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ABSTRACT. We define and study cohomological tensor functors from
the category Tn of finite-dimensional representations of the supergroup
Gl(n|n) into Tn−r for 0 < r ≤ n. In the case DS : Tn → Tn−1

we prove a formula DS(L) =
⊕

ΠniLi for the image of an arbitrary
irreducible representation. In particular DS(L) is semisimple and mul-
tiplicity free. We derive a few applications of this theorem such as the
degeneration of certain spectral sequences and a formula for the modi-
fied superdimension of an irreducible representation.
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INTRODUCTION

Little is known about the decomposition of tensor products between finite-
dimensional representations of the general linear supergroup Gl(m|n) over
an algebraically closed field of characteristic 0. In this article we define and
study cohomological tensor functors from the category Tn = Rep(Gl(n|n))

of finite-dimensional representations of Gl(n|n) to Tn−r for 0 < r ≤ n. One
of our aims is to reduce questions about tensor products between irreducible
representations by means of these functors to lower rank cases so that these
can hopefully be inductively understood. This is indeed the case for small
n as the Gl(1|1)-case has been completely worked out in [GQS07] and the
Gl(2|2)-case is partially controlled by the theory of mixed tensors [Hei14]
[HW15a]. Along the way we obtain formulas for the (modified) superdi-
mensions of irreducible representations.

The tensor functors that we study are variants and generalizations of a
construction due to Duflo-Serganova [DS05] and Serganova [Ser10]. For
any x ∈ X = {x ∈ g1 | [x, x] = 0}, where g1 denotes the odd part of
the underlying Lie superalgebra gl(m|n), the cohomology of the complex
associated to (V, ρ) ∈ Tn

. . .
ρ(x)
// V

ρ(x)
// V

ρ(x)
// V

ρ(x)
// . . .
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defines a functor V 7→ Vx : Tn → Tn−r (where r is the so-called rank of
x) which preserves tensor products. The category Tn splits in two abelian
subcategories Tn = Rn ⊕ ΠRn where Π denotes the parity shift (lemma 8).
We therefore focus on the Rn-case and fix a special x of rank 1 in section
2 and denote the corresponding tensor functor DS : Rn → Tn−1. Later in
section 3 we refine this construction to define for any V ∈ Rn a complex

. . .
∂ // Π(V2`−1)

∂ // V2`
∂ // Π(V2`+1)

∂ // . . .

whose cohomology in degree ` is denoted by H`(V ). The representation
DS(V ) is naturally Z-graded and we have a direct sum decomposition

DS(V ) =
⊕
`∈Z

Π`(H`(V )

for Gl(n−1|n−1)-modules H`(V )) in Rn−1. The definition of DS can be
easily generalized to the case x ∈ X of higher rank r > 1, and we denote the
corresponding tensor functors by DSn,n−r : Tn → Tn−r. Like the BGG cat-
egory the category Tn has two different duality functors, the ordinary dual
()∨ and the contragredient dual ()∗. The tensor functors DS and DSn,n−r
are not ∗-invariant in the sense that DS(V ∗) 6' DS(V )∗. We therefore de-
fine an analog D of the Dirac operator and we denote the corresponding
Dirac cohomology groups by

HD(V ) = ker(D : M →M)/Im(D : M →M)

for a certain module M ∈ Tn−1 attached to V in section 5. This defines a
∗-invariant tensor functor. It agrees with DS on irreducible modules, but in
general gives rise to an analog of Hodge decomposition (proposition 7.1).
The definition of Dirac cohomology generalizes easily to define Z-graded
tensor functors ωn,n−r =

⊕
`∈Z ω

`
n,n−r whose graded pieces are functors

ω`n,n−r : Tn → Tn−r that are described in section 8.

The second part is devoted to the main theorem 16.1. In the main theorem
we give an explicit formula for the image of an irreducible representation
L = L(λ) in Rn of atypicality j (for 0 < j ≤ n) under the functor DS.
Surprisingly, with its natural Z-gradation, the representation

DS(L) =
⊕
i

Li[−δi]

decomposes completely into a finite direct sum of irreducible representa-
tions. Here, for certain integers δi ∈ Z, the summands are attached to irre-
ducibleGl(n−1|n−1)-modules Li ∈ Rn−1, where Li[−δi] denotes the module
Πδi(Li) ∈ Tn−1 concentrated in degree δi with respect to the Z-graduation
of DS(L). If we ignore the Z-graduation, the module DS(L) ∈ Tn−1 always
is semisimple and multiplicity free for irreducible L. This makes the main
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theorem into an effective tool to reduce questions about tensor products or
superdimensions to lower rank cases in the absence of any known branching
laws.

To analyse the Z-graded object DS(L) in more detail, we can assume
that L is a representation in the principal block containing the trivial repre-
sentation (the maximally atypical case). In fact, one can inductively reduce
the general case to this special case. The irreducible maximal atypical rep-
resentations L ∈ Rn can be described in different ways. For the moment
it may be sufficient that up to isomorphism they uniquely correspond to
spaced forests of rank n in a natural way. By definition, such spaced forests
F are defined by data

(d0, T1, d1, T2, · · · , dk−1, Tk)

where the Ti for i = 1, ..., k are rooted planar trees positioned on points
of the numberline from left to right. The integer d0 specifies the absolute
position of the leftmost tree T1 and the natural numbers di for i = 1, ..., k−1

indicate the distances between the position of the trees Ti and Ti+1. Here
we allow di = 0, i.e. some trees may be positioned at the same point of the
numberline. The absolute positions δi =

∑
j<i di ∈ Z of the planar trees Ti

therefore satisfy
δ1 ≤ δ2 ≤ · · · ≤ δk .

In particular, δ1 describes the absolute position of the leftmost tree T1 of the
forest and δk describes the absolute position of the rightmost tree Tk of this
forest. Each tree Ti is a planar tree with say ri nodes, among which is the
distinguished node defined by the root of the tree. By definition, the rank
of the forest F is the sum

∑k
i=1 ri of the nodes of all trees. Since in the

equivalence above the rank n is fixed, only forests with at most k ≤ n trees
occur.

This being said, we are now able to describe the summands of the de-
composition of DS(L) mentioned above. For simplicity, we still assume
L to be maximal atypical. If L corresponds to the spaced forest with trees
T1, T2, ..., Tk in the sense above with the positions at δ1, ..., δk, then DS(L)

has precisely k irreducible constituents Li[−δi] for i = 1, ..., k, so that Li cor-
responds to the spaced forest T1, ..., Ti−1, ∂Ti, ..., Tk of rank n− 1 where ∂Ti
denotes the forest of planar trees obtained from Ti by removing its root. The
trees are now at the new positions δ1−1, ..., δi−1−1, δi, ..., δi, δi+1+1, ..., δk+1

where we use the convention that δi denotes the common position of all the
trees in ∂Ti. In the special case where Ti has only one node, ∂Ti is not de-
fined and will be discarded (together with δi). In other words, in this case
the new spaced forest has only k − 1 trees.
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This description of the Z-graded object DS(L) follows from the results
in sections 21 - 24. We introduce spaced forests in section 21 where we de-
scribe the dual of an irreducible representation. The Z-grading ofDS(L) for
maximally atypical L is then obtained in proposition 23.1 and in the general
case in proposition 24.2. These results follow from the main theorem and
its proof by a careful bookkeeping, but they are considerably stronger and
in particular incorporate theorem 16.1 as a special case.

We show DSn,0(L) ∼=
⊕
ω`n,0(L)[−`] for irreducible maximal atypical

representations L. From this, as an application of the main theorem, we
obtain in theorem 25.1 a nice explicit formula for the Laurent polynomial∑

`∈Z
sdim(ω`n,0(L)) · t`.

(Hilbert polynomial) attached to the Dirac cohomology tensor functors

ω`n,0 : Tn → T0

in the case of an irreducible maximal atypical representation L.

As already mentioned, the main theorem does not require L to be in the
principal block. Applying DS repeatedly k-times to an irreducible repre-
sentation L = L(λ) of atypicality i we obtain an isotypical typical represen-
tation m(λ)Lcore in Tn−i, and Lcore only depends on the block of L (section
16). We derive a closed formula for the multiplicity m(λ) in section 16. The
multiplicity m(λ) can be expressed as

m(λ) =
|F(λ)|!
F(λ)!

where F(λ) is the spaced forest associated to L(λ), |F(λ)| is the number of
its nodes and F(λ)! is the forest factorial 16. This not only implies that the
so called modified superdimension of L does not vanish (i.e. the generalized
Kac-Wakimoto conjecture), but moreover gives a closed formula for it. The
main theorem has a number of other useful applications and we refer the
reader to the list given after theorem 16.1.

The proof of the main theorem occupies the entire second part. Build
on an involved induction using translation functors, carried out in sections
18 - 20, the proof is reduced to the case of ground-states; these are rather
specific irreducible modules in a block. For instance, ground states of the
principal block are powers of the Berezin determinant. Then, for a block of
atypicality k < n, we prove in section 14 that every ground state is a Berezin
twist of a mixed tensor, an irreducible direct summand in an iterated tensor
X⊗r⊗ (X∨)⊗s where X denotes the standard representation of Gl(n|n). It is
easy to verify directly that the main theorem holds for Berezin powers and
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mixed tensors. In section 18 we study the Loewy structure of translation
functors applied to irreducible representations and their behavior under DS.
We also explain why we can restrict to the maximally atypical case for
the proof of the main theorem. In section 19 we prove both parts of the
main theorem (semisimplicity and determination of the constituents) under
certain assumption on translation functors which are verified in the later
section 20.

In section 26 we discuss the cohomology ring H•DSn(V (1)) for the tensor
functor DSn,0. Although the description of the composition factors of an
arbitrary Kac module V (λ) is much more complicated than that of V (1), we
show in lemma 26.8 that there is an isomorphism

H•DSn(V (1)) ∼= H
•+deg(ρ)
DSn

(V (λ))

of I-modules. In fact the cohomology ring of V (1) can be identified with the
Lie algebra homology ring H•(gl(n)) and defines an exterior algebra I on
primitive elements f1, f3, . . . , f2n−1 so that I acts on the graded cohomology
H•DSn of finite dimensional g-modules. We also discuss the relationship
between the cohomology of a Kac module and its irreducible quotient. We
show in theorem 26.10 that the induced homomorphism

Hν
DSn(pr) : Hν

DSn(V (λ))→ Hν
DSn(L(λ))

is an isomorphism in the top degree and trivial in all lower degrees. In
section 27 we describe the elements of I ∼= H•DSnV (1)) in terms of the
representation theory of the superlinear group Gl(n|n).

Since the image of an irreducible representation under DS is therefore
understood, it is natural to look at the image DS(I) of an indecomposable
representations I. The kernel of DS is the tensor ideal of representations
with a filtration by anti-Kac modules by results in section 4. If R(λ) is a
mixed tensor we can easily compute DS(R(λ)). In other cases it is rather
complicated to determine DS. As an example for the importance of this
problem consider the computation of the tensor product between two irre-
ducible representations L1 ⊗ L2 =

⊕
i Ii in indecomposable summands in

Rn. The decomposition of DS(L1) and DS(L2) gives estimates on the num-
ber of possible direct summands, but these are rather weak unless something
is known about DS(Ii). For an easy example of the use of the cohomolog-
ical tensor functors in this setting see [HW15a]. In the last sections 28 -
31 we give a cohomological criterion 31.5 for an indecomposable repre-
sentation to be equal to the trivial representation. We call an epimorphism
q : V → W strict, if the induced morphism ω(q) : ω(V ) → ω(W ) for the
tensor functor ω = ωn,0 : Tn → sveck is surjective. We prove in corollary
31.5 that if Z is an indecomposable module with cosocle 1 such that the
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quotient map q : Z → 1 is strict, then Z ' 1. Any such representation Z

contains extensions of the trivial representations 1 with the other irreducible
constituents in the second upper Loewy layer. This leads us to study the co-
homology H i of extensions of the trivial representation

0 // Sν // V
qV // 1 // 0

for irreducible representations Sν . We show in the key lemma 31.1 that in
this case the map ω0(qV ) vanishes. This is a contradiction to our analysis in
section 29 if we suppose that Z is not irreducible.

Most of the results in this article can be rephrased for representations of
the supergroup Gl(m|n) where m 6= n. This will be discussed elsewhere.

Acknowledgements. The authors are grateful to the referee for providing
useful suggestions.

PART 1. COHOMOLOGICAL TENSOR FUNCTORS

1. THE SUPERLINEAR GROUPS

Let k be an algebraically closed field of characteristic zero. A super
vectorspace V over k is a Z/2Z-graded k-vectorspace V = V0 ⊕ V1. Its
superdimension is sdim(V ) = dim(V0)−dim(V1). The parity shift functor
Π on the category of super vectorspaces over k is defined by Π(V )0 = V1

and Π(V )1 = V0 and the parity endomorphism of V is pV = idV0
⊕−idV1

in
Endk(V ).

Conventions on gradings. For Z-graded object M =
⊕

iMi with objects
Mi in an additive category C one has the shifted Z-graded objects M〈j〉
defined by (M〈j〉)i = Mi+j . If C carries a super structure defined by a
functor Π : C → C such that Π ◦Π is the identity functor, we mainly use the
Z-graded objectsM [j] defined by (M [j])i := Πj(Mi+j). Considering objects
L in C as graded objects concentrated in one degree, we often consider the
Z-graded objects L[−`] concentrated in degree `. In this context, forgetting
the Z-grading of L[`] for L ∈ C and ` ∈ Z gives the object Π`(L) in C.

The categories F and T . Let g = gl(m|n) = g0 ⊕ g1 be the general Lie
superalgebra. The even part g0 = gl(m) ⊕ gl(n) of gl(m|n) can be con-
sidered as the Lie algebra of the classical subgroup G0 = Gl(m) × Gl(n)

in G = Gl(m|n). By definition a finite-dimensional representation ρ of
gl(m|n) defines a representation ρ of Gl(m|n), if its restriction to g0 comes
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from an algebraic representation of G0, also denoted ρ. For the linear su-
pergroup G = Gl(m|n) over k let F be the category of the super represen-
tations ρ of Gl(m|n) on finite dimensional super vectorspaces over k. If
(V, ρ) is in F , so is Π(V, ρ). The morphisms in the category F are the G-
linear maps f : V → W between super representations, where we allow
even and odd morphisms with respect to the gradings on V and W , i.e mor-
phisms with f ◦ pV = ±pW ◦ f . For M,N ∈ F we have HomF (M,N) =

HomF (M,N)0 ⊕ HomF (M,N)1, where HomF (M,N)0 are the even mor-
phisms. Let T = sRepΛ(G) be the subcategory of F with the same objects
as F and HomT (M,N) = HomF (M,N)0 . Then T is an abelian category,
whereas F is not.

The category R. Fix the morphism ε : Z/2Z → G0 = Gl(m) × Gl(n)

which maps −1 to the element diag(Em,−En) ∈ Gl(m) × Gl(n) denoted
εmn. We write εn = εnn. Notice that Ad(εmn) induces the parity morphism
on the Lie superalgebra gl(m|n) of G. We define the abelian subcategory
R = sRep(G, ε) of T as the full subcategory of all objects (V, ρ) in T with
the property pV = ρ(εmn); here ρ denotes the underlying homomorphism
ρ : Gl(m)×Gl(n)→ Gl(V ) of algebraic groups over k. The subcategory R
is stable under the dualities ∨ and ∗. For G = Gl(n|n) we usually write Tn
instead of T , and Rn instead of R, to indicate the dependency on n.

The duality ∗. The Lie superalgebra g = gl(m|n) has a consistent [Kac78]
Z-grading g = g(−1)⊕g(0)⊕g(1), where g0 = g(0) and where g1 = g(−1)⊕g(1)

is defined by the upper triangular block matrices g(1) and g(−1) by the lower
triangular block matrices. The supertranspose xT (see [Sch79], (3.35) and
(4.14)]) of a graded endomorphism x ∈ End(km|n) is defined by

x =

(
m1 m2

m3 m4

)
7→ xT =

(
mt

1 −mt
3

mt
2 mt

4

)
, x ∈ g

where mt
i denotes the ordinary transpose of the matricesmi. If we identify g

and End(km|n), then τ(x) = −xT defines an automorphism of the Lie super-
algebra g such that τ(g(i)) = g(−i) holds for i = −1, 0, 1. For a representation
M = (V, ρ) in Tn and homogenous x in g the Tannaka dual representation
M∨ = (V ∨, ρ∨) is the representation x 7→ −ρ(x)T on V , using the super-
tranpose ρ(x)T of ρ(x) in End(V ). Finally we define the representation
M∗ = (V ∨, ρ∨ ◦ τ), where τ(x) = −xT is the automorphism of g defined
by the supertranspose on g. See also [BKN09a], 3.4 using a different con-
vention. V ∈ Rn (see below) implies V ∗ ∈ Rn by [Bru03], lemma 4.43.
For simple and for projective objects V of Tn furthermore V ∗ ∼= V . Also
V ∗|G0

∼= V |G0
for all V in Tn. Notice that both ∨ and ∗ define contravariant

functors on Tn.
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Weights. Consider the standard Borel subalgebra b of upper triangular
matrices in g and its unipotent radical u. The basis ∆ of positive roots
associated to b is given by the basis of the positive roots associated to b∩ g0

for the Lie algebra g0 and a single odd root x whose weight will be called
µ. If we denote by ei,i, i = 1, . . . , 2n, the linear form which sends a diagonal
element (t1, . . . , t2n) to ti, then the simple roots in this basis are given by
the set {e1,1 − e2,2, . . . , e2n−1,2n−1 − e2n,2n} with µ = en,n − en+1,n+1. The
diagonal elements t = diag(t1, ..., tn, tn+1, ..., t2n) in G0 act by semisimple
matrices on V for any representation (V, ρ) in Tn. Hence V decomposes
into a direct sum of eigenspaces V =

⊕
λ Vλ for certain characters tλ =

tλ1

1 · · · tλnn (tn+1)λn+1 · · · (t2n)λ2n . Then write λ = (λ1, ..., λn;λn+1, · · · , λ2n).
A primitive weight vector v (of weight λ) in a representation (V, ρ) of g is a
nonzero vector in V with the property ρ(X)v = 0 for X ∈ u and ρ(t)v = tλ.
An irreducible representation L has a unique primitive weight vector (up
to a scalar), the highest weight vector. Its weight λ uniquely determines
the irreducible module L up to isomorphism in Rn. Therefore we write
L = L(λ).

Kac modules. We put p± = g(0)⊕g(±1). We consider a simple g(0)-module
as a p±-module in which g(1) respectively g(−1) acts trivially. We then define
the Kac module V (λ) and the AntiKac module V ′(λ) via

V (λ) = Indgp+L0(λ) , V ′(λ) = Indgp−L0(λ)

where L0(λ) is the simple g(0)-module with highest weight λ. The Kac-
modules are universal highest weight modules. V (λ) has a unique maximal
submodule I(λ) and L(λ) = V (λ)/I(λ) [Kac78], prop.2.4.

The Berezin. The Berezin determinant of the supergroup G = Gn defines
a one dimensional representation Ber = Bern. Its weight is is given by
λi = 1 and λn+i = −1 for i = 1, .., n. The representation space of Bern has
the superparity (−1)n. We denote the trival representation Ber0 by 1.

Ground states. Each i-atypical block of Rn contains irreducible repre-
sentations L(λ) of the form

λ = (λ1, ..., λn−i, λn, ..., λn ; −λn, ...,−λn, λn+1+i, ..., λ2n) .

with λn ≤ min(λn−i,−λn+1+i). We call these the ground states of the block.
They will play a major role in our computation of DS(L) in theorem 16.1.

Equivalence. Two irreducible representations M,N on T are said to be
equivalent M ∼ N , if either M ∼= Berr ⊗ N or M∨ ∼= Berr ⊗ N holds
for some r ∈ Z. This obviously defines an equivalence relation on the set of
isomorphism classes of irreducible representations of T . A self-equivalence
of M is given by an isomorphism f : M ∼= Berr ⊗M (which implies r = 0

and f to be a scalar multiple of the identity) respectively an isomorphism
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f : M∨ ∼= Berr ⊗M . If it exists, such an isomorphism uniquely determines
r and is unique up to a scalar and we say M is of type (SD). Otherwise we
say M is of type (NSD).

Negligible objects. An object M ∈ Tn is called negligible if it is the direct
sum of indecomposable objectsMi in Tn with superdimensions sdim(Mi) =

0. The tensor ideal of negligible objects is denotes N or Nn.

2. THE DUFLO-SERGANOVA FUNCTOR DS

An embedding. Fix some 1 ≤ m ≤ n. We view Gn−m = Gl(n−m|n−m)

as an ‘outer block matrix’ in Gn = Gl(n|n) and G1 as the ‘inner block
matrix’ as below. Here G0 is the empty group. We fix some invertible
m×m-matrix J with the property J = J t = J−1. For example take J to be
the identity matrix E , or the matrix with nonzero entries equal to 1 only in
the antidiagonal. We furthermore fix the embedding

ϕn,m : Gn−m ×G1 ↪→ Gn

defined by

(
A B

C D

)
×
(
a b

c d

)
7→


A 0 0 B

0 aE bJ 0

0 cJ dE 0

C 0 0 D


We use this embedding to identify elements in Gn−m and G1 with elements
inGn. In this sense εn = εn−mε1 holds inGn, for the corresponding elements
εn−m and ε1 in Gn−m resp. G1, defined in section 1.

Two functors. One has a functor (V, ρ) 7→ V + = {v ∈ V | ρ(ε1)(v) = v}
+ : Rn → Rn−m

where V + is considered as a Gn−m-module using ρ(ε1)ρ(g) = ρ(g)ρ(ε1) for
g ∈ Gn−m. Indeed Ad(ε1)(g) = g holds for all g ∈ Gn−m. The grading on
V induces a grading on V + by (V +)0 = V0 ∩ V + and (V +)1 = V1 ∩ V +.
For this grading the decomposition V + = (V +)0 ⊕ (V +)1 is induced by the
parity morphism ρ(εn) or equivalently ρ(εn−1). With this grading on V + the
restriction of ρ to Gn−m preserves V + and defines a representation (V +, ρ)

of Gn−m in Rn−m.

Similarly define V − = {v ∈ V | ρ(ε1)(v) = −v}. With the grading in-
duced from V = V0⊕V1 this defines a representation V − ofGn−m in ΠRn−m.
Obviously

(V, ρ)|Gn−m = V + ⊕ V − .
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The exact hexagon. Fix the following element x ∈ gn

x =

(
0 y

0 0

)
∈ gn for y =


0 0 . . . 0

0 0 . . . 0

. . . . . .

J 0 0 0


for the fixed invertible m × m-matrix J . Since x is an odd element with
[x, x] = 0, we get

2 · ρ(x)2 = [ρ(x), ρ(x)] = ρ([x, x]) = 0

for any representation (V, ρ) of Gn in Rn. Notice d = ρ(x) supercommutes
with ρ(Gn−m). Furthermore ρ(x) : V ± → V ∓ holds as a k-linear map, an
immediate consequence of dρ(ε1) = −ρ(ε1)d, i.e. of Ad(ε1)(x) = −x. Since
ρ(x) ∈ HomF (V, V )1 is an odd morphism, ρ(x) induces the following even
morphisms (morphisms in Rn−m)

ρ(x) : V + → Π(V −) and ρ(x) : Π(V −)→ V + .

The k-linear map ∂ = ρ(x) : V → V is a differential and commutes with the
action of Gn−m on (V, ρ). Therefore ∂ defines a complex in Rn−m

∂ // V + ∂ // Π(V −)
∂ // V + ∂ // · · ·

Since this complex is periodic, it has essentially only two cohomology
groups denoted H+(V, ρ) and H−(V, ρ) in the following. This defines two
functors (V, ρ) 7→ D±n,n−m(V, ρ) = H±(V, ρ)

D±n,n−m : Rn → Rn−m .

It is obvious that an exact sequence

0 // A
α // B

β // C // 0

in Rn gives rise to an exact sequences of complexes in Rn−m. Hence

Lemma 2.1. The long exact cohomology sequence defines an exact hexagon
in Rn−m

H+(A)
H+(α)

// H+(B)
H+(β)

%%
H−(C)

δ
99

H+(C)

δyy
H−(B)

H−(β)

ee

H−(A)
H−(α)
oo
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Alternative point of view. For the categories T = Tn resp. Tn−m (for the
groups Gn resp. Gn−m) consider the tensor functor of Duflo and Serganova
in [DS05]

DSn,n−m : Tn → Tn−m

defined by DSn,n−m(V, ρ) = Vx := Kern(ρ(x))/Im(ρ(x)). For (V, ρ) ∈ Rn
we obtain

H+(V, ρ)⊕Π(H−(V, ρ)) = DSn,n−m(V ) .

Indeed, the left side is DSn,n−m(V ) = Vx for the k-linear map ∂ = ρ(x) on
V = V + ⊕ V −. Hence H+ is the functor obtained by composing the tensor
functor

DSn,n−m : Rn → Tn−m

with the functor
Tn−1 → Rn−m

that projects the abelian category Tn−m onto Rn−m using

Lemma 2.2. Every object M ∈ Tn decomposes uniquely as M = M0 ⊕
M1 with M0 ∈ Rn and M1 ∈ Π(Rn). This defines a block decomposition of
the abelian category

T = Rn ⊕Π(Rn) .

Proof. For any M,N ∈ Rn the Z2-graded space ExtiT (M,N) is concen-
trated in degree zero [Bru03], Cor. 4.44. �

Tensor property. As a graded module over R = k[x]/x2 any representa-
tion V decomposes into a direct sum of a trivial representation T and copies
of R (ignoring shifts by Π). To show that DSn,m(V ) = Rx ⊕ Tx = T is a
tensor functor, it suffices that (R ⊗ R)x = 0, see also [Ser10]. For this we
use that the underlying tensor product is the supertensor product. Indeed for
R = V0 ⊕ V1 and V0 = k · 1 and V1 = k · x we have x(e1) = e2 and x(e2) = 0.
The induced superderivation d on R ⊗R satisfies d(1⊗ 1) = x⊗ 1 + 1⊗ x,
d(x ⊗ 1) = −x ⊗ x, d(1 ⊗ x) = x ⊗ x and d(x ⊗ x) = 0. Hence Im(d) =

Ker(d) = k · (1⊗ x+ x⊗ 1)⊕ k · x⊗ x and therefore (R⊗R)x = 0.

3. COHOMOLOGY FUNCTORS

In this section we assume V ∈ Tn and m = 1. In the following let DS be
the functor DSn,n−1 (for J = 1).

Enriched weight structure. The maximal torus of diagonal matrices in
Gn naturally acts on DS(V ) so that DS(V ) decomposes into weight spaces
DS(V ) =

⊕
λDS(V )λ for λ in the weight lattice X(n) of gn. Indeed for

the weight decomposition V =
⊕

λ Vλ every v ∈ V has the form v =
∑

λ vλ
for vλ ∈ Vλ. Now ∂v = 0 if and only if ∂vλ = 0 holds for all λ, since
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∂(Vλ) ⊆ Vλ+µ for the odd simple weight µ (ignoring parities on V ). Simi-
larly v = ∂w if and only if vλ = ∂wλ for all λ, since we can always project
on the weight eigenspaces. This trivial remark shows that DS(V ) naturally
carries a weight decomposition with respect to the weight lattice X(n) of
gn. The weight structure for gn−1 is obtained by restriction. The kernel of
the restriction X(n)→ X(n− 1) of weights, denoted by

λ 7→ λ ,

are the multiples Z · µ of the odd simple root µ = en,n − en+1,n+1. We may
therefore view DS(V ) as endowed with the richer weight structure coming
from the Gn-module V . This decomposition induces a natural decompo-
sition of DS(V ) into eigenspaces DS(V ) =

⊕
` DS(V )`. To make this

more convenient consider the torus of elements diag(1, ..., 1, 1; t−1, 1, ..., 1)

for t ∈ k∗, called the small torus. These elements commute with Gn−1 and
their eigenvalue decomposition gives a decomposition

V =
⊕
`∈Z

V`

into Gn−1-modules V`. Here V` ⊆ V denotes the subspace defined by all
vectors in V on which the above elements of the small torus acts by multi-
plication with t`. Obviously V` = 0 for ` /∈ [`0, `1] and suitable `0, `1. For
the odd morphism ∂ = ρ(x) the properties µ(diag(1, ..., 1, 1; t−1, 1, ..., 1)) = t

and ∂(Vλ) ⊆ Vλ+µ show that

∂ // Π(V2`−1)
∂ // V2`

∂ // Π(V2`+1)
∂ // V2`+2

∂ //

defines a complex. Its cohomology is denoted H`(V ). Obviously

Π`(H`(V )) = DS(V )`

and hence we obtain a decomposition ofDS(V, ρ) into a direct sum ofGn−1-
modules

DS(V, ρ) =
⊕
`∈Z

Π`(H`(V )) ,

If we want to emphasize the Z-grading, we also write this in the form

DS(V, ρ) =
⊕

`∈Z H`(V )[−`] .

We will calculate DS(L) ∈ Tn−1 for irreducible L in theorem 16.1 and we
will compute its Z-grading in proposition 23.1 and proposition 24.2.

An exact sequence

0 // A
α // B

β // C // 0
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in Rn then gives rise to a long exact sequence in Rn−1

// H`−1(C) // H`(A) // H`(B) // H`(C) // H`+1(A) // .

Lemma 3.1. For V in Tn we have H`(Bern ⊗ V ) = Bern−1 ⊗H`−1(V ).
For the Tannaka dual V ∨ of V H`(V )∨ ∼= H−`(V ∨) holds for all ` ∈ Z
(isomorphisms of Gn−1-modules).

Proof. The first property follows from DS(Bern) = Bern−1[−1] and the
fact that DS is a tensor functor. Furthermore DS(V )∨ ∼= DS(V ∨), since DS
is a tensor functor. Hence the second claim follows from (V ∨)−` = (V`)

∨,
since Π2 is the identity and duality ‘commutes’ with the parity shift Π. �

Note that for V` ∈ Tn−1 the module (V`)
∗ ∈ Tn−1 is isomorphic to (V ∗)`.

Finally, for (V, ρ) ∈ Rn we get V + =
⊕

`∈2Z V` and Π(V −) =
⊕

`∈1+2Z V`.
Hence we obtain the next lemma.

Lemma 3.2. For V in Rn the following holds

H+(V ) =
⊕

`∈2ZH
`(V ) , H−(V ) =

⊕
`∈1+2ZH

`(V ).

4. SUPPORT VARIETIES AND THE KERNEL OF DS

We show that the kernel of DS consists of the modules which have a
filtration by AntiKac modules.

Support varieties. We review results from [BKN10], [BKN09b] and
[BKN09a] on support varieties. Recall the decomposition g = g(−1)⊕g(0)⊕
g(−1). The support varieties are defined by

Vg(±1)
(M) = {ξ ∈ g(±1) |M not projective as a U(〈ξ〉)−module} ∪ {0} .

Notice that ξ ∈ g(±1) generates an odd abelian Lie superalgebra 〈ξ〉 with
[ξ, ξ] = 0, which up to isomorphisms has only two indecomposable mod-
ules: The trivial module and its projective cover U(〈ξ〉). By [BKN10], prop
6.3.1

Vg(±1)
(M ⊗N) = Vg(±1)

(M) ∩ Vg(±1)
(N).

The associated variety of Duflo and Serganova is defined as

XM = {ξ ∈ X |Mξ 6= 0}

where X is the cone X = {ξ ∈ g1̄ |[ξ, ξ] = 0}. For ξ ∈ X the condition
Mξ 6= 0 is equivalent by [BKN09a], 3.6.1, to the condition that M is not
projective as a U(〈ξ〉)-module. Hence XM is the set of all ξ ∈ X such that
M is not projective as a U(〈ξ〉)-module together with ξ = 0. Thus

Vg(−1)
(M) ∪ Vg(1)(M) ⊆ XM , Vg(±1)

(M) = XM ∩ g(±1) .
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Kac and anti-Kac objects. We denote by C+ the tensor ideal of modules
with a filtration by Kac modules inRn and by C− the tensor ideal of modules
with a filtration by anti-Kac modules in Rn and quote from [BKN09a], thm
3.3.1, thm 3.3.2

M ∈ C+ ⇔ Vg(1)(M) = 0 , M ∈ C− ⇔ Vg(−1)
(M) = 0 .

Hence M is projective if and only if Vg(1)(M)=Vg(−1)
(M)=0 holds.

Vanishing criterion. For any ξ ∈ X there exists g ∈ Gl(n) × Gl(n) and
isotropic mutually orthogonal linearly independent roots α1, . . . , αk such
that Adg(ξ) = ξ1 + . . . + ξm with ξi ∈ gαi . The number m = r(ξ) is called
the rank of ξ [Ser10]. The orbits for the action of Gl(n)×Gl(n) on g(1) are
[BKN09a], 3.8.1

(g(1))m = {ξ ∈ g(1) | r(ξ) = m} for 0 ≤ m ≤ n .

By a minimal orbit for the adjoint action of Gl(n) × Gl(n) on g(±1) we
mean a minimal non-zero orbit with respect to the partial order given by
containment in closures. The unique minimal orbit (g(1))1 is the orbit of
the element x defined earlier. The situation is analogous for g(−1), where
x = τ(x) generates the corresponding minimal orbit. A slight modification
of [BKN09a], thm 3.7.1 and its proof gives

Theorem 4.1. For ξ ∈ g(1) and M ∈ C− we have Mξ = 0. For ξ ∈ g(−1)

and M ∈ C− we have Mξ = 0. For ξ = x we have DS(M) = Mx = 0 if and
only if M ∈ C− and Mx = 0 if and only if M ∈ C+.

Proof. LetM ∈ C−. Then the definition of Kac objects implies Vg(1)(M) =

0. Hence {ξ ∈ g(1) | Mξ 6= 0} = 0. Conversely assume Mx = 0. Since
Vg(1)(M) is a closed Gl(n) ×Gl(n)-stable variety, it contains a closed orbit.
Since the orbits (g(1))m are closed only for m = 1, unless Vg(1)(M) is empty,
it must contain (g(1))1. But this would imply Mx 6= 0, a contradiction.
Hence Vg(1)(M) = ∅. �

Corollary 4.2. For our fixed x ∈ (g(1))1

(1) M is projective if and only if Mx = 0 and Mτx = 0.
(2) M is projective if and only if Mx = 0 and M∗x = 0

(3) If M = M∗, then M is projective if and only if Mx = 0.

Proof. Mx = 0 implies Vg(1)(M) = 0 andMτ(x) = 0 implies Vg(−1)
(M) = 0,

hence (1). Now (2) and (3) follow from [BKN09a], 3.4.1 using

Vg(±1)
(M∗) = τ(Vg(∓1)

(M)).

�
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5. THE TENSOR FUNCTOR D

In this section we construct another tensor functorHD : Tn → Tn−1 which
is defined as the cohomology of a complex given by a Dirac operator D.
This tensor functor has the advantage that it is compatible with the twisted
duality ∗.

In this section we assume V ∈ Tn. For t ∈ k∗ the diagonal matrices

diag(En−1, t, t, En−1) ∈ G0

define a one dimensional torus, the center of G1; for this recall the em-
beddings G1 = id × G1 ↪→ Gn−1 × G1 ↪→ Gn. The center of G1 com-
mutes with Gn−1 × id ⊂ Gn. Hence the center of G1 naturally acts on
DS(V ) in a semisimple way for any representation (V, ρ) ∈ T . Hence
the underlying vectorspace V decomposes into H-eigenspaces for H =

diag(0n−1, 1, 1, 0n−1) in gn = Lie(Gn) which generates the Lie algebra of
the torus.

Let x ∈ gn be the fixed nilpotent element specified in section 2. Let
x = xT denote the supertranspose of x. Now Ad(ε1)(H) = H and [H,x] =

[H,x] = 0 imply that the operators ∂ = ρ(x) and ∂ = c · ρ(x) (for any c ∈ k∗)
commute with H. Furthermore [x, x] = H for the odd elements x and x

implies
∂∂ + ∂∂ = c · ρ(H) .

SinceH commutes with x, the operator ρ(H) acts on Vx. SinceH commutes
with ε1, the grading V ± is compatible with taking invariants

V H = {v ∈ V | ρ(H) = 0}.

Similarly we denote the space of coinvariants by VH . On V the odd operator
∂ defines a homotopy of the complex

∂ // Π(V2`−1)
∂ // V2`

∂

zz

∂ // Π(V2`+1)

∂

zz

∂ // V2`+2

∂

yy

∂ //

∂ // Π(V2`−1)
∂ // V2`

∂ // Π(V2`+1)
∂ // V2`+2

∂ //

Hence c ·ρ(H) is homotopic to zero. In particular, the natural action of ρ(H)

on the cohomology modules H`(V ) is trivial. Therefore

Lemma 5.1. ρ(H) acts trivially on the cohomology DS(V ) = Vx.

Since H acts in a semisimple way, taking H-invariants V 7→ V H is an
exact functor and commutes with the cohomology functor V 7→ Vx. Thus

DS(V ) = Mx for M = V H
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and similarly H±(V ) = H±(V H) etc. Notice (V H)± = (V ±)H . Since the
operators ∂ and ∂ commute with H, they preserve M = V H and anti-
commute on M . In this way we obtain a double complex for M = V H

defined by
∂ // M+ ∂ // Π(M−)

∂ //

∂ // Π(M−)
∂ //

∂

OO

M+ ∂ //

∂

OO

∂ // M+ ∂ //

∂

OO

Π(M−)
∂ //

∂

OO

.

The Dirac operator. This double complex is related to the complex

· · · D // M+ D // Π(M−)
D // M+ D // Π(M−)

D // · · ·

for M = V H attached to the Dirac operator

D = ∂ + ∂ .

SinceM = M+⊕Π(M−), the two cohomology modulesH+
D(V ) andH−D(V )

of this periodic complex compute

HD(V ) = Kern(D : M →M)/Im(D : M →M)

in the sense that
HD(V ) = H+

D(V )⊕Π(H−D(V ))

gives the decomposition of HD(V ) into its Rn and Π(Rn)-part.

Remark. Note that D commutes with ρ(H). Hence the operator D re-
spects the eigenspaces of H on V . Since D2 = ∂2 + (∂∂ + ∂∂) + ∂

2
=

(∂∂ + ∂∂) = c · ρ(H), we have Ker(D : V → V ) = Kern(D : V H → V H).
However D(V ) is in general different from D(V H), although both spaces
have the same intersection with V H .

Lemma 5.2. For c = i there exist natural isomorphisms HD(V ∗, ρ∗) ∼=
HD(V, ρ)∗,HD(V )∨ ∼= HD(V ∨),H±D(V ∗) ∼= H±D(V )∗ andH±D(V ∨) ∼= H±D(V )∨

of Gn−1-modules. For short exact sequences in Rn one obtains an exact
hexagon in Rn−1 for the functors H±D .

Proof. The assertion HD(V )∨ = HD(V ∨) follows since HD is a tensor
functor by lemma 5.4. We calculate τ(x+ ix) = −(x− ix) = i(x+ ix), since
τ2(x) = −x. Now recall that ρ∗(D) = ρ∨(τ(D)) = iρ∨(D) is defined as en-
domorphism on V ∗ = V ∨. HenceHD(V ∗, ρ∗), by definition the cohomology
of ρ∗(D) on (V ∗)H , can be identified with the space

Ker(iρ∨(D) : (V ∨)H → (V ∨)H)/Im(iρ∨(D) : (V ∨)H → (V ∨)H) .
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Of course we can ignore the factor i, and identify this representation with
the representation on(

Ker(ρ(D) : VH → VH)/Im(ρ(D) : (VH → VH)
)∨

or hence with

HD(V, ρ)∨ =
(
Ker(ρ(D) : V H → V H)/Im(ρ(D) : (V H → V H)

)∨
,

using the dual (VH)∨ → (V H)∨ of the natural morphism V H → VH , which
is an isomorphism by the semisimplicity of H. Finally recall HD(V, ρ)∨ =

HD(V, ρ)∗ for the underlying representation spaces. This is an isomorphism
of Gn−1-modules since τ restricts to the corresponding τ on Gn−1. �

So from now on assume c = i. Then, in contrast to lemma 3.1, we obtain

Lemma 5.3. There exist natural isomorphisms of functors Rn → Rn−1

µV : H±D(V ∗) ∼= H±D(V )∗ .

Proof. It remains to show that the isomorphism µV : H±D(V ∗) ∼= H±D(V )∗

given above defines a natural transformation. For a Gn-linear map f : V →
W the induced map f∗ : W ∗ → V ∗ is nothing but the morphism f∨ : W∨ →
V ∨, using V ∗ = V ∨ and W ∗ = W∨. This now easily shows that the above
identifications µV , µW induce a commutative diagram

HD(W )∗
HD(f)∗

// HD(V )∗

HD(W ∗)

µW

OO

HD(f∗)
// HD(V ∗)

µV

OO

�
Example. Let V be the Kac module V (1) in R1. Then DS(V ∗) = 0 and

DS(V ) = 1⊕Π(1). On the other hand HD(V ) = 0 and HD(V ∗) = 0.

Remark. It is not a priori clear how to define a Dirac analog of the
modules H`(V ). Indeed ∂ and ∂ (in the sense of odd morphisms) satisfy
∂ : Vλ → Vλ−µ and ∂ : Vλ → Vλ+µ for the odd simple weight µ. Hence
∂ : V` → V`−1 and ∂ : V` → V`+1 and therefore D = ∂ + ∂ does not simply
shift the grading. We adress this question in section 7.

HD as a tensor functor. Although taking H-invariants V 7→ M = V H is
not a tensor functor, HD is nevertheless a tensor functor. To show this it is
enough to restrict the representations (V, ρ) to G1 ↪→ Gn. Hence it suffices
to show that the functor

HD : T1 → T0 = sveck
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is a tensor functor. H generates the center of gl(1|1) and D2 = ρ(H). Hence
Kern(D) ⊂ V H . Since H is semisimple, the Jordan blocks of D on V

(ignoring the grading!) are Jordan blocks Bλ of length 1 except for the
eigenvalue λ = 0, where they are either Jordan blocks B0 of length 1 or
Jordan blocksR of lenght 2. Indeed the square of an indecomposable Jordan
block of length a and eigenvalue λ is again an indecomposable Jordan block
of length a for λ 6= 0. Since D2 = ρ(H) is semisimple, this implies λ = 0

and a ≤ 2 for a > 1. By definition, for V =
⊕

λ kλ(V ) · Bλ ⊕ k(V ) · R we
have HD(V ) = k0(V ) ·B0, if we ignore the grading. Now Bλ⊗Bλ′ = Bλ±λ′ ,
where the sign depends on the parity of Bλ. Furthermore the characteristic
polynomial of D on R⊗Bλ is X2−λ2, hence D has eigenvalue 0 on R⊗Bλ
only for λ = 0, in which caseR⊗Bλ is isomorphic toR. FinallyR⊗R ∼= R2.
Hence the only possible deviation from the tensor functor property for HD

might come from tensor products Bλ ⊗ Bλ′ where λ ± λ′ = 0. In this case
H = λ2 · id on Bλ and Bλ′ , hence H = 2λ2 · id on Bλ ⊗ Bλ′ . But the even
operator D2 then acts by 2λ2 · id on Bλ ⊗ Bλ′ . Hence D does not have the
eigenvalue zero on Bλ ⊗ Bλ′ unless λ = λ′ = 0. Therefore B0 ⊗ B0

∼= B0

is the only relevant case. Hence HD(V ⊗W ) = k0(V )k0(W ) · B0 = k0(V ) ·
B0 ⊗ k0(W ) ·B0 = HD(V )⊗HD(W ). This remains true if we also take into
account gradings.

Lemma 5.4. HD : Tn → Tn−1 is a tensor functor.

6. THE RELATION BETWEEN DS(V ) AND D(V )

For (V, ρ) ∈ Tn the eigenvalue decomposition with respect to the small torus
gives a decomposition

V =
⊕
`∈Z

V`

intoGn−1-modules V`. Furthermore ∂ and ∂ (in the sense of odd morphisms)
satisfy ∂ : V` → V`−1 and ∂ : V` → V`+1. In other words, they give rise to
morphisms ∂ : Π`(V`) → Π`−1(V`−1) and ∂ : Π`(V`) → Π`+1(V`+1), hence
induce morphisms on

⊕
`∈ZH

`(V ) which shift the grading by −1 resp. +1.

Since the generator H of the center of Lie(G1) commutes with the small
torus, we obtain an induced decomposition for the invariant subspace M =

V H ⊆ V
M =

⊕
`

Π`(M`)

for Π`(M`) = M ∩ V` = (V`)
H . Notice M = M+ ⊕ Π(M−) for (V, ρ) ∈ Rn,

with M+ and M− defined in Rn by

M+ =
⊕
`∈2Z

M` , M− =
⊕

`∈1+2Z

M` .
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The spaces M` are Gn−1-modules.

On M the operators ∂ and ∂ define even morphisms and they anticom-
mute in the diagram below. Hence we get a double complex K = K•,• in
Tn−1 attached to (V, ρ)

M`+2
∂ // M`+1

∂ // M`
∂ // M`−1

M`+1

∂

OO

∂ // M`

∂

OO

∂ // M`−1

∂

OO

∂ // M`−2

∂

OO

M`

∂

OO

∂ // M`−1

∂

OO

∂ // M`−2

∂

OO

∂ // M`−3

∂

OO

with Ki,j = Mj−i. This double complex is periodic with respect to (i, j) 7→
(i+1, j+1). The modulesKi,j vanish for j−i /∈ [`0, `1] and certain `0, `1 ∈ Z.

The associated single complex (Tot(K), D) has the objects Tot(K)n =⊕
i∈ZMn+2i and the differential D = ∂ + ∂. The total complex therefore

is periodic with Tot0(K) = M+ and Tot1(K) = Π(M−) and computes the
cohomology Hn(Tot(K), D) = H+

D(V ) for n ∈ 2Z and Hn(Tot(K), D) =

H−D(V ) for n ∈ 1 + 2Z.

On the total complex (Tot(K), D) we have a decreasing filtration defined
by F pTotn(K) =

⊕
r+s=n,r≥pK

r,s. This filtration induces decreasing filtra-
tions on the cohomology of the total complex

... ⊇ F p(H±D(V )) ⊇ F p+1(H±D(V )) ⊇ ...

and a spectral sequence (Ep,qr , dr) converging to

Ep,q∞ = grpHp+q(Tot(K), D) .

Indeed the convergence of the sequence follows from the fact that the higher
differentials dr : Epqr → Ep+r,q−r+1

r vanish for 2r − (q − p + 1) > `1 − `0.
The E1-complex of the spectral sequence is the direct sum over all q of
the horizontal complexes Ep,q1 = (Hq

∂(Kp,•), ∂). For the various q these
complexes are the same up to a shift of the complex. So, if we ignore this
shift, these complexes are given by the natural action of ∂ on

⊕
`∈ZH

`(V )

defining the complex

...
∂ // Hq+1(V )

∂ // Hq(V )
∂ // Hq−1(V )

∂ // ... .

The decreasing filtration F p induced on

E1(K)n =
⊕
i∈Z

Hn+2i(V )
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has graded terms grp(E1(K)n) = H∂(Kp,n−p) = H∂(Mn−2p) = Hn−2p(V ).
We now define the subquotient Hn−2p

D (V ) := grp(E∞(K)n) of Hn−2p(V ),
hence

H`
D(V ) := grp(E∞(K)`+2p).

Note that this definition does not depend on the choice of p. We thus obtain

Lemma 6.1. For T ∈ Tn the cohomology modules H±D(V ) admit canon-
ical decreasing filtrations F p whose graded pieces are the Gn−1-modules
H−2p
D (V ) for H+

D(V ) and H−2p−1
D (V ) for H−D(V ).

Condition T. We say that condition T holds for (V, ρ) in Tn if the natural
operation of the operator ∂ = ρ(τ(x)) on DS(V, ρ) is trivial.

Example. The standard representation X = Xst of Gn on kn|n satisfies
condition T.

Remark. If τ(x) act trivially both on DS(V ) and DS(W ) for some
V,W ∈ Tn, then τ(x) acts trivially on DS(V ⊗ W ) = DS(V ) ⊗ DS(W ).
If τ(x) acts trivially on DS(U) for U ∈ Tn, then τ(x) act trivially on every
retract of DS(U). Hence condition T for (V, ρ) = L(λ) implies condition T
for every retract U of DS(V ⊗W ). Thus the subcategory of objects in Rn
satisfying condition T is closed under tensor products and retracts.

Now consider the following conditions for (V, ρ):
(1) (V, ρ) is irreducible.
(2) H+(V )⊕H−(V ) is multiplicity free.
(3) H+(V ) and H−(V ) do not have common constituents.
(4) Condition T holds.
(5) ∂ acts trivially on DS(V ).
(6) The Ep,q1 and the Ep,q2 terms of the spectral sequence coincide

H
∂

(
H`(V )

)
= H`(V )

where ` := n− 2p = q − p.
Later in theorem 16.1 we prove that (1) implies (2). Furthermore it is trivial
that (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).

Proposition 6.2. If condition (3) holds, then the spectral sequence de-
generates at the E1-level and H±D(V ) is naturally isomorphic to H±(V ).

Proof. The differentials of the spectral sequence dr : Epqr → Ep+r,q−r+1
r

define maps from the subquotientEpqr ofHn−2p(V ) (for n = p+q) to the sub-
quotient Ep+r,q−r+1

r of Hn−2p−2r+1(V ). If Hn−2p(V ) contributes to H±(V ),
then Hn−2p−2r+1(V ) contributes to H∓(V ). Since all the higher differentials
are Gn−1-linear, condition (3) forces all differentials dr to be zero for r ≥ 1.
Hence the spectral sequence degenerates at the E1-level. �
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Proposition 6.3. The spectral sequence always degenerates at the E2-
level, i.e. for all objects (V, ρ) in Tn we have

H∂(H`(V )) ∼= H`
D(V ) .

Corollary 6.4. The kernel of HD : Tn → Tn−1 contains C+ ∪ C−.

Remark. It seems plausible that the kernel equals C+ ∪ C−.

Proof. This is a general assertion on spectral sequences arising from a
double complex K such that Ki,j = Mj−i for maps ∂ : M` → M`+1 and
∂ : M` → M`−1 between finite dimensional k-vectorspaces M`, ` ∈ Z so
that M` = 0 for almost all `. Indeed, any such double complex K can be
viewed as an object in the category T1 via the embedding ϕn,m of section 2..
Using T1 = R1 ⊕ Π(R1) we can decompose and assume without restriction
of generality that it is an object in R1. However, then it defines a maximal
atypical object in the category R1

1 ⊂ R1. For this notice that R1
1 can be

identified with the category of objects in R1 with trivial central character.
Note that this condition on the central character for a representation (V, ρ)

of G1 simply means V = V H = M , since H generates the center of Lie(G1).
This reduces our claim to the special case n = 1 for (V, ρ) in R1

1. Obviously
we can assume that (V, ρ) is indecomposable.

The indecomposable objects V inR1
1 were classified by Germoni [Ger98].

Either V ∈ C+ (Kac object), or V ∈ C− or there exists an object U ⊂ V,U ∈
C− with irreducible quotient L or there exists a quotient Q of V in C− with
irreducible kernel L′. Since DS(N) = 0 for all objects in C− (theorem 4.1),
we conclude from the long exact sequence of H`-cohomology that we can
either assume V ∈ C+ or that V is irreducible, since in the remaining cases
DS(V ) = 0 or DS(V ) ∼= DS(L) or DS(L′) ∼= DS(V ). As already men-
tioned, by the later theorem 16.1 for irreducible V , the spectral sequence
already abuts. For r = 1 however this is obvious anyway, since any atyp-
ical irreducible L is isomorphic to a Berezin power L ∼= Berm. Hence
Hν
D(L) = Hν(L) = k for ν = m and Hν

D(L) = Hν(L) = 0 otherwise.

So it remains to consider the case of indecomposable Kac objects V ∈ C+

in R1
1. Unless V ∈ C+ ∩C−, by Germoni’s results V ∼= V (i;m) for i ∈ Z and

m ∈ N is a successive extension

0→ V (i− 2;m− 1)→ V (i;m)→ V (Beri)→ 0

of the Kac objects with V (i; 1) = V (Beri). Furthermore the Kac module
V (Beri) is an extension of Berezin modules

0→ Beri−1 → V (Beri)→ Beri → 0 ,
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hence H`(V (Beri)) ∼= k for ` = i, i−1 and is zero otherwise. From the long
exact cohomology sequence and induction we obtain dim(Hν(V (i;m)) = 1

for ν ∈ {i, i−1, ..., i−2m+1}, and Hν(V (i;m)) = 0 otherwise. So (for fixed
q) the complexes in the E1-term of the spectral sequence for V = V (i;m)

have the form

0→ H i(V )→ H i−1(V )→ · · · → H i−2m+2(V )→ H i−2m+1(V )→ 0

with differentials ∂ andHν(V ) of dimension one for ν = i, i−1, ..., i−2m+1.
We have to show that these complexes are acyclic for all V = V (i;m). For
this it suffices that the first differential ∂ : H i(V ) → H i−1(V ), the third
differential ∂ : H i−2(V )→ H i−3(V ) and so on, are injective. By dimension
reasons the differentials ∂̄ : H i−1(V ) → H i−2(V ), ∂̄ : H i−3(V ) → H i−4(V )

etc. are then isomorphisms and the differentials ∂̄ : H i(V ) → H i−1(V ),
∂̄ : H i−2(V ) → H i−3(V ) etc. are zero. Hence the cohomology of this
complex vanishes and the E2-term of the spectral sequence is zero.. Hence
the spectral sequence abuts at r = 2, which proves our claim.

To prove the injectivity for the first, third and so on differential ∂ we use
induction on m. For m = 1 and V = V (Beri) ∈ C+ we know HD(V ) = 0

by theorem 4.1 and lemma 5.3 . Since Hν(V ) = 0 for ν 6= i, i− 1, all higher
differentials dr for r ≥ 2 are zero by degree reasons. Hence ∂ : H i(V ) →
H i−1(V ) must be an isomorphism.

For the induction step put Vi := V (i, 1) and N = V (i − 2,m − 1); then
V/N ∼= Vi. Hence we get a commutative diagram with horizontal exact
sequences

... // Hν−1(N) //

∂
��

Hν−1(V )

∂
��

// Hν−1(Vi)

∂
��

// Hν(N)

∂
��

// ...

... // Hν−2(N) // Hν−2(V ) // Hν−2(Vi) // Hν−1(N) // ...

Since Hν(N) = 0 for ν > i− 2 and Hν(Vi) = 0 for ν 6= i, i− 1

0 // H i−1(N) //

∂
��

H i−1(V )

∂
��

// H i−1(Vi)

∂
��

// 0

∂

��

// H i(V )� _

∂
��

∼ // H i(Vi)� _

∂
��

// 0

0 // H i−2(N) // H i−2(V ) // H i−2(Vi) // 0 // H i−1(V )
∼ // H i−1(Vi) // 0

Thus ∂ : H i(V )→ H i−1(V ) is injective by a comparison with Vi. The asser-
tion for the third, fifth and so on differential ∂ follows from the induction
assumption on N , since Hν(V ) ∼= Hν(N) for ν ≤ i− 2. �
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7. HODGE DECOMPOSITION

We show in proposition 7.1 that the groups H±D(V ) satisfy a Hodge de-
composition. Put Fp = F−p. This defines a decreasing filtration of Gn−1-

modules Fp(H±D(V )) on H±D(V ) as in the last section for V ∈ Tn. Here

Fp(H
±
D(V )) = Im

(
(
⊕
`≤2p

M±` ) ∩Ker(D)→ H±D(V )
)
.

One has also a decreasing filtration ofGn−1-modules F q(H±D(V )) onH±D(V )

defined by the second filtration of the cohomology of (Tot(K), D) for the
double complex K•,• defined in the last section. It is defined by the sub-
complexes F q(Tot(K)n) =

⊕
r+s=n,s≥qK

r,s of (Tot(K), D). Notice that

F
q
(H±D(V ))

is the image of the D-cohomology of this subcomplex in HD(K). This
filtration has analogous properties. In particular

H
n−2q
D (V ) := F

q
(Totn(K))/F

q+1
(Totn(K))

by an analog of proposition 6.3 is isomorphic to

H
`
D(V ) ∼= H∂(H

`
(V ))

where H`
(V ) is defined as H`(V ), only by using ∂ instead of ∂.

We remark that both filtrations are functorial with respect to morphisms
f : V → W in Tn. Hence also V 7→ F

q
(Hn

D(V )) ∩ Fp(Hn
D(V )) defines a

functor from Tn to Tn−1.

Proposition 7.1. For all objects V in Tn we have a canonical decompo-
sition of H±D(V ) into Gn−1-modules

H±D(V ) =
⊕
ν∈Z

Hν
D(V )

where for ε = (−1)ν

Hν
D(V ) := Fν(Hε

D(V )) ∩ F ν(Hε
D(V )) .

Furthermore for µ > ν we have

Fν(H±D(V )) ∩ Fµ(H±D(V )) = 0 .

Corollary 7.2. For a short exact sequence 0 → A → B → C → 0 in Tn
the sequences

Hν
D(A)→ Hν

D(B)→ Hν
D(C)

are exact for all ν.
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Remark. As shown after lemma 28.2 these halfexact sequences can not
be extended to long exact sequences!

Proof. If x ∈ Hν
D(B) maps to zero in Hν

D(C) ⊂ HD(C) there exist y ∈
HD(A) such that x is the image of y by the exact hexagon for H±D . But then,
for the decomposition y =

∑
ν yν and yν ∈ Hν

D(C) given in proposition 7,
the components yν also maps to x by the functoriality of Hν

D(.). �

Proof of proposition 7.1. As in the proof of proposition 6.3 we can re-
duce to the case of an indecomposable object V in R1

1. For such V either
HD(V ) = 0, in which case the assertion is trivial, or V is of the form

0→ L→ V → Q→ 0

with irreducible L and Q ∈ C− or of the form

0→ U → V → L→ 0

with irreducible L and U ∈ C−. These two situation are duals of each other.
So we restrict ourselves to the first case. The irreducible module L is iso-
morphic to Berm for some m ∈ Z. Then according to [Ger98] the quotient
module Q has socle and cosocle

socle(Q) =

s⊕
i=1

Berm+2i

cosocle(Q) =

s⊕
i=1

Berm+2i−1 .

Recall Hm(V ) = H•(V ), and hence HD(V ) = Hm(V ). Hence by the abut-
ment of the spectral sequences

H∂(Hν(V )) = Hν(V ) ∼= k

for ν = m and is zero otherwise. Hence Hm(V ) ∼= HD(V ), since the filtra-
tion F q only jumps for p = m. Similarly

H∂(H
ν
(V )) = H

ν
(V ) ∼= k

for ν = m and is zero otherwise. Hence Hm
(V ) ∼= HD(V ), since the filtra-

tion F q only jumps for q = m. This simultaneous jump shows

Hm
D (V ) = F

m
(HD(V )) ∩ Fm(HD(V ))

and also for q > p.

F
q
(HD(V )) ∩ Fp(HD(V )) = 0 .

�
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8. THE CASE m > 1

As the diligent reader may have observed, the results obtained in the
last sections on the functor DS carry over to the case of the more gen-
eral functors DSn,n−m. For this fix m ≥ 1. The enriched weight structure
of DSn,n−m (which depends on m) is obtained from the decomposition of
(V, ρ) ∈ Tn into eigenspaces with respect to the eigenvalues t` under the
elements ϕn,m(E × diag(1, t−1)) of the small torus. This allows to give a
decomposition

DSn,n−m(V ) =
⊕
`

DS`n,n−m(V )[−`]

into eigenspaces Π`(DS`n,n−m(V )) and gives long exact sequences in Tn−m
attached to short exact sequences in Tn as in section 2 . Furthermore lemma
3.1 and lemma 3.2 carry over verbatim. Notice,

DS`n,n−m(Bern) = Bern−m , for ` = m

and it is zero for ` 6= m. Indeed, ϕn,m(E × diag(1, t−1)) acts on Bern by tm.
Since εn = ϕn,m(E × diag(1,−1))εn−m, the restriction of Bern to Gn−m via
ϕn,m defines the module Πm(Berm−n).

Remark. Note that DS`n,n−m(V )[−`] = (DSn,n−m(V ))`. Here upper
indices denote graduations without twist, lower indices graduations with
twist. This is consistent with DS`n,n−1(V ) = H`(V ) in section 3. Note that
it is essential to have non twisted objects such as H•(V ) or more generally
DS•(V ) due to the comparison with HD respectively ωn,n−m (see below)
which don’t have any twists.

For n −m1 = n1 and n1 −m2 = n2 the functors DSn,n1
: Tn → Tn1

and
DSn1,n2

: Tn1
→ Tn2

are related to the functor DSn,n2
: Tn → Tn2

by a Leray
type spectral sequence with the E2-terms⊕

p+q=kDS
p
n1,n2(DS

q
n,n1(V )) =⇒ DSkn,n2

(V ) .

To be more precise, choose matrices

J =

(
0 J2

J1 0

)
and mi ×mi-matrices Ji, i = 1, 2 with zero enties except for the entries 1 in
the antidiagonal. Then J and J1 define functors DSn,n2

(V, ρ) = (V, ρ)x resp.
DSn,n1

(V, ρ) = (V, ρ)x1
and J2 defines a functor DSn1,n2

(W,ψ) = (W,ψ)x2
.

Obviously we have x = x1+x2 ∈ gn and x2 ∈ gn1
⊂ gn such that [x1, x2] = 0.
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Then indeed ∂ = ∂1 + ∂2 and ∂1∂2 + ∂2∂1 = 0 for ∂ = ρ(x), ∂1 = ρ(x1) and
∂2 = ψ(x2). Consider the weight (eigenvalue) decomposition

V =
⊕
p,q∈Z

V p,q

of (V, ρ) with respect to the matrices

g(t1, t2) = diag(1, .., 1; t−1
1 , ..., t−1

1 , t−1
2 , .., t−1

2 , 1, .., 1)

in Gn (m1 entries t−1
1 and m2 entries t−1

2 ) so that v ∈ V p,q if and only if
g(t1, t2)v = tq1t

p
2 ·v. (We now write indices on top to avoid confusion with the

lower indices n and n−m). Then ∂2 : V p,q → V p+1,q and ∂1 : V p,q → V p,q+1.
Hence the Leray type spectral sequence is obtained by the spectral sequence
of this double complex. For this note that the the functors Dk

n,n2
are defined

by the eigenvalues tk of the elements g(t, t).

Proposition 8.1. For irreducible maximal atypical objects L in Tn the
Leray type spectral sequence degenerates:

DSn,n2
(L) ∼= DSn1,n2

(DSn,n1
(L)) .

Proof. Up to a parity shift, we can replace L = L(λ) by Xλ in Tn, so that
sdim(Xλ) > 0 using that sdim(X) 6= 0 [Ser10], [Wei10]. Then it suffices to
prove inductively (for DS applied m times)

(DS ◦DS.... ◦DS)(Xλ) ∼= DSn,n−m(Xλ) .

The case m = 1 is obvious by definition, since DSn,n−1 = DS. Suppose this
assertion holds for m. Let us show that it then also holds for m replaced by
m+ 1. Indeed, the E2-term of the spectral sequence

DS ◦ (DS ◦DS.... ◦DS)(Xλ) =⇒ Dn,n−m−1(Xλ)

are of the form

DS ◦ (DS ◦DS.... ◦DS)(Xλ) ∼=
⊕
µ

Xµ

for irreducible representationsXµ in Tn−m−1 of superdimension sdim(Xµ) >

0. Indeed this follows by repeatedly applying the later theorem 16.1, which
implies DS(Xλ) ∼=

⊕k
i=1Xλi for irreducible maximal atypical objects Xλi

in Tn−1 with sdim(Xλi) > 0. Now DS is a tensor functor, and hence pre-
serves superdimensions. Hence sdim(Xλ) =

∑
µ sdim(Xµ). If the spectral

sequence would not degenerate at E2-level, then the E∞-term is a proper
subquotient of the semisimple E2-term. Hence

sdim(DSn−m−1)(Xλ) <
∑
µ

sdim(Xµ) ,
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since sdim(Xµ) > 0. This would imply

sdim(DSn−m−1)(Xλ) < sdim(Xλ) .

However this is a contradiction, since Dn−m−1 is a tensor functor and hence
sdim(DSn−m−1(Xλ)) = sdim(Xλ). Hence the spectral sequence degener-
ates and DSn,n2

(Xλ) has a filtration with graded pieces that are computed
by appropriate DSpn1,n2DS

q
n,n1(Xλ). In order to prove that DSn,n2

(Xλ) =

DSn1,n2
(DSn,n1

(Xλ)) we show that this filtration splits and DSn,n2
(Xλ) is

semisimple. This follows from the sign rules of the main theorem 16.1.
Indeed for Xλ with ε(λ) = 1, the constituents of DS(Xλ) in Rn have the
same sign ε = 1 and the constituents of DS(Xλ) in ΠRn have sign ε = −1.
Now use that Ext1(Rn,ΠRn) = 0 by lemma and Ext1(L(λ), L(µ)) = 0

if ε(λ) = ε(µ) by corollary 15.1. Hence there are no extensions between
the constituents of DS(Xλ). Repeated application of DS gives again con-
stituents which are either in Rn with sign ε = 1 or constituents in ΠRn
with sign ε = −1. Since the constituents of DSn,n2

(L) are given by the
constituents of the graded pieces, the semisimplicity follows. �

We have seen in the last proposition that the Leray type spectral sequence
degenerates at the E2-level for irreducible maximal atypical objects. Let F p
be the decending first (or second) filtration of the total complex. Due to the
degeneration we can make use of the following lemma.

Lemma 8.2. Suppose given a finite double complex (K•,•, dhor, dvert)

with associated total complex K• = Tot(K•,•) and total differential d. Sup-
pose the associated spectral sequence for the first (second) filtration degen-
erates at the E2-level and suppose x ∈ F p(K•) is a boundary in K•. Then
there exists y ∈ F p−1(K•) such that x = dy.

Proof. We can assume that x =
∑∞

i=p xp,n−p has fixed degree n. The
spectral sequence degenerates at E2 and [x] = 0 in F pHn(K•). Hence the
class of x in Grp(Hn(K•)) = Hp

hor(H
n−p
vert (K

•,•)) vanishes. In other words
there exists v ∈ Kp,n−p−1 and u ∈ Kp−1,n−p such that dvert(u) = 0 and
such that dhor(u) + dvert(v) = xp,q. Hence x − d(u + v) ∈ F p+1(K•) with
u+ v ∈ F p−1(K•) again is closed. Iterating this argument we conclude that
for any r large enough we find y ∈ F p−1(K•) such that x− dy ∈ F r(K•). If
r is large enough, then F r(K•) = 0 and hence the claim follows. �

Dirac cohomology. Similarly the results of section 5 hold verbatim for
∂ = ρ(x) and ∂ = c · ρ(x) and D = ∂ + ∂. In particular, for a generator z
of the Lie algebra of the center of G1, let H denote its image ϕn,m(z) ∈ gn.
The D-cohomology of the fixed space V H then gives objects ωn,n−m(V, ρ)

so that so that
ωn,n−m : Tn → Tn−m
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defines a tensor functor generalizing HD = ωn,n−1. Note that ωn,n−m re-
stricts to a tensor functor ωn,n−m : Rn → Rn−m unlike DSn,n−m.

As in section 6 there is a spectral sequence that allows to define a filtration
on ωn,n−m(V ) whose graded pieces are

ω`n,n−m(V ) ∼= H∂(DS`n,n−m(V )) .

This generalizes proposition 6.3. Furthermore the results of proposition 7.1
and corollary 7.2 of section 7 carry over and define a Hodge decomposition
for ωn,n−m in terms of the functors ω`n,n−m. Finally the same argument used
in the proof of proposition 8.1 also shows

Proposition 8.3. For irreducible maximal atypical objects L in Tn the
spectral sequence above degenerates, i.e. for all `

ω`n,n−m(L) ∼= DS`n,n−m(L) .

Now consider the Z-graded object DS•n,n−m(L) =
⊕

`∈Z DS`n,n−m(L)

(which is different from DSn,n−m(L) if we forget the graduation) to com-
pare with

⊕
`∈Z ω`n,n−m(L) (that is ωn,n−m(L) after forgetting the gradua-

tion).

Lemma 8.4. Suppose for irreducible V ∈ Tn that DS•n,n1
(V ) ∼= ωn,n1

(V ).
Then

ω•n,n2
(V ) ∼= ω•n1,n2

(DS•n,n1
(V ))

holds.

Proof. Use that ∂ = ∂1+∂2. By the assumptionDS•n,n1
(V ) ∼= ω•n,n1

(V ) the
differential ∂1 is trivial onDS•n,n1

(V ), hence trivial onDS•n1,n2
(DS•n,n1

(V )) ∼=
DS•n,n2

(V ). Therefore the ∂-homology of DS•n,n2
(V ) is the same as the ∂2-

homology attached to DS•n1,n2
(DSn,n1

(V ))•. �

This implies ω•n,n−m(L) ∼= DS•n,n−m(L) for any irreducible L in Tn. We
prove this by induction on m. For m = 1 this follows from the fact that
irreducible representations satisfy property T. Now we use ω•n,n−m−1(L) ∼=
ω•n−m,n−m−1(DS•n,n−m(L)) from lemma 8.4. Since DS•n,n−m(L) is semisim-
ple by proposition 8.1 (as iteration of m times DS•), we have

ω•n−m,n−m−1(DS•n,n−m(L)) = DS•(DS•n,n−m(L)) = DS•n,n−m−1(L) .

This implies

Proposition 8.5. For all irreducible objects L in Tn and all ` we have

ω`n,n−m(L) ∼= DS`n,n−m(L) .
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The case m = n is of particular interest. Notice that T0 is the category sveck
of finite dimensional super k-vectorspaces. Hence

ω = ωn,0 : Tn −→ sveck .

The tori Ai. Let Ai ⊆ Gn denote the diagonal torus of all elements of
the form diag(1, . . . , 1, tn−i+1, . . . , tn | tn, . . . , tn−i+1, 1, . . . , 1). In particular
A1 is the torus of section 5 and H = Hn,n−1. It commutes with all op-
erators ∂n,n−i, ∂n,n−i and Dn−i and hence acts on DSn,n−i(V ) respectively
ωn,n−i(V ). We claim

Lemma 8.6. The action of Ai on DSn,n−i(V ) and ωn,n−i(V ) is trivial.

Proof. For this we can assume without loss of generality that i = n. The
Hn,n−i for i = 1, ..., n generate the Lie algebra of the torus A. Hence it
suffices that all Hn,n−i act trivially. This follows from the Leray type spec-
tral sequence DSn−i,0 ◦ DSn,n−i =⇒ DSn,0. As in the proof of lemma 5.1
one shows that Hn,n−i acts trivially on DSn,n−i(V ). Hence by the spectral
sequence Hn,n−i acts by a nilpotent matrix on Dn,0(V ). On the other hand
A, and hence Hn,n−i ∈ Lie(A), acts in a semisimple way. This proves the
claim. �

9. BOUNDARY MAPS

Suppose given a module S inRn. ConsiderDtot = D+D′ forD = Dn,n−i
and D′ = Dn−i,0. Notice that DD′ = −D′D and D2 = cρ(H), (D′)2 =

cρ(H ′) and D2
tot = cρ(Htot).

For fixed i we write A = Ai. We have HD(S) = Kern(D : S → S)/(SH ∩
Im(D : S → S)). We have also shown that this is equal to

HD(S) = Kern(D : SA → SA)/Im(D : SA → SA)

for the torus A whose Lie algebra is generated by all Hn,n−j for j = 1, ..., n.
In a similar way

HDtot(S) = Kern(Dtot : SA → SA)/Im(Dtot : SA → SA) .

Recall that A commutes with Dtot, D,D
′ and acts in a semisimple way.

Let U ⊆ S denote the image of D′ : SA → SA. Then U and SA = SA/U

are stable underD andD′. If s ∈ SA is inKern(Dtot), thenDs = −D′s ∈ U .
Hence s 7→ s + U defines a map from Kern(Dtot : SA → SA)/Im(Dtot :

SA → SA) to Kern(D : S
A → S

A
)/Im(Dtot : S

A → S
A

), hence a map or

σS : HDtot(S) −→ HD(S) .
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Suppose given modules S, V, L in Rn defining an extension

0→ S → V → L→ 0 .

We get a boundary map

δtot : H±Dtot(L) −→ H∓Dtot(S)

defined as usually by Kern(Dtot : L→ L) 3 v 7→ [s] , s = Dtotv ∈ L. Here
v ∈ V A is any lift of v ∈ LA (it exists by the semisimple action of A on V ).
Obviously Dtot(s) = 0, since D2

tot = 0 on the space of A-invariant vectors.
Therefore the class [s] of s in H∓Dtot(S) is well defined.

In a completely similar way one defines the boundary map

δ : H±D(L) −→ H∓D(S) .

We claim that there exists a commutative diagram

H±D(L)
δ // H∓D(S)

H±Dtot(L)

σL

OO

δtot // H∓Dtot(S)

σS

OO

In fact on the level of representatives v ∈ V A it amounts to the assertion

v = v mod U // s = Dv

v

σL

OO

// s = Dtotv

σS

OO

using Dtotv ≡ Dv mod UL.

We now consider two extension (S, V, L) and (S, Ṽ , L̃). Then the commu-
tative diagram

H+
D(L̃)

δ̃ // H−D(S) H+
D(L)

δoo

H+
Dtot

(L̃)

σL̃

OO

δ̃tot // H−Dtot(S)

σS

OO

H+
Dtot

(L)

σL

OO

δtotoo

implies

Lemma 9.1. Suppose L ∼= 1. Then Im(δtot) is not contained in Im(δ̃tot),
if there exists an integer i for 1 ≤ i ≤ n such that

• H+
D(L̃) does not contain 1 as a Gn−i-module.

• δ(1) 6= 0 in H−D(S).
for D = Dn,n−i.
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Remark. If S = Ln(j) for some 1 ≤ j ≤ n is one of the hook representa-
tion discussed in section 31, then the smallest integer i for which δ(1) 6= 0

in H−D(S) holds is given by n− i = j−1. Indeed we later show that although
0 → D0

n,j(S) → D0
n,j(V ) → 1 → 0 is exact, the map D0

n,j−1(V ) → 1 is not
surjective any longer. So in the later applications, to apply the last lemma,
we have to check whether H+

D(L̃) contains the trivial Gj−1-module in this
case or not.

10. HIGHEST WEIGHT MODULES

Irreducible representations. The irreducible Gl(n|n)-modules L in Rn
are uniquely determined up to isomorphism by their highest weights λ.
These highest weights λ are in the set X+(n) of dominant weights, where λ
is in X+(n) if and only if λ is of the form

λ = (λ1, λ2, . . . , λn ; λn+1, . . . , λ2n)

with integers λ1 ≥ λ2 ≥ . . . ≥ λn and λn+1 ≥ λn+2 ≥ . . . ≥ λ2n.

We remark that the condition

λn = −λn+1

for λ is equivalent to the condition λ(H) = 0. In the language of Brundan
and Stroppel in section 12 the condition λ(H) = 0 is tantamount to the
condition that the irreducible representation L(λ) is not projective and the
smallest ∨-hook is to the left of all×’s and ◦’s. Any at least 1-atypical block
contains such L(λ). If these equivalent conditions hold we write

λ = (λ1, ..., λn−1 ; λn+2, . . . , λ2n)

defining an irreducible representation L(λ) in Rn−1.

Using the notation of [Dro09] the irreducible maximally atypicalGl(n|n)-
modules L in Rn are given by highest weights λ of the form

λ = (λ1, λ2, . . . , λn ; −λn, . . . ,−λ1)

with integers λ1 ≥ λ2 ≥ . . . ≥ λn. We abbreviate this by writing [λ1, . . . , λn]

for the corresponding irreducible representation. The full subcategory of
Rn generated by these will be denoted Rnn.

Highest weight modules. Recall that a vector v 6= 0 in a module (V, ρ) in
Rn is called primitive, if ρ(X)v = 0 holds for all X in the standard Borel
subalgebra b of g = gn. A highest weight vector of a module V (of weight λ)
in Rn is a vector v ∈ V that is a primitive eigenvector of b (of the weight λ)
generating the module V . In this case V is called a highest weight module
(of weight λ). Every irreducible representation L(λ) in Rn is a highest
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weight module of weight λ. Every highest weight module V of weight λ
has cosocle isomorphic to L(λ).

Lemma 10.1. For (V, ρ) = L(λ), or more generally a cyclic representa-
tion generated by a highest weight vector of weight λ, the weight space in
V of weight λ− µ is generated by ρ(x)v, where v is a highest weight vector
of (V, ρ).

Proof. For the simple positive roots ∆ = {α1, ..., αr}, i.e. the union of
the odd simple root {µ} and the even simple roots in g0 with respect to the
standard Borel subalgebra of upper triangular matrices, choose generators
Xα ∈ u. Put τ(Xα) = Y−α and V0 = F · v. Recursively define Vi = Vi−1 +∑

α∈∆ ρ(Y−α)(Vi−1). We claim that V∞ =
⋃∞
i=0 Vi is a g-submodule of V ,

hence equal to V . This claim also implies that the weight space Vλ−µ is
generated by ρ(τ(x))v.

V∞ is invariant under all ρ(Y−α), α ∈ ∆ = {α1, ..., αr}. Each Vi obviously
is invariant under ρ(X) for diagonal X ∈ g. Indeed each Vi/Vi−1 decom-
poses in weight spaces for weights

λ−
r∑
j=1

njαj ,

r∑
j=1

nj = i (nj ∈ N≥0) .

Note ρ(Xα)ρ(Y−β)±ρ(Y−β)ρ(Xα) = ρ(Hα) for α = β ∈ ∆ and ρ(Xα)ρ(Y−β)±
ρ(Y−β)ρ(Xα) = ρ([Xα, Y−β]) = 0 for α, β ∈ ∆ and α 6= β [since α − β /∈
Φ+∪Φ− for α, β ∈ ∆]. Hence V∞ is invariant under g, since Y−β, β ∈ ∆ and
diagonal X and Xα, α ∈ ∆, generate g as a Lie superalgebra. �

Lemma 10.2. Suppose λ = (λ1, ..., λn−1, λn ; λn+1, λn+2, . . . , λ2n) satis-
fies λn = −λn+1. If V is a highest weight representation generated by a
highest weight vector v of weight λ, the module Hλn(V ) contains a high-
est weight submodule of weight λ generated by the image of v with par-
ity (−1)λn . In particular the representation ΠλnL(λ) in Rn−1 is a Jordan-
Hölder constituent of Hλn(V ).

Proof of the lemma. The highest weight vector v of V is a highest weight
vector of the restriction of V to the subgroup Gn−1 of Gn and is annihilated
by ρ(x). By our assumption on the weight λ furthermore v ∈ V H . To prove
our claim it suffices to show that v is not contained in Im(ρ(x)). Suppose
v = ρ(x)(w). Since the weight of x is µ, we can assume that the weight of w
is λ− µ. Since V is a highest weight representation, by lemma 10.1 then w
is proportional to ρ(x)v. So that to show ρ(x)w = 0 and to finish our proof,
it suffices that by [x, x] = H

ρ(x)ρ(x)v = −ρ(x)ρ(x)v + ρ(H)v = 0
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vanishes, since ρ(x)v = 0 and v ∈ V H . �

Note that (for the notation used see section 11)

zi = [xi, x] = xix+ xxi , z′i = [x′i, x] = x′ix+ xx′i

are in the unipotent Lie algebra u0 ⊂ u of the standard Borel b0 of g0 for
all i = 1, .., n − 1. Suppose (V, ρ) is a representation of Gn. If (V, ρ) has
a highest weight vector v, then ρ(X)v = 0 holds for all X in the unipotent
radical u of the standard Borel of g. In particular

ρ(x)v = 0, ρ(xi)v = 0, ρ(x′i)v = 0, ρ(zi)v = 0, ρ(z′i)v = 0

and hence by the commutation relations above this implies for i = 1, ..., n−1

also
ρ(xi)ρ(x)v = 0 , ρ(x′i)ρ(x)v = 0 .

Now also suppose v ∈ V H and put w = ρ(x)v. Then ρ(x)w = 0, as shown
in the proof of lemma 10.2. Similarly one can show ρ(xi)w = 0 (since
ρ(xi)v = ρ(zi)v = 0) and ρ(x′i)w = 0. All elements u ∩ gn−1 commute with
ρ(x) and annihilate v, hence annihilate w. Finally, since ρ(x) and ρ(xi), ρ(x′i)

annihilate w, also ρ(zi) and ρ(z′i) annihilate w. It follows that ρ(X)w = 0

for all X ∈ u, since u is spanned by u ∩ gn−1 and the x, xi, x′i, zi, z′i,. This
implies that w is a highest weight vector in (V, ρ) of weight λ− µ, if w 6= 0.
Hence

Corollary 10.3. If (V, ρ) is a highest weight representation with highest
weight vector v and highest weight λ so that λ(H) = 0, then w = ρ(x)v

defines a highest weight vector of weight λ− µ in V if w 6= 0.

In the situation of the last corollary, the following conditions are equiva-
lent

(1) w = 0

(2) D(v) = 0

(3) D(v) = 0 and v defines a nonvanishing cohomology class in HD(V ).
Indeed D(v) = iρ(x)v + ρ(x)v = iw. Furthermore, if v = D(w̃), then v =

iρ(x)w̃1 + ρ(x)w̃2 for w1 ∈ Vλ+µ and w2 ∈ Vλ−µ. Since λ is highest weight,
therefore Vλ+µ = 0. Furthermore Vλ−µ is generated by w, and ρ(x)w = 0.
Hence v /∈ D(V ).

A highest weight representation V of weight λ canonically admits the
irreducible representation L = L(λ) as a quotient. Let q : V → L denote the
quotient map.

Corollary 10.4. In the highest weight situation of corollary 10.3 the fol-
lowing holds for the representation V :
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(1) If V contains a highest weight subrepresentation W 6= 0 of weight
λ− µ, then Hλn

D (V ) has trivial weight space Hλn
D (V )λ ⊆ H

λn
D (V ).

(2) If the natural map HD(q) : HD(V ) → HD(L) is surjective, then
V does not contain a highest weight subrepresentation W 6= 0 of
weight λ− µ.

Proof. For the first assertion, notice that D(v) = 0 implies w = 0 and
w generates Vλ−µ. For the second assertion notice that the highest weight
vector v ∈ V maps to the highest weight vector q(v) of L. By the first asser-
tion and lemma 10.2, applied for L, the vector q(v) is D-closed and defines
a nonzero class in Hλn

D (L)λ. Since now HD(q) is surjective by assumption,
corollary 7.2 implies that this class is the image of a nonzero cohomology
class η in Hλn

D (V ). This class is representated by a nonzero ∂ closed class
in Hλn(V ) = DSλn in the weight space λ. Hence this class has a D-closed
representative v′ in Vλ, since the enriched weight structure on DS(V ) allows
to recover the weight structure of V . Since V is a highest weight represen-
tation, the space Vλ has dimension one and therefore v′ is proportional to
v. Thus D(v) = 0. But, as explained above, this implies w = 0 and hence
Vλ−µ = 0. �

Since Kac modules V (λ) are highest weight modules of weight λ with
HD(V (λ)) = 0, lemma 10.2 and its corollaries above imply

Lemma 10.5. For λ inX+ with λn = λn+1 = 0 the cohomologyH0(V (λ))

of the Kac module V (λ) contains a highest weight module of weight λ. Fur-
thermore V (λ) contains a nontrivial highest weight representation of weight
λ− µ.

Example. Let (V, ρ) = V (1) in R2 be the Kac module of the trivial
representation. ThenDS(V ∗) = 0 andDS(V ) 6= 0, since V is not projective.
The module V is a cyclic module generated by it highest weight vector of
weight λ = 0 (this is not true for the anti-Kac module V ∗). Furthermore
V has Loewy length 3 with Loewy series (Ber−2

2 , Ber−1
2 S1,1) where S1 =

[1, 0]. We claim

DS(V ) = (Ber−2
1 ⊕ 1)⊗

(
1⊕Π(1)

)
.

This follows from the later results, e.g. lemma 2.1 and theorem 16.1:
d(Ber2) = −Ber1 and d(S1) = Ber−1

1 + Ber1 imply d(V ) = 0, hence
DS(V ) has at most 4 Jordan-Hölder constituents Ber−2

1 ,Π(Ber−2
1 ),1,Π(1).

By lemma 10.2 the constituent 1 occurs. By duality then also the constituent
Ber−2

1 must occur. Since d(V ) = 0 the constituent Π(Ber−2
1 ),Π(1) must oc-

cur. Finally apply proposition 19.1. This example shows that DS in general
does not preserve negligible objects.
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Highest weights. Suppose (V, ρ) is a highest weight module of weight λ
such that λ(H) = 0. Let ν be a weight of V . Then

ν = λ−
∑
α∈∆n

N≥0 · α

for the set ∆n of simple positive roots α of Gn.

Now suppose ν contributes to DS(V ). Then ν is a weight of V H and
hence ν(H) = 0. Notice ∆n is the union of ∆+

n = {e1 − e2, ..., en−1 −
en, en+1 − en+2, ..., e2n−1 − e2n} and ∆−n = {en − en+1}. The restriction of
the simple roots α ∈ ∆n are in ∆n−1 (i.e. simple root ofGn−1) except for the
even simple roots α = en−1−en, α = en+1−en+2 and the odd simple root α =

en−en−2. A linear combination
∑

α∈∆n
nαα annihilates H if and only if the

coefficient, say m, of en−1 − en and en+1 − en+2 coincides; hence this holds
iff ν is of the form

∑
α∈∆+

n−1
nαα+(nµ−m) · (en−en+1)+m · (en−1−en+2).

Notice that µ = (en − en+1) is trivial on the maximal torus of Gn−1 and that
(en−1−en+2) defines the new odd simple root in ∆−n−1. Hence the restriction
of ν ∈ V H is of the form

ν|b∩gn−1
∈ λ|b∩gn−1

−
∑

α∈∆n−1

N≥0 · α

under our assumptions above. Notice for Vλ ⊂ V H ⊂ V we have

` = λ(diag(1, .., 1; t−1, 1, .., 1)) = nµ −m = λ′n .

The discussion above implies

Lemma 10.6. For a highest weight module (V, ρ) in Tn of weight λ with
λ(H) = 0 the module DS(V, ρ) has its weights ν in λ−

∑
α∈∆n−1

N≥0 · α.

Corollary 10.7. Given (V, ρ) ∈ Tn, suppose L(λ) is a Jordan-Hölder
constituent of (V, ρ) such that for all Jordan-Hölder constituents L(ν) of
(V, ρ) we have ν ∈ λ−

∑
α∈∆n

N≥0 · α and ν(H) = 0. Then L(λ) appears in
DS(V, ρ) and all other irreducible constituents L(ν ′) or ΠL(ν ′) of DS(V, ρ)

satisfy ν ′ ∈ λ−
∑

α∈∆n−1
N≥0 · α.

Proof. This follows from the last lemma and the weak exactness of the
functor DS. �

11. THE CASIMIR

We study the operation of the Casimir Cn on DS(V ). This will be used in
section 18 when we study the effect of DS on translation functors Fi(L×◦).
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Consider the fixed element x ∈ gn

x =

(
0 y

0 0

)
∈ gn for y =


0 0 . . . 0

0 0 . . . 0

. . . . . .

1 0 0 0


Similarly we define

xi , x
′
i for i = 1, .., n− 1

for matrices y = yi resp. y′i with a unique entry 1 in the first column resp.
last row at positions different from the entry 1 in the above y

∗ 0 . . . 0

∗ 0 . . . 0

. . . . . .

0 ∗ ∗ ∗


Then x, xi, x′i are in u for i = 1, ..., n−1. The elements xi, x′i satisfy [xi, x] =

0 = [x′i, x].

Using Brundan-Stroppel’s notations [BS12a], (2.14), let er,s ∈ gn be the
rs-matrix unit. Then the Casimir operator Cn =

∑n
r,s=1(−1)ser,ses,r of the

super Lie algebra gn = Lie(Gn) is recursively given by

Cn = Cn−1+C1+2(z1z1+· · ·+zn−1zn−1)+(e1,1+· · ·+en−1,n−1−(n−1)en,n)

−2(z′1z
′
1 + · · ·+ z′n−1z

′
n−1)− (−en+2,n+2 − · · · − e2n,2n + (n− 1)en+1,n+1)

+2(x1x1 + · · ·+ xn−1xn−1)− (e1,1 + · · ·+ en−1,n−1 + (n− 1)en+1,n+1)

+2(x′1x
′
1 + · · ·+ x′n−1x

′
n−1)− (en+2,n+2 + · · ·+ e2n,2n + (n− 1)en,n)

with the notations xi = ei,n+1, x′i = en,2n+1−i, zi = ei,n and z′i = en+1,2n+1−i.
Furthermore xi, x′i, zi and z′i denote the supertransposed of xi, x′i, zi and z′i.
Hence

Cn = Cn−1 + C1 + 2(z1z1 + · · ·+ zn−1zn−1 − z′1z′1 − · · · − z′n−1z
′
n−1)

+2(x1x1 + · · ·+ xn−1xn−1 + x′1x
′
1 + · · ·+ x′n−1x

′
n−1)− 2(n− 1)H

using [τ(x), xi] = zi and [τ(x), x′i] = z′i and

[zi, zi] = ei,i − en,n , [z′i, z
′
i] = en+1,n+1 − e2n+1−i,2n+1−i

and [xi, xi] = ei,i+en+1,n+1 and [x′i, x
′
i] = e2n+1−i,2n+1−i+en,n. Notice xixi−

xixi = 2xixi− ei,i− en+1,n+1 and x′ix′i−x′ix′i = 2x′ix
′
i− e2n+1−i,2n+1−i− en,n.

Finally C1 = e2
n,n − e2

n+1,n+1 − xx+ xx = e2
n,n − e2

n+1,n+1 + 2xx−H.

Representations. Suppose (V, ρ) is a representation of gn. On DS(V, ρ)

we have ρ(H) = 0 and ρ(x) = 0. Since

[x, xi] = [x, x′i] = [x, zi] = [x, z′i] = 0 ,
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the elements xi, x′i, zi, z′i naturally act on the cohomology DS(V ) = Vx.
Since x commutes with H, the spaces Kern(x) and its subspace Im(x)

decompose into H-eigenspaces Kern(x)(j) and Im(x)(j) for j ∈ Z. By
lemma 5.1 however Kern(x)(j) = Im(x)(j), expect for the zero-eigenspace
of H. Now, although x, x commute with H, the operators y ∈ {xi, x′i, zi, z′i}
satisfy [H, y] = ±y and hence map the zero eigenspace M = V H into the
±1-eigenspace of H on V . Since the j = ±1-eigenspaces do not give a
nonzero contribution to the cohomology DS(V ) = Vx, this implies

Lemma 11.1. The natural action of ρ(xi), ρ(x′i), ρ(zi), ρ(z′i) and ρ(x), ρ(H)

on DS(V, ρ) is trivial.

Notice that Cn commutes with all elements in gn, hence induces a linear
map on DS(V, ρ) that commutes with the action of Gn−1 on DS(V, ρ).

Lemma 11.2. The restriction of the Casimir Cn acts on DS(V, ρ) like the
Casimir Cn−1 of Tn−1 acts on DS(V, ρ) ∈ Tn−1.

Proof. By lemma 11.1 the restriction of Cn to DS(V, ρ) is the sum of
Cn−1 and the operator C1 = e2

n,n − e2
n+1,n+1. Now consider a weight space

of DS(V, ρ) with eigenvalue λ. Then λ is the restriction of an eigenvalues
λ of the weight decomposition of (V, ρ). Since DS(V, ρ) is represented by
elements in M = V H , the condition λ(H) = 0 implies λn = −λn+1 and
hence λ2

n − λ2
n+1 = 0. Therefore C1 acts trivially on DS(V, ρ). �

Remark. As the referee pointed out, there is a more conceptual proof of
lemma 11.2. For a module M ∈ Tn, the Casimir map is the composition

CM : M // gl(n|n)⊗ gl(n|n)∗ ⊗M // gl(n|n)⊗M // M

where the first map is the coevaluation map for the adjoint representation of
g and the last two are the action maps gl(n|n) ⊗M → M . Since DS maps
the standard representation to the standard representation, it preserves the
adjoint representation as well, and hence preserves the Casimir map in the
sense that DS(CM ) is the Casimir on DS(M).

PART 2. THE MAIN THEOREM AND ITS PROOF

In this part we prove the main theorem, stating thatDS(L) =
⊕

i ΠniL(λi)

in Tn−1 for any irreducible representation L. We have seen that DS(L) is
actually a Z-graded object in Tn−1; and we calculate the Z-grading for any
L in the propositions 23.1 24.2. These statements contain the main theorem
as a special case. Their proofs however depend on the main theorem and
its proof. We will prove the main theorem first for special irreducible L,
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called ground states, and reduce the general question to these by means of
translation functors.

12. THE LANGUAGE OF BRUNDAN AND STROPPEL

By the work of Brundan-Stroppel [BS12a] the block combinatoric and
notably the Ext1 between irreducible representations can be described in
terms of weight and cup diagrams associated to any irreducible L()λ).

Weight diagrams. Consider a weight λ = (λ1, ..., λn;λn+1, · · · , λ2n). Then
λ1 ≥ ... ≥ λn and λn+1 ≥ ... ≥ λ2n are integers, and every λ ∈ Zm+n

satisfying these inequalities occurs as the highest weight of an irreducible
representation L(λ). The set of highest weights will be denoted by X+ =

X+(n). Following [BS12a] to each highest weight λ ∈ X+(n) we associate
two subsets of cardinality n of the numberline Z

I×(λ) = {λ1, λ2 − 1, ..., λn − n+ 1}
I◦(λ) = {1− n− λn+1, 2− n− λ2n−1, ...,−λ2n}.

We now define a labeling of the numberline Z. The integers in I×(λ) ∩
I◦(λ) are labeled by ∨, the remaining ones in I×(λ) resp. I◦(λ) are labeled
by × respectively ◦. All other integers are labeled by ∧. This labeling of the
numberline uniquely characterizes the weight vector λ. If the label ∨ occurs
r times in the labeling, then r = atyp(λ) is called the degree of atypicality of
λ. Notice 0 ≤ r ≤ n, and for r = n the weight λ is called maximal atypical.

Blocks. A block Γ of X+(n) is a connected component of the Ext-quiver
of Rn. Let RΓ (or by abuse of notation Γ) be the full subcategory of objects
of Rn such that all composition factors are in Γ. This gives a decomposi-
tion Rn =

⊕
ΓRΓ of the abelian category. Two irreducible representations

L(λ) and L(µ) are in the same block if and only if the weights λ and µ de-
fine labelings with the same position of the labels × and ◦. The degree of
atypicality is a block invariant, and the blocks Λ of atypicality r are in 1-1
correspondence with pairs of disjoint subsets of Z of cardinality n− r resp.
n − r. Let Rin be the full subcategory of Rn defined by the blocks of atyp-
icity n− i. In particular Rn has a unique maximally atypical block, and any
block of atypicality i in Rn is equivalent to the maximally atypical block in
Ri.

Cups. To each weight diagram we associate a cup diagram as in [BS11].
Here a cup is a lower semi-circle joining two points in Z. To construct the
cup diagram go from left to right throught the weight diagram until one
finds a pair of vertices ∨ ∧ such that there only x’s, ◦’s or vertices which
are already joined by cups between them. Then join ∨ ∧ by a cup. This
procedure will result in a weight diagram with r cups. For example
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is the labelled cup diagram (n = 4) of the trivial representation attached to
the weight λ = (0, . . . , 0|0, . . . , 0).

Sectors and segments. For the purpose of this paragraph we assume λ ∈
X+ to be in a maximal atypical block, so that the weight diagram does not
have labels × or ◦. Some of the r cups of a cup diagram may be nested.
If we remove all inner parts of the nested cups we obtain a cup diagram
defined by the (remaining) outer cups. We enumerate these cups from left to
right. The starting point of the j-th lower cup is denoted aj and its endpoint
is denoted bj . Then there is a label ∨ at the position aj and a label ∧ at
position bj . The interval [aj , bj ] of Z will be called the j-th sector of the cup
diagram. Adjacent sectors, i.e with bj = aj+1 − 1 will be grouped together
into segments. The segments again define intervals in the numberline. Let
sj be the starting point of the j-th segment and tj the endpoint of the j-th
segment. Between any two segments there is a distance at least ≥ 1. In the
following case the weight diagram has 2 segments and 3 sectors

whereas the following weight diagram has 1 segment and 1 sector.

Removing the outer circle would result in a cup diagram with two sec-
tors and one segment. We can also define the notion of a sector or segment
for blocks which are not maximally atypical. In this case we say that two
sectors are adjacent (and belong to the same segment) if they are only sepa-
rated by × or ◦’s. For our purpose the × and ◦’s will not play a role and we
will often implicitly assume that we are in the maximally atypical block.

Important invariants. Note that the segment and sector structure of a
weight diagram is completely encoded by the positions of the ∨’s. Hence
any finite subset of Z defines a unique weight diagram in a given block.
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This will lead to the notion of a plot in the next section where we associate
to a maximal atypical highest weight the following invariants:

• the type (SD) resp. (NSD),
• the number k = k(λ) of sectors of λ,
• the sectors Sν = (Iν ,Kν) from left to right (for ν = 1, ..., k),
• the ranks rν = r(Sν), so that #Iν = 2rν ,
• the distances dν between the sectors (for ν = 1, ..., k − 1),
• the total shift factor d0 = λn
• and the added distances δi =

∑i−1
ν=0 dν .

If convenient, k sometimes may also denote the number of segments, but
hopefully no confusion will arise from this.

A maximally atypical weight is called basic if λν = −λn+ν holds for
ν = 1, ..., n such that [λ] := (λ1, ..., λn) defines a decreasing sequence λ1 ≥
· · · ≥ λn−1 ≥ λn = 0 with the property n − ν ≥ λν for all ν = 1, ..., n.
The total number of such basic weights in X+(n) is the Catalan number
Cn. Reflecting the graph of such a sequence [λ] at the diagonal, one obtains
another basic weight [λ]∗. We will show that a basic weight λ is of type (SD)
if and only if [λ]∗ = [λ] holds. To every maximal atypical highest weight λ
is attached a unique maximal atypical highest weight λbasic

λ 7→ λbasic

having the same invariants as λ, except that d0 = d1 = · · · = dk−1 = 0

holds for λbasic. For example, the basic weight attached to the irreducible
representation [5, 4,−1] in R3 with cup diagram

is the basic representation [2, 1, 0] with weight diagram

13. ON SEGMENTS, SECTORS AND PLOTS

If λ is a maximally atypical weight inRn, it is completely encoded by the
n ∨’s in its weight diagram. We change the point of view and regard it as a
map (a plot) λ : Z → {�,�} where the � correspond to the ∨’s. If λ is not
maximal atypical, its weight diagram has crosses and circles. These do not
play any role in the combinatorial arguments, and we can still describe λ by
a plot if we just ignore and remove the crosses and circles from the weight
diagram.

A plot λ is a map
λ : Z→ {�,�}
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such that the cardinality r of the fiber λ−1(�) is finite. Then by definition
r = r(λ) is the degree and λ−1(�) is the support of λ. As usual an interval
[a, b] ⊂ Z is the set {x ∈ Z | a ≤ x ≤ b}. Replacing � by 1 and � by −1

we may view λ(x) as a real valued function extended by λ(x) := λ([x]) to a
function on R for [x] = maxn∈Z{n ≤ x}.

Segments and sectors. An interval I = [a, b] of even cardinality 2r and a
subset K of cardinality of rank r defines a plot λ of rank r with support K.
We call (I,K) a segment, if f(x) =

∫ x
a λ(x)dx is nonnegative on I. Notice,

then a ∈ K but b /∈ K.

Factorization. For a given plot λ put a = min(supp(λ)) and for the first
zero x0 > a of the function f(x) =

∫ x
a λ(x)dx put b = x0 − 1. This defines

an interval I = [a, b] of even length, such that λ|I (now again viewed as a
function on I ∩Z) admits the values 1 and −1 equally often. If supp(λ) ⊂ I,
then λ is called a prime plot. If λ is not a prime plot, the plot λ1 with support
I ∩ supp(λ) defines a prime plot. It is called the first sector of the plot λ.
Now replace the plot λ by the plot, where the support K1 of the first sector
I = I1 is removed from the support K of λ. Repeating the process above,
we obtain a prime plot λ2 with support K2 defining a segment (I2,K2). This
segment is called the second sector of λ. Obviously I1 is an interval in Z
on the right of I1, hence in particular they are disjoint. Continuing with
this process, one defines finitely many prime plots λ1, ..., λk attached to a
given plot defining disjoint segments S1 = (I1,K1),..., Sk(Ik,Kk). These
segments Sν are called the sectors of the plot λ. Let

dν = dist(Iν , Iν+1) , ν = 1, ..., k − 1

denote the distances between these sectors Sν , i.e. dν = min(Sν+1) −
max(Sν).

For disjoint segments (I1,K1) and (I1,K2) the union (I,K) = (I1 ∪
I2,K1 ∪K2) again is a segment, provided I = I1 ∪ I2 is an interval in Z.

Grouping together adjacent sectors of λ with distances dν = 0 defines the
segments of λ. In other words, the union of the intervals Iν of the sectors Sν
of the λν can be written a disjoint union of intervals I of maximal length.
These intervals I define the segments of λ as (I, T ∩ supp(λ)).

We consider formal finite linear combinations
∑

i ni · λi of plots with in-
teger coefficients. This defines an abelian group R =

⊕∞
r=0Rr (graduation

by rank r). We define a commutative ring structure on R so that the product
of two plots λ1 and λ2 is zero unless the segments of λ1 and λ2 are disjoint,
in which case the support of the product becomes the union of the supports.
A plot λ that can not be written in the form λ1 ·λ2 for plots λi of rank ri > 0

is called a prime plot.
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Lemma 13.1. Every plot can be written as a product of prime plots
uniquely up to permutation of the factors.

Of course this prime factorization of a given plot λ is given by the prime
factors λν attached to the sectors Sν , ν = 1, .., k of λ. Hence for λ =

∏
i λi

with prime plots λi, the sectors of λ are the segments attached to the prime
factors λi. The interval I = [a, ..., b] attached to a prime plot λ is the unique
sector or the unique segment of the prime plot λ. It has cardinality 2r(λ),
and the support K of λ defines a subset of the sector I of cardinality r.
Recall a ∈ K but b /∈ K.

Differentiation. We define a derivation on R called derivative. Indeed
the derivative induces an additive map

∂ : Rn → Rn−1 .

To differentiate a plot of rank n > 0, or a segment, we use the formula

∂(
∏
i

λi) =
∑
i

∂λi ·
∏
j 6=i

λj

in the ring R to reduce the definition to the case of a prime plot λ. For prime
λ let (I,K) be its associated sector. Then I = [a, b]. Using a ∈ K, b /∈ K, for
a sector (I,K) of a prime plot λ it is easy to verify by the integral criterion
that

∂(I,K) = (I,K)′ = (I ′,K ′)

for I ′ = [a+ 1, b− 1] and K ′ = I ∩K again defines the sector of a prime plot
∂λ of rank r(λ′) = r(λ) − 1. Then for prime plots λ of rank n with sector
(I,K) we define ∂λ in R by

∂λ = ∂(I,K) , I = [a, b] .

Integration. For a segment (I,K) with I = [a, b] put∫
(I,K) = ([a− 1, b+ 1],K ∪ {a− 1})

increasing the rank by 1. Observe, that the integral criterion implies that
([a− 1, b+ 1],K ∪ {a− 1}) always defines a prime segment. Obviously

∂

∫
(I,K) = (I,K) .

Similarly
∫
∂(I,K) = (I,K) for a prime segment (I,K) of rank > 0.

Lowering sectors. For a sector S = (I,K) with I = [a, b] define

Slow = ([a− 1, a], {a− 1}) ∪ ∂(S) .

Notice that Slow is a segment with interval [a− 1, b− 1].
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Melting sectors. Suppose λ1 and λ2 are prime plots. Let (I1,K1) and
(I2,K2) be their defining sectors. Assume that (I,K) = (I1 ∪ I2,K1 ∪K2)

defines a segment with plot λ. Hence I1 = [a, i] and I2 = [i+ 1, b] for some
i ∈ Z and i /∈ K1 and i+ 1 ∈ K2. Then by the integral criterion

(I,K)melt = (I1 ∪ I2,K1 ∪ {i} ∪ (K2 − {i+ 1})

defines a prime plot with I = [a, b].

Example. We can represent plots with labelled cup diagrams. A plot of
rank r has r cups. For instance the irreducible representation [3, 3, 1, 1] ∈ R4

has the cup diagram

The corresponding plot is defined by its support {−2,−1, 2, 3}. Its deriva-
tive is the sum of two plots of rank 3 corresponding to the two cup diagrams

If we integrate the first segment of the plot we get the plot of rank 5 with
support {−3,−2,−1, 2, 3} with corresponding cup diagram

The plot of [3, 3, 1, 1] has two adjacent sectors. Melting these two gives
the plot with support { -2,-1,1,3} with cup diagram
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The not maximally atypical case. As with sectors and segments we can
define the notion of a plot for representations which are not maximally
atypical. We fix the block of the irreducible representations, ie. the po-
sitions of the ×’s (say at the vertices x1, . . . , xr) and the positions of the
◦’s (say at the vertices ◦1, . . . , ◦r). Once these are fixed we define Z×◦ :=

Z\({x1, . . . , xr}∪{◦1, . . . , ◦r}). Then a plot is a map λ : Z×◦ → {�,�}. The
reader can convince himself that all the previous definitions and operations
on plots (factorization, derivatives etc) can be adapted easily to this more
general setting. However this amounts in practice only to fixing the posi-
tions of the × and ◦’s and then ignoring them. We will associate in section
18 to every weight λ of atypicality i a plot φ(λ) of rank i (without ×’s and
◦’s) and work with these instead.

14. MIXED TENSORS AND GROUND STATES

We compute DS(L) ∈ Tn−1 for special irreducible representations L in a
block Γ, the so-called ground states. The general case for arbitrary L will
then be reduced to this case in later sections.

Let MT denote the full subcategory of mixed tensors in Rn whose ob-
jects are direct sums of the indecomposable objects in Rn that appear in
a decomposition X⊗rst ⊗ (X∨st)

⊗s for some natural numbers r, s ≥ 0, where
Xst ∈ Rn denotes the standard representation. By [BS12b] and [CW11]
the indecomposable objects in MT are parametrized by (n|n)-cross bipar-
titions. Let Rn(λL, λR) denote the indecomposable representation in Rn
corresponding to the bipartition λ = (λL, λR) under this parametrization.

To any bipartition λ we attach a weight diagram in the sense of [BS11],
ie. a labelling of the numberline Z according to the following dictionary.
Put

I∧(λ) := {λL1 , λL2 − 1, λL3 − 2, . . .} and I∨(λ) := {1− λR1 , 2− λR2 , . . .} .

Now label the integer vertices i on the numberline by the symbols ∧,∨, ◦,×
according to the rule 

◦ if i /∈ I∧ ∪ I∨,
∧ if i ∈ I∧, i /∈ I∨,
∨ if i ∈ I∨, i /∈ I∧,
× if i ∈ I∧ ∩ I∨.

To any such data one attaches a cup-diagram as in section 12 or [BS11] and
we define the following three invariants
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a(λ) = number of crosses
d(λ) = number of cups
k(λ) = a(λ) + d(λ)

A bipartition is (n|n)-cross if and only if k(λ) ≤ n. By [BS12b] the mod-
ules R(λL, λR) have irreducible socle and cosocle equal to L(λ†) where the
highest weight λ† can be obtained by a combinatorial algorithm from λ. Let

θ : Λ→ X+(n)

denote the resulting map λ 7→ λ† between the set of (n|n)-cross bipartitions
Λ and the set X+(n) of highest weights of Rn.

Theorem 14.1. [Hei14]R = R(λ) is an indecomposable module of Loewy
length 2d(λ) + 1. It is projective if and only if k(λ) = n, in which case we
have R = P (λ†).

Hence R is irreducible if and only if d(λ) = 0, and then R = L(λ†).

Deligne’s interpolating category. For every t ∈ k there exists the cat-
egory Rep(Glt) defined in [Del07]. This is a k-linear pseudoabelian rigid
tensor category. By construction it contains an object st of dimension t,
called the standard representation. Given any k-linear pseudoabelian tensor
category C with unit object and a tensor functor

F : Rep(Glt)→ C

the functor F → F (st) is an equivalence between the category of⊗-functors
of Rep(Glt) to C with the category of t-dimensional dualisable objects X ∈
C and their isomorphisms.

In particular, given a dualizable object X of dimension t in a k-linear
pseudoabelian tensor category, a unique tensor functor FX : Rep(Glt) → C

exists mapping st to X. Hence, for our categories Rn and t = 0, we get
a tensor functor Fn : Rep(Gl0) → Rn by mapping the standard represen-
tation of Rep(Gl0) to the standard representation of Gl(n|n) in Rn. Every
mixed tensor is in the image of this tensor functor ( [CW11]). The inde-
composable elements in Deligne’s category are parametrized by the set of
all bipartitions. The kernel of Fn contains those indecomposables labelled
by bipartitions that are not (n|n)-cross. Any (n|n)-cross bipartion λ defines
an indecomposable object in the image of Rep(Gl0). We write Rn(λ) for
Fn(R(λ)). By the universal property of Deligne’s category any tensor func-
tor from Rep(Gl0) to a tensor category C is fixed up to isomorphism by the
choice of an image of the standard representation of Rep(Gl0).
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Lemma 14.2. [Hei14] DS(Rn(λ)) = Rn−1(λ) holds unless Rn(λ) is pro-
jective, in which case DS(Rn(λ)) = 0.

Note that the vanishing of Rn(λ)x in the projective case is just a special
case of lemma 4.2 (i) and (ii).

Proof. An easy computation shows that under the Duflo-Serganova func-
tor the standard representation of gn is mapped to the standard represen-
tation of gn−1. Since any indecomposable mixed tensor module is in the
image of a tensor functor from Deligne’s category Rep(Gl0) [CW11] the
result follows from the commutative diagram

Rep(Gl0)

Fn
��

Fn−1

%%
Rn

DS
// Rn−1

.

The kernel of Fn consists of theR(λ) with k(λ) > n, the kernel of Fn−1consists
of the R(λ) with k(λ) ≥ n Hence R(λ) ∈ ker(DS) if and only if k(λ) = n

which is equivalent to R(λ) projective. �

Example. As in section 17 put ASi := R((i), (1i)) ∈ Rn. By lemma 14.2
we have (ASi)x = ASi for all i ≥ 1.

Corollary 14.3. Every indecomposable projective module of Rn−1 is in
the image of DS.

Proof. The indecomposable projective modules are precisely the mod-
ules DS(R(λL, λR)) with k(λ) = n − 1. Note that every indecomposable
projective module is a mixed tensor [Hei14]. �

Irreducible mixed tensors. By the results above the map θ : Λ → X+(n)

is injective if restricted to bipartitions with d(λ) = 0. We denote by θ−1 its
partial inverse. A closer inspection [Hei14] of the assignment θ : λ 7→ λ†

shows that θ and θ−1 are given by the following simplified rule: Define

m = maximal coordinate of a × or ◦
t = max(k(λ) + 1,m+ 1)

s =

{
0 m+ 1 ≤ k(λ) + 1

m− k(λ) m+ 1 > k(λ) + 1

The weight diagram of λ† is obtained from the weight diagram of λ by
switching all ∨’s to ∧’s and vice versa at positions ≥ t and switching the
first s + n − k(λ) ∨’s at positions < t to ∨’s and vice versa. The numbers
labelled by a ∧ or ∨ will be called free positions. Conversely if L(λ†) is
some irreducible representation in MT , the corresponding bipartition with
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θ−1(λ†) = λ is obtained in the same way: Define t,m, s as above and apply
the same switching rules to the weight diagram of λ†.

Proposition 14.4. Let

L = L(λ†) = L(λ1, . . . , λn−i, 0, . . . , 0 ; 0, . . . , 0, λn+i+1, . . . , λ2n)

be an irreducible i-fold atypical representation. Then L is a mixed tensor
L = R(λ) for a unique bipartition of defect 0 and rk = n− i. Then

DS(L) = Rn−1(λ) = L(λ̄†) ,

where λ̄† is obtained from λ† by removing the two innermost zeros corre-
sponding to λ†n and λ†n+1.

Proof. We apply θ−1 to λ†. It transforms the weight diagram of λ† into
some other weight diagram which might not be the weight diagram of a
bipartition. However if the resulting weight diagram is the weight diagram
of an (n|n)-cross bipartition of defect 0, then θ(λ) = λ† and R(λ) = L(λ†).
For λ†

I× = {λ1, λ2 − 1, . . . , λn−i − (n− i) + 1,−n+ i, . . . ,−n+ 1}
I◦ = {1− n, 2− n, . . . , i− n, i+ 1− n− λn+1+i, . . . ,−λ2n}.

Then I× ∩ I◦ = {−n+ 1, . . . ,−n+ i} (since the atypicality is i) and the n− i
crosses are at the positions λ1, λ2 − 1, . . . , λn−i − (n − i) + 1 and the n − i
circles at the positions i+ 1−n−λn+1+i, . . . ,−λ2n. Define m, t, s as above.
Note that k(λ) = n − i. We distinguish two cases, either t = n − i + 1 or
t = m+ 1. Assume first m+ 1 ≤ n− i+ 1. Switch all free labels at positions
≥ t and the first n−(n−i) = i free labels at positions< t. By assumption the
2n− 2i crosses and circles lie at positions > i−n and < n− i+ 1. However
there are exactly 2n−2i such positions. Hence the switches at positions < t

turn exactly the i ∨’s at positions i−n, . . . , 1−n into ∧’s. In the second case
t = m+ 1 > n− i+ 1 switch the first m+n−2(n− i) free labels at positions
< t. There are exactly m+ n− i positions between m and i− n, m− n+ 2i

switches and 2n − 2i crosses and circles between i − n and t. This results
in m − n + i free positions between i − n and t. The remaining i switches
transform the i ∨’s to ∧’s. Hence in both cases θ−1 transforms the weight
diagram of λ† into a weight diagram where the rightmost ∧ is at position
i − n and the leftmost ∨ is at the first free position > i − n and all labels at
positions ≥ t are given by ∨’s. This is the weigth diagram of a bipartition
of defect 0 and rank n − i. Indeed the labelling defines the two sets I∧ and
I∨ and this defines two tuples λL = (λL1 , λ

L
2 , . . .) and λR = (λR1 , λ

R
2 , . . .). The

positioning of the ∧’s implies that λLn−i+1 = 0 and the positioning of the
∨’s implies λRt = 0. Clearly λL1 = λ1 > 0 and λR1 ≥ 0. Hence the pair
λ := (λL, λR) is a bipartition (of defect 0 and rank n − i) and θ(λ) = λ†. It
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remains to compute the highest weight of Rn−1(λ). The two sets I∨ and I∧
and accordingly the weight diagram of λ do not depend on n. Neither do
t,m, s and the switches at positions ≥ t. To get λ† in Rn from λ we switch
the first s+ n− (n− i) free labels < t. To get λ† in Rn−1 from λ we switch
the first s + (n − 1) − (n − i) free labels < t. This results in removing the
leftmost ∨ at position 1− n. �

Ground states. Let Rin ⊂ Rn denotes the full subcategory of i-atypical
objects. Every block in Rin contains irreducible objects with the property
that all i labels ∨ are adjacents and to the left of all n − i labels × and all
n − i labels ◦. We call such an irreducible object a groundstate of the cor-
responding block in Rin. Each block in Rin uniquely defines its groundstate
up to a simultaneous shift of the i adjacent labels ∨. The weight λ of such a
groundstate L(λ) is of the form

λ = (λ1, ..., λn−i, λn, ..., λn ; −λn, ...,−λn, λn+1+i, ..., λ2n) .

with λn ≤ min(λn−i,−λn+1+i) (here λn 7→ λn − 1 corresponds to the shift
of the i adjacent labels ∨). The coefficients λ1, ..., λn−i, λn+1+i, ..., λ2n de-
termine and are determined by the position of the labels × and ◦ defining
the given block in Rin. We define

λ = (λ1, ..., λn−i, λn, ... ; ...,−λn, λn+1+i, ..., λ2n)

by omitting the innermost λn;−λn pair. Then L(λ) ∈ Ri−1
n ⊂ Tn−1.

Berezin twists. Twisting with Ber = Bern induces an endofunctor of Rin
and permutes blocks. By a suitable twist one can replace a given block in
Rin such that it contains the groundstate

λ′ = (λ1 − λn, ..., λn−i − λn, 0, ..., 0 ; 0, ..., 0, λn+1+i + λn, ..., λ2n + λn) .

Proposition 14.5. For a groundstate L = L(λ) of a block in Rin ⊂ Rn
the image DS(L) in Tn−1 of L under the Duflo-Serganova functor is

DS(L(λ)) = Π−λnL(λ)

for i > 0 or DS(L) = 0 for i = 0.

In particular therefore theorem 16.1 holds for the groundstates L = L(λ) of
blocks in Rin ⊂ Rn.

Proof. We can assume i > 0. Then we can assume λn = λn+1 = 0 by a
suitable Berezin twist. Hence

L = Rn(λL, λR)

for an (n|n)-cross bipartition (λL, λR) and therefore

DS(L) = Rn−1(λL, λR)
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is irreducible of weight λ, i.e. DS(L(λ)) = L(λ). This proves the claim,
since by assumption now λn+1 = 0. �

15. SIGN NORMALIZATIONS

The main theorem 16.1 asserts in particular that DS(L) is semisimple.
In order to show this we define a sign ε(L) ∈ {±1} for every irreducible
representation L with the property that Ext1Rn(L(λ), L(µ)) = 0 if ε(λ) =

ε(µ). More precisely, this sign should satisfy the following conditions:
(1) Let Rn(ε) denote the full subcategory of all objects whose irre-

ducible constituents X have sign ε(X). Similarly define the full
subcategories Γ(ε) for a block Γ. Then we require that the cate-
gories R(+) and R(−) are semisimple categories.

Clearly it is enough to require that the categories Γ(ε) are semisimple.
Note that any such sign function is unique on a block Γ up to a global sign
±1. Hence if we normalize the sign by ε(L) = +1 where L is an irreducible
representation in a block Γ, the sign is uniquely determined on Γ. Our
second condition is:

(2) ε(L(λ)) = 1 if L(λ) is an irreducible mixed tensor (see section 14)
and ε(1) = 1.

If L(λ) is maximal atypical, we put

ε(L(λ)) = (−1)p(λ)

for the parity p(λ) =
∑n

i=1 λn+i. In the maximal atypical case we have
Ext1Rn(L(λ), L(µ)) = 0 if p(λ) ≡ p(µ) mod 2 by [Wei10]. Hence the cate-
gories Γn(±) are semisimple. This determines the sign ε up to a global ±1

on each block Γ of atypicality i. Indeed by [Ser06] any block of atypicality
i is equivalent to the maximal atypical block Γi of Ri. We fix once and for
all a particular equivalence denote it by φ̃in. We describe the effect of φ̃in on
an irreducible module L(λ) of atypicality i [Ser06] [GS10]. For an i-fold
atypical weight in X+(n) its weight diagram has n− i vertices labelled with
× and n − i vertices labelled with ◦. Let j be the leftmost vertex labelled
either by × or ◦. By removing this vertex and shifting all vertices at the
positions > j one position to the left, recursively we remove all vertices la-
belled by× or ◦ from the given weight diagram. The remaining finite subset
K of labels ∨ has cardinality i and the weight diagram so obtained defines
a unique irreducible maximally atypical module in Ri. Under φ̃in the ir-
reducible representation L(λ) maps to the irreducible Gl(i|i)-representation
described by the removal of crosses and circles above. We denote the weight
of this irreducible representation by φin(λ). We make the preliminary def-
inition ε(L(λ)) = (−1)p(φ

i
n(L(λ))) for a weight λ of atypicality i. We claim



COHOMOLOGICAL TENSOR FUNCTORS 51

that this sign satisfies condition 1. Indeed in the maximal atypical case we
have Ext1Ri(L(λ), L(µ)) = 0 if p(λ) ≡ p(µ) mod 2 by [Wei10]. Hence
the categories Γi(±) are semisimple. The equivalence (φ̃in)−1 between the
two abelian categories Γi and Γ is exact and sends the semisimple category
Γi(±) ⊂ Ri to the category Γ(±) by the definition of the sign ε; and Γ(±) is
semisimple.

This preliminary definition however doesn’t satisfy condition 2. If L =

L(λ1, . . . , λn−i, 0, . . . , 0 ; 0, . . . , 0, λn+i+1, . . . , λ2n) is the i-atypical mixed
tensor of section 14, its weight diagram has n − i circles at the vertices
λ1, λ2 − 1, . . . , λn−i − (n− i) + 1 and n− i circles at the vertices i+ 1− n−
λn+1+i, . . . ,−λ2n. The i ∨’s are to the left of the crosses and circles. Apply-
ing φ̃in removes the crosses and circles but leaves the ∨’s unchanged at the
vertices −n+ 1, . . . ,−n+ i. The irreducible representation of Gl(i|i) so ob-
tained isBer−n+i with p([−n+i, . . . ,−n+i]) = i(−n+i). Hence the prelimi-
nary sign ε(L(λ)) of a mixed tensor of atypicality i is ε(L(λ)) = (−1)i(−n+i).
In order to satisfy condition 2) we have to normalize the sign by the addi-
tional factor (−1)i(−n+i) for an i-atypical weight, and we define

ε(λ) = (−1)i(−n+i)(−1)p(φ̃
i
n(L(λ)))

where p is the parity in the maximal atypical block of Gl(i|i). This sign
satisfies condition 1) and 2) by construction, and it is the unique sign with
these properties. Note that our definition implies that the sign of a typical
weight in Rn is always positive.

The additional sign factor can be understood as follows. The unique irre-
ducible mixed tensor should play an analogous rule to the trivial represen-
tation 1 in Ri. W can modify the block equivalences φ̃in as follows: Since
the mixed tensor L(λ) maps to Ber−n+i we twist with the inverse and define
the normalized equivalence

φin(L) = Bern−i ⊗ φ̃in(L).

Then we obtain (−1)p(φ
i
n(L(λ))) = (−1)−i(−n+i)(−1)p(φ̃

i
n(L(λ))). Hence

ε(λ) = (−1)p(φ
i
n(L(λ))).

Corollary 15.1. The categories Rn(ε) are semisimple categories.

The sign ε will automatically have the following important property:
The translation functors of section 18 A = FiL(λ×◦) have Loewy struc-
ture (L,A,L) with L ∈ Rn(±ε) and A ∈ Rn(∓ε). This is required in our
axioms in section 19. This property follows immediately from the maximal
atypical case [Wei10] due to the description of the composition factors of
F iL(λ×◦) given in section 18.
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The significance of the sign function is the following: DS(L) is in general
a representation in Tn−1, not Rn−1. The sign factor regulates whether an
irreducible summand of DS(L) is in Rn−1 or ΠRn−1, see theorem 16.1.

In the proof of the main theorem we use the language of plots of section
13 for uniform bookkeeping. Each maximally atypical irreducible repre-
sentation L defines a plot: The segments of the cup diagram of L define
the segments of the plot, and the ∨ in the weight diagram give the sup-
port of the plot. If L is not maximally atypical, we associate to it a plot
via the map φ of section 18. For each plot we defined its derivative ∂λ in
section 13. If λ is a prime plot given by the sector (I,K), I = [a, b], then
∂(I,K) = (I,K)′ = (I ′,K ′) for I ′ = [a + 1, b − 1] and K ′ = I ′ ∩K = [a, b]

defines the derivative. We normalize the derivative of section 13 and put

λ′ = (−1)a+n−1∂(I,K)

where I = [a, b] (i.e. the leftmost ∨ is at a). The reason for this is as follows.
The sign has to be normalized in such a way that for objects X = L(λ)

in the stable range of the given block we get d(X) = X ′ for the map d of
section 19. Assume first that we are in the maximally atypical Rn-case and
consider a weight with associated prime plot λ. The parity of the weight λ
is p(λ) =

∑n
i=1 λn+i. Applying DS removes the ∨ in the outer cup. The

parity of the resulting weight in Tn−1 is given by p(λ′) =
∑n−1

i=1 λn+i, hence
p(λ) − p(λ′) = λn and we get a shift by ni ≡ (−1)λn according to theorem
16.1. The leftmost ∨ is at the vertex a = λn − n + 1, hence (−1)a+n−1 =

(−1)λn and the two shifts agree.

Let us now assume at(L(λ)) = k < n and that the weight defines a prime
plot of rank k. Here we have to use the normalized plot associated to the
weight λ by the map φ from section 18 in which case the two shifts agree
again. We may pass to the maximally atypical case due to the lemmas 18.8,
18.9, 18.10 which allow us to shift all the circles and crosses sufficiently far
to the right.

16. THE MAIN THEOREM

In the main theorem we calculate DS(L) ∈ Tn−1 for any irreducible L.
We refine this in section 23, 24 and compute the Z-grading of DS(L).

Theorem 16.1. Suppose L(λ) ∈ Rn is an irreducible atypical represen-
tation, so that λ corresponds to a cup diagram

r⋃
j=1

[aj , bj ]
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with r sectors [aj , bj ] for j = 1, ..., r. Then

DS(L(λ)) ∼=
r⊕
i=1

ΠniL(λi)

is the direct sum of irreducible atypical representations L(λi) in Rn−1 with
shift ni ≡ ε(λ) − ε(λi) modulo 2. The representation L(λi) is uniquely
defined by the property that its cup diagram is

[ai + 1, bi − 1] ∪
r⋃

j=1,j 6=i
[aj , bj ] ,

the union of the sectors [aj , bj ] for 1 ≤ j 6= i ≤ r and (the sectors occuring
in) the segment [ai + 1, bi − 1].

Consequence. In particular this implies that for irreducible representa-
tion (V, ρ) the Gn−1-module H+(V ) ⊕ H−(V ) is semisimple in Rn−1 and
multiplicity free. Furthermore the sign of the constituents in H±(V ) is
±sign(V ).

If we use the language of plots, the main theorem says that the irreducible
summands of DS(L) are given by the derivatives of the sectors of the plot
associated to λ.

Example. The maximally atypical weight [3, 0, 0] has cup diagram

It splits into the two irreducible representations [3, 0] and Π[−1,−1] in
R2 ⊕ ΠR2. We will later compute its cohomology in proposition 23.1 and
obtain H•([3, 0, 0]) = S2〈0〉 ⊕Ber−1〈−1〉.

Example. Denote by Si the irreducible representation [i, 0, . . . , 0]. Con-
sider a nontrivial extension 0 → S2 → E → Ber(S2)∨ → 0 in R3 (such
extensions exist). Then sdim(E) = 0 andE is indecomposable, hence negli-
gible. The derivative of S2 = [2, 0, 0] (in the sense of plots) is (S2)′ = [2, 0]+

Ber−1 and the derivative ofBer(S2)∨ = [2, 2, 1] is [2, 2, 1]′ = (Ber[1, 1, 0])′ =

−Ber([1, 1, 0]′) = −[2, 2]−[2, 0]. From [2, 2] = Ber2 thenH+(E) = Ber−1⊕?

and H−(E) = Ber2⊕? where ? is either [2, 0] or zero. Hence E is negligible
in R3, but D2(E) = D(D(E)) 6= 0. In particular, D(N3) is not contained in
N2.

Block equivalences. Applying DS is compatible with taking the block
equivalences φin and φ̃in in the sense DS(φin(L)) = φin(DS(L)) for irre-
ducible L by the main theorem. This can be extended to arbitrary modules
M in a block. By [Ser06] and [Kuj11] the block equivalence φ̃in between
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an i-atypical block Γ and the unique maximal atypical block of Gl(i|i) is
obtained as a series of translation functors, a restriction and the projection
onto a weight space. Call a weight λ in Γ stable if all the ∨’s are to the left
of all crosses and circles. By [Ser06] we can apply a suitable sequence of
translation functors to any indecomposable module in Γ until all its compo-
sition factors are stable. We recall now the definition of φ̃in as in [Kuj11] on
an indecomposable module M . Embed gl(k|k) as an inner block matrix in
gl(n|n). Let l = gl(k|k) + h where h are the diagonal matrices. Then choose
h′ ⊂ h such that h′ is a central subalgebra of l and l = gl(k|k) ⊕ h′. We
denote the restriction of a weight λ to h′ by λ′. Now move M by a suitable
sequence of translation functors until its composition factors are stable. The
block Γ is the full subcategory of modules admitting some central character
χµ. Now define Resµ′(M) = {m ∈ M | h′m = µ′(h′)m for all h′ ∈ h′}.
Then, on a module M with stable composition factors, the functor φ̃in(M)

is given by Resµ′(M). Alternatively we could first restrict to l and then
project on the µ′-eigenspace. By [Ser10], cor 4.4, and the main theorem,
DS induces a bijection between the blocks in Tn and Tn−1, and for any M
in Tn DS(Fi(M)) = Fi(DS(M)). Since our fixed x, which we choose in
the definition of DS, is contained in the embedded gl(k|k), the operation
of ρ(x) on Res(M) or on its λ′-eigenspace is the same as of ρ(x) on M .
Hence DS is clearly compatible with restriction, but it also doesn’t matter
whether we first apply DS and project onto the λ′-eigenspace or first project
to the λ′-eigenspace and then applyDS since ρ(x) commutes with h′. Hence
DS(φ̃in(M)) = φ̃in(DS(M)) holds for any M , and the analogous statement
for φin follows immediately. To summarize: If Γ′ denotes the unique block
obtained from the i-atypical Γ via DS, we obtain a commutative diagram

Γ
φin //

DS

��

Γi

DS

��
Γ′

φi−1
n−1 // Γi−1

.

The main theorem has a number of useful consequences:

Cohomology. The main theorem permits us to compute the cohomology
H i(L) of irreducible modules L in section 23 and 24. Although the calcu-
lation of the Z-grading of DS(L) is much stronger than the Z2 version of
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theorem 16.1, it should be noted that the proof is based on the main theorem
and a careful bookkeeping of the moves in section 20.

Spectral sequences. The main theorem also shows the degeneration of
the spectral sequences from section 8 and shows

DSn,n2
(L) ' DSn1,n2

(DSn,n1
(L)).

The degeneration can be extended in a similar way to the not maximally
atypical case, see below.

Tensor products. The main theorem allows us to reduce some questions
about tensor products of irreducible representations to lower rank. Since
DS is a tensor functor we haveDS(L(λ)⊗L(µ)) = DS(L(λ))⊗DS(L(µ)) =⊕

i,j(Π
niL(λi))⊗ (ΠnjL(µj)). If we inductively understood the tensor prod-

uct in Tn−1, we would obtain estimates about the number of indecomposable
summands and composition factors in this way. We use this method to cal-
culate the tensor product of two maximal atypical representations of Gl(2|2)

in [HW15a], see also [Hei15].

Negligible modules and branching laws. The functor DS does not pre-
serve negligible modules as the example above shows. However when we
restrict DS to the full subcategory RIn of modules which arise in iter-
ated tensor products of irreducible representations, DS induces a functor
DS : RIn/N → RIn−1/N . We show in [HW15b] [Hei15] that RIn/N is
equivalent as a tensor category to the representation category of a proreduc-
tive group Hn. We also show that there is an embedding Hn−1 → Hn, and
DS can be identified with the restriction functor with respect to this embed-
ding. In other words DS gives us the branching laws for the restriction of
the image of L(λ) in Rep(Hn) to the subgroup Hn−1.

Superdimensions and modified superdimensions. The main theorem can
be used to reprove parts of the generalized Kac-Wakimoto conjecture on
modified superdimensions [Ser10]. In fact we derive a closed formula for
the modified superdimension. We sketch this and prove the analog of propo-
sition 8.3.

A superdimension formula. Assume L maximally atypical. If sdim(L) >

0,

DS(L(λ)) ∼=
r⊕
i=1

Πni(L(λi))

splits into a direct sum of irreducible modules of positive superdimension.
Indeed the parity shift Πni occurs if and only if p(λ) 6≡ p(λi) mod 2. Hence
DSn−1(L) splits into a direct sum of irreducible representations of superdi-
mension 1. Applying DS n-times gives a functor DSn : Rn → svec, hence
DSn(L) ' m k ⊕ m′Πk for positive integers m,m′, hence m = 0 if and
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only if sdim(L) < 0 and m′ = 0 if and only sdim(L) > 0. By [Wei10] the
superdimension of a maximal atypical irreducible representation in Rn is
given by

sdim(L(λ)) = (−1)p(λ)m(λ)

for a positive integer m(λ) (see below for the definition). In particular

m(λ) =

{
m p(λ) ≡ 0 mod 2

m′ p(λ) ≡ 1 mod 2.

By proposition 8.3 this also holds for DSn,0 : Rn → svec: If DSn,0(L) '
m k ⊕m′Πk, we get that either m or m′ is zero.

The positive integer m(λ) for a maximally atypical weight can be com-
puted as follows. We refer to [Wei10], but it would be an easy exercise to
deduce this from the main theorem. We let λ be the associated oriented cup
diagram to the weight λ as defined in section 12. To each such cup dia-
gram we can associate a forest F(λ) with n nodes, i.e. a disjoint union of
rooted trees as in [Wei10]. Each sector of the cup diagram corresponds to
one rooted planar tree. We read the nesting structure of the sector from the
bottom to the top such that the outer cup corresponds to the root of the tree.
If the following is a sector of a cup diagram

then the associated planar rooted tree is

•

•

• •

• •
If F is a forest let |F| the number of its nodes. We define the forest

factorial F ! as the the product
∏
x∈F |Fx|where Fx for a node x ∈ F denotes
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the subtree of F rooted at the node x. Then the multiplicity is given by

m(λ) =
|F(λ)|!
F(λ)!

.

For example m(λ) for irreducible module in R4 with cup diagram

is computed as follows: The associated planar forest is

• •

• •

Hence

sdim(L(λ)) =
24

3 · 1 · 1 · 1
= 8.

Modified Superdimensions If at(L(λ)) < n, sdim(L) = 0. However one
can define a modified superdimension for L as follows. We recall some
definitions and results from [Kuj11], [GKPM11] and [Ser10]. Denote by
cV,W : V ⊗ W → W ⊗ V the usual flip v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v. Put
ev′V = evV ◦ cV,V ∨ and coev′V = cV,V ∨ ◦ coevV for the usual evaluation and
coevaluation map in the tensor categoriesRn and Tn. For any pair of objects
V,W and an endomorphism f : V ⊗W → V ⊗W we define

trL(f) = (evV ⊗ idW ) ◦ (idV ∨ ⊗ f) ◦ (coev′V ◦ idw) ∈ EndT (W )

trR(f) = (idV ⊗ ev′W ) ◦ (f ⊗ idW∨) ◦ (idV ⊗ coevW ) ∈ EndT (V )

For an object J ∈ Rn let IJ be the tensor ideal generated by J . A trace
on IJ is by definition a family of linear functions

t = {tV : EndRn(V )→ k}

where V runs over all objects of IJ such that following two conditions hold.
(1) If U ∈ IJ and W is an object ofRn, then for any f ∈ EndRn(U⊗W )

we have
tU⊗W (f) = tU (tR(f)) .

(2) If U, V ∈ I then for any morphisms f : V → U and g : U → V in Rn
we have

tV (g ◦ f) = tU (f ◦ g).
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By Kujawa [Kuj11], thm 2.3.1, the trace on the ideal IL, L irreducible,
is unique up to multiplication by an element of k. Given a trace on IJ ,
{tV }V ∈IJ , J ∈ Rn, define the modified dimension function on objects of IJ
as the modified trace of the identity morphism:

dJ (V ) = tV (idV ).

We reprove the essential part of the generalized Kac-Wakimoto conjec-
ture: We prove that there exists a nontrivial trace on the ideal of any i-
atypical irreducible L, and we deduce a formula for the resulting modified
superdimension.

Tensor ideals. By [Ser10] any two irreducible object of atypicality k gen-
erate the same tensor ideal. Therefore write Ii for the tensor ideal generated
by any irreducible object of atypicality i. Clearly I0 = Proj and In = Tn
since it contains the identity. This gives the following filtration

Proj = I0 ( I1 ( . . . In−1 ( In = Tn

with strict inclusions by [Ser10] and [Kuj11]. We use this in the following.
However it is not necessary for the results about the modified superdimen-
sion. We could simply consider consider the ideal < L > generated by an
i-atypical irreducible representation instead the ideal Ii.

The projective case. Denote by ∆+
0 the positive even roots and by ∆+

1

the positive odd roots for our choice of Borel algebra. The half sums of the
positive even roots is denoted ρ0, the half-sum of the positive odd roots by
ρ1 and we put ρ = ρ0−ρ1. We define a bilinear form (, ) on h∗ as follows: We
put (εi, εj) = δij for i, j ≤ m, (εi, εj) = −δij for i, j ≥ m + 1 and (εi, εj) = 0

for i ≤ m and j > m. Define for any typical module the following function

d(L(λ)) =
∏
α∈∆+

0

(λ+ ρ, α)

ρ, α
/
∏
α∈∆+

1

(λ+ ρ, α).

Then d(L(λ)) 6= 0 for every typical L(λ). By [GKPM11], 6.2.2 for typical
L

dJ(L) =
d(L)

d(J)
.

Since the ideal I0 is independent of the choice of a particular J and any
ambidextrous trace is unique up to a scalar, we normalize and define the
modified normalized superdimension on I0 to be

sdim0(L(λ)) := d(L(λ)).

A formula for the modified superdimension. Applying DS iteratively i-
times to a module of atypicality i we obtain the functor

DSi := DS ◦ . . . ◦DS : Rn → Tn−i
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which sends M with atyp(M) = i to a direct sum of typical modules.

We show that there exists a nontrivial trace on Ii similar to [Kuj11], but
without invoking Serganovas results. Denote by tP the normalized (such
that we get sdim0 from above) trace on I0 = Proj. Now we define for
M ∈ Ii

tM (f) := tpDSi(M)fDSi(M) : EndRn(M)→ k

where fDSi(M) is the image of f under the functor DSi. We claim that this
defines a nontrivial trace on Ii: Let M = L be irreducible and put

tL(idL) := tpDSi(L)(idDSi(L)).

Now we compute DSi(L). By the main theorem the irreducible summands
in DS(L) are obtained by removing one of the outer cups of each sector.
Applying DS i-times gives then the typical module in Tn−i given by the cup
diagram of L with all ∨’s removed. Applying DSi to any other irreducible
module in the same block will result in the same typical weight. Following
Serganova [Ser10] we call this unique irreducible module the core of the
block Lcore. Hence DSi(L) = m(L) · Lcore ⊕ m′(L) · ΠLcore. Since the
positive integers m and m′ only depend on the nesting structure of the cup
diagram λ, we may compute them in the maximally atypical case. By a
comparison with the maximal atypical case Ri-case either m or m′ is zero.
As in the maximally atypical case a parity shift happens in DS(L(λ)) if and
only if ε(λ) 6≡ ε(λi) mod 2. Hence

m(λ) =

{
m ε(λ) ≡ 0 mod 2

m′ ε(λ) ≡ 1 mod 2.

This shows that the trace tL does not vanish: Indeed

tL(idL) := tpDSi(L)(idDSi(L)) = m(λ)tPLcore(idLcore) 6= 0

since tP is nontrivial.

Using our particular choice for sdim0 on I0 = Proj, we define the nor-
malized modified superdimension as

sdimi(L(λ)) = sdim0(DSi(L)) = sdim0(mLcore ⊕m′ΠLcore)

= (−1)ε(λ)m(λ)sdim0(Lcore)

In particular the modified super dimension does not vanish. Consider for
example the irreducible 4-fold atypical representation in R6 with cup dia-
gram



60 TH. HEIDERSDORF, R. WEISSAUER

We have already seen above that m(λ) = 8 in this case. The core is given
by the typical representation L(3,−4|5,−5).

As a consequence of our construction and the sign rule of the main theo-
rem we get

Corollary 16.2. If L is irreducible of atypicality k, then sdimk(L) =

sdimk−1(DS(L)). If sdimk(L) > 0, then all summands in DS(L) have
sdimk−1(L) > 0.

We can now copy the proof of proposition 8.1 to get

Corollary 16.3. For irreducible atypical objects L in Tn the Leray type
spectral sequence degenerates:

DSn,n2
(L) ∼= DSn1,n2

(DSn,n1
(L)) .

17. STRATEGY OF THE PROOF

We have already proved the Main Theorem for the groundstates of each
block. Recall that a groundstate is a weight with completely nested cup
diagram such that all the vertices labelled × or ◦ are to the right of the
cups. In the maximally atypical case the ground state are just the Berezin-
powers. In the lower atypical cases every ground state is a Berezin-twist of
a mixed tensor and we have already seen that these satisfy the main theorem
in section 14. The proof of the general case will be a reduction to the case
of groundstates.

In the singly atypical case we just have to move the unique label ∨ to
the left of all of the crosses and circles. We will see in section 18 that we
can always move ∨’s to the left of ◦’s or ×. The proof of the general case
will induct on the degree of atypicality, hence we will always assume that
the theorem is proven for irreducible modules of lower atypicality. Hence
for the purpose of explaining the strategy of the proof we will focus on the
maximally atypical case.

The modules Si. Let us consider the following special maximally atypical
case. LetBer ' [1, . . . , 1] ∈ Rn be the Berezin representation. Let Si denote
the irreducible representation [i, 0, . . . , 0]. Every Si−1 occurs as the socle and
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cosocel of a mixed tensor denoted ASi+1 [Hei14]. The Loewy structure of
the modules ASi := R((i), (1i)) ∈ Rn is the following:

ASi = (Si−1, Si ⊕ Si−2, Si−1)

for i 6= n and i ≥ 1 and n ≥ 2 where we use S−1 = 0. Furthermore

ASn = (Sn−1, Sn ⊕Ber−1 ⊕ Sn−2, Sn−1) .

We saw in 14 that for all mixed tensors DS(R(λL, λR)) = R(λL, λR)

holds, so we have DS(ASi) = ASi for all i ≥ 1. Notice that by abuse of
notation we view Si and also ASi as objects of Rn for all n.

The image Si 7→ DS(Si) can be computed recursively from the two exact
sequences in Rn

0 // Ki
n

// ASi
p // Si−1 // 0

0 // Si−1 j // Ki
n

// Si⊕?⊕ Si−2 // 0

induced by projection p onto the cosocle and the inclusion j of the socle.
According to the main theorem we should get for n ≥ 2 (Bern)x = ΠBern−1

and
(1) DS(Si) = Si for i < n− 1,
(2) DS(Si) = Si ⊕Πn−1−iBer−1 for i ≥ n− 1.

We proof this for i ≤ n−1. First noticeH−(ASi) = 0 andH+(ASi) = ASi .
Suppose i ≤ n − 1 and that H−(Sj) = 0, H+(Sj) = Sj already holds for
j < i by induction. This is justified since S0 = k equals the trival module.
Then the exact hexagons give

H+(Ki
n) // ASi // Si−1

��
0

OO

0oo H−(Ki
n)oo

and
Si−1 // H+(Ki

n) // H+(Si⊕?)⊕ Si−2

��
H−(Si⊕?)

OO

H−(Ki
n)oo 0oo

If H+(p) = 0, then H+(Ki
n) ∼= ASi . Hence H+(Ki

n) � H+(Si⊕?) ⊕
Si−2 composed with the projection to Si−2 is zero, since the cosocle of
H+(Ki

n) ∼= ASi is Si−1. This implies Si−1 = 0, which is absurd. Hence
H+(p) is surjective. Therefore H−(Ki

n) = 0 and H+(Ki
n) = Ki

n−1, and in
particular then

H+(Ki
n) = Ki

n−1
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is indecomposable. Hence Ki
n−1 → H+(Si⊕?) ⊕ Si−2 is surjective, and

H−(Si) = 0. Furthermore

H+(Si) = Si , i < n− 1

and
H+(Si) = Si ⊕Ber−1 , i = n− 1 .

The proof for the cases i ≥ n is similar.

The method described in the Si-case doesn’t work in general. In the gen-
eral case we do not have exact analogs of the ASi - mixed tensors with the
property DS(A) = A. In section 18 we associate to every irreducible mod-
ule three representations, the weight L, the auxiliary representation Laux

and the representation L×◦ and an indecomposable rigid module Fi(L×◦)
of Loewy length 3 with Loewy structure (L,A,L) such that the irreducible
module we started with and which we denote Lup for reasons to be explained
later is one of the composition factors of A. If we apply this construction
to irreducible modules of the form Si = [i, 0, . . . , 0] we recover the modules
ASi . Our aim is to use these indecomposable modules as a replacement for
the modules ASi .

In the Si-case we reduced the computation of DS(Si) by means of the
indecomposable modules ASi to the trivial case DS(1) = 1. In the general
case we will reduce the computation of DS(L) by means of the indecom-
posable modules Fi(L×◦) to the case of ground states. For that we define an
order on the set of cup diagrams for a fixed block such that the completely
nested cup diagrams (for which the Main Theorem holds) are the minimal
elements. We prove the general case by induction on this order and will
accordingly assume that the main theorem holds for all irreducible modules
of lower order then a given module L. The key point is that for a given
module Lup we can always choose our weights Laux and L×◦ = Fi(L(λ×◦))

such that all other composition factors of Fi(L×◦) are of lower order then
Lup. Hence the Main Theorem holds for all composition factors of Fi(L×◦)
except possibly Lup. This setup is similar to the ASi-case where we assumed
by induction on i that the Main Theorem held for all composition factors of
ASi = (Si−1, Si−2 + Si, Si−1) except possibly Si.

Unlike the ASi the indecomposable modules Fi(L×◦) are not mixed ten-
sors and hence we do not know a priori their behaviour under DS. However
assuming that the Main Theorem holds for all composition factors except
possibly Lup we prove in section 18 a formula for DS(Fi(L

×◦)). In sec-
tion 19 we show that under certain axioms on the modules Fi(L×◦) and
their image under DS the module DS(Lup) is semisimple. These axioms
are verified in section 20. Here it is very important that we can control the
composition factors of the Fi(L×◦). The composition factors in the middle
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Loewy layer will be called moves since they can be obtained from the la-
belled cup diagram of L by moving certain ∨’s in a natural way. The moves
are described in detail in section 18.

We still have to explain how the induction process works, i.e. how we
relate a given irreducible module to irreducible modules with lesser number
of segments respectively sectors. This is done by the so-called Algorithms
I and II described first in [Wei10]. As above for a given module Lup all
other composition factors of Fi(L×◦) are of lower order then Lup. For Lup
with more then one segment we can choose i and the representations Laux
and L×◦ in such a way that all composition factors have one segment less
then Lup. We can now apply the same procedure to all the composition
factors of Fi(L×◦) with more then one segment - i.e. we choose for each of
these (new) weights Laux and L×◦ such that the composition factors of the
(new) associated indecomposable modules have less segments then them.
Iterating this we finally end up with a finite number of indecomposable
modules where all composition factors have weight diagrams with only one
segment. This procedure is called Algorithm I. In Algorithm II we decrease
the number of sectors in the same way: If we have a weight with only one
segment but more then one sector we can choose i and the weights Laux and
L×◦ such that the composition factors of Fi(L×◦) have less sectors then Lup.
Applying this procedure to the composition factors of Fi(L×◦) and iterating
we finally relate the cup diagram of Lup to a finite number of cup diagrams
with only one sector.

Hence after finitely many iterations we have reduced everything to irre-
ducible modules with one segment and one sector. This sector might not
be completely nested, e.g. we might end up with weights with labelled cup
diagrams of the type

In this case we can apply Algorithm II to the internal cup diagram having
one segment enclosed by the outer cup. If we iterate this procedure we
will finally end up in a collection of Kostant weights (i.e. weights with
completely nested cup diagrams) of this block.

We still have to find the decomposition of the semisimple moduleDS(Lup)

into its simple summands. Since we know the semisimplicity, we can com-
pute DS(Lup) on the level of Grothendieck groups. Essentially we compute
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this in the following way: using the notation A = Fi(L(λ×◦)), we compute

d(A) = H+(A)−H−(A) = 2d(L) + d(A) = 2d(L) + d(Lup) + d(A− Lup)

in K0(Rn−1) where we do not know d(Lup) and compare this to the known
composition factors of Ã = DS(A). For this we need the so-called commu-
tation rules for Algorithm I and Algorithm II. Using that the main theorem
holds for all composition factors of A except possibly Lup we can cancel
most composition factors. The remaining factors have to be the simple fac-
tors of DS(Lup) and these factors are exactly those given by the derivative
of Lup (seen as a plot), finally proving the theorem. This is done in section
19.

The case [2, 2, 0]. We illustrate the above strategy with an example. In this
part we ignore systematically all signs or parity shifts. The module [2, 2, 0]

has the labelled cup diagram

hence it has two segments and two sectors. We will associate to [2, 2, 0] an
auxiliary weight L and a twofold atypical weight L×◦ in T3 such that [2, 2, 0]

is of the form Lup in the indecomposable module Fi(L×◦). The auxiliary
weight is in this case [2, 1, 0] with labelled cup diagram

with one segment and three sectors. The weight λ×◦ is obtained from
[2, 1, 0] by replacing the ∨∧ at the vertices 0 and 1 by ×◦

The module F0(L×◦) is ∗-selfdual of Loewy length 3 and socle and coso-
cle [2, 1, 0]. It contains the module [2, 2, 0] with multiplicity 1 in the middle
Loewy layer. The rules of section 18 give the following composition factors
(moves) in the middle Loewy layer. In the labelled cup diagram of [2, 1, 0]

there is one internal upper sector [2, 3]. The internal upper sector move gives
the labelled cup diagram

hence the composition factor [1, 1, 0]. The labelled cup diagram of [2, 1, 0]

has one internal lower sector, namely the interval [−2,−1]. The associated
internal lower sector move gives the labelled cup diagram
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The sector [0, 1] is unencapsulated, it is in the middle of the segment
[−2, 3]. Hence we also have the unencapsulated boundary move, i.e. we
move the ∨ at the vertex 0 to the vertex -3, resulting in the labelled cup
diagram

giving the composition factor [2,−1,−1]. The upward move of [2, 1, 0]

gives the composition factor Lup = [2, 2, 0]. Hence the Loewy structure of
the indecomposable module F0(Laux) is [2, 1, 0]

[2,−1,−1] + [1, 1, 0] + [2, 0, 0] + [2, 2, 0]

[2, 1, 0]

 .

We remark that all the composition factors have only one segment, hence
we will not have to apply Algorithm I any more. Since the proof inducts
on the degree of atypicality we know DS(L×◦) and we can apply 18.5 to
conclude DS(Fi(L

×◦)) = Fi(DS(L×◦)) = Fi(L1 ⊕ L2) for two irreducible
module obtained by applying DS to L×◦. By the main theorem DS(L×◦)

gives the modules

and

Applying F0 to the first summand gives the module A1 with socle and
cosocle [2, 1]. The upward move gives the composition factor [2, 2]. The
unique internal upper sector move gives the composition factor [1, 1]. We
do not have any lower sector moves. The non-encapsulated boundary move
gives the composition factor [2, 0]. This results in the Loewy structures of
A1 = F0(L1) and A2 = F0(L2)

A1 =

 [2, 1]

[1, 1] + [2, 0] + [2, 2]

[2, 1]

 , A2 =

 [0,−1]

[1,−1] + [−1,−1] + [−2,−2]

[0,−1]

 .

The irreducible modules in the middle Loewy layers give the module Ã.
We compare Ã and A′ in K0: Taking the derivative of A = [2,−1,−1] +
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[1, 1, 0] + [2, 0, 0] + [2, 2, 0] gives

A′ = [2,−1] + [−2,−2] + [1,−1] + [1, 1] + [2, 0]

+ [−1,−1] + [2,−1] + [2, 2]

with the module [2,−1] = Laux appearing twice. The computation above of
A1 and A2 gives

Ã = [−2,−2] + [1,−1] + [1, 1] + [2, 0] + [−1,−1] + [2, 2].

This shows the following commutation rule in this example

A′ = Ã+ 2(−1)i+nLaux in K0(Rn−1).

We remark that the composition factors [2, 0] in A1 and [−1,−1] are detect-
ing objects in the sense of section 20.

We will prove in section 20 that the properties of the modules A,A1 and
A2 imply that DS(Lup) is semisimple. Hence we can compute DS(Lup) by
looking at K0.

In Algorithm II we reduce everything to a single sector. Take one of the
composition factors of F0(L×◦) with more then one sector, eg. [2, 1, 0] with
one segment and three sectors. The associated auxiliary weight is in this
case the weight [2, 0, 0] with the twofold atypical weight L×◦ given by the
labelled cup diagram

The module F−1(L×◦) has socle and cosocle [2, 0, 0] and the followowing
modules in the middle Loewy layer: The upward move gives [2, 1, 0] and
the upper sector move of the upper sector [2, 3] gives the weight [0, 0, 0].

There are no non-encapsulated boundary moves and no internal lower
sector moves, hence we get the Loewy structure

F−1(L×◦) =

 [2, 0, 0]

[0, 0, 0] + [2, 1, 0]

[2, 0, 0]

 .

We compute DS(F−1(L×◦)) (using DS(Fi(L
×◦)) = Fi(DS(L×◦)) ) (lemma

18.5). By the main theorem DS(L×◦) splits into two direct summands.

Applying F−1 to the first and second summand gives the indecomposable
modules

A1 =

 [2, 0]

[2, 1] + [2,−1] + [0, 0]

[2, 0]

 , A2 =

[−1,−1]

[0,−1]

[−1,−1]
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We remark that all the factors in the middle Loewy layers are detecting
objects in the sense of section 19. As shown in section 19 these properties
already imply that DS([2, 1, 0]) is semisimple. To compute it we need the
commutation rules for Algorithm II, i.e. we compare the derivative A′ of
the middle Loewy layer of F−1(L×◦) with the modules Ã = A1 + A2 in the
middle Loewy layers of A1 and A2. In both cases we get [2, 1] + [2,−1] +

[0, 0] + [0,−1], hence the commutation rule

Ã = A′.

The general case is proven in lemma 20.7.

18. MODULES OF LOEWY LENGTH 3

As described in section 17 we reduce the main theorem to the case of
ground states by means of translation functors Fi(. . .). In this section we
describe the Loewy layers and composition factors of the objects Fi(L×◦)
and study their behaviour under DS.

Khovanov algebras. We review some facts from the articles by Brundan
and Stroppel [BS11], [BS10a], [BS12a], [BS12b]. We denote the Khovanov-
algebra of [BS12a] associated to Gl(m|n) by K(m,n). These algebras are
naturally graded. For K(m,n) we have a set of weights or weight diagrams
which parametrise the irreducible modules (up to a grading shift). This set
of weights is again denoted X+. For each weight λ ∈ X+ we have the ir-
reducible module L(λ), the indecomposable projective module P (λ) with
top L(λ) and the standard or cell module V (λ). If we forget the grading
structure on the K(m,n)-modules, the main result of [BS12a] is:

Theorem 18.1. There is an equivalence of categories E from Rm|n to
the category of finite-dimensional left-K(m,n)-modules such that EL(λ) =

L(λ), EP (λ) = P (λ) and EK(λ) = V (λ) for λ ∈ X+.

E is a Morita equivalence, hence E will preserve the Loewy structure of
indecomposable modules. This will enable us to study questions regard-
ing extensions or Loewy structures in the category of Khovanov modules.
We will use freely the terminology of [BS11], [BS10a], [BS12a], [BS12b].
The notion of cups, caps, cup and cap diagrams are introduced in [BS11].
For the notion of matching between a cup and a cap diagram see [BS10a],
section 2. For the notion of Γ-admissible see [BS12a], section 2.

Let λ in Rn be any atypical weight with a ∨∧-pair in its weight diagram,
i.e. such that there exists an index i labelled by ∨ and the index i + 1 is
labelled by ∧. Fix such an index i and replace (∨∧) by the labelling (×, ◦).
This defines a new weight λ×◦ of atypicality atyp(λ)− 1. We denote by Fi,



68 TH. HEIDERSDORF, R. WEISSAUER

i ∈ Z, the endofunctor from [BS12a], (2.13). The functor Fi has an avatar Fi
on the side of Khovanov-modules. This projective functor Fi is defined by
Fi :=

⊕
K
ti(Γ)
(Γ−αi)Γ ⊗K −, see [BS12a], (2.3), for summation rules and also

[BS10a], (4.1). Since by loc. cit. lemma 2.4, FiL(λ×◦) is indecomposable,
FiL(λ×◦) = K

ti(Γ)
(Γ−αi)Γ ⊗K − for one specific i-admissible Γ

Here the matching between (Γ−αi) and Γ is given by the diagram above
and the rule that all other vertices, except those labelled by × or ◦, are
connected by a vertical identity line segment. We want to determine its
composition factors and Loewy layers. For that one considers the modules
FiL(λ×◦) as modules in the graded category ofK = K(n, n)-modules where
K(n, n) is the Khovanov algebra from [BS12a]. We recall some facts from
[BS11] and [BS12a], see also [Hei14].

Let Λ be any block in the category of graded K-modules. For a graded
K-module M =

⊕
j∈ZMj , we write M〈j〉 for the same module with the

new grading M〈j〉i := Mi−j . Then the modules {L(λ)〈j〉 | λ ∈ Λ, j ∈
Z} give a complete set of isomorphism classes of irreducible graded KΛ-
modules. For the full subcategory Rep(KΛ) of Modlf (KΛ) consisting of
finite-dimensional modules, the Grothendieck group is the free Z-module
with basis given by the L(λ)〈j〉. Viewing it as a Z[q, q−1]-module, so that by
definition qj [M ] := [M〈j〉] holds, K0(Rep(KΛ)) is the free Z[q, q−1]-module
with basis {L(λ) | λ ∈ Λ}. We refer to [BS10a], section 2, for the definition
of the functors GtΛΓ. For terminology used in the statement of the next
theorem see loc.cit or section 30. We quote from [BS10a], thm 4.11

Theorem 18.2. Let t be a proper ΛΓ-matching and γ ∈ Γ. Then in the
graded Grothendieck group

[GtΛΓL(γ)] =
∑
µ

(q + q−1)nµ [L(µ)]

where nµ denotes the number of lower circles in µt and the sum is over all
µ ∈ Λ such that a) γ is the lower reduction of µt and b) the rays of each
lower line in µµt are oriented so that exactly one is ∨ and one is ∧.

Up to a grading shift by −caps(t) we have FiL(λ×◦) = Gt(Γ−αi)ΓL(γ)

for some γ and we may apply the theorem above to compute their Loewy
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structure. By [BS12a], lemma 2.4.v, FiL(λ×◦) is indecomposable with irre-
ducible socle and head isomorphic to L(λ).

Proposition 18.3. FiL(λ×◦) has a three step Loewy filtration

FiL(λ×◦) =

L(λ)

F

L(λ)


where all irreducible constituents in (the semisimple) module F occur with
multiplicity 1.

Proof. Let F (j) be the submodule of FiL(λ×◦) spanned by all graded
pieces of degree ≥ j. Let k be large enough so that all constituents of
FiL(λ◦×) have degree ≥ −k and ≤ k. Then

F = F (−k) ⊃ F (−k + 1) ⊃ . . . ⊃ F (k)

with successive semisimple quotients F (j)/F (j+1) in degree j. In our case
we take k = 1, since the irreducible socle and top L(λ) = L(λ∨∧) satisfies
nλ = 1. Then all other composition factors L(µ) necessarily satisfy nµ = 0

(we ignore the shift by 〈−caps(t)〉 here). The grading filtration thus gives
our three step Loewy filtration. The statement about the multiplicity follows
since the multiplicity of L(µ) in F is given by 2nµ . The Loewy filtration of
FiL(λ×◦) is preserved by the Morita equivalence E−1 of K(n, n)-mod with
Rn. �

Lemma 18.4. FiL(λ×◦) is ∗-invariant.

Proof. Since X⊗L×,◦ is ∗-invariant, ∗ permutes its indecomposable sum-
mands. The indecomposable summands are either irreducible or are of the
form FjL(λ×◦) for some j with labeling (×, ◦) at position (j, j + 1). Since ∗
preserves irreducible modules, the indecomposable summands correspond-
ing to the (×, ◦)-pairs in λx◦ are permuted amongst themselves. Since ∗
preserves irreducible modules [M∗] = [M ] in K0. However all the non-
irreducible Fj(L(λ×◦)) lie in different blocks for j 6= j′ by the rules of
[BS12a], lemma 2.4. �

Composition factors. We describe the composition factors of Fi(L×◦).
We can restrict ourselves to the maximally atypical block (i.e. we can ignore
×’s and ◦’s).

Let λ be i-fold atypical. Since Fi(L(λ×◦)) is indecomposable, any highest
weight of a composition factor µ has the same positioning of the n−i crosses
and n− i circles as λ. In particular it has the same positioning of the circles
and crosses as λ×◦ except at the position (i, i+ 1). Let Fi(L(λ×◦)) be given
by a matching t as follows
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The crosses and the circles are now fixed. Since the composition factors
depend only on the nesting structure and the matching t as in theorem 18.2
we can fix them and assume that we are in the maximally atypical block
of Gl(i|i). In this case the composition factors can be determined from
the segment and sector structure of λ as in [Wei10]. For symbols x, y ∈
{◦,∧,∨,×} we write λxy for the diagram obtained from λ with the ith and
(i+ 1)th vertices relabeled by x and y, respectively.

• Socle and cosocle. They are defined by L(µ) for µ = λ∨∧.
• The upward move. It corresponds to the weight µ = λ∧∨ which is

obtained from λ∨∧ by switching ∨ and ∧ at the places i and i+ 1. It
is of type λ∧∨.
• The nonencapsulated boundary move. It only occurs in the nonen-

capsulated case. It moves the ∨ in λ∨∧ from position i to the left
boundary position a. The resulting weight µ is of type λ∧∧.
• The internal upper sector moves. For every internal upper sector

[aj , bj ] (i.e. to the right of [i, i+1]) there is a summand whose weight
is obtained from λ∨∧ by moving the label ∨ at aj to the position i+1.
These moves define new weights µ of type λ∨∨.
• The internal lower sector moves. For every internal lower sector

[aj , bj ] (i.e. to the left of [i, i+ 1]) there is a summand whose weight
is obtained from λ∨∧ by moving the label ∨ from the position i to
the position bj . These moves define new weights µ of type λ∧∧.

For examples see [Wei10] or section 17. It follows from the maximal
atypical case and the definition of our sign ε(L) that we have FiL(λ◦×) =

(L,F, L) with L ∈ Rn(±ε) and F ∈ Rn(∓ε). For the following lemma see
also [Ser10], thm. 2.1 and cor. 4.4.

Lemma 18.5. Suppose theorem 16.1 holds for the irreducible represen-
tation L×◦ = L(λ×◦) in the block Γ of Rn. Suppose i ∈ Z is Γ-admissible
in the sense of [BS12a], p.6. Then for the special projective functor Fi the
following holds:

DS(FiL×◦) = FiDS(L×◦) .
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Proof. Given (V, ρ) in Rn the Casimir Cn of Rn restricts on DS(V, ρ) to
the Casimir Cn−1 of Rn−1 by lemma 11.2. On irreducible representations
V the Casimir acts by a scalar c(V ). Given representations V1, V2 in Rn,
such that Cn acts by c(Vi) · idVi on Vi, and v ∈ V1 ⊗ V2, then Cn(v) =

(c(V1) + c(V2)) · v + 2Ωn(v) for Ωn =
∑n

r,s=1(−1)ser,s ⊗ es,r∈gn ⊗ gn.
Note Fi(V ) = prΓ−αi ◦ (V ⊗Xst) ◦ prΓ, so FiL(λ×◦) = prΓ−αi(L(λ×◦) ⊗

Xst). By [BS12a], lemma 2.10, this is also the generalized i-eigenspace of
Ωn on L(λ×◦)⊗Xst. Put c = c(L(λ×◦)) + c(Xst) + 2i. Then FiL(λ×◦) is the
generalized c-eigenspace of Cn on L(λ×◦) ⊗ Xst. Hence DS(FiL(λ×◦)) is
the generalized c-eigenspace of Cn−1 onDS(L(λ×◦)⊗Xst) = DS(L(λ×◦))⊗
DS(Xst) = DS(L(λ×◦))⊗Xst,n−1. Observe that c(DS(V1)) + c(DS(V2)) =

c(V1) + c(V2), since Cn induces Cn−1 on DS(Vi).
By the main theorem 16.1 (using induction over degree of atypicity)

DS(L(λ×◦)) is in a unique block Γ. So FiDS(L(λ×◦)) = prΓ−αi ◦ (? ⊗
Xst,n−1) ◦ prΓDS(L(λ×◦)) = prΓ−αi(DS(L(λ×◦)) ⊗ Xst,n−1), and again by
[BS12a], lemma 2.10, this is the generalized c-eigenspace of the Casimir
Cn−1 on DS(L(λ×◦))⊗Xst,n−1. Thus DS(FiL(λ×◦)) ∼= FiDS(L(λ×◦)). �

Weights, sectors, segments. Let L(λ) be i-atypical in a block Γ. Let X+
Γ

denote the set of weights in Γ. Then we define a map

φ = φΓ : X+
Γ → {plots of rank i}

by sending λ to the plot of the weight of the irreducible representation
φin(L(λ)). Then φΓ is a bijection. Each plot has defining segments and
sectors, and by transfer with φΓ this defines the segments and sectors of a
given weight diagram in X+

Γ .

Shifting × and ◦. We now quote from [BS12a], lemma 2.4

Lemma 18.6. Let λ ∈ X+(n) and i ∈ Z. For symbols x, y ∈ {◦,∧,∨,×}
we write λxy for the diagram obtained from λ with the ith and (i + 1)th
vertices relabeled by x and y, respectively.

(i) If λ = λ∨× then EiL(λ) ∼= L(λ×∨). If λ = λ×∨ then FiL(λ) ∼=
L(λ∨×).

(ii) If λ = λ∧× then EiL(λ) ∼= L(λ×∧). If λ = λ×∧ then FiL(λ) ∼=
L(λ∧×).

(iii) If λ = λ∨◦ then FiL(λ) ∼= L(λ◦∨). If λ = λ◦∨ then EiL(λ) ∼= L(λ∨◦).
(iv) If λ = λ∧◦ then FiL(λ) ∼= L(λ◦∧). If λ = λ◦∧ then EiL(λ) ∼= L(λ∧◦).
(v) If λ = λ×◦ then: FiL(λ) has irreducible socle and head both isomor-

phic to L(λ∨∧), and all other composition factors are of the form
L(µ) for µ ∈ λ such that µ = µ∨∧, µ = µ∧∨ or µ = µ∧∨. Likewise
for λ = λ◦× and EiL(λ).

(vi) If λ = λ∨∧ then FiL(λ) ∼= L(λ◦×).
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For a pair of neighbouring vertices (i, i + 1) in the weight diagram of
λ = λ∨×, labelled by (∨×), we get

EiL(λ∨×) = L(λ×∨)

from 18.6.1. In other words, the functor replaces the irreducible representa-
tion of weight λ×∨ by the irreducible representation of weight λ∨×, which
has the same weight diagram as λ×∨, except that the positions of × and ∨
are interchanged. Note that

φ(λ∨×) = φ(λ×∨) ,

but L = L(λ∨×) and Lup = L(λ×∨) lie in different blocks.

Lemma 18.7. Suppose for the representation L = L(λ∨×) in Rin the as-
sertion of theorem 16.1 holds. Then it also holds for the representation
Lup = L(λ×∨).

Proof. By assumption we have a commutative diagram

L
p //

��

λ

��
DS(L)

p // λ′

We have to show that we have the same diagram for Lup instead of L. Let
Sν denote the sectors of the plot λ = φ(λ∨×) and let Sj denote the sector
containing the integer p(i). Then DS(L) is a direct sum of irreducible rep-
resentations Lν , whose sector structure either is obtained by replacing one
of the sectors Sν , ν 6= j by ∂Sν , and there is the unique irreducible sum-
mand Lj whose sector structure either is obtained by replacing the sectors
Sj by ∂Sj . We would like to show that DS(Lup) can be similarly described
in terms of the sector structure of Lup. The sectors of Lup literally coincide
with the Sν for ν 6= j, and for ν = j the remaining sector of Lup is obtained
from the sector Sj by transposing the positions at the labels i, i + 1 (within
this sector). Hence to show our claim, it remains to show that DS(Lup) is
isomorphic to a direct sum of irreducible representations Lupν with the sec-
tor structures such that Lupν is obtained from Lν by applying the functor Ei
(i.e. replacing the positions of ∨ and × at the labels i, i + 1). Indeed, the
derivative ∂ for sectors commutes with the interchange of labels at i, i + 1

in our situation (the sign rule is obviously preserved). Hence it remains to
show

Ei(DS(L(λ∨×))) = DS(Ei(L(λ∨×))) .
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But this assertion follows by an argument similarly to the one used for the
proof of lemma 18.5. �

Likewise by lemma 18.6 one can show

Lemma 18.8. Suppose for the representation L = L(λ∨◦) in Rin the as-
sertion of theorem 16.1 holds. Then it also holds for the representation
Lup = L(λ◦∨).

Lemma 18.9. Suppose the main theorem holds for the representation
L = L(λ∧×) in Rin. Then it also holds for the representation Lup = L(λ×∧).

Lemma 18.10. Suppose the main theorem holds for the representation
L = L(λ∧◦) in Rin. Then it also holds for the representation Lup = L(λ◦∧).

19. INDUCTIVE CONTROL OVER DS

We prove now the main theorem under the assumption that there exist
objects A with certain nice properties. Under these assumptions we give
an inductive proof of theorem 16.1 using the proposition 19.3 below. We
verify in section 20 that certain objects Fi(L×◦) verify these conditions.

First recall that for ε ∈ {±1} the full abelian subcategories Rn(ε) of Rn
consist of all objects whose irreducible constituents X have sign ε(X) = ε.
We quote from section 16 the following

Proposition 19.1. The categories Rn(ε) are semisimple abelian cate-
gories.

Definition. An object M in Rn is called semi-pure (of sign ε), if its
socle is in the category Rn(ε). Every subobject of a semi-pure object is
semi-pure. For semi-pure objects M the second layer of the lower Loewy
series (i.e. the socle of M/socle(M)) is in Rn(−ε) by the last proposi-
tion. Hence by induction, the i-th layer of the lower Loewy filtration is
in Rn((−1)i−1ε). Hence all layers of the lower Loewy filtration are semi-
pure. The last layer top(M) of the lower Loewy series is semisimple. Since
cosocle(M) ∼= cosocle(M)∗ ∼= socle(M∗) this easily implies

Lemma 19.2. For semi-pure ∗-selfdual indecomposable objectsM inRn
of Loewy length ≤ 3 the lower and the upper Loewy series coincide.

We now formulate certain axioms for an object A of Rn. Along with the
results of section 18 we will see in section 20 that the translation functors
Fi(L

×◦) verify these conditions.
(1) A ∈ Rn is indecomposable with Loewy structure (L,A,L).
(2) A is ∗-selfdual.
(3) L ∈ Rn(ε) is irreducible and satisfies theorem 16.1 withA ∈ Rn(−ε).



74 TH. HEIDERSDORF, R. WEISSAUER

(4) Ã := DS(A) = Ã+ ⊕ Π(Ã−) is the direct sum of Ã+ := H+(A) and
Ã− = H−(A) such that Ã+ =

⊕
ν Ãν and Ã− =

⊕
ν Ãν with inde-

composable objects Ãν ∈ Rn−1 of Loewy structure Ãν = (L̃ν , Ãν , L̃ν)

resp. Ãν ,∈ Rn−1 of Loewy structure Ãν = (L̃ν , Ãν , L̃ν).
(5) All L̃ν and L̃ν are irreducible so that L̃ν ∈ Rn−1(ε) and L̃ν ∈
Rn−1(−ε); furthermore Ãν ∈ Rn−1(−ε) and Ãν ∈ Rn−1(ε)

(6) For each µ = ν (resp. µ = ν) there exist irreducible detecting objects

A′µ ⊆ Ãµ ,

also contained in H+(A) (resp. in H−(A)), such that

HomRn−1
(A′µ, H

±(L)) = 0 and HomRn−1
(A′µ,

⊕
ρ 6=ν

Ãρ) = 0 .

Remark. For ∗-selfdual indecomposable objects as above the layers
(graded pieces) of the upper and lower Loewy filtrations coincide, since oth-
erwise proposition 19.1 would give a contradiction. In the situation above
we assume that A is ∗-selfdual of Loewy length 3 with socle socle(A) ∼= L

and cosocle(A) ∼= socle(A)∗ ∼= L∗ ∼= L and middle layer A.

Remark. For the later applications we notice that we will construct the
detecting objects A′µ in H+(Adown) (resp. H−(Adown)) where Adown will be
an accessible summand of A. By induction we later will also know that
these submodules A′µ therefore already satisfy theorem 16.1. Hence it suf-
fices to check the properties A′µ ⊆ Ãµ and A′µ ⊂ H±(A), since these already
imply by the main theorem (valid for summands of Adown) the stronger as-
sertion made in the axiom telling whether A′µ appears in H+(A) or H−(A).
Notice A′µ ⊆ Ãµ and Ãµ ∈ Rn−1(∓ε) depending on µ = ν resp. ν. On the
other hand Adown ⊂ A ∈ Rn(−ε). Hence, if the main theorem is valid for
Adown, we get A′µ ∈ H+(A) for µ = ν and A′µ ∈ H−(A) for µ = ν.

Proposition 19.3. Under the assumptions on A from above the H±(A)

will be semisimple objects in Rn−1(∓ε).

We will prove the key proposition 19.3 below after listing some of its
consequences.

The ring homomorphism d. As an element of the Grothendieck group
K0(Rn−1) we define for a module M ∈ Rn

d(M) = H+(M)−H−(M) .

Notice d is additive by lemma 2.1. Notice

K0(Tn) = K0(Rn)⊕K0(ΠRn) = K0(Rn)⊗ (Z⊕ Z ·Π) .
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We have a commutative diagram

K0(Tn)

DS
��

// K0(Rn)

d
��

K0(Tn−1) // K0(Rn−1)

where the horizontal maps are surjective ring homomorphisms defined by
Π 7→ −1. Since DS induces a ring homomorphism, it is easy to see that d
defines a ring homomorphism.

The assertion of the last proposition implies that H+(A) and H−(A) have
no common constituents in Rn−1 and that they are semisimple. Therefore
d(A) = H+(A)−H−(A) ∈ K0(Rn−1) uniquely determines H±(A) up to an
isomorphism. By the additivity of d and d(A) = Ã we get 2d(L) + d(A) =

2L̃+ Ã in K0(Rn−1). Hence

Corollary 19.4. H+(A) ∈ Rn−1(−ε) andH−(A) ∈ Rn−1(ε) are uniquely
determined by the following formula in K0(Rn−1)

H+(A)−H−(A) = d(A) = Ã+ 2(L̃− d(L)) .

We later apply this in situations where L̃− d(L) = (−1)i+nLaux holds by
lemma 20.1 and 20.4 and A′ − Ã = 2(−1)i+nLaux holds by lemma 20.3 and
20.7, for some object Laux. Here A′ denotes the normalized derivative of A,
introduced in section 15, defining a homomorphism

′ : K0(Rn)→ K0(Rn−1) .

Hence the last corollary implies the following theorem which repeatedly
applied proves theorem 16.1 by induction.

Theorem 19.5. Under the axioms on A from above d(A) = H+(A) −
H−(A) is the derivative A′ of A.

Proof of the proposition 19.3. Step 1). Assumption (4) implies H+(A) =

Ã+ and H−(A) = Ã− in Rn−1.

Step 2). Axiom (1) on the Loewy structure of A therefore gives exact
hexagons in Rn−1 for K := Ker(A→ L) using K/L ∼= A:

H+(K) // Ã+
H+(p)

// H+(L)

��
H−(L)

δ

OO

Ã−
H−(p)
oo H−(K)oo

H+(K) // H+(A) // H−(L)

��
H+(L)

H+(j)

OO

H−(A)oo H−(K)oo
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Step 3) Assumption (3),(4),(5) on the Loewy structure of the Ãν and
H±(L) imply the following factorization property for Ã+ (and then simi-
larly also for Ã−)

Ã+ =
⊕

ν Ãν

⊕qν ''

H+(p)
// H+(L)

⊕
ν L̃ν

∃!
⊕pν

99

Step 4) Let Σ be the set of all ν such that pν = 0. (Similarly let Σ be the
set of all ν such that pν = 0). Then we obtain exact sequences

H+(L)

H+(j)
��

0→
⊕

ν /∈Σ L̃ν
// H−(L)

δ // H+(K)

��

//
⊕

ν∈Σ Ãν ⊕
⊕

ν /∈Σ K̃ν
// 0

A′ν

99

0

&&

� � // H+(A)

��
H−(L)

Step 5) The detecting object A′ν ↪→ H+(A) has trivial image in H−(L) by
axiom (6), hence can be viewed as a quotient object of H+(K). Again by
axiom (6) we can then view A′ν as a nontrivial quotient object of

H+(K)/(I + δ(H−(L)))

where I := H+(j)(H+(L)) is the image of H+(L) in H+(K).

Step 6) The cosocle of
⊕

ν∈Σ Ãν ⊕
⊕

ν /∈Σ K̃ν is
⊕

ν∈Σ L̃ν ⊕
⊕

ν /∈Σ Ãν by
assumption (4) on the Loewy structure of Ãν , K̃ν .

Step 7) The simple quotient object A′ν of H+(K) can be viewed as a
nontrivial quotient object of the cosocle of H+(K) by step 5). We have an
exact sequence

H−(L)/
⊕
ν /∈Σ

L̃ν → cosocle(H+(K))→ cosocle(
⊕
ν∈Σ

Ãν ⊕
⊕
ν /∈Σ

K̃ν)→ 0

and we can view A′ν as a nontrivial quotient object of

cosocle(
⊕
ν∈Σ

Ãν ⊕
⊕
ν /∈Σ

K̃ν) =
⊕
ν∈Σ

L̃ν ⊕
⊕
ν /∈Σ

Ãν
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by step 5) and 6). Notice that we can consider A′ν for arbitrary ν. For ν ∈ Σ

the last assertion contradicts axiom (6):

HomRn−1
(
⊕
µ∈Σ

L̃µ ⊕
⊕
µ/∈Σ

Ãµ, A
′
ν) = 0 .

This contradiction forces

Σ = ∅ and similarly Σ = ∅ ,

so we obtain two exact sequences

0 //
⊕

ν L̃ν
// H−(L) // H+(K) //

⊕
ν K̃ν → 0

0 //
⊕

ν L̃ν
// H+(L) // H−(K) //

⊕
ν K̃ν → 0

Step 8) The last step 7) proves that

H+(p) is injective on the cosocle
⊕
ν

L̃ν of H+(A) .

Let i : L ↪→ A be the composition of j : L ↪→ K and the inclusion K ↪→ A.
Then i : L ↪→ A is the ∗-dual of the projection p : A � L by the axiom
(2). Hence by ∗-duality we get from the previous assertion on H+(p) the
following assertion

H+(i) surjects onto the socle
⊕
ν

L̃ν of H+(A) .

Now considering

L� _

j
��

� o

i

  
K �
� // A and

I � _

�� )) ))

socle(H+(K)) // socle(Ã+) ∼=
⊕

ν L̃ν

we see that
⊕

ν L̃ν can also be embedded into the semisimple I as a sub-
module

⊕
ν L̃ν ↪→ I.

Step 9) Recall the following diagram

I

��⊕
ν L̃ν

� � // H−(L)
δ // H+(K)

��

π //
⊕

ν K̃ν
// 0

H+(A)

Since I is in Rn−1(ε) and H−(L) ∈ Rn−1(−ε) by our axioms, we also have

δ(H−(L)) ∩ I = {0} .
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Hence the composite of π and the inclusion I ↪→ H+(K) maps the semisim-
ple module I injectively into the socle of

⊕
ν K̃ν . Since socle(

⊕
ν K̃ν) =⊕

ν L̃ν and since I contains
⊕

ν L̃ν as a submodule, this implies that

π : I
∼ // socle(

⊕
ν K̃ν) ∼=

⊕
ν L̃ν

is an isomorphism. Notice (
⊕

ν K̃ν)/socle(
⊕

ν K̃ν) ∼=
⊕

ν Ãν .

Step 10) The last isomorphism of step 9) gives the exact sequence

0→
⊕
ν

L̃ν → H−(L)→
(
H+(K)/I

)
→
⊕
ν

Ãν → 0 .

By our assumptions H−(L) is inRn−1(−ε), and hence semisimple. Further-
more all Ãν are semisimple and contained in Rn−1(−ε). Hence by proposi-
tion 19.1 H+(K)/I is semisimple and contained in Rn−1(−ε).

Step 11). By step 10) and the exact hexagon

H+(K) // H+(A) // H−(L)

��
I
( �

55

H+(L)

iiii H+(j)

OO

H+(A)oo H−(K)oo

.

H+(A) defines an extension of the semisimple module H+(K)/I by a sub-
module of H−(L)

0→ H+(K)/I → H+(A)→ Ker
(
H−(L)→ H−(K)

)
→ 0 .

Since H+(K)/I and Ker(H−(L) → H−(K)) are both in Rn−1(−ε), the
proposition 19.1 implies that

H+(A) ∼=
(
H+(K)/I

)
⊕ Ker

(
H−(j) : H−(L)→ H−(K)

)
is semisimple and contained in Rn−1(−ε). The first summand has been
computed above. Similarly then

H−(A) ∼=
(
H−(K)/I

)
⊕ Ker

(
H+(j) : H+(L)→ H+(K)

)
is semisimple and contained in Rn−1(ε). �

Example. Recall the indecomposable ∗-selfdual objects ASi inRn, n ≥ 2

for i = 1, 2, ... with Loewy structure (L,A,L) where L = Si−1 and

A = Si ⊕ Si−2 ⊕ δin ·Ber−1
n .

Concerning the notations: δin denotes Kronecker’s delta and S−1 = 0. The
conditions (1)-(5) are satisfied for ε = (−1)i−1 and A′ = Si−2. Indeed
condition (5) follows, since by induction on i one can already assume that
H−(L) = H−(Si−1) is Ber−1 or zero and that H+(Si−2) contains Si−2.
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Then by induction on i the computation of H±(A) in terms of Ã, L̃,H±(L)

from above easily gives as in section 17 the following result

Proposition 19.6. Suppose n ≥ 2. Then for the functor DS : Rn → Tn−1

of Duflo-Serganova we obtain DS(Bern) = Π(Bern−1) and
(1) DS(Si) = Si for i < n− 1,
(2) DS(Si) = Si ⊕Πn−1−iBer−1 for i ≥ n− 1.

20. MOVES

We verify now the conditions on the indecomposable objects A of section
19 for the translation functors Fi(L(λ×◦)). Additionally we verify the com-
mutation rules in and after corollary 19.4. Instead of working directly with
the irreducible representation L we use the associated plot as in section 13
and 18. Recall that a plot λ is a map λ : Z→ {�,�}. We also use the nota-
tion �i to indicate that the λ(i) = � and likewise for �. For an overview of
the algorithms I and II used in this section see section 17.

Let L = (I,K) for I = [a, b] be a segment with sectors S1, .., Sk from left
to right. Suppose Sj = [i, i+ 1] is a sector of rank 1. Then the segment may
be visualized as

L = (S1 · · ·Sj−1[�i,�i+1]Sj+1 · · ·Sk) .

We define the upward move of the segment L as the plot defined by the two
segments with intervals [a, i− 1] and [i+ 1, b+ 1]

Lup = (S1 · · ·Sj−1) �i (

∫
(Sj+1 · · ·Sk)) .

Similarly we define the downward move of the segment L as the plot defined
by the two segments with intervals [a− 1, i] and [i+ 2, b]

Ldown = (

∫
(S1 · · ·Sj−1)) �i+1 (Sj+1 · · ·Sk) .

Furthermore for r 6= j we define additional r-th internal lower resp. upper
downward moves Ldownr by the plots associated1 to the single segments

(S1 · · ·Sr−1

∫ (
S′r

∫
(Sr+1 · · ·Sj−1)

)
Sj+1 · · ·Sk)

for each 1 ≤ r ≤ j − 1 respectively

(S1 · · ·Sj−1

∫ (∫
(Sj+1 · · ·Sr−1) S′r

)
Sr+1 · · ·Sk)

1For r = j − 1 or r = j + 1 the inner integral over the empty sector is understood to
give the sector ([i− 1, i], {i− 1}) respectively ([i+ 1, i+ 2], {i+ 1}).



80 TH. HEIDERSDORF, R. WEISSAUER

for each j + 1 ≤ r ≤ k. Explaining the notion ’internal’, notice that the
segments defined by these internal downward moves have the same un-
derlying interval I = [a, b] as the segment L we started from. We remark
that the last formulas do remind on partial integration. Formally by setting
Ldownr := Ldown for r = j, we altogether obtain k downward moves and one
upward move. All these moves preserve the rank.

The plot L has a sector [i, i+1] of rank 1. The auxiliary plot Laux attached
to L (and [i, i+ 1]) is the plot of rank r(L)− 1 defined by two segments with
intervals [a, i− 1] and [i+ 2, b]

Laux = (S1 · · ·Sj−1) �i �i+1(Sj+1 · · ·Sk)

and we also consider

L×◦ = (S1 · · ·Sj−1) ×i ◦i+1 (Sj+1 · · ·Sk) .

Algorithm I (lowering sectors). For a plot with k sectors Sν with ranks
rν = r(Sν) ≥ 0 and the distances dν ≥ 0 for ν = 1, ....k (from left to right)
we formally define rk+1 = rk+1 = ... = 0 and dk = dk+1 = ... = 0. We can
then compare different plots with respect to the lexicographic ordering of
the sequences

(−r1, d1,−r2, d2, .....) .

Within the set of plots of fixed rank say n, the minimum with respect to this
ordering is attained if r1 = n, i.e. if there exists only one sector.

Algorithm I will be applied to given plots, say λ∧∨, with more than one
segment. The upshot is: In this situation one can always find a lexicographic
smaller plot L so that the given plot is of the form λ∧∨ = Lup and such that
L and all plots obtained by the moves Ldownr of L are strictly smaller than
the starting plot Lup. Algorithm I is used for induction arguments to reduce
certain statements (e.g. theorem 16.1) to the case of plots with 1 segment.

Definition of L. For a given plots say λ∧∨, with more than one seg-
ment, dν > 0 holds for some integer ν. So choose j so that the distances
dist(S1, S2) = ... = dist(Sj−2, Sj−1) = 0 for the sectors S1, .., Sj−1 of λ∧∨
and dist(Sj−2, j − 1) > 0. We temporarily write S for the next sector S of
λ∧∨. Interpret S =

∫
(Sj+1 · · ·Sk) for some sectors Sj , ..., Sk. This is possi-

ble, but keep in mind that Sj , ..., Sk are not sectors of λ∧∨ but will be sectors
of L, and this explains the notation. Indeed, for i + 1 = min(S), we define
L to be

L = (S1 · · ·Sj−1)...dj−1....(SjSj+1 · · ·Sk)...dk....
with Sj of rank 1 at the positions [i, i+ 1]. To simplify notations we do not
write further sectors to the right, since the sectors of λ∧∨ to the right of S
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will not play an essential role in the following. Indeed, they will appear ver-
batim in the sector structure of L up to some distance shifts at the following
positions

dist(Sj−1, S) = 1 + dj−1 , dist(S, next sector) = dk − 1 .

Concerning the lexicographic ordering

dist(Sj−1, Sj) = dj−1 < dist(Sj−1, S) = 1 + dj−1

shows that L is smaller than Lup = λ∧∨. We leave it to the reader to check
that also all Ldownj are smaller than Lup = λ∧∨. Notice, here we apply the
moves as in the preceding paragraph with the notable exceptions that

(1) There may be further sectors beyond Sk. These are just appended,
and do not define new moves.

(2) If dj−1 ≥ 1 the sector Sj−1 has distance > 0 to the sector Sj and
therefore does not define downward moves, so that only the doen-
ward moves Ldownr for r = j, ..., k are relevant.

In the later discussion we always display the more complicated case where
dj−1 = 0 (without further mentioning). For the case dj−1 > 0 one can simply
‘omit’ S1, ..., Sj−1, by just appending them in the same way as we agreed to
‘omit’ sectors to the right of Sk.

Construction of detecting objects for algorithm I. Fix L = L(λ∧∨) with
the sector [i, i+1]. Then L is determined by its sectors. For the construction
of detecting objects we are only interested in down moves. In the following
it therefore suffices only to keep track of the sectors below [i, i + 1] in the
segment containing the sector [i, i+1]. Notice that L is a union of the sector
[i, i+1] and, say s, other sectors Sν . Let S1, .., Sj−1 denote the sectors below
[i, i+ 1] in the segment of [i, i+ 1]. Hence L is

�S1 · · ·Sj−1[�i�i+1]

and the union of other disjoint sectors Sν for j + 1 ≤ ν ≤ s. Then L×◦ is

�S1 · · ·Sj−1[×i◦i+1]

and the union of other disjoint sectors Sν for j + 1 ≤ ν ≤ s. We define
A = FiL

×◦. Then A is ∗-self dual of Loewy length 3 with socle and cosocle
L. The term A in the middle is semisimple and the weights of its irreducible
summands are given by Lup and the k down moves of L according to section
18.

To determine Ã = DS(A) we use induction and lemma 18.5. This implies
that Ã is the direct sum of Πmν Ãν for indecomposable objects Ãν in Rn−1,
which uniquely correspond to the irreducible summands of DS(L×◦). How-
ever these correspond to the irreducible summands L̃ν of DS(Laux). Again
by induction (now induction on the degree of atypicity) the summands of
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DS(L×◦) respectively DS(Laux) are already known to be given by the de-
rivative of λaux. These facts imply the next

Lemma 20.1. We have

Ã =

s⊕
µ=1

Π̃mµAµ

where each Ãµ ∈ Rn−1 has Loewy lenght 3 with irreducible socle and coso-
cle L̃µ defined by the s plots for µ = 1, ..., s

[�i�i+1] ∪ S′µ ∪
⋃
ν 6=µ

Sν .

In particular, for maux (which is congruent to i+ n− 1 modulo 2), we get2

DS(L) ∼= ΠmauxLaux ⊕
⊕s

µ=1 Π̃mµLµ .

Hence in K0(Rn−1)

d(L) = L′ = L̃ + (−1)i+n−1 · Laux .

Now each Ãµ is determined from L̃µ by applying certain upward and the
downward moves starting from L̃µ.

We indicate that the segment of L̃µ containing [�i�i+1] has less than r

sectors, if 1 ≤ µ ≤ j − 1. Indeed the union of the sectors of L̃µ in the
segment of [�i�i+1] is

...� Sµ+1 · · ·Sj−1[�i�i+1]Sj+1 · · ·Sr � ...

for µ ≤ j− 2 and by [�i�i+1]Sj+1 · · ·Sr � ... for µ = j− 1. We are now able
to define the detecting objects A′µ ⊆ Ãµ for µ = 1, ..., s by L̃downµ , given by
induction as follows

(1) (
∫

(S1 · · ·Sj−1)) �i+1 ∪(S′µ) ∪
⋃
j−1<µ 6=` S` for µ /∈ {1, ..., j − 1},

(2) S1 · · ·S′µ(
∫

(Sµ+1 · · ·Sj−1)) �i+1 Sj+1 · · ·Sk ∪
⋃
k<` S` for µ ≤ j − 2,

(3) S1 · · ·Sj−2 � S′j−1(��i) �i+1 Sj+1 · · ·Sk ∪
⋃
k<` S` for µ = j − 1.

It is therefore clear that the detecting object is different from all objects in
DS(L), which by induction are known to be given by the derivative of L.
Furthermore A′µ ⊆ Ãµ. It requires some easy but tedious inspection to see
that A′µ is not contained in Ãν for ν 6= µ. Hence to see that the A′µ are
detecting objects, it suffices to show the next

Lemma 20.2. The objects A′µ are contained in DS(A). If Lup is stable,
then L is stable and A′µ ⊂ H+(A)⊕H−(A) for all µ.

2assuming that theorem 16.1 holds for L, say by induction assumption.
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Proof. Recall
A ∼= Aup ⊕Adown

for Aup := Lup and Adown :=
⊕k

i=1 L
down
r .

We do not know how to compute DS(Aup). However by induction we al-
ready know that the derivative computes DS(Adown). In Adown ⊂ A we have
the following objects Aµ

(1) (
∫

(S1 · · ·Sj−1)) �i+1 ∪
⋃
j−1<` S` for µ /∈ {1, ..., j − 1},

(2) S1 · · ·
∫

(S′µ
∫

(Sµ+1 · · ·Sj−1))Sj+1 · · ·Sk ∪
⋃
k<` S` for µ ≤ j − 2,

(3) S1 · · ·Sj−2(�S′j−1 ��i�i+1)Sj+1 · · ·Sk ∪
⋃
k<` S` for µ = j − 1.

Their derivative DS(Aµ) contains
(1) (

∫
(S1 · · ·Sj−1)�i+1) ∪ (S′µ) ∪

⋃
j−1<` 6=µ S` for µ /∈ {1, ..., j − 1},

(2) S1 · · ·S′µ(
∫

(Sµ+1 · · ·Sj−1)) �i+1 Sj+1 · · ·Sk ∪
⋃
k<` S` for µ ≤ j − 2,

(3) S1 · · ·Sj−2 � S′j−1(��i) �i+1 Sj+1 · · ·Sk ∪
⋃
k<` S` for µ = j − 1.

This proves A′µ ⊂ DS(Aµ) and hence our claim. �

Commutation rule for algorithm I. Now we discuss how moves com-
mute with differentiation for a given L as above. It is rather obvious from
the definitions that for this we can restrict ourselves to the situation where
L is the single segment

L = (S1 · · ·Sj−1 �i �i+1Sj+1 · · ·Sk) .

So let us assume this for simplicity of exposition.

1) Computation of Ã. Taking first the derivative we obtain Laux and (k−1)

plots L̃µ of the form

S1 · · ·S′µ(Sµ+1 · · ·Sj−1 �i �i+1Sj+1 · · ·Sk)

(lower group where µ ≤ j − 1) respectively

(S1 · · ·Sj−1 �i �i+1Sj+1 · · ·Sµ−1)S′µ · · ·Sk

(upper group where µ ≥ j+1). The sign in the Grothendieck group attached
to these is (−1)aµ+n−1 = (−1)i+n−1 for Sµ = [aµ, bµ].

Notice that Laux does not define any moves. The segment containing
�i�i+1 (indicated by the brackets) defines the possible moves of each of
these derived plots L̃µ. These are e.g. in the lower group case the upward
move

S1 · · ·S′µSµ+1 · · ·Sj−1 �i

∫
(Sj+1 · · ·Sk)

and the downward move

S1 · · ·S′µ
∫

(Sµ+1 · · ·Sj−1) �i+1 Sj+1 · · ·Sk
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and the internal upper/lower downward moves

S1 · · ·S′µSµ+1 · · ·Sj−1

∫
(
∫

(Sj+1 · · ·Sr−1) S′r )Sr+1 · · ·Sk

S1 · · ·S′µSµ+1 . . . Sr−1

∫
(S′r
∫

(Sr+1 · · ·Sj−1)) Sj+1 · · ·Sk

2) Computation of the derivative A′. Now we revert the situation and first
consider the moves of L, the upward and downward moves

Lup = S1 · · ·Sj−1 �i

∫
(Sj+1 · · ·Sk) ,

Ldown =

∫
(S1 · · ·Sj−1) �i+1 Sj+1 · · ·Sk ,

and the internal downward moves (for lower sectors)

S1 · · ·Sr−1

∫ (
S′r

∫
(Sr+1 · · ·Sj−1)

)
Sj+1 · · ·Sk

respectively (for upper sectors)

S1 · · ·Sj−1

∫ (∫
(Sj+1 · · ·Sr−1) S′r

)
Sr+1 · · ·Sk .

If we differentiate Lup, we get the plots of the form

S1 · · ·S′µ · Sj−1 �i

∫
(Sj+1 · · ·Sk)

with sign (−1)sµ+n−1 = (−1)i+n−1 and similarly

Laux = S1 · · ·Sj−1 �i �i+1Sj+1 · · ·Sk
with sign (−1)i+n. If we differentiate Ldown, we get

∫
(S1 · · ·Sj−1) �i+1

Sj+1 · · ·S′µ · · ·Sk and similarly

Laux = S1 · · ·Sj−1 �i �i+1Sj+1 · · ·Sk
with sign (−1)i+n. If we derive the plots defined by the internal moves
(lower group, where we derive at ν ≤ j − 1) we get the plots of the form

S1 · · ·Sr−1S
′
r

∫
(Sr+1 · · ·Sj−1) �i+1 Sj+1 · · ·Sk

with sign (−1)sr+n−1 = (−1)i+n−1 together with

S1 · · ·S′µSµ+1 · · ·Sj−1

∫
(
∫

(Sj+1 · · ·Sr−1) S′r )Sr+1 · · ·Sk

S1 · · ·S′µSµ+1 · · ·Sr−1

∫ (
S′r
∫

(Sr+1 · · ·Sj−1)
)
Sj+1 · · ·Sk

of sign (−1)i+n−1 respectively similar terms for the upper group, where we
differentiate at µ ≥ j+ 1. Altogether, besides two additional signed plots of
the form Laux, these give precisely the plots obtained before. This implies
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Lemma 20.3. The differential of the moves of L gives the term 2 · Laux
plus the moves of the differential of L, i.e.

A′ = Ã + 2(−1)i+n · Laux

holds in K0(Rn−1).

Algorithm II (melting sectors). Suppose λ∧∨ is a plot with a single seg-
ment and at least two sectors. [a, i] and point i respectively left boundary
point i + 1 of the segment defining the plot λ∧∨. In algorithm II we melt
the first two adjacent sectors [a, i] and [i + 1, b] together into a single sector
Smelt to obtain a new plot λ∨∧ so that

supp(λ∧∨)− {i+ 1} = supp(λ∨∧)− {i} .

This new plot λ∧∨ again has a unique segment with the same underlying in-
terval as the plot λ∧∨. But the sector structure is different, since the number
of sectors decreases by one.

Notice, opposed to algorithm I, the interval [i, i + 1] does not define a
sector of the original plot λ∧∨. However [i, i + 1] defines a sector of the
’internal’ plot

Lint := ∂(Smelt) ,

with sector structure say

Lint = S1 · · ·Sj−1[�i�i+1]Sj+1 · · ·Sk ,

so that

λ∨∧ = (

∫
Lint) other sectors , λ×◦ := (

∫
(Lint)

×◦) other sectors

We similarly define for r = 1, ..., k and r 6= j the plots

λdownr := (

∫
(Lint)

down
r ) other sectors .

Finally λ∧∨ = (
∫

(Lint)
up)other sectors , which is the plot we started from.

Since
∫

(Lint)
up has two sectors, all the plots λdownr for 1 ≤ r 6= j ≤ k have

less sectors than the plot λ∧∨. Indeed, the plots
∫

(Lint)
down
r are irreducible

as an easy consequence of the integral criterion.

Construction of detecting objects for algorithm II. Fixing λ∧∨ as above,

A = Fi(L(λ×◦)) = (L,A,L)

defines a ∗-self dual object in Rn of Loewy length 3 with socle and cosocle
L, where

L = L(λ∨∧)

and A = Aup ⊕Adown for Aup = L(λ∧∨) and Adown =
⊕k

r 6=j,1 L(λdownr ).
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To determine DS(A) =
⊕

µ ΠmµÃµ we use induction and lemma 18.5.
This implies that Ã is the direct sum of Π̃mµAµ for indecomposable objects
Ãµ in Rn−1, which uniquely correspond to the irreducible summands L̃µ of
DS(L×◦). But by induction (now induction on the degree of atypicity !) the
irreducible summands of DS(L×◦), that determine the irreducible modules
L̃µ, can be computed by the derivative of λaux. Since in the present situation
replacing i, i+1 by ×, ◦ commutes with the derivative, these facts imply the
next

Lemma 20.4. If L has s sectors, for the melting algorithm we have

Ã =

s⊕
µ=1

ΠmµÃµ

where each Ãµ ∈ Rn−1 has Loewy length 3 of Loewy structure (L̃µ, Ãµ, L̃µ)

with irreducible socle and cosocle L̃µ. For the various summands, for vary-
ing µ, up to the shift mµ the socles Lµ are defined by the s−1 different plots
plots arising from the derivative

(

∫
Lint) (other sectors)′

together with the plot
Lint (other sectors) .

In particular3, if L has s sectors, DS(L) ∼=
⊕s

µ=1 ΠmµL̃µ. This gives in
K0(Rn−1) the formula

d(L) = L′ = L̃ .

Corollary 20.5. In the situation of the last lemma the morphisms

H i(p) : H i(A)→ H i(L)

are surjective for all i ∈ Z.

Proof. We already know that H±(p) : H±(A)→ H±(L) induces injective
maps on the cosocle of H±(A). By lemma 20.4 therefore these induced
maps are bijections between the cosocle of H±(A) and H±(L). In particular
the morphisms H±(p) : H±(A) → H±(L) are surjective. This implies the
assertion. �

This being said note that 2d(L) + d(A) = d(A) = d(Ã) = 2L̃+ Ã together
with the assertion d(L) = L̃ from the lemma 20.4 above implies d(A) =

Ã. Any L̃µ defines a nontrivial term Ãµ. We claim that any irreducible
summand A′µ ⊂ Ãµ is a detecting object now. Indeed any summand A′µ of Ã
appears in H+(A) by the formula d(A) = H+(A) −H−(A) = Ã. Checking

3assuming that theorem 16.1 holds for L and L×◦, say by induction assumption.
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the possible moves that define the constituents of Ãµ from L̃µ it is clear that
A′µ is not a constituent of any Ãν for ν 6= µ. Hence

Lemma 20.6. Detecting objects A′ν exist for algorithm II.

Commutation rule for algorithm II. Now we discuss how moves com-
mute with differentiation for a given L as above. It is rather obvious from
the definitions that we can restrict ourselves for this to the situation where
the segment of plot λ∧∨ has only two sectors. In other words we claim
that we can assume without restriction of generality that the terms ’other
factors’ does not appear, so that s = 2 holds in the last lemma 20.4. The
reason for this is, that moves for Lint (others sectors) are the same as for∫
Lint (others sectors)′, since by [BS10a] the relevant moves are moves

’within’ the sector
∫
Lint. Hence for the proof of the next lemma we can

assume that L =
∫
Lint has a unique sector so that d(L) = L̃ = L′ = Lint,

which has a single segment.

Lemma 20.7. The differential of the moves of L gives the moves of the
differential of L, i.e.

A′ = Ã

holds in K0(Rn−1).

Proof. Without restriction of generality we can assume that the plot λ∨∧,
we are starting with, is a segment with only two sectors, so that L =

∫
Lint.

Let the single segment of Lint have the form

S1 · · ·Sj−1[�i�i+1]Sj+1 · · ·Sk

with k sectors S1, ..., Sk where the underlying interval of Sj is [i, i+ 1].

1) Computation of Ã. According to [BS10a], [Wei10] the constituents of
Ã =

⊕s
µ=1 ΠmµÃµ are obtained from the socle module L̃µ of Ãµ by moves.

The last lemma shows that L̃ =
⊕

µ L̃µ is the derivative L′ = (
∫
Lint)

′ = Lint
of L up to a shift determined by the sign factor (−1)a+n−1. Since s = 1 by
assumption, Ã = (L̃, Ã, L̃) is an indecomposable module with socle

L̃ = Lint .

Up to a parity shift by m = a + n − 1, the module Ã therefore is the direct
sum

Ã = (Lint)
up ⊕

k⊕
r=1

(Lint)
down
r
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of the irreducible modules obtained from L̃ = Lint by the unique upward
and the k downward moves. Notice (Lint)

down
j = (Lint)

down is the ’nonen-
capsulated’ downward move in the notions of [Wei10]. Here it occurs, since
[i, i+ 1] is one of the sectors of the L̃.

2) Computation of the derivative A′. Now we revert the situation and
first consider A = (L,A,L) and the moves of L =

∫
Lint that determine the

irreducible summands of A. Indeed

A =
(∫

Lint

)up
⊕

k⊕
r 6=j,r=1

(∫
Lint

)down
r

holds for the irreducible modules obtained from L =
∫
Lint by the upward

move Lup and the k − 1 internal inner/upper downward moves (Lint)
down
r

for r 6= j. Notice that (Lint)
down
j = (Lint)

down, as opposed to the situation
above, this time does not appear as a move, since we are in the ’encapsu-
lated’ case in the notions [Wei10] where [i, i + 1] is not a sector of L (but
only an internal sector of L).

The formulas above imply that A′ = (Aup)′ ⊕ (Adown)′ is a direct sum of
the two irreducible summands

(Aup)′ = B1 ⊕B2 ,

coming from ((
∫
Lint)

up)′ = (Lup)′ = L(λ∧∨)′ for λ∧∨ = [a, i][i + 1, b] with
derivative (−1)a+n−1(∂([a, i]) ∪ [i + 1, b]) + (−1)i+n−1([a, i] ∪ ∂([i + 1, b])),
and the k − 1 irreducible summands (Adownr )′ of (Adown)′ given by

(Adownr )′ =
((∫

Lint

)down
r

)′
.

This gives 2 + (k−1) = k+ 1 irreducible factors in Ã, and all signs coincide
by (−1)i+n−1 = (−1)a+n−1.

The comparison. Since all signs are (−1)a+n−1 for both computations, we
can ignore the parity shift. Then observe that (

∫
Lint)

down
r =

∫
(Lint)

down
r )

holds for r 6= j, hence (Adownr )′ = ((
∫
Lint)

down
r )′ = Lint)

down
r for r 6= j. So

it remains to compare the two remaining summands

B1 , B2

of A′ and the two remaining summands

(Lint)
up , (Lint)

down
j

of Ã. The latter correspond to the plots S1...Sj−1 �i

∫
(Sj+1...Sk), giving

the upward move, resp.
∫

(S1...Sj−1) �i+1 Sj+1 · · ·Sk, giving the downward
move. Obviously these two define the plots ∂([a, i]) ∪ [i + 1, b] respectively
[a, i] ∪ ∂([i+ 1, b]) defining the two summands B1 and B2. �
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PART 3. CONSEQUENCES OF THE MAIN THEOREM

We describe some applications of the main theorem. The main result is
the computation of the Z-grading of DS(L) for any irreducible representa-
tion L in sections 22 - 24. This result is based on the main theorem and
its proof. For that we first need a description of the dual of an irreducible
representation in section 21. In the later sections 28 - 31 we obtain var-
ious results about the cohomology of maximally atypical indecomposable
representations.

21. TANNAKA DUALS

Let λ be an atypical weight, and L(λ) the associated irreducible repre-
sentation. Note that (Berk ⊗ L(λ))∨ = Ber−k ⊗ L(λ)∨. We use the de-
scription of the duals obtained in [Hei14]. Note that L(λ) = socle(P (λ)) =

cosocle(P (λ)), since projective modules are ∗-self dual. Hence L(λ)∨ =

socle(P (λ)∨), so it suffices to compute the socle of P (λ)∨. Now P (λ) =

R(λL, λR) for the bipartition (λL, λR) = θ−1(λ) satisfying k(λL;λR) = n by
[Hei14]. The dual of any mixed tensor is R(λL, λR)∨ = R(λR, λL), hence
we simply have to calculate the socle of R(λR, λL).

If k(λL, λR) = n, the description of the map θ is easy: Calculate the
weight diagram of (λL, λR) as in section 14 and write down its labeled cup
diagram. Then turn all ∨’s which are not part of a cup into ∧’s and leave
all other symbols unchanged. The resulting diagram is the weight diagram
of socle(P (λ)). Hence in order to calculate the dual of L(λ) we simply
have to understand the effect of changing (λL, λR) to (λR, λL) on the weight
diagram. Recall from section 14 that

I∧(λ) := {λL1 , λL2 − 1, λL3 − 2, . . .} and I∨(λ) := {1− λR1 , 2− λR2 , . . .} .

If λLi − (i− 1) = s, then i−λLi = i− s− i+ 1 = 1− s and likewise for λRj .
Hence interchanging λL and λR means reflecting the symbols s 7→ 1− s and
swapping ∨’s with ∧’s. If the vertex s is labelled by a ×, then there exist i, j
such that λLi − (i− 1) = j − λRj = s. But then λRj − (j − 1) = i− λLi = 1− s
and we obtain a × at the vertex 1− s. We argue in the same way for the ◦’s.
If (s, s + r) is labelled by (∨,∧)-pair such that we have a cup connecting s
and s+ r, we obtain a (∨,∧)-pair at (1− s− r, 1− s) which is connected by
a cup. To obtain the highest weight θ(λR, λL) the ∨’s not in cups get flipped
to ∧’s.
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Proposition 21.1. The weight diagram of the dual of an irreducible rep-
resentation L is obtained from the weight diagram of L as follows: Inter-
change all ∨∧-pairs in cups, then apply the reflection s 7→ 1 − s to each
symbol.

It is easy to see that this description is valid for m ≥ n if we use the
reflection 1− δ − s instead of 1− s where δ = m− n.

The maximal atypical case. We describe the dual in the language of plots.
We assume here that L(λ) is maximally atypical, but we can reduce the
general case to this one, using the map φ from section 18 and lemma 21.3.
Let λ denote the unique plot corresponding to the weight λ. Let λ(s) =∏
i λi(s) be its prime factorization. For each prime factor λi(s) = (I,K)

with segment I and support K we define λci (s) := (I,Kc), where Kc = I−K
denotes the complement of K in I. Then put

λc(s) :=
∏
i

λci (s) .

The previous description of the duals implies the next proposition.

Proposition 21.2. The Tannaka dual representation λ∨ of a maximal
atypical representation λ is given by the plot

λ∨(s) = λc(1− s).

Example 1. Suppose λ = [0, λ2, . . . , λn] holds with 0 > λ2 and λi > λi+1

for 2 ≤ i ≤ n−1. Then λ∨ = [n−λn−1, n−λn−1−1, . . . , n−λ2−1, n−1].

Dualising is compatible with the normalized block equivalence φin of sec-
tion 15.

Lemma 21.3. For irreducible i-atypical L we have φin(L∨) = φin(L)∨.

Proof. If L is i-atypical, then φ̃in preserves the distances between the
sectors, hence φ̃in(L)∨ = Ber...⊗ φ̃in(L∨). Since we remove 2(n− i) symbols
from the weight diagram of L, we obtain the shift

φ̃in(L∨) = Ber−2(n−i) ⊗ φ̃in(L)∨.

Now we calculate for the normalised block equivalence

φin(L∨) = Bern−kφ̃in(L∨) = Bern−kBer−2(n−k)φ̃in(L)∨

= Ber−n+k ⊗ φ̃in(L)∨ = (Bern−k)∨ ⊗ φ(L)∨ = (Bern−k ⊗ φ̃in(L))∨

= φin(L)∨.

�

Lemma 21.4. For maximal atypical irreducible L = [λ1, ..., λn] such that
λn = 0 the following assertions are equivalent.



COHOMOLOGICAL TENSOR FUNCTORS 91

(1) L∨ ∼= [ρ1, ..., ρn] holds such that ρn ≥ 0.
(2) L is basic, i.e. λ1 ≥ . . . λn ≥ 0 and λi ≤ n−i holds for all i = 1, ..., n.
(3) λ1 ≤ n − 1 and L∨ ∼= [λ∗1, ..., λ

∗
n] holds for the transposed partition

λ∗ = (λ∗1, ..., λ
∗
n) of the partition λ = (λ1, ..., λn).

Remark. The number of basic maximal atypical weights in X+(n) is
equal to the Catalan number Cn.

Proof. i) implies ii): If ρn = 0 the leftmost ∨ in the weight diagram of [ρ]

is at position −n + 1. Then the smallest ∧ bound in a cup is at a position
≤ 1 and ≥ 1 − n. After the change (I,K) → (I, I − K) and the reflection
s 7→ 1 − s this means that the rightmost ∨ in [ρ]∨ is at position ≤ n − 1 and
≥ 0 which is equivalent to 0 ≤ λ1 ≤ n − 1. Likewise the i-th leftmost ∧
bound in a cup is at a position ≥ −n + i + 1 and ≤ n. It will give the i-th
largest ∨ in the weight diagram of [λ]. After the change (I,K) 7→ (I, I −K)

and the reflection the i-th largest ∨ is at a position ≤ n − 2i + 1 which is
equivalent to λi ≤ n−i. ii) implies i): If λ is basic the largest ∨ is at position
≤ n − 1, hence the largest ∧ bound in a cup is at position ≤ n. It gives the
smallest ∨ of [λ]∨. Hence the smallest ∨ of [λ]∨ is at a position ≥ 1 − n

which is equivalent to λ∨n ≥ 0.
ii) implies iii): If λ is basic, the 2n vertices in cups form the intervall

J := [−n + 1, n] of length 2n. If J∨ is the subset of vertices labelled by ∨,
the subset J \ J∨ is the subset of vertices labelled by ∧. The intervall J is
preserved by the reflection s 7→ 1 − s. If λ is basic, so is λ∗. We use the
following notation: If

λ1 = . . . = λs1 > λs1+1 = . . . = λs2 > λs2+1 = . . . = λsr > λsr+1 = 0

put δ1 = s1 and δi = si − si−1 and ∆i = λsi − λsi+1: Likewise for λ∗ with δ∗i
and ∆∗i . Then

δi = ∆∗i−r, ∆i = δ∗i−r.

Then the weight diagram of [λ∗] looks, starting from n and going to the left

. . .

δ∗3︷ ︸︸ ︷
∨ . . .∨

∆∗2︷ ︸︸ ︷
∧ . . .∧

δ∗2︷ ︸︸ ︷
∨ . . .∨

∆∗1︷ ︸︸ ︷
∧ . . .∧

δ∗1︷ ︸︸ ︷
∨ . . .∨∧ . . .∧

and the weight diagram of [λ] looks, starting from −n + 1 and going to the
right like

∨ . . . ∨
∆r=δ∗1︷ ︸︸ ︷
∧ . . .∧

δr=∆∗1︷ ︸︸ ︷
∨ . . .∨

∆r−1=δ∗2︷ ︸︸ ︷
∧ . . .∧

δr−1=∆∗2︷ ︸︸ ︷
∨ . . .∨ . . . .

The two weight diagrams are mirror images of each other and the rule for
the ∨’s in cups in one is the same as the rule for the ∧’s in the cups of
the other. Hence after the change (I,K) 7→ (I, I − K) and the reflection
s 7→ 1− s the two weight diagrams agree. iii) implies i): trivial. �
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Example 3. Duals in the R3-case. If a > b > 0, then [a, b, 0]∨ = [2, 2 −
b, 2 − a] = Ber2−a[a, a − b, 0]. If a ≥ 1 then [a, a, 0]∨ = [2, 1 − a, 1 − a] =

Ber1−a[a+ 1, 0, 0] = Ber1−aSa+1.

A better description. If L = L(λ) is an irreducible maximal atypical
representation in Rn, its weight λ is uniquely determined by its plot. Let
S1...S2...Sk denote the segments of this plot. Each segment Sν has even
cardinality 2r(Sν), and can be identified up to a translation with a unique
basic weight of rank r(Sν) = rµ and a partition in the sense of lemma 21.4.
For the rest of this section we denote the segment of rank r(Sν) attached
to the dual partition by S∗ν , hoping that this will not be confused with the
contravariant functor ∗. Using this notation, Tannaka duality maps the plot
S1..S2...Sk to the plot S∗k ...S

∗
2 ..S

∗
1 so that the distances di between Si and

Si+1 coincide with the distances between S∗i+1 and S∗i . This follows from
proposition 21.2 and determines the Tannaka dual L∨ of L up to a Berezin
twist.

The dual forest. If we identify the basic plots with rooted trees Si ↔ Ti,
we can describe a weight by a spaced forest

F = (d0, T1, d1, T2, . . . , dk−1, Tk)

where d0 = λn. We describe the dual in this language.

Grafting. Given a planar forest F = T1 . . . Tn of planar rooted trees, we
can introduce a new n-ary root and graft the trees Ti onto this root. This
new tree is called the grafting product ∨(T1 . . . Tn) of T1 . . . Tn. The grafting
product of the trees in a spaced forest is obtained by forgetting the distances
and simply taking the grafting product of the trees.

Example. Consider the forest of two rooted planar trees

• •

• • • •

• •

Grafting this planar forest gives the forest with the single tree
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•

• •

• • • •

• •
Mirror tree. If T is a planar rooted tree, then the mirror image T ∗

of T along the root axis is recursively defined as follows: Put (∨(∅))∗ =

∨(∅), ∅∗ = ∅ where ∅ is the empty tree and extend via

(∨(T1 . . . Tn))∗ = ∨(T ∗n . . . T ∗1 ).

Example. The mirror image of the grafted planar tree above is

•

••

••••

••
Lemma 21.5. The weight of the dual representation corresponds to the

spaced forest

F∨ = (d∗0, T ∗k , d∗1, T ∗k−1, d
∗
2, . . . , d

∗
k−1, T ∗1 )

where d∗i := dk−i for i = 1, . . . , k− 1 and d∗0 = −d0− d1− . . .− dk−1 and T ∗i
denotes the mirror image (along the root axis) of the planar tree Ti.

Proof. The claim about the distances d∗1, . . . , d∗k−1 follows from the de-
scription of the dual plots. We first prove the claim about d∗0. Now d∗0 =

(1− b) + n− 1 where b is the last point of the rightmost sector with rank rk
b = λ1 + (2rk − 1).

Hence d∗0 = −b+ n = −λ1 − 2rk + n+ 1. Now use that λ1 = (λn − n+ 1) +

2r1 + . . .+ 2rk−1 + d1 + . . .+ dk−1, hence

d∗0 = [−λn + n− 1− 2(r1 + . . .+ rk−1)− (d1 + . . .+ dk−1)]− 2rk + n+ 1

= −λn − (d1 + . . .+ dk−1) = −d0 − d1. . . − dk−1.

It remains to prove that if Si corresponds to Ti, then the dual plot S∗i corre-
sponds to the mirrored tree T ∗i . We induct on the rank of the sector. The
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case rk = 1 is clear. If [a, b] is a sector, then λ(a) = � and λ(b) = �. Ac-
cording to proposition 21.2 the dual plot is obtained by first exchanging �
and � and then reflecting s 7→ 1 − s. Hence the dual plot of S∗i is obtained
(ignoring distances) by keeping the outer labels � and � of the sector and
dualising the plot of the inner segment [a + 1, b − 1]. This corresponds to
keeping the root of the tree Ti and calculating the dual of the forest of the in-
ner trees obtained from Ti by removing the root of Ti. More precisely: The
tree to the dual plot S∗i is obtained by taking the grafting product of the in-
ner subtrees corresponding to the dual of the plot of the inner segment. The
interval [a+ 1, b− 1] is a segment consisting of sectors S̃1 . . . S̃l correspond-
ing to the trees T̃1 . . . T̃l. Dualising the inner segment yields by induction
the forest T̃ ∗l . . . T̃ ∗1 since the ranks of inner sectors are smaller than the rank
of Si. Hence the tree corresponding to S∗i is obtained by grafting the forest
T̃ ∗l . . . T̃ ∗1 . This is just the definition of the mirror image of Ti. �

Example. Consider the irreducible representation [11, 9, 9, 5, 3, 3, 3] in
R7. It has sector structure S1 = [−3, 4], S2 = [7, 10] and S3 = [11, 12]

with distances d0 = 3, d1 = 2 and d2 = 0. The associated spaced forest is

d0 = 3 • d1 = 2 • d2 = 0 •

• • •

•
The dual is the representation [1, 1, 0, 0,−4,−4,−5] with sectors (from left

to right) S∗3 = [−11,−10], S∗2 = [−9,−6] and S∗1 = [−3, 4] with associated
spaced forest

d∗0 = −5 • d∗1 = 0 • d∗2 = 2 •

• • •

•

22. COHOMOLOGY I

In corollary 20.5 we have seen that in the situation of the melting algo-
rithm one obtains surjective maps H i(p) : H i(A)→ H i(L) for all i ∈ Z. For
K = Ker(p : A→ L) we therefore get exact sequences

0→ H i(K)→ H i(A)→ H i(L)→ 0

for all integers i. Hence, if in addition H i(A) = 0 and H i(L) = 0 vanish
for all i 6= 0, then H i(K) = 0 holds for all i 6= 0. Then K/L ∼= A implies
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H i(A) = 0 for i 6= −1, 0. Suppose, the same conditions are satisfied for
A∨ as well. Then also H i(A∨) = 0 holds for i 6= −1, 0. Then, by duality
H i(A)∨ ∼= H−i(A∨), the cohomology modules H i(A) vanish for i 6= 0. This
proves

Proposition 22.1. For irreducible basic modules V = [λ1, ..., λn−1, 0] in
Rn the cohomology modules H i(V ) vanish for all i 6= 0.

Proof. We use induction with respect to the degree p = p(λ) =
∑

i λi,
where λi for i = 1, .., n denote the coefficients of the weight vector. By
induction assume the assertion holds for all irreducible basic modules of
degree < p. For V of degree p by the melting algorithm there exists an irre-
ducible basic module L of degree p− 1 and A with layer structure (L,A,L)

such that A = V ⊕A′, where A′ is a direct sum of irreducible basic modules
of degree < p. Since H i(L) = 0 for i 6= 0, H i(A) = 0 for i 6= 0 now fol-
lows from lemma 20.4. The same applies for the dual modules A∨ and L∨.
Indeed the dual module of a basic irreducible module is basic irreducible
again with the same degree < p − 1 (lemma 21.4) using

∑
i λi =

∑
i λ
∗
i .

Hence the remarks preceding proposition 22.1 imply H i(A) = 0 for i 6= 0.
Since V is a direct summand of A, this proves our assertion. �

23. COHOMOLOGY II

We calculate the Z-grading of DS(L) for maximal atypical irreducible L.
The case of general L is treated in section 24.

Proposition 23.1. For maximal atypical irreducible L(λ) in Rn with
weight λ, normalized so that λn = 0, suppose λ has sectors S1, .., Si, .., Sk
(from left to right). Then the constituents L(λi) of DS(L(λ)) for i = 1, ..., k

have sectors S1, .., ∂Si, ..Sk, and the cohomology of L(λ) can be expressed
in terms of the added distances δ1, ..., δk between these sectors as follows:

H•(L(λ)) =
⊕k

i=1 L(λi)〈−δi〉 .

Example. We know by the main theorem thatDS([6, 4, 4, 1]) = Π[3, 3, 0]⊕
Π[6, 4, 0]⊕Π[6, 4, 4]. The proposition above tells us the Z-grading using

DS(V ) =
⊕
`∈Z

Π`(H`(V )).

In this example d0 = 1, d1 = 2 and d2 = 0. The summand L(λi) is obtained
by differentiating the i-th sector in the plot associated to λ, hence L(λ1) =

[6, 4, 4], L(λ2) = [6, 4, 0] and L(λ3) = [3, 3, 0]. We obtain

H•([6, 4, 4, 1]) = [6, 4, 4]〈−1〉 ⊕ [6, 4, 0]〈−3〉 ⊕ [3, 3, 0]〈−3〉.
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Proof. In the special case where all distances vanish d1 = · · · = dk = 0,
i.e. in case where the plot of λ has only one segment, the assertion of the
proposition has been shown in proposition 22.1. We then prove the general
case of nonvanishing distances by induction with respect to (n and) the lexi-
cographic ordering used for algorithm I. This means: We prove proposition
23.1 recursively for Lup, thereby assuming that we already know the coho-
mology degrees of Ldownr , L and Laux (using the notations of algorithm I).
First recall the notations used for algorithm I:

L = (S1 · · ·Sj−1)← distance dj → (SjSj+1 · · ·Sk)← distance dk → ...

Lup = (S1 · · ·Sj−1)← dist. (dj + 1)→
∫

(Sj+1 · · ·Sk)← dist. (dk − 1)→ ...

for a sector Sj with r(Sj) = 1 supported at i ∈ Z. Recall A = (L,A,L) with

A = Lup ⊕
k⊕
r=1

Ldownr .

Furthermore DS(L) = ΠmauxLaux ⊕
⊕s

µ=1 ΠmµL̃µ for DS(A) =
⊕s

µ=1 Ãµ
and Ãµ = (L̃µ, Ãµ, L̃µ) such that the derivative d(A) of A is

d(A) = Ã+ 2(−1)i+n−1Laux

in K0(Rn). Obviously DS(Lup) has the summands
j−1⊕
ν=1

(S1 · · · ∂Sν · · ·Sj−1)...(dj−1 + 1)...S...(dk − 1)...Sk+1 · · · )⊕
ν>k

(S1 · · ·Sj−1)...(dj−1 + 1)...S...(dk − 1)...Sk+1 · · · ∂Sν · · · )

and

Laux = (S1 · · ·Sj−1)...(dj−1 + 2)...(Sj+1 · · ·Sk)...(dk)...Sk+1 · · · .

This immediately implies the next

Lemma 23.2. The following holds
(1) DS(Lup) ⊆ Laux ⊕DS(L)up.
(2) None of the summands of DS(Lup) different from Laux is contained

in DS(L).
(3) Laux is not a summand of

⊕
µ Ãµ.

Proof. The last assertion holds, since the constituents of
⊕

µ Ãµ are ob-
tained from L̃µ by moves. It can be checked that Laux can not be realized in
this way. �

The dj−1 ± 1 alternative. By the induction assumption H•(L) contains
Laux with multiplicity 1, and Laux appears in cohomology at the degree
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dj−1. To determine H i(Lup) ⊆ H i(A) we may use step 11) of the proof of
theorem 19.3. It easily implies by a small modification of the arguments
that

H i(A) =
⊕

mµ=−i
Ãµ⊕H i−1(L)/H i−1(

⊕
µ

L̃µ)⊕Kern(H i+1(L)→ H i+1(K)) .

Since H•(L)/(
⊕

µ L̃µ) ∼= Laux by lemma 20.1 and since

H i−1(L)/(
⊕
µ=1−i

L̃µ) ∼= Laux

for i− 1 = dj−1 by the induction assumption, we get

Kern(H•(L)→ H•(K)) = Laux ,

and this implies

Kern(H i+1(L)→ H i+1(K)) = Laux

for i + 1 = dj−1. In other words DS(A) = Ã + 2 · Laux and the two copies
of Laux occur in the two possible cohomology degrees

dj−1 ± 1 .

Continuation of the proof for proposition 23.1. By lemma 23.2 the coho-
mology degree of the constituents of H•(Lup) that appear in

Ãµ ⊆
⊕

mµ=−i
Ãµ

can be immediately read of from the degrees mµ, i.e. from the cohomol-
ogy degrees of L̃µ in H•(L). These degrees are known by the induction
assumption. This easily proves proposition 23.1 for all constituents L(λi)

of H•(Lup) that are not isomorphic to Laux. Indeed, according to our claim
the cohomological degrees for the constituents L(λi) 6∼= Laux of H•(Lup) are
given by

0, · · · , 0, dj−1 + 1, dj−1 + dk, · · · ,
and the summand Laux should occur in degree dj−1 + 1. The cohomology
of H•(L) on the other hand is concentrated in the degrees

0, · · · , 0, dj−1, dj−1 + dk, · · ·

with the summand Laux corresponding to degree dj−1. All summands 6∼=
Laux precisely match, so this proves proposition 23.1 for all constituents of
H•(Lup) except for Laux.

It remains to determine the cohomology degree of Laux ⊆ H•(Lup). As
already explained, the summand Laux occurs in degree dj−1− 1 or dj−1 + 1.
So to show that Laux occurs in H•(Lup) for degree dj−1 + 1, it now suffices
by the dj−1 ± 1 alternative to show that Laux occurs in Hν(

⊕
r L

down
r ) in the



98 TH. HEIDERSDORF, R. WEISSAUER

degree ν = dj−1 − 1. Indeed Laux appears in DS(Ldown) =
⊕

ν H
ν(Ldown)

for Ldown := Ldownj . This follows from the structure of the sectors of

Ldown =

∫
(S1 · · ·Sj−1) � ...(dj−1 − 1)...�i+1 Sj+1 · · ·Sk

and the induction assumption. It gives the degree dj−1 − 1, for dj−1 ≥ 1,
respectively in degree dj−1 − 1 = −1, for dj−1 = 0, for the summand Laux
in H•(Ldown). Hence

Laux ⊆ Hdj−1+1(Lup) ,

which completes the proof of proposition 23.1. �

24. COHOMOLOGY III

The cohomology of an i-atypical L can be calculated in the same way
using the normalised block equivalence φin of section 15. We call an irre-
ducible module L of atypicality i φ-basic if φin(L) is basic in Ri. These
will replace the basic modules in the proof of proposition 22.1. The unique
mixed tensor in a block of atypicality i replaces the trivial representation.

Proposition 24.1. For irreducible φ-basic modules V in Rn the coho-
mology modules H i(V ) vanish for all i 6= 0.

Proof. The remarks preceeding proposition 22.1 are valid. By lemma
14.4 the cohomology of the mixed tensor L(λ) is concentrated in one degree,
and by lemma 10.2 this degree is zero since λn = 0. Since φin(L(λ)) = 1,
we induct as in the proof of 22.1 on the sum p =

∑
i λi of the coefficients

of φin(L). The rest of the proof works verbatim. Note that the dual of a
φ-basic module is φ-basic again of the same degree using φin(L)∨ = φin(L∨)

of lemma 21.3 and lemma 21.4. �

We can now copy the proof of proposition 23.1 to obtain the next state-
ment. Here the added distances δi are the distances in the plot φ(λ) associ-
ated to λ in section 18.

Proposition 24.2. For irreducible L(λ) in Rn with weight λ, normalized
so that φin(L(λ)) = [λφ1 , . . . , λ

φ
i ] satisfies λφi = 0, suppose λ has sectors

S1, .., Sj , .., Sk (from left to right). Then the constituents L(λj) of DS(L(λ))

for j = 1, ..., k have sectors S1, .., ∂Sj , ..Sk, and the cohomology of L(λ) can
be expressed in terms of the added distances δ1, ..., δk between these sectors
as follows:

H•(L(λ)) =
⊕k

j=1 L(λj)〈−δj〉 .



COHOMOLOGICAL TENSOR FUNCTORS 99

25. THE FOREST FORMULA

Recall the functor DSn,0 : Tn → T0 = sveck with its decomposition
DSn,0(V ) =

⊕
`∈ZD

`
n,0(V )[−`] for objects V in Tn and objects D`

n,0(V ) in
sveck. For V ∈ Tn we define the Laurent polynomial

ω(V, t) =
∑
`∈Z

sdim(D`
n,0(V )) · t`

as the Hilbert polynomial of the graded module DS•n,0(V ) =
⊕

`∈ZD
`
n,0(V ).

Since sdim(W [−`]) = (−1)`sdim(W ) and V =
⊕
D`
n,0(V )[−`] holds, the

formula

sdim(V ) = ω(V,−1)

follows. For V = Berin

ω(Berin, t) = tni .

Indeed, H`(Berin) = 0 for ` 6= i and H`(Berin) = Berin−1 for ` = i im-
plies DS(Berin) = Berin−1[−i]. If we apply this formula n-times and con-
sider B0 = 1, we obtain DSn,0(Berin) = DSn(Berin) = 1[−ni] from the
fact that DSn,0(L) = DSn(L) holds for simple objects L. This implies
DSnin,0(Berin) = 1 and that DS`n,0(Berin) is zero otherwise.

Since DSn,0 is a tensor functor, ω(M ⊗ L, t) = ω(M, t)ω(L, t) holds.
Hence

ω(Berin ⊗ L, t) = tni · ω(L, t) .

Similar as in the proof of lemma 3.1 one shows

ω(V ∨, t) = ω(V, t−1) .

Let now L = L(λ) be a maximal atypical irreducible representation in
Rn. Associated to its plot λ we have the basic plot λbasic and the numbers
d0, . . . , dk−1. Furthermore, let S1S2 · · ·Sk be the sector structure of λbasic.
For the degrees ri = r(Si) we define the number

D(λ) =

k∑
i=1

ri
∑

0≤j<i
dj =

k∑
i=1

riδi ,

Recall δi =
∑i−1

ν=0 dν implies δ1 ≤ δ2 ≤ · · · ≤ δk and δi ∈ Zk. Consider the
vector D with coordinates δ1, . . . , δk. Together with λbasic the knowledge of
D determines λ. For simplicity, we express this by writing λ = D×λbasic in
the following argument. With this notation, our proposition 23.1 gives for
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DS(L) the following element in the Grothendieck group K0(Rn−1)⊗ k[t]

DS
(


δ1

.

δi−1

δi
δi+1

.

δk


×(S1 · · ·Sk)basic

)
=

k∑
i=1

tδi ·



δ1 − 1

.

δi−1 − 1

δi
δi+1 + 1

.

δk + 1


×(S1 · · · ∂Si · · ·Sk)basic

where formally (and without loss of information) we replace the shifts [−ν]

by tν . In the following, we refer to this formula as the key formula. Now
∂Si may introduce new sectors in (S1 · · · ∂Si · · ·Sk)basic. So if we want to
treat everything on an equal footing, we better count each sectors Si with
the multiplicity ri. This amounts to consider instead of the vectorD the new
refined vector δ in Zn with the coordinates

(δ1, . . . , δ1︸ ︷︷ ︸
r1

, . . . , δk, . . . , δk︸ ︷︷ ︸
rk

).

Then the number D(λ) defined above is just the sum of the coordinates of
this vector. With this new vector we have an analogous formula expressing
DS as above, where for the i-th summand on the right side one of the entries
δi of δ has to be removed to obtain a vector in Zn−1. The right side is
now of the correct form to enable the application of the formula for DS
to the right side again. Inductively, after n steps this gives a complicated
expression with at most n! summands. The number of summands depends
only on λbasic. Since the additional monomial term in t obtained from each
derivative is of the form tδν±sν , for some shift factors sν not depending on
δ, and since in each summand all coordinate entries of δ will be finitely
successively deleted after n times applying DS, this vector disappears and
each of these summands has the form

t
∑k
i=1

riδi · P (t)× ∅

for a certain Laurent polynomials P (t) that depends on the specific sum-
mand and on λbasic, but that does not depend on the coefficients δ1, ..., δk. If
we compare with the case δ1 = ...=δk=0, we therefore obtain the following
translation formula:

ω(L(λ), t) = tD(λ) · ω(L(λbasic), t) .

This being said, we use that the basic plots of rank n are in 1-1 correspon-
dence with planar forests F with n nodes x ∈ F as in sections 16 21 and
[Wei10]. For a planar forest, let #F denote the number of its nodes. We
visual each of the trees in a plain forest top down, i.e. with their root on the
top of the tree. Then, for each node x ∈ F let F(x) denote the subtree of
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the tree containing x with all nodes removed that are not below the node x.
In this way the node x becomes the root of the tree F(x) by definition. For
a forest F we recursively define the quantum forest factorials

[F ]t! =
∏
x∈F

[#F(x)]t ∈ Z[t]

using the following abbreviations: For the number m = #F(x) of nodes in
F(x) we define the quantum numbers

[m]t :=
tm − t−m

t− t−1
.

Clearly [m]t = (−1)m−1[m]−t = [m]t−1 . Obviously the tree factorial T !

of section 16 equals [T ]1!. Example: For the forest F that contains only
one linear tree, the forest factorial [F ]t! specializes to the quantum factorial
[n]t! =

∏n
m=1[m]t. For a planar forest F , given as the union of trees Ti for

i = 1, . . . , k with ri nodes respectively, one has [F ]t! =
∏k
i=1[Ti]t! and hence

(∗) [#F ]t!

[F ]t!
=

[
∑

i ri]t!

[r1]t! · · · [rk]t!
·
k∏
i=1

[#Ti]t!
[Ti]t!

.

Observe, for a tree T the value [#T ]t!
[T ]t!

does not change under grafting, i.e.
replacing T by a new tree with #T + 1 nodes by putting a new root on top.
Similar [#F ]t!

[F ]t!
does not change under the grafting of the planar forest F , that

replaces F by a forest with a single tree with #T +1 nodes obtain by putting
a new root on top of all trees connected to the old roots of the trees of F .

Lemma 25.1. For irreducible maximal atypical representations L = L(λ)

in Rn we have the forest formula

ω(L, t) = tD(λ) · [n]t!
[λbasic]t!

where λbasic is viewed as the planar forest associated to L.

Proof. From the translation formula we may assume λ = λbasic. Let us
first consider the simple case of basic representations L, where all sectors
Si for i = 1, .., k are intervals Ii = [ai, ai + 2ri − 1] where the support of the
plot Si is [ai, ..., ai+ri−1]. The corresponding ω(L, t) then only depends on
the ranks r1, ..., rk of the sectors S1, ..., Sk, hence will be denoted ωr1,...,rk(t)
in the following. From the key formula then, for general basic λ with sector
structure S1 · · ·Sk and ri = r(Si), similarly to the translation formula we
easily obtain the following generalized Leibniz formula

ω(L(λ), t) = ωr1,...,rk(t) ·
k∏
i=1

ω(L(Si), t) ,
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where L(Si) denotes the irreducible basic maximal atypical representation
in Rri whose plot is Si (up to a translation on the number line). Now each
of these Si has a unique sector. For basic plots S with a unique sector (like
the Si) the key formula obviously implies the following grafting formula

ω(L(Si), t) = ω(L(∂S), t) ,

where L(∂S) denotes the unique maximal atypical basic representation in
Rr(S)−1 whose plot is ∂S. So the forest attached to L(S) is obtained by
grafting the forest of ∂S.

It is clear that inductively the translation formula, the generalized Leibniz
formula and the grafting formula determine the Laurent polynomials ω(L, t)

for irreducible maximal atypical L ∈ Rn uniquely. Hence for the proof it
suffices that the expression on the right side of the identity stated in lemma
25.1 satisfies the analogous formulas and that it holds for n = 1. Indeed,
our assertion is obvious for n = 1. The translation formula and the grafting
formula for the right side are also obvious. To check the generalized Leibniz
formula, by the formula (*) from above it suffices to prove

ωr1,...,rk(t) =
[
∑

i ri]t!∏k
i=1[ri]t!

.

To this end it is helpful that for a = r1 + · · · + ri and b = ri+1 + · · · + rk,
by the key formula, also the following version of the generalized Leibniz
formula holds

ωr1,...,rk(t) = ωa,b(t)ωr1,...,ri(t)ωri+1,...,rk(t) .

So it suffices to verify that ωa,b(t)[a]t![b]t! = [a+ b]t!, which finally is proved
by induction on n = a+ b. For this notice that the key formula immediately
implies the following generalized Pascal rule

ωa,b(t) = tb · ωa−1,b(t) + t−a · ωa,b−1(t)

for the generalized binomial coefficients ωa,b(t). Indeed, the derivative of
the two sectors S1S2 give ∂S1S2 with d0 = 0, d1 = 1 respectively S1∂S2

with d0 = −1, d1 = 1. Hence D(∂S1S2) = 0 · (a − 1) + 1 · b = b and
D(S1∂S2) = −a + 0 · (b− 1) = −a. Hence using the induction assumption,
we already know ωa−1,b(t)[a−1]t![b]t! = [a+b−1]t! and ωa,b−1(t)[a]t![b−1]t! =

[a + b − 1]t!. Hence the proof of the induction step finally amounts for the
quantum numbers [m]t to the following generalized additivity

[a+ b]t = tb · [a]t + t−a · [b]t

that is easily verified. This completes the proof. �



COHOMOLOGICAL TENSOR FUNCTORS 103

Since [n]t! and [λbasic]t! are products of certain Laurent polynomials [m]t
for integers m, the forest formula implies ω(L,−t) = ± ω(L, t). The for-
est formula also gives ω(L, 1) > 0. Since ω(L,−1) = sdim(L), hence
ω(L,−t) = sign(sdim(L)) · ω(L, t). Recall that for irreducible L in Rn
we defined a sign ε(L) and that the sign of sdim(L) is ε(L), as shown in
section 16 and also in [Wei10]. Finally, the forest formula also implies
ω(L, t−1)/ω(L, t) = t−2D(λ) for L = L(λ). Hence we obtain

Lemma 25.2. For irreducible (maximal atypical) L = L(λ) in Rn one
has the formulas ω(L∨, t) = ω(L, t−1) = t−2D(λ)ω(L, t) and

ω(L,−t) = ε(L) · ω(L, t) .

Example. For Sn−1+d in Rn and for integers d ≥ 0

ω(Sn−1+d, t) = td−n+1 + td−n+3 + · · ·+ td+n−1 = td · ω(Sn−1, t) .

Lemma 25.3. For irreducible max. atypical representations L = L(λ) in
Rn the Laurent polynomial ω(L, t) has degree p(λ) =

∑n
i=1 λi in the sense

that
ω(L, t) = tp(λ) +

∑
`<p(λ)

a` · t` .

Proof. This follows from the key formula. Indeed its i-th summand gives
rise to shifts by δi+1 + 1, ..., δk + 1. To determine the highest cohomol-
ogy degree of L(λ) one has to look for the maximal contributions from
all these shifts. Each time we apply DS, the maximal contribution is ob-
tained from the first summand i = 1. Hence the highest t-power arises from
the first summands of the key formula each times we apply DS (n-times),
in other words by applying the derivative ∂ each time to the leftmost sec-
tor. In particular the highest t-power of ω(L(λ), t) is tδ1 times the highest
t-power of ω(L, t) for the representation L ∈ Tn−1 associated to the plot
(∂S1)S2 · · ·Sk with the new vector δ = (δ1, ..., δ1, δ2 + 1, · · · , δk + 1) with
one copy of δ1 deleted. Now it is not hard to see, by unraveling the weight
associated to this spaced forest, that the associated representation L is the
highest weight module L(λ) in the sense of Lemma 10.2. Therefore, the
highest t-power of ω(L, t) is tλn times the highest t-power of ω(L, t). In
other words degt(ω(L, t)) = λn + degt(ω(L, t)). By induction on n hence
degt(ω(L, t)) = λn + p(λ) = p(λ). �

Therefore the forest formula implies

Corollary 25.4. For irreducible maximal atypical representations L =

L(λ) in Rn one has the formula D(λ) = p(λ)− p(λbasic).

By lemma 25.3 and 25.2 furthermore
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Corollary 25.5. For irreducible maximal atypical representations L =

L(λ) in Rn

ω(L, t) = tp(λ) +
∑

q(λ)<`<p(λ)

a` · t` + tq(λ)

holds for p(λ)− q(λ) = p(λ) + p(λ∨) = 2 · p(λbasic).

Proof. From the forest formula and lemma 25.2 we obtain

q(λ) = D(λ) + q(λbasic) = D(λ)− p(λbasic) .

Hence p(λ) − q(λ) = 2p(λbasic). Since ω(L∨, t) = ω(L, t−1), we obtain
p(λ∨) = −q(λ) = −D(λ) + p(λbasic). Combined with corollary 25.4 this last
formula gives p(λ) + p(λ∨) = 2p(λbasic). �

26. I-MODULE STRUCTURE ON THE COHOMOLOGY H•DSn

In this section we show that the cohomology of the operator DSn,0 is a
graded module under the invariant algebra I = Λ•(p−1)H defined below. As
an application we compute the cohomology and the Hilbert polynomial of
a maximal atypical Kac module V (λ) for the operator DSn,0. We also show
that the projection of V (λ) to L(λ) induces a map on the DSn,0-cohomology
which vanishes except in the top degree p(λ). Note that it does not make
sense to consider the Hilbert polynomial ω(V, t) for V = V (λ) and the Dirac
operator D since any Kac module is in the kernel of HD.

The tensor functor associated to an element x in X = {x ∈ g1 | [x, x] = 0}
only depends by [DS05] on the G0-orbit on X. We therefore work in this
section with the operator DSn associated to the action of the element

D =

(
0 idn
0 0

)
which is clearly in the same G0-orbit as our usual choice of x ∈ g1 with
1’s in the anti-diagonal. It defines a (graded) tensor functor DSn :Tn → T0

which is isomorphic to DSn,0.

Notations and conventions.

• Let H denote Gl(n) diagonally embedded into G0 =Gl(n) × Gl(n)

via g 7→diag(g, g) ∈ G0. Then Lie(H) ∼= gl(n).
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• We consider the subalgebra p ⊂ g with grading p = p− ⊕ p0 ⊕ p+

p− = {
(

0 0

x 0

)
| x ∈ gl(n)}

p0 = {
(
x 0

0 x

)
| x ∈ gl(n)} = Lie(H)

p+ = {
(

0 idn
0 0

)
}.

• Recall that the restriction of the Kac module V (λ) to p is given by

V (λ)|p = Λ•(p−)⊗ L0(λ)

where L0(λ) is the irreducible g0-module L0(λ) trivially extended to
the parabolic subalgebra of upper triangular block matrices.
• We write in this section ρ∨ � ρ for the irreducible representation
L0(λ) of g0 which is given by the external tensor product of the
irreducible gl(n)-representation ρ∨ of weight (λ1, . . . , λn) with its
dual of weight (−λn, . . . ,−λ1). If viewed as a representation of H ⊂
G0 this becomes ρ∨⊗ρ ∼= End(ρ). In this notation V (λ) = V (ρ∨�ρ)

and L(λ) = L(ρ∨ � ρ).
• The tensor product ρ∨ � ρ contains the trivial representation with

multiplicity 1. We call a vector in this subspace an H-spherical
vector. In this sense L0(λ) has an H-spherical vector if and only if
λ is maximal atypical.

The action of the generator D of p+ on p-modules induces the operator
denoted DSn in the following. In particular D acts on p and the ideal p−⊕p0

via the adjoint representation. Notice Lie(H) acts on p0
∼= Lie(H) by the

adjoint representation of Lie(H) and on p− by the adjoint action of p such
that the map (

0 0

x 0

)
7→
(
x 0

0 x

)
is a Lie(H)-linear isomorphism p− ∼= p0 inducing a canonical identification
Λ•(p−) ∼= Λ•(p0) of H-modules.

The universal enveloping algebra U(p) of p contains the universal envelop-
ing algebras U(p−⊕p0) and U(p−) as subalgebras. For θ ∈ Λ•(p−) ∼= U(p−)

the supercommutator [D, θ] is contained in U(p− ⊕ p0). For a basis xij of
Lie(H) it has the form [D, θ] = θ0 +θ1 with θ1 =

∑n
i,j=1 θij ·xij for uniquely

defined elements θ0, θij ∈ Λ•(p−) ∼= U(p−).

We now consider V (λ) as a p-module

V (ρ∨ � ρ)|p = Λ•(p−)⊗ End(ρ).
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Lemma 26.1. The operator DSn induces the Lie algebra homology dif-
ferential δ on the Chevalley-Eilenberg complex Λ•(p−)⊗ End(ρ).

We shortly recall the definition. For a Lie algebra g and a g-module V we
consider the complex with p-th entry Vp(g, V ) = Λp(g)⊗ V and differential
δ : Vp(g, V )→ Vp−1(g, V ) given for p ≥ 2 by δ(x1∧. . .∧xp⊗v) = θ0⊗v+θ1(v)

for x1, ..., xp ∈ g where

θ0 ⊗ v =
(∑
µ<ν

(−1)µ+ν [xµ, xν ]⊗ x1 ∧ . . . ∧ x̂µ ∧ . . . ∧ x̂ν ∧ . . . ∧ xp
)
⊗ v

θ1(v) =

p∑
ν=1

(
(−1)ν+1x1 ∧ . . . ∧ x̂ν ∧ . . . ∧ xp

)
⊗ xν(v) .

Proof. D acts on an element x1∧. . .∧xr⊗ϕ in Λ•(p−)⊗End(ρ) for x1, ..., xr ∈
p− and ϕ ∈ End(ρ) as

D(x1 ∧ . . . ∧ xr ⊗ ϕ)

=
∑
±x1 ∧ . . .D(xi) ∧ . . . xr ⊗ ϕ±

∑
x1 ∧ . . . ∧ xr ⊗ D(ϕ)

with D(xi) ∈ p0. The second sum vanishes since D(ϕ) = 0 for all ϕ ∈
End(ρ) by definition of the Kac module. We now evaluate the first sum. D
acts on an element in p−1 by the supercommutator[(

0 idn
0 0

)
,

(
0 0

x 0

)]
=

(
x 0

0 x

)
∈ p0.

Therefore D acts on an element in V (λ) as

D(x1 ∧ . . . ∧ xr ⊗ ϕ)

= [D, x1]x2 ∧ . . . ∧ xr ⊗ ϕ− x1 ∧ [D, x2]x3 ∧ . . . ∧ xr ⊗ ϕ . . .

+ (−1)r+1x1 ∧ . . . [D, xr]⊗ ϕ

=

(
x1 0

0 x1

)
(x2 ∧ . . . ∧ xr ⊗ ϕ)− x1 ∧

(
x2 0

0 x2

)
(x3 ∧ . . . ∧ xr ⊗ ϕ) + . . .

+ (−1)r+1x1 ∧ . . . ∧ xr−1 ⊗
(
xr 0

0 xr

)
(ϕ)

where the derivations [D, xν ] ∈ p0 act on all terms to the right. The θ1-term
arises from the action of [D, xν ] on the last term ϕ to the right, the remaining
terms lead to a sum with the

∑
µ<ν-condition defining the θ0-term. �

Viewing θ := x1 ∧ · · · ∧ xr as an element in the universal enveloping al-
gebra U(p−) of p−, the super commutator [D, θ] in the universal enveloping
algebra U(p) of p is [D, θ] = θ0 +θ1 with θ1 in the universal enveloping alge-
bra U(p−⊕p0) of p−⊕p0 and θ0 in the universal enveloping algebra U(p−) of
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p− as defined above, but viewed as element in the universal enveloping al-
gebra of p. Furthermore θ1 annihilates H-invariant vectors in any p-module.
Stated in this form, the assertion obviously holds for arbitrary elements θ in
the universal enveloping algebra of p−.

H•(V (λ)) and the theorem of Hopf. Lemma 26.1 identifies H•DSn(V (λ))

with the Lie algebra homology ring H•(p, End(ρ)). We recall some facts
about Lie algebra (co)homology. Note that H•(g) = H•(g).

Let g be a reductive Lie algebra and Λ•(g)g the space of invariants under the
adjoint action of g. It has the structure of a graded super Hopf algebra. Let
P (g) denote the space of primitive elements, i.e.

P (g) = {x ∈ Λ•(g)g | ∆(x) = x⊗ 1 + 1⊗ x}

where ∆ denotes the comultiplication. Define a grading on P (g) by requir-
ing that the inclusion P (g)→ Λ•(P (g)) preserves degrees.

Theorem 26.2. [Mei13, Theorem 10.2, Corollary 10.2, Corollary 10.3]
(Hopf-Koszul-Samelson)

(1) The inclusion of P (g) in Λ•(g)g extends to an isomorphism of graded
super Hopf algebras Λ•(P (g)) ∼= Λ•(g)g.

(2) There is an isomorphism H•(g) ∼= Λ•(P (g)) of graded super Hopf
algebras, i.e. the cohomology ring is an exterior algebra over the
primitive elements. In particular the elements in Λ•(P (g)) are closed.

(3) The space of primitive elements has dimension rank(g). For gl(n)

the basis elements f1, f3, .., f2n−1 ∈ P (g) have degree 1, 3, .., 2n− 1.

We now apply this theorem for the Lie algebra g ofH and theH-invariant
ring I in the universal enveloping algebra of p− using the following iden-
tifications I ∼= Λ•(p−)H ∼= Λ•(p0)H ∼= Λ•(g)g ∼= V (1)H for the invariant
ring

I := U(p−)H .

From theorem 26.2 we obtain the following corollary.

Corollary 26.3. The cohomologyH•DSn(V (1)) is isomorphic to I ∼= V (1)H

and I has the structure of a supercommutative polynomial ring C{f1, .., f2n−1}
generated by elements fν in the degrees 1− 2ν for ν = 1, .., n. In particular

ωDSn(t) =

n∏
ν=1

(1 + t1−2ν) .

Lemma 26.4. For any p-module V , the cohomology group H•DSn(V H) is
a graded I-module.

Proof. By theorem 26.2 we have D(v) = θ0(v) + θ1(v) = 0 for every
element v ∈ V (1)H . Since θ1(v) = 0 holds for H-invariant vectors, we get
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θ0(v) = 0 and hence θ0 = 0 holds in U(p−). This implies [D, θ] = θ1 for all
θ ∈ U(p−)H ∼= Λ•(p−)H = I. For any P ∈ I, hence [D, P ] = P1 ∈ U(p) anni-
hilates H-invariant vectors. For any finite dimensional algebraic p-module
V , V in particular is an U(p−)-module and the subspace V H obviously is an
I-module. Since D commutes with H, we obtain a linear map D : V H →
V H . For P ∈ I and v ∈ V H the formulas D(Pv) = [D, P ]v + PD(v) and
[D, P ] = P1 and P1v = 0 imply D(Pv) = PD(v) for all v ∈ V H . Hence
the subspace of D-coboundaries resp. of D-closed elements in V H are both
I-modules. �

Lemma 26.5. For finite-dimensional gl(n|n)-modules M the following
holds: H•DSn(M) ∼= H•DSn(MH).

Proof. H commutes with D and operates therefore on the cohomology
H•DSn(M). Since H is reductive, a finite-dimensional representation of H is
trivial if and only if its restriction to a Cartan subgroup is trivial. We there-
fore show that the diagonal torus T ⊂ H acts trivially on the cohomology.
By the Leray spectral sequence

DSn,n−1 ◦DSn−1,n−2 ◦ . . . ◦DS1,0 =⇒ DSn,0 = DSn.

By section 5 DSn,n−1 is invariant under

Hn,n−1 =


0

. . .

0

1

 ,

DSn−1,n−2 is invariant under

Hn−1,n−2 =


0

. . .

1

0


and so on. Hence Hν

DSn
(M) has a filtration which is respected by T such

that T acts trivially on the graded pieces. Since T acts in a semisimple way,
this implies that the operation of T , and therefore of H, is trivial. �

Proposition 26.6. For M ∈ Rn the cohomology H•DSn(M) is a graded
I-module for the graded polynomial ring I. For morphisms f : M →M ′ in
Rn the induced map H•DSn(M)→ H•DSn(M ′) is graded I-linear.

Proof. This follows from the lemmas 26.4 and 26.5. �

Lemma 26.7. Let ρ be an irreducible representation of Gl(n). Then the
map

ϕ : V (1)|p → V (ρ∨ � ρ)|p , v ⊗ 1 7→ v ⊗ idρ
is a p-linear inclusion.
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Proof. We have xν(ϕ) = 0 for all ν if ϕ ∈ EndH(ρ) = Cidρ. �

Remark. Every maximal atypical g-module V , when restricted to g0, has
the form V |g0 =

⊕
ρν � ρµ with deg(ρν) = deg(ρµ). This degree makes V

into a graded p-module. For V (1) we obtain the degree defined previously.
For V (ρ∨ � ρ), idρ has degree deg(ρ). Therefore ϕ shifts the degrees by
deg(ρ). The degree deg(ρ) coincides with p(λ) for ρ with highest weight
λ = (λ1, . . . , λn).

Lemma 26.8. The induced morphism

H•DSn(V (1))
H•DSn (ϕ)

// H
•+deg(ρ)
DSn

(V (ρ∨ � ρ))

is a graded isomorphism on the cohomology. Hence H•+deg(ρ)
DSn

(V (ρ∨ � ρ))

is the free I-module of rank one generated by the top cohomology.

Proof. As a p-module

V (ρ∨ � ρ)|p ∼= ϕ(V (1))⊕ (Λ•(p−)⊗ End0(ρ))

where
End0(ρ) = {φ ∈ End(ρ) | Tr(φ) = 0}.

Since D ∈ p, we obtain

H•DSn(V (ρ∨ � ρ)) = H•DSn(ϕ(V (1))) ⊕ H•DSn(Λ•(p−)⊗ End0(ρ)).

By [HS53] the Lie algebra cohomology for reductive H with coefficients in
a representation W is trivial except for the trivial representation

H•(Lie(H),W ) ∼= H•(Lie(H),1)⊗WH .

Since the Lie algebra cohomology is dual to the homology, this shows

H•DSn(Λ•(p−)⊗ End0(ρ)) = 0.

Since δ = adD commutes with ϕ, we get

H•DSn(V (1))
H•DSn (ϕ)

∼= // H•DSn(Λ•(p−)⊗ idρ)

up to the degree shift with deg(ρ). �

Corollary 26.9. For the Hilbert polynomial of V (λ) relative to D we
obtain

ωDSn(V (λ), t) = tp(λ) · ωDSn(V (1), t) = tp(λ) ·
n∏
ν=1

(1 + t1−2ν).

Theorem 26.10. Let L(λ) be an irreducible and maximal atypical rep-
resentation and pr : V (λ) → L(λ) be a projection onto the top. Then the
induced homomorphism

Hν
DSn(pr) : Hν

DSn(V (λ))→ Hν
DSn(L(λ))



110 TH. HEIDERSDORF, R. WEISSAUER

is zero in degrees ν < p(λ) and an isomorphism for ν = p(λ).

Proof. As a graded I-moduleHν
DSn

(V (ρ∨�ρ)) is the free I-module gener-
ated by the cohomology in the top degree. To prove our claim it suffices that
the primitive elements f1, f3, . . . , f2n−1 ∈ I act trivially onHν

DSn
(L(ρ∨�ρ)).

This follows from the discussion in section 25, lemma 25.2, which shows
for ν = 1, . . . , n

H
deg(ρ)−2ν+1
DSn

(L(ρ∨ � ρ)) = 0 .

�

27. PRIMITIVE ELEMENTS OF H•DSn(V (1))

We will now describe the primitive elements of H•DSn(V (1)) in terms of
the representation theory of the superlinear group Gl(n|n). The radical fil-
tration on V (1) defines a decreasing filtration Fi of V (1). The H-invariants
FHi coincide with the powers (I+)i of the augmentation ideal I+ of the in-
variant ring I = V (1)H . In this way monomials of degree i in the primitive
generators f1, ..., f2n−1 can be identified with the generators of the cohomol-
ogy H•(FHi /FHi+1).

The Murnagan-Nakayama rule. Let λ = (λ1, ..., λr) with λ1 ≥ λ2 ≥ · · · ≥ λr
be a partion of degree n = deg(λ). For partitions ν and µ of m and n −m
let cλµν denote the Littlewood-Richardson coefficient. Assume that ν is a
hook, i.e a partition of type ν1 = r, ν2 = · · · = νm−r+1 = 1 and νi = 0 for
i > m− r+ 1. Recall that a hook is a special case of a rim hook (also called
skew hook). We say ν is a symmetric hook if m = 2r − 1. According to
[Sa01, Section 4.10] we have

Proposition 27.1. Suppose ν is a hook. Then cλµν = 0 unless the Young
diagram of µ is contained in the Young diagram of λ and the complement
λ/µ is a union of k edgewise connected rim hooks. If this is the case, then

cλµν =

(
k − 1

c− r

)
where r = ν1 and c is the number of rows spread by the rim hooks contained
in λ/µ.

We remark that in [Sa01] c denotes the number of columns instead of
rows, since Young diagrams in [Sa01] are written top down instead of being
written from left to right, as with our conventions.

Corollary 27.2. Suppose λ and ν are symmetric hooks. Then cλµν = 0

unless µ=ν or ν=0.

Proof. Suppose cλµν 6= 0. By the proposition the edgewise connected
components of λ/µ are rim hooks, hence #(λ/µ) ≤ 2. Since deg(ν) is
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odd for symmetric hooks and #(λ/µ) = deg(ν), we may assume without
restriction of generality that #(λ/µ) = 1. But this gives a contradiction
since deg(λ)−deg(µ) = 1 would be the difference of two odd numbers. �

Let ρ∨ denote the dual representation of ρ. Suppose λ is a partition of n and
λ∗ is the dual partition of n, then define (ρλ)∗ := ρλ∗ for the representations
ρ = ρλ of GL(n) with highest weight λ.

Corollary 27.3. Suppose that ν is a symmetric hook of degree 2r−1 and
suppose k = 1 (in the notation of proposition 27.1). Suppose the rim hook
λ/µ reaches from (i, λi) to (j, λj) where i > j. Then cλµν = 0 hold unless
λi − λj = i− j=r.

Proof. Since k = 1,
(
k−1
c−r
)
6= 0 if and only if λi − λj = c = r. Since ν

is a rim hook, we have 2r − 1 = deg(ν) = (λi − λj) + (j − i) − 1. Hence
λi − λj = r implies j − i = r. �

The Lie superalgebra gl(n|n) and primitive elements of gl(n). The following
proposition is a well-known consequence of the dual Cauchy identity.

Proposition 27.4. [BSch17, Theorem B.17] The space of matricesMnn(k)

is a Gl(n, k) × Gl(n, k)-module in a natural way by left and right multipli-
cation, hence also the Graßmann algebra Λ := Λ•(Mn(k)). As a represen-
tation of Gl(n, k)×Gl(n, k) we have

Λ•(Mnn(k)) ∼=
⊕
ρ

ρ∨ � ρ∗

where ρ = ρλ runs over all partitions in

P (n, n) = {λ ∈ Zn | n ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0} .

Warning: The degree deg(ρ∨) is the the negative of the degree in the Graß-
mann algebra Λ!

Corollary 27.5. Let H = GL(n, k) be embedded diagonally. Then

I := Λ•(Mnn(k))H ∼=
⊕
ρ

(ρ∨ � ρ∗)H ,

and (ρ∨ � ρ∗)H 6= 0 if and only if ρ = ρλ for a symmetric Young diagram
λ = λ∗. There exist 2n symmetric Young diagrams with λ = (λ1, ..., λn) and
λ1 ≤ n.

The space I is an algebra with respect to the wedge product. The subspace
I+ ⊆ I of elements of degree ≥ 1 is an ideal (the augmentation ideal).

Proposition 27.6. [Mei13, Proposition 10.11] I+ decomposes as

I+ = P (H)⊕ (I+)2 .
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Corollary 27.7. With summation over all ρ=ρλ for symmetric hook dia-
grams λ of degrees deg(λ)=1, 3, 5, ...., 2n−1 the space of primitive elements
is

P (H) =
⊕
ρ

(ρ∨ � ρ∗)H .

Proof. This follows from the fact that for hook diagrams λ the space ρλ
cannot be a constituent of ρµ ⊗ ρν for µ = µ∗ and ν = ν∗ where (ρ∨µ � ρ∗µ)H

and (ρ∨ν � ρ∗ν)H are constituents of I+. Hence (ρ∨λ � ρ∗λ) cannot be contained
in (I+)2. �

The index. The selftransposed weights λ(i) = (i, .., i, 0, .., 0) for i = 0, .., n in
P (n, n) are called the basic selftransposed weights. The index ind(λ) of a
selftransposed λ in P (n, n) is the maximal index i of a basic selftransposed
λi whose Young diagram is contained in the Young diagram of λ. The index
of λ is the unique i between 1 and n such that λi ≥ i and λi+1 ≤ i. We denote
by Pi(n, n) the set of all weights in P (n, n) with index i.

Proposition 27.8. Using that Λ ∼= V (1), the canonical filtration defined
by the radical filtration of V (1) in the category of gl(n|n)-modules gives a
filtration Fi on Λ such that

Fi =
⊕
ρ

(ρ∨ � ρ∗)

for all ρ = ρλ running over all partitions λ containing the partition (ii) of
degree i2.

Before the proof we recall that V (1) has a decreasing filtration (the rad-
ical filtration) of Gl(n|n)-subrepresentations with n + 1 irreducible graded
pieces Li such that L0 = k is the maximal irreducible quotient representa-
tion. The highest weights of the Li can be computed from [BS11, Theorem
5.2] to be the duals

λ∨(i) = (0, · · · , 0,−i, ...,−i) , for i = 0, ..., n

of the basic selftransposed weights λi in P (n, n).

Proof. We need to show that the representation Li, considered as a repre-
sentation of G ⊂ Gl(n|n), decomposes into a direct sum over the duals of
all irreducible representations ρ(λ) � ρ(λ∗) for which

λ ∈ Pi(n, n) .

Consider the decomposition of L∨i under G = Gl(n) × Gl(n). Let λ =

(λ1, .., λn) be a corresponding highest weight of G in Li. We then claim
ind(λ) = i. Obviously

λ ≥ λ(i) = (i, ..., i, 0, ..., 0) .
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On the other hand we have

V (1)∨ ∼= (detn � detn)⊗ V (1)

since the dual of a Kac module is a Kac module. Hence, since the order
of the socle layers in the dual Kac module is reversed and since the Loewy
length of V (1) is n+ 1 [BS11, Theorem 5.2], this implies

L∨i
∼= (detn � detn)⊗ Ln−i .

This in turn implies

λ ≤ (n, ..., n) + λ∨(n−i) = (n, ..., n, i, ..., i)

with i copies of n and n − i copies of i. Both estimates together force
λi ≥ i and λi+1 ≤ i, hence ind(λ) = i. This proves our claim. Since any
λ in P (n, n) appears in one of the L∨i , L∨i then consists precisely of the
G-constituents ρ(λ) � ρ(λ∗) for λ in Pi(n, n). �

Corollary 27.9. FHi = (I+)i, hence we can identify monomials of de-
gree i in the primitive generators f1, ..., f2n−1 with the generators of the
cohomology H•(FHi /FHi+1).

We introduce the notation Primi ⊆ I+ for the space that is spanned by
monomials in the primitive elements f2ν−1 with exactly i factors. In this
notation Prim1 = P (H).

Proof. By corollary 27.7 Prim1 is a complement to FH2 . We now show
Primi ∩ FHi+1 = 0 by induction on i. Using the induction assumption and
Primi = Primi−1 · Prim1, the space Primi only gives rise to Young di-
agrams λ that occur in the tensor product of some µ ∈ Pj(n, n) for j < i

and a symmetric hook ν ∈ P1(n, n). By proposition 27.1, µ is obtained
from λ by removing a (possibly disconnected) rim hook. If λ ∈ Pk(n, n),
this implies j = k or j = k − 1 and hence k ≤ j + 1 ≤ i. This proves
Primi ∩ FHi+1 = 0 since all selftransposed weights λ in FHi+1 are contained
in Pk(n, n) for k ≥ i+ 1.

This implies Primν ∩ FHj = 0 for ν < j. Since I+ is the direct sum of⊕i
ν=0 Primν and (I+)i+1, this implies that FHi+1 is in the complement of⊕i
ν=0 Primν and therefore FHi+1 ⊆ (I+)i+1. There are

(
n
i

)
selftransposed

weights λ ∈ Pi(n, n) and all of them occur in V (1) with multiplicity one.
On the other hand, the space Primi ⊆ I+ that is spanned by monomials
in the primitive elements f2ν−1 with exactly i factors also has dimension(
n
i

)
. Since the dimensions agree, this implies (I+)i+1 = FHi+1 and Primi is

therefore represented by (Fi/Fi+1)H ∼= H•DSn(Fi/Fi+1). �
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28. KAC MODULE OF 1

Overview. We now study the effect of DS on indecomposable modules
in the remaining sections 28 - 31. The easiest examples are perhaps the
extensions of two irreducible modules, and we focus here on the case of
extensions of the trivial representation 1 by another irreducible module.
Our main result in these sections is corollary 31.5, saying that a represen-
tation Z, such that the projection onto its cosocle 1 induces a surjection
ω : ω(Z) → ω(1), is equal to the trivial representation. Such a represen-
tation Z contains extensions of the trivial representation 1 with other irre-
ducible representations. We show in the resumé of section 29 that if Z is not
irreducible, we obtain extensions V of 1 by an irreducible representation S
such that the induced morphism ω(V ) → ω(1) is surjective. Since the di-
mension of Ext1(S,1) is at most one-dimensional, any two such extensions
are isomorphic. Hence we can study them by realizing them as quotients
of modules whose cohomology is sufficiently understood. A typical exam-
ple occurs in the current section 28: The Kac module V (1) of 1 contains
an extension of 1 with the irreducible representation [0, . . . , 0,−1]; and by
considering the cohomology of the Kac module we are able to compute the
cohomology of this extension and its dual in lemma 28.2 and lemma 28.4.
We also show in corollary 28.6 that ω0(V ) = 0 for the extension V between
1 and Ber ⊗ Sn−1. The other n nontrivial extensions of 1 (listed in lemma
31.2) are studied in section 31. We realize these extensions as a quotient
of the mixed tensor R(nn) studied in section 30. The key proposition 31.1
shows that for any of our nontrivial extensions V the zero degree part ωo
of the induced map ω(qV ) : ω(V ) → ω(1) vanishes, a contradiction our
analysis in the resumé of section 29, hence Z ' 1.

The constituents of the Kac module V (1) ∈ Rn are [BS11], thm. 5.2,

La = Ber−a ⊗ [a, ..., a, 0, ..., 0] for a = 0, ..., n ,

where the last entry of a is at the position i = n− a. Therefore Bera⊗La is
basic and therefore has cohomology concentrated in degree zero, hence the
cohomology of La is concentrated in degree −a and

H−a(La) ∼= Ia ⊕ Ia−1 , a = 0, 1, ... , n

where I−1 := In := 0 and

Ia := Ber−a−1 ⊗ [a+ 1, ..., a+ 1, 0, ..., 0]

(with n− a− 1 entries a+ 1 and a entries 0). Notice I∨1 ∼= Ber ⊗ Sn−1 and
I0 = 1, I1 = [0, .., 0,−2], ..., In−1 = Ber−n. For the cyclic quotient Qa of
V (1) with socle La this implies inductively
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Lemma 28.1. The natural quotient map Qa → 1 induces an isomor-
phism H0(Qa) ∼= H0(1) ∼= 1 and

H−ν(Qa) =

{
Iν ⊕ Iν−1 ν = 0, ..., a,

0 otherwise.
.

Notice Qa = V (1) for a = n and Qa = 1 for a = 0. Similar as in the proof
of the last lemma, for Ka = Ker(V (1) → Qa)) and a ≤ n − 1 we obtain
exact sequences

0→ H•(Ka)→ H•(V (1))→ H•(Qa)→ 0 .

Indeed, the cohomology of H•(Ka) is concentrated in degrees ≤ −a − 1,
whereas the cohomology of H•(Qa) is concentrated in degrees ≥ −a. We
can view these as short exact sequences of homology complexes

0→ (H•(Ka), ∂)→ (H•(V (1)), ∂)→ (H•(Qa), ∂)→ 0 .

The long exact homology sequence for the H∂-homology together with
H∂(Hν(V )) = Hν

D(V ) (lemma 6.3) implies

H−νD (Ka) // H−νD (V (1)) // H−νD (Qa)
δ // H−ν−1

D (Ka) // H−ν−1
D (V (1))

and Hν
D(V (1)) = 0 for all ν hence gives Hν

D(Qa) ∼= Hν−1
D (Ka). Now

Hν
D(Qa) vanishes unless ν ≥ −a by lemma 28.1. The right hand side

Hν−1(Ka) is concentrated in degrees ν ≤ −a. Hence the long exact ho-
mology sequence has at most one nonvanishing connecting morphism δ,
namely δ : H−aD (Qa) → H−a−1

D (Ka) in degree −a. Hence Hν
D(Qa) = 0

for ν 6= −a. Since there is a unique common irreducible module Ia in the
cohomology H−1−a(Ka) and H−a(Qa) such that d(Qa) = ±Ia, we conclude

Lemma 28.2. For 0 ≤ a ≤ n− 1 we get

Hν
D(Qa) =

{
Ia ν = −a ,
0 otherwise.

Remark. This result shows that for the Hν
D-cohomology there are do not

exist long exact sequences attached to short exacts sequences inRn. If these
would exist, then Q1/L1

∼= 1 would imply H−1
D (L1) ∼= H−1

D (Q1), in contrast
to H−1

D (L1) ∼= I1 ⊕ 1 and H−1
D (Q1) ∼= I1.

Corollary 28.3. H0
D(V ) = 0 for V = Qa and (Q∗a)

∨ for 1 ≤ a ≤ n− 1.

Now we analyse in the case a = 1 the nontrivial extension

0→ [0, ..., 0,−1]→ Q1 → 1→ 0 .
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Since L∨1 ∼= [0, ..., 0,−1]∨ ∼= Ber⊗Sn−1, also V = (Q∗1)∨ defines a nontrivial
extension

0→ Ber ⊗ Sn−1 → V → 1→ 0 .

Lemma 28.4. V = (Q∗1)∨ defines a nontrivial extension between 1 and
Ber ⊗ Sn−1 in Rn such that in Rn−1 the following holds

Hν
D(V ) ∼= Hν(V ) =

{
Ber ⊗ Sn−1 ν = 1,

0 otherwise.

Proof. The statement about Hν
D(V ) follows immediately from lemma

28.2. We now calculate Hν(V ). Since the cohomology of the anti-Kac
module (V (1)∗)∨ vanishes, 0→ (K∗1 )∨ → (V (1)∗)∨ → V → 0 gives

H`−1(V ) ∼= H`((K∗1 )∨) ∼= H−`(K∗1 )∨ , for all ` .

K∗1 is filtered with graded components L2, ..., Ln so that the cohomology of
K∗1 vanishes if the cohomology of the Li vanishes. Hence H−`(K∗1 ) = 0

unless −` /∈ {−2,−3, ...,−n} and Hν(V ) = 0 for all ν ≤ 0 and all ν ≥ n.
On the other hand Hν(Ber ⊗ Sn−1) = 0 for ν 6= 1 and H1(Ber ⊗ Sn−1) =

1⊕ (Ber⊗Sn−1). Since Hν(V ) = 0, if Hν(1) = 0 and Hν(Ber⊗Sn−1) = 0,
therefore Hν(V ) = 0 unless ν = 1. �

Applying (n− 1) times the functor DS to DS(V ) ∈ Rn−1, the last lemma
gives

Lemma 28.5. If we apply n times the functor DS to V = (Q∗1)∨ in Rn,
we obtain that

DS ◦DS ◦ · · · ◦DS(V ) =

n−2⊕
ν=0

k[−1− 2ν]

in R0 is concentrated in the degrees 1, 3, · · · , 2n− 3.

The Leray type spectral sequences therefore imply the following result

Corollary 28.6. For the module V = (Q∗1)∨ in Rn, defining a nontrivial
extension between 1 and Ber ⊗ Sn−1, we have

DS`n,0(V ) = 0 and ω`n,0(V ) = 0 for ` ≤ 0 .

29. STRICT MORPHISMS

Recall the functor ω : Tn → sveck defined by ω = ωn,0. A morphisms
q : V →W in Tn will be called a strict epimorphism, if the following holds

(1) q is surjective.
(2) ω(q) is surjective.
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For a module Z in Tn and semisimple L and

q : Z � L

we make the following

Assumption (S). The induced morphism

ω(q) : ω(Z)→ ω(L)

is surjective, i.e. q is a strict epimorphism.

Of course (S) holds for irreducible Z. In the special case L = 1 condition
(S) is equivalent to ω(q) 6= 0. We denote the cosocle of Z by C.

For any submodule U ⊆ Kern(q) the map q : Z → L factorizes over the
quotient p : Z → V = Z/U and induces the analogous morphism qV : V →
L ↪→ cosocle(Z/U). Hence

q = qV ◦ p , ωn,i(q) = ωn,i(qV ) ◦ ωn,i(p) .

implies: ωn,i(q) is surjective =⇒ ωn,i(qV ) is surjective. For i = 0 thus

• If Z is indecomposable, then V is indecomposable.
• Condition (S) for q implies condition (S) for qV .
• ω(qV ) = 0 implies ω(q) = 0.

Indecomposable Z. Now assume Z is indecomposable and has upper
Loewy length m ≥ 2. If m ≥ 3, there exists a submodule U ⊂ Z such that
V = Z/U has Loewy length 2 and such that V again is indecomposable and
satisfies assumption (S). So V has Loewy length two and is indecomposable
with cosocle C. Then (V, qV ) is a nontrivial extension

0→ S → V → C → 0

with semisimple socle S decomposing into irreducible summands Sν and
cosocle C. The map q is obtained from a projection map prL : C → L by
composition with the canonical map V → C. Since V is indecomposable
with cosocle C, all extensions (Vν , qν) obtained as pushouts

0 // ⊕νSν

����

// V

πν
����

p // C // 0

0 // Sν // Vν
pν // C // 0
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must be nontrivial extensions. All Vν again satisfy condition (S): Indeed
Im(ω(q)) ⊆ Im(ω(qν))

ω(V )

ω(q)

))
ω(p)

"" ""
ω(πν)

��

ω(C)
ω(prL)

// ω(L)

ω(Vν)

ω(qν)

55

ω(pν)

<<

The projection prL : C → L splits by an inclusion iL : L → C, since C is
semisimple. Hence C ∼= L ⊕ L′ so that prL and iL are considered as the
canonical projection resp. inclusion for the first summand.

Since V is indecomposable, Ext1(L, Sν) 6= 0 holds for at least one Sν .
Now divide by the submodule U ′ ⊂ S generated by all Sν with the property
Ext1(L, Sν) = 0 and obtain V ′ = V/U ′. Then divide by the maximal sub-
module U ′′ of L′ that splits in V ′. Then V ′/U ′′ is indecomposable and the
map q factorizes over this quotient and satisfies condition S.

Resume. Suppose Z is indecomposable but not irreducible, q : Z → L

satisfies condition (S), the cosocle of Z is C = L ⊕ L′. Then there exists a
quotient V of Z and a quotient L̃ of L′ such that

0 // S // V
p // L⊕ L̃ // 0

with

• V is indecomposable,
• S is irreducible such that Ext1(L, S) 6= 0 and Ext1(L̃, S) 6= 0,
• the map q = prL ◦ p satisfies condition (S).

The irreducible representations X 6∼= 1 with the property Ext1(X,S) 6= 0

will be called descendants of S.

In the situation of the resume we get the extensions E = ELS and Ẽ = EL̃S
defined by submodules of V . Hence V/ELS ∼= L̃ and V/EL̃S ∼= L and we get
the following exact sequences
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L̃ L̃

Ẽ

OO

// V

OO

// L

S //

OO

E //

OO

L

One of the potential candidates for Sν is the irreducible representation
L(λ − µ) that appears in the second upper Loewy level of the Kac module
V (λ). Indeed this follows from lemma 10.5, since HD(V (λ)) = 0. Since
Zν is indecomposable, Zν is in this case a highest weight representation of
weight λ. This is clear, because all weights of Zν are in λ −

∑
α∈∆n

Z · α.
By corollary 10.4 a highest representation V contains a (nontrivial) highest
weight subrepresentationW of weight λ−µ only ifHD(V ) has trivial weight
space HD(V )λ. For V = Zν as above this gives a contradiction, if Sν =

L(λ− µ) occurs in the socle of Z. Indeed, notice that HD(L) contains L(λ)

by lemma 10.2. By condition (S) then also HD(Z) contains L(λ). So by
corollary 10.4 L(λ− µ) is not contained in Zν . This proves

Lemma 29.1. Suppose Z is an (indecomposable) module with irreducible
maximal atypical cosocle L = L(λ). If Z satisfies condition (S), then the
second layer of the upper Loewy filtration of Z does not contain the irre-
ducible module L(λ− µ).

A case of particular interest is L = 1. Fix some irreducible S with the
property ExtRn(S,1) 6= 0. In section 31 we will show for L = 1 that
ω0(qE) = 0 (lemma 31.4).

30. THE MODULE R((n)n)

We describe a certain maximal atypical mixed tensor for n ≥ 2.

We recall some terminology from [BS11]. Given weights λ, µ ∼ α in
the same block one can label the cup diagram λ resp. the cap diagram µ

with α to obtain λα resp. αµ. These diagrams are by definition consistently
oriented if and only if each cup resp cap has exactly one ∨ and one ∧ and all
the rays labelled ∧ are to the left of all rays labelled ∨. Set λ ⊂ α iff λ ∼ α

and λα is consistently oriented.

A crossingless matching is a diagram obtained by drawing a cap dia-
gram underneath a cup diagram and then joining rays according to some
order-preserving bijection between the vertices. Given blocks ∆,Γ a ∆Γ-
matching is a crossingless matching t such that the free vertices (not part of
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cups, caps or lines) at the bottom are exactly at the position as the vertices
labelled ◦ or × in ∆; and similarly for the top with Γ. Given a ∆Γ-matching
t and α ∈ ∆ and β ∈ Γ, one can label the bottom line with α and the upper
line with β to obtain αtβ. αtβ is consistently oriented if each cup resp cap
has exactly one ∨ and one ∧ and the endpoints of each line segment are
labelled by the same symbol. Notation: α→t β.

For t a crossingless ∆Γ and λ ∈ ∆, µ ∈ Γ label the bottom and the upper
line as usual. The lower reduction red(λt) is the cup diagram obtained from
λt by removing the bottom number line and all connected components that
do not extend up to the top number line.

Theorem 30.1. [BS12b], Thm 3.4. and [BS10a], Thm 4.11: In K0(Rn)

the mixed tensor R(λ) attached to the bipartition λ satisfies

[R(λ)] =
∑

µ⊂α→t1, red(µt)=1

[L(µ)]

where t is a fixed matching determined by λ between the block Γ of 1 and
the block ∆ of λ† [BS12b], 8.18. If L(µ) is a composition factor of R(λ), its
graded composition multiplicities are given by∑

µ

(q + q−1)nµ [L(µ)]

where nµ is the number of lower circles in µt.

Lemma 30.2. The module R = R((n)n) in Rn+r+1, r ≥ 0, has Loewy
length 2n + 1 with socle and cosocle equal to 1. We have DS(R(nn))) =

R(nn). If r = 0, DS(R) = P (1). R contains 1 with multiplicity 22n. It
contains the irreducible module L(h) = [n, 1, . . . , 1, 0, . . . , 0] (with 1 occur-
ring n − 1-times) in the second Loewy layer. The multiplicity of L(h) in
R is 22(n−1). It contains the module [n, n, . . . , n, 0, . . . , 0] as the constituent
of highest weight in the middle Loewy layer with multiplicity 1. It does
not contain the modules BSn−1 = [n, 1, . . . , 1], BSn = [n + 1, 1, . . . , 1],
[n, 1, . . . , 1,−1] and [n, 1, . . . , 1,−1, . . . ,−1] (with 1 occurring n − 1-times)
as composition factors.

Proof. The Loewy length of a mixed tensor is 2d(λ) + 1 (where d(λ) is
the number of caps) and d((n − 1)n−1) = n − 1 [Hei14]. The composition
factors of R are given as a sum

∑
µ(q + q−1)nµ [L(µ)]. For our choice of

λ = (n− 1)n−1 the matching is given by [Hei14] (picture for n = 4)
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with n caps and where the rightmost vertex in a cap is at position n. The
irreducible module in the socle and cosocle is easily computed from the
rules of the section 14. The weight

h = (n, 1, . . . , 1, 0|0,−1, . . . ,−1, n− n)

easily seen to satisfy h →t 1, red(ht) = 1, hence occurs as a composition
factor. The number of lower circles in the lower reduction ht is n − 1,
hence L(h) occurs with multiplicity 22(n−1). If we number the Loewy layers
starting with the socle by 1, . . . , 2n + 1, L(h) occurs in the 2k-th Loewy
layer (k = 1, . . . , n) with multiplicity

(
n−1
k−1

)
. Likewise for 1 with n1 =

n − 1. We note: A weight µ can only satisfy red(λt) = 1 if the vertices
−n,−n− 1, . . . ,−n− r (the first vertices left of the caps) are labelled by ∨.
Hence:

• BSn−1 does not occur as a composition factor. The vertex −n is
labelled by ∧.
• [n, 1, . . . , 1,−1] does not occur as a composition factor. The vertex
−n is labelled by ∧
• [n+1, 1, . . . , 1] does not occur as a composition factor since all com-

position factors [µ1, . . . , µn] satisfy µ1 ≤ n since [n, . . . , n, 0, . . . , 0]

is the constituent of highest weight.
�

Remark. In particular the constituent 1 occurs with the same multiplicity
as in P (1) ∈ Rn.

Remark. The module R(nn) can be obtained as follows. Let {nn} be the
covariant module to the partition (nn) and {nn}∨ its dual. Then R(nn) is the
projection on the maximal atypical block of {nn} ⊗ {nn}∨.

Example. For Gl(3|3) the Loewy structure of the module R(22) is
[0, 0, 0]

[1, 0, 0]⊕ [2, 1, 0]

[2, 0, 0]⊕ [2,−1,−1]⊕ [0, 0, 0]⊕ [0, 0, 0]⊕ [1, 1, 0]⊕ [2, 2, 0]

[1, 0, 0]⊕ [2, 1, 0]

[0, 0, 0]

 .
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31. THE BASIC HOOK REPRESENTATIONS S

The case L = 1. Suppose Z has cosocle 1 and the projection q : Z → 1

satisfies condition (S). If Z is not simple, we constructed objects Vν with
cosocle 1 and simple socle Sν = Ker(qν). In this situation Ext1Rn(1, Sν) 6=
0.

Proposition 31.1. For any nontrivial extension

0 // Sν // V // 1 // 0

the vectorspace ω0
n,0(V ) is zero (for simple Sν). Hence ω(q) : ω(V ) → ω(1)

is the zero map.

For the proof we use several lemmas. Finally lemma 31.4 proves the
proposition.

Lemma 31.2. Up to isomorphism there are n+ 1 irreducible modules L
in Rn such that Ext1(1, L) 6= 0. They are

(1) Ln(n) = Bern ⊗ Sn−1 and
(2) its dual Ln(n)∨ ∼= [0, .., 0,−1], and for
(3) i = 1, .., n− 1 the basic selfdual representations

Ln(i) = [i, 1, · · · , 1, 0, · · · , 0]

(with n− i entries 0).
In all cases dim(Ext1(L,1)) = 1. Furthermore

DSn,j(Ln(i)) = Lj(i)

holds for i < j ≤ n and

DSn,i(Ln(i)) = Li(i)⊕ Li(i)∨ ⊕ Y

where Y 6∼= 1 is an irreducible module with Ext1(1, Y ) = 0 and sector
structure

[∨−n,∧−n+1] ∧−n+2 [−n+ 3, ..., n− 2] ∧n−1 [∨n,∧n+1] .

Example. Ln(1) = S1.

Proof. L∗ ∼= L for irreducible objects L implies Ext1(1, L) ∼= Ext1(L,1).
Furthermore Ext1(L,1) ∼= Ext1((L∗)∨,1) and L = L∗, hence

Ext1(L,1) ∼= Ext1(L∨,1) .

By [BS10a], cor. 5.15 for L = L(λ)

dimExt1(L(λ),1) = dimExt1(V (λ),1) + dimExt1(V (0), L(λ))

holds. Since 1 is a Kostant weight, there exists a unique weight λ char-
acterized by λ ≤ 0 (Bruhat ordering) and l(λ, 0) = 1 in the notations of
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loc. cit. lemma 7.2, such that dimExt1(V (λ),1) 6= 0. One easily shows
L(λ) ∼= [0, .., 0,−1].

On the other hand dimExt1(V (0), L(λ)) 6= 0 implies 0 < λ (see the ex-
planations preceding loc. cit. (5.3) and loc. cit. lemma 5.2.(i)). Then for
any pair of adjacent labels i, i + 1 of ρ of type i = ∨, i + 1 = ∧ we write
ρ ∈ Λ∨,∧, if the labels of ρ at i, i + 1 are the same i = ∨, i + 1 = ∧. Then
lemma 5.2(ii) of loc. cit. gives

dim(Ext1Rn(V (ρ), L(λ)) =

{
dim(Ext1Rn−1

(V (ρ′), L(λ′)) if λ ∈ Λ∨,∧

dim(HomRn(V (ρ′′), L(λ)) otherwise

Here λ′, µ′ are obtained from λ, µ by deleting i, i + 1, and ρ′′ is obtained by
transposing the labels at i, i+ 1.

This shows our assertion, since for

L(ρ) = 1

there is a unique pair of such neighbouring indices for

[∨−n+1, ...,∨0,∧1, ...,∧n] ,

namely at the position (i, i + 1) = (0, 1). We now assume n ≥ 2. Then
switching this pair gives Ln(1) below. Freezing then also (−1, ., ., 2) gives
Ln(2) and so on. Hence applying this lemma of loc. cit. several times will
prove our first claim. Indeed, as long as we freeze less than n− 2 pairs, we
end up for every j from 1, ..., n − 1 with a representation Ln(j). It has only
one sector

[∨1−n, ...,∨−j−1[∨−j∧−j+1][∨−j+2, ...,∨0,∧1, ...,∧j−1][∨j ,∧j+1]∧j+2, ...,∧n] .

In addition, if we freeze n − 1 pairs we end up with Ln(n) with the sector
structure

[∨2−n,∨3−n, ....,∧n−2,∧n−1][∨n,∧n+1] .

Indeed Ln(n) ∼= Bern ⊗ Sn−1.

The remaining assertions now follow from theorem 16.1, since Ln+1(n)

has sectors

S1S2S3 = [∨−n,∧−n+1][−n+ 2, ..., n− 1][∨n,∧n+1] .

Hence DS(Ln+1(n)) = (Ber⊗Sn−1)⊕ (Ber⊗Sn−1)∨⊕Y for Y with sector
structure [∨−n,∧−n+1][−n+ 3, ..., n− 2] ∧n−1 [∨n,∧n+1]. �

Basic cases. For a nontrivial extension

0 // Ln(i) // V // 1 // 0
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first suppose S = Ln(i) is basic, so i ∈ {1, ..., n − 1}. Since (Ln(i)∗)∨ ∼=
Ln(i)∨ ∼= Ln(i) for i < n, (V ∗)∨ again defines a nontrivial extension

0 // Ln(i) // (V ∗)∨ // 1 // 0 .

We now use DS(Ln(i)) = Ln−1(i) for 1 ≤ i < n− 1. In Tn−1 the induced
long exact sequence

H−1(1) // H0(S) // H0(V ) // H0(1) // H1(S)

remains exact, since H`(S) = Ln−1(i) for ` = 0 and is zero otherwise and
similarlyH`(1) = 1 for ` = 0 and is zero otherwise. In other words for basic
S we obtain from the given extension in Rn an exact sequence in Rn−1

0 // Ln−1(i) // DS(V ) // 1 // 0 .

Repeating this n− i times we obtain an exact sequence

0 // Li(i)⊕ Li(i)∨ ⊕ Y // DSn,i(V ) // 1 // 0 .

Since Ext1(1, Y ) = 0 this implies

DSn,i(V ) = E ⊕ Y

for some selfdual module E defining an extension between 1 and Li(i) ⊕
Li(i)

∨. We claim that this exact sequence does not split in Ti.

Proposition 31.3. Suppose r is an integer ≥ 0. For an indecompos-
able module V defining a nontrivial extension between 1 and Ln+1+r(n) in
Rn+r+1, the object (DS)◦r+1(V ) decomposes into the direct sum of the irre-
ducible module Y from above and an indecomposable extension module E
in Rn.

Proof. Note that any two such indecomposable extensions define isomor-
phic modules V , since the relevant Ext-groups are one-dimensional. We
assume r = 0 for simplicity. Since the constituents Ln+1(n) and 1 of V are
basic, this implies DS(V ) = H0(V ) = Y ⊕ E. If the module E is not inde-
composable, it is semisimple (for this use Tannaka duality). We proceed as
follows:

For the mixed tensor R = Rnn in Rn+1 we know that its image DS(Rnn)

is the projective hull P (1) of 1 inRn and P (1) is an indecomposable module
with top 1. The module Rnn admits as quotient an indecomposable module
V defining a nontrivial extension between 1 (the top of R) and the module
Ln+1(n) (which sits in the second layer of the Loewy filtration of R). Hence
R/K ∼= V for some submodule K of R. We claim that

0 // H0(K)
i // H0(R)

p // E ⊕ Y // H1(K) // 0
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is exact and Hν(K) = 0 for ν 6= 0, 1. For this use H•(V ) = H0(V ) and
Hν(R) = P (1) for a unique ν. If ν 6= 0, then Hν(K) → Hν(R) = P (1)

would be surjective and therefore Hν(K) = P (1)⊕?. We exclude this later.
So suppose for the moment ν = 0.

The image of p can not contain the irreducible module Y 6∼= 1, since
the top of P (1) is 1. If E splits, it is semisimple. Then the image of p
can not contain E either, since again this would contradict that P (1) has
top 1. Therefore the image of p is 1 or zero, if E splits. This leads to a
contradiction:

Look at all constituentsX ofRwithBer⊗Sn−1 inHν(X) for ν = −1, 0, 1.
These X are isomorphic to the following irreducible modules X−1, X0, X1

with Ber ⊗ Sn−1 occuring in H i(Xi) respectively: the basic module X0 =

Ln+1(n) with sector structure [−n,−n + 1][−n + 2, ..., n − 1][n, n + 1] and
X1 with sector structure [1− n[2− n, ..., n− 1][n, n+ 1]n+ 2] and X−1 with
sector structure [−n− 1,−n] � [2− n, ..., n− 1][n, n+ 1]. Then Ber ⊗ Sn−1

occurs in H i(Xi) for i = 0,±1.

Let F i(.) denote the descending Loewy filtration. For a module Z let
m(Z) denote the number of Jordan-Hölder constituents of Z that are iso-
morphic to Ber⊗Sn−1. Next we use that for all i

X1, X−1 does not occur in the griF (R) .

Indeed according to section 30 all irreducible constituents [λ] satisfy the
property λn+1 = 0 except for one given by [n,−n + 1, ...,−n + 1]. There-
fore m(H±1(griF (R))) = 0 and hence m(H1(F i(X))) = 0. Since also
m(H−1(griF (R))) = 0, then

H−1(griF (R))→ H0(F i(R))→ H0(F i−1(R))→ H0(griF (R))→ H1(F i(R))

implies m(H0(F i(R))) = m(H0(F i−1(R))) + m(H0(griF (R))). For small i
we have F i(R) = R and therefore

m(H0(R)) =
∑
i

m(H0(griF (R))) .

They same argument then applies for the submodule K of R. Hence

m(H0(K)) = m(H0(R))− 1

by counting the multiplicities of X0 in K resp. R. Hence the image of p
must contain Ber ⊗ Sn−1 and hence E is an indecomposable quotient of
P (1).

Now let us adress the assertion ν = 0 from above. If ν 6= 0, thenH0(K) ∼=
P (1)⊕? gives a contradiction using the same counting argument.
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In the case r > 0 one uses the same kind of argument. Again the extension
defined by V inRn+r+1 can be realized as a quotient of R = Rnn inRn+r+1.
The argument is modificatis modificandis the same.

The non-basic cases. For a nontrivial extension in Tn of the form

0 // Ln(n) // V // 1 // 0 .

we get a dual nontrivial extension

0 // [0, ..., 0,−1] // (V ∗)∨ // 1 // 0 .

In lemma 28.1 and lemma 28.2 we defined Qa, which for a = 1 defines a
nontrivial extension between 1 and Ln(n)∨. Since dim(Ext1(1, Ln(n)∨)) =

1, we get
(V ∗)∨ ∼= Q1 .

By corollary 28.6 we get DS`n,0(V ) = 0 and ω`n,0(V ) = 0 for all ` ≤ 0.
Similarly by dualityDS`n,0((V ∗)∨) = 0 for ` ≥ 0. This implies ω`n,0((V ∗)∨) =

0 for ` ≥ 0.
Finally consider the nontrivial extension Vi between 1 and Ln(i) in Rn

and the nontrivial extension DSn,i(Vi) in Ri from above. It has the form
DSn,i(Vi) = E ⊕ Y for

0→ Li(i)⊕ Li(i)∨ → E → 1→ 0 .

The module E = DSn,i((Vi)/Y is the pullback of a nontrivial extension of
1 by Li(i)

0→ Li(i)→ E1 → 1→ 0

and of a nontrivial extension of 1 by (Li(i))
∨

0→ (Li(i))
∨ → E2 → 1→ 0 .

Hence there exists an exact sequence

0→ DSn,i(Vi)/Y → E1 ⊕ E2 → 1→ 0

so that

→ DS−1
i,0 (1)→ DS0

i,0(DSn,i(Vi)/Y )→ DS0
i,0(E1)⊕DS0

i,0(E2)→

is exact. Since DS0
i,0(E1) = 0 and DS0

i,0(E2) = 0 by corollary 28.6 and since
DS−1

i,0 (1) = 0, therefore DS0
i,0(DSn,i(Vi)/Y ) = 0. Hence ω0

i,0(DSn,i(Vi)) =

ω0
i,0(Y ). The Leray type spectral sequence

DSpi,0(DSqn,i(Vi)) =⇒ DSp+qn,0 (Vi)

degenerates, since DSqn,i(Vi) = 0 for q 6= 0. Therefore also ω•n,i(Vi)
∼=

DS•n,i(Vi). One can now argue as in the proof of lemma 8.4 to show

ω0
n,0(Vi) = ω0

i,0(DSn,i(Vi)) = ωi,0(Y ) .
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Since the map
ωi,0(q) : E ⊕ Y −→ 1

is trivial on the simple summand Y 6∼= 1, the next lemma follows.

Lemma 31.4. For every nontrival extension

0 // S // V
qV // 1 // 0

of 1 by a simple object S in Rn the map ω0(qV ) vanishes.

The last lemma completes the proof of proposition 31.1. This implies the
following main result.

Corollary 31.5. Suppose Z is indecomposable and cosocle(Z) ∼= 1. If
the quotient map q : Z → 1 is strict, then q : Z ∼= 1.

Remark. A symmetric abelian tensor category in the sense of Deligne is
semisimple if and only if q : Z → 1, with cosocle of Z isomorphic to 1, is
an isomorphism.

Corollary 31.6. For a nontrivial extension V between 1 and Ln(n) or its
dual Ln(n)∨

Hν
D(V ) = 0 , ν 6= 1

holds, and hence the induced map HD(q) : HD(V )→ HD(1) is trivial.
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