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COHOMOLOGICAL TENSOR FUNCTORS ON
REPRESENTATIONS OF THE GENERAL LINEAR
SUPERGROUP

TH. HEIDERSDOREF, R. WEISSAUER

ABSTRACT. We define and study cohomological tensor functors from
the category T, of finite-dimensional representations of the supergroup
Gl(n|n) into T),_, for 0 < r < n. In the case DS : T,, — T},_1
we prove a formula DS(L) = @ II"™ L; for the image of an arbitrary
irreducible representation. In particular DS(L) is semisimple and mul-
tiplicity free. We derive a few applications of this theorem such as the
degeneration of certain spectral sequences and a formula for the modi-
fied superdimension of an irreducible representation.
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INTRODUCTION

Little is known about the decomposition of tensor products between finite-
dimensional representations of the general linear supergroup GIl(m|n) over
an algebraically closed field of characteristic 0. In this article we define and
study cohomological tensor functors from the category 7,, = Rep(Gl(n|n))
of finite-dimensional representations of Gl(n|n) to T;,_, for 0 < r < n. One
of our aims is to reduce questions about tensor products between irreducible
representations by means of these functors to lower rank cases so that these
can hopefully be inductively understood. This is indeed the case for small
n as the GI(1]1)-case has been completely worked out in [GQS07] and the
Gl(2|2)-case is partially controlled by the theory of mixed tensors [Heil4]
[HW15a]. Along the way we obtain formulas for the (modified) superdi-
mensions of irreducible representations.

The tensor functors that we study are variants and generalizations of a
construction due to Duflo-Serganova [DS05] and Serganova [Ser10]. For
any v € X = {x € g1 | [z,2] = 0}, where g; denotes the odd part of
the underlying Lie superalgebra gl(m|n), the cohomology of the complex
associated to (V, p) € T,,

p(x) v p(x) v p(x) v p(x)
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defines a functor V — V, : T,, — T,_, (wWhere r is the so-called rank of
x) which preserves tensor products. The category T, splits in two abelian
subcategories T,, = R,, © IIR,, where II denotes the parity shift (lemma 8).
We therefore focus on the R,,-case and fix a special = of rank 1 in section
2 and denote the corresponding tensor functor DS : R,, — T,,—;. Later in
section 3 we refine this construction to define for any V' € R,, a complex

o ) 9 d
B H(Vgg_l) —_— Vgg _— H(Vgg_,_l) —_— ...
whose cohomology in degree ¢ is denoted by H*(V). The representation
DS (V) is naturally Z-graded and we have a direct sum decomposition

DS(V) =P n'(H (V)
teZ

for GI(n—1|n—1)-modules H*(V)) in R,,_;. The definition of DS can be
easily generalized to the case = € X of higher rank » > 1, and we denote the
corresponding tensor functors by DS, ,,—, : T,, — T;,—,. Like the BGG cat-
egory the category 7,, has two different duality functors, the ordinary dual
()Y and the contragredient dual ()*. The tensor functors DS and DS, ,,—,
are not x-invariant in the sense that DS(V*) £ DS(V)*. We therefore de-
fine an analog D of the Dirac operator and we denote the corresponding
Dirac cohomology groups by

Hp(V) =ker(D: M — M)/Im(D : M — M)

for a certain module M < T,,_; attached to V in section 5. This defines a

x-invariant tensor functor. It agrees with D.S on irreducible modules, but in

general gives rise to an analog of Hodge decomposition (proposition 7.1).

The definition of Dirac cohomology generalizes easily to define Z-graded

tensor functors wyn—r = Pyey Wﬁ,nfr whose graded pieces are functors
‘

w : T,, — T,,_, that are described in section 8.

n,n—r

The second part is devoted to the main theorem 16.1. In the main theorem
we give an explicit formula for the image of an irreducible representation
L = L(\) in R,, of atypicality j (for 0 < j < n) under the functor DS.
Surprisingly, with its natural Z-gradation, the representation

DS(L) = @ Li[—6]

decomposes completely into a finite direct sum of irreducible representa-
tions. Here, for certain integers ¢; € Z, the summands are attached to irre-
ducible GI(n—1|n—1)-modules L; € R,,_1, where L;[—¢;] denotes the module
1% (L;) € T,,_1 concentrated in degree &; with respect to the Z-graduation
of DS(L). If we ignore the Z-graduation, the module DS(L) € T,,_; always
is semisimple and multiplicity free for irreducible L. This makes the main
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theorem into an effective tool to reduce questions about tensor products or
superdimensions to lower rank cases in the absence of any known branching
laws.

To analyse the Z-graded object DS(L) in more detail, we can assume
that L is a representation in the principal block containing the trivial repre-
sentation (the maximally atypical case). In fact, one can inductively reduce
the general case to this special case. The irreducible maximal atypical rep-
resentations L € R,, can be described in different ways. For the moment
it may be sufficient that up to isomorphism they uniquely correspond to
spaced forests of rank n in a natural way. By definition, such spaced forests
F are defined by data

(d0771)d17757 e adk—1>77€)

where the 7; for i« = 1,...,k are rooted planar trees positioned on points
of the numberline from left to right. The integer dy specifies the absolute
position of the leftmost tree 7; and the natural numbers d; fori =1,....k—1
indicate the distances between the position of the trees 7; and 7;;,. Here
we allow d; = 0, i.e. some trees may be positioned at the same point of the
numberline. The absolute positions §; = > ._.d; € Z of the planar trees 7;
therefore satisfy

7<t

01 <9y <o <6 .

In particular, ¢; describes the absolute position of the leftmost tree 7; of the
forest and §; describes the absolute position of the rightmost tree 7, of this
forest. Each tree 7; is a planar tree with say r; nodes, among which is the
distinguished node defined by the root of the tree. By definition, the rank
of the forest F is the sum % r; of the nodes of all trees. Since in the
equivalence above the rank n is fixed, only forests with at most k£ < n trees
occur.

This being said, we are now able to describe the summands of the de-
composition of DS(L) mentioned above. For simplicity, we still assume
L to be maximal atypical. If L corresponds to the spaced forest with trees
Ti, T2, ..., Tr, in the sense above with the positions at 4y, ..., dx, then DS(L)
has precisely & irreducible constituents L;[—¢;] fori = 1, ..., k, so that L; cor-
responds to the spaced forest 71, ..., 7;—1, 97, ..., Ty, of rank n — 1 where 97;
denotes the forest of planar trees obtained from 7; by removing its root. The
trees are now at the new positions 61 —1, ..., 8;—1—1,0;, ..., &, 0;+1+1, ..., Op+1
where we use the convention that §; denotes the common position of all the
trees in 07;. In the special case where 7; has only one node, d7; is not de-
fined and will be discarded (together with §;). In other words, in this case
the new spaced forest has only k& — 1 trees.



COHOMOLOGICAL TENSOR FUNCTORS 5

This description of the Z-graded object DS(L) follows from the results
in sections 21 - 24. We introduce spaced forests in section 21 where we de-
scribe the dual of an irreducible representation. The Z-grading of DS(L) for
maximally atypical L is then obtained in proposition 23.1 and in the general
case in proposition 24.2. These results follow from the main theorem and
its proof by a careful bookkeeping, but they are considerably stronger and
in particular incorporate theorem 16.1 as a special case.

We show DS, (L) = @wa,O(L)[—E] for irreducible maximal atypical
representations L. From this, as an application of the main theorem, we
obtain in theorem 25.1 a nice explicit formula for the Laurent polynomial

Z sdz’m(wflvo(L)) -t
ez
(Hilbert polynomial) attached to the Dirac cohomology tensor functors

wh o T — T

in the case of an irreducible maximal atypical representation L.

As already mentioned, the main theorem does not require L to be in the
principal block. Applying DS repeatedly k-times to an irreducible repre-
sentation L = L(\) of atypicality ¢ we obtain an isotypical typical represen-
tation m ()L™ in T,,_;, and L"¢ only depends on the block of L (section
16). We derive a closed formula for the multiplicity m(\) in section 16. The
multiplicity m()\) can be expressed as

where F()) is the spaced forest associated to L(\), |[F(A)| is the number of
its nodes and F(\)! is the forest factorial 16. This not only implies that the
so called modified superdimension of L does not vanish (i.e. the generalized
Kac-Wakimoto conjecture), but moreover gives a closed formula for it. The
main theorem has a number of other useful applications and we refer the
reader to the list given after theorem 16.1.

The proof of the main theorem occupies the entire second part. Build
on an involved induction using translation functors, carried out in sections
18 - 20, the proof is reduced to the case of ground-states; these are rather
specific irreducible modules in a block. For instance, ground states of the
principal block are powers of the Berezin determinant. Then, for a block of
atypicality k < n, we prove in section 14 that every ground state is a Berezin
twist of a mixed tensor, an irreducible direct summand in an iterated tensor
X®" @ (XV)®s where X denotes the standard representation of Gi(n|n). Itis
easy to verify directly that the main theorem holds for Berezin powers and
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mixed tensors. In section 18 we study the Loewy structure of translation
functors applied to irreducible representations and their behavior under DS.
We also explain why we can restrict to the maximally atypical case for
the proof of the main theorem. In section 19 we prove both parts of the
main theorem (semisimplicity and determination of the constituents) under
certain assumption on translation functors which are verified in the later
section 20.

In section 26 we discuss the cohomology ring Hp,5 (V/(1)) for the tensor
functor DS, . Although the description of the composition factors of an
arbitrary Kac module V'(\) is much more complicated than that of V' (1), we
show in lemma 26.8 that there is an isomorphism

Hiys, (V(1)) 2 HpE 9P (v ()

of I-modules. In fact the cohomology ring of V(1) can be identified with the
Lie algebra homology ring H.(gl(n)) and defines an exterior algebra / on
primitive elements f, f3, ..., fon,—1 so that I acts on the graded cohomology
Hjpg of finite dimensional g-modules. We also discuss the relationship
between the cohomology of a Kac module and its irreducible quotient. We
show in theorem 26.10 that the induced homomorphism

Hpsg, (pr) : Hpg, (V(A) = Hpg, (L(X))
is an isomorphism in the top degree and trivial in all lower degrees. In

section 27 we describe the elements of I = H},g V(1)) in terms of the
representation theory of the superlinear group Gi(n|n).

Since the image of an irreducible representation under DS is therefore
understood, it is natural to look at the image DS(I) of an indecomposable
representations I. The kernel of DS is the tensor ideal of representations
with a filtration by anti-Kac modules by results in section 4. If R(\) is a
mixed tensor we can easily compute DS(R(\)). In other cases it is rather
complicated to determine DS. As an example for the importance of this
problem consider the computation of the tensor product between two irre-
ducible representations L1 ® Ly = €, I; in indecomposable summands in
Ry The decomposition of DS(L;) and DS(L2) gives estimates on the num-
ber of possible direct summands, but these are rather weak unless something
is known about DS(I;). For an easy example of the use of the cohomolog-
ical tensor functors in this setting see [HW15a]. In the last sections 28 -
31 we give a cohomological criterion 31.5 for an indecomposable repre-
sentation to be equal to the trivial representation. We call an epimorphism
q : V. — W strict, if the induced morphism w(q) : w(V) — w(W) for the
tensor functor w = wy, o : T, — svecy, 1s surjective. We prove in corollary
31.5 that if Z is an indecomposable module with cosocle 1 such that the
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quotient map ¢ : Z — 1 is strict, then Z ~ 1. Any such representation Z
contains extensions of the trivial representations 1 with the other irreducible
constituents in the second upper Loewy layer. This leads us to study the co-
homology H* of extensions of the trivial representation

qv

0 Sy V 1 0

for irreducible representations S,. We show in the key lemma 31.1 that in
this case the map w"(qy) vanishes. This is a contradiction to our analysis in
section 29 if we suppose that Z is not irreducible.

Most of the results in this article can be rephrased for representations of
the supergroup GI(m|n) where m # n. This will be discussed elsewhere.

Acknowledgements. The authors are grateful to the referee for providing
useful suggestions.

PART 1. COHOMOLOGICAL TENSOR FUNCTORS

1. THE SUPERLINEAR GROUPS

Let k& be an algebraically closed field of characteristic zero. A super
vectorspace V over k is a Z/27Z-graded k-vectorspace V = V5 @ V. Its
superdimension is sdim (V) = dim(V;) —dim(V7). The parity shift functor
IT on the category of super vectorspaces over k is defined by II(V); = V¢
and II(V); = V5 and the parity endomorphism of V' is py = idy, ® —idy; in
Endg(V).

Conventions on gradings. For Z-graded object M = @, M; with objects
M; in an additive category C one has the shifted Z-graded objects M (j)
defined by (M (j)); = M;y;. If C carries a super structure defined by a
functor IT : C — C such that IT o IT is the identity functor, we mainly use the
Z-graded objects M j] defined by (M[j]); := I (M, ;). Considering objects
L in C as graded objects concentrated in one degree, we often consider the
Z-graded objects L[—¢] concentrated in degree ¢. In this context, forgetting
the Z-grading of L[¢] for L € C and ¢ € 7Z gives the object TI*(L) in C.

The categories F' and T. Let g = gl(m|n) = gy ® g7 be the general Lie
superalgebra. The even part gz = gl(m) @ gl(n) of gl(m|n) can be con-
sidered as the Lie algebra of the classical subgroup Gz = Gl(m) x Gl(n)
in G = Gl(m|n). By definition a finite-dimensional representation p of
gl(m|n) defines a representation p of Gi(m|n), if its restriction to gz comes
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from an algebraic representation of Gy, also denoted p. For the linear su-
pergroup G = Gl(m|n) over k let F' be the category of the super represen-
tations p of Gi(m|n) on finite dimensional super vectorspaces over k. If
(V,p) isin F, so is II(V, p). The morphisms in the category F' are the G-
linear maps f : V' — W between super representations, where we allow
even and odd morphisms with respect to the gradings on V' and W, i.e mor-
phisms with f o py = +pw o f. For M, N € F we have Homp(M,N) =
Homp(M,N)s ® Homp(M, N);, where Homp(M, N)g are the even mor-
phisms. Let 7' = sRepy (G) be the subcategory of F' with the same objects
as F'and Homp(M,N) = Homp(M,N); . Then T' is an abelian category,
whereas F' is not.

The category R. Fix the morphism ¢ : Z/2Z — Gz = Gl(m) x Gl(n)
which maps —1 to the element diag(E,, —E,) € Gl(m) x Gl(n) denoted
€Emn- W€ Write €, = €,,. Notice that Ad(e,,,) induces the parity morphism
on the Lie superalgebra gl(m|n) of G. We define the abelian subcategory
R = sRep(G,e) of T as the full subcategory of all objects (V, p) in T" with
the property py = p(enn); here p denotes the underlying homomorphism
p: Gl(m) x Gl(n) — GI(V) of algebraic groups over k. The subcategory R
is stable under the dualities ¥ and *. For G = GI(n|n) we usually write T,
instead of 7', and R,, instead of R, to indicate the dependency on n.

The duality x. The Lie superalgebra g = gl(m|n) has a consistent [Kac78]
Z-grading g = g(_1)©9(0) ©9(1), Where gg = g(o) and where g7 = g(_1) @ g1)
is defined by the upper triangular block matrices g(;y and g(_;) by the lower
triangular block matrices. The supertranspose x” (see [Sch79], (3.35) and
(4.14)]) of a graded endomorphism z € End(k™!") is defined by

5= (m m) o o = (m —“35>, reg

ms3 My me my
where m! denotes the ordinary transpose of the matrices m;. If we identify g
and End(k™™), then 7(z) = —z” defines an automorphism of the Lie super-
algebra g such that 7(g(;)) = g(—;) holds for i = —1, 0, 1. For a representation
M = (V,p) in T,, and homogenous z in g the Tannaka dual representation
MY = (VV,pV) is the representation x — —p(z)? on V, using the super-
tranpose p(z)? of p(z) in End(V). Finally we define the representation
M* = (VV,pY or), where 7(z) = —z7 is the automorphism of g defined
by the supertranspose on g. See also [BKNO09a], 3.4 using a different con-
vention. V € R, (see below) implies V* € R,, by [Bru03], lemma 4.43.
For simple and for projective objects V' of T,, furthermore V* = V. Also
V*a, = Vg, for all V in T;,. Notice that both v and * define contravariant
functors on T,.



COHOMOLOGICAL TENSOR FUNCTORS 9

Weights. Consider the standard Borel subalgebra b of upper triangular
matrices in g and its unipotent radical u. The basis A of positive roots
associated to b is given by the basis of the positive roots associated to b N gg
for the Lie algebra g and a single odd root « whose weight will be called

w. If we denote by ¢; 5, i = 1, ..., 2n, the linear form which sends a diagonal
element (t1,...,t2,) to t;, then the simple roots in this basis are given by
the set {6171 —€22,...,€2n-12n—1 — 62n,2n} with H = €nn — €ntln+1- The

diagonal elements t = diag(t1, ..., tn, tnt1, ..., t2n) In Gy act by semisimple
matrices on V' for any representation (V, p) in 7,,. Hence V' decomposes
into a direct sum of eigenspaces V = €, V, for certain characters t* =
1t (b 1) - (fg) 2. Then write A = (Ap, .o Adn A1, Aan)-
A primitive weight vector v (of weight \) in a representation (V, p) of g is a
nonzero vector in V with the property p(X)v = 0 for X € u and p(t)v = t*.
An irreducible representation L has a unique primitive weight vector (up
to a scalar), the highest weight vector. Its weight \ uniquely determines
the irreducible module L up to isomorphism in R,. Therefore we write
L=L(\).

Kac modules. We put p = go)®g(+1). We consider a simple g()-module
as a p+-module in which gy respectively g(_) acts trivially. We then define
the Kac module V() and the AntiKac module V/()\) via

V(A) = IndS, Lo()) , V'(A) = IndS_Lo(\)

where Lo()) is the simple g(-module with highest weight A\. The Kac-
modules are universal highest weight modules. V() has a unique maximal
submodule I(\) and L(\) = V(\)/I(X) [Kac78], prop.2.4.

The Berezin. The Berezin determinant of the supergroup G = G,, defines
a one dimensional representation Ber = Ber,. Its weight is is given by
Ai = 1land \,; = —1fori = 1,..,n. The representation space of Ber,, has
the superparity (—1)". We denote the trival representation Ber® by 1.

Ground states. Each i-atypical block of R, contains irreducible repre-
sentations L(\) of the form

A= ()\17 ey )‘n*iy )‘nv ey )‘n ; 7)\717 ceey 7)\117 >\n+1+i7 ey )‘271) .

with A, < min(A\,—;, —An+1+i). We call these the ground states of the block.
They will play a major role in our computation of D.S(L) in theorem 16.1.

Equivalence. Two irreducible representations M, N on T are said to be
equivalent M ~ N, if either M = Ber” ® N or MY = Ber” ® N holds
for some r € Z. This obviously defines an equivalence relation on the set of
isomorphism classes of irreducible representations of 7. A self-equivalence
of M is given by an isomorphism f : M = Ber” @ M (which implies » = 0
and f to be a scalar multiple of the identity) respectively an isomorphism
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f: MY = Ber” @ M. If it exists, such an isomorphism uniquely determines
r and is unique up to a scalar and we say M is of type (SD). Otherwise we
say M is of type (NSD).

Negligible objects. An object M € T, is called negligible if it is the direct
sum of indecomposable objects M; in T;, with superdimensions sdim(M;) =
0. The tensor ideal of negligible objects is denotes N or N,,.

2. THE DUFLO-SERGANOVA FUNCTOR DS

An embedding. Fix some 1 < m < n. We view G,,_,, = Gl(n —m|n —m)
as an ‘outer block matrix’ in G,, = Gl(n|n) and G; as the ‘inner block
matrix’ as below. Here Gy is the empty group. We fix some invertible
m x m-matrix J with the property J = J* = J~!. For example take .J to be
the identity matrix E , or the matrix with nonzero entries equal to 1 only in
the antidiagonal. We furthermore fix the embedding

Pn,m - Gr—m X G1 — Gy,

defined by
A 0 0 B
<A B> " <a b>|_> 0 aE bJ O
C D c d 0 c¢J dE 0
c o0 0 D

We use this embedding to identify elements in G,,_,,, and G; with elements
in G, In this sense ¢,, = ¢,_,,€; holds in G,,, for the corresponding elements
€n—m and €; in G,,_,, resp. G, defined in section 1.

Two functors. One has a functor (V,p) — VT = {v e V| p(e1)(v) = v}
TRy = Roem

where VT is considered as a G;,_,,-module using p(e1)p(g) = p(g)p(e1) for
g € Gp_m. Indeed Ad(e1)(g) = g holds for all g € G,,—,,,. The grading on
V induces a grading on V* by (V) = VN VT and (V1) = Vyn V™.
For this grading the decomposition V* = (V)5 @ (V)7 is induced by the
parity morphism p(e,,) or equivalently p(e,—1). With this grading on V* the
restriction of p to G,,_,, preserves V™ and defines a representation (V+, p)
of Gy—p, IN Ry

Similarly define V- = {v € V | p(e1)(v) = —v}. With the grading in-
duced from V' = V;@V7 this defines a representation V'~ of G, inIIR,, ;..
Obviously

V.plG, . = Vi @ V7.
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The exact hexagon. Fix the following element x € g,,

0 0 ... 0
[0y N O

$_<0 0)69” fory=1{ "~ .
J 0 0 0

for the fixed invertible m x m-matrix J. Since z is an odd element with
[z,x] =0, we get

2 p(x)* = [p(x), p(x)] = p([z,2]) =0

for any representation (V, p) of G,, in R,,. Notice d = p(z) supercommutes
with p(G,_.,). Furthermore p(z) : V¥ — V¥ holds as a k-linear map, an
immediate consequence of dp(e1) = —p(e1)d, i.e. of Ad(ey)(z) = —x. Since
p(z) € Homp(V,V); is an odd morphism, p(z) induces the following even
morphisms (morphisms in R,,_,)

p(x): VT =T(V™") and p(z):TOV")—=VT.
The k-linear map 0 = p(x) : V' — V is a differential and commutes with the
action of G,,_,, on (V, p). Therefore 0 defines a complex in R,,_,,

vt Lony) syt s

Since this complex is periodic, it has essentially only two cohomology
groups denoted H*(V, p) and H(V, p) in the following. This defines two
functors (V, p) = Dy, (Vs p) = HE(V, p)

n,n—m

D* Ry = R |-

n,n—m

It is obvious that an exact sequence

0 A—2.p . ¢ 0

in R,, gives rise to an exact sequences of complexes in R,,_,,. Hence

Lemma 2.1. The long exact cohomology sequence defines an exact hexagon
inRu_m

a
H"'(A) w H+(B)

/ H (8)

H~(C) H*(C)
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Alternative point of view. For the categories T' = T,, resp. T,—., (for the
groups G,, resp. Gy,_n,) consider the tensor functor of Duflo and Serganova
in [DS05]

DSnnm:Tn = Tom
defined by DS, ,,—mn(V,p) = V, := Kern(p(z))/Im(p(z)). For (V,p) € R,
we obtain

H*(V,p) @ TI(H™(V,p)) = DSpn-m(V) .

Indeed, the left side is DS, ;,—, (V) = V, for the k-linear map 0 = p(x) on
V =V*t @& V~. Hence H™ is the functor obtained by composing the tensor
functor

DSpp—m:Rn — Tnem
with the functor

Th1—= Rn_m

that projects the abelian category 7;,_,, onto R,,_, using

Lemma 2.2. Every object M € T,, decomposes uniquely as M = My &
M with My € R,, and M, € TI(R,,). This defines a block decomposition of
the abelian category

T =R, OT(R,)|.

Proof. For any M, N € R,, the Zy-graded space Ext:.(M, N) is concen-
trated in degree zero [Bru03], Cor. 4.44. O

Tensor property. As a graded module over R = k[z]/2? any representa-
tion V' decomposes into a direct sum of a trivial representation 7" and copies
of R (ignoring shifts by II). To show that DS, ,,(V) = R, @ T, =T is a
tensor functor, it suffices that (R ® R), = 0, see also [Ser10]. For this we
use that the underlying tensor product is the supertensor product. Indeed for
R=Vs@Vyand Vz=k-1and V§ =k -z we have z(e1) = e2 and z(ez) = 0.
The induced superderivation don R ® R satisfies d(1® 1) =z ® 1+ 1® ,
dz®1l)=—2®2, dl®z) =2x®zand d(x ® z) = 0. Hence Im(d) =
Ker(d)=k-(1®z+2®1) @k -z ® x and therefore (R ® R), = 0.

3. COHOMOLOGY FUNCTORS

In this section we assume V' € T,, and m = 1. In the following let DS be
the functor DS, ,—1 (for J = 1).

Enriched weight structure. The maximal torus of diagonal matrices in
G, naturally acts on DS(V') so that DS(V') decomposes into weight spaces
DS(V) = @, DS(V), for A in the weight lattice X (n) of g,. Indeed for
the weight decomposition V = @, V) every v € V has the form v = 3", vy
for vy € V). Now dv = 0 if and only if dvy = 0 holds for all A, since
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d(Vy) € Vi, for the odd simple weight . (ignoring parities on V). Simi-
larly v = dw if and only if vy = dw, for all ), since we can always project
on the weight eigenspaces. This trivial remark shows that DS (V') naturally
carries a weight decomposition with respect to the weight lattice X (n) of
gn. The weight structure for g,,_; is obtained by restriction. The kernel of
the restriction X (n) — X (n — 1) of weights, denoted by

A=A,
are the multiples Z - 1 of the odd simple root p1 = ey, 5, — €pt1,n+1. We may
therefore view DS(V') as endowed with the richer weight structure coming
from the G,-module V. This decomposition induces a natural decompo-
sition of DS(V) into eigenspaces DS(V) = €, DS(V),. To make this
more convenient consider the torus of elements diag(1,...,1,1;¢t71,1,...,1)

for t € k*, called the small torus. These elements commute with G,,_; and
their eigenvalue decomposition gives a decomposition

V:@w

ez

into G,_1-modules V;. Here V;, C V denotes the subspace defined by all
vectors in V' on which the above elements of the small torus acts by multi-
plication with ¢‘. Obviously V; = 0 for ¢ ¢ [¢o, ¢1] and suitable /g, ¢;. For
the odd morphism 0 = p(z) the properties u(diag(1,...,1,1;¢t71,1,...,1)) = ¢
and 0(V)) C Vi, show that

P P P P P
—— II(Vay—1) —— Vor ——= II(Vapy1) —— Vapyo ——

defines a complex. Its cohomology is denoted H*(V'). Obviously
I°(H'(V)) = DS(V)q

and hence we obtain a decomposition of DS(V, p) into a direct sum of G,,_1-
modules

DS(V7 p) - @ HE(HK(V)) )
¢ez
If we want to emphasize the Z-grading, we also write this in the form

DS(V.p) = @yez H(V)[-1]|.

We will calculate DS(L) € T, for irreducible L in theorem 16.1 and we
will compute its Z-grading in proposition 23.1 and proposition 24.2.
An exact sequence

0 A—2-~B C 0
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in R,, then gives rise to a long exact sequence in R,,—1
— Hgfl(C) — Hé(A) — HZ(B) — HZ(C') — H€+1(A) — .

Lemma 3.1. ForV in T, we have H*(Ber,, ® V) = Ber,_1 @ H (V).
For the Tannaka dual V¥ of V- H*(V)V = H=YVV) holds for all ¢ € Z
(isomorphisms of G,,—1-modules).

Proof. The first property follows from DS(Ber,) = Ber,_1|—1] and the
fact that DS is a tensor functor. Furthermore DS(V)¥ = DS(V"), since DS
is a tensor functor. Hence the second claim follows from (VV)_, = (V;)V,
since TI? is the identity and duality ‘commutes’ with the parity shift II. [

Note that for V; € T;,_; the module (V;)* € T,,_; is isomorphic to (V*),.

Finally, for (V, p) € R, we get V't = @, oy Ve and IL(V ™) = Py 07 Vi
Hence we obtain the next lemma.

Lemma 3.2. ForV in R, the following holds

HY V) = @z H(V) , H (V) = Bjperpor H(V).

4. SUPPORT VARIETIES AND THE KERNEL OF DS

We show that the kernel of DS consists of the modules which have a
filtration by AntiKac modules.

Support varieties. We review results from [BKN10], [BKN09b] and
[BKNO9a] on support varieties. Recall the decomposition g = g(_1)® g(0) ©
g(—1)- The support varieties are defined by

Vaer, (M) = {€ € g(+1) | M not projective as a U((£)) — module} U {0} .

Notice that £ € g(1) generates an odd abelian Lie superalgebra (£) with
[€,€] = 0, which up to isomorphisms has only two indecomposable mod-
ules: The trivial module and its projective cover U((£)). By [BKN10], prop
6.3.1

v

g(£1)

(M®N) =Y,

g(£1)

(M)NV

g(+1)

(N).
The associated variety of Duflo and Serganova is defined as
Xy ={§ € X | M #0}

where X is the cone X = {{ € g7 |[{,{] = 0}. For £ € X the condition
M¢ # 0 is equivalent by [BKNO09a], 3.6.1, to the condition that M is not
projective as a U((£))-module. Hence X, is the set of all £ € X such that
M is not projective as a U(({))-module together with & = 0. Thus

‘/'9(71)(M) U VQ(U(M) CXm o, Vg(il)(M) =Xy N 9(+1) -
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Kac and anti-Kac objects. We denote by C* the tensor ideal of modules
with a filtration by Kac modules in R,, and by C~ the tensor ideal of modules
with a filtration by anti-Kac modules in R,, and quote from [BKNO09a], thm
3.3.1, thm 3.3.2

MeCt eV, (M)=0 , MeC &V, _,(M)=0.
Hence M is projective if and only if Vg ,, (M)=V; _,, (M)=0 holds.

Vanishing criterion. For any ¢ € X there exists g € Gl(n) x Gl(n) and
isotropic mutually orthogonal linearly independent roots as, ..., such
that Ady(§) = & + ... + & with & € g,,. The number m = r(§) is called
the rank of ¢ [Ser10]. The orbits for the action of Gl(n) x Gl(n) on g are
[BKNO9a], 3.8.1

(Bay)m ={£€9q) 7€) =m} for 0<m<n.

By a minimal orbit for the adjoint action of Gl(n) x Gl(n) on g4y we
mean a minimal non-zero orbit with respect to the partial order given by
containment in closures. The unique minimal orbit (g)): is the orbit of
the element = defined earlier. The situation is analogous for g(_;), where
T = 7(z) generates the corresponding minimal orbit. A slight modification
of [BKNO09a], thm 3.7.1 and its proof gives

Theorem 4.1. For § € gy and M € C~ we have M¢ = 0. For § € g(_y)
and M € C~ we have M¢ = 0. For { = x we have DS(M) = M, = 0 if and
only if M € C~ and Mz = 0 if and only if M € C™.

Proof. Let M € C~. Then the definition of Kac objects implies V , (M) =
0. Hence {§ € g1y | Mg # 0} = 0. Conversely assume M, = 0. Since
Vi, (M) is a closed Gi(n) x Gl(n)-stable variety, it contains a closed orbit.
Since the orbits (g(;))m are closed only for m = 1, unless V;,, (M) is empty,
it must contain (g(;))1. But this would imply M, # 0, a contradiction.

Hence Vj,, (M) = 0. O
Corollary 4.2. For our fixed x € (§(1))1
(1) M is projective if and only if M, = 0 and M, = 0.
(2) M is projective if and only if M, = 0 and M} =0
(3) If M = M*, then M is projective if and only if M, = 0.

Proof. M, = 0implies V;, (M) = 0 and M, ,) = 0 implies V; _, (M) =0,
hence (1). Now (2) and (3) follow from [BKN09a], 3.4.1 using
Vo (M) = 7(Vg(y, (M)).

9(x1) 9(F1)
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5. THE TENSOR FUNCTOR D

In this section we construct another tensor functor Hp, : T,, — T,,_1 which
is defined as the cohomology of a complex given by a Dirac operator D.
This tensor functor has the advantage that it is compatible with the twisted
duality *.

In this section we assume V' € T,,. For ¢ € k* the diagonal matrices
diag(En_l, t,t, En—l) S G@

define a one dimensional torus, the center of Gy; for this recall the em-
beddings G; = id x G; — Gn—1 X G; — G,. The center of G; com-
mutes with G,,_; x id C G,. Hence the center of G; naturally acts on
DS(V) in a semisimple way for any representation (V,p) € T. Hence
the underlying vectorspace V' decomposes into H-eigenspaces for H =
diag(0p—1,1,1,0,_1) in g, = Lie(G,) which generates the Lie algebra of
the torus.

Let x € g, be the fixed nilpotent element specified in section 2. Let
Z = 27 denote the supertranspose of x. Now Ad(e;)(H) = H and [H,z] =
[H, 7] = 0 imply that the operators 9 = p(z) and d = ¢ p(Z) (for any ¢ € k*)
commute with H. Furthermore [z,Z] = H for the odd elements = and =
implies

00 +00 =c-p(H) .

Since H commutes with x, the operator p(H) acts on V,,.. Since H commutes
with 1, the grading V* is compatible with taking invariants

— {v e V| p(H) = 0}.

Similarly we denote the space of coinvariants by V. On V' the odd operator
0 defines a homotopy of the complex

0 0
— II(Var—1 *>V2zi>ﬂ (Vagt1) *>V213+2*>

9 / / / a
— II(Var—1 *>V2e4>ﬂ (Vagt1) *>VQ£+24>

Hence c- p(H) is homotopic to zero. In particular, the natural action of p(H)
on the cohomology modules H*(V) is trivial. Therefore

Lemma 5.1. p(H) acts trivially on the cohomology DS(V) = V.
Since H acts in a semisimple way, taking H-invariants V — V# is an
exact functor and commutes with the cohomology functor V' +— V.. Thus

DS(V)=M, for M=V
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and similarly H*(V) = H*(VH) etc. Notice (V)* = (V). Since the
operators 9 and 0 commute with H, they preserve M = VH and anti-
commute on M. In this way we obtain a double complex for M = V#
defined by

QI

M+ M) —2-
ol ]
Oy 2yt 2
i
O oM+ 2oy -2~

The Dirac operator. This double complex is related to the complex

D D D

M+ 2oy 2.

M+ Lo
for M = V' attached to the Dirac operator

D=0+90.
Since M = M+ &II(M ), the two cohomology modules H;, (V) and H,, (V)
of this periodic complex compute

Hp(V)=Kern(D: M — M)/Im(D : M — M)
in the sense that
Hp(V) = Hj(V) & L(H(V))

gives the decomposition of Hp (V) into its R,, and II(R,,)-part.

Remark. Note that D commutes with p(H). Hence the operator D re-
spects the eigenspaces of H on V. Since D? = 9% + (90 + 09) + 9 =
(00 + 00) = c- p(H), we have Ker(D : V — V) = Kern(D : VH — V),
However D(V) is in general different from D(V!), although both spaces
have the same intersection with V.

Lemma 5.2. For ¢ = i there exist natural isomorphisms Hp(V*, p*) =
Hp(V, p)*, Hp(V)Y = Hp(VY), H5(V*) = Hp(V)* and H(VY) = HE (V)Y
of G,_1-modules. For short exact sequences in R, one obtains an exact
hexagon in R, for the functors H;.

Proof. The assertion Hp(V)"Y = Hp(V") follows since Hp is a tensor
functor by lemma 5.4. We calculate 7(z +i7) = —(T —iz) = i(z +ix), since
72(x) = —z. Now recall that p*(D) = p¥(7(D)) = ip¥(D) is defined as en-
domorphism on V* = VV. Hence Hp(V*, p*), by definition the cohomology
of p*(D) on (V*)# can be identified with the space

Ker(ip" (D) : (V)™ — (V))/Im(ip” (D) : (V) — (V¥)H).
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Of course we can ignore the factor ¢, and identify this representation with
the representation on

(Ker(p(D) : Vir — Vig)/Im(p(D) : (Vir — Vi)’
or hence with
Hp(V,p) = (Ker(p(D) : VI — V) /Im(p(D) : (VH — V)Y

using the dual (V)Y — (VH)V of the natural morphism V# — Vy, which
is an isomorphism by the semisimplicity of H. Finally recall Hp(V,p)Y =
Hp(V, p)* for the underlying representation spaces. This is an isomorphism
of G,,—1-modules since 7 restricts to the corresponding 7 on G,,_. O

So from now on assume ¢ = ¢. Then, in contrast to lemma 3.1, we obtain

Lemma 5.3. There exist natural isomorphisms of functors R,, — Ry—1

pv : Hy (Vo) = Hp (V)]

Proof. It remains to show that the isomorphism gy : Hﬁ(V*) = H%(V)*
given above defines a natural transformation. For a G,,-linear map f : V —
W the induced map f* : W* — V* is nothing but the morphism fV : WV —
VV, using V* = VV and W* = WV. This now easily shows that the above
identifications py, uy induce a commutative diagram

LHp(f)” N

Hp(W)* —— Hp(V)

Hnw THV
Hp(f*)

Hp(W*) —— Hp(V™)

O
Example. Let V be the Kac module V(1) in R;. Then DS(V*) = 0 and
DS(V) =1&1I(1). On the other hand Hp(V) =0and Hp(V*) = 0.

Remark. It is not a priori clear how to define a Dirac analog of the
modules H(V). Indeed 9 and 0 (in the sense of odd morphisms) satisfy
d:V, — Vi—p and 0 : V) — V4, for the odd simple weight 1. Hence
0:V,— Vy_yand 0 : V; — Vi and therefore D = 9 + 0 does not simply
shift the grading. We adress this question in section 7.

Hp as a tensor functor. Although taking H-invariants V — M = V' is
not a tensor functor, Hp is nevertheless a tensor functor. To show this it is
enough to restrict the representations (V, p) to G; — G,,. Hence it suffices
to show that the functor

Hp : Ty — Ty = svecy,
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is a tensor functor. H generates the center of gl(1|1) and D? = p(H). Hence
Kern(D) c V. Since H is semisimple, the Jordan blocks of D on V
(ignoring the grading!) are Jordan blocks B, of length 1 except for the
eigenvalue A = 0, where they are either Jordan blocks Bj of length 1 or
Jordan blocks R of lenght 2. Indeed the square of an indecomposable Jordan
block of length a and eigenvalue ) is again an indecomposable Jordan block
of length a for A # 0. Since D? = p(H) is semisimple, this implies A = 0
and a < 2 for a > 1. By definition, for V = &, kx(V) - By ® k(V) - R we
have Hp (V') = ko(V) - By, if we ignore the grading. Now By ® By, = Bt y/,
where the sign depends on the parity of B,. Furthermore the characteristic
polynomial of D on R® By is X? — A2, hence D has eigenvalue 0 on R ® B),
only for A = 0, in which case R® B, is isomorphic to R. Finally R® R = R2.
Hence the only possible deviation from the tensor functor property for Hp
might come from tensor products B) ® By, where A + )’ = 0. In this case
H = X? -id on By and By, hence H = 2)\? - id on By ® B,,. But the even
operator D? then acts by 2)\? - id on By ® By.. Hence D does not have the
eigenvalue zero on By ® By unless A = ) = 0. Therefore By ® By = By
is the only relevant case. Hence Hp(V @ W) = ko(V)ko(W) - By = ko(V) -
By ® ko(W) - By = Hp(V) ® Hp(W). This remains true if we also take into
account gradings.

Lemma 54. Hp : T,, — T,_1 is a tensor functor.
6. THE RELATION BETWEEN DS(V) AND D(V)

For (V, p) € T, the eigenvalue decomposition with respect to the small torus
gives a decomposition
V=@V

LeZ
into G,,_1-modules V;. Furthermore 0 and 9 (in the sense of odd morphisms)
satisfy 9 : V; — V,_1 and 0 : V; — Vj,1. In other words, they give rise to
morphisms 0 : TIY(V,) — TI"Y(V,_;) and 0 : TI*(V;) — I+ (V441), hence
induce morphisms on @,., H*(V') which shift the grading by —1 resp. +1.

Since the generator H of the center of Lie(G) commutes with the small
torus, we obtain an induced decomposition for the invariant subspace M =
vl cy

M = @ (M)
¢
for TI¢(M,) = M NV, = (V;)". Notice M = M+ @ TI(M ™) for (V, p) € R,
with M+ and M~ defined in R,, by

Mr=M , M= M.

Le27 LeE1427
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The spaces M, are G,,—1-modules.

On M the operators @ and 0 define even morphisms and they anticom-
mute in the diagram below. Hence we get a double complex K = K** in
T,,—1 attached to (V, p)

o o

Mo —— My M, My_q
o F] o

Myiq M, My_y —— Mo

I G

My —— My g —— My o —— My_3

with K% = M;_;. This double complex is periodic with respect to (i, j)
(i+1,5+1). The modules K*/ vanish for j—i ¢ [{o, ¢1] and certain £, {1 € Z.

The associated single complex (Tot(K), D) has the objects Tot(K)" =
D,cz Mny2; and the differential D = 0 + 0. The total complex therefore
is periodic with Tot'(K) = M™T and Tot'(K) = II(M~) and computes the
cohomology H"(Tot(K),D) = H}(V) for n € 2Z and H"(Tot(K), D) =
HL (V) forn € 14 2Z.

On the total complex (Tot(K), D) we have a decreasing filtration defined
by FPTot"(K) = €D, 4 s—pn >, K"°. This filtration induces decreasing filtra-
tions on the cohomology of the total complex

.. D FP(HE(V)) D FFPY(HE(V)) D ...
and a spectral sequence (E?, d,) converging to
EPY = grP HPT(Tot(K), D) .

Indeed the convergence of the sequence follows from the fact that the higher
differentials d, : EPY — EPT"7"! vanish for 2r — (g—p+1) > b1 — 4.
The E;-complex of the spectral sequence is the direct sum over all ¢ of
the horizontal complexes E"? = (H}(K?*),9). For the various ¢ these
complexes are the same up to a shift of the complex. So, if we ignore this
shift, these complexes are given by the natural action of d on €,, H (V)
defining the complex

L2 gy 2 gy 2 goyy 2

The decreasing filtration F? induced on

E\(K)" = @ H"*(V)
1€Z
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has graded terms gr?(E1(K)") = Hy(KP"P) = Hy(My_ap) = H"2P(V).
We now define the subquotient H}} (V) = grP(Ew(K)") of H*2P(V),
hence

Hp(V) = grP(Eso(K)™?).
Note that this definition does not depend on the choice of p. We thus obtain

Lemma 6.1. For T € T, the cohomology modules H7;(V') admit canon-
ical decreasing filtrations FP whose graded pieces are the G,_1-modules
H,(V) for HY(V) and Hp? = (V) for Hp (V).

Condition T. We say that condition T holds for (V, p) in T,, if the natural
operation of the operator 0 = p(7(z)) on DS(V, p) is trivial.

Example. The standard representation X = X, of G,, on kmIn satisfies
condition T.

Remark. If 7(z) act trivially both on DS(V) and DS(W) for some
V,W € T,, then 7(x) acts trivially on DS(V ® W) = DS(V) ® DS(W).
If 7(x) acts trivially on DS(U) for U € T, then 7(z) act trivially on every
retract of DS(U). Hence condition T for (V, p) = L(\) implies condition T
for every retract U of DS(V @ W). Thus the subcategory of objects in R,,
satisfying condition T is closed under tensor products and retracts.

Now consider the following conditions for (V, p):
(1) (V,p) is irreducible.
(2) H*(V)® H~ (V) is multiplicity free.
(3) H*(V) and H~ (V) do not have common constituents.
(4) Condition T holds.
(5) O acts trivially on DS(V).
(6) The E? and the EY* terms of the spectral sequence coincide

Hy(H(V)) = HY(V)
where / :=n —2p=q —p.
Later in theorem 16.1 we prove that (1) implies (2). Furthermore it is trivial
that (2) = (3) = (4) = (5) = (6).

Proposition 6.2. If condition (3) holds, then the spectral sequence de-
generates at the E;-level and H3 (V) is naturally isomorphic to H*(V).

Proof. The differentials of the spectral sequence d, : EF? — EFT™4~" 1
define maps from the subquotient EF? of H"~2?(V) (for n = p-+q) to the sub-
quotient EF 1" of gn—2p=2r+1(y) If H"=2(V) contributes to H*(V),
then H"~2P=2r+1(V) contributes to HT (V). Since all the higher differentials
are GG,,_1-linear, condition (3) forces all differentials d,. to be zero for r > 1.
Hence the spectral sequence degenerates at the F;-level. U
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Proposition 6.3. The spectral sequence always degenerates at the Fs-
level, i.e. for all objects (V, p) in T,, we have

Hy(H'(V)) = Hb(V)].

Corollary 6.4. The kernel of Hp : T,, — T,,_1 contains CT UC™.

Remark. It seems plausible that the kernel equals C*T UC™.

Proof. This is a general assertion on spectral sequences arising from a
double complex K such that K% = M;_; for maps d : M, — My, and
0 : My — M,_, between finite dimensional k-vectorspaces My,¢ € 7 so
that M, = 0 for almost all ¢. Indeed, any such double complex K can be
viewed as an object in the category 77 via the embedding ¢, ,,, of section 2..
Using 77 = Ry @ II(R1) we can decompose and assume without restriction
of generality that it is an object in R;. However, then it defines a maximal
atypical object in the category R1 C R;. For this notice that R} can be
identified with the category of objects in R, with trivial central character.
Note that this condition on the central character for a representation (V p)
of G1 simply means V = V# = M, since H generates the center of Lie(G1).
This reduces our claim to the special case n = 1 for (V, p) in Ri. Obviously
we can assume that (V, p) is indecomposable.

The indecomposable objects V' in Ri were classified by Germoni [Ger98].
Either V' € C* (Kac object), or V € C~ or there exists an object U C V,U €
C~ with irreducible quotient L or there exists a quotient ¢ of V' in C~ with
irreducible kernel L'. Since DS(N) = 0 for all objects in C~ (theorem 4.1),
we conclude from the long exact sequence of H*-cohomology that we can
either assume V' € C* or that V is irreducible, since in the remaining cases
DS(V) = 0or DS(V) = DS(L) or DS(L') = DS(V). As already men-
tioned, by the later theorem 16.1 for irreducible V, the spectral sequence
already abuts. For » = 1 however this is obvious anyway, since any atyp-
ical irreducible L is isomorphic to a Berezin power L = Ber™. Hence
HY(L) = HY(L) = k forv =m and H} (L) = H"(L) = 0 otherwise.

So it remains to consider the case of indecomposable Kac objects V € C*
in Ri. Unless V € Ct NC~, by Germoni’s results V = V (i;m) for i € Z and
m € N is a successive extension

0—V(i—2;m—1)— V(i;m) — V(Ber') = 0

of the Kac objects with V(i;1) = V(Ber?). Furthermore the Kac module
V(Ber?) is an extension of Berezin modules

0 — Ber'™! — V(Ber') — Ber' — 0,
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hence HY(V (Ber?)) = k for £ = i,i — 1 and is zero otherwise. From the long
exact cohomology sequence and induction we obtain dim(H"”(V (i;m)) = 1
forve {i,i—1,...,i—2m+1}, and H(V (i;m)) = 0 otherwise. So (for fixed
¢q) the complexes in the E;-term of the spectral sequence for V' = V(i;m)
have the form

0= H' (V)= H (V)= = H?"2(V) - H2"H(V) = 0

with differentials 9 and H” (V) of dimension one for v = 4,i—1, ...,i—2m+1.
We have to show that these complexes are acyclic for all V' = V (i;m). For
this it suffices that the first differential 0 : H (V) — H"'(V), the third
differential 0 : H=%(V) — H'~3(V) and so on, are injective. By dimension
reasons the differentials 9 : H*=1(V) — H"2(V), 0 : H=3(V) — H=4(V)
etc. are then isomorphisms and the differentials 0 : H (V) — H=Y(V),
0 : H=2(V) — H"3(V) etc. are zero. Hence the cohomology of this
complex vanishes and the E»-term of the spectral sequence is zero.. Hence
the spectral sequence abuts at » = 2, which proves our claim.

To prove the injectivity for the first, third and so on differential & we use
induction on m. For m = 1 and V = V(Ber?) € C* we know Hp(V) = 0
by theorem 4.1 and lemma 5.3 . Since H” (V') = 0 for v # 4,7 — 1, all higher
differentials d, for » > 2 are zero by degree reasons. Hence 0 : H{(V) —
H*~1(V) must be an isomorphism.

For the induction step put V; := V(i,1) and N = V(i — 2, m — 1); then
V/N = V,. Hence we get a commutative diagram with horizontal exact
sequences

. H""YN)—= H"Y(V) > H"YV;) — HY(N) — ...
I L
o> H""2(N) = H"2(V) - H"2(V;) = H""}{(N) - ...
Since H"(N) =0forv >i—2and H"(V;) =0forv #4,i — 1
0= H=YN)=H"YV)=H"YV;) =0 — H(V) —= H{(V;) —0
ai ai ai al a£ af
0> H"2(N)=H2(V)=H2(V) =0 H"YV) > H"YV,) =0
Thus 0 : HY(V) — H*}(V) is injective by a comparison with V;. The asser-

tion for the third, fifth and so on differential o follows from the induction
assumption on N, since H"(V) = HY(N) forv < i — 2. U
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7. HODGE DECOMPOSITION

We show in proposition 7.1 that the groups Hg(V) satisfy a Hodge de-
composition. Put F,, = F~P. This defines a decreasing filtration of G,,_;-

modules F,(HZ(V)) on Hz(V) as in the last section for V € T;,. Here
Fy(Hp(V)) = Im((D M) n Ker(D) — Hp(V)) .
1<2p

One has also a decreasing filtration of G,,_;-modules F(Hz5(V)) on H5(V)
defined by the second filtration of the cohomology of (Tot(K), D) for the
double complex K** defined in the last section. It is defined by the sub-
complexes F*(Tot(K)") = D, sn s> K7 Of (T'ot(K), D). Notice that
FU(HB(V)
is the image of the D-cohomology of this subcomplex in Hp(K). This
filtration has analogous properties. In particular
Hp (V) = FY(Tot"(K))/F"" (Tot"(K))

by an analog of proposition 6.3 is isomorphic to

-t ~ 17 o

Hp(V) = Hy(H (V)
where H' (V) is defined as H(V), only by using 3 instead of 9.

We remark that both filtrations are functorial with respect to morphisms
f:V — Win T, HencealsoV — F'(H}(V)) N F,(H}(V)) defines a
functor from 7, to T,,_1.

Proposition 7.1. For all objects V' in T,, we have a canonical decompo-
sition ofH]jS(V) into G,,_1-modules

where for e = (—1)¥
Hp(V) = F,(Hp(V)) N Fy (HR(V)) .
Furthermore for u > v we have
F,(Hp(V)) N Fu(Hp(V)) =0.
Corollary 7.2. For a short exact sequence 0 - A — B — C — 0in T,
the sequences
Hp(A) = Hp(B) — Hp(C)

are exact for all v.
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Remark. As shown after lemma 28.2 these halfexact sequences can not
be extended to long exact sequences!

Proof. If x € H}(B) maps to zero in H},(C) C Hp(C) there exist y €
Hp(A) such that = is the image of y by the exact hexagon for H3. But then,
for the decomposition y = >y, and y, € H},(C) given in proposition 7,
the components y, also maps to z by the functoriality of H7)(.). U

Proof of proposition 7.1. As in the proof of proposition 6.3 we can re-
duce to the case of an indecomposable object V in R}. For such V either
Hp(V) =0, in which case the assertion is trivial, or V' is of the form

0=-L—-V->0Q—0
with irreducible L and Q € C~ or of the form
0—-U—-V—=>L—0

with irreducible L and U € C~. These two situation are duals of each other.
So we restrict ourselves to the first case. The irreducible module L is iso-
morphic to Ber™ for some m € Z. Then according to [Ger98] the quotient
module @ has socle and cosocle

socle(Q) = @ Ber™t2
i=1

S
cosocle(Q) = @ Ber™t2i=1
i=1

Recall H™(V) = H*(V), and hence Hp(V) = H™(V'). Hence by the abut-
ment of the spectral sequences
Hy(H"(V)) = H"(V) =k

for v = m and is zero otherwise. Hence H™ (V') = Hp(V'), since the filtra-
tion F'? only jumps for p = m. Similarly

Hy(H' (V) =H' (V) =k

for v = m and is zero otherwise. Hence H' (V) = Hp(V), since the filtra-
tion ¥ only jumps for ¢ = m. This simultaneous jump shows

HE (V) =F"(Hp(V)) N Fy(Hp(V))
and also for ¢ > p.

FU(Hp(V)) N F,(Hp(V)) = 0.
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8. THE CASEm > 1

As the diligent reader may have observed, the results obtained in the
last sections on the functor DS carry over to the case of the more gen-
eral functors DS,, ,,—,. For this fix m > 1. The enriched weight structure
of DS, »,—m (Which depends on m) is obtained from the decomposition of
(V,p) € T, into eigenspaces with respect to the eigenvalues ¢’ under the
elements ,, ., (E x diag(1,t~1)) of the small torus. This allows to give a
decomposition

DSn,n—m(V) = @ DSfL,nfm(V)[_E]
4

into eigenspaces HE(DSf;’n_m(V)) and gives long exact sequences in 7),_,,
attached to short exact sequences in 7, as in section 2 . Furthermore lemma
3.1 and lemma 3.2 carry over verbatim. Notice,

DS/

n,n—m

(Bery) = Beryp—y, , forl=m

and it is zero for ¢ # m. Indeed, ¢, ,n(E x diag(1,t~1)) acts on Ber,, by t™.
Since €, = pp m(E % diag(l, —1))€,—m, the restriction of Ber;, to G,,_, via
©nm defines the module II"™ (Bery,_p).

Remark. Note that DS/, . (V)[-{] = (DSnn-m(V))e. Here upper
indices denote graduations without twist, lower indices graduations with
twist. This is consistent with DS/ (V) = H*(V) in section 3. Note that
it is essential to have non twisted objects such as H*(V') or more generally
DS*(V) due to the comparison with Hp respectively wy, ,—, (see below)

which don’t have any twists.

For n — m; = ny and ny — my = ny the functors DS, ,,, : T,, — T}, and
DSy, m, : T, — T, are related to the functor DS, ., : T;, — T;,, by a Leray
type spectral sequence with the Fo-terms

@B, gt DSHna (DS, (V) = DSEL (V)]

n,n2

To be more precise, choose matrices

(0 T
7= ()
and m; x m;-matrices J;,7 = 1,2 with zero enties except for the entries 1 in
the antidiagonal. Then J and J; define functors DS,, ,,(V, p) = (V, p) resp.

DSpn, (V,p) = (V,p)z, and Jy defines a functor DSy, , (W, ) = (W, 1)), .
Obviously we have © = z1+x9 € g, and 3 € g,,, C g, such that [z}, z9] = 0.
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Then indeed 0 = 01 + 92 and 0102 + 201 = 0 for 9 = p(x), 01 = p(x1) and
02 = 1(x2). Consider the weight (eigenvalue) decomposition

vV = v

P,qEZ

of (V, p) with respect to the matrices
gt ta) = diag(1, ., 1;t7 o t7 ot ot 1, 1)

in G, (m; entries t;* and my entries t; ') so that v € VP4 if and only if
g(t1,t2)v = t{th-v. (We now write indices on top to avoid confusion with the
lower indices n and n—m). Then 0 : VP47 — VPthaand 9, : VP4 — VP4l
Hence the Leray type spectral sequence is obtained by the spectral sequence
of this double complex. For this note that the the functors bem are defined
by the eigenvalues t* of the elements g(t,t).

Proposition 8.1. For irreducible maximal atypical objects L in T,, the
Leray type spectral sequence degenerates:

DSnynz(L) = DSnl7n2(DSn7nl(L)) .

Proof. Up to a parity shift, we can replace L = L()\) by X, in T}, so that
sdim(X)) > 0 using that sdim(X) # 0 [Ser10], [Weil0O]. Then it suffices to
prove inductively (for DS applied m times)

(DS 0 DS....0 DS)(X3) = DSpnm(X)).

The case m = 1 is obvious by definition, since DS,, ,,—1 = DS. Suppose this
assertion holds for m. Let us show that it then also holds for m replaced by
m + 1. Indeed, the Fs-term of the spectral sequence

DSo (DS oDS....o DS)(X)\) - Dn,n—m—l(X)\)
are of the form

DS o (DSoDS....oDS)(Xy) =P X,
17

for irreducible representations X, in T},_,,_; of superdimension sdim(X,,) >
0. Indeed this follows by repeatedly applying the later theorem 16.1, which
implies DS(X),) = @le X, for irreducible maximal atypical objects X,
in T;,_; with sdim(X),) > 0. Now DS is a tensor functor, and hence pre-
serves superdimensions. Hence sdim(X,) = }_ , sdim(X,). If the spectral
sequence would not degenerate at Es-level, then the E.-term is a proper
subquotient of the semisimple F>-term. Hence

sdim(DSp—m-1)(X)) < Z sdim(Xy) ,
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since sdim(X,) > 0. This would imply
sdim(DSy—m—1)(X)) < sdim(X)) .

However this is a contradiction, since D,,_,,,_1 1S a tensor functor and hence
sdim(DSy—m-1(Xy)) = sdim(X)). Hence the spectral sequence degener-
ates and DS, ,,(X,) has a filtration with graded pieces that are computed
by appropriate DS%, ,,DS: . (X,). In order to prove that DS, (X)) =
DSy, my(DSy o, (X)) we show that this filtration splits and D.S;, ,,, (X)) 18
semisimple. This follows from the sign rules of the main theorem 16.1.
Indeed for X, with £(\) = 1, the constituents of DS(X)) in R,, have the
same sign ¢ = 1 and the constituents of DS(X}) in IIR,, have sign ¢ = —1.
Now use that Ext'(R,,[IR,) = 0 by lemma and Ext'(L()\),L()) = 0
if ¢(A\) = e(u) by corollary 15.1. Hence there are no extensions between
the constituents of DS(X),). Repeated application of DS gives again con-
stituents which are either in R,, with sign ¢ = 1 or constituents in IR,
with sign ¢ = —1. Since the constituents of DS, ,,(L) are given by the
constituents of the graded pieces, the semisimplicity follows. U

We have seen in the last proposition that the Leray type spectral sequence
degenerates at the Fs-level for irreducible maximal atypical objects. Let FP
be the decending first (or second) filtration of the total complex. Due to the
degeneration we can make use of the following lemma.

Lemma 8.2. Suppose given a finite double complex (K**,dpor,dyert)
with associated total complex K*® = Tot(K**) and total differential d. Sup-
pose the associated spectral sequence for the first (second) filtration degen-
erates at the Es-level and suppose x € FP(K?®) is a boundary in K°®. Then
there exists y € FP~1(K*®) such that x = dy.

Proof. We can assume that + = % ), , has fixed degree n. The
spectral sequence degenerates at £ and [z] = 0 in FPH"(K*). Hence the
class of = in GrP(H"(K*)) = H}, (H,.;(K**)) vanishes. In other words
there exists v € KP" P~ and u € KP~5"~P such that dye¢(u) = 0 and
such that dp,e (1) + dyert(v) = xp4. Hence x — d(u +v) € FPTY(K®) with
u+v € FP~Y(K*) again is closed. Iterating this argument we conclude that
for any r large enough we find y € FP~1(K*) such that x — dy € F"(K*®). If

r is large enough, then F"(K*) = 0 and hence the claim follows. U

Dirac cohomology. Similarly the results of section 5 hold verbatim for
0= p(z)and @ = c- p(z) and D = 9 + 9. In particular, for a generator z
of the Lie algebra of the center of G, let H denote its image ¢, () € gp.
The D-cohomology of the fixed space V' then gives objects wy, n—m(V, p)
so that so that

Wnn—m : Th — Them



COHOMOLOGICAL TENSOR FUNCTORS 29

defines a tensor functor generalizing Hp = wy, ,—1. Note that wy, p—p, TE-
stricts to a tensor functor wy, p—m : Ry — Ry—m unlike DS, ;..

As in section 6 there is a spectral sequence that allows to define a filtration
on wy, n—m (V') whose graded pieces are

we,nfm(v) = HE(DSfL,nfm(V)) .

n

This generalizes proposition 6.3. Furthermore the results of proposition 7.1
and corollary 7.2 of section 7 carry over and define a Hodge decomposition
for wy, n—m, 1n terms of the functors wfz,n—m' Finally the same argument used

in the proof of proposition 8.1 also shows

Proposition 8.3. For irreducible maximal atypical objects L in T,, the
spectral sequence above degenerates, i.e. for all ¢

wh (L) = DSt (L)].

n,n—m n,n—m

Now consider the Z-graded object DSy, . (L) = @z DS5 (L)
(which is different from DS, ,,_,,(L) if we forget the graduation) to com-
pare with @, , wfﬁhn,m(L) (that is wy, ,—m (L) after forgetting the gradua-

tion).
Lemma 8.4. Suppose for irreducible V € T, that DSy, ,, (V) = wppn, (V).
Then

Wi, (V) Z w0, (DS, (V)

n,na

holds.

Proof. Use that § = 8, +08.. By the assumption DSy, (V) = wp, , (V) the
differential 9 is trivial on DSy, , (V'), hence trivial on DS},

_ ni,N2 (DST.Z,’I’Ll (V)l %
DS . (V). Therefore the 0-homology of DSy . (V) is the same as the 02-

hombfogy attached to DS}, . (DSpn, (V))*. - U
This implies wy, ,,_,,,(L) = DSy, ., (L) for any irreducible L in T,,. We
prove this by induction on m. For m = 1 this follows from the fact that
irreducible representations satisfy property T. Now we use wy, ,,_,,, (L) =
W —mn—m—1(DSy (L)) from lemma 8.4. Since DSy, ,,_,, (L) is semisim-
ple by proposition 8.1 (as iteration of m times D.S®), we have
w:l—m,n—m—l (DS;,n—m(L)) = DS.(DS:Ln—m(L)) = DS;,n—m—l (L> .

This implies

Proposition 8.5. For all irreducible objects L in T,, and all ¢ we have

Wpn-m(L) = DS, (L) |.

n,n—m
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The case m = n is of particular interest. Notice that T} is the category svecy,
of finite dimensional super k-vectorspaces. Hence

w=wpo: T, — svec .

The tori A;. Let A; C G, denote the diagonal torus of all elements of
the form diag(1,...,1,tp—it1,---stn | tn,- -y tn—it1,1,...,1). In particular
A, is the torus of section 5 and H = H,,—;. It commutes with all op-

erators O, n,—i, Onn—i and D,,_; and hence acts on DS, ,,_;(V') respectively
wnn—i(V). We claim

Lemma 8.6. The action of A; on DSy, ,—i(V') and wy, ,—i(V') is trivial.

Proof. For this we can assume without loss of generality that : = n. The
H, ,—; for i = 1,...,n generate the Lie algebra of the torus A. Hence it
suffices that all H,, ,_; act trivially. This follows from the Leray type spec-
tral sequence DS,,_;o o DS, —i = DS, 0. As in the proof of lemma 5.1
one shows that H,, ,_; acts trivially on DS, ,_;(V'). Hence by the spectral
sequence H,, ,_; acts by a nilpotent matrix on D,, o(V'). On the other hand
A, and hence H,, ,,—; € Lie(A), acts in a semisimple way. This proves the
claim. ]

9. BOUNDARY MAPS

Suppose given a module S in R,,. Consider Dy, = D+D' for D = D,, ,_;
and D' = D,,_;. Notice that DD’ = —D'D and D? = cp(H), (D')* =
cp(H') and D7,y = cp(Hiot).

For fixed i we write A = A;. We have Hp(S) = Kern(D : S — 8)/(S" n
Im(D : S — S)). We have also shown that this is equal to
Hp(S) = Kern(D : 84 — §4)/Im(D : 4 — 54)
for the torus A whose Lie algebra is generated by all H,, ,_; for j =1,...,n.
In a similar way
Hp, (8) = Kern(Dyy : S* — S4) /Im(Dyor : S — 54) .

Recall that A commutes with Dy, D, D' and acts in a semisimple way.

Let U C S denote the image of D’ : $4 — S4. Then U and " = S4/U
are stable under D and D'. If s € S4is in Kern(Ds,t), then Ds = —D's € U.
Hence s — s + U defines a map from Kern(D;y : sS4 S/ Im(Dyy
S4 5 §4) to Kern(D : 8" — §)/Im(Dyoy - 8 — §™), hence a map or

Jg . HDtot(S) — HD(S) .



COHOMOLOGICAL TENSOR FUNCTORS 31

Suppose given modules S, V, L in R,, defining an extension
0=-S—-V-=>L—-0.
We get a boundary map
Otot Hg,m(L) — Hp, (S)

defined as usually by Kern(Diopr : L - L) >0 +— [s], s = Dyv € L. Here
v € VAis any lift of 7 € LA (it exists by the semisimple action of A on V).
Obviously Dy, (s) = 0, since D2, = 0 on the space of A-invariant vectors.
Therefore the class [s] of s in H}, (S) is well defined.

In a completely similar way one defines the boundary map
§: Hi(L) — HE(S) .
We claim that there exists a commutative diagram

HE(L) — > H(S)

TUL TUS
=+ Otot
Hp, (L) —= H} (S)
In fact on the level of representatives v € V4 it amounts to the assertion
v=vmodU ——=35=Dv
TUL TO‘S

v s = Dyopv

using Dy,tv = Dv mod Uy,

We now consider two extension (S, V, L) and (S, V, L). Then the commu-
tative diagram

H}j (L) —— Hpp(S) <—— H}(L)

implies
Lemma 9.1. Suppose L = 1. Then Im(d0t) is not contained in I m(gtot),
if there exists an integer i for 1 < i < n such that

e H} (L) does not contain 1 as a G,,—;-module.
o (1) #0in Hy(S).
for D =D, ;.
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Remark. 1If S = L,,(j) for some 1 < j < n is one of the hook representa-
tion discussed in section 31, then the smallest integer i for which §(1) # 0
in H,(S) holds is given by n—i = j — 1. Indeed we later show that although
0 — D) ;(S) = Dy (V) = 1 — 0 is exact, the map D} ; (V) — 1 is not
surjective any longer. So in the later applications, to apply the last lemma,
we have to check whether H};(L) contains the trivial G;_;-module in this

case or not.

10. HIGHEST WEIGHT MODULES

Irreducible representations. The irreducible Gl(n|n)-modules L in R,
are uniquely determined up to isomorphism by their highest weights .
These highest weights ) are in the set X (n) of dominant weights, where A
isin Xt (n) if and only if X is of the form

A=A, 02, A0 5 Aty -+ A2n)
with integers A\ > Ao > ... > Ay and A1 > Apyo > .00 > Aoy
We remark that the condition
An = —Ant1

for )\ is equivalent to the condition A\(H) = 0. In the language of Brundan
and Stroppel in section 12 the condition A(H) = 0 is tantamount to the
condition that the irreducible representation L(\) is not projective and the
smallest \V-hook is to the left of all x’s and o’s. Any at least 1-atypical block
contains such L(\). If these equivalent conditions hold we write

X: ()\la "'7)‘7171 ; /\n+2a .- '7)\211)

defining an irreducible representation L(A) in R,,—1.

Using the notation of [Dro09] the irreducible maximally atypical Gl(n|n)-
modules L in R,, are given by highest weights )\ of the form

)\:(Al,)\g,...,)\n; *)\n,...,*)\l)

with integers A; > Ao > ... > \,. We abbreviate this by writing [\1, ..., A,]
for the corresponding irreducible representation. The full subcategory of
R, generated by these will be denoted R;..

Highest weight modules. Recall that a vector v # 0 in a module (V, p) in
R, is called primitive, if p(X)v = 0 holds for all X in the standard Borel
subalgebra b of g = g,,. A highest weight vector of a module V' (of weight \)
in R, 1s a vector v € V that is a primitive eigenvector of b (of the weight \)
generating the module V. In this case V' is called a highest weight module
(of weight ). Every irreducible representation L(\) in R, is a highest
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weight module of weight \. Every highest weight module V' of weight A
has cosocle isomorphic to L(\).

Lemma 10.1. For (V,p) = L(\), or more generally a cyclic representa-
tion generated by a highest weight vector of weight \, the weight space in
V of weight \ — 1 is generated by p(T)v, where v is a highest weight vector

of (V. p).

Proof. For the simple positive roots A = {«ay,...,a,}, i.e. the union of
the odd simple root {;:} and the even simple roots in g with respect to the
standard Borel subalgebra of upper triangular matrices, choose generators
X4 €u. Put 7(X,) =Y_, and V) = F - v. Recursively define V; = V;_; +
Y aen P(Y_o)(Viz1). We claim that V,, = (J;2,V; is a g-submodule of V/,
hence equal to V. This claim also implies that the weight space Vy_, is
generated by p(7(x))v.

Vs 1s invariant under all p(Y_, ), € A = {ay, ..., a;-}. Each V; obviously
is invariant under p(X) for diagonal X € g. Indeed each V;/V;_; decom-
poses in weight spaces for weights

r r
A—anozj , an:i (nj ENzo) .
i=1 j=1

Note p(Xa)p(Y_p5)E£p(Y_g)p(Xa) = p(Ha) fora = 5 € Aand p(Xa)p(Y-_p)E
p(Y_3)p(Xa) = p([Xa,Y—p]) = 0for a,8 € A and o # B [since o — 3 ¢
ot U~ for o, § € A]. Hence V,, is invariant under g, since Y_3, 8 € A and
diagonal X and X,,« € A, generate g as a Lie superalgebra. O

Lemma 10.2. Suppose A = (A1, ...; Adn—1, A Antb1s Ant2s - - -, Aop) Satis-
fies \, = —Apu1. If V is a highest weight representation generated by a
highest weight vector v of weight \, the module H (V) contains a high-
est weight submodule of weight \ generated by the image of v with par-
ity (—1)*. In particular the representation I’ L()\) in R,,_1 is a Jordan-
Holder constituent of H (V).

Proof of the lemma. The highest weight vector v of V' is a highest weight
vector of the restriction of V' to the subgroup G,,_; of G,, and is annihilated
by p(x). By our assumption on the weight ) furthermore v € V¥, To prove
our claim it suffices to show that v is not contained in Im(p(x)). Suppose
v = p(z)(w). Since the weight of z is u, we can assume that the weight of w
1s A — p. Since V is a highest weight representation, by lemma 10.1 then w
is proportional to p(Z)v. So that to show p(z)w = 0 and to finish our proof,
it suffices that by [z,7] = H

p(@)p(@)v = —p(T)p(x)v + p(H)v =0
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vanishes, since p(z)v =0 and v € VH, O
Note that (for the notation used see section 11)

are in the unipotent Lie algebra uz C u of the standard Borel by of g; for
alli = 1,..,n — 1. Suppose (V, p) is a representation of G,. If (V,p) has
a highest weight vector v, then p(X)v = 0 holds for all X in the unipotent
radical u of the standard Borel of g. In particular

p(z)v =0, p(xi)v = 0, p(x)v = 0, p(zi)v = 0, p(2{)v = 0

and hence by the commutation relations above this implies fori =1, ...,n—1
also
p(z)p@v =0 , p(zi)p@)v=0.

Now also suppose v € V and put w = p(Z)v. Then p(x)w = 0, as shown
in the proof of lemma 10.2. Similarly one can show p(z;)w = 0 (since
p(zi)v = p(z;)v = 0) and p(z,)w = 0. All elements u N g,,_; commute with
p(7) and annihilate v, hence annihilate w. Finally, since p(Z) and p(x;), p(z})
annihilate w, also p(z;) and p(z}) annihilate w. It follows that p(X)w = 0
for all X € u, since u is spanned by u N g,_; and the z, z;, 2}, z;, 2/,. This
implies that w is a highest weight vector in (V, p) of weight A — u, if w # 0.
Hence

Corollary 10.3. If (V, p) is a highest weight representation with highest
weight vector v and highest weight \ so that \(H) = 0, then w = p(Z)v
defines a highest weight vector of weight A — v in 'V if w # 0.

In the situation of the last corollary, the following conditions are equiva-
lent

(1) w=0

(2) D(v) =0

(3) D(v) = 0 and v defines a nonvanishing cohomology class in Hp(V').
Indeed D(v) = ip(ZT)v + p(z)v = iw. Furthermore, if v = D(w), then v =

ip(T)w1 + p(x)ws for wy € Viy, and wo € Vy_,. Since A is highest weight,
therefore V), = 0. Furthermore V)_, is generated by w, and p(x)w = 0.
Hence v ¢ D(V).

A highest weight representation V' of weight A canonically admits the
irreducible representation L = L()\) as a quotient. Let ¢ : V' — L denote the
quotient map.

Corollary 10.4. In the highest weight situation of corollary 10.3 the fol-
lowing holds for the representation V:
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(1) If V contains a highest weight subrepresentation W # 0 of weight
A — pu, then Hg" (V') has trivial weight space Hg" (V)x € Hg” (V).

(2) If the natural map Hp(q) : Hp(V) — Hp(L) is surjective, then
V' does not contain a highest weight subrepresentation W # 0 of
weight A — p.

Proof. For the first assertion, notice that D(v) = 0 implies w = 0 and
w generates V_,,. For the second assertion notice that the highest weight
vector v € V maps to the highest weight vector ¢(v) of L. By the first asser-
tion and lemma 10.2, applied for L, the vector ¢(v) is D-closed and defines
a nonzero class in H 2\)" (L)x- Since now Hp(q) is surjective by assumption,
corollary 7.2 implies that this class is the image of a nonzero cohomology
class n in H 1/\7" (V). This class is representated by a nonzero 9 closed class
in H* (V) = DS, in the weight space X. Hence this class has a D-closed
representative v’ in V), since the enriched weight structure on D.S(V') allows
to recover the weight structure of V. Since V is a highest weight represen-
tation, the space V) has dimension one and therefore v' is proportional to
v. Thus D(v) = 0. But, as explained above, this implies w = 0 and hence
Vi =0, O

Since Kac modules V() are highest weight modules of weight A with
Hp(V(M\)) =0, lemma 10.2 and its corollaries above imply

Lemma 10.5. For \in X+ with \,, = \,11 = 0 the cohomology H°(V ()\))
of the Kac module V ()\) contains a highest weight module of weight \. Fur-
thermore V (\) contains a nontrivial highest weight representation of weight
A — .

Example. Let (V,p) = V(1) in Ry be the Kac module of the trivial
representation. Then DS(V*) = 0and DS(V') # 0, since V' is not projective.
The module V is a cyclic module generated by it highest weight vector of
weight A = 0 (this is not true for the anti-Kac module V*). Furthermore
V has Loewy length 3 with Loewy series (Ber; 2, Ber; ' S', 1) where S* =
[1,0]. We claim

DS(V) = (Ber;?@1)® (1 ®1I(1)) .

This follows from the later results, e.g. lemma 2.1 and theorem 16.1:
d(Bery) = —Ber; and d(S') = Ber[' + Ber; imply d(V) = 0, hence
DS(V) has at most 4 Jordan-Holder constituents Bery , TI(Ber; %), 1, TI(1).
By lemma 10.2 the constituent 1 occurs. By duality then also the constituent
Ber; 2 must occur. Since d(V) = 0 the constituent IT( Ber; 2), TI(1) must oc-
cur. Finally apply proposition 19.1. This example shows that DS in general
does not preserve negligible objects.
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Highest weights. Suppose (V, p) is a highest weight module of weight A
such that A\(H) = 0. Let v be a weight of V. Then

v=M\— Z N>o - o

aeA,

for the set A, of simple positive roots « of G,,.

Now suppose v contributes to DS(V). Then v is a weight of V' and
hence v(H) = 0. Notice A, is the union of A = {e; — es,...,en1 —
€ns €ntl — €nt2s .-y €2n—1 — €an} and A = {e, — ep41}. The restriction of
the simple roots « € A,, are in A,,_; (i.e. simple root of G,,_1) except for the
even simple roots a = e,,—1—e,,, & = e,11—ep42 and the odd simple root o =
en —en—2. A linear combination ) A, Mol annihilates H if and only if the
coefficient, say m, of e,,_1 — e, and e, 11 — e, 12 coincides; hence this holds
iff vis of the form 3 - n+  naa+(n,—m)-(en —ent1) +m- (en—1—ent2).
Notice that u = (e, — eng) is trivial on the maximal torus of G,,_; and that
(én—1 —en+2) defines the new odd simple rootin A, ;. Hence the restriction
of v € VH is of the form

Vorg,—, € Along._, — E N>o-«a
€A,

under our assumptions above. Notice for V, ¢ V# ¢ V we have
0= Ndiag(1,..,1;t 71, 1,..,1)) =n, —m =X, .

The discussion above implies

Lemma 10.6. For a highest weight module (V, p) in T,, of weight \ with
A(H) = 0 the module DS(V, p) has its weights vin A — > cn  N>o- .

Corollary 10.7. Given (V,p) € T,, suppose L(\) is a Jordan-Holder
constituent of (V,p) such that for all Jordan-Hélder constituents L(v) of
(V,p) we have v € A =3 cn Nxo-aand v(H) = 0. Then L()) appears in
DS(V, p) and all other irreducible constituents L(v') or ILL(v') of DS(V, p)
satisfy v/ € A =Y cn  N>o-a.

Proof. This follows from the last lemma and the weak exactness of the
functor DS. U

11. THE CASIMIR

We study the operation of the Casimir C), on DS (V). This will be used in
section 18 when we study the effect of DS on translation functors F;(Ly.).
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Consider the fixed element z € g,

0 0 ... 0
0y o oo .. 0

:”_(0 o)eg” fory=1._. " .
1 0 0 0

Similarly we define

z;, o fori=1,.,n-1
for matrices y = y; resp. y; with a unique entry 1 in the first column resp.
last row at positions different from the entry 1 in the above y

Then z, x;, 2} are in u for i = 1, ...,n — 1. The elements z;, 2} satisfy [z;, 2] =
0= [z}, x].
Using Brundan-Stroppel’s notations [BS12a], (2.14), let e, s € g,, be the

rs-matrix unit. Then the Casimir operator C, = > "' ., (—1)%¢, ses, of the

super Lie algebra g,, = Lie(G,,) is recursively given by
Cp =Cpnaa+C1+2(Z121+ -+ Zn—12n-1)+(e11+ - +en—1n-1—(n—1)enn)
—2(Z 2+ Z 12 1) — (Sentont2 = — €2n2n + (0 — 1)entint)
+2(T1z1+ -+ Tpo1zp—1) — (e11+ -+ en—1p—1 + (0 — 1)ent1n+41)
+2(f’1$/1 + -+ flnfll’;@fl) - (€n+2,n+2 + -t eaman + (n— 1)6n,n)
with the notations Ti = €in+l, J?é = €n2n+1—i> Zi = €in and ZZ,» = €n+12n+1—i-
Furthermore z;, 7}, z; and Z/ denote the supertransposed of z;, 2}, z; and z/.
Hence
+2(T1w1 + -+ T 1T + T+ + T g7, _y) — 2(n— 1)H

/

using [7(z), z;] = z; and [7(x), 2] = 2] and

— ! =/
[2i,Zi] = €ii —enn 5 (2 %] = €nt1n+1 — €2n41—i2n 41—

and [fi, xz] = €;;t+entintl and [f;, x;] = €n+1—i2n+l—iTEnn. Notice T;z; —

= oy = ot 1=/ =/ !
T = 2T — €55 — Ent1,n+1 ANA T2, — 21T, = 2T,0) — €2p41—i 2n+1—i — Enyn-
Finally Cy = e}, — €2 1, —2T+Tx=e), —€l |, 1 +2Tc — H.

Representations. Suppose (V, p) is a representation of g,. On DS(V, p)
we have p(H) = 0 and p(z) = 0. Since

[‘T’xi] = [.T,:L’;] = [x7 Zi] = [QZ,ZH =0,
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the elements z;,z}, z;, z, naturally act on the cohomology DS(V) = V.
Since 2 commutes with H, the spaces Kern(x) and its subspace Im(x)
decompose into H-eigenspaces Kern(z)(j) and Im(x)(j) for j € Z. By
lemma 5.1 however Kern(x)(j) = Im(x)(j), expect for the zero-eigenspace
of H. Now, although =, 7 commute with H, the operators y € {z;, z}, z;, 2,

satisfy [H,y] = +y and hence map the zero eigenspace M = V¥ into the
+1-eigenspace of H on V. Since the j = +1-eigenspaces do not give a

nonzero contribution to the cohomology DS(V') = V,, this implies

Lemma 11.1. The natural action of p(z;), p(x}), p(2i), p(z) and p(z), p(H)
on DS(V,p) is trivial.

Notice that C,, commutes with all elements in g,,, hence induces a linear
map on DS(V, p) that commutes with the action of G,,_; on DS(V, p).

Lemma 11.2. The restriction of the Casimir C,, acts on DS(V, p) like the
Casimir Cy,—1 of T,,—1 acts on DS(V, p) € T,,_1.

Proof. By lemma 11.1 the restriction of C, to DS(V,p) is the sum of
Cn—1 and the operator Cy = e2,, — €2, 1. Now consider a weight space
of DS(V, p) with eigenvalue X. Then X is the restriction of an eigenvalues
A of the weight decomposition of (V, p). Since DS(V, p) is represented by
elements in M = V¥, the condition A\(H) = 0 implies \, = —\,;1 and
hence A2 — X2, = 0. Therefore C; acts trivially on DS(V, p). O

Remark. As the referee pointed out, there is a more conceptual proof of
lemma 11.2. For a module M € T,,, the Casimir map is the composition

Cy : M —— gl(n|n) @ gl(n|n)* @ M —— gl(n|n) @ M — M

where the first map is the coevaluation map for the adjoint representation of
g and the last two are the action maps gl(n|n) ® M — M. Since DS maps
the standard representation to the standard representation, it preserves the
adjoint representation as well, and hence preserves the Casimir map in the
sense that DS(C)y) is the Casimir on D.S(M).

PART 2. THE MAIN THEOREM AND ITS PROOF

In this part we prove the main theorem, stating that D.S(L) = @, II" L(\;)
in T,,_; for any irreducible representation L. We have seen that DS(L) is
actually a Z-graded object in T;,_; and we calculate the Z-grading for any
L in the propositions 23.1 24.2. These statements contain the main theorem
as a special case. Their proofs however depend on the main theorem and
its proof. We will prove the main theorem first for special irreducible L,
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called ground states, and reduce the general question to these by means of
translation functors.

12. THE LANGUAGE OF BRUNDAN AND STROPPEL

By the work of Brundan-Stroppel [BS12a] the block combinatoric and
notably the Ext! between irreducible representations can be described in
terms of weight and cup diagrams associated to any irreducible L()\).

Weight diagrams. Consider a weight A = (A1, ..., A\u; Apt1, -+, A2p). Then
Al > ... > Ay and A\ > ... > Ay, are integers, and every A\ € Z™T"
satisfying these inequalities occurs as the highest weight of an irreducible
representation L(\). The set of highest weights will be denoted by X+ =
X*(n). Following [BS12a] to each highest weight A € X (n) we associate
two subsets of cardinality n of the numberline Z

IX()\) = {)\1,)\2 —1,., A, —n+ 1}
IO()\) = {1 —n — )\n+1> 2—n— )\2n71> veey —)\Qn}.

We now define a labeling of the numberline Z. The integers in I (\) N
I,(\) are labeled by V, the remaining ones in I () resp. I,(\) are labeled
by x respectively o. All other integers are labeled by A. This labeling of the
numberline uniquely characterizes the weight vector A. If the label v occurs
r times in the labeling, then » = atyp(\) is called the degree of atypicality of
A. Notice 0 < r < n, and for r = n the weight \ is called maximal atypical.

Blocks. A block T" of X*(n) is a connected component of the Ext-quiver
of R,,. Let Rr (or by abuse of notation I') be the full subcategory of objects
of R,, such that all composition factors are in I". This gives a decomposi-
tion R, = @ Rr of the abelian category. Two irreducible representations
L(X\) and L(yu) are in the same block if and only if the weights A and p de-
fine labelings with the same position of the labels x and o. The degree of
atypicality is a block invariant, and the blocks A of atypicality r are in 1-1
correspondence with pairs of disjoint subsets of Z of cardinality n — r resp.
n —r. Let R¢, be the full subcategory of R,, defined by the blocks of atyp-
icity n —¢. In particular R,, has a unique maximally atypical block, and any
block of atypicality 7 in R,, is equivalent to the maximally atypical block in
Ri.

Cups. To each weight diagram we associate a cup diagram as in [BS11].
Here a cup is a lower semi-circle joining two points in Z. To construct the
cup diagram go from left to right throught the weight diagram until one
finds a pair of vertices VA such that there only z’s, o’s or vertices which
are already joined by cups between them. Then join V A by a cup. This
procedure will result in a weight diagram with r cups. For example
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N

is the labelled cup diagram (n = 4) of the trivial representation attached to
the weight A = (0,...,0/0,...,0).

Sectors and segments. For the purpose of this paragraph we assume \ €
X to be in a maximal atypical block, so that the weight diagram does not
have labels x or o. Some of the  cups of a cup diagram may be nested.
If we remove all inner parts of the nested cups we obtain a cup diagram
defined by the (remaining) outer cups. We enumerate these cups from left to
right. The starting point of the j-th lower cup is denoted a; and its endpoint
is denoted b;. Then there is a label Vv at the position a; and a label A at
position b;. The interval [a;, b;] of Z will be called the j-th sector of the cup
diagram. Adjacent sectors, i.e with b; = a;,1 — 1 will be grouped together
into segments. The segments again define intervals in the numberline. Let
s; be the starting point of the j-th segment and ¢; the endpoint of the j-th
segment. Between any two segments there is a distance at least > 1. In the
following case the weight diagram has 2 segments and 3 sectors

= = =

whereas the following weight diagram has 1 segment and 1 sector.

N

Removing the outer circle would result in a cup diagram with two sec-
tors and one segment. We can also define the notion of a sector or segment
for blocks which are not maximally atypical. In this case we say that two
sectors are adjacent (and belong to the same segment) if they are only sepa-
rated by x or o’s. For our purpose the x and o’s will not play a role and we
will often implicitly assume that we are in the maximally atypical block.

Important invariants. Note that the segment and sector structure of a
weight diagram is completely encoded by the positions of the V’s. Hence
any finite subset of Z defines a unique weight diagram in a given block.
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This will lead to the notion of a plot in the next section where we associate
to a maximal atypical highest weight the following invariants:

the type (SD) resp. (NSD),

the number k& = k() of sectors of A,

the sectors S, = (I, K,)) from left to right (for v =1, ..., k),

the ranks r, = r(S,), so that #I,, = 2r,,

the distances d, between the sectors (forv =1,...,k — 1),

the total shift factor dg = \,,

and the added distances ¢; = Zf;lo d,.

If convenient, & sometimes may also denote the number of segments, but
hopefully no confusion will arise from this.

A maximally atypical weight is called basic if A\, = —\,;, holds for
v = 1,...,n such that [\] := (A, ..., \,) defines a decreasing sequence \; >

- > Ap—1 > Ay = 0 with the property n — v > )\, forall v = 1,...,n.
The total number of such basic weights in Xt (n) is the Catalan number
C,. Reflecting the graph of such a sequence [)\] at the diagonal, one obtains
another basic weight [A\]*. We will show that a basic weight ) is of type (SD)
if and only if [\]* = [A] holds. To every maximal atypical highest weight A
is attached a unique maximal atypical highest weight Ay, ;.

A= /\basic

having the same invariants as A, except that dy = dy = -+ = dy—1 = 0
holds for A\ys;.. For example, the basic weight attached to the irreducible
representation [5,4, —1] in R3 with cup diagram

N N N
is the basic representation [2, 1, 0] with weight diagram
N N N

13. ON SEGMENTS, SECTORS AND PLOTS

If \ is a maximally atypical weight in R, it is completely encoded by the
n V’s in its weight diagram. We change the point of view and regard it as a
map (a plot) A : Z — {H, B} where the B correspond to the V’s. If X is not
maximal atypical, its weight diagram has crosses and circles. These do not
play any role in the combinatorial arguments, and we can still describe A by
a plot if we just ignore and remove the crosses and circles from the weight
diagram.

A plot \ is a map
AN Z— {8,8}



42 TH. HEIDERSDOREF, R. WEISSAUER

such that the cardinality r of the fiber A~! (M) is finite. Then by definition
r = r(\) is the degree and A\~!(H) is the support of X. As usual an interval
[a,b] C Z is the set {x € Z | a < x < b}. Replacing B by 1 and B by —1
we may view A(z) as a real valued function extended by A(z) := A([z]) to a
function on R for [z] = max,cz{n < z}.

Segments and sectors. An interval I = [a, b] of even cardinality 2r and a
subset K of cardinality of rank r defines a plot A of rank r with support K.
We call (I, K) a segment, if f(z) = [ A(z)dz is nonnegative on I. Notice,
thena € K butb ¢ K.

Factorization. For a given plot A put a = min(supp()\)) and for the first
zero xo > a of the function f(z) = [ A(z)dz put b = xo — 1. This defines
an interval I = [a, b] of even length, such that \|; (now again viewed as a
function on I NZ) admits the values 1 and —1 equally often. If supp(\) C I,
then )\ is called a prime plot. If \ is not a prime plot, the plot \; with support
I N supp(X\) defines a prime plot. It is called the first sector of the plot A.
Now replace the plot A by the plot, where the support K of the first sector
I = I, is removed from the support K of A. Repeating the process above,
we obtain a prime plot A2 with support K, defining a segment (/2, K2). This
segment is called the second sector of A. Obviously I; is an interval in Z
on the right of I;, hence in particular they are disjoint. Continuing with
this process, one defines finitely many prime plots Ay, ..., A attached to a
given plot defining disjoint segments S; = ([1, K1),..., Sp(Ix, Kx). These
segments S, are called the sectors of the plot A. Let

d, = dist(I,, I,41) , v=1,.. k-1

denote the distances between these sectors S,, i.e. d, = min(Sy4+1) —
max(Sy).

For disjoint segments (1, K;) and ([;, K3) the union (I,K) = (I U
I, K1 U K>3) again is a segment, provided I = I; U I is an interval in Z.

Grouping together adjacent sectors of A with distances d,, = 0 defines the
segments of \. In other words, the union of the intervals I, of the sectors S,
of the A\, can be written a disjoint union of intervals I of maximal length.
These intervals I define the segments of A as (I,T N supp(N)).

We consider formal finite linear combinations ), n; - A; of plots with in-
teger coefficients. This defines an abelian group R = ., R, (graduation
by rank r). We define a commutative ring structure on R so that the product
of two plots A\; and )\, is zero unless the segments of A\; and )\, are disjoint,
in which case the support of the product becomes the union of the supports.
A plot X that can not be written in the form A; - A9 for plots A; of rank ; > 0
is called a prime plot.
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Lemma 13.1. Every plot can be written as a product of prime plots
uniquely up to permutation of the factors.

Of course this prime factorization of a given plot A is given by the prime
factors A, attached to the sectors S,,v = 1,..,k of \. Hence for A = [[, \;
with prime plots \;, the sectors of \ are the segments attached to the prime
factors A;. The interval I = |a, ..., b] attached to a prime plot A is the unique
sector or the unique segment of the prime plot \. It has cardinality 2r()\),
and the support K of )\ defines a subset of the sector I of cardinality r.
Recall a € K butb ¢ K.

Differentiation. We define a derivation on R called derivative. Indeed
the derivative induces an additive map

0 : Rn — Rn—l .
To differentiate a plot of rank n > 0, or a segment, we use the formula
oI ) =D ox TN
i i i
in the ring R to reduce the definition to the case of a prime plot A\. For prime
Alet (I, K) be its associated sector. Then I = [a,b]. Usinga € K, b ¢ K, for
a sector (I, K) of a prime plot A it is easy to verify by the integral criterion
that
oI, K) = (IK) = (I', K')
forI' = [a+1,b—1] and K’ = I N K again defines the sector of a prime plot

o\ of rank r(\') = r(\) — 1. Then for prime plots A of rank n with sector
(I, K) we define 9\ in R by

ON=0(,K)| , I=]la,b].
Integration. For a segment (7, K') with I = [a, b] put

/(I,K):([a—l,b+1],KU{a—1})

increasing the rank by 1. Observe, that the integral criterion implies that
([a — 1,0+ 1], K U{a — 1}) always defines a prime segment. Obviously

8/(],[() =(I,K).
Similarly [9(I, K) = (I, K) for a prime segment (I, K) of rank > 0.
Lowering sectors. For a sector S = (I, K') with I = [a, b] define
Slow — ([a—1,a],{a—1})UI(S).

Notice that 5% is a segment with interval [a — 1,b — 1].
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Melting sectors. Suppose A; and Ay are prime plots. Let (I3, K;) and
(I2, K) be their defining sectors. Assume that (I, K) = (I U I, K3 U K3)
defines a segment with plot A\. Hence I; = [a,i] and I = [i + 1, b] for some
i€Zandi ¢ K; and i + 1 € K,. Then by the integral criterion

(I, K)™ = (I ULy, Ky U{i} U (K — {i+1})
defines a prime plot with I = [a, b].

Example. We can represent plots with labelled cup diagrams. A plot of
rank r has r cups. For instance the irreducible representation [3,3,1,1] € R4

has the cup diagram
N

The corresponding plot is defined by its support {—2, —1, 2, 3}. Its deriva-
tive is the sum of two plots of rank 3 corresponding to the two cup diagrams

N

N

<<

0

If we integrate the first segment of the plot we get the plot of rank 5 with
support {—3,—2, —1, 2, 3} with corresponding cup diagram

N

<<

The plot of [3,3,1, 1] has two adjacent sectors. Melting these two gives
the plot with support { -2,-1,1,3} with cup diagram

U
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The not maximally atypical case. As with sectors and segments we can
define the notion of a plot for representations which are not maximally
atypical. We fix the block of the irreducible representations, ie. the po-
sitions of the x’s (say at the vertices z1,...,z,) and the positions of the
o’s (say at the vertices oq,...,0,). Once these are fixed we define Z., :=
Z\ ({z1,...,2,}U{o1,...,0.}). Thenaplotisamap A : Z,, — {H,B}. The
reader can convince himself that all the previous definitions and operations
on plots (factorization, derivatives etc) can be adapted easily to this more
general setting. However this amounts in practice only to fixing the posi-
tions of the x and o’s and then ignoring them. We will associate in section
18 to every weight A\ of atypicality 7 a plot ¢(\) of rank ¢ (without x’s and
o’s) and work with these instead.

14. MIXED TENSORS AND GROUND STATES

We compute DS(L) € T,,—; for special irreducible representations L in a
block T, the so-called ground states. The general case for arbitrary L will
then be reduced to this case in later sections.

Let MT denote the full subcategory of mixed tensors in R,, whose ob-
jects are direct sums of the indecomposable objects in R,, that appear in
a decomposition X&" @ (X)®* for some natural numbers 7, s > 0, where
Xst € R, denotes the standard representation. By [BS12b] and [CW11]
the indecomposable objects in MT are parametrized by (n|n)-cross bipar-
titions. Let R,(A\*, \) denote the indecomposable representation in R,
corresponding to the bipartition A = (\*, \¥) under this parametrization.

To any bipartition A we attach a weight diagram in the sense of [BS11],
ie. a labelling of the numberline Z according to the following dictionary.
Put

L) =10k -2} and L\ :={1-XF 2\ . . 1.

Now label the integer vertices i on the numberline by the symbols A, V, o, x
according to the rule

o if i ¢ I UIy,
N it ieln iély,
v oif iely, i¢ Ix,
x if 1eI\NIy.

To any such data one attaches a cup-diagram as in section 12 or [BS11] and
we define the following three invariants
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a(\) = number of crosses
d()\) = number of cups
E(A) = a(X) +d(N)

A bipartition is (n|n)-cross if and only if k(\) < n. By [BS12b] the mod-
ules R(\F, A\F) have irreducible socle and cosocle equal to L(AT) where the
highest weight AT can be obtained by a combinatorial algorithm from \. Let

6:A— XT(n)

denote the resulting map A — AT between the set of (n|n)-cross bipartitions
A and the set X (n) of highest weights of R,,.

Theorem 14.1. [Heil4] R = R(\) is an indecomposable module of Loewy
length 2d(\) + 1. It is projective if and only if k(\) = n, in which case we
have R = P(\").

Hence R is irreducible if and only if d(\) = 0, and then R = L(\T).

Deligne’s interpolating category. For every t € k there exists the cat-
egory Rep(Gl;) defined in [DelO07]. This is a k-linear pseudoabelian rigid
tensor category. By construction it contains an object st of dimension ¢,
called the standard representation. Given any k-linear pseudoabelian tensor
category C' with unit object and a tensor functor

F : Rep(Gly) — C

the functor F' — F(st) is an equivalence between the category of ®@-functors
of Rep(Gl;) to C with the category of ¢t-dimensional dualisable objects X €
C' and their isomorphisms.

In particular, given a dualizable object X of dimension ¢ in a k-linear
pseudoabelian tensor category, a unique tensor functor Fy : Rep(Gly) — C
exists mapping st to X. Hence, for our categories R,, and ¢ = 0, we get
a tensor functor F,, : Rep(Gly) — R, by mapping the standard represen-
tation of Rep(Gly) to the standard representation of Gi(n|n) in R,,. Every
mixed tensor is in the image of this tensor functor ( [CW11]). The inde-
composable elements in Deligne’s category are parametrized by the set of
all bipartitions. The kernel of F;, contains those indecomposables labelled
by bipartitions that are not (n|n)-cross. Any (n|n)-cross bipartion A defines
an indecomposable object in the image of Rep(Gly). We write R, (\) for
F,(R(X)). By the universal property of Deligne’s category any tensor func-
tor from Rep(Gly) to a tensor category C'is fixed up to isomorphism by the
choice of an image of the standard representation of Rep(Gly).
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Lemma 14.2. [Heil4] DS(R,()\)) = Rn—1(A) holds unless R,,(\) is pro-
jective, in which case DS(R,(\)) = 0.

Note that the vanishing of R, (\), in the projective case is just a special
case of lemma 4.2 (i) and (ii).

Proof. An easy computation shows that under the Duflo-Serganova func-
tor the standard representation of g,, is mapped to the standard represen-
tation of g,,—;. Since any indecomposable mixed tensor module is in the
image of a tensor functor from Deligne’s category Rep(Gly) [CW11] the
result follows from the commutative diagram

Rep(Gly)
| X
F’!L
Rn Rn—l
DS

The kernel of F;, consists of the R(\) with k(\) > n, the kernel of F},_;consists
of the R(\) with k(\) > n Hence R(\) € ker(DS) if and only if k(\) = n
which is equivalent to R(\) projective. U

Example. As in section 17 put Ag: := R((i), (1?)) € R,,. By lemma 14.2
we have (Agi), = Ag: forall ¢ > 1.

Corollary 14.3. Every indecomposable projective module of R,,—1 is in
the image of DS.

Proof. The indecomposable projective modules are precisely the mod-
ules DS(R(\", \®)) with k(\) = n — 1. Note that every indecomposable
projective module is a mixed tensor [Heil4]. U

Irreducible mixed tensors. By the results above the map 6 : A — X T (n)
is injective if restricted to bipartitions with d(\) = 0. We denote by 6! its
partial inverse. A closer inspection [Heil4] of the assignment 6 : A — AT
shows that § and 6~ are given by the following simplified rule: Define

m = maximal coordinate of a x or o
t =max(k(\) +1,m+1)

{o m+1<k\)+1

m—k(\) m+1>kA)+1

The weight diagram of AT is obtained from the weight diagram of \ by
switching all V’s to A’s and vice versa at positions > ¢ and switching the
first s +n — k(X) V’s at positions < ¢ to V’s and vice versa. The numbers
labelled by a A or v will be called free positions. Conversely if L(AT) is
some irreducible representation in M7, the corresponding bipartition with
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0~1(AT) = X is obtained in the same way: Define ¢, m, s as above and apply
the same switching rules to the weight diagram of Af.

Proposition 14.4. Let
L=LOA\Y=L1,...;0-5,0,...,0: 0,...,0, \pgrir1s - - -5 Aon)

be an irreducible i-fold atypical representation. Then L is a mixed tensor
L = R(\) for a unique bipartition of defect 0 and rk = n — i. Then

where X' is obtained from \' by removing the two innermost zeros corre-

sponding to \, and )\L 41

Proof. We apply 6~! to AT. It transforms the weight diagram of AT into
some other weight diagram which might not be the weight diagram of a
bipartition. However if the resulting weight diagram is the weight diagram
of an (n|n)-cross bipartition of defect 0, then (\) = AT and R(\) = L(\").
For AT

Iy :{)\1,)\2—1,...,)\n_i—(n—i)—l—L—n—l—i,...,—n—l—l}
Li={1-n2-n,...;0—n,i+1—n— Apgt14i,..., —Aop}.
Then Iy, NI, ={—n+1,...,—n+i} (since the atypicality is i) and the n — i
crosses are at the positions A\j, Ao — 1,...,\,—; — (n — i)+ 1 and the n — ¢
circles at the positions i +1 —n — Ay1144, - - . , —A2p. Define m, ¢, s as above.

Note that k£(\) = n — i. We distinguish two cases, eithert = n — i+ 1 or
t = m+ 1. Assume first m+1 < n—i+ 1. Switch all free labels at positions
> ¢ and the first n—(n—i) = i free labels at positions < ¢. By assumption the
2n — 2i crosses and circles lie at positions > i —n and < n — i+ 1. However
there are exactly 2n — 2i such positions. Hence the switches at positions < ¢
turn exactly the ¢ VV’s at positions i —n, ..., 1 —n into A’s. In the second case
t =m+1 > n—i+ 1 switch the first m +n — 2(n — i) free labels at positions
< t. There are exactly m + n — i positions between m and i — n, m — n + 2i
switches and 2n — 2i crosses and circles between i — n and ¢. This results
in m — n + i free positions between i — n and ¢. The remaining ¢ switches
transform the i V’s to A’s. Hence in both cases §~! transforms the weight
diagram of A into a weight diagram where the rightmost A is at position
i — n and the leftmost V is at the first free position > ¢ — n and all labels at
positions > ¢ are given by V’s. This is the weigth diagram of a bipartition
of defect 0 and rank n — i. Indeed the labelling defines the two sets I, and
I, and this defines two tuples A\ = (AL, AL, ) and A = (AE A\ ... The
positioning of the A’s implies that AZ_, ., = 0 and the positioning of the
V’s implies A = 0. Clearly \f = \; > 0 and A\ > 0. Hence the pair
A= (AL, \B) is a bipartition (of defect 0 and rank n —4) and #(\) = AT. It
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remains to compute the highest weight of R,,_1(\). The two sets I, and I
and accordingly the weight diagram of A do not depend on n. Neither do
t,m, s and the switches at positions > ¢. To get At in R,, from \ we switch
the first s + n — (n — i) free labels < ¢. To get AT in R,,_; from X\ we switch
the first s + (n — 1) — (n — i) free labels < ¢. This results in removing the
leftmost Vv at position 1 — n. U

Ground states. Let R, C R,, denotes the full subcategory of i-atypical
objects. Every block in R! contains irreducible objects with the property
that all ¢ labels Vv are adjacents and to the left of all n — ¢ labels x and all
n — i labels o. We call such an irreducible object a groundstate of the cor-
responding block in Rf,. Each block in Rf, uniquely defines its groundstate
up to a simultaneous shift of the i adjacent labels V. The weight X of such a
groundstate L(\) is of the form

A= ()\17 --~7)\n—i7)‘n7 "'7)\71 ) _>\n7~-7_)\n7/\n+1+i7 "'7)\271) .

with A\, < min(A,—;, —A\p+144) (here A\, — A, — 1 corresponds to the shift
of the 7 adjacent labels V). The coefficients A1, ..., A\—i, Antr144s -5 A2y de-
termine and are determined by the position of the labels x and o defining
the given block in R¢. We define

X = ()\13 ey >\n7i7 )‘nv cee g e —)\n, )‘n+1+’ia sy )\Qn)
by omitting the innermost \,; —\,, pair. Then L(\) € R4 C T,,-1.

Berezin twists. Twisting with Ber = Ber,, induces an endofunctor of R},
and permutes blocks. By a suitable twist one can replace a given block in
R such that it contains the groundstate

N = ()\1 — Ay ey An—i — Any 0,00y 05 0,00, 0, App1 s + Any veey Ao + )\n) .

Proposition 14.5. For a groundstate L = L()\) of a block in R:, C R,
the image DS(L) in T, of L under the Duflo-Serganova functor is

DS(L(\) =117 LX)
fori>0or DS(L) =0 fori=0.
In particular therefore theorem 16.1 holds for the groundstates L = L()\) of
blocks in R: C R,.

Proof. We can assume ¢ > 0. Then we can assume A\, = \,;1 = O by a
suitable Berezin twist. Hence

L= R,(\L AT
for an (n|n)-cross bipartition (A", \¥) and therefore

DS(L) = R 1 (N 0\B)
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is irreducible of weight ), i.e. DS(L()\)) = L(\). This proves the claim,
since by assumption now A, 11 = 0. O

15. SIGN NORMALIZATIONS

The main theorem 16.1 asserts in particular that DS(L) is semisimple.
In order to show this we define a sign (L) € {£1} for every irreducible
representation L with the property that Exty, (L(A),L(u)) = 0if e(\) =
(). More precisely, this sign should satisfy the following conditions:

(1) Let R,,(¢) denote the full subcategory of all objects whose irre-
ducible constituents X have sign ¢(X). Similarly define the full
subcategories I'(e) for a block I". Then we require that the cate-
gories R(+) and R(—) are semisimple categories.

Clearly it is enough to require that the categories I'(¢) are semisimple.
Note that any such sign function is unique on a block I" up to a global sign
+1. Hence if we normalize the sign by (L) = +1 where L is an irreducible
representation in a block I, the sign is uniquely determined on I'. Our
second condition is:

(2) e(L(X)) = 1if L(\) is an irreducible mixed tensor (see section 14)
and (1) = 1.
If L(\) is maximal atypical, we put
(L) = (~1)7

for the parity p(A\) = >, A\y+s. In the maximal atypical case we have
Exty (L(A),L(p)) = 0if p(A) = p(u) mod 2 by [Weil0]. Hence the cate-
gories I',,(+) are semisimple. This determines the sign ¢ up to a global +1
on each block T" of atypicality i. Indeed by [Ser06] any block of atypicality
i 1s equivalent to the maximal atypical block T'; of R;. We fix once and for
all a particular equivalence denote it by ¢/,. We describe the effect of ¢! on
an irreducible module L(\) of atypicality ¢ [Ser06] [GS10]. For an i-fold
atypical weight in X ™ (n) its weight diagram has n — i vertices labelled with
x and n — 7 vertices labelled with o. Let j be the leftmost vertex labelled
either by x or o. By removing this vertex and shifting all vertices at the
positions > j one position to the left, recursively we remove all vertices la-
belled by x or o from the given weight diagram. The remaining finite subset
K of labels V has cardinality ¢ and the weight diagram so obtained defines
a unique irreducible maximally atypical module in R;. Under ¢ the ir-
reducible representation L(\) maps to the irreducible Gi(i|i)-representation
described by the removal of crosses and circles above. We denote the weight
of this irreducible representation by ¢¢ ()\). We make the preliminary def-
inition e(L(\)) = (—1)P(®.(LM)) for a weight X of atypicality i. We claim
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that this sign satisfies condition 1. Indeed in the maximal atypical case we
have Ext, (L(\),L()) = 0 if p(A\) = p(z) mod 2 by [WeilO]. Hence
the categories T';(+) are semisimple. The equivalence (¢%)~' between the
two abelian categories I'; and T" is exact and sends the semisimple category
I'i(£) C R, to the category I'(+) by the definition of the sign ¢; and I'(+) is
semisimple.

This preliminary definition however doesn’t satisfy condition 2. If L =
LAty ooy A—is0,...,0 5 0,...,0, \ptit1, - - -, A2p) 18 the i-atypical mixed
tensor of section 14, its weight diagram has n — i circles at the vertices
A, A2 —1,..., \p—i — (n— 1) + 1 and n — i circles at the vertices i + 1 —n —
Ant14i,---, —A2n. The i V’s are to the left of the crosses and circles. Apply-
ing ¢!, removes the crosses and circles but leaves the \/’s unchanged at the
vertices —n + 1,..., —n + 4. The irreducible representation of Gi(i|i) so ob-
tained is Ber "¢ with p([—n+i, ..., —n+i]) = i(—n+4). Hence the prelimi-
nary sign £(L())) of a mixed tensor of atypicality i is e(L()\)) = (—1){=7+9),
In order to satisfy condition 2) we have to normalize the sign by the addi-
tional factor (—1)*—"*% for an i-atypical weight, and we define

e(\) = (—1)in+) (_1)p(@ (L)
where p is the parity in the maximal atypical block of Gi(i|7). This sign
satisfies condition 1) and 2) by construction, and it is the unique sign with
these properties. Note that our definition implies that the sign of a typical
weight in R,, is always positive.

The additional sign factor can be understood as follows. The unique irre-
ducible mixed tensor should play an analogous rule to the trivial represen-
tation 1 in R;. W can modify the block equivalences ¢, as follows: Since
the mixed tensor L(\) maps to Ber " we twist with the inverse and define
the normalized equivalence

6.(L) = Ber"™ @ §i,(L).
Then we obtain (—1)P(¢:(EM) = (—1)=i(=n+i)(_1)P(.(LA)), Hence
e(\) = (_1)p(¢>i(L(>\))).
Corollary 15.1. The categories R, (e) are semisimple categories.

The sign ¢ will automatically have the following important property:
The translation functors of section 18 A = F;L(A«,) have Loewy struc-
ture (L, A,L) with L € R, (+¢) and A € R, (F¢). This is required in our
axioms in section 19. This property follows immediately from the maximal
atypical case [Weil0O] due to the description of the composition factors of
F'L()\«,) given in section 18.
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The significance of the sign function is the following: DS(L) is in general
a representation in 7,,_1, not R,,_1. The sign factor regulates whether an
irreducible summand of DS(L) is in R,,—; or IIR,,_1, see theorem 16.1.

In the proof of the main theorem we use the language of plots of section
13 for uniform bookkeeping. Each maximally atypical irreducible repre-
sentation L defines a plot: The segments of the cup diagram of L define
the segments of the plot, and the Vv in the weight diagram give the sup-
port of the plot. If L is not maximally atypical, we associate to it a plot
via the map ¢ of section 18. For each plot we defined its derivative O\ in
section 13. If X is a prime plot given by the sector (I, K), I = [a,b], then
OI,K)=(I,K) =({,K')forI'’=[a+1,b—1]and K' = I'N K = [a, b
defines the derivative. We normalize the derivative of section 13 and put

)\/ — (_1)a+n716(17 K)

where I = [a, b] (i.e. the leftmost V is at a). The reason for this is as follows.
The sign has to be normalized in such a way that for objects X = L(\)
in the stable range of the given block we get d(X) = X’ for the map d of
section 19. Assume first that we are in the maximally atypical R,-case and
consider a weight with associated prime plot A. The parity of the weight A
is p(A\) = > Anti- Applying DS removes the V in the outer cup. The
parity of the resulting weight in 7;,_; is given by p(\') = Z?;ll An-+ti, hence
p(A) — p(N) = A\, and we get a shift by n; = (—1)* according to theorem
16.1. The leftmost V is at the vertex a = A\, — n + 1, hence (—1)"""1 =
(—1)*» and the two shifts agree.

Let us now assume at(L()\)) = k < n and that the weight defines a prime
plot of rank k. Here we have to use the normalized plot associated to the
weight A by the map ¢ from section 18 in which case the two shifts agree
again. We may pass to the maximally atypical case due to the lemmas 18.8,
18.9, 18.10 which allow us to shift all the circles and crosses sufficiently far
to the right.

16. THE MAIN THEOREM

In the main theorem we calculate DS(L) € T,,_; for any irreducible L.
We refine this in section 23, 24 and compute the Z-grading of DS(L).

Theorem 16.1. Suppose L(\) € R, is an irreducible atypical represen-
tation, so that \ corresponds to a cup diagram

T

U laj. b5

J=1
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with r sectors [a;,b;] for j =1,...,r. Then
DS(L(\) = € ™ L(N\)

i=1
is the direct sum of irreducible atypical representations L(\;) in R,_1 with
shift n; = e(\) — e(\;) modulo 2. The representation L(\;) is uniquely
defined by the property that its cup diagram is

lai+1L,bi—1 U | e,
=1

the union of the sectors [a;,b;] for 1 < j # i < r and (the sectors occuring
in) the segment [a; + 1,b; — 1].

Consequence. In particular this implies that for irreducible representa-
tion (V,p) the G,_1-module H* (V) & H~ (V) is semisimple in R,_, and
multiplicity free. Furthermore the sign of the constituents in H*(V) is
+sign(V).

If we use the language of plots, the main theorem says that the irreducible
summands of DS(L) are given by the derivatives of the sectors of the plot
associated to A.

Example. The maximally atypical weight [3, 0, 0] has cup diagram

~— S

It splits into the two irreducible representations [3,0] and II[—1, —1] in
Ra & IIRy. We will later compute its cohomology in proposition 23.1 and
obtain H*([3,0,0]) = S?(0) ® Ber—(-1).

Example. Denote by S the irreducible representation [i, 0, . ..,0]. Con-
sider a nontrivial extension 0 — S? — E — Ber(S?)Y — 0 in R3 (such
extensions exist). Then sdim(E) = 0 and E is indecomposable, hence negli-
gible. The derivative of S? = [2,0, 0] (in the sense of plots) is (S?) = [2,0]+
Ber~! and the derivative of Ber(S?)Y = [2,2,1]is [2,2,1] = (Ber[1,1,0]) =
—Ber([1,1,0]') = —[2,2]—[2,0]. From [2,2] = Ber? then H*(E) = Ber 1@®?
and H~(E) = Ber?®? where ? is either [2, 0] or zero. Hence E is negligible
in R3, but D*(E) = D(D(E)) # 0. In particular, D(N3) is not contained in
No.

Block equivalences. Applying DS is compatible with taking the block
equivalences ¢!, and ¢, in the sense DS(¢ (L)) = ¢’ (DS(L)) for irre-
ducible L by the main theorem. This can be extended to arbitrary modules
M in a block. By [Ser06] and [Kujl1] the block equivalence q@% between
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an i-atypical block I" and the unique maximal atypical block of GI(i|i) is
obtained as a series of translation functors, a restriction and the projection
onto a weight space. Call a weight \ in I" stable if all the V’s are to the left
of all crosses and circles. By [Ser06] we can apply a suitable sequence of
translation functors to any indecomposable module in I" until all its compo-
sition factors are stable. We recall now the definition of é; as in [Kujl1] on
an indecomposable module M. Embed gl(k|k) as an inner block matrix in
gl(n|n). Let [ = gl(k|k) + b where b are the diagonal matrices. Then choose
b’ C b such that b’ is a central subalgebra of [ and [ = gl(k|k) ® . We
denote the restriction of a weight X to ' by \'. Now move M by a suitable
sequence of translation functors until its composition factors are stable. The
block T is the full subcategory of modules admitting some central character
Xu- Now define Res, (M) = {m € M | 'm = p/(k')m forall v’ € p'}.
Then, on a module M with stable composition factors, the functor ¢¢ (M)
is given by Res, (M). Alternatively we could first restrict to [ and then
project on the y/-eigenspace. By [Ser10], cor 4.4, and the main theorem,
DS induces a bijection between the blocks in 7;, and 7,,_1, and for any M
in T,, DS(F;(M)) = F;(DS(M)). Since our fixed x, which we choose in
the definition of DS, is contained in the embedded gl(k|k), the operation
of p(xz) on Res(M) or on its \-eigenspace is the same as of p(z) on M.
Hence DS is clearly compatible with restriction, but it also doesn’t matter
whether we first apply D.S and project onto the \'-eigenspace or first project
to the \'-eigenspace and then apply DS since p(z) commutes with h’. Hence
DS (qgiL(M )) = ¢}, (DS(M)) holds for any M, and the analogous statement
for ¢! follows immediately. To summarize: If T’ denotes the unique block
obtained from the i-atypical I" via DS, we obtain a commutative diagram

(z)i
n

—~

I

DS DS

The main theorem has a number of useful consequences:

Cohomology. The main theorem permits us to compute the cohomology
H'(L) of irreducible modules L in section 23 and 24. Although the calcu-
lation of the Z-grading of DS(L) is much stronger than the Z, version of
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theorem 16.1, it should be noted that the proof is based on the main theorem
and a careful bookkeeping of the moves in section 20.

Spectral sequences. The main theorem also shows the degeneration of
the spectral sequences from section 8 and shows

DSy n, (L) ~ DSy, n, (DSn,m (L))

The degeneration can be extended in a similar way to the not maximally
atypical case, see below.

Tensor products. The main theorem allows us to reduce some questions
about tensor products of irreducible representations to lower rank. Since
DS is a tensor functor we have DS(L(A\)®L(p)) = DS(L(N))@DS(L(p)) =
@D, ;(II" L(\;)) ® (II"7 L(p;)). If we inductively understood the tensor prod-
uctin 7;,—1, we would obtain estimates about the number of indecomposable
summands and composition factors in this way. We use this method to cal-
culate the tensor product of two maximal atypical representations of GI(2|2)
in [HW15a], see also [Heil5].

Negligible modules and branching laws. The functor DS does not pre-
serve negligible modules as the example above shows. However when we
restrict DS to the full subcategory RZ,, of modules which arise in iter-
ated tensor products of irreducible representations, DS induces a functor
DS : RZ,/N — RZ,—1/N. We show in [HW15b] [Heil5] that RZ,, /N is
equivalent as a tensor category to the representation category of a proreduc-
tive group H,. We also show that there is an embedding H,,_; — H,, and
DS can be identified with the restriction functor with respect to this embed-
ding. In other words DS gives us the branching laws for the restriction of
the image of L()\) in Rep(H,) to the subgroup H,,_;.

Superdimensions and modified superdimensions. The main theorem can
be used to reprove parts of the generalized Kac-Wakimoto conjecture on
modified superdimensions [Ser10]. In fact we derive a closed formula for
the modified superdimension. We sketch this and prove the analog of propo-
sition 8.3.

A superdimension formula. Assume L maximally atypical. If sdim(L) >
0,

DS(L(N) = @ I (L(\))
1=1

splits into a direct sum of irreducible modules of positive superdimension.
Indeed the parity shift II"™ occurs if and only if p(\) # p(\;) mod 2. Hence
DS™ (L) splits into a direct sum of irreducible representations of superdi-
mension 1. Applying DS n-times gives a functor DS™ : R,, — svec, hence
DS™(L) ~ m k @& m'Tlk for positive integers m, m’, hence m = 0 if and
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only if sdim(L) < 0 and m’ = 0 if and only sdim(L) > 0. By [Weil(] the
superdimension of a maximal atypical irreducible representation in R,, is
given by

sdim(L(\)) = (—=1)PMm(N)
for a positive integer m(\) (see below for the definition). In particular

m  p(\) =0 mod 2
m(\) =
m’  p(A) =1mod 2.

By proposition 8.3 this also holds for DS, o : R,, — svec: If DS, (L) ~
m k & m/Ilk, we get that either m or m/ is zero.

The positive integer m(\) for a maximally atypical weight can be com-
puted as follows. We refer to [Weil0], but it would be an easy exercise to
deduce this from the main theorem. We let \ be the associated oriented cup
diagram to the weight A as defined in section 12. To each such cup dia-
gram we can associate a forest F(\) with n nodes, i.e. a disjoint union of
rooted trees as in [Weil0]. Each sector of the cup diagram corresponds to
one rooted planar tree. We read the nesting structure of the sector from the
bottom to the top such that the outer cup corresponds to the root of the tree.
If the following is a sector of a cup diagram

N A

then the associated planar rooted tree is

7\
SN

If F is a forest let |F| the number of its nodes. We define the forest
factorial ! as the the product [ [, . » | 7| where F, for anode = € F denotes




COHOMOLOGICAL TENSOR FUNCTORS 57

the subtree of F rooted at the node z. Then the multiplicity is given by

FO!
iy = 2

For example m(\) for irreducible module in R4 with cup diagram

N N

is computed as follows: The associated planar forest is
[ ]
[ ] / \ [ ]

sdim(L(X))

Hence
24

3T

Modified Superdimensions If at(L()\)) < n, sdim(L) = 0. However one
can define a modified superdimension for L as follows. We recall some
definitions and results from [Kujl1], [GKPMI11] and [Ser10]. Denote by
cvw 1 VOW — W ®V the usual flip v @ w + (—1)P@PWy @ v. Put
ev, = evy o cy,yv and coev|, = cyyv o coevy for the usual evaluation and
coevaluation map in the tensor categories R,, and 7;,. For any pair of objects
V, W and an endomorphism f: V@ W — V @ W we define

tri.(f) = (evy ®idw) o (idyv ® f) o (coevy, o idy) € Endp(W)
trr(f) = (idy ® evyy) o (f @ idwv) o (idy @ coevyy) € Endr(V)

For an object J € R, let I; be the tensor ideal generated by J. A trace
on I is by definition a family of linear functions

t={ty: Endg, (V) — k}

where V runs over all objects of ; such that following two conditions hold.
(1) If U € I; and W is an object of R,,, then for any f € Endg, (U W)
we have
tvew (f) =tu (tr(f))-
(2) If U,V € I then for any morphisms f: V — Uandg:U — Vin R,
we have

tv(go f) =tu(fog)
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By Kujawa [Kuj11], thm 2.3.1, the trace on the ideal I;, L irreducible,
is unique up to multiplication by an element of k. Given a trace on I,
{tv}ver,, J € Ry, define the modified dimension function on objects of I;
as the modified trace of the identity morphism:

dy (V) = ty(idy).

We reprove the essential part of the generalized Kac-Wakimoto conjec-
ture: We prove that there exists a nontrivial trace on the ideal of any i-
atypical irreducible L, and we deduce a formula for the resulting modified
superdimension.

Tensor ideals. By [Ser10] any two irreducible object of atypicality & gen-
erate the same tensor ideal. Therefore write I; for the tensor ideal generated
by any irreducible object of atypicality i. Clearly Iy = Proj and I,, = T,
since it contains the identity. This gives the following filtration

PTOj:Iogflg...In_lg_In:Tn

with strict inclusions by [Ser10] and [Kujl1]. We use this in the following.
However it is not necessary for the results about the modified superdimen-
sion. We could simply consider consider the ideal < L > generated by an
i-atypical irreducible representation instead the ideal I;.

The projective case. Denote by AZ the positive even roots and by A
the positive odd roots for our choice of Borel algebra. The half sums of the
positive even roots is denoted pg, the half-sum of the positive odd roots by
p1 and we put p = pp—p;. We define a bilinear form (, ) on h* as follows: We
put (Gi,Ej) = (Si]’ for ’i,j <m, (67;76]') = _51']' for ’i7j >m+1 and (Ei,éj) =0
for i <m and j > m. Define for any typical module the following function

aron) = T L2522 ] 0+ pa).

P,
a€AF ’ acAT

Then d(L())) # 0 for every typical L(\). By [GKPM11], 6.2.2 for typical
L

Since the ideal I; is independent of the choice of a particular J and any
ambidextrous trace is unique up to a scalar, we normalize and define the
modified normalized superdimension on I to be

sdimo(L(N)) := d(L(N)).
A formula for the modified superdimension. Applying DS iteratively i-
times to a module of atypicality ¢ we obtain the functor

DS':=DSo...oDS: R, — Thi
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which sends M with atyp(M) = i to a direct sum of typical modules.

We show that there exists a nontrivial trace on I; similar to [Kujl1], but
without invoking Serganovas results. Denote by ¢ the normalized (such
that we get sdimg from above) trace on Iy = Proj. Now we define for
M e I;

tu(f) = t%si(M)fDSi(M) D Endg, (M) — k

where fpg:(ar is the image of f under the functor D.S*. We claim that this
defines a nontrivial trace on I;: Let M = L be irreducible and put

tL('LdL) = t%si(L) (ZdDS‘(L))

Now we compute DS?(L). By the main theorem the irreducible summands
in DS(L) are obtained by removing one of the outer cups of each sector.
Applying DS i-times gives then the typical module in 7,,_; given by the cup
diagram of L with all v’s removed. Applying DS’ to any other irreducible
module in the same block will result in the same typical weight. Following
Serganova [Ser10] we call this unique irreducible module the core of the
block L¢¢. Hence DS* (L) = m(L) - L™ @ m/(L) - TIL*". Since the
positive integers m and m’ only depend on the nesting structure of the cup
diagram )\, we may compute them in the maximally atypical case. By a
comparison with the maximal atypical case R;-case either m or m/ is zero.
As in the maximally atypical case a parity shift happens in DS(L())) if and
only if £(\) # £(\;) mod 2. Hence

m (X)) =0mod 2
mA) =14 _
m' e(A\) =1 mod 2.
This shows that the trace ¢;, does not vanish: Indeed
tL(’LdL) = t%sl(L) (ZdDSI(L)) == m()\)tfcore (ichore) # 0
since t is nontrivial.

Using our particular choice for sdimgy on Iy = Proj, we define the nor-
malized modified superdimension as

sdimi(L(N\)) = sdimo(DS*(L)) = sdimo(mL® @ m/TLL ")
= (—=1)*Nm(N)sdimo (L)

In particular the modified super dimension does not vanish. Consider for
example the irreducible 4-fold atypical representation in R¢ with cup dia-
gram
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—0 NN 9

We have already seen above that m(\) = 8 in this case. The core is given
by the typical representation L(3, —4|5, —5).

As a consequence of our construction and the sign rule of the main theo-
rem we get

Corollary 16.2. If L is irreducible of atypicality k, then sdimy(L) =
sdimg_1(DS(L)). If sdimg(L) > 0, then all summands in DS(L) have
sdimg_1(L) > 0.

We can now copy the proof of proposition 8.1 to get

Corollary 16.3. For irreducible atypical objects L in T, the Leray type
spectral sequence degenerates:

DSn,nz(L) = DS“l,”Q(DSn,nl(L)) .

17. STRATEGY OF THE PROOF

We have already proved the Main Theorem for the groundstates of each
block. Recall that a groundstate is a weight with completely nested cup
diagram such that all the vertices labelled x or o are to the right of the
cups. In the maximally atypical case the ground state are just the Berezin-
powers. In the lower atypical cases every ground state is a Berezin-twist of
a mixed tensor and we have already seen that these satisfy the main theorem
in section 14. The proof of the general case will be a reduction to the case
of groundstates.

In the singly atypical case we just have to move the unique label V to
the left of all of the crosses and circles. We will see in section 18 that we
can always move V’s to the left of o’s or x. The proof of the general case
will induct on the degree of atypicality, hence we will always assume that
the theorem is proven for irreducible modules of lower atypicality. Hence
for the purpose of explaining the strategy of the proof we will focus on the
maximally atypical case.

The modules S°. Let us consider the following special maximally atypical
case. Let Ber ~ [1,...,1] € R, be the Berezin representation. Let S* denote
the irreducible representation [, 0, . .., 0]. Every S*~! occurs as the socle and
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cosocel of a mixed tensor denoted Agi+i [Heil4]. The Loewy structure of
the modules Ag: := R((7),(1")) € R,, is the following:
Ag = (§71, 51 @ 572 5i-1)
fori #mn andi > 1 and n > 2 where we use S~ = 0. Furthermore
Agn = (S"1,8"@® Ber @ 52 5n1)

We saw in 14 that for all mixed tensors DS(R(AL, \)) = R(\E,\F)
holds, so we have DS(Ag:) = Ag: for all i« > 1. Notice that by abuse of
notation we view S? and also Ag: as objects of R,, for all n.

The image S* — DS(S?) can be computed recursively from the two exact
sequences in R,

0 Ki Agi i1 0

I ki Sia? @S2

n

0 5171

induced by projection p onto the cosocle and the inclusion j of the socle.
According to the main theorem we should get for n > 2 (Ber,,), = lIBer,_1
and

(1) DS(S) = S fori <n —1,

(2) DS(S") = St @™ '~"Ber~! fori >n—1.

We proof this for i < n—1. Firstnotice H (Ag:) =0and H*(Ag:) = Ag:.
Suppose i < n — 1 and that H—(S7) = 0, H*(S7) = S/ already holds for
j < i by induction. This is justified since S° = k equals the trival module.
Then the exact hexagons give

HY(K}) — Agi —= 5"
I !

0 0~— H™(K})

and
Q-1 __ o H+(Kfl) s HJF(Si@?) D qi—2
H=(S'®?) < H-(K}) 0

If H*(p) = 0, then H*(K!) = Ag.. Hence H*(K!) — HT(S'@?) @
Si=2 composed with the projection to Si~2 is zero, since the cosocle of
HT(K}) = Ag: is S*=1. This implies S~! = 0, which is absurd. Hence
HT(p) is surjective. Therefore H~(K’) = 0 and H*(K’) = K!_,, and in
particular then

HY(K}) = K|

n—1
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is indecomposable. Hence K! ;, — H*(S‘®?) @ S*~2 is surjective, and
H~(S%) = 0. Furthermore

HT(8)=8" , i<n—-1
and _ ‘
HT(S)=S"@®Ber ! , i=n—1.
The proof for the cases i > n is similar.

The method described in the Si-case doesn’t work in general. In the gen-
eral case we do not have exact analogs of the Ag: - mixed tensors with the
property DS(A) = A. In section 18 we associate to every irreducible mod-
ule three representations, the weight L, the auxiliary representation L*“*
and the representation L*° and an indecomposable rigid module F;(L*°)
of Loewy length 3 with Loewy structure (L, A, L) such that the irreducible
module we started with and which we denote L"? for reasons to be explained
later is one of the composition factors of A. If we apply this construction
to irreducible modules of the form S* = [;,0,...,0] we recover the modules
Agi. Our aim is to use these indecomposable modules as a replacement for
the modules Ag:.

In the S’-case we reduced the computation of DS(S?) by means of the
indecomposable modules Ag: to the trivial case DS(1) = 1. In the general
case we will reduce the computation of DS(L) by means of the indecom-
posable modules F;(L*°) to the case of ground states. For that we define an
order on the set of cup diagrams for a fixed block such that the completely
nested cup diagrams (for which the Main Theorem holds) are the minimal
elements. We prove the general case by induction on this order and will
accordingly assume that the main theorem holds for all irreducible modules
of lower order then a given module L. The key point is that for a given
module L“? we can always choose our weights L% and L*° = F;(L(Axo))
such that all other composition factors of F;(L*°) are of lower order then
L"P. Hence the Main Theorem holds for all composition factors of F;(L*°)
except possibly L"P. This setup is similar to the A gi-case where we assumed
by induction on 7 that the Main Theorem held for all composition factors of
Ag: = (Si1, 9772 St Si~1) except possibly S°.

Unlike the Ag: the indecomposable modules F;(L*°) are not mixed ten-
sors and hence we do not know a priori their behaviour under DS. However
assuming that the Main Theorem holds for all composition factors except
possibly L“? we prove in section 18 a formula for DS(F;(L*°)). In sec-
tion 19 we show that under certain axioms on the modules F;(L*°) and
their image under DS the module DS(L"P) is semisimple. These axioms
are verified in section 20. Here it is very important that we can control the
composition factors of the F;(L*°). The composition factors in the middle
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Loewy layer will be called moves since they can be obtained from the la-
belled cup diagram of L by moving certain V’s in a natural way. The moves
are described in detail in section 18.

We still have to explain how the induction process works, i.e. how we
relate a given irreducible module to irreducible modules with lesser number
of segments respectively sectors. This is done by the so-called Algorithms
I and II described first in [Weil0O]. As above for a given module L“? all
other composition factors of F;(L*°) are of lower order then L“P. For L"P
with more then one segment we can choose i and the representations L*“*
and L*° in such a way that all composition factors have one segment less
then L"?. We can now apply the same procedure to all the composition
factors of F;(L*°) with more then one segment - i.e. we choose for each of
these (new) weights L*** and L*° such that the composition factors of the
(new) associated indecomposable modules have less segments then them.
Iterating this we finally end up with a finite number of indecomposable
modules where all composition factors have weight diagrams with only one
segment. This procedure is called Algorithm I. In Algorithm IT we decrease
the number of sectors in the same way: If we have a weight with only one
segment but more then one sector we can choose 7 and the weights L*“* and
L*° such that the composition factors of F;(L*°) have less sectors then L"P.
Applying this procedure to the composition factors of F;(L*°) and iterating
we finally relate the cup diagram of L" to a finite number of cup diagrams
with only one sector.

Hence after finitely many iterations we have reduced everything to irre-
ducible modules with one segment and one sector. This sector might not
be completely nested, e.g. we might end up with weights with labelled cup
diagrams of the type

S

In this case we can apply Algorithm II to the internal cup diagram having
one segment enclosed by the outer cup. If we iterate this procedure we
will finally end up in a collection of Kostant weights (i.e. weights with
completely nested cup diagrams) of this block.

We still have to find the decomposition of the semisimple module DS(L"P)
into its simple summands. Since we know the semisimplicity, we can com-
pute DS(L"P) on the level of Grothendieck groups. Essentially we compute
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this in the following way: using the notation A = F;(L(A«.)), we compute
d(A) = HT(A) — H (A) = 2d(L) + d(A) = 2d(L) + d(L"P) + d(A — L"P)

in Ko(R,—1) where we do not know d(L"?) and compare this to the known
composition factors of A = DS(A). For this we need the so-called commu-
tation rules for Algorithm I and Algorithm II. Using that the main theorem
holds for all composition factors of A except possibly L"? we can cancel
most composition factors. The remaining factors have to be the simple fac-
tors of DS(L"P) and these factors are exactly those given by the derivative
of L (seen as a plot), finally proving the theorem. This is done in section
19.

The case [2,2,0]. We illustrate the above strategy with an example. In this
part we ignore systematically all signs or parity shifts. The module [2, 2, 0]
has the labelled cup diagram

I
hence it has two segments and two sectors. We will associate to [2, 2, 0] an
auxiliary weight L and a twofold atypical weight L*° in T3 such that [2, 2, 0]

is of the form L“? in the indecomposable module F;(L*°). The auxiliary
weight is in this case [2, 1, 0] with labelled cup diagram

AN A A

with one segment and three sectors. The weight A, is obtained from
[2,1,0] by replacing the VA at the vertices 0 and 1 by xo

N— AN
The module Fy(L*°) is x-selfdual of Loewy length 3 and socle and coso-
cle [2,1,0]. It contains the module [2, 2, 0] with multiplicity 1 in the middle
Loewy layer. The rules of section 18 give the following composition factors
(moves) in the middle Loewy layer. In the labelled cup diagram of [2, 1, 0]
there is one internal upper sector [2, 3]. The internal upper sector move gives

the labelled cup diagram
N

hence the composition factor [1,1,0]. The labelled cup diagram of [2, 1, 0]
has one internal lower sector, namely the interval [-2, —1]. The associated
internal lower sector move gives the labelled cup diagram
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N

The sector [0, 1] is unencapsulated, it is in the middle of the segment
[—2,3]. Hence we also have the unencapsulated boundary move, i.e. we
move the V at the vertex 0 to the vertex -3, resulting in the labelled cup

diagram
i

giving the composition factor [2, —1,—1]. The upward move of [2,1,0]
gives the composition factor L*? = [2,2,0]. Hence the Loewy structure of
the indecomposable module Fj(L**) is

[2,1,0]
([2,1,1] +1[1,1,0] + [2,0,0] + [2,2,0]) .
[2,1,0]

We remark that all the composition factors have only one segment, hence
we will not have to apply Algorithm I any more. Since the proof inducts
on the degree of atypicality we know DS(L*°) and we can apply 18.5 to
conclude DS(F;(L*°)) = F;(DS(L*°)) = F;(L1 & Ls) for two irreducible
module obtained by applying DS to L*°. By the main theorem DS(L*°)
gives the modules

N

and

N

Applying Fj to the first summand gives the module A; with socle and
cosocle [2,1]. The upward move gives the composition factor [2,2]. The
unique internal upper sector move gives the composition factor [1,1]. We
do not have any lower sector moves. The non-encapsulated boundary move
gives the composition factor [2,0]. This results in the Loewy structures of
Al = Fo(Ll) and A2 = Fo(LQ)

2,1] [0, —1]
A = ([1,1] +[2,0] + [2,2]) Ay = ([1,1] +-1,-1] + [2,2]) ,
2,1] [0, —1]

The irreducible modules in the middle Loewy layers give the module A.
We compare A and A’ in Kj: Taking the derivative of A = [2, -1, —-1] +
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[1,1,0] + [2,0,0] + [2,2,0] gives
A =12,-1]+[-2,-2| +[1,-1] 4+ [1,1] + [2,0]

+[-1,-1]+[2,-1] +[2,2]
with the module [2, —1] = L*** appearing twice. The computation above of
Aq and A, gives

A=[-2,-2] +[1,-1] + [1,1] +[2,0] + [~1, —1] +[2,2].

This shows the following commutation rule in this example

A =A+2(-1)"LY in Ko(Rp_1).

We remark that the composition factors [2,0] in A; and [—-1, —1] are detect-
ing objects in the sense of section 20.

We will prove in section 20 that the properties of the modules A, A; and
Ao imply that DS(L"P) is semisimple. Hence we can compute DS(L"?) by
looking at K.

In Algorithm II we reduce everything to a single sector. Take one of the
composition factors of Fy(L*°) with more then one sector, eg. [2,1, 0] with
one segment and three sectors. The associated auxiliary weight is in this
case the weight [2,0,0] with the twofold atypical weight L*° given by the
labelled cup diagram

A\ u

The module F_;(L*°) has socle and cosocle [2,0,0] and the followowing
modules in the middle Loewy layer: The upward move gives [2,1,0] and
the upper sector move of the upper sector [2, 3] gives the weight [0, 0, 0].

There are no non-encapsulated boundary moves and no internal lower
sector moves, hence we get the Loewy structure

2,0, 0]
F_(L*°) = ([0,0,0] +[2, 1,0]) .
2,0, 0]

We compute DS(F_;(L*°)) (using DS(F;(L*°)) = F;(DS(L*°)) ) (lemma
18.5). By the main theorem D.S(L*°) splits into two direct summands.

Applying F_; to the first and second summand gives the indecomposable

modules
(2, 0] [—1,—1]
A = ([2,1] +[2,-1] + [0,0]) , Ay = ( [0, —1] )
(2,0] [—1,—1]
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We remark that all the factors in the middle Loewy layers are detecting
objects in the sense of section 19. As shown in section 19 these properties
already imply that DS([2,1,0]) is semisimple. To compute it we need the
commutation rules for Algorithm II, i.e. we compare the derivative A’ of
the middle Loewy layer of F_;(L*°) with the modules A = Ay + As in the
middle Loewy layers of A; and A,. In both cases we get [2,1] + [2,—1] +
[0, 0] + [0, —1], hence the commutation rule

A=A

The general case is proven in lemma 20.7.

18. MODULES OF LOEWY LENGTH 3

As described in section 17 we reduce the main theorem to the case of
ground states by means of translation functors F;(...). In this section we
describe the Loewy layers and composition factors of the objects F;(Lo.)
and study their behaviour under DS.

Khovanov algebras. We review some facts from the articles by Brundan
and Stroppel [BS11], [BS10a], [BS12a], [BS12b]. We denote the Khovanov-
algebra of [BS12a] associated to Gi(m|n) by K(m,n). These algebras are
naturally graded. For K (m,n) we have a set of weights or weight diagrams
which parametrise the irreducible modules (up to a grading shift). This set
of weights is again denoted X . For each weight A € X we have the ir-
reducible module L(\), the indecomposable projective module P()\) with
top L(A) and the standard or cell module V' (\). If we forget the grading
structure on the K (m,n)-modules, the main result of [BS12a] is:

Theorem 18.1. There is an equivalence of categories E from R, to
the category of finite-dimensional left-K (m,n)-modules such that EL(\) =
L)), EP(\) = P(\) and EK(\) =V (\) for A € X™.

E is a Morita equivalence, hence F will preserve the Loewy structure of
indecomposable modules. This will enable us to study questions regard-
ing extensions or Loewy structures in the category of Khovanov modules.
We will use freely the terminology of [BS11], [BS10a], [BS12a], [BS12b].
The notion of cups, caps, cup and cap diagrams are introduced in [BS11].
For the notion of matching between a cup and a cap diagram see [BS10a],
section 2. For the notion of I'-admissible see [BS12a], section 2.

Let X in R,, be any atypical weight with a VA-pair in its weight diagram,
1.e. such that there exists an index ¢ labelled by Vv and the index i + 1 is
labelled by A. Fix such an index ¢ and replace (VA) by the labelling (x, o).
This defines a new weight A\, of atypicality atyp(\) — 1. We denote by Fj,
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1 € Z, the endofunctor from [BS12a], (2.13). The functor F; has an avatar F;
on the side of Khovanov-modules. This projective functor F; is defined by
F, =& Kfr(i)x)r ®K —, see [BS12a], (2.3), for summation rules and also
[BS10a], (4.1). Since by loc. cit. lemma 2.4, F;L()\«,) is indecomposable,

FiL(Axo) = K fr(_rl)r ®x — for one specific i-admissible T

A4

N

Here the matching between (I — «;) and T is given by the diagram above
and the rule that all other vertices, except those labelled by x or o, are
connected by a vertical identity line segment. We want to determine its
composition factors and Loewy layers. For that one considers the modules
F;L(A«o) as modules in the graded category of K = K (n,n)-modules where
K (n,n) is the Khovanov algebra from [BS12a]. We recall some facts from
[BS11] and [BS12a], see also [Heil4].

Let A be any block in the category of graded K-modules. For a graded
K-module M = .z M;, we write M(j) for the same module with the
new grading M (j); := M;_;. Then the modules {L(\){j) | X € A, j €
Z} give a complete set of isomorphism classes of irreducible graded K-
modules. For the full subcategory Rep(Ky) of Mod;s(Ka) consisting of
finite-dimensional modules, the Grothendieck group is the free Z-module
with basis given by the L()\)(j). Viewing it as a Z[q, ¢—!]-module, so that by
definition ¢/[M] := [M(j)] holds, Ko(Rep(K,)) is the free Z[q, ¢~']-module
with basis {L(\) | A € A}. We refer to [BS10a], section 2, for the definition
of the functors G'.. For terminology used in the statement of the next
theorem see loc.cit or section 30. We quote from [BS10a], thm 4.11

Theorem 18.2. Let t be a proper AT'-matching and v € T. Then in the
graded Grothendieck group

[GAr L)) =D (a+aq )" [L(w)]

where n,, denotes the number of lower circles in ut and the sum is over all
p € A such that a) vy is the lower reduction of ut and b) the rays of each
lower line in put are oriented so that exactly one is V and one is A.

Up to a grading shift by —caps(t) we have F;L(Ay,) = Gfr_ai)rL(fy)
for some v and we may apply the theorem above to compute their Loewy
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structure. By [BS12a], lemma 2.4.v, F; L(\«,) is indecomposable with irre-
ducible socle and head isomorphic to L(\).

Proposition 18.3. F;L(\«.) has a three step Loewy filtration

LX)
R = ( ; )
L(\)

where all irreducible constituents in (the semisimple) module F occur with
multiplicity 1.

Proof. Let F(j) be the submodule of F;L(A«,) spanned by all graded
pieces of degree > j. Let k be large enough so that all constituents of
F;L(X\ox) have degree > —k and < k. Then

F=F(-k)DF(-k+1)D>...D F(k)

with successive semisimple quotients F'(j)/F(j+ 1) in degree j. In our case
we take k = 1, since the irreducible socle and top L(\) = L(Ayx) satisfies
ny = 1. Then all other composition factors L(y) necessarily satisfy n, = 0
(we ignore the shift by (—caps(t)) here). The grading filtration thus gives
our three step Loewy filtration. The statement about the multiplicity follows
since the multiplicity of L(x) in F' is given by 2"+. The Loewy filtration of
F;L(\xo) is preserved by the Morita equivalence E~! of K (n,n)-mod with
R U

Lemma 18.4. F,L()\,) is x-invariant.

Proof. Since X ® L , is *-invariant, * permutes its indecomposable sum-
mands. The indecomposable summands are either irreducible or are of the
form F;L(Ay.) for some j with labeling (x, o) at position (j, j + 1). Since *
preserves irreducible modules, the indecomposable summands correspond-
ing to the (x,o)-pairs in A\, are permuted amongst themselves. Since *

preserves irreducible modules [M*] = [M] in Ky,. However all the non-
irreducible Fj(L(Axo)) lie in different blocks for j # j' by the rules of
[BS12a], lemma 2.4. L]

Composition factors. We describe the composition factors of F;(L*°).
We can restrict ourselves to the maximally atypical block (i.e. we can ignore
x’s and o’s).

Let A be i-fold atypical. Since F;(L(Ax.)) is indecomposable, any highest
weight of a composition factor x4 has the same positioning of the n—i crosses
and n — i circles as A. In particular it has the same positioning of the circles
and crosses as Ay, except at the position (¢,7 + 1). Let F;(L(Ax,)) be given
by a matching ¢ as follows
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A4

The crosses and the circles are now fixed. Since the composition factors
depend only on the nesting structure and the matching ¢ as in theorem 18.2
we can fix them and assume that we are in the maximally atypical block
of GI(i|i). In this case the composition factors can be determined from
the segment and sector structure of A\ as in [WeilO]. For symbols x,y €
{o,A,V, x} we write \,, for the diagram obtained from A with the ith and
(¢ + 1)th vertices relabeled by = and y, respectively.

e Socle and cosocle. They are defined by L(u) for = Aya.

e The upward move. It corresponds to the weight © = A,y which is
obtained from A\, by switching Vv and A at the places i and i + 1. It
is of type Ay .

e The nonencapsulated boundary move. It only occurs in the nonen-
capsulated case. It moves the V in Ay, from position i to the left
boundary position a. The resulting weight p is of type Aa.

e The internal upper sector moves. For every internal upper sector
laj,b;] (i.e. to the right of [i, i+ 1]) there is a summand whose weight
is obtained from Ay, by moving the label V at a; to the position i+1.
These moves define new weights p of type Ay .

e The internal lower sector moves. For every internal lower sector
laj,b;] (i.e. to the left of [i,4 + 1]) there is a summand whose weight
is obtained from Ay, by moving the label v from the position i to
the position b;. These moves define new weights 1 of type An.

For examples see [WeilO] or section 17. It follows from the maximal
atypical case and the definition of our sign (L) that we have F;L(\ox) =
(L,F,L) with L € R,(£e) and F € R, (Fe¢). For the following lemma see
also [Ser10], thm. 2.1 and cor. 4.4.

Lemma 18.5. Suppose theorem 16.1 holds for the irreducible represen-
tation L*° = L(Axo) in the block T" of R,. Suppose i € Z is T'-admissible
in the sense of [BS12a), p.6. Then for the special projective functor F; the
following holds:

| DS(FLxo) = F;DS(Lxo)|.
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Proof. Given (V,p) in R,, the Casimir C,, of R,, restricts on DS(V, p) to
the Casimir C,,_; of R,,_; by lemma 11.2. On irreducible representations
V' the Casimir acts by a scalar ¢(V). Given representations V7, V5 in R,
such that C,, acts by ¢(V;) - idy, on V;, and v € Vi ® V,, then Cp(v) =
(c(V1) +c(Va)) - v+ 2Q,(v) for Q, = 377 (—1)%¢rs @ €5, € g @ G-

Note F;(V) = prr—q, © (V ® Xg) o prr, 0 F;L(Axo) = prr—qa, (L(Axo) ®
Xst). By [BS12a], lemma 2.10, this is also the generalized i-eigenspace of
Qp on L(Axo) ® Xgt. Put ¢ = ¢(L(Axo)) + c(Xst) + 2i. Then F;L(Ao) is the
generalized c-eigenspace of C,, on L(Ax,) ® Xg. Hence DS(F;L(Axo)) 1S
the generalized c-eigenspace of Cy,_1 on DS(L(Axo)®Xs) = DS(L(Axo))®
DS(Xst) = DS(L(Axo)) ® Xstn—1. Observe that ¢(DS(V1)) + ¢(DS(V2)) =
c¢(V1) + ¢(V2), since C,, induces C,,_1 on DS(V;).

By the main theorem 16.1 (using induction over degree of atypicity)
DS(L(Axo)) is in a unique block T. So F;DS(L(Axo)) = Pre_q, 0 (7@
Xstin—1) 0 preDS(L(Axo)) = pri_,, (DS(L(Axo)) ® Xst,n—1), and again by
[BS12a], lemma 2.10, this is the generalized c-eigenspace of the Casimir
Cp—10n DS(L(Axo)) @ Xstn—1. Thus DS(F;L(Axo)) = F;DS(L(Axo)). O

Weights, sectors, segments. Let L(\) be i-atypical in a block I'. Let X;
denote the set of weights in I'. Then we define a map

¢ = ¢r: X; — {plots of rank i}

by sending A to the plot of the weight of the irreducible representation
#% (L(\)). Then ¢r is a bijection. Each plot has defining segments and
sectors, and by transfer with ¢r this defines the segments and sectors of a
given weight diagram in X .

Shifting x and o. We now quote from [BS12a], lemma 2.4

Lemma 18.6. Let A € X (n) and i € Z. For symbols x,y € {o,\,V, x}
we write Ay for the diagram obtained from X\ with the ith and (i + 1)th
vertices relabeled by x and vy, respectively.

1) If A = Ayx then E;,L(\) = L(Axy). If X = Ay then F;L(\) =

L(Avyx).

(i) If A = A« then E;L(\) = L(Axp). If X = Aga then F;L(\)
L(Anx)-

(i) If X = Avo then F;L(\) = L(A\ov). If A = Aoy then E;L(\) = L(Ayo).

(iv) If X = Ao then F,L(N\) 22 L(Xop). If A = Ao then E;L(N\) 2= L(Ao).

(v) If A\ = Axo then: F;L(\) has irreducible socle and head both isomor-
phic to L(Ayp), and all other composition factors are of the form
L(p) for u € X such that p = pyp, 4 = ppy OF b = ppy. Likewise
for A = Aox and E;L(\).

(vi) If X = Ay then F;L(\) = L(Aox).
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For a pair of neighbouring vertices (i,7 + 1) in the weight diagram of
A = Avx, labelled by (Vx), we get

E;L(Ayx) = L(Axv)

from 18.6.1. In other words, the functor replaces the irreducible representa-
tion of weight A\ by the irreducible representation of weight A\, ., which
has the same weight diagram as A\, except that the positions of x and Vv
are interchanged. Note that

QS()\\/X) = d)()\x\/)v
but L = L(Ayx) and L*? = L(A«y) lie in different blocks.

Lemma 18.7. Suppose for the representation L = L(\,x) in R: the as-
sertion of theorem 16.1 holds. Then it also holds for the representation
LY = L(Axv).

Proof. By assumption we have a commutative diagram

L—" )\

)\/

DS(L)

We have to show that we have the same diagram for L“? instead of L. Let
S, denote the sectors of the plot A = ¢(Ayx) and let S; denote the sector
containing the integer p(i). Then DS(L) is a direct sum of irreducible rep-
resentations L,, whose sector structure either is obtained by replacing one
of the sectors S,,v # j by 05,, and there is the unique irreducible sum-
mand L; whose sector structure either is obtained by replacing the sectors
S; by 05;. We would like to show that DS(L"P) can be similarly described
in terms of the sector structure of L"P. The sectors of L"? literally coincide
with the S, for v # j, and for v = j the remaining sector of L“P is obtained
from the sector S; by transposing the positions at the labels 7,7 + 1 (within
this sector). Hence to show our claim, it remains to show that DS(L"P) is
isomorphic to a direct sum of irreducible representations L;” with the sec-
tor structures such that L, is obtained from L, by applying the functor E;
(i.e. replacing the positions of v and x at the labels 7,7 + 1). Indeed, the
derivative 0 for sectors commutes with the interchange of labels at 4,7 + 1
in our situation (the sign rule is obviously preserved). Hence it remains to
show

EADS(L(\vx))) = DS(EAL(Ax))) -
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But this assertion follows by an argument similarly to the one used for the
proof of lemma 18.5. L

Likewise by lemma 18.6 one can show

Lemma 18.8. Suppose for the representation L = L(\y.) in R, the as-
sertion of theorem 16.1 holds. Then it also holds for the representation
L% = L(Aov).

Lemma 18.9. Suppose the main theorem holds for the representation
L = L(Anx) in RE. Then it also holds for the representation L*P = L(Ax ).

Lemma 18.10. Suppose the main theorem holds for the representation
L = L(Ano) in RE. Then it also holds for the representation L'P = L(\op).

19. INDUCTIVE CONTROL OVER DS

We prove now the main theorem under the assumption that there exist
objects A with certain nice properties. Under these assumptions we give
an inductive proof of theorem 16.1 using the proposition 19.3 below. We
verify in section 20 that certain objects F;(Ly,) verify these conditions.

First recall that for ¢ € {£1} the full abelian subcategories R,,(¢) of R,
consist of all objects whose irreducible constituents X have sign e(X) = e.
We quote from section 16 the following

Proposition 19.1. The categories R, (c) are semisimple abelian cate-
gories.

Definition. An object M in R, is called semi-pure (of sign ¢), if its
socle is in the category R, (). Every subobject of a semi-pure object is
semi-pure. For semi-pure objects M the second layer of the lower Loewy
series (i.e. the socle of M/socle(M)) is in R,(—e) by the last proposi-
tion. Hence by induction, the i-th layer of the lower Loewy filtration is
in R,((—1)""1e). Hence all layers of the lower Loewy filtration are semi-
pure. The last layer top(M ) of the lower Loewy series is semisimple. Since
cosocle(M) = cosocle(M)* = socle(M*) this easily implies

Lemma 19.2. For semi-pure x-selfdual indecomposable objects M in R,
of Loewy length < 3 the lower and the upper Loewy series coincide.

We now formulate certain axioms for an object A of R,,. Along with the
results of section 18 we will see in section 20 that the translation functors
F;(L*°) verify these conditions.

(1) A € R,, 1s indecomposable with Loewy structure (L, A, L).
(2) A is x-selfdual.
(3) L € R, (e)1sirreducible and satisfies theorem 16.1 with A € R,,(—¢).
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(4) A := DS(A) = A* @ TI(A™) is the direct sum of AT := Ht(A) and
A= = H~(A) such that AT = @, A, and A~ = @ A, with inde-
composable objects A, € R,_;of Loewy structure A, = (ﬂ,,, A,, i,,)
resp. Ay, € R,_q of Loewy structure A, = (f/y, Ay, izy).

(5) All L, and L; are irreducible so that L, € R,_i(¢) and Ly €
Rp_1(—¢); furthermore A, € R,_1(—¢) and Ay € R,_1 ()

(6) Foreach y = v (resp. u = v) there exist irreducible detecting objects

AL CA,,
also contained in H*(A) (resp. in H~(A)), such that

(A, H*(L)) =0 and Homg,_ (A, EHA4,)=0.
p#V

Homp

n—1

Remark. For x-selfdual indecomposable objects as above the layers
(graded pieces) of the upper and lower Loewy filtrations coincide, since oth-
erwise proposition 19.1 would give a contradiction. In the situation above
we assume that A is x-selfdual of Loewy length 3 with socle socle(A) = L
and cosocle(A) = socle(A)* =2 L* = L and middle layer A.

Remark. For the later applications we notice that we will construct the
detecting objects A/, in HT(A%"") (resp. H~(A%*")) where A%“" will be
an accessible summand of A. By induction we later will also know that
these submodules A), therefore already satisfy theorem 16.1. Hence it suf-
fices to check the properties A), C A, and A, CH *(A), since these already
imply by the main theorem (valid for summands of A9°"™) the stronger as-
sertion made in the axiom telling whether A/, appears in H*(A) or H™ (A).
Notice A}, C A, and A, € R,,_1(F¢) depending on . = v resp. 7. On the
other hand A% c A € R, (—¢). Hence, if the main theorem is valid for
Adown e get Al € HY(A) for p = v and A}, € H(A) for p = 7.

Proposition 19.3. Under the assumptions on A from above the H*(A)
will be semisimple objects in R,,—1(Fe).

We will prove the key proposition 19.3 below after listing some of its
consequences.

The ring homomorphism d. As an element of the Grothendieck group
Ko(Rp—1) we define for a module M € R,

d(M)=H"(M)—-H (M) .
Notice d is additive by lemma 2.1. Notice
Ky(T,) = Ko(Ry) ® Ko(IIRy,) = Ko(Ryp) @ (Z® Z-10) .
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We have a commutative diagram

Ko(Ty) Ky(Ry)

ps| |

Ko(Th-1) — Ko(Rn-1)

where the horizontal maps are surjective ring homomorphisms defined by
IT — —1. Since DS induces a ring homomorphism, it is easy to see that d
defines a ring homomorphism.

The assertion of the last proposition implies that H*(A) and H~ (A) have
no common constituents in R,,—; and that they are semisimple. Therefore
d(A) = H*(A) — H=(A) € Ko(R,_1) uniquely determines H*(A) up to an
isomorphism. By the additivity of d and d(A) = A we get 2d(L) + d(A) =
2L + Ain Ko(R,_1). Hence

Corollary 19.4. H*(A) € R,,_1(—¢) and H=(A) € R, _1(¢) are uniquely
determined by the following formula in Ko(R,-1)
HY(A) = H™(4) = d(4) = A+ 2(L - d(L)) .

We later apply this in situations where L — d(L) = (—1)"*" L% holds by
lemma 20.1 and 20.4 and A’ — A = 2(—1)"+"L** holds by lemma 20.3 and
20.7, for some object L*“*. Here A’ denotes the normalized derivative of A,
introduced in section 15, defining a homomorphism

" K()(Rn) — Ko(Rn_1> .
Hence the last corollary implies the following theorem which repeatedly
applied proves theorem 16.1 by induction.

Theorem 19.5. Under the axioms on A from above d(A) = H'(A) —
H~(A) is the derivative A’ of A.
_ Proof of the proposition 19.3. Step 1). Assumption (4) implies H"(A) =
Atand H(A) = A" inR;,_1.

Step 2). Axiom (1) on the Loewy structure of A therefore gives exact
hexagons in R,,_; for K := Ker(A — L) using K/L = A:

H*(K) At HH(L) HY(K) —> H*(A) — H~(L)
; ‘ Hw-)[
H—(L) A- H™(K) HY(L)=— H (A) =— H (K)
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Step 3) Assumption (3),(4),(5) on the Loewy structure of the A, and
H*(L) imply the following factorization property for AT (and then simi-
larly also for A7)

H*(p)

A+ = @l} AV H+(L)
3 -
% . Top,

Step 4) Let ¥ be the set of all v such that p, = 0. (Similarly let ¥ be the
set of all 7 such that py = 0). Then we obtain exact sequences

H*(L)
H*(5)
~ _ ) e %
0= @yl —H (L) —= H (K) —> @D, A & D s K 0

7

AL HF(A)
0

H™(L)

Step 5) The detecting object A/, — H™(A) has trivial image in H~ (L) by
axiom (6), hence can be viewed as a quotient object of H'(K). Again by
axiom (6) we can then view A/, as a nontrivial quotient object of

H(K)/(I+3(H™(L)))
where I := H*(j)(H* (L)) is the image of H* (L) in H*(K).

Step 6) The cosocle of @5 Ay & B,z Ky is B, cx Ly & D, g5 A, by
assumption (4) on the Loewy structure of A, K.

Step 7) The simple quotient object A/, of H"(K) can be viewed as a
nontrivial quotient object of the cosocle of H*(K) by step 5). We have an
exact sequence

H™(L)/ @ Ly — cosocle(HT (K)) — cosocle(@ A, @ @ K,) =0
ves veY vy
and we can view A/, as a nontrivial quotient object of

cosocle(@ A, @ @ K,) = @ L, & EB A,

vey vé¢y vey vy
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by step 5) and 6). Notice that we can consider A/, for arbitrary v. Forv € &
the last assertion contradicts axiom (6):

Homg, (P L,oEPAuA,) = 0.

HED RS

This contradiction forces
¥ =0 andsimilarly ¥ =0,

SO we obtain two exact sequences

00— @, Ly

H™(L)

H™(K)

0——>@, L H*(L)
Step 8) The last step 7) proves that

H™(K)

H™(p) is injective on the cosocle @ L, of HY(A) .

v

Leti: L — A be the composition of j : L — K and the inclusion K — A.
Then i : L — A is the #-dual of the projection p : A — L by the axiom
(2). Hence by *-duality we get from the previous assertion on H*(p) the
following assertion

H™ (i) surjects onto the socle @ L,of HT(A) .

v

Now considering
L
I
KA and - A+ o 7
socle(H" (K)) — socle(A™T) = P, L,

we see that @, L, can also be embedded into the semisimple I as a sub-
module @, L, — I.

Step 9) Recall the following diagram

Since I isin R,,—1(¢) and H~ (L) € R,,—1(—¢) by our axioms, we also have

S(H-(L)) N I = {o0}].
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Hence the composite of 7 and the inclusion I < H*(K) maps the semisim-
ple module I injectively into the socle of @, K,. Since socle(P, K,) =
@, L. and since I contains P, L, as a submodule, this implies that

socle(@, K,) =@, L,

is an isomorphism. Notice (@, K,))/socle(B, K,) = P, A,.

~

w1

Step 10) The last isomorphism of step 9) gives the exact sequence
0—EDL, —H (L)~ (H*(K)/I) @A, 0.

By our assumptions H~ (L) i8 in R,,—1(—¢), and hence semisimple. Further-
more all 4, are semisimple and contained in R,,_;(—¢). Hence by proposi-
tion 19.1 H*(K)/I is semisimple and contained in R,,_;(—¢).

Step 11). By step 10) and the exact hexagon
HY(K)——=H"(A)——= H (L) .

I‘< Tmu) l
H*(L) ~— H*(A) <—— H(K)

H*(A) defines an extension of the semisimple module H*(K)/I by a sub-
module of H~ (L)

0 H¥(K)/I — H(A) - Ker(H_(L) = H—(K)) 0.

Since H*(K)/I and Ker(H (L) — H~(K)) are both in R,_i(—¢), the
proposition 19.1 implies that

HT(A) = (H+(K)/I) ® Ker(H‘(j):H‘(L) AH‘(K))

is semisimple and contained in R,,_1(—¢). The first summand has been
computed above. Similarly then

H(A) = (H*(K)/T) & Ker <H+(j) CHY(L) - H*(K))
is semisimple and contained in R,,_;(¢). U
Example. Recall the indecomposable *-selfdual objects Ag: in R,,,n > 2
fori = 1,2, ... with Loewy structure (L, A, L) where L = S*~! and
A=S"®S"?@6 - Ber, .

Concerning the notations: ¢! denotes Kronecker’s delta and S—! = 0. The
conditions (1)-(5) are satisfied for ¢ = (—1)""! and A’ = S*~2. Indeed
condition (5) follows, since by induction on i one can already assume that
H-(L) = H (S*!) is Ber~! or zero and that H*(S"~2) contains S~2.
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Then by induction on i the computation of H*(A) in terms of A, L, H*(L)
from above easily gives as in section 17 the following result

Proposition 19.6. Suppose n > 2. Then for the functor DS : R, — T,,—1
of Duflo-Serganova we obtain DS(Ber,) = II(Ber,_1) and
(1) DS(S) = S* fori<n—1,
(2) DS(S) =S o™ '"'Ber=! fori >n — 1.

20. MOVES

We verify now the conditions on the indecomposable objects A of section
19 for the translation functors F;(L(A«.)). Additionally we verify the com-
mutation rules in and after corollary 19.4. Instead of working directly with
the irreducible representation L we use the associated plot as in section 13
and 18. Recall that a plot A\ is a map A : Z — {H,H}. We also use the nota-
tion B; to indicate that the A\(:) = B and likewise for H. For an overview of
the algorithms I and II used in this section see section 17.

Let L = (I, K) for I = [a,b] be a segment with sectors Sy, .., Sy from left
to right. Suppose S; = [i,i + 1] is a sector of rank 1. Then the segment may
be visualized as

L = (S1---8-1[8:,Bi11]Sj41- - Sk) -

We define the upward move of the segment L as the plot defined by the rwo
segments with intervals [a,7 — 1] and [i + 1,b + 1]

L% = (Si+850) B ([(Sp0S0)

Similarly we define the downward move of the segment L as the plot defined
by the two segments with intervals [a — 1,i] and [i + 2, b]

I, down (/(5’1 e Sj71>) Hi (SjJrl - Sk) .

Furthermore for r # j we define additional r-th internal lower resp. upper
downward moves L™ by the plots associated' to the single segments

(Sl"'Sr—l/(S;a/(Sr—i-l"'Sj—l)) Sit1-++Sk)

for each 1 < r < j — 1 respectively
(51---Sj—1/(/(5j+1---5r—1) 57{) Sr—i—l"‘Sk)

For r = j — lorr = j -+ 1 the inner integral over the empty sector is understood to
give the sector ([i — 1,4, {¢ — 1}) respectively ([i + 1,¢ + 2],{i + 1}).
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for each j + 1 < r < k. Explaining the notion ’internal’, notice that the
segments defined by these internal downward moves have the same un-
derlying interval I = [a,b] as the segment L we started from. We remark
that the last formulas do remind on partial integration. Formally by setting
Lﬁ"“’" := L4own for r = j, we altogether obtain k& downward moves and one
upward move. All these moves preserve the rank.

The plot L has a sector [i,i+1] of rank 1. The auxiliary plot L*** attached
to L (and [, + 1)) is the plot of rank r(L) — 1 defined by two segments with
intervals [a,7 — 1] and [i + 2, ]

L™ = (S1---Sj-1) HiBiy1(Sj1--- Sk)
and we also consider

L*° = (S1---Sj-1) xioip1 (Sjp1---Sk) .

Algorithm I (lowering sectors). For a plot with k sectors S, with ranks
r, = r(S,) > 0 and the distances d, > 0 for v = 1, ....k (from left to right)
we formally define rp. 1 = rgy 1 = ... = 0and dy, = d1 = ... = 0. We can
then compare different plots with respect to the lexicographic ordering of
the sequences

(_r1’d17_T2,d2, ..... ) .

Within the set of plots of fixed rank say n, the minimum with respect to this
ordering is attained if 7 = n, i.e. if there exists only one sector.

Algorithm I will be applied to given plots, say A, with more than one
segment. The upshot is: In this situation one can always find a lexicographic
smaller plot L so that the given plot is of the form A\, = L"? and such that
L and all plots obtained by the moves L%"" of L are strictly smaller than
the starting plot L“?. Algorithm I is used for induction arguments to reduce
certain statements (e.g. theorem 16.1) to the case of plots with 1 segment.

Definition of L. For a given plots say A\\y, with more than one seg-
ment, d, > 0 holds for some integer v. So choose j so that the distances
dist(S1,52) = ... = dist(Sj—2,5;-1) = 0 for the sectors Sy, .., Sj_1 of Ay
and dist(Sj_2,j — 1) > 0. We temporarily write S for the next sector S of
Aav. Interpret S = [(Sj41---Sy) for some sectors S, ..., S. This is possi-
ble, but keep in mind that S, ..., Sy, are not sectors of A, but will be sectors
of L, and this explains the notation. Indeed, for i + 1 = min(S), we define
Ltobe

L = (Sl cee Sj—l)--~dj—1--~-(Sij+l v Sk)dk

with S; of rank 1 at the positions [i,i + 1]. To simplify notations we do not
write further sectors to the right, since the sectors of A,y to the right of S
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will not play an essential role in the following. Indeed, they will appear ver-
batim in the sector structure of L up to some distance shifts at the following
positions

dist(Sj—1,5) =1+dj—1 , dist(S,nextsector) =d, —1.
Concerning the lexicographic ordering
dZ'St(ijl, S]) = djfl < dist(Sj,l, S) =1+ d];l

shows that L is smaller than L*? = X\,,. We leave it to the reader to check
that also all L?"w” are smaller than L"? = \,,. Notice, here we apply the
moves as in the preceding paragraph with the notable exceptions that

(1) There may be further sectors beyond Sj. These are just appended,
and do not define new moves.

(2) If dj—1 > 1 the sector Sj_; has distance > 0 to the sector S; and
therefore does not define downward moves, so that only the doen-
ward moves L4°"" for r = j, ..., k are relevant.

In the later discussion we always display the more complicated case where
dj—1 = 0 (without further mentioning). For the case d;_; > 0 one can simply
‘omit’ Sy, ..., Sj—1, by just appending them in the same way as we agreed to
‘omit’ sectors to the right of Sj.

Construction of detecting objects for algorithm I. Fix L = L(\,y) with
the sector [i,7+ 1]. Then L is determined by its sectors. For the construction
of detecting objects we are only interested in down moves. In the following
it therefore suffices only to keep track of the sectors below [i,i + 1] in the
segment containing the sector [i, i+ 1]. Notice that L is a union of the sector
[i,7+1] and, say s, other sectors S,.. Let Si, .., Sj_1 denote the sectors below
[i,7 + 1] in the segment of [i,7 + 1]. Hence L is

BS1 -+ Sj—1[BHiBi]
and the union of other disjoint sectors S, for j + 1 < v < s. Then L*° is
ElSl s Sj—l[xioi+l]

and the union of other disjoint sectors S, for j + 1 < v < s. We define
A = F;L*°. Then A is *-self dual of Loewy length 3 with socle and cosocle
L. The term A in the middle is semisimple and the weights of its irreducible
summands are given by L“? and the £ down moves of L according to section
18.

To determine A = DS(A) we use induction and lemma 18.5. This implies
that A is the direct sum of II" A, for indecomposable objects A, in R,_1,
which uniquely correspond to the irreducible summands of DS(L*°). How-
ever these correspond to the irreducible summands L, of DS(L%*). Again
by induction (now induction on the degree of atypicity) the summands of
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DS(L*°) respectively DS(L**) are already known to be given by the de-
rivative of \4,,. These facts imply the next

Lemma 20.1. We have
A=uma,
pn=1
where each Au € Rn—1 has Loewy lenght 3 with irreducible socle and coso-
cle i# defined by the s plots for y =1, ..., s

[B:8i1] U S, U U S, .
v#ER

In particular, for maus (Which is congruent to i +n — 1 modulo 2), we get*

DS(L) 2 TmewLove @ @5 ™ L, |.

Hence in Ko(Rp-1)

d(L) = I' = L 4 (~1)itn-1. pour |,

Now each A, is determined from L, by applying certain upward and the
downward moves starting from L,,.

We indicate that the segment of L, containing [B;,5;1] has less than r
sectors, if 1 < pu < j — 1. Indeed the union of the sectors of L, in the
segment of [H;H,14] is

... B Su—l—l s Sj_l[EﬂiEi+1]Sj+1 - 5. 8.

for p < j—2and by [B;,5;41]Sj41--- S, B... for p = j — 1. We are now able
to define the detecting objects A), C A, for p = 1,...,s by LZ‘M”, given by
induction as follows

(1) (f(Sl T Sj—l)) BHit1 U(S;/) U Uj71<u7££ Sy for H ¢ {17 ] = 1},

2) 8- SL([(S“+1 cee ijl)) Hin Sj+1 < Sp U Uk<£5g for nw<j—2,

(3) S Sj_Q H Sjl;l(EEEZ’) Hit1 Sj+1 - SpuU Uk<£ S, for w=yj—1.
It is therefore clear that the detecting object is different from all objects in
DS(L), which by induction are known to be given by the derivative of L.
Furthermore A, C A,,. Tt requires some easy but tedious inspection to see
that A}, is not contained in A, for v # p. Hence to see that the A, are
detecting objects, it suffices to show the next

Lemma 20.2. The objects A, are contained in DS(A). If L*? is stable,
then L is stable and A, C H"(A) & H~(A) for all p.

2assuming that theorem 16.1 holds for L, say by induction assumption.
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Proof. Recall
A A @ Adown

up .__ U own .__ k own
for A% := [P and Adevn .= ;| Lown,

We do not know how to compute DS(A"P). However by induction we al-
ready know that the derivative computes DS(A%°%"). In A%w" C A we have
the following objects A,

(1) (f(S1-+-8j-1)) Bix1 UU; 1< Sefor p ¢ {1,...,5 — 1},

(2) S1-- J(S) J(Suwr-+8j=1))Sjz1 - Sk UUpey Se for p < j — 2,

3) S51--- Sj_Q(HHSé_l H EZ‘EZ‘+1)S]‘+1 - Sp U Uk<£ Seforpu=j5—1.
Their derivative DS(A,,) contains

(1) (f(Sl cee ijl)EiJrl) U (SL) U Uj71<Z7é,u Sefor ¢ {1,....,5 — 1},

(2) S1---8,,(f(Sur1---Sj-1)) Biv1 Sj1 - Sk U Uy Se for p < j — 2,

3) S5 SJ;Q = S]/;l(EEEZ') Hit1 Sj+1 - S U Uk<£ S, for w=yj—1
This proves A}, C DS(A,,) and hence our claim. U

Commutation rule for algorithm I. Now we discuss how moves com-
mute with differentiation for a given L as above. It is rather obvious from
the definitions that for this we can restrict ourselves to the situation where
L is the single segment

L= (Sl s Sj_l Eﬂi E|i+15j+1 s Sk) .
So let us assume this for simplicity of exposition.

1) Computation of A. Taking first the derivative we obtain L*** and (k—1)
plots L, of the form

St 8, (Susr+ Sj—1 Bi Bip1 S+ Sk)
(lower group where 1 < j — 1) respectively
(S1--- 81 BiBit1Sj11---Su-1)S, - Sk

(upper group where p > j+1). The sign in the Grothendieck group attached
to these is (—1)% =1 = (1)1 for S, = [a,, b,].

Notice that L*“* does not define any moves. The segment containing
B;8;11 (indicated by the brackets) defines the possible moves of each of
these derived plots L. These are e.g. in the lower group case the upward
move

51"-SLSM+1'-'SJ>1Eif(SjH'“Sk)

and the downward move

Sy Sl [(Sps1-+Sj-1) Biz1 Sja1 -+ Sk
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and the internal upper/lower downward moves

Sp--- S'[/J,S/L+1 S f(J(Sjpr---Srz1) S) ) Sra1 - Sk

S SuSprn - S [ (S0 [(Sega -+ S51)) Sy S

2) Computation of the derivative A’. Now we revert the situation and first
consider the moves of L, the upward and downward moves

LY = 8---S; 1 5 /(Sj+1"'8k),

Llown = /(51 - Sj-1) Bivr Sjr1 Sk

and the internal downward moves (for lower sectors)

51-"57«_1/(5,1/(&“"‘Sj—l)) St Sk

respectively (for upper sectors)

51-~~5j—1/(/(5j+1“-5r—1) S.) Spy1ce- Sk

If we differentiate L“?, we get the plots of the form

Sy Sl Sio1 By [(Sj1--Sk)

with sign (—1)%*+7~1 = (—1)"*7~1 and similarly
L = Sy--- 851 Bi Big1Sj41--- Sk

with sign (1), If we differentiate L%v", we get [(S;---S;—1) Bita
Sjp1--- S,Q .-+ St and similarly

LY =Sy --- 81 BHi Big1Sj41--- Sk

with sign (—1)*". If we derive the plots defined by the internal moves
(lower group, where we derive at v < j — 1) we get the plots of the form

Sp-+-Sr 1S [(Spg1--Sj—1)Bit1 Sjy1--- Sk

with sign (—1)5+7~1 = (—1)i*n~1 together with

51-~~SLSu+1---Sj—1f(f(Sj+1-~~Sr—1) S/ )Spgr -+ Sk

S1-+-8Sur1 -+ See1 [(S) [(Sri1---Sj-1)) Sjra--- Sk

of sign (—1)"*"~! respectively similar terms for the upper group, where we
differentiate at u > j + 1. Altogether, besides two additional signed plots of
the form L%“*, these give precisely the plots obtained before. This implies
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Lemma 20.3. The differential of the moves of L gives the term 2 - L
plus the moves of the differential of L, i.e.

A = A + 2(_1>i+n_Lau:E

holds in Ky(R,—1).

Algorithm II (melting sectors). Suppose Ay is a plot with a single seg-
ment and at least two sectors. [a,i] and point i respectively left boundary
point ¢ + 1 of the segment defining the plot A,y. In algorithm II we melt
the first two adjacent sectors [a, i] and [i + 1, b] together into a single sector
Smelt to obtain a new plot Ay, so that

supp(Any) — {i + 1} = supp(Ava) — {i} .

This new plot A,y again has a unique segment with the same underlying in-
terval as the plot A,y . But the sector structure is different, since the number
of sectors decreases by one.

Notice, opposed to algorithm I, the interval [i,i 4+ 1] does not define a
sector of the original plot A\,,. However [i,7 + 1] defines a sector of the
“internal’ plot

Lins := 0(S™e! |
with sector structure say
Ling = S1---Sj_1[Bi8i11)Sj41- - Sk,
so that
Ava = ( / Lint) other sectors , Ayxo:= ( / (Lint)™°) other sectors
We similarly define for » = 1,..., k and r # j the plots

i [y other sectors.

r

Finally Ay = ([ (Line)"?)other sectors , which is the plot we started from.
Since [(Lint)"P has two sectors, all the plots Mdown for 1 < r # j < k have
less sectors than the plot Ax,. Indeed, the plots [ (Lint)2ew™ are irreducible
as an easy consequence of the integral criterion.

Construction of detecting objects for algorithm II. Fixing A, as above,
A=F,(L(\xo)) = (LA, L)

defines a *-self dual object in R,, of Loewy length 3 with socle and cosocle
L, where

L = L(Ava)
and A = A’ @ Ad°wn for AP = L(\ny) and Adown = @f#,l L(A\down),



86 TH. HEIDERSDOREF, R. WEISSAUER

To determine DS(A) = @, I A, we use induction and lemma 18.5.
This implies that A is the direct sum of I1" A, for indecomposable objects
A, in R,,—1, which uniquely correspond to the irreducible summands ,, of
DS(L*°). But by induction (now induction on the degree of atypicity !) the
irreducible summands of D.S(L*°), that determine the irreducible modules
Eﬂ, can be computed by the derivative of \,,,. Since in the present situation
replacing i,7+ 1 by x, o commutes with the derivative, these facts imply the
next

Lemma 20.4. If L has s sectors, for the melting algorithm we have
A=numa,
pn=1

where each A, € R,,_1 has Loewy length 3 of Loewy structure (L,,, A,, L,
with irreducible socle and cosocle L,,. For the various summands, for vary-
ing p, up to the shift my, the socles L, are defined by the s — 1 different plots
plots arising from the derivative

( / Lint) (other sectors)'

together with the plot

L;,: (other sectors) .
In particular’, if L has s sectors, DS(L) = @Zzl Hm#i#. This gives in
Ko(Rp—1) the formula

d(L) = L' = L|.

Corollary 20.5. In the situation of the last lemma the morphisms
H'(p) : H'(A) — H'(L)

are surjective for all i € 7.

Proof. We already know that H*(p) : H*(A) — H*(L) induces injective
maps on the cosocle of H*(A). By lemma 20.4 therefore these induced
maps are bijections between the cosocle of H*(A) and H*(L). In particular
the morphisms H*(p) : H*(A) — H*(L) are surjective. This implies the
assertion. O

This being said note that 2d(L) 4+ d(A) = d(A) = d(A) = 2L + A together
with the assertion d(L) = L from the lemma 20.4 above implies d(A) =
A. Any L, defines a nontrivial term A,. We claim that any irreducible
summand A, C A,, is a detecting object now. Indeed any summand A, of A

appears in Ht(A) by the formula d(A) = H*(A) — H(A) = A. Checking

3assuming that theorem 16.1 holds for L and L*°, say by induction assumption.
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the possible moves that define the constituents of A, from L,, it is clear that
A}, is not a constituent of any A, for v # . Hence

Lemma 20.6. Detecting objects A, exist for algorithm II.

Commutation rule for algorithm II. Now we discuss how moves com-
mute with differentiation for a given L as above. It is rather obvious from
the definitions that we can restrict ourselves for this to the situation where
the segment of plot A\, has only two sectors. In other words we claim
that we can assume without restriction of generality that the terms ’other
factors’ does not appear, so that s = 2 holds in the last lemma 20.4. The
reason for this is, that moves for L;,; (others sectors) are the same as for
| Lint (others sectors)’, since by [BS10a] the relevant moves are moves
"within’ the sector [ L;,;. Hence for the proof of the next lemma we can
assume that L = [ L;,; has a unique sector so that d(L) = L =1L = Lip,
which has a single segment.

Lemma 20.7. The differential of the moves of L gives the moves of the
differential of L, i.e.

A = A
holds in Ko(Rp—1).

Proof. Without restriction of generality we can assume that the plot Ay,
we are starting with, is a segment with only two sectors, so that L = [ L;;.
Let the single segment of L;,; have the form

St 81 [BiBia] S - - Sk
with £ sectors S, ..., S;, where the underlying interval of S; is [i,4 4 1].

1) Computation of A. According to [BS10a], [Weil0] the constituents of
A = @;_, 1I™+A,, are obtained from the socle module L, of A, by moves.
The last lemma shows that L = @ p L, is the derivative L' = ([ Lint)’ = Lint
of L up to a shift determined by the sign factor (—1)?*"~1. Since s = 1 by

assumption, A = (L, A, L) is an indecomposable module with socle

L = Ljy .

Up to a parity shift by m = a + n — 1, the module A therefore is the direct
sum
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of the irreducible modules obtained from L = L;,; by the unique upward
and the & downward moves. Notice (Lint)?ow" = (Lint)?"™ is the *nonen-
capsulated” downward move in the notions of [Weil0]. Here it occurs, since
[i,i + 1] is one of the sectors of the L.

2) Computation of the derivative A’. Now we revert the situation and
first consider A = (L, A, L) and the moves of L = [ L;,, that determine the
irreducible summands of A. Indeed

u k down
A= (/LGt) p@ @ (/Lmt)r
r#j,r=1
holds for the irreducible modules obtained from L = [ L;,,; by the upward
move L“P and the k — 1 internal inner/upper downward moves (L;,;)°""

for r # j. Notice that (Lmt);?"w” = (Lint)?"", as opposed to the situation
above, this time does not appear as a move, since we are in the ’encapsu-
lated’ case in the notions [WeilO] where [i,i + 1] is not a sector of L (but

only an internal sector of L).

The formulas above imply that A’ = (A"?)" @ (A%*")’ is a direct sum of
the two irreducible summands

(AUP)/ =B % By ,
coming from (( | Lijn)*?)" = (L"P)" = L(Anv)’ for Ay = [a,i][i + 1,b] with

derivative (—1)**+"=1(3([a,i]) U [i + 1,B]) + (=1)7+"=1([a,4] U O([i + 1,8]),
and the k — 1 irreducible summands (A%®") of (A9°wn) given by

ey = (1))

This gives 2+ (k— 1) = k+ 1 irreducible factors in A, and all signs coincide
by (_1)i+n71 — (_l)aJrnfl.

The comparison. Since all signs are (—1)2*"~! for both computations, we
can ignore the parity shift. Then observe that ([ Lin)%%" = [(Ljnt)%%")
holds for r # j, hence (A%%™) = (([ Lint)%"")" = Lint)3°v" for r # j. So
it remains to compare the two remaining summands

By, B
of A’ and the two remaining summands
(Lin)"® 5 (Ling)§"

of A. The latter correspond to the plots Si...S;_1 B; [(Sj41..-Sk), giving
the upward move, resp. f(Sl...Sj_l) Hit1 Sj4+1 - - - Sk, giving the downward
move. Obviously these two define the plots 9([a,i]) U [i + 1, b] respectively
[a,i] UO([i + 1,0]) defining the two summands B; and Bs. U
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PART 3. CONSEQUENCES OF THE MAIN THEOREM

We describe some applications of the main theorem. The main result is
the computation of the Z-grading of DS(L) for any irreducible representa-
tion L in sections 22 - 24. This result is based on the main theorem and
its proof. For that we first need a description of the dual of an irreducible
representation in section 21. In the later sections 28 - 31 we obtain var-
ious results about the cohomology of maximally atypical indecomposable
representations.

21. TANNAKA DUALS

Let A\ be an atypical weight, and L()\) the associated irreducible repre-
sentation. Note that (Ber® ® L(\))Y = Ber™® @ L(\)V. We use the de-
scription of the duals obtained in [Heil4]. Note that L(\) = socle(P()\)) =
cosocle(P())), since projective modules are x-self dual. Hence L(\)V =
socle(P(\)Y), so it suffices to compute the socle of P(\)Y. Now P(\) =
R(\E, \F) for the bipartition (A, A\®) = §=1(\) satisfying k(A\; A') = n by
[Heil4]. The dual of any mixed tensor is R(A", A®)Y = R(A AF), hence
we simply have to calculate the socle of R(AF, AF).

If k(\F,A\) = n, the description of the map 6 is easy: Calculate the
weight diagram of (A", \¥) as in section 14 and write down its labeled cup
diagram. Then turn all V’s which are not part of a cup into A’s and leave
all other symbols unchanged. The resulting diagram is the weight diagram
of socle(P()\)). Hence in order to calculate the dual of L(\) we simply
have to understand the effect of changing (A", \?) to (A%, \l") on the weight
diagram. Recall from section 14 that

L) =10k -2, ) and L\ :={1-XF2-)F . 1.

If A} —(i—1) = s, theni— A} =i—s—i+1=1-sand likewise for A}.
Hence interchanging A and A means reflecting the symbols s — 1 — s and
swapping V’s with A’s. If the vertex s 1s labelled by a x, then there exist ¢, j
suchthat A\ — (i — 1) =j — A =s. Butthen \f — (j — 1) =i - A} =1—s
and we obtain a x at the vertex 1 — s. We argue in the same way for the o’s.
If (s, s+ r) is labelled by (V, A)-pair such that we have a cup connecting s
and s + r, we obtain a (V, A)-pair at (1 — s — r, 1 — s) which is connected by
a cup. To obtain the highest weight (A, A\¥) the Vs not in cups get flipped
to A’s.
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Proposition 21.1. The weight diagram of the dual of an irreducible rep-
resentation L is obtained from the weight diagram of L as follows: Inter-
change all vV A\-pairs in cups, then apply the reflection s — 1 — s to each
symbol.

It is easy to see that this description is valid for m > n if we use the
reflection 1 — § — s instead of 1 — s where 6 = m — n.

The maximal atypical case. We describe the dual in the language of plots.
We assume here that L()) is maximally atypical, but we can reduce the
general case to this one, using the map ¢ from section 18 and lemma 21.3.
Let A denote the unique plot corresponding to the weight \. Let A(s) =
[T, Mi(s) be its prime factorization. For each prime factor \;(s) = (I, K)
with segment I and support K we define X{(s) := (I, K¢), where K¢ = I-K
denotes the complement of K in I. Then put

A(s) = H)\f(s) .

The previous description of the duals implies the next proposition.

Proposition 21.2. The Tannaka dual representation NV of a maximal
atypical representation \ is given by the plot

AV (s) = X(1 — s).
Example 1. Suppose A\ = [0, A2, ..., \,] holds with 0 > Ay and \; > A\,
for2<i<n-—1.Then\V=[n—-A\,—1,n—Xp_1—1,....,n—Xa—1,n—1].

Dualising is compatible with the normalized block equivalence ¢¢, of sec-
tion 15.

Lemma 21.3. For irreducible i-atypical L we have ¢t (L") = ¢t (L)V.
Proof. If L is i-atypical, then ¢! preserves the distances between the

sectors, hence ¢/, (L) = Ber~® ¢}, (L"). Since we remove 2(n — i) symbols
from the weight diagram of L, we obtain the shift

(L") = Ber 2" @ g, (L)".
Now we calculate for the normalised block equivalence
¢L(LY) = Ber"*¢i (LV) = Ber" *Ber=2"=k) gl (L)Y
= Ber ™ @ §i,(1)Y = (Ber" )Y @ 6(L)" = (Ber" " @ ¢4 (L))"
= ¢n(L)".
U

Lemma 21.4. For maximal atypical irreducible L = [\, ..., \,] such that
An = 0 the following assertions are equivalent.
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(1) LY = [py, ..., pn] holds such that p,, > 0.

(2) Lisbasic,i.e. \y > ...\, > 0and \; < n—i holds foralli =1, ...,n.

(3) M <n—1and LY = [X},...,\%] holds for the transposed partition
N = (A}, ..., A¥) of the partition X = (A1, ..., \p).

Remark. The number of basic maximal atypical weights in X (n) is
equal to the Catalan number C,,.

Proof. 1) implies i1): If p, = 0 the leftmost V in the weight diagram of [p]
is at position —n + 1. Then the smallest A bound in a cup is at a position
< 1and > 1 — n. After the change (I, K) — (I,I — K) and the reflection
s — 1 — s this means that the rightmost V in [p]" is at position < n — 1 and
> 0 which is equivalent to 0 < \; < n — 1. Likewise the i-th leftmost A
bound in a cup is at a position > —n + i + 1 and < n. It will give the i-th
largest V in the weight diagram of [\]. After the change (I, K) — (I, — K)
and the reflection the i-th largest Vv is at a position < n — 2i + 1 which is
equivalent to \; < n—i. i1) implies 1): If X is basic the largest V is at position
< n — 1, hence the largest A bound in a cup is at position < n. It gives the
smallest \V of [A\]Y. Hence the smallest \ of [\]V is at a position > 1 —n
which is equivalent to A > 0.

i1) implies iii): If A is basic, the 2n vertices in cups form the intervall
J := [-n+ 1,n] of length 2n. If J, is the subset of vertices labelled by v,
the subset J \ Jy is the subset of vertices labelled by A. The intervall J is
preserved by the reflection s — 1 — s. If \ is basic, so is A*. We use the
following notation: If

)\1:...:)\51>)\31+1: :)\32>)\52+1:---:)\s7.>)\s,.+1:0

putd; = sy and §; = s; — s;—1 and A; = As, — Ag, 411 Likewise for \* with 6
and A?. Then
5 =N, AN =61,

=7
Then the weight diagram of [A\*] looks, starting from n and going to the left
55 Aj 83 A 5
LV UVALLAVLLUVA LAV LV ALLLA

and the weight diagram of [\] looks, starting from —n + 1 and going to the
right like
AT:(Sl* 57‘:AI Arfl:é‘; 67~71:A;

—N N N N
V...VA...AV...VA...AN V...V ....

The two weight diagrams are mirror images of each other and the rule for
the V’s in cups in one is the same as the rule for the A’s in the cups of
the other. Hence after the change (I, K) — (I,I — K) and the reflection
s +— 1 — s the two weight diagrams agree. iii) implies 1): trivial. U
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Example 3. Duals in the R3-case. If a > b > 0, then [a,b,0]Y = [2,2 —
b,2 —a] = Ber’ %[a,a — b,0]. If a > 1 then [a,a,0]Y = [2,1 —a,1 —a] =
Ber'=%[a +1,0,0] = Berl-a8§at!,

A better description. If L = L(\) is an irreducible maximal atypical
representation in R, its weight X is uniquely determined by its plot. Let
Si...52...S) denote the segments of this plot. Each segment S, has even
cardinality 2r(S,), and can be identified up to a translation with a unique
basic weight of rank r(S,) = r, and a partition in the sense of lemma 21.4.
For the rest of this section we denote the segment of rank r(.S,) attached
to the dual partition by S}, hoping that this will not be confused with the
contravariant functor . Using this notation, Tannaka duality maps the plot
S1..82...5) to the plot S;...55..5] so that the distances d; between S; and
Si+1 coincide with the distances between 57, ; and S;. This follows from
proposition 21.2 and determines the Tannaka dual LY of L up to a Berezin
twist.

The dual forest. If we identify the basic plots with rooted trees S; < T;,
we can describe a weight by a spaced forest

F = (d077.1a d177—27 ceey dk‘—177;€)
where dy = \,,. We describe the dual in this language.

Grafting. Given a planar forest 7 = 77 ... 7, of planar rooted trees, we
can introduce a new n-ary root and graft the trees 7; onto this root. This
new tree is called the grafting product V(77 ...7,) of 71 ... T,. The grafting
product of the trees in a spaced forest is obtained by forgetting the distances
and simply taking the grafting product of the trees.

Example. Consider the forest of two rooted planar trees

/N

o/.\o

Grafting this planar forest gives the forest with the single tree
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o
® / \ [ ]
[ / [ /
° / \ [
Mirror tree. If T is a planar rooted tree, then the mirror image 7*

of T along the root axis is recursively defined as follows: Put (V(0))* =
V(0), 0* = 0 where ) is the empty tree and extend via

(V(Ti . T))* = VT T7).

AN

Example. The mirror image of the grafted planar tree above is
o
N
\ [ \ °
° / \ [

Lemma 21.5. The weight of the dual representation corresponds to the
spaced forest

/

F'= (d8777€*7 T’ 77<:*—1> dza SR Z—la ’Tl*)
where df :==dj_;fori=1,...,k—land dj=—dy—dy — ... —dj—1 and T;*
denotes the mirror image (along the root axis) of the planar tree T,.

Proof. The claim about the distances dj, ..., d;_, follows from the de-
scription of the dual plots. We first prove the claim about dj. Now d =
(1 —b) +n — 1 where b is the last point of the rightmost sector with rank ry,

b= XA+ (2rp —1).
Hence dj = —b+n=—X\; —2r; +n+ 1. Now use that \; = (A, —n+1) +
2r1+...+2rp_1 +di + ...+ di_1, hence
dy=[-+n—1-2(m~+...4rp-1)—(di+...+dx—1)] —2rp+n+1
= An—(di+...4dp1)=—do—di... —di_1.

It remains to prove that if S; corresponds to 7;, then the dual plot S} corre-
sponds to the mirrored tree 7;*. We induct on the rank of the sector. The
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case 1, = 1 is clear. If [a,b] is a sector, then A(a) = B and A\(b) = B. Ac-
cording to proposition 21.2 the dual plot is obtained by first exchanging H
and B and then reflecting s — 1 — s. Hence the dual plot of S} is obtained
(ignoring distances) by keeping the outer labels B and 5 of the sector and
dualising the plot of the inner segment [a + 1,b — 1]. This corresponds to
keeping the root of the tree 7; and calculating the dual of the forest of the in-
ner trees obtained from 7; by removing the root of 7;. More precisely: The
tree to the dual plot S is obtained by taking the grafting product of the in-
ner subtrees corresponding to the dual of the plot of the inner segment. The
interval [a + 1,b— 1] is a segment consisting of sectors S ... S; correspond-
ing to the trees 77 ...7;. Dualising the inner segment yields by induction
the forest 7,* ... 7;* since the ranks of inner sectors are smaller than the rank
of S;. Hence the tree corresponding to S is obtained by grafting the forest
7,%...T;. This is just the definition of the mirror image of 7;. U

Example. Consider the irreducible representation [11,9,9,5,3,3,3] in
R~. It has sector structure S; = [-3,4], So = [7,10] and S5 = [11,12]
with distances dy = 3, d; = 2 and ds = 0. The associated spaced forest is

do=3 ./.\.
/

[ J
The dual is the representation [1, 1, 0,0, —4, —4, —5] with sectors (from left
to right) S5 = [-11,-10], S5 = [-9,—6] and S7 = [—3, 4] with associated

spaced forest
[ ]
[ ] / \ [ ]

d1=2 L] d2=0 [ ]

dy = —5 . di=0 . d5 =2

22. COHOMOLOGY I

In corollary 20.5 we have seen that in the situation of the melting algo-
rithm one obtains surjective maps H'(p) : H*(A) — H*(L) for all i € Z. For
K = Ker(p: A — L) we therefore get exact sequences

0— H(K)— H'(A) — H(L) =0

for all integers i. Hence, if in addition H'(A) = 0 and H(L) = 0 vanish
for all i # 0, then H*(K) = 0 holds for all i # 0. Then K/L = A implies



COHOMOLOGICAL TENSOR FUNCTORS 95

Hi(A) = 0 for i # —1,0. Suppose, the same conditions are satisfied for
AV as well. Then also H(AY) = 0 holds for i # —1,0. Then, by duality
H'(A)Y = H*(AV), the cohomology modules H*(A) vanish for i # 0. This
proves

Proposition 22.1. For irreducible basic modules V- = [\, ..., \n—1,0] in
R, the cohomology modules H' (V') vanish for all i # 0.

Proof. We use induction with respect to the degree p = p(\) = Y.\,
where \; for ¢ = 1,..,n denote the coefficients of the weight vector. By
induction assume the assertion holds for all irreducible basic modules of
degree < p. For V' of degree p by the melting algorithm there exists an irre-
ducible basic module L of degree p — 1 and A with layer structure (L, A, L)
such that A = V @ A’, where A’ is a direct sum of irreducible basic modules
of degree < p. Since H'(L) = 0 for i # 0, H'(A) = 0 for i # 0 now fol-
lows from lemma 20.4. The same applies for the dual modules AV and L.
Indeed the dual module of a basic irreducible module is basic irreducible
again with the same degree < p — 1 (lemma 21.4) using > . A\; = >, A},
Hence the remarks preceding proposition 22.1 imply H?(A) = 0 for i # 0.
Since V' is a direct summand of A, this proves our assertion. U

23. COHOMOLOGY II

We calculate the Z-grading of D.S(L) for maximal atypical irreducible L.
The case of general L is treated in section 24.

Proposition 23.1. For maximal atypical irreducible L(\) in R, with
weight \, normalized so that \,, = 0, suppose )\ has sectors Si,..,S;, .., Sk
(from left to right). Then the constituents L(\;) of DS(L(\)) fori=1,....k
have sectors Sy, ..,0S;,..S, and the cohomology of L(\) can be expressed
in terms of the added distances 41, ..., 6, between these sectors as follows:

H(L(N) = @, LO)(=d)|.

Example. We know by the main theorem that DS(]6,4, 4, 1]) = I1[3, 3, 0]®
11]6, 4, 0] @ I1[6, 4, 4]. The proposition above tells us the Z-grading using

DS(V) =P mi(H (V).

leZ

In this example dy = 1, d; = 2 and dy = 0. The summand L()\;) is obtained
by differentiating the i-th sector in the plot associated to A, hence L(\;) =
[6,4,4], L(A2) = [6,4,0] and L(A3) = [3, 3,0]. We obtain

H*([6,4,4,1]) = [6,4,4](—1) & [6,4,0](—3) & [3,3,0](—3).
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Proof. In the special case where all distances vanish dy = --- = dj, = 0,
i.e. in case where the plot of A\ has only one segment, the assertion of the
proposition has been shown in proposition 22.1. We then prove the general
case of nonvanishing distances by induction with respect to (n and) the lexi-
cographic ordering used for algorithm I. This means: We prove proposition
23.1 recursively for L"P, thereby assuming that we already know the coho-
mology degrees of L4°"", I, and L*** (using the notations of algorithm I).
First recall the notations used for algorithm I:

L =(S---Sj—1) « distance d; — (S;Sj41---Si) « distance dj, — ...

LY = (51 cee Sj_l) « dist. (dj + 1) — /(Sj—i-l <o Sk) + dist. (dk — 1) — ...
for a sector S; with r(S;) = 1 supported at ¢ € Z. Recall A = (L, A, L) with

k
A= 1wa @i
r=1
Furthermore DS(L) = M™M= L** & (P, TI™» L, for DS(A) = D - A,
and A, = (L,, A, L,) such that the derivative d(A) of A is
d(A) = A +2(—1)"n-1paue
in Ko(R,). Obviously DS(L"?) has the summands

v>k
and
Lo = (51 <o Sj—l)---(dj—l + 2)...(Sj+1 .. Sk)(dk)sk+1 <o
This immediately implies the next

Lemma 23.2. The following holds
(1) DS(L") C L= @ DS(L)vP,
(2) None of the summands of DS(L"P) different from L™ is contained
in DS(L).
(3) L*™* is not a summand of @“ flu.

Proof. The last assertion holds, since the constituents of P, A, are ob-
tained from L, by moves. It can be checked that L*“* can not be realized in
this way. 0

The dj_y = 1 alternative. By the induction assumption H*®(L) contains
L with multiplicity 1, and L*** appears in cohomology at the degree
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dj—1. To determine H*(L“?) C H'(A) we may use step 11) of the proof of
theorem 19.3. It easily implies by a small modification of the arguments
that

H'(A)= P AoH N L)/H(EPL)oKern(HT(L) » H(K)).

mu=— B

Since H*(L)/(D,, L,) = L% by lemma 20.1 and since
HD)/(@ L) = Lo

p=1—i
for i — 1 = d;_; by the induction assumption, we get
Kern(H®*(L) — H*(K)) = L*"* |
and this implies
Kern(H™Y(L) —» H"Y(K)) = LY

for i +1 = d;_;. In other words DS(A) = A + 2 - L*“* and the two copies
of L% occur in the two possible cohomology degrees

dji+1.

Continuation of the proof for proposition 23.1. By lemma 23.2 the coho-

mology degree of the constituents of H*(L"P) that appear in
A, & A,
can be immediately read of from the degrees m,, i.e. from the cohomol-
ogy degrees of L, in H*(L). These degrees are known by the induction
assumption. This easily proves proposition 23.1 for all constituents L(\;)
of H*(L"P) that are not isomorphic to L***. Indeed, according to our claim
the cohomological degrees for the constituents L(\;) 2 L of H®(L"P) are
given by
0’... 70’dj—1 + 17dj—1 +dk,"' ,

and the summand L*** should occur in degree d;_; + 1. The cohomology
of H*(L) on the other hand is concentrated in the degrees

07"' 707dj—17dj—1+dk7"'

with the summand L®** corresponding to degree d;_;. All summands 2
L** precisely match, so this proves proposition 23.1 for all constituents of
H*(L"P) except for L,

It remains to determine the cohomology degree of L** C H*(L"P). As
already explained, the summand L*** occurs in degree dj_; —1 ord;_; + 1.
So to show that L*“* occurs in H*(L"P) for degree d;_; + 1, it now suffices
by the d;_; & 1 alternative to show that L% occurs in H” (€D, L") in the
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degree v = d;_; — 1. Indeed L appears in DS(L%v") = @ HY (L")
for Ldown .— L;low”. This follows from the structure of the sectors of

Ldewn — /(51 - 8-1)B(djm1 — 1)... Big1 Sjp1- -+ Sk

and the induction assumption. It gives the degree d;_; — 1, for d;—; > 1,
respectively in degree d;_; — 1 = —1, for d;_; = 0, for the summand L***
in H*(L%vn), Hence

Lovwr C Hd-7_1+1(LuP) ’

which completes the proof of proposition 23.1. U

24. COHOMOLOGY III

The cohomology of an i-atypical L can be calculated in the same way
using the normalised block equivalence ¢!, of section 15. We call an irre-
ducible module L of atypicality i ¢-basic if ¢/ (L) is basic in R;. These
will replace the basic modules in the proof of proposition 22.1. The unique
mixed tensor in a block of atypicality ¢ replaces the trivial representation.

Proposition 24.1. For irreducible ¢-basic modules V in R,, the coho-
mology modules H'(V') vanish for all i # 0.

Proof. The remarks preceeding proposition 22.1 are valid. By lemma
14.4 the cohomology of the mixed tensor L(\) is concentrated in one degree,
and by lemma 10.2 this degree is zero since \,, = 0. Since ¢}, (L()\)) = 1,
we induct as in the proof of 22.1 on the sum p = >, A; of the coefficients
of ¢ (L). The rest of the proof works verbatim. Note that the dual of a
¢-basic module is ¢-basic again of the same degree using ¢¢ (L)" = ¢ (L")
of lemma 21.3 and lemma 21.4. U

We can now copy the proof of proposition 23.1 to obtain the next state-
ment. Here the added distances o; are the distances in the plot ¢(\) associ-
ated to A in section 18.

Proposition 24.2. For irreducible L(\) in R,, with weight A\, normalized
so that ¢t (L(\)) = [)\‘f, e ,)\f’] satisfies )\f = 0, suppose \ has sectors
S1,., 85, .., Sk (from left to right). Then the constituents L(\;) of DS(L(X))
for j =1,..., k have sectors Si, .., 05}, ..S, and the cohomology of L(\) can
be expressed in terms of the added distances 01, ..., 0, between these sectors
as follows:

H*(L(N) = @)1 LV)(=0))|.
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25. THE FOREST FORMULA

Recall the functor DS, o : T, — Ty = svec, with its decomposition
DSno(V) = @yez D5 o(V)[—4] for objects V in T, and objects Df o(V) in
svecy. For V' e T,, we define the Laurent polynomial

w(Vit) = 3 sdim(Dl (V) -t/
ez

as the Hilbert polynomial of the graded module DS}, ,(V') = @D,z DfL’O(V).
Since sdim(W[—{]) = (—1)*sdim(W) and V' = @ D}, ,(V)[—{] holds, the
formula

sdim(V) = w(V,—1)
follows. For V = Ber?,

w(Bert t) = t" .

Indeed, H'(Ber!) = 0 for ¢ # i and H(Ber!) = Ber!_, for £ = i im-
plies DS(Bert) = Ber! _,[—i]. If we apply this formula n-times and con-
sider By = 1, we obtain DS, o(Beri) = DS"(Beri) = 1[—ni] from the
fact that DS, (L) = DS™(L) holds for simple objects L. This implies

DSpY (Berl,) = 1 and that DS}, o(Ber},) is zero otherwise.
Since DS, is a tensor functor, w(M ® L,t) = w(M,t)w(L,t) holds.
Hence
w(Berl, @ L,t) = t" - w(L,t) .

Similar as in the proof of lemma 3.1 one shows

wVV, 1) =w(V,t7 ).

Let now L = L(\) be a maximal atypical irreducible representation in
R.. Associated to its plot A we have the basic plot \y.s;. and the numbers
do, ...,d,_1. Furthermore, let S1S55---S; be the sector structure of Apgsic-
For the degrees r; = r(.S;) we define the number

k

k
DO =Y "m Y dj=> ridi

i=1  0<j<i i=1

Recall §;, = Zf;lo d, implies 6; < 6o < --- < §;, and 6; € Z*. Consider the
vector D with coordinates ¢y, . .., 0. Together with )\, the knowledge of
D determines \. For simplicity, we express this by writing A = D X A\pgsc In
the following argument. With this notation, our proposition 23.1 gives for
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DS(L) the following element in the Grothendieck group Ko(R,—1) ® k[t]

01 0 —1
di—1 k di—1—1
DS( 51 X(Sl T Sk)basic) - Ztéi‘ 61 X(Sl T 8Sz co Sk)basic
Oit1 i=1 Oip1+1
Ok o+ 1

where formally (and without loss of information) we replace the shifts [—v/]
by ¢”. In the following, we refer to this formula as the key formula. Now
0S; may introduce new sectors in (Sy---9S; - Sk)pasic- S0 if we want to
treat everything on an equal footing, we better count each sectors S; with
the multiplicity r;. This amounts to consider instead of the vector D the new
refined vector § in Z™ with the coordinates

(O, e e O1seee s Oy e s O0).
—_—

r1 Tk

Then the number D()\) defined above is just the sum of the coordinates of
this vector. With this new vector we have an analogous formula expressing
DS as above, where for the i-th summand on the right side one of the entries
§; of 6 has to be removed to obtain a vector in Z"~!. The right side is
now of the correct form to enable the application of the formula for DS
to the right side again. Inductively, after n steps this gives a complicated
expression with at most n! summands. The number of summands depends
only on \y.sic. Since the additional monomial term in ¢ obtained from each
derivative is of the form %5, for some shift factors s, not depending on
J, and since in each summand all coordinate entries of § will be finitely
successively deleted after n times applying DS, this vector disappears and
each of these summands has the form

tXima 5% P(t) x

for a certain Laurent polynomials P(¢) that depends on the specific sum-
mand and on A\, but that does not depend on the coefficients 01, ..., 0g. If
we compare with the case §; =... =, =0, we therefore obtain the following
translation formula:

w(L()\),t) = tD(A) . W(L()\basic)vt) .

This being said, we use that the basic plots of rank n are in 1-1 correspon-
dence with planar forests 7 with n nodes x € F as in sections 16 21 and
[Weil0]. For a planar forest, let #F denote the number of its nodes. We
visual each of the trees in a plain forest top down, i.e. with their root on the
top of the tree. Then, for each node x € F let F(z) denote the subtree of
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the tree containing = with all nodes removed that are not below the node z.
In this way the node = becomes the root of the tree F(x) by definition. For
a forest 7 we recursively define the quantum forest factorials

Flel = [[#F @) € 2]
TzeF

using the following abbreviations: For the number m = #F(x) of nodes in
F(z) we define the quantum numbers

tm —t™m

t—t=1

Clearly [m]); = (=1)™"'[m]_; = [m];-:. Obviously the tree factorial 7!
of section 16 equals [7];!. Example: For the forest F that contains only
one linear tree, the forest factorial [F];! specializes to the quantum factorial
[n]¢! = [1,,—;[m]:. For a planar forest F, given as the union of trees 7; for

[m]t =

i =1,...,k with r; nodes respectively, one has [F];! = [T"_,[7i];! and hence
AN STCT I ﬁ [#Ti]:
A Tt W

Observe, for a tree 7 the value [7[#7%?;! does not change under grafting, i.e.
replacing 7 by a new tree with #7 + 1 nodes by putting a new root on top.
Similar [7[%3{! does not change under the grafting of the planar forest F, that
replaces F by a forest with a single tree with #7 +1 nodes obtain by putting

a new root on top of all trees connected to the old roots of the trees of F.

Lemma 25.1. For irreducible maximal atypical representations L = L(\)
in R, we have the forest formula

w(L1) = PO e

where \psic IS viewed as the planar forest associated to L.

Proof. From the translation formula we may assume A = A\pqqc. Let us
first consider the simple case of basic representations L, where all sectors
S; for i =1, .., k are intervals I; = [a;, a; + 2r; — 1] where the support of the
plot S; is [ai, ..., a; +r; — 1]. The corresponding w(L, t) then only depends on
the ranks ry, ..., r of the sectors Sy, ..., Sk, hence will be denoted w., .., (%)
in the following. From the key formula then, for general basic A with sector
structure S;---S; and r; = r(.S;), similarly to the translation formula we
easily obtain the following generalized Leibniz formula

k

W(LA), ) = Wy (1) - [ ] w(L(S0), ),

=1
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where L(S;) denotes the irreducible basic maximal atypical representation
in R,, whose plot is S; (up to a translation on the number line). Now each
of these S; has a unique sector. For basic plots S with a unique sector (like
the .S;) the key formula obviously implies the following grafting formula

W(L(Sl)vt) = w(L(aS)vt)’

where L(0S) denotes the unique maximal atypical basic representation in
Rr(s)—1 Whose plot is 9S. So the forest attached to L(S) is obtained by
grafting the forest of 0S.

It is clear that inductively the translation formula, the generalized Leibniz
formula and the grafting formula determine the Laurent polynomials w(L, t)
for irreducible maximal atypical L € R, uniquely. Hence for the proof it
suffices that the expression on the right side of the identity stated in lemma
25.1 satisfies the analogous formulas and that it holds for n = 1. Indeed,
our assertion is obvious for n = 1. The translation formula and the grafting
formula for the right side are also obvious. To check the generalized Leibniz
formula, by the formula (*) from above it suffices to prove

> ril!
T lrale!
To this end it is helpful that fora = r +---+r and b = ripg + -+ - + 7y,

by the key formula, also the following version of the generalized Leibniz
formula holds

Wry e (t) =

wT1,~~~,Tk(t) = wa,b(t)w'rlyu-ﬂ‘i(t)wri+17--~7rk(t) .

So it suffices to verify that w, ;(¢)[a]![b]¢! = [a + b];!, which finally is proved
by induction on n = a + b. For this notice that the key formula immediately
implies the following generalized Pascal rule

Wap(t) = o Wa—1,6(t) +17" - wep—1(t)

for the generalized binomial coefficients wq (). Indeed, the derivative of
the two sectors 5159 give 0515, with dy = 0, d; = 1 respectively S1055
with dy = —1, d; = 1. Hence D(0515S2) = 0-(a—1)+1-b = b and
D(S51052) = —a+0- (b—1) = —a. Hence using the induction assumption,
we already know w1 4 (t)[a—1]![b]! = [a+b—1]¢! and wg p—1(¢)[a]:![0—1]! =
[a + b — 1];!. Hence the proof of the induction step finally amounts for the
quantum numbers [m]; to the following generalized additivity

la+b; =t [a]y + 7% [b];

that is easily verified. This completes the proof. U
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Since [n];! and [Apesic)¢! are products of certain Laurent polynomials [m],
for integers m, the forest formula implies w(L,—t) = + w(L,t). The for-
est formula also gives w(L,1) > 0. Since w(L,—1) = sdim(L), hence
w(L,—t) = sign(sdim(L)) - w(L,t). Recall that for irreducible L in R,
we defined a sign ¢(L) and that the sign of sdim(L) is (L), as shown in
section 16 and also in [Weil0O]. Finally, the forest formula also implies
w(L,t™1) Jw(L,t) = t—2PM for L = L(\). Hence we obtain

Lemma 25.2. For irreducible (maximal atypical) L = L()\) in R,, one
has the formulas w(L",t) = w(L,t™1) = t"2PWNw(L,t) and

w(L,—t) =¢e(L) - w(L,t) .

Example. For S+ in R,, and for integers d > 0
w(snfler t) _ 7fdfnJrl + 2fdfnJr?) 4t thrnfl — td . W(Snfl t) '

Lemma 25.3. For irreducible max. atypical representations L = L()\) in
R, the Laurent polynomial w(L,t) has degree p(\) = > | \; in the sense
that

Proof. This follows from the key formula. Indeed its i-th summand gives
rise to shifts by ;11 + 1,...,0r + 1. To determine the highest cohomol-
ogy degree of L(\) one has to look for the maximal contributions from
all these shifts. Each time we apply DS, the maximal contribution is ob-
tained from the first summand ¢ = 1. Hence the highest ¢-power arises from
the first summands of the key formula each times we apply DS (n-times),
in other words by applying the derivative 0 each time to the leftmost sec-
tor. In particular the highest t-power of w(L(\),t) is t°* times the highest
t-power of w(L,t) for the representation L € T,_; associated to the plot
(051)Sz2 - - - Sk with the new vector 6 = (61,...,01,02 + 1,--- , 0 + 1) with
one copy of d; deleted. Now it is not hard to see, by unraveling the weight
associated to this spaced forest, that the associated representation L is the
highest weight module L()\) in the sense of Lemma 10.2. Therefore, the
highest t-power of w(L,t) is t* times the highest t-power of w(L,t). In
other words deg;(w(L,t)) = A\, + deg;(w(L,t)). By induction on n hence

degi(w(L,t)) = An + p(A) = p(N). U
Therefore the forest formula implies

Corollary 25.4. For irreducible maximal atypical representations L =
L(\) in R,, one has the formula D()\) = p(\) — p(Apasic)-

By lemma 25.3 and 25.2 furthermore
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Corollary 25.5. For irreducible maximal atypical representations L =
L(\)inR,

w(L,t) = tPM 4 Z ag -t + I
a(A)<t<p(A)

holds for p(A) — q(A) = p(A) + p(A) = 2 p(Apasic)-
Proof. From the forest formula and lemma 25.2 we obtain

Q()‘) = D()‘) + q(Abasic) = D(A) - p()‘basic) :

Hence p()\) — ¢(\) = 2p(Apasic). Since w(LV,t) = w(L,t~1), we obtain
p(AY) = —¢(X) = =D(X\) 4+ p(Apasic). Combined with corollary 25.4 this last
formula gives p(A) + p(AY) = 2p(Avasic)- O

26. I-MODULE STRUCTURE ON THE COHOMOLOGY Hjp)g

In this section we show that the cohomology of the operator DS, ¢ is a
graded module under the invariant algebra I = A®(p_1)* defined below. As
an application we compute the cohomology and the Hilbert polynomial of
a maximal atypical Kac module V'(\) for the operator D.S,, 5. We also show
that the projection of V() to L(\) induces a map on the DS,, o-cohomology
which vanishes except in the top degree p(\). Note that it does not make
sense to consider the Hilbert polynomial w(V,t) for V= V(\) and the Dirac
operator D since any Kac module is in the kernel of Hp.

The tensor functor associated to an element = in X = {x € g1 | [z,z] = 0}
only depends by [DS05] on the Gy-orbit on X. We therefore work in this
section with the operator DS, associated to the action of the element

0 ud
ID): n
o )

which is clearly in the same Gg-orbit as our usual choice of = € g; with
1’s in the anti-diagonal. It defines a (graded) tensor functor DS, : T,, — Tj
which is isomorphic to DS, .

Notations and conventions.

e Let H denote GI(n) diagonally embedded into Gy = Gi(n) x Gi(n)
via g—diag(g, g) € Go. Then Lie(H) = gl(n).
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e We consider the subalgebra p C g with grading p =p_ @ po ® p

p-=((J o) 12 < ot

X

po=((5 1) I e i) = Lie(rn)

P+ = {<8 uén>}

e Recall that the restriction of the Kac module V() to p is given by
VNlp = A%(p-) @ Lo(A)

where L () is the irreducible go-module Ly () trivially extended to
the parabolic subalgebra of upper triangular block matrices.

e We write in this section p¥ X p for the irreducible representation
Lo(\) of go which is given by the external tensor product of the
irreducible gl(n)-representation p¥ of weight (\,...,\,) with its
dual of weight (—\,, ..., —A1). If viewed as a representation of H C
G| this becomes pV ® p = End(p). In this notation V' (\) = V(p'Xp)
and L(\) = L(p¥ X p).

e The tensor product p¥ X p contains the trivial representation with
multiplicity 1. We call a vector in this subspace an H-spherical
vector. In this sense Ly(\) has an H-spherical vector if and only if
A is maximal atypical.

The action of the generator D of p, on p-modules induces the operator
denoted DS, in the following. In particular D acts on p and the ideal p_ @ pg
via the adjoint representation. Notice Lie(H ) acts on pg = Lie(H) by the
adjoint representation of Lie(H) and on p_ by the adjoint action of p such
that the map

is a Lie(H)-linear isomorphism p_ 2 p, inducing a canonical identification
A®(p_) = A®*(po) of H-modules.

The universal enveloping algebra U (p) of p contains the universal envelop-
ing algebras U(p_ @ pg) and U(p_) as subalgebras. For § € A*(p_) = U(p-)
the supercommutator [D, ] is contained in U(p_ @ pg). For a basis z;; of
Lie(H) it has the form [D, 0] = 0o+ 061 with 0, =377, 6;;-2;; for uniquely
defined elements 6y, 0;; € A®(p_) = U(p_).

We now consider V() as a p-module

V(p" B p)lp = A*(p-) ® End(p).
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Lemma 26.1. The operator DS, induces the Lie algebra homology dif-
ferential 5 on the Chevalley-FEilenberg complex A*(p_) ® End(p).

We shortly recall the definition. For a Lie algebra g and a g-module V' we
consider the complex with p-th entry V,,(g, V) = AP(g) ® V and differential
§:Vp(g,V) = Vpo1(g, V) givenforp > 2by §(z1A. . .Azp®@v) = Oy@v+0:(v)
for x1,...,z, € g where

0o @ v = (Z(—l)“Jr”[J:M,ZB,,]@xl/\.../\iu/\.../\ﬁjy/\.../\mp)®U
pu<v

01(0) = 3 ()" A Ady A A ) @ ()

v=1

Proof. D acts on an element z1 A. . Az, ®@p in A®(p_ )R End(p) for z1, ..., z, €
p_ and ¢ € End(p) as

Dz A...ANzp ® )
:Zﬂ:l'l/\...]])(l‘i)/\...ZET(X)gO:l:Zl‘l/\.../\l‘r@D(QD)

with D(z;) € po. The second sum vanishes since D(p) = 0 for all ¢ €
End(p) by definition of the Kac module. We now evaluate the first sum. D
acts on an element in p_; by the supercommutator

0 idy\ (0 0\] _ (= 0) _
0 0/)'\z0)] ~\o z) P
Therefore D acts on an element in V() as

D(:L‘l/\.../\iﬁr®90)
=[D,z]zo AN A, @@ —x1 ADyzo]Ts ALl AN, @@
+ (=) AL Dz @

— (™ 0 (o Ao N @ ) — 1 A z2 0 (3N o ANz @)+ ...
0 x1 0 =

0
+ (—1)T+1x1 N o NTp 1 ® (mr > ()
0 =x
where the derivations [D, z,| € po act on all terms to the right. The 6;-term
arises from the action of [D, x, ] on the last term ¢ to the right, the remaining
terms lead to a sum with the 3, _ -condition defining the fo-term. O

Viewing 0 := x; A --- A z, as an element in the universal enveloping al-
gebra U(p_) of p_, the super commutator [D, §] in the universal enveloping
algebra U(p) of p is [D, 0] = 6y + 67 with #; in the universal enveloping alge-
bra U(p_&po) of p_ & and 6y in the universal enveloping algebra U (p_) of
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p_ as defined above, but viewed as element in the universal enveloping al-
gebra of p. Furthermore 6; annihilates H-invariant vectors in any p-module.
Stated in this form, the assertion obviously holds for arbitrary elements 6 in
the universal enveloping algebra of p_.

H*(V(X)) and the theorem of Hopf. Lemma 26.1 identifies Hp g (V()))
with the Lie algebra homology ring He(p, End(p)). We recall some facts
about Lie algebra (co)homology. Note that H,(g) = H*(g).

Let g be a reductive Lie algebra and A°®(g)? the space of invariants under the
adjoint action of g. It has the structure of a graded super Hopf algebra. Let
P(g) denote the space of primitive elements, i.e.

Plg)={xcA(g)? | Alx)=z1+ 1z}

where A denotes the comultiplication. Define a grading on P(g) by requir-
ing that the inclusion P(g) — A®(P(g)) preserves degrees.

Theorem 26.2. [Meil3, Theorem 10.2, Corollary 10.2, Corollary 10.3]
(Hopf-Koszul-Samelson)

(1) The inclusion of P(g) in A®*(g)? extends to an isomorphism of graded
super Hopf algebras A*(P(g)) = A®(g)®.

(2) There is an isomorphism H*(g) = A*(P(g)) of graded super Hopf
algebras, i.e. the cohomology ring is an exterior algebra over the
primitive elements. In particular the elements in A®*(P(g)) are closed.

(3) The space of primitive elements has dimension rank(g). For gl(n)
the basis elements f1, fs, .., fan—1 € P(g) have degree 1,3, ..,2n — 1.

We now apply this theorem for the Lie algebra g of H and the H-invariant
ring I in the universal enveloping algebra of p_ using the following iden-
tifications I =2 A*(p_ )7 = A*(po)? = A°(g)® = V(1) for the invariant
ring

I:=U(p ).
From theorem 26.2 we obtain the following corollary.

Corollary 26.3. The cohomology H},g (V (1)) is isomorphic to I = V(1)
and I has the structure of a supercommutative polynomial ring C{ f1, .., fon—1}
generated by elements f, in the degrees 1 — 2v for v = 1,..,n. In particular

wps, (t) = [Ja+t).
v=1

Lemma 26.4. For any p-module V, the cohomology group Hp,g (VH) is
a graded I-module.

Proof. By theorem 26.2 we have D(v) = 6y(v) + 61(v) = 0 for every
element v € V(1)#. Since 6;(v) = 0 holds for H-invariant vectors, we get
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6o(v) = 0 and hence 6y = 0 holds in U(p_). This implies [D, 0] = 6, for all
0cU@p_ )T =A(p_)! =1 Forany P ¢ I, hence D, P] = P, € U(p) anni-
hilates H-invariant vectors. For any finite dimensional algebraic p-module
V, V in particular is an U (p_)-module and the subspace V obviously is an
I-module. Since D commutes with H, we obtain a linear map D : VH —
VH, For P € I and v € V¥ the formulas D(Pv) = [D, Plv + PD(v) and
[D, P] = Py and Piv = 0 imply D(Pv) = PD(v) for all v € V. Hence
the subspace of D-coboundaries resp. of D-closed elements in V are both
I-modules. U

Lemma 26.5. For finite-dimensional gl(n|n)-modules M the following
holds: Hyg (M) = Hpyg (M™).

Proof. H commutes with D and operates therefore on the cohomology
Hpg (M). Since H is reductive, a finite-dimensional representation of H is
trivial if and only if its restriction to a Cartan subgroup is trivial. We there-
fore show that the diagonal torus 7" C H acts trivially on the cohomology.
By the Leray spectral sequence

DSn,nfl o DSn,17n,2 0...0 DSl,O — DSn,O = DSn
By section 5 DS, ,—1 is invariant under

0
Hn,nfl =

DSy, —1 -2 1s invariant under

0

and so on. Hence Hp g (M) has a filtration which is respected by 7' such
that 7" acts trivially on the graded pieces. Since T" acts in a semisimple way,
this implies that the operation of 7', and therefore of H, is trivial. U

Proposition 26.6. For M € R, the cohomology Hp g (M) is a graded
I-module for the graded polynomial ring 1. For morphisms f : M — M’ in
R the induced map Hp g (M) — Hpyg (M') is graded I-linear.

Proof. This follows from the lemmas 26.4 and 26.5. 0

Lemma 26.7. Let p be an irreducible representation of Gl(n). Then the
map
e V)|, = V(' Rp)ly , v®@l—v®id,
is a p-linear inclusion.
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Proof. We have z,(p) = 0 for all v if ¢ € Endg(p) = Cid,,. U

Remark. Every maximal atypical g-module V, when restricted to go, has
the form V|, = @ p, X p,, with deg(p,) = deg(p,). This degree makes V'
into a graded p-module. For V(1) we obtain the degree defined previously.
For V(p¥ K p), id, has degree deg(p). Therefore ¢ shifts the degrees by
deg(p). The degree deg(p) coincides with p(\) for p with highest weight
A= (A1, ).

Lemma 26.8. The induced morphism
Hps, (0) _ etde
Hps, (V(1) == HpS P (V (0" & p))

is a graded isomorphism on the cohomology. Hence H;gieg O v (pY ®p))
is the free I-module of rank one generated by the top cohomology.

Proof. As a p-module
V(p" ®p)lp = o(V(1)) @ (A(p-) © End’(p))
where
End’(p) = {¢ € End(p) | Tr(¢) = 0}.
Since D € p, we obtain
Hps, (V(p' B p)) = Hpg (p(V(1)) & Hpg, (A(p-) @ End’(p)).

By [HS53] the Lie algebra cohomology for reductive H with coefficients in
a representation W is trivial except for the trivial representation

H*(Lie(H),W) = H*(Lie(H),1) @ WH.
Since the Lie algebra cohomology is dual to the homology, this shows
Hps, (A (p-) ® End’(p)) = 0.
Since § = adp commutes with ¢, we get
Hs, (VD) go—r Hps, (A (p-) @ idy)
up to the degree shift with deg(p). U

Corollary 26.9. For the Hilbert polynomial of V(\) relative to D we

obtain
n

wps, (VN 8) = ) - wpg, (V(1),8) = #O . T (1 + £2),
v=1
Theorem 26.10. Let L()\) be an irreducible and maximal atypical rep-
resentation and pr : V(\) — L(\) be a projection onto the top. Then the
induced homomorphism

Hps, (pr) - Hpg, (V(A) = Hpg, (L())
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is zero in degrees v < p(\) and an isomorphism for v = p(\).

Proof. As a graded I-module H},g (V(p'Xp)) is the free I-module gener-
ated by the cohomology in the top degree. To prove our claim it suffices that
the primitive elements f1, f3,..., fon—1 € I act trivially on Hy,g (L(p'Xp)).
This follows from the discussion in section 25, lemma 25.2, which shows
forv=1,...,n

HEd? ™ (L(pY 8 p)) = 0.

27. PRIMITIVE ELEMENTS OF Hp,g (V(1))

We will now describe the primitive elements of Hp,g (V/(1)) in terms of
the representation theory of the superlinear group Gi(n|n). The radical fil-
tration on V(1) defines a decreasing filtration F; of V(1). The H-invariants
FH coincide with the powers (I1)? of the augmentation ideal I+ of the in-
variant ring I = V(1)#. In this way monomials of degree i in the primitive
generators f1, ..., fon,—1 can be identified with the generators of the cohomol-
ogy H*(F'/F/L,).

The Murnagan-Nakayama rule. Let A\ = (A\q,...,\,) with Ay > X9 > -+ > A,
be a partion of degree n = deg(\). For partitions v and p of m and n — m
let Cflu denote the Littlewood-Richardson coefficient. Assume that v is a
hook, i.e a partition of type v; =7, 9o = -+ = vy,_41 = 1 and v; = 0 for
i > m —r+ 1. Recall that a hook 1s a special case of a rim hook (also called
skew hook). We say v is a symmetric hook if m = 2r — 1. According to
[Sa01, Section 4.10] we have

Proposition 27.1. Suppose v is a hook. Then cﬁy = 0 unless the Young
diagram of p is contained in the Young diagram of \ and the complement
A/ is a union of k edgewise connected rim hooks. If this is the case, then

kE—1
A
3= (o)
where r = vy and c is the number of rows spread by the rim hooks contained
in\/p.
We remark that in [Sa0l] ¢ denotes the number of columns instead of

rows, since Young diagrams in [Sa01] are written top down instead of being
written from left to right, as with our conventions.

Corollary 27.2. Suppose )\ and v are symmetric hooks. Then Cﬁu =0
unless p=v or v=0.

Proof. Suppose ci‘w # 0. By the proposition the edgewise connected
components of \/x are rim hooks, hence #(\/u) < 2. Since deg(v) is
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odd for symmetric hooks and #(\/u) = deg(v), we may assume without
restriction of generality that #(\/u) = 1. But this gives a contradiction
since deg(\) —deg(n) = 1 would be the difference of two odd numbers. [J]

Let p¥ denote the dual representation of p. Suppose \ is a partition of n and
A* is the dual partition of n, then define (p))* := p,- for the representations
p = px of GL(n) with highest weight \.

Corollary 27.3. Suppose that v is a symmetric hook of degree 2r — 1 and
suppose k = 1 (in the notation of proposition 27.1). Suppose the rim hook
A/ reaches from (i, ;) to (j,\;) where i > j. Then cf;,, = 0 hold unless
)\i — )\j:i —j:T.

Proof. Since k = 1, (*~!) # 0if and only if \; — \; = ¢ = r. Since v

is a rim hook, we have 2r — 1 = deg(v) = (A\i — Aj) + (j — i) — 1. Hence
Xi —Aj =rimplies j —i =r. J

The Lie superalgebra gl(n|n) and primitive elements of gl(n). The following
proposition is a well-known consequence of the dual Cauchy identity.

Proposition 27.4. [BSch17, Theorem B.17] The space of matrices M, (k)
is a Gl(n, k) x Gl(n, k)-module in a natural way by left and right multipli-
cation, hence also the Grafimann algebra A := A*(M,(k)). As a represen-
tation of Gl(n, k) x Gl(n, k) we have

A*(Mn (k) = @5 p" R p*
P

where p = py runs over all partitions in
Pnyn)={A€Z"|n> N >X>..2>2 )\, >0}.
Warning: The degree deg(p") is the the negative of the degree in the GraB-
mann algebra A!
Corollary 27.5. Let H = GL(n, k) be embedded diagonally. Then
Ii= A*(Mon ()" = P (0" B p)"
P

and (p¥ X p*)H #£ 0 if and only if p = py for a symmetric Young diagram
A = X There exist 2" symmetric Young diagrams with A\ = (A1, ..., \,) and
)\1 S n.

The space I is an algebra with respect to the wedge product. The subspace
I'™ C I of elements of degree > 1 is an ideal (the augmentation ideal).

Proposition 27.6. [Meil3, Proposition 10.11] I't decomposes as
I = P(H)® (IM)?.
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Corollary 27.7. With summation over all p= p), for symmetric hook dia-
grams )\ of degrees deg(\)=1,3,5, ....,2n—1 the space of primitive elements
is

P(H) = P (0= p)".
p
Proof. This follows from the fact that for hook diagrams A the space py
cannot be a constituent of p, ® p, for u = p* and v = v* where (p); X p;)H
and (py, ¥ p;)H are constituents of 1. Hence (p} X p}) cannot be contained
in (I7)2 O

The index. The selftransposed weights Ay = (i, ..,4,0,..,0) fori = 0,..,n in
P(n,n) are called the basic selftransposed weights. The index ind(\) of a
selftransposed \ in P(n,n) is the maximal index ¢ of a basic selftransposed
A:; whose Young diagram is contained in the Young diagram of A. The index
of )\ is the unique 7 between 1 and n such that \; > i and \;;1 <. We denote
by P;(n,n) the set of all weights in P(n,n) with index i.

Proposition 27.8. Using that A = V (1), the canonical filtration defined
by the radical filtration of V(1) in the category of gl(n|n)-modules gives a
filtration F; on A such that

F; = @ (p" X p*)

p

for all p = py running over all partitions \ containing the partition (i*) of

degree i2.

Before the proof we recall that V(1) has a decreasing filtration (the rad-
ical filtration) of GI(n|n)-subrepresentations with n + 1 irreducible graded
pieces L; such that Ly = k is the maximal irreducible quotient representa-
tion. The highest weights of the L; can be computed from [BS11, Theorem
5.2] to be the duals

Ay = (0,0, =iy, —i) ,  for i=0,..,n
of the basic selftransposed weights \; in P(n,n).

Proof. We need to show that the representation L;, considered as a repre-
sentation of G C Gl(n|n), decomposes into a direct sum over the duals of
all irreducible representations p(\) X p(A*) for which

A€ Pi(n,n) .

Consider the decomposition of LY under G = Gi(n) x Gl(n). Let A =
(A1,.., An) be a corresponding highest weight of G in L;. We then claim
ind(\) = i. Obviously

A > Ny = (iy ey, 0,00, 0) .
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On the other hand we have
V(1) = (det" K det™) @ V(1)

since the dual of a Kac module is a Kac module. Hence, since the order
of the socle layers in the dual Kac module is reversed and since the Loewy
length of V(1) is n + 1 [BS11, Theorem 5.2], this implies

LY = (det” X det™) ® Ly_; .

1

This in turn implies
A< (1) + Ay = (1 ey 1)

with i copies of n and n — i copies of i. Both estimates together force
Ai > i and A\;iy; < i, hence ind(\) = i. This proves our claim. Since any
A in P(n,n) appears in one of the LY, LY then consists precisely of the
G-constituents p(A) X p(A*) for A in P;(n,n). U

Corollary 27.9. F! = (I"), hence we can identify monomials of de-
gree i in the primitive generators fi,..., fan—1 with the generators of the
cohomology H*(F' /FH,).

We introduce the notation Prim; C It for the space that is spanned by
monomials in the primitive elements f,,_; with exactly ¢ factors. In this
notation Prim; = P(H).

Proof. By corollary 27.7 Prim; is a complement to Ff!. We now show
Prim; N Filil = 0 by induction on i. Using the induction assumption and
Prim; = Prim;_; - Prim;, the space Prim; only gives rise to Young di-
agrams X that occur in the tensor product of some p € Pj(n,n) for j < i
and a symmetric hook v € Pi(n,n). By proposition 27.1, u is obtained
from A by removing a (possibly disconnected) rim hook. If A € Py(n,n),
this implies j = k or j = k — 1 and hence k¥ < j + 1 < i. This proves
Prim; N Ff{, = 0 since all selftransposed weights X in F//, are contained
in Py(n,n) fork > i+ 1.

This implies Prim, N FjH = 0 for v < j. Since I is the direct sum of
@._, Prim, and (I*)"*, this implies that FI, is in the complement of
@._, Prim, and therefore Fl, C (I7)"*!. There are (") selftransposed
weights A € P;j(n,n) and all of them occur in V(1) with multiplicity one.
On the other hand, the space Prim; C I* that is spanned by monomials
in the primitive elements f5,_; with exactly ¢ factors also has dimension
(). Since the dimensions agree, this implies (I7)"! = Ff, and Prim; is
therefore represented by (F;/F,11) = H?, s, (Fi/Fit1). U
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28. KAC MODULE OF 1

Overview. We now study the effect of DS on indecomposable modules
in the remaining sections 28 - 31. The easiest examples are perhaps the
extensions of two irreducible modules, and we focus here on the case of
extensions of the trivial representation 1 by another irreducible module.
Our main result in these sections is corollary 31.5, saying that a represen-
tation Z, such that the projection onto its cosocle 1 induces a surjection
w: w(Z) = w(1), 1s equal to the trivial representation. Such a represen-
tation Z contains extensions of the trivial representation 1 with other irre-
ducible representations. We show in the resumé of section 29 that if Z is not
irreducible, we obtain extensions V' of 1 by an irreducible representation
such that the induced morphism w(V) — w(1) is surjective. Since the di-
mension of Ext!(S, 1) is at most one-dimensional, any two such extensions
are isomorphic. Hence we can study them by realizing them as quotients
of modules whose cohomology is sufficiently understood. A typical exam-
ple occurs in the current section 28: The Kac module V(1) of 1 contains
an extension of 1 with the irreducible representation [0, ...,0, —1]; and by
considering the cohomology of the Kac module we are able to compute the
cohomology of this extension and its dual in lemma 28.2 and lemma 28.4.
We also show in corollary 28.6 that w°(V') = 0 for the extension V' between
1 and Ber @ S™~!. The other n nontrivial extensions of 1 (listed in lemma
31.2) are studied in section 31. We realize these extensions as a quotient
of the mixed tensor R(n") studied in section 30. The key proposition 31.1
shows that for any of our nontrivial extensions V' the zero degree part w®
of the induced map w(gy) : w(V) — w(1) vanishes, a contradiction our
analysis in the resumé of section 29, hence Z ~ 1.

The constituents of the Kac module V(1) € R,, are [BS11], thm. 5.2,
L, = Ber *®la,..,a,0,...,0] for a=0,...,n,

where the last entry of « is at the position i = n — a. Therefore Ber® ® L, is
basic and therefore has cohomology concentrated in degree zero, hence the
cohomology of L, is concentrated in degree —a and

H %Ly 21, ® I,1 , a=0,1,..,n
where I_1 := I,, := 0 and
I, == Ber “1'®[a+1,..,a+1,0,..,0]

(with n — a — 1 entries a + 1 and a entries 0). Notice Iy = Ber @ S"~! and
Iy=1,1 =10,.,0,-2],....,I,_1 = Ber~". For the cyclic quotient @, of
V(1) with socle L, this implies inductively
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Lemma 28.1. The natural quotient map QQ, — 1 induces an isomor-
phism H°(Q,) = H°(1) = 1 and

L,el, 1 v=0,..a,

0 otherwise.

H_V(Qa) = {

Notice Q, = V(1) fora = nand Q, = 1 for a = 0. Similar as in the proof
of the last lemma, for K, = Ker(V(1) — @,)) and ¢ < n — 1 we obtain
exact sequences

0 — H*(K,) — H V(1)) — H*(Qa) = 0.

Indeed, the cohomology of H*(K,) is concentrated in degrees < —a — 1,
whereas the cohomology of H*(Q,) is concentrated in degrees > —a. We
can view these as short exact sequences of homology complexes

0 — (H*(K,),0) = (H*(V(1)),0) = (H*(Qa),0) = 0.

The long exact homology sequence for the Hz-homology together with
Hz(H"(V)) = Hp(V) (lemma 6.3) implies

Hp" (Ko) —= Hp*(V(1) — Hp"(Qa) —= Hp" " '(K,) — Hp" "' (V(1))

and HY(V(1)) = 0 for all v hence gives H%(Q,) = HY '(K,). Now
HY(Qq) vanishes unless v > —a by lemma 28.1. The right hand side
H"71(K,) is concentrated in degrees v < —a. Hence the long exact ho-
mology sequence has at most one nonvanishing connecting morphism 4,
namely § : Hy*(Q.) — Hp* '(K,) in degree —a. Hence H%(Q,) = 0
for v # —a. Since there is a unique common irreducible module I, in the
cohomology H~17%(K,) and H~%(Q,) such that d(Q,) = +I,, we conclude

Lemma 28.2. For 0 <a <n—1we get

I, v=-a,

HB(Qa) = {

0 otherwise.

Remark. This result shows that for the H},-cohomology there are do not
exist long exact sequences attached to short exacts sequences in R,,. If these
would exist, then Q1/L; = 1 would imply H,'(L1) = H;'(Q1), in contrast
to Hy'(Ly) =2 L oland Hy'(Q1) = 1.

Corollary 28.3. HL(V) =0forV = Q, and (Q%)" for1 <a<n—1.

Now we analyse in the case a = 1 the nontrivial extension

0—10,...,0,-1] - Q1 —-1—=0.



116 TH. HEIDERSDOREF, R. WEISSAUER

Since LY 2 [0,...,0,—1]Y = Ber®S" !, also V = (Q})" defines a nontrivial
extension
0= Ber@S" 1 -V —-1-0.

Lemma 28.4. V = (Q%)V defines a nontrivial extension between 1 and
Ber ® 8"~ in R,, such that in R,,_1 the following holds

{Ber @St v=1,

HY(V) = HY (V) =
(V) V) 0 otherwise.

Proof. The statement about H7 (V') follows immediately from lemma
28.2. We now calculate H”(V'). Since the cohomology of the anti-Kac
module (V(1)*)Y vanishes, 0 — (K7)" — (V(1)*)¥ — V — 0 gives

HY V)= HY((K})Y) =2 HYK;)Y , forall £.
K7 is filtered with graded components Lo, ..., L,, so that the cohomology of
K vanishes if the cohomology of the L; vanishes. Hence H~¢(K}) = 0
unless —¢ ¢ {—2,-3,...,—n} and HY(V) = 0forall » < 0 and all v > n.
On the other hand HY(Ber @ S"~!) = 0 for v # 1 and H(Ber ® S"!) =
1® (Ber® S™1). Since H*(V) =0, if H”(1) = 0 and H"(Ber ® "~ 1) =0,
therefore H” (V') = 0 unless v = 1. U

Applying (n — 1) times the functor DS to DS(V) € R,_1, the last lemma
gives

Lemma 28.5. If we apply n times the functor DS to V = (Q})" in Ry,
we obtain that

n—2
DSoDSo---0DS(V) = € k[-1—2v]
v=0

in Ry is concentrated in the degrees 1,3,--- ,2n — 3.

The Leray type spectral sequences therefore imply the following result

Corollary 28.6. For the module V = (Q%)" in R,, defining a nontrivial
extension between 1 and Ber @ S™1, we have

DSﬁO(V) = 0 and wﬁo(v) =0 fort<0

29. STRICT MORPHISMS

Recall the functor w : T, — svecy defined by w = wyo. A morphisms
q:V — Win T, will be called a strict epimorphism, if the following holds
(1) q is surjective.
(2) w(q) is surjective.
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For a module Z in T,, and semisimple L and
q: 4 —»L
we make the following
Assumption (S). The induced morphism
w(g) : w(2) = w(L)

is surjective, i.e. q is a strict epimorphism.

Of course (S) holds for irreducible Z. In the special case L = 1 condition
(S) is equivalent to w(q) # 0. We denote the cosocle of Z by C.

For any submodule U C Kern(q) the map q : Z — L factorizes over the
quotient p : Z — V = Z/U and induces the analogous morphism ¢y : V' —
L — cosocle(Z/U). Hence

g=qvop , wnilq) = wnilqy)owni(p) -

implies: wy, ;(¢) 1s surjective = wy, ;(qv’) 1s surjective. For i = 0 thus

e [f Z is indecomposable, then V' is indecomposable.
e Condition (S) for q implies condition (S) for qy .
e w(qy) = 0 implies w(q) = 0.

Indecomposable Z. Now assume Z is indecomposable and has upper
Loewy length m > 2. If m > 3, there exists a submodule U C Z such that
V = Z/U has Loewy length 2 and such that V' again is indecomposable and
satisfies assumption (S). So V' has Loewy length two and is indecomposable
with cosocle C. Then (V, gy) is a nontrivial extension

0—-S—-V-=>C—=0

with semisimple socle S decomposing into irreducible summands S, and
cosocle C. The map ¢ is obtained from a projection map prr : C — L by
composition with the canonical map V' — C. Since V' is indecomposable
with cosocle C, all extensions (V},, ¢, ) obtained as pushouts

0 @Sy v
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must be nontrivial extensions. All V,, again satisfy condition (S): Indeed
Im(w(q)) € Im(w(qv))

w(my,)

w(Vo)

The projection pry, : C — L splits by an inclusion iz, : L — C, since C is
semisimple. Hence C = L & L’ so that pr;, and i, are considered as the
canonical projection resp. inclusion for the first summand.

Since V is indecomposable, Ext!(L,S,) # 0 holds for at least one S,.
Now divide by the submodule U’ C S generated by all S, with the property
Ext'(L,S,) = 0 and obtain V/ = V/U’. Then divide by the maximal sub-
module U” of L' that splits in V’. Then V’'/U" is indecomposable and the
map ¢ factorizes over this quotient and satisfies condition S.

Resume. Suppose Z is indecomposable but not irreducible, ¢ : Z — L
satisfies condition (S), the cosocle of Z is C = L @ L’. Then there exists a
quotient V of Z and a quotient L of L’ such that

P ~

0 S Vv LeL—0

with

e V is indecomposable, )
e S isirreducible such that Ext!(L, S) # 0 and Ezt'(L, S) # 0,
e the map ¢ = pry, o p satisfies condition (S).

The irreducible representations X % 1 with the property Ext!(X,S) # 0
will be called descendants of S.

In the situation of the resume we get the extensions E = F% and E = ESE

defined by submodules of V. Hence V/EL = [ and V/ Eé = L and we get
the following exact sequences
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S——F——1L

One of the potential candidates for S, is the irreducible representation
L(X\ — p) that appears in the second upper Loewy level of the Kac module
V(A). Indeed this follows from lemma 10.5, since Hp(V(A)) = 0. Since
7, is indecomposable, Z,, is in this case a highest weight representation of
weight A. This is clear, because all weights of Z, arein A — ° . A Z-a.
By corollary 10.4 a highest representation V' contains a (nontrivial) highest
weight subrepresentation W of weight A—p only if Hp (V') has trivial weight
space Hp(V)y. For V. = Z, as above this gives a contradiction, if S, =

L(X — p) occurs in the socle of Z. Indeed, notice that Hp(L) contains L(})

by lemma 10.2. By condition (S) then also Hp(Z) contains L(A). So by
corollary 10.4 L(A — p) is not contained in Z,,. This proves

Lemma 29.1. Suppose Z is an (indecomposable) module with irreducible
maximal atypical cosocle L = L(\). If Z satisfies condition (S), then the
second layer of the upper Loewy filtration of Z does not contain the irre-
ducible module L(\ — p).

A case of particular interest is L = 1. Fix some irreducible S with the
property Extgr, (S,1) # 0. In section 31 we will show for L = 1 that
w(qg) = 0 (lemma 31.4).

30. THE MODULE R((n)")

We describe a certain maximal atypical mixed tensor for n > 2.

We recall some terminology from [BS11]. Given weights A\, ~ « in
the same block one can label the cup diagram A resp. the cap diagram u
with « to obtain A« resp. ai. These diagrams are by definition consistently
oriented if and only if each cup resp cap has exactly one Vv and one A and all
the rays labelled A are to the left of all rays labelled V. Set A C ar iff A ~ «
and )\« is consistently oriented.

A crossingless matching is a diagram obtained by drawing a cap dia-
gram underneath a cup diagram and then joining rays according to some
order-preserving bijection between the vertices. Given blocks A, I" a AI'-
matching is a crossingless matching ¢ such that the free vertices (not part of
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cups, caps or lines) at the bottom are exactly at the position as the vertices
labelled o or x in A; and similarly for the top with I". Given a AI'-matching
tand o € A and 5 € T', one can label the bottom line with « and the upper
line with § to obtain at3. ot is consistently oriented if each cup resp cap
has exactly one Vv and one A and the endpoints of each line segment are
labelled by the same symbol. Notation: o —* 3.

For ¢ a crossingless A" and A € A, p € I' label the bottom and the upper
line as usual. The lower reduction red(At) is the cup diagram obtained from
At by removing the bottom number line and all connected components that
do not extend up to the top number line.

Theorem 30.1. [BS12b], Thm 3.4. and [BS10a], Thm 4.11: In Ky(R,)
the mixed tensor R(\) attached to the bipartition X satisfies

[R(N)] = > [L(w)]

pCa—t1, red(ut)=1

where t is a fixed matching determined by )\ between the block T of 1 and
the block A of AT [BS12b], 8.18. If L(y) is a composition factor of R()), its
graded composition multiplicities are given by

D g+ ) [L(w)]

i

where n,, is the number of lower circles in yt.

Lemma 30.2. The module R = R((n)") in Rytr+1, 7 > 0, has Loewy
length 2n + 1 with socle and cosocle equal to 1. We have DS(R(n"))) =
R(n™). If r = 0, DS(R) = P(1). R contains 1 with multipliciry 2°". It

contains the irreducible module L(h) = [n,1,...,1,0,...,0] (with 1 occur-
ring n — 1-times) in the second Loewy layer. The multiplicity of L(h) in
R is 220=1_ It contains the module [n,n,...,n,0,...,0] as the constituent

of highest weight in the middle Loewy layer with multiplicity 1. It does
not contain the modules BS™' = [n,1,...,1], BS" = [n + 1,1,...,1],
n,1,...,1,=1] and [n,1,...,1,—1,...,—1] (with 1 occurring n — 1-times)
as composition factors.

Proof. The Loewy length of a mixed tensor is 2d(\) + 1 (where d(\) is
the number of caps) and d((n — 1)"~!) = n — 1 [Heil4]. The composition
factors of R are given as a sum ) (g + q Y™ [L(p)]. For our choice of
A = (n —1)""! the matching is given by [Heil4] (picture for n = 4)
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=
P

with n caps and where the rightmost vertex in a cap is at position n. The
irreducible module in the socle and cosocle is easily computed from the
rules of the section 14. The weight

h=(n,1,...,1,0/0,—1,...,—1,n —n)

easily seen to satisfy h —! 1, red(ht) = 1, hence occurs as a composition
factor. The number of lower circles in the lower reduction At is n — 1,
hence L(h) occurs with multiplicity 22"~ If we number the Loewy layers
starting with the socle by 1,...,2n + 1, L(h) occurs in the 2k-th Loewy
layer (k = 1,...,n) with multiplicity (}~}). Likewise for 1 with ny =
n — 1. We note: A weight p can only satisfy red(At) = 1 if the vertices
—n,—n —1,...,—n — r (the first vertices left of the caps) are labelled by V.

Hence:

e BS"! does not occur as a composition factor. The vertex —n is
labelled by A.

e [n,1,...,1,—1] does not occur as a composition factor. The vertex
—n 1s labelled by A

e [n+1,1,...,1] does not occur as a composition factor since all com-
position factors [u1,. .., u,] satisfy p; < n since [n,...,n,0,...,0]
is the constituent of highest weight.

O

Remark. In particular the constituent 1 occurs with the same multiplicity
asin P(1) € R,.

Remark. The module R(n™) can be obtained as follows. Let {n"} be the
covariant module to the partition (n™) and {n"}" its dual. Then R(n") is the
projection on the maximal atypical block of {n"} @ {n"}".

Example. For GI(3|3) the Loewy structure of the module R(2?) is

(0,0, 0]
[1,0,0] & [2,1,0]
2,0,0] @ [2,—1,—1] & [0,0,0] & [0,0,0] & [1,1,0] & [2, 2, 0]
[1,0,0] @ [2,1,0]
[0,0,0]
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31. THE BASIC HOOK REPRESENTATIONS S

The case L = 1. Suppose Z has cosocle 1 and the projection ¢ : Z — 1
satisfies condition (S). If Z is not simple, we constructed objects V,, with
cosocle 1 and simple socle S, = Ker(g,). In this situation Emt%zn(l, Sy) #
0.

Proposition 31.1. For any nontrivial extension
0 Sy V 1 0

the vectorspace w), o(V') is zero (for simple S,). Hence w(q) : w(V) — w(1)
is the zero map.

For the proof we use several lemmas. Finally lemma 31.4 proves the
proposition.
Lemma 31.2. Up to isomorphism there are n + 1 irreducible modules L
in R, such that Ext'(1,L) # 0. They are
(1) L,(n) = Ber, ® S" ! and
(2) its dual L, (n)" =0, ..,0,—1], and for
(3) i =1,..,n — 1 the basic selfdual representations
Ln<7') - [1717 71707'” 70]
(with n — i entries 0).
In all cases dim(Ext'(L,1)) = 1. Furthermore
DS i(Ln() = Ly (1)
holds fori < j < n and

DSy i(Ln(i)) = Li(i) ® Li(i)Y @Y

where Y % 1 is an irreducible module with Ext'(1,Y) = 0 and sector
structure

[\/7”, /\7n+1] N_n+2 [—n +3,....,n — 2] NAn—1 [\/n, /\n+1} .

Example. L, (1) = S*.

Proof. L* = L for irreducible objects L implies Ext'(1,L) = Ext' (L, 1).
Furthermore Exzt!(L,1) = Ext'((L*)V,1) and L = L*, hence

Ext'(L,1) = Ext*(LY,1) .
By [BS10a], cor. 5.15 for L = L(\)
dim Ext'(L(\),1) = dim Ext'(V (), 1) + dim Ext' (V(0), L()\))

holds. Since 1 is a Kostant weight, there exists a unique weight A char-
acterized by A < 0 (Bruhat ordering) and /(\,0) = 1 in the notations of
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loc. cit. lemma 7.2, such that dim Ezt'(V()\),1) # 0. One easily shows
L)) 210, ..,0,—1].

On the other hand dim Ezt!(V(0), L()\)) # 0 implies 0 < \ (see the ex-
planations preceding loc. cit. (5.3) and loc. cit. lemma 5.2.(i)). Then for
any pair of adjacent labels 7,7 + 1 of p of type i = V,i+ 1 = A we write
p € AV, if the labels of p at 4,7 + 1 are the same i = V,i + 1 = A. Then
lemma 5.2(ii) of loc. cit. gives

, 1 _Jdim(Exty  (V(o'),L(N)) if A e AV
dim(Extg, (V(p), L(A) = {dim(HomRn(V(p”),L()\)) otherwise

Here )\, 1/ are obtained from A, i by deleting i,i + 1, and p” is obtained by
transposing the labels at 7,7 + 1.

This shows our assertion, since for
L(p) =1
there is a unique pair of such neighbouring indices for
[V_nt1y ooy VOs ALy ooy An]

namely at the position (7,7 + 1) = (0,1). We now assume n > 2. Then
switching this pair gives L, (1) below. Freezing then also (—1,.,.,2) gives
L,(2) and so on. Hence applying this lemma of loc. cit. several times will
prove our first claim. Indeed, as long as we freeze less than n — 2 pairs, we
end up for every j from 1,...,n — 1 with a representation L, (j). It has only
one sector

[\/l—m ey \/—j—l[\/—j/\—j+1][\/—j+2, ey VO, A1y eeny /\j—IH\/jv /\j+1]/\j+2a ey /\n} .

In addition, if we freeze n — 1 pairs we end up with L, (n) with the sector
structure

[\/2—n7 V3_ny -y An—2, /\n—l] [\/n7 /\n—H] .
Indeed L,,(n) = Ber,, @ S L.

The remaining assertions now follow from theorem 16.1, since L, 1(n)
has sectors

515953 = [\/_n, A_n+1][—n +2,...,n— 1”\/n, /\n+1] .
Hence DS(Ly+1(n)) = (Ber @ S 1) & (Ber @ S"~ 1)V ¢ Y for Y with sector
structure [V_,, A_pt1l[-n+ 3, ...;n — 2] Ap—1 [V, Anta]- ]
Basic cases. For a nontrivial extension

0 L (4) 1% 1 0
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first suppose S = L,(i) is basic, so i € {1,...,n — 1}. Since (L, (i)*)V =
L,(i)Y = L,(7) fori < n, (V*)" again defines a nontrivial extension

0> Ln(i) —= (V)Y —>1—>0 .

We now use DS(L,(i)) = L,—1(i) for 1 <i <n — 1. InT,,_; the induced
long exact sequence

H-'(1) —= H°(S) —= H(V) — H°(1) —— H'(9)

remains exact, since H*(S) = L,_1(i) for £ = 0 and is zero otherwise and
similarly H*(1) = 1 for £ = 0 and is zero otherwise. In other words for basic
S we obtain from the given extension in R,, an exact sequence in R,,—1

0——Ly,1(i) —=DS(V) —=1—0 .
Repeating this n — ¢ times we obtain an exact sequence
0——=Li(i)® Li(i))"®Y —= DS, i(V) —=1—0 .
Since Ext!(1,Y) = 0 this implies
DS, ,(V)=EaY

for some selfdual module E defining an extension between 1 and L;(i) ®
L;(i)V. We claim that this exact sequence does not split in 7;.

Proposition 31.3. Suppose r is an integer > 0. For an indecompos-
able module V' defining a nontrivial extension between 1 and L, 114,(n) in
Routri1, the object (DS)°" (V') decomposes into the direct sum of the irre-
ducible module Y from above and an indecomposable extension module E
in Ry

Proof. Note that any two such indecomposable extensions define isomor-
phic modules V, since the relevant Ext-groups are one-dimensional. We
assume r = 0 for simplicity. Since the constituents L,,;;(n) and 1 of V are
basic, this implies DS(V) = H°(V) = Y @ E. If the module F is not inde-
composable, it is semisimple (for this use Tannaka duality). We proceed as
follows:

For the mixed tensor R = R,,» in R,+; we know that its image DS(R,,»)
is the projective hull P(1) of 1 in R,, and P(1) is an indecomposable module
with top 1. The module R,» admits as quotient an indecomposable module
V defining a nontrivial extension between 1 (the top of R) and the module
L,+1(n) (which sits in the second layer of the Loewy filtration of R). Hence
R/K =V for some submodule K of R. We claim that

0——= HYK)—>H'R) —L~E®Y —> H'(K) —=0
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is exact and HY(K) = 0 for v # 0,1. For this use H*(V) = H°(V) and
HY(R) = P(1) for a unique v. If v # 0, then H"(K) — HY(R) = P(1)
would be surjective and therefore H”(K) = P(1)®?7. We exclude this later.
So suppose for the moment v = 0.

The image of p can not contain the irreducible module Y 2 1, since
the top of P(1) is 1. If E splits, it is semisimple. Then the image of p
can not contain F either, since again this would contradict that P(1) has
top 1. Therefore the image of p is 1 or zero, if E splits. This leads to a
contradiction:

Look at all constituents X of R with Ber®S™~!in H"(X) forv = —1,0, 1.
These X are isomorphic to the following irreducible modules X_;, Xy, X;
with Ber ® S"~1 occuring in H*(X;) respectively: the basic module X, =
L,+1(n) with sector structure [—n,—n + 1][-n + 2,...,n — 1][n,n + 1] and
X1 with sector structure [1 — n[2 —n,...,n — 1|[n,n+ 1jn + 2] and X_; with
sector structure [-n — 1, —n] B [2 — n,...,n — 1][n,n + 1]. Then Ber @ S*!
occurs in H*(X;) fori =0, +1.

Let F'(.) denote the descending Loewy filtration. For a module Z let
m(Z) denote the number of Jordan-Holder constituents of Z that are iso-
morphic to Ber®S™~1. Next we use that for all 4

X1, X1 does not occur in the gré.(R) |.

Indeed according to section 30 all irreducible constituents [A] satisfy the
property A\,11 = 0 except for one given by [n,—n + 1,...,—n + 1]. There-
fore m(H*'(grt.(R))) = 0 and hence m(H!'(Fi(X))) = 0. Since also
m(H1(gri.(R))) = 0, then

H~(grp(R)) — H(F'(R)) — H(F'"!(R)) — H"(grp(R)) — H' (F'(R))

implies m(HY(F'(R))) = m(H°(F'"Y(R))) + m(H"(gr%.(R))). For small i
we have F*(R) = R and therefore

m(H"(R)) = Zm(HO(gT%(R))) :

They same argument then applies for the submodule K of R. Hence
m(H°(K)) = m(H°(R)) - 1

by counting the multiplicities of X in K resp. R. Hence the image of p
must contain Ber ® S"~! and hence E is an indecomposable quotient of
P(1).

Now let us adress the assertion v = 0 from above. If v # 0, then H*(K) =
P(1)@? gives a contradiction using the same counting argument.
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In the case » > 0 one uses the same kind of argument. Again the extension
defined by V in R,,4,41 can be realized as a quotient of R = R,;» in Ry 4p41-
The argument is modificatis modificandis the same.

The non-basic cases. For a nontrivial extension in 7,, of the form

0 ——= Lp(n) v 1 0 .

we get a dual nontrivial extension
0——=[0

ey 0, =1 — = (V¥)Y — =1 —>0 .

In lemma 28.1 and lemma 28.2 we defined Q,, which for ¢ = 1 defines a
nontrivial extension between 1 and L, (n)". Since dim(Ext!(1, L,(n)Y)) =
1, we get

(V)Y =
By corollary 28.6 we get DS’ (V) = 0 and wh (V) = 0 for all £ < 0.
Similarly by duality DSfM (V)Y ) = 0 for ¢ > 0. This implies w’ o((VH)Y) =
0 for ¢ > 0.
Finally consider the nontrivial extension V; between 1 and L, (i) in R,
and the nontrivial extension DS, ;(V;) in R; from above. It has the form
DS, (Vi) =Ea®Y for

0— L))o Li(i)Y - FE—1—0.

The module E = DS, ;((V;)/Y is the pullback of a nontrivial extension of
1 by L;(2)
0—Li(i) > FEL—1—0
and of a nontrivial extension of 1 by (L;(4))V
0— (Li(1)Y = Ey—1—0.
Hence there exists an exact sequence
0—=DS,;(Vi))Y = E1&E,—1—0
so that
— DS; (1) = DS (DSi(V;)/Y) = DSYo(E1) & DS o(E2) —
is exact. Since DS (E1) = 0 and DS (E2) = 0 by corollary 28.6 and since

DSz’Ol( ) =0, therefore DSPo(DS,i(V;)/Y) = 0. Hence wly(DS, (Vi) =
w; 0( ). The Leray type spectral sequence

DS}y(DS;, (Vi) = DS (Vi)

degenerates, since DSZJ(V;) = 0 for ¢ # 0. Therefore also w;m(v;) o
DSy ;(V;). One can now argue as in the proof of lemma 8.4 to show

wpo(Vi) = wio(DSni(V5)) = wip(Y) .
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Since the map
wz-70(q) T FoY —1
is trivial on the simple summand Y % 1, the next lemma follows.
Lemma 31.4. For every nontrival extension

qv

0 S |4 1 0

of 1 by a simple object S in R,, the map w°(qy) vanishes.

The last lemma completes the proof of proposition 31.1. This implies the
following main result.

Corollary 31.5. Suppose Z is indecomposable and cosocle(Z) = 1. If
the quotient map q : Z — 1 is strict, then q : Z = 1.

Remark. A symmetric abelian tensor category in the sense of Deligne is
semisimple if and only if ¢ : Z — 1, with cosocle of Z isomorphic to 1, is
an isomorphism.

Corollary 31.6. For a nontrivial extension V between 1 and L,,(n) or its
dual L, (n)Y
HhHV)=0 , v#1
holds, and hence the induced map Hp(q) : Hp(V)) — Hp(1) is trivial.
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