)® <E?,Eq js non-singula

)9 (-1 " <, E® >0
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where EY = Fq/Fq-1

Proposition 4.3.3.1 Gr 1is a homogenecus complex manifold

Gr = G/H

of a real, simple, non-compact Lie group G divided by a

compact subgroup H. See [6 ].

Examples. a} When n = 2m 1is even,

G = 80(a,b;R) (a = h?+h%...+h°™,b=h'+h+. . .+h°™ 1)
& 2 B 2
is the orthogonal group of the quadratic form ] (x,)%- } (x4) %,
i=1 j=1
the compact isotropy group is
_ 0 m-1 m
H = U(h”) x...U(h } x SO(h™)
and the maximal compact subgroup of G is
K = sO(a;R) x SO(b;R)
b) when n=2m+ 1 1is odd G = Sp(2a;R) (a = h0+...+hm)
a
is the group leaving the skew-form jz1 (xj A xj+a) invariant,

the compact isotropy group is H = U(hO)X...x U(h™) and the

maximal compact group is K = U{a).

4.3.3.2. According to [ 6 ] we may identify, the tangent

bundle to Gr as

m m-qgq
= q gpPtd
(4.3.3.2.1) T, (Gr) q20 o1 Hom<'>(E JEF )
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where

F € Gr and m = [Egl]

The identification (4.3.3.2.1) is G-invariant, and
the positive definite metrics (—1)q<u,ﬁ> on E? induce
a G-invariant Hermitian metric dsér on Gr. Group

theoretically, dsér is the metric induced by the Cartan-
Killing form on the Lie algebra of G. This metric we will

call standart.

Definition 4.3.3. Let 1w:X — U be the Kuranishi family

of a marked polarized Calabi-Yau manifold (X;Y1,...,Yb ;L)
n

then we can define the period map in the following way
p:U — Gr

p(t) def {The Hodge polarized structure of weight n on
Hn(x,z)0 induced from the complex structure on X, = ﬁ_1(t)}
where .Hn(X,Z)0 are the primitive cohomologies. p 1is a

holomorphic map [ 6].

Remark: From the theorem proved in §3 it follows that if

X —> U is the Kuranishi family of the Calabi-Yau manifold
X, then U is a non-singular complex manifold of dimension
equal to dim H1(X,O). So from here it follows that X as a

a
¢” manifold is just:

-~
n
e

x U
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If we fix the basis in HAX,Z) we get that we have fixed

the basis in Hn(xt,z) for all t €U, where X, = n—1(t).

After shrinking U we may suppose that for each t€U we

can find a Kihler metric gaE(t) such that
[ Im gaE(t)] = L,
So from this remark it follows that the per;od map
p:U — G
is correctly defined.
The local Torelli theorem says that:
é:U — G .

For the proof of this fact see [ ]. Now using lemma 4.2,

we can "patch" together all Kuranishi families; i.e. we define

X
¥ X
Fa 988 | s~
Ui Ui

where ~ means that we idenify tEfUi with sElUj if

Xt and XS are:isomorphic as marked polarized Calabi-Yau
manifolds. Notice that X — F(X) 1is a universal family for
all marked polarized Calabi-Yau manifolds since. from the
proof of the theorem in § 3 it follows that the Kuranishi

family is complete in the sence of Kodaira-Spencer, i.e.

1
p.TO’U = H {XO,O)
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and so from a theorem of Kodaira-Spencer and lemma 4.2.

it follows that X —> U, i.e. the Kuranishi family is the

local universal family of X,. See [11].

From lemma 4.2. and the fact that if ¢ ¢ Diffo(x),
then ¢ induces the identity map on Hn(X,Z) and ®*(L) =L

. d
we get that F(X) 1is really the Teichmuller space of X.

Q.E.D.

§ 5. The Weil-Peterson metric on the Teichmuller space T(X)

5.1. Let s, € T(X) and let X = n-1(so), where

0

m:X —> T({X).

1f Oqreeee® is a basis of harmonic forms of type (0,1)

N
with values in O%; i.e. a basis of H1(Xs Q) and let
0
J0 be the complex structure operator of XS » then locally
0 .
~around S the complex structure operator Jt of

X, = mNe)  is given by:

_ s 1 . i -1

5.1.1. Jp = (id + Jt7e.) J,(id + JtTe,)

where t = (t;,...,tN) 9 EN. So we can view (t},...,tN)
as . local coordinates of T(X) around the point

Sg © T(X). From (5.1.1.) it follows that the Kodaira-Spencer

map:

1
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is given by:

(J.)) = Y

p:—i— = v, — | J _ .
ot t""t=0 i

i i Bti

So we can identify TS . T (X) 5H1(X,O).
0
5.3. Let dV denote the volume form of the Calabi-Yau

metric 948 We define the Weil-Petersson metric
z h.- dtl ® _CEJ
13
on T(X) by:

_gba av

R 9
(wi)a (wj)b 955

hli(to) := jxt

0

5.4. In the caseofpolarized symplectic holomorphic manifolds,
i.e. compact K&hler manifold on which there exists a unique
up to a constant holomorphic two form wx(2,0) which is a

non—-degenerate at each point x¢t&X, i.e. if

- i J
wX(Z,O)IU3x = Xwijdz Adz

then

det (wi ) & F(U,OG)

J

it is proved in {17] that

T(X) =SOO(2,b2-3)/SO(2)X SO(bz-3)
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where b, = dim HZ(X,HU .

2

5.5. Theorem. Let X be a compact polarized symplectic

holomorphic manifold, then the Weil-Petersson metric on .
T(X) = SOO(Z,b2 - 3)/80(2) x SO(b2 - 3) is just the

Bergman metric. See also [13)&[14].

For the definition of the Bergman metric see [ 91].

Proof. First we need some facts about the space

T(X) = SOO(Z,bz-3)/SO(2) x SO(bz— 3) .

Definition 5.5.1. The tripple (x;y1,...,yb ;L) will be
2
called a marked polarized symplectic holomorphic manifold

iff
a) YqreeniYy is a basis of Hz(x,x)

1,1,.°

b) LtH (X,IU(\HZ(X,%) and L 1is the cohomology class

of the imaginary part of a K&hler metric on X.

Definition 5.5.2. We can define a scalar product on

HZ(X,Z) ® R in the following way:

o - n-2 )
<w1,m2> = ,fx W, szAL , where m.l,w €EH"(X,R)

2

R
and n = 5 dlmmx.

In[17} the following proposition is proved.

Proposition 5.5.3. The scalar product <,> has signature

(3,03 - 3), where b, = dim H°(X,R) .
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The scalar product <,> defines a non-singular quadric

Q in :P(Hz(x,Z) ® C in the follqwing way:

(5.5.4.) 0 8% (weP(H%(x,@)) | <u,u> = 0} .
Let @ be
(5.5.5.) Q={uePH2(X,0))| <u,T> >0}

8 1is an open subset in Q. Let
(5.5.6.) Q(L) = {ue® | <u,L> = 0} < P(H3(X,T)).

It is easy to prove the following proposition.

Proposition (5.5.7.) Q(L) = SO04(2,b, - 3)/50(2) x SO(b, = 3)[17].

From the description (5.5.6.) of 500(2,b2-3)/SO(2)x SO(bz-3)

we get that if t e Q(L) SOO(Z,b - 3)/80(2) x SO(bZ- 3)

2
then t corresponds to a line Ly in H2(X,¢) and the
tangent space at the peoint t, i.e. T can be

t,Q (L)
described in the following way:
> =<u,L>=0}CH2(X,E).

(5.5.8.) = {u€H2(X,E) | <u,

Te,q(w) t

From this description of the tangent space T, Q(L)
!

follows a very nice description of the Bergman metric

(5.5.9.) The Bergman metric on Tt,Q(L) can be des-

cribed in the following way: The Bermgna metric on Tt QL) ’
r
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viewed as a subspace in HZ(X,E) is just defined in the

following way

n-2

<u,v =—,fqu?AL

>
Bergman

After the geometric desciption of the Bergman metric
on (L) &—= I’(Hz(X,G)) we need to connect it with
a geometry. Let m:X —> U, be a family of non-singular
marked polarized holomorphic symplectic manifolds, then

we can define the period map
- 2
p:S —— P (H" (X,T))
in the following manner:

pls) = (...,IYi wg (2,0) ... )
s€S5 and wS(Z,O) is the unique holomorphic two form

defined up to a constant.

In {17] it is proved that p(S) <Q(L). From
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(5.5.9.) it follows that

= 1,1 . - . A
TS,Q(L) = {UEH (XS’E)[ -<u'24>_‘ 0} = H (xlm)o

i.e. = H1'1(x,¢)0 = {all primitive (1,1) classes.}

Ts,Q(L)

Lemma 5.5.70. Let ¢ and ¢ are two non-zero harmonic

elements of H1(XS,G) with respect to the Calabi-Yau metric

gug+ such that (Im guE]= L, then

Jo © 03T g = gbg dav =
X, a b “pqg

=+ (0] 9,(2,00) Ay | wy(2,0)) ALPT2
12

where we suppose that IX (wx(Z,O))nf\(wX(Z,OY)n =1,
s
1

L = Im 998 and IX av =
'S

Proof. Since (uy (2,00)" = w, (2n,0) is a parallel form we
- s S
get that

: n n, _
(*) (NXS(Z,O) ) A(NXS(Z,O) ) = dv .,

So from (*) we get that if we chooSe in one point x«X the

coordinate (z1,...,zn) in such a way that dz1,...,dz2n

is an orthonormal basis, then we may suppose that

n . .
(**) R (2,0) = ) dzt A dz'*". For the proof see [17].

s
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So from (*) and (**) it follows that

P9 . .7 -
o (Mg g5 92 =~(e oy (2000 A (0 Ty (2,00) AL? 2

by direct computation. So lemma 5.5.10 is proved.

Q.E.D.

Lemma 5.5.11. Let ¢ be a harmonic non zero class in

H1(X,0) with respect to the Calabi-Yau metric 948 then

v _| wx(2,0) is a harmonic form of type (1,1) with respect

tQ -g GE .

Proof: The proof is exactly the same as the lemma.in § 2.

Q.E.D.
From lemma 5.5.10 and 5.5.11 if follows that
P9 o — obagy = _
(5.5.12) IXS o3 (V) g 9pg 9 dv < | ws(z,O),w_J ws(2,0)>.
From (5.5.12) and (5.5.9} our theorem follows.

Q.E.D.

I\
Theorem 5.6. The Weil-Peterssonmetric on the Teichmuller

space of a Calabi-Yau manifold has negative'ﬁolomorphic

sectional curvature bounded away from zero.

Proof: Let Gr = G/H, where G is a simple Lie group
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)
and H 1is a e¢bmpact and G and H are like examples
on page 20. On Gr we have the standart metric defined

in 4.3.3.2.
5.6.1. Review of some results of Griffiths and W. Schmid.
We have an equivariant fibering:

W:G/H — G/K

where K 1is a maximal compact-subgroup in G. Clearly the
fibre is K/H. Griffiths provedin [6 ] that the fibre
through each point F € G/H 2o is a compact complex sub-
manifold. Let F€Gr = G/H, then the dsér {standard metric)

defines an equivariant splitting of TF(Gr) namely:

Vv v
TF(Gr)— TF + TF
where
T = {u€T_(Gr) | ue T (2.))}
F F F'F
h _ vyl o_ : V. _
Tp = (Tg)™ = {ut.TF(Gr)| <u,Tg> = 0} .

The following theorem is proved in [ 8 ] :

Theorem. The holomorphic sectional curvature in Gr = G/H
corresponding to directions in Th(Gr) are negative and

bounded away from zero.
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5.6.2. Let X — U be the Kuranishi family of the marked
Calabi-Yau manifold with a fix class of polarization.

From local Torelli theorem we know that

5.6.2. a) p:U‘CL—> Gr, i.e. the period map gives us

an embedding locally.

From Griffiths transversality theorem we know that:
5.6.2. b) p,:T(U) = TH(Gr).

So from 5.6.1. a and 5.6.2.b. follows that if we prove
that Weil-Peterson metric on Tt(U) is the restriction

of the standart metric ds* on G under the map p,.,
then our theorem will follow from the theorem of Griffiths
and Schmid. That Weil-Petersson metric is the restriction
of the standart metric ds2 on Gr follows from the

following proposition.

Proposition 5.6.2.1. We have the following equality on

each Calabi-Yau manifold with a fixed Calabi-Yau metric

9a R’

Ix 0z WP 9.3

a

(i)n-,fx((o_i 0, (n,0)) A (¥ T &, (n,00)

where J wx(n,O) AW (n,0) = fxdv = 1 and
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0,y € HT(X,@) are harmonic representative Qith respect
to the metric 948"
Proof: The proof is absolutely the same as the proof of.

5.5.10.

From the main lemma in §2 we know that w_i wx(n,O)
and ¢ _| wx(n,O) are harmonic forms of type (n-~1,1) on
X, So from 5.6.2.71. we get that the Weil-Peterson metric
is purelly topologically defined. So it is invariant undgr
the action of the group G. This is so since the scalar
product on -Hn(x,z)o is coming from the intersection of
cycles. From here we get that the Weil—Peteréon metric is
just the restriction of the standart metric on G. So
our theorem follows from Griffiths Schmid's theorem.

Q.E.D.

§6. The Torelli problem for Calabi-Yau manifolds.

Theorem 6.1. The period map p:T(X) &~ Gr 1is an

embedding, where: X 1is a Calabi-Yau manifold, T(X) is
the Teichmuller space of X and Gr 1is the Griffiths
domain that parametrizes all Hodge structues of weight n

on Hn(X,Z), where n = dimmx.

Proof: Let X, be a fixed Calabi-Yau manifold, ng(O)

be a Ricci flat Kdhler metric on XO and
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1 Ne !
Y ',...,9€EH (XO'OXO)

be a basis of harmonic forms with respect to gaE(O).

In §2 we define for each t = (t ,...,t')GZBC:mN a
1 N
new complex structure Xt on XO in the following way:
Let {U;} be a covering of X, and let

;
wk|U= I(wk)% az® s g%a for each U€ {u,!}

then

o _ a ‘ oKy & =B
(*) @t. = dz + )é (E(tk(p )B dz.)

will be a basis of (Tl'o)* for each point =zt U, in

is

another words the new complex structure operator J,

defined as follows:

-1
+* %
(¥*) Iy = A Jp A

where

oy
1

(1 + Jt¥o) @ (1a + Jt5G,)

and Jo is the complex structure operator defining XO.

Definition 6.1.1. The Kuranishi family defined as above

will be called the standart Kuranishi family.
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Lemma 6.1.2. Let X — U be the standart Kuranishi
N

family, then for each teuctk

n-form wt(n,U) on Xt = ﬂ-1(t) is a harmonic form

with respect to the Ricci-flat metric. gaE(O) on

the holomorphic

_ =1
XO =1 (0}.

Proof: Let {Ui} be a covering of X, and let

1 k

(z',...,27) be local coordinates in Ui such that

So aza |
Let
of = az® + t] o§ dz
then
(6.1.2.1.) 0la...a07 = dz'a...ad2” + [ (-1)* ¥ (¥ Jaz"n. . naz™ ]

where Akw is defined as in §2, p(k) 4is an integer >0,

which can be computed very easily. Since

wy (n,0) ], = az'a...naz"?|

0 U

we get
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(6.1.2.2.)  ©la...700 = w, (n,0) | + i(—n“”"[(Akw)lwx(n,mnu.
0

5

From 6.1.2.2. we get that O/A...A07 is globally defined

t
since wy (n,0) and Akw are globally défined forms.
0 . .

From the definition of {Ot} it follows that
O1A...A6n on X is a form of type (n,0), i.e.
t t t

1

@t.A...AOEtT(U,An((Tl'O)*)).

In § 2 we proved that -(Akw) B Wy (n,0) 4is a harmonic
0

form with respect to gaﬁ(o) S0

aela...ae%) = 0

AR t *

From here we get that

_ oAl n
wt(n,O)lU = O A .. AD.
So this proves that for each t€B, wt(n,O) is a

harmonic form in the standart Kuranishi family with respect

to gaE(O).
Q.E.D.

6.2. Let L bé the cohomology class of ImaE(O). From
Yau's solution of the Calabi conjecture it follows that
for each t€B L défines a unigque Ricci flat Kihler metric
g,glt) on X = ﬂ-1(t), where X —>= B is the standart

Kuranishi family. Since

[Im ng(t)]EI,
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we have on X0
6.2.1. Im gaﬁ(t) = Im guE(O) + dwt

where wt is a real one form on XO.

Lemma 6.2.2. In the equality 6.2.1. dwt = 0 for the

standart Kuranishi family.
Proof: We will need several propositions.

Proposition 6.2.2.1. For each t€B we have on X

0

1 n 1
w, (n,0) A wtln,0)|U = 0pA...A O A0

n
g N O

.A®2=w(t)dz1A...Adz A

ATz A, A2 = w(t)[wX (n,0)Aw

(n,0) 1|
0 0 U

X
for n =3 .

where ¢(t)>0is-a function of |t|2 which do not depend on
z and z. This equality is true on every open set 'U<:X0.
Here again wt(n,O) is-the (n,0) holomorphic form on

X, = ﬂ-1(t), where T7:X¥X —> B is the standart Kuranishi

family.

Proof. From (6.1.2.2.) it follows that

(6.2.2.1.1.) 01A...A0"%00n a0 = 5 (07|, =
» . . « ) e t--. £ + + t r U -
n
= g (0,00 A5 (00 + 3 [t 2K Te) 1wy (n,0)1al (A0) 1w (n,0)]

k=1

In order to prove 6.2.2.1. it will be enough to prove
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the following observation:

(6.2.2.1.3.) Let w;(T,n-1) and mz(n-1,ﬁ) be two
harmonic form of type (1,n-1) and (n-1,%) on a
Calabi-Yau manifold with respect to the Kdhler Ricci-

i - -1 “1,1) i
flat metric 948 * then w1(1,n 1) sz(n ;) is a
harmonic form of type (n,n), i.e.

w1(1,n-1)1\m2(n—1,1) = cwx(n,O)wain,O)
where ¢ 1is a constant.

Proof: Repeating the arguments in §2 we see that there

is a natural isomorphism for each k:

K k ~ k n-k
+H (XO,A ex ) — H (X,QX

0 0

T )

where Iﬂ((XO,Akex }) 1is the space of harmonic forms of
0
type (0,k) with coefficients in Ao, , ®P (x,a} P) is the
0 ' 0
space of harmonic forms of type (n-p,p). In both cases the

forms are harmonic with respect to gaE(O)' The map By

is defined as follows:

bi(@) =0 1oy (0,00

Let

= v n-=1 n-1
-1 (w, (1,n=1)) ¢ H (Xgr A OXO)

_. - _ 1 A
©, =: u-1 (0, (n=1,1)) € H" (X4, A OXO)
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If

An-1 _Bnl_.1 3"
n-1
o =B 3
(Dz = 2(@2)— dz 2 Ha
B 8 8
where dz = dz 'a...adZ ¥ and oA, = 2_a.a2
Bk = (BA]["'IB]()I.' Ak = (01,...,ak). We define
- A__ _B._ B.
0, Aw2=2(w1_n1x (tpz)a)dan1AdE e 2. ; 2

n-1

Sublemma. w1 Ao, is a harmonic form of type (0,n) with

coefficients in AnOX with respect to g E(O)'
0 a

Proof: Clearly since 3¢, = 3¢, = 3(9, A ®,) = 0.

So we need to prove that
B*(w1 A wz) =0

where 3* is the conjugate operator of 3 with respect

to gGE(O). For 9* we have the following formula:

i7* = [D',A] (see [15]).

For the notation see §2. Since w1 A9, is a form

of type (0,n), then



g
Ao he,) =0

So we need to prove that

* =

(*) AID (0, A0,) ) 0

D 1is the connection on © induced by the metric

—-(0) . Like in § 2 we can choose the coordinates in a point
gaB ) :

X € X0 21,...,zu such that: a) dzl,...,dz4 is an ortho-

*
normal basis in T b) D = 3 at the point Xq b) can be

X Xg
done since gaE(O) is a Ricci-~flat Kdhler metric. So after

these remarks and the following

(Proposition. Let X be a Calabi-Yau manifold and (gag)

is a Ricci-flat Kdhler metric on X , let ¢ € Hn-1(X,An-1O)

and ¢ be a harmonic form of type (0,n-1}) with coeff. in
n-1 n-1

A © , then there exists vy € H1(X,0) such that 1) A Vo=
and 2) ¢y is a harmonic form in H1(X,e). Here n = dimmx .)

(*) is' reduced to the following

(**)  Alo0,aa" Y] = 0 and Ale Al (3 (A" Ty)] = 0

A in (**) is the contraction with icgsa au A *%E
. 3z 22
where o, € H1(X,e) , vy € Hj(x,e) and both are harmonic

forms. Now (**) follows from the arguments, repeated word by

word in § 2 on p.7, 8 and 9.

proof of the proposition. Step 1. Let 1y € H1(X,0) and vy
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be .a harmonic form, .then Anw # 0, n =.dim¢X .

Proof of Step 1. Suppose that AKw # 0 but AK+1w =0 ,

K < n , From the results of [1 ] and since AK v 1is a
harmonic form, then AKw is a non-zero form on an open
and everywhere dense subset of X . Let x be a point in
.this open set and let U be a small neighborhood of yx .

Let z',...,z" be local coordinates in U such that:

a) dz1h...Adzn|

It

v = ¥x(n.0)

b) y(dzd) = 0

1

K+1,...,n at the point x € V , here

we loock at ¢y as a linear map, i.e. gy : (T Y - (T

)

c) w(dz1)A...Aw(de) # 0 in U . This can be done since

AK+1w

from AKw £ 0 , = 0 = rky = K .

*

We know from § 3 that for small t ty defines an one

parameter family of complex structures on X . Let X1 i

a new complex structure defined by ¢ , i.e. t = 1 . This

can be done since we can rescale vy , i.e. consider

vy = 1/Ny , for N big enough. The basis of T1'0(X1) at

the point x 1is given by:

azh

(o]
1]
o))
N
+
I ~12
<
IR
o]
]
—
-~

1

joF
N
=

=

u
b
+
—
=

Let w.l = 61ﬁ...AGK - Wy is a well defined form on

of type (K,0) with respect to X1

S

U
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Fact 1. w is a holomorphic form on U . with resPec£ to . X

1. 1

Proof. Since w is a form of type (X,0) with respect to

1
X1 it is enough to prove that 51w1=0 at each point y € U .

(51 is 3 for X,). First we will check that 51w1=0 at x .

We have proved that

w1Ade+1A...Adzn = Wy (n,0) (See 6.1.2,)

X 1 X

(n,0) is the holomorphic form on X, .)

1

{(w

X 1

Since 51wx (n,0)=0 we get that at the point
1

K+1

3.w, Adz T AL .AdZT = O .

171

So from here it follows that at the point x € X

Now let y be any point in U . Then we fix dz1,...,de and

K+1 n 1 K K+1

choose dy res-dy such that dz ,...,dz, dy n

reeo Ay
fulfill a), b) & c) on p.42. Repeating the same arguments we

get that

w, = 0 at each point y € U
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Remark 1. w4 defines a K-fimensional subspace in T*(X) © @

E1 which has the following property:

E1 = {the maximum dimensional subspace in T*(X) © T |

E1CT1'0(X ) and E nT1'0(x)=0}. (T110(x) is the old

1 1

{(1,0) space.)

Clearly E

1
but AK+1w =2 0 and this is an open and everywhere dense subset.

is defined at those points y € X where AKw £ 0

Let us denote it by W . So we get a c” family of K-dimensional
subsbaces in T(X)* @ C . Fact 1 shows that this family of
K-dimensional subspaces is complex-analytical family with respect

to X1 .

Remark 2. Let us denote this complex analytic family of

K-dimensional subspaces in T*(X) € € on W by K . Let

c1,...,;K are orthonormal vectors in U with respect to the

Ricci-flat metric gu§(1) on x1 and ;1,...,;K span KIU .

Since W, is a holomorphic form of rank K we can find

a function £ on U such that

w1 = f C1A...ACK -

1

Let C1v---r§K, ;§+1...,§n be an orthonormal basis of

T1'0(x1) in U . We know that since(gug) is a Riéci—flat

metric on X1

(*) wX1(n'0)]U = C1A--.ACKACK+1A...A;n
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Let F be a holomorphic function on x1.n U and
) %,
F # Const.FGI‘(U,Ox ) . Now we can find a function g such that
1

%4 U

Fw

= _ = _ = 1 n, _
From 31(wa1(n,0)|U) =0 =23,(fg) = 0 since 3,(; A...A; ) =0 .

So we get that 51f = 0 and 51g = 0 . Since §w1 = 51(f;1A..AtK)=0

and 51f =0 = 5(;1A...AtK) = 0 . We have proved

Fact 2. ;1A...ACK is a holomorphic K formon U N W c X, .

i
K+1

(**) From (*) and fact 2 = ¢ Ao is a holomorphic (n-K)

form on U N x1 .

From Fact 2 we will prove:

Fact 3. On X there exist globally defined holomorphic XK-form

1
wi(K,0) .

Proof. Let {Ui} is a covering of W . On each U, we can
1 K 1 K

define a form w, = ¢. A...A ., where ¢,,...,r, are ortho-
i i i i i
normal vectors that spanned KIU . For the definition of K.
i
see Remark 1 and 2.
Since for each i,wi = ;1 Ao..A c? is a holomorphic form

on U, N U, we have w, = f
j i

i + where fij is a holomorphic

. LW,

1] ]
function on U. N U. . On the other hand we have w.Aw. = W.AW.
i Jj AT i)

|2 = 1 and so from the

on U, N Uj so from here we get that Ifij

i
maximum principle we obtain that fij = const. So from here we
get that on an open and everywhere dense subset W c X1 we have

a holomorphic K-form w1(K,0) . Since AKw is defined on the
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whole X, and form the definition of K we get that w1(K,0)

is defined as C -form on the whole X1 . So from here we get

that w1(K,0) is a holomorphic form defined everywhere on X1
From Bochner principle and the structure theorem we get that

] 2) X1 = 72 x Y as a
complex manifold, where on Y there exists a holomorphic (n-K)

1) w1(K,0) is a parallel form on X

x1(n,O) . From

the definition of K and so from the way we define w1(K,0}

form wz(n-K,O) such that w1(K,0)Aw2(n—K,0)=w

we obtain that wz(n—K,O) is a holomorphic form on X . So
from Bochner principle we get that the holonomy group of X is
SU(n-K) x SU(K)} (K>0) . So we get a contradiction with the fact

that X 1is a Calabi-Yau manifold, i.e. it has a holonomy group

SU(n) . So Anw # 0 . From here and the fact that dimmH1ﬁx,o)
dim Hn-1(x,ﬁn—1e)'(Serre's duality) we get that the map

T
v - An-1w is a one to one map.

Remark. In the computation that follows we will use the fact

that dimmx = 3 1in the following moment: We need to compute

just w, (3,0)Aw, (3,00, [eaw_(3,0)1Al@iw _(3,0)] and
%o %o %o Xo
{(Az(p.xwx(3,0)A(A2Lpqu(3,O)) . In the computation of the second
0 0 '
term of this sequence we will use the Proposition just proved,
i.e. if y e BV (x, A" g) , then v = A" o .
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Since ©, AW, is a harmonic form of type (0,n)

with coefficients in A" OX we get that
' 0
(0, A9,) tay (n,0)

%0

is a-harmonic form of type (0,n), where n = dimmx, so

(F*¥) (@, r0,) oy, (n,0) = a vy (n,0), a constant
0 0

from (***) and the following easy formulas:

(n,0)]l Aw
0

(n,0)

w1(1'n_1)Aw2(n_1,1) = t[(w1,\w2) lw 6

X X

we get that

@1(1'n_1)Aw2(n_1“1)qggkém,mAmxoin,oj =c vol (gag}O)

where ¢ is a constant.
So mt(3;0),A wt(0,3) = (t) w0(3,0) A w0(0,3).

Q.E.D.

The end of the proof of lemma 6.2.2.

Let 7w:X —= B be the standart Kuranishi family.
Let {U;} be a covering of X, where U; =U;xB and

{Ui} be a covering of X.,. Let for each t«tB

0°

Ixt wt(n,O)l\wt(n,O) = 1
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where Xt = n_1(t).

1,...,tN) be

Let (Cl(z,z;t),...,cg(z,f;t),t
local coordinates in U, such that for each t we

have:

1
w, (n,0) | = dciA.,.Adcg.

UiﬂXt

According to Kodaira-Spencer theory of deformation on
Uif1x0 there exists a real vector field which induces

a diffeomorphism wi(t):Ui — Uy such that
al(y; (£)))*(2,)) = dgj (z,z;5t).

Let for each t¢tB gag(t) be the Calabi-Yau metric

on xt such that

[Im gag(t)] = L

We have for each ¢t

o ==B
i~ dgy

N —
~1
g
Q
™ .
o
o

Im gaﬁ(t)lU{IX
and
] =B _ i B
(6.2.2.1.4.) 3wz acd ATT® = 37 v, (£)* (g 5(0) IUi)d(d}j’:(t)z ) +
+ 199 f(ci,fi;t)

where f(gi,E;;t) is a function on U;. Let z,&U, NX,.
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Since wi(t)*(gug(O)IU.) is a positive definite K&hler
1

metric on Uir1X0 we choose the coordinates (21,...,zn)

in such a way that at the point 24 for a fix ¢t

IO a#* B
(i ()" (ggg (01 {zg)) = Sy, where 6oy =1 .,

and
3,98 £l ggit) = 8.5 £
So from here we get that:
i 0

det (% . Zwag dcg A dEB)= wt(n,O) Awtin,oi = wo(n,O) Aw,(n,0) .

(This follows from prop. 6.2.2.1.) So at the pbint z, we

have
24 YoB “6i c of op) 4t 4
(6.2.2.1.5)
2 1 n =1 —n
= T (1+faa)dc Ave. AL Adp.AL.AdE T =
0=1 .

1

n [ S——
1’_1 (1+faa)d(lpi(t)*z1)f\.../\ atyr(e)z") =

n
| (1+faE)EE1A... Adz® A Gz A... A 3z
a=1

1]

o ——8)

We have proved that det(%z w,gdl” A aZ is constant
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along the trajectories of the vector field that defines
the deformation of the standart Kuranishi family m:X — U
locally on u; - (This is reformulation of 6.2.2.1). So from

here we get that for each t we must have

n
(6.2.2.1.5.) TT7T 1+ £-2) =1 .
a=1 ad

- . oo - ) -
Since faE depgnds C on t and faa =0 when t =0

_ 1
we get that faa = tfaa . So we must have that

n

1 =
| I (1+tfaa) = 1 .

a=1

So from here we get that f;&E 0 . So we have proved that

for each t 1locally the Ricci-flat metric gaa(t) on X,

that corresponds to _L1 is given locally on -Ui by:
;‘ o —'?B_ i.. a
ZZwaE dgy ndcy= 2{(¢i(t)*gaB)Ad(¢i(t)*z ) AETEETETEB)

From this formula we get that on Ui < X0 we have

(6.2.2.1.6.) %}wag drf A aTP = § Vo zlz, DAt (z,ZienaTl (2,3) .

Siu and Nannicini proved that Lv(iiwag & ~dz )|, =0,

t
where v is a vector field that defines the trivialization

{holomorphic) one, on Ui defined by the deformation coming
from a harmonic o ¢ H1(XO,OX ). L, means the Lie derivative.

0 )
The result of Siu and Nannacini means that (6.2.2.1.6) can
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be expressed in terms of the local coordinates (z1,;..,zp) in

the following way:

(6.2.2.1.7.)

i = a0, =B i o, =B 2 u, .=U
39,5z B)a%dT” = 5(Ig zdz"ndz” + ¢ Iy dz"haz) .

8]

Again we fix a point zg € Ui and we can choose the coordinates

(z1,...zn) such that

v o 0, =B 20 _a W, q=Vy
(6.2.2.1.8.) Z(Egasdz Adz® + t zwuvdz Adz") =
( % dz®raz® + t2 % ~dz%2dz%)
z waa z *

a=1 a=1

|
NI

This can be done since the deformation defined the harmonic

form ¢ € H1(X,9) is defined to first order deformation. This
K

means that ~gi(d€a) = 0 for K =g 2 . Since in (6.2.2.1.7)
dt ) K

d - d

aE(gGE(z,z)) = 0 we get from g;i(dca) = 0(K 2 2) that

d -
E(wu\)) =0
Since the volume form of %igaédcandEB is const., i.e.

w0(3,0) A woi3,0) we get that

3 2
111(1+t vz =1

So form here we conclude that ¢ = 0 . So our lemma is proved.

-

Q-E.Do
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6.3. Geodesics on T(X) with respect to the Weil-Petersson

metric.

Remark 6.3.1. Suppose that o c:m1(x0 ’@X ), then for each
0
te € we define Ag:T(Xp) @ € —> T(Xg) = € as

- a a =B
A (dz ) = dz" + tXwE dz
At(HE“) = dz! + tles az® .

From 6.2.2.1. it follows that for each t€C 1l n = 3

At(dz1)A...f\(Atdzn) A (At‘cTEHA...A(At‘cE“) = dzVa...Adz" 4

A JZA.. . AdZ"

where ¢ is a constant. So from here it follows that for

= =1
each t €€ the operator Jt = AtJOAt

complex structure on XO’ which is integrable. The
1

defines a new

. deformations defined by J. = AJ A, for a fixed

t7 0t
1

0 € H (Xys0y ) we will call the standart line in T(X)
0 .
and will denote it by X T S(t).

Since for each t € 5(t) mt(n,O) is a harmonic form with
respect to ‘gaE(O) it follows that the period map

p:S({t) & Gr is an embedding. Clearly we have that S(t)C—§T(XL
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Lemma 6.3.2. The standart line is a complex geodesics

with respect to the Weil-Petersson metric on T(X}.

Proof: The proof of 6.3.2. is based on the following
remark. For each t the imaginary part of the Calabi-
Yau metric gag(t) defines a symplectic structure, i.e.
a skew symmetric scalar product ( , )t on X,, where
X, = 7 V(t) and T:X —> U is the standart Kuranishi
family. We have prove that for each te¢U Im (gaB(t))

defines one and the same symplectic structure. So the

Riemannian structure for each t defined by (gag(t))
given by

= - -1 -
(6.3.2.1.) u,v>, = (Jtu,v)0 = (AtJOA tu,v)o

1u,A?v) = <A-1u,A_1v> .

(JTpBe t t V0

at each point xt;XO.

Using 6.3.2.1. we will prove

Proposition 6.3.2.2. WE have the following eguality:

. . . 5
<g(t),S(t)> wop. - HS(t)Hw.p_ = wust for each tE€c,

where S(t) is the tangent vector to the curve S(t) at

the point te S(t).

is
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Proof: The proof is based on the following two remarks

Remark 1. dw, (n,0) n 1
— e i = ) (-1 g8 (1% 14 (n,0))

is a harmonic form of type (n-1,1) with respect to the

complex structure

%

and the Ricci-flat metric (gag(so)).

Proof: From the formula:

dw, (n,0) n -
— . = = VeI (% ug(n,0))
dt 0 q=1
the fact that for each g the form [A9p] | wo(n,O)
is a harmonic form with respect to gaE(O) we get that
dw, (n,0)
the form £t | : .
_— _ is a closed form, i.e.
dt t=s,
dwt(n,Ol
@—gg ltas, = O
0
Let us reparametrize our curve S{t) in such a

way that we get a curve S(s) such that the family:

m X —> S(s} is the same as X — S(t) and in the

reparametrized family we have: ﬂ—1(0) = X

1

. This can be
SO

done very easily. Let {Ui} be a covering of _X0 and

{Ui} = {Ui><¢} be a covering of X —» S(s). Let
(¢1(z,s),...,gn(k,s),s) be 1local coordinates in Ui
such that

wg(n,0) |, = ac'(z,8) A. .. AdE™(2,8) .

1
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From tﬁe fact that we have:
% _ Q : a =B 2
dc¥lz,s) = AT (z,s3) +s JYg AT (z,54) + 0(s")

we get that

dw .{n,0}) dwt(n,O)
~— ds s=0 T dt -
d 1
= gz (g (z,s)A...n ac(z,s)) | -0 =
=1 atliz, ) rac(z,sr.. . nar® iz, nag®t!
o,B
a+2

ag (z,sO)A.../\dcn(z,so)

and this is clearly a form of type (n-1,1) with respect

to the complex structure JS . Since for each te¢C
0
wt(n,O) is a primitive form and the symplectic structure

dwt(n,O)

dt t=so

is a closed primitive form of

does not change we get that is a primitve

dmt(n,O)l
dt t=s0

type (n-1,1) on XS . From the following formula:
0

form. So

Let n be a primitive form of type (a,b), then

(at+b) (a+b+1)
.a-b 2

= X -
"M = ey 7V L

n—-a-b

dwt(n,O)
we get that = is a harmonic form with
dt ~S0
respect to gaE(SO) since
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dwt(n,O) n(n+1) dwt(n,O)

- 2 _yyTr— T
Bt e ) T (=1) (—3¢ |t=S )
0 0
dwt(n,O)
and so *(__EE__—_|t=S ) is a closed form. From here we

0.

get that dwt(n,O) is a harmonic
. af t=sy
form with respect to gag(s0 .
Q.E.D.
dw, (n,0) A
t ! _ o =B 1 o n
Remark 2. — |t=$0 = %) g O A8 ALL.ABT ALL.nO,

1 _ a =8 d
where ¢ < H (X,,0, ) and wlU = Zwﬁ dz” e w5 .

0

Proof: Locally wt(n,O) can be written as:

(=1 DT (12%] 1y (n,0) ],

n
(*)  w.(n,0) = dzla...ndz"™ + )

we know that dzP = a”] Oz . From the definition of the

S0 %o
operator At, i.e.
A (dz%) = az® + t]of Tz
we get that At = id - to + .. So from (*) we get
-1_1 -1.n 2 o (q)
(*#)  w.(n,0) = (A 0 )a..ua(aog) + ] (-1)* 9l
: 0 70 0 0 q=1
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In (**) we need to compute the (n-1,1) part with respect.

to O; ,...,Og ,0; ,...,Og taking into acount that

"0 0 0 0
A-1 = id - s, + 0(92)$ , wWhere tp:T1'0 — T-]-"0
s 0 0 . s
0 0
. and G:T1’O — Tg’1 .
S0 0

So from here we get after direct calculation that the

(n-1,1) part of wt(n,O) with respect to 91 ,...,02 ,61 '

— Sp 0 ®0
R will be:
S .
0
dw, (n,0)

...

R 1 o-1 atl n
—t | =syntoeP Aol aia e a0l =
at t= B sy s 0 o %0

S0

g

=+ 7 h¢@aL'az®) A @l azlyaoa aTaz% MHaallaz®) o
S %0 0 %0

0
Q.E.D
The end of the proof of 6.3.2.2.
From remark 2 it follows that
(6.3.2.2.1.) dw (n,0) S T2 T® e 2y |
0
T n
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Since we have a natural map

1 ~ 1 n—-1
po:H (xso,eX ) —> H (xso, xz )
0 0
where p1(w) = ¢ -l wg (n,0). Moreover By is an
Sy .

isometry with respect to the metric induced on

1 1 n-1
H (X..,0 ) and H (x 8 } by = (g ))
S Xg sy’ Xs gB S0

Moreover we°know from remark 2 Chat ————————| _ is
dt t—SO

a harmonic form with respect to gaE(SO)' So from

(6.3.2.2.1.) we get that

-1(dwt(n'0) I ) = 2 s 2
Hq dtc t=s,’ = L 9B

® 50
a

o~

where A;1 is a linear map from T* 3 T — T* ¢ T

0

induced by A, . From the following formula (6.3.2.1.)
0
u,v>. = <A;1 u, Agt v>0
0 0 -0
we get that
. -, dw,_ (n,0)
2 =1 i 2 -1 12 2

I 0sgll 2 = 11 gl s VI = 1 ANl =0 I -

So 6.3.2.2. is proved.

Q.E.D.

lis(0) |2
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From 6.3.2.2. we get that
25| sty [12= o .
On the other hand we have:
35| S(t) |} 2 = -33<S(t),S(t)> = -B<D'S(t),S(t) > =

= o+ <D'_é(t) ,D'(é(t)>— <§D'é(t),é(t)> = | D'é(t) || 2_<r (é(t)),é(th

where R 1is the curvature operator, which is negative.

So we get that
o3)I5te) || 2 = 0 = [[p'Ste) || 2 - <R S(£),S(t)> 2 0.

So it follows that || D'S(t)]|%= 0 = D'S(t) = 0. So 6.3.2.

is proved since 9 S(t) = 0 since S(t) is a holomorphic

curve in T(X}.

Q.E.D.

Now we need to prove that we have an embedding
p:T{X) > Gr.

The proof that the period map p:7(X) -— Gr is

an embedding is based on the following three remarks.
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Remark 1. p 1is a local isomorphism this is just local

Torelli theorem for manifolds with c, = 0.

Remark 2. Since the Weil-Petersson metric has negative -
sectional holomorphic curvature, then any two points of

T(X) "p,q can be joint by a geodesics. For the proof of
this fact see [ 9]. So let £his geodesics be S(t), i.e.

the standart line.

Remark 3. Let peS(t), then p corresponds to a complex
Kdhler Calabi-Yau manifold xp with a fixed Calabi-Yau metric
gag(g). We know that each Calabi-Yau manifold X_ has a
holomorphic form mt(n,O) where:

I~y

- _yala) q q
a) wt(ntO) = wp(n,O) + (-1) [[AZ0]) | wp(n,OL]t

g=1

b) wtﬂn,O) is a harmonique form with respect to the

Yau metric gagjp).

So from a)b) it follows that each form mt(n,O) is

different from wp(n,O) in P(H(X,T)).

So from Remarks 1,2 and 3 follows that p 1is an
embedding. Since if p,q corresponds to two holomorphic

form wp(n,O) and wq(n,O) such that

- , n
[wp(n,O)] [wq(n,O)] in H (X,C)
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where p,q € T(X}). Now we can joint p,q with a

geodesics S(t). From remark 3 it follows that

pPEgq .

_So from here we get the weak version of

Global-Torelli theorem,
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