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This paper describes and exploits connections of the following topics:

(A) The cohomology of categories as introduced by A. Grothendieck {13].

(B) Secondary operations of homotopy theory like Toda brackets [29].

(C) The first k—invariant of a classifying space and Cooke’s first obstruction for realizing
homotopy actions [8].

(D) Elements in the cohomology of the general linear group GLy(Z) and Igusa’s
associativity class [16].

(E) The automorphism group of free nil (2) — groups.

We need S—normalized cohomology groups HISI(Q,D) of a category C where S is an ideal
of morphisms in C, see (1.8). The following three fundamental properties of such cohomo-
logy groups are proved.

(1) The normalization theorems (1.9) and (1.10).

(2) The classification of normalized linear extensions by Hg(g,D), see (2.3).

(3) The classification of normalized linear track extensions by Hg(g,D), see (4.6).

Let T=QR* /~ be the homotopy category of pointed spaces. Using the classification (3) we
associate with each small subcategory C C =T£g* /=~ (consisting of co—H—groups) a coho-
mology class

(4) <C> € B(C,Dy)

which we call the bracket of C. For a subcategory ¢ : K C C we have the restriction for-
mula <K> = ¢*<C>. Each triple Toda bracket <f,g,h> in ¢ can be deduced from
<C>, see (3.3), more generally the element <C> determines secondary homotopy opera-
tions in C. We consider the following examples.

(5) If C contains all spheres S" and all maps S" — $™ (n,m > 2) then <C> is an
element of infinite order, see (3.4).

(6) If all objects of C are simply connected rational spaces then <C> =0 is trivial, see
(3.4).
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(MY ¢ = Aut(X) consists merely of the group of homotopy equivalences of a space X
then <Aut(X)> can be identified with the first k—invariant of the classifying space

B #(X) where &(X) is the topological monoid of all homotopy equivalences of X, see
(3.10). Whence the class <Aut X> is Cooke’s first obstruction.

(8) Now let C = S(n) be the full homotopy category consisting of finite one point unions

N
of n—spheres V S" =S™ ..... S™. Our main result shows that in this case the bracket

<§(n)> € B(S(n),Dy)  T/2T

is the generator, see (3.7); all triple Toda brackets in §(n), however, are trivial. For the

proof we construct an explicit algebraic model of the 'track category for $(n)’ in terms of

the category nil of free nil(2)—group, see (5.2). This shows that one has the formula
<§()> = Ay{ail)

where the class {nil} is given by the classification (2) and where ﬂj is a Bockstein homo-

morphism, see (6.9), moreover 2{nil} = 0.

(9) A free nil(2)—group Gy = F/T'4F is the quotient defined by a free group F of N

generators and the lower central series I',F; whence one has G§b =F/T,F = V. we

show that the projection of automorphism groups
p: Aut(Gy) —» Aut(llN) = GLy(Z)

(obtained by abelianization) has a splitting if and only if N < 2, see (7.2). The extension p
represents an element {Aut(Gy)} in the second cohomology of GLN(ZI) which is the
restriction of the class {mil} in (8) above.
(10) We deduce from <S(n)> in (8) a formula for the first k—invariant KN of the clas-

N
sifying space B &(VS™) which plays a role in Waldhausen’s algebraic K—theory. By

restricting the formula in (8) and by (7) one gets

N
KN = <Aut(VSD)> = B;{Aut Gy},
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see (7.5). This shows that k> is trivial. By the work of Igusa [16] we know that k™' i
non trivial for N > 4. It seems likely that also k> for n > 3 is trivial though

{Aut Gz} #0.

(11) In the final example we show that Igusa’s mysterious associativity class y(1) [16] ad-

mits a new interpretation by the formula

N
x(1) = <Ead (V $")> = A{End(Gy)}, 123
Here End(X) denotes the category of endomorphisms of the object X and the second

equation is again a restriction of the equation in (8). The proof uses a new and simple alge-

braic characterization of Igusa’s associativity cocycle, see (7.9). On the other hand the to-

N
pological interpretation of y(1) as the bracket of the homotopy category @_(Vsn) is

more direct than Igusa’s topological construction in B (12.1) [16].

The authors would like to thank Mamuka Jibladze and Teimuraz Pirashvili for explaining
results of their fundamental work on the Cohomology of Algebraic Theories; the first
named author remembers with pleasure discussions on the subject in Tblissi and Baku.
Moreover the authors would like to acknowledge the support of the Max—Planck—Institut
fiir Mathematik, Bonn.

§1 Normalized cohomology of a small category

In this section we introduce the S—normalized cohomology of a pair (C,K) where C isa
small category and where K is a subcategory of C. Moreover we consider the Toda—cate-
gory T and its normalized cohomology which, as we shall see, corresponds to the classical
definition of Toda brackets in topology. We use the following notations: A boldface letter
like G denotes a category, Ob(C) and Mor(C) are the classes of objects and morphisms
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respectively. We identify an object A with its identity 1 A=1= A 80 that
Ob(C) C Mor(C). The set of morphisms A — B is C(A,B), and the group of automor-
phisms of A is Aut(A). The category of factorizations in C, denoted by FG, is given as

follows: Objects are the morphisms f,g,... in C and morphisms f — g are pairs (a,f)
for which

B—92 B

f] I
A —F— A
commutes in C. Composition ig defined by (a’,8)(a,5) = (a’a,58") so that
(2,8) = (a,1)(1,8) = (1,6)(a,1). A natural gystem (of abelian groups) on C is a functor

(1.1) D:FC— Ab

from FC to the category of abelian groups. The functor D carries the object f to
D, = D(f) and carries the morphism (a,8) to D{a,f) = a*ﬂ* :Dg— D¢ 4= Dg where
D(a,1) = a4 and D(1,8) = ,6*. We have obvious functors

(1.2) FC-XcPxc-P ¢

which show that a C—module F : C — Ab and a C-bimodule G: G°P x C— Ab anda
C—bimodule G: QOP x C — Ab yield in a canonical way natural systems (p:r)*F, G
as well denoted by F and G respectively. Let M,M’: Ab— Ab be functors then we get
as an example the Ab—bimodule Hom(M’,M) : AL°P x Ab — Ab which carries the object
(A,B) to the group Hom(M’A,MB) ; in case M’ is the identical functor we write
Hom(—,M).
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We now recall the definition of the cohomology of C with coefficients in a natural system,
see [4). Let C be a small category and let N_(C) be the set of sequences (A,...,A ) of n
composable morphisms in C (which are the n—simplices of the nerve of C). For n =0

let Ny(C) =Ob(C) be the set of objects in G. The n—th cochain group F"' = F(C,D) is
the abelian group of all functions

c:N —_ ] D
o(@ g€Mor(C) 8

with (Agdy) €D) o oy - Addition in F" is given by adding pointwise in the abe-

lian groups D g The coboundary 6 : F* 1 F® is defined by the formula

(1.3) (6c)(ApssAy) = Agac(Agyiid)
n—1 .
1
+ ) (DA dAygody)
i=1

*
+ (-1)"Ae(Aypndy_q) -
For n=1 wehave (6c)(A) = Axc(A) = A ¢(B) for A:A — B € N(C). One can check
that 6c € F* for c € 7! and that 66 = 0. Whence the cohomology groups

(1.4) H™(C,D) = BY(F (C,D),5)

are defined, n 2 0. These groups are discussed in [4]; in particular they coincide for D

*
= (p7) F and D = 7 G, see (1.2), with the cohomology groups introduced by A.
Grothendieck {13] and B. Mitchell [23] respectively. We now introduce normalized and rela-

tive versions of these cohomology groups.
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(1.5) Definition: Let S C Mor(C) be a subclass of morphisms in C. We say that S is an
ideal in G if (f,g,h) € N3((_j) with g € S satisfies fog €S and goh € S. A natural
system D on C is S—trivialif f, =0 and f* =0 forall f€S.

(1.6) Example: Assume C has a zero object 4 (i.e. the object  is an initial and a final
object of C). Then the class O(C) of all zero morphisms O: A— 4 — B in G is an
ideal. A natural system D on G is O(C)—trivial iff D, =0 forall f: A — 4, f: 4 — B,
A,B € Ob(C). For a subclass S C Mor(C) we define the subgroups

(1.7) FY(s), F'(S) C F*(C,D) = F".

Here F'(S) containsall c € F" which satisfy ¢();,...,A ) =0 if A, €S for all

¢t € {1,.,0},n21;for n=0 the group FO(S) contains all ¢ € F0 with c(A) =0 for
1, € Ob(C) N S. In this case we call ¢ a cochain relative S. On the other hand let F*(S)
be the set of all ¢ € F* which satisfy ¢(A{--sAy) = 0 if there exists i € {1,....n} with
A; € S. We say that the elements in F(S) are S—normalized cochains; they are simply
called normalized cochains if S = Ob(C). We now consider such S for which ¢ in (1.3)
induces maps

(1) &: F1(S) — F(S) and

(2) 5 : ¥oY(8) — FY(s)

respectively. Here (1) is well defined if S = Mor(K) is the class of morphisms of a subcate-
gory K C C. Moreover (2) is well defined if one of the following conditions (3), (4) is satis-
fied.

(3) S isanidealin C and D is S—trivial.

(4) S=9UOb(C) where S’is anidealin C and where D is S’—trivial.
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Since the empty class S’ = ¢ is an ideal and since any natural system D is g—trivial we
have by (4) the special case S = Ob(C). We now are ready for the definition of the follow-

ing cohomology groups.

(1.8) Definition: Let K be a subcategoryin C and let S be a class which satisfies (3) or

(4) above. Then we obtain the cohomology groups
* *
Hg(Q,K;D) = H'(F (Mor K) N ¥ (5),6)
which we call the $—normalized cohomology groups of the pair (C,K).

These cohomology groups are natural in D and in the triple (C,K,S), see (1.9) [4]. We
omit S or K in the notationif S= ¢ or X = ¢ respectively. In particular we get for
K = ¢,5 = ¢ the cohomology (1.4). Cup products for the cohomology group (1.8) are de-
fined in the same way as in (IV. 5.19) [1]. In the literature one can find various definition
of cohomology groups of a category, a detailed description of the connections between such

cohomology notions is contained in [4}, in particular, one has

(1) H'(C,D) = Extp(Z,D)

where the right hand side is defined in the functor category of functors D : FC — Ab,
compare Grothendieck [13]. We also point out that Igusa’s definition of the cohomology of
a monoid §1 [16] in a special case of the cohomology (1.8). Further properties of cohomo-

logy groups in (1) are discussed in the work of Jibladze—Pirashvili on the cohomology of

algebraic theories.

For the inclusion ¢ : K CC let ¢*D be the induced natural system on K and let
¢*S = S N Mor(K). Then we get as usual the long exact sequence
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¥ on-l ) ' *
(2) . = B 55(K, ¢*D) — Hg(C,K,D) - Hg(C;D) £— H4g(K, ¢*D)

Here j is induced by the inclusion (C,4) — (C,K) which is the identity on C. We prove
the following two normalization theoremsg for the cohomology groups (1.8).

(1.9) Theorem: Let S be anidealin C andlet D be an S—trivial natural system on C.
Then the inclusion S CS U Ob(C) induces an isomorphism (n 2 0)

Hlslu()b(g)(ga&s) = Hg(C.K;D).

The theorem describes the "normalization with respect to identities". We also have the

following "normalization with respect to zero morphisms".

(1.10) Theorem: Let 4 be a zero object in C and let O(C) be the ideal of zero mor-
phism. Let K be a subcategory of ¢ which contains the zero morphisms 0: A — A
with A € Ob(K). Moreover let S be anidealin C andlet D be a natural system on C
which is S U O(Q)—trivial, see (1.6). Then the inclusion S C S U O(C) induces an isomor-
phism

HISIUO(Q)(QLD) —=- Hg(C.KiD).

We shall prove these results in the Appendix B below. In the next section we give a simple

illustration of these results for n = 2. Combining (1.9), (1.10) we get with the assumptions

in (1.10) the "strong normalization" isomorphism

(1.11) HEUO(Q)UOb(g)(Q’L(-;D) = Hg(C.K;D).
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The following example is relevant for the classical Toda brackets discussed below in §3.
The Toda—category T is generated by the diagram E T F T G +—H. We define an
ideal S in T bytheset S = {ig,gh,fgh}. Then we get for any natural system D on T
which is S—trivial the isomorphism

(1.12) Lemma: HgUOb@)@,D) = Dgyy /(D + h*ng)

where the right hand side denotes the quotient group. For ¥" = F*(S U Ob(T)) one readi-
ly checks: ¥2 = ng x Dgh’ ¥ = ngh and ¥? =0 for n > 4. Moreover §: ¥, 3

carrries (x,y) € ng x Dgh to &(x,y) = fyy —h x. This proves (1.12).

§2 Normalized linear extensions of categori

We consider normalized linear extensions of categories and we show that the set of equiva-
lence classes of such extensions is classified by the second normalized cohomology Hg de-
fined in Section 1. Moreover we use the classification to give a simple proof of the normali-

zation theorems (1.9), (1.10) in case n = 2.

Let C be a category and let D be a natural system on C. We say that
(2.1) D+ —E-2C

is a linear extension of C by D (see {4] or [1]) if (a), (b) and (c) holds.

(a) E and C have the same objects and p is a full functor which is the identity on ob-

Jjects.
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(b) For each morphism f: A— B in { the abelian group D; acts transitively and
effectively on the subset p_l(f) of morphisms in E. We write {; + a for the action of
—1
a€Dgon fy€p 0.
*
(c) The action satisfies the linear distributative law ({;+ a)(g,+ 6) = fyg,+ 8 + g a.

We now extend this notion slightly as follows.

(2.2) Definition. Let K be a subcategory in C,let S be an ideal of morphisms in C and
le¢ D be an S—trivial natural system on C. Then we say that the linear extensions E in
(2.1) together with a function j: SU Mor(K) — Mor(E) is an S—normalized linear exten-
gion of the pair (C,K) by D if (1)...(3) hold.

1) pjf) = () for f€SUMork,

(2) j|MorK, is a functor K — E,

(3) ifog)=1,oi(g) and j(gh) = j(g) o by, for g €S, (1,gh) € Ny(C), £ € p (1),
hy € p(h).

Two such extensions (E,j), (E’,j’) are equivalent if there is an isomorphism ¢ : E — E’
of categories with e(fo + a)= e(fo) + a, p’e = p, €j = j'. Moreover the extension is gplit
if there is a functor 8: C— E with ps=1,8|SUMor K =j.

We now assume that C is a small category.

(2.3) Theorem: Let Mg(C,K,D) be the set of equivalence classes of S—normalized linear

extensions of (C,K) by D. Then there are canonical bijections

B(GED) ¥ My(CKD) & By (CED)

which carry the split extension to the trivial cohomology class. The bijection ¥ x_l coin-

cides with the isomorphism in (1.9).
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Let (E,j) be an extension as in (2.2). There exists a function s : Mor(C) — Mor(E)
with 8|S UMor K = j and with ps = 1. For (y,x) € No(C) the formula

(1) 8(y o x) = 8(y) o 8(x) + A (y,x)
determines an element
(2) A, € FA(K) N ¥%(s)

here we use (2.2)(2), (3). If s is a splitting in the sense of (2.2) then 4 = 0. We now de-
fine the function ¥ in (2.3) by ¥{E} = {A g} We can modify the construction of ¥{E}
a8 follows. We choose a function s with the additional property that s carries identities
to identities. Then the cocycle A  in (2) satisfies

3) A, € FX(K) N F4(S U 0b(C))

and we define y in (2.3) by x{E} = {As}' As in (2.3) [4] we see that y and ¥ are bi-
jections. This proves (2.3).

Now assume that C has a zero object 4 and that D is O(C)—trivial. Then we define
() X0 : M(GKD) 2 B 0(CK.D)

by xo{g} = {A;}. Here s is a function as in (1) which in addition carries zero mor-
phisms in C to zero morphisms in E. For this we observe that , is actually as well the

zero object of E since D=0 for f: A— 4 and f: 4 — A, see (1.6).

§3 Toda brackets

The classical triple Toda bracket was one of Toda’s main tools to construct elements in
homotopy groups of spheres, [29). We show that all triple Toda brackets in a homotopy
category C can be deduced from a unique cohomology class <C> € H3(Q,DE). We des-

cribe some examples of such cohomology classes; the construction of <C>, however, is
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postponed to the next section since it involves the definition of linear track extensions of

categories.

*
Let Top be the category of topological spaces with basepoint , which is the zero object
*
and let ég [~ be the homotopy category. We consider the full subcategories ¢oH and
H of Top /~ consisting of co~H—-spaces and H—spaces respectively and we choose a small

subcategory C,
(3.1) CCgcoH or CCH.

Now assume that , is the zero object alsoin C. For homotopy classes f,g,h of mapsin

C with E—F e G +p—H and with fg =0 and gh = 0 the classical Toda bracket

(3.2) <f,g;h> € [SH,E]/(f,[SH,F] + h'[5G,E])

is defined, see [29]. Here

(1) Dy(E,E) = [BH,E]

is an abelian group which defines the bimodule Dy, on C. For the Toda category T any
functor

(2) p: (T,8) — (C,0(Q)), see (1.12),

which carries S to O(C) corresponds equivalently to a triple (f,g,h) as above. The func-

*
tor ¢ induces a homomorphism (f,g,h) by the commutative diagram

Hg(c)( C,Dy) v, H3(T

C soD)
o Al £

*

B3(g,Dg) LBl [2H,E] /(1,(EH,D]+h (G, F])
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Here the isomorphism are given by the normalization (1.9), (1.10) and by (1.12) respective-
ly. The next result is proved in (4.8).

(3.3) Th@r'gm: There is a cohomology class <C> € Ha(g,DE) well defined by C. I , is
the zero object in C we get all triple Toda brackets in C by the formula

<fgh> = (f,g,h)*<g> .We therefore call <C> the bracket of C. For a subcategory
i:KCg we have i*<g> = <K>.

*
(3.4) Example Let § C Top /~ be the full subcategory consisting of all spheres s™ n)>2,
and of the basepoint ,. The morphism set S® — S™ is the homotopy group of spheres
7 (S™). For the bimodule Dy, on § with Dg(S",§™) ==, +1(sm) we have by (3.3) the
bracket

3
(1) <§> € H*(§,Dy) -
All triple Toda brackets <f,g,h> in § can be deduced from <§> by (3.3). Since there
are triple Toda brackets <f,g,h> in § of arbitrary high order, see for example [12], we
conclude that <8> is actually an element of infinite order. It is an open problem to com-

pute <C> and Hs(g,DE) even for simple subcategories of S. It seems to be more appro-

*
priate to replace the category in (1) by the category VS, the full subcategory of Top /~

consisting of finite one point unions Snl.... ,Snr of spheres, n, 22,12 0. The element

(2) <¥s> € B3(V5,Dy)

contains all the information of "secondary operations" on homotopy groups of spheres. In
[9] the second named author describes the category YS only in terms of "primary
operations" on homotopy groups of spheres, see also [3] where the corresponding problem is
solved for R—ocalized spheres, R C @ with 1/2,1/3 € R.



Nowlet R CQ andlet p:YS— VS, be the localization functor. The bimodule

*
Dy, = D& on ¥Sp yields the bimodule p DXt on Y§ which can be identified with
Dy, ® R; in fact, we have for X,Y in ¥S the natural isomorphism

*R
(3) (p DE)(X:Y) = [EstYR] = [EX,Y] @ R = (DE @ R)(an)
Let @1p : Dy — Dy, ® R be the natural transformation given by x — x @ 1p,
1R = 1 € R. Then we obtain the formula

(4) p*<¥§R> = (®1p)+<¥S>

in H3(§,DE ® R). We point out that H"(C,D ® R), in general, does not coincide with
H"(C,D) ® R even for a field R, see below. (Equation (4) can be deduced from the fact
that the localization functor is a model functor, see (II 4.4)(2) [1], and whence induces a
functor between track categories, see §4, and (II §5a) [1].) Using the Quillen equivalence

of rational homotopy theories, see [27], [1], we see that the bracket

(5) <¥Sg> =0E€ H3(£0,DE) ~ H3(FL,,D)

is trivial. Here the bimodule D is given by D(L,L') = Hom(sQL,I’) with QL = L/[L,L}.
We do not know whether the cohomology group in (5) is trivial as well, but we expect this
to be true. Finally note that the natural map

(6) (® 1¢)s : E(Y§,Dy) ® @ — H(YS,D;; ® @)
is not an isomorphism. This follows since <YS§> is an element of infinite order in

B3(YS,Dy) which is mapped by (® 1g)s o the trivial element, see (4) and (5).

(3.5) Example: Let K C T=QE*/2 be the full subcategory consisting of all

Eilenberg—Mac Lane spaces K(G,n) where G is a finitely generated abelian group. The
morphism set K(G,n) — K(H,m) is the cohomology group H™(K(G,n),H) which can be
computed by the work of Eilenberg—Mac Lane [10] and Cartan [7]. We have the bimodule
Dy, on K with Dy(K(G,n),K(H,m)) = Hm_l(K(G,n);H). Now (3.3) yields the bracket

<K> € Ha(g_,Dz). The subcategory QQ C K of rational Eilenberg—Mac Lane spaces satis-
fies <£Q>-= 0.
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Next we consider an example which we compute completely. Let

*

(3.6) S(n) C Top'/~, n 22,

be the full subcategory consisting of finite one point unions of n—dimensional spheres
§™..... S™. The homology functor gives us the equivalence of categories

(1) H : §(n) — My

where M, is the category of finitely generated free abelian groups. For objects X,Y in
S(n) with homology groups HX=AH LY =B we get the natural isomorphism

1
(2) Dg(X,Y) = [EX,Y] = Hom(A,['B)
where
@) 0l I'B , =2
3 r Y[ B= .
n+l” = n B®Z/2, n > 3

Here T' is the quadratic functor of J.H.C. Whitehead [30]. Using the equivalence (1) and

the natural isomorphism (2) we get the isomorphism of cohomology groups

(4) B3($(n),Dy) & H(M,Hom(_,T'}))

which we use as an identification; compare (1.11) [4].

(3.7) Theorem: The cohomology group in (4) is a cyclic group of order 2 and the bracket

<S§(n)> is the generator of this group.
Though <§(n)> is non—trivial all triple Toda brackets in §(n) vanish, that is:

(3.8) Proposition: For f,g,h in S(n) with fg=0 and gh =0 we have
0 = <f,gh> = (f,gh) <S(n)>, 0 2.
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We prove (3.7) and (3.8) in (6.9) and (6.11) respectively, moreover we give explicit descrip-
tions of cocycles representing <S(n)> in (6.9).

Finally we consider an important relation of the brackets <C> with the first Postnikov
invariant of a classifying space. Let X be an H—group or a co-H—group and let #(X) be
the topological monoid of all pointed maps X — X which are homotopy equivalences. Let
X*x be the space of all pointed maps X — X with the compact open topology. Then
&(X) and X*x have the same path components of the identity 1y. Since X is an
H—group or a co-H—group we know that X*x is an H—group as well. The set of path

components of &(X) is the group

(3.9) Aut(X) = o £(X))

of pointed homotopy equivalences of X. Let Auj (X)* be the corresponding subcategory
of uT___Qg* [~ with the single object X and with morphisms given by the elements in the
group Aut(X)". The Aut (X) ~bimodule Dy, yields the right Aut(X) ~module [ZX,X]
with the action x? = (a_l)*a*(x) for x € [EX,X] and a € Aut(X)*. The bracket is as
well defined for the subcategory C = Am(xf 8o that we have the element

(1) <Aut(X) > € B3(Aut(X)" Dy) ¥ B¥(Aut(X) [EX,X]).

Here the isomorphism is given as in (2.5)(3) [4]; the right hand side of (1) is the usual coho-
x *

mology of the group Aut(X) with coefficients in the right Aut(X) —module [EX,X] des-

cribed above.

Now let B &(X) be the classifying space of the topological monoid &(X). We have the

isomorphisms of groups
*

(2) 7, =7B&(X)2x 8(X)= Aut(X)

(3) Ty= 1B 5(X) 2 7, 8(X) = rl(X*x,lx)% a’l(X*X,(;) = [EX,X]
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*
The isomorphism h, in (3) is given by the H—group structure @ of X X

X

which yields
. *X * . *X
the homotopy equivalence h: X *— X © with h(f)={@ 1y, f€ X “*. One can check
that the usual action of the fundamental group T, on the homotopy group T, coincides
*
via the isomorphisms (2) and (3) with the action of Aut(X) on [EX,X] described in (1)

above. The first k—invariant k, of the space B & (X) is an element in the group

3 3 *
(4) k2 €H (Tlvrz) & H (AUt(X) :[Ex:x])
compare [1]. Here the isomorphism is induced by (2), (3). The next result is proved in
(4.9).

(3.10) Theorem. Using the isomorphism in (1) and (4) above the bracket <&_1_L_(X)*>
coincides with the first k—invariant k, of the classifying space B &(X).

We point out that the first k—invariant in the theorem determines the first obstruction in
Cooke’s theory [8] for realizing homotopy G—actions on X by a topological G—action. A

further example, relevant for algebraic K—theory, is considered in §7 below.

§4 Normalized linear track extensions of categories

Track categories are essentially the same as groupoid enriched categories; typical examples
are given by the category ;122* with 2—morphisms given by homotopies. Given a category
C and a natural system D on C we introduce the notion of a linear track extension &
of C to D insuch a way that & is a track category with homotopy category C and
with the number of tracks measured by D. Such linear track extension arise naturally in
topology and lead to the bracket <C> discussed in §3. For this we show that equivalence
classes of linear track extensions are classified by the cohomology group H?’(g,D).
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Recall that a groupoid is a small category whose morphisms are invertible. A track
category denoted by TK or by

(4.1) T—/K
is a category K together with the following 'track structure’ T. Forall A’,AB € Ob X
groupoids T(A,B) with Ob T(A,B) = K(A,B) and functors

(1) T(A,B) x I(A’,A) = T(A",B)

are given, For £f* € K(A,B) we call T(ff') = T(A,B)(f},f) the set of tracks (or homo-
topies) from f to f and we write H:f! —f or H:f~fl for HE T(f,fl). Composi-
tion in the groupoid T(A,B) is written + and is called addition of tracks. The functor
(1), defined on the product groupoid T(A,B) x T(A’,A), coincides on objects (f,g) with
the composition in K, that is *(f,g) = f o g. Moreover * carries the pair of tracks (H,G)

with H:f~ fl, G:g~ gl to the following track in T(fg,flg )s
1,* * 1
(2) H¥G =1,G + (g') H=¢g H + ([ )«G.

Here we set 1,G = of*G, g*H = H*og where 0 = Op : f~f denotes the trivial or zero
track (which is the identity of f in the category T(A,B)). The negative of H is —H with
H + (—H) = oy The operation * in (2) is associative and satisfies

(3) 0,%G = (14)4C =G, H¥oy =(1,) H=H.

Up to the convention on track addition above a track category is the same as a "groupoid

enriched category" or equivalently a category "based on the monoidal category of
groupoids", compare [11]. We define a functor

(4) t: TK — T'K’
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between track categories by a functor ¢ : K — K’ and by functions

t= tf, g T(f,g) — T'(tf,tg) which are compatible withtthe structlue above, that is

t(0) = 0, t(H + G) = tH + G, t(fyH) = (t{)«(tH), t(g H) = (tg) (tH). One readily checks
that the relation =~ on morphisms of K, given by

(5) | f~g & T(ig) # 4,

is a natural equivalence relation which yields the quotient category K/=~. Clearly a functor

a8 in (4) induces a functor t: K/~ — K’/~ between homotopy categories.

(4.2) Example Let A be a cofibration category with an initial object 4. Then the full
subcategory K = A .. consisting of cofibrant and fibrant objects in A is a track category
with tracks given by the homotopy set under (f,g), T(f,g) = [I*A,B](f’g), where

A . A—]I.A— A isacylinderon A, compare (II 5.6)[1]. The dual result holds for fi-

bration categories.

(4.3) Definition: Let C be a category and let D be a natural system on C. A linear track
extension & of C by D, denoted by

—_—

(1) D T=K—,

is defined by a track category as in (4.1), a functor p and an actionof D on T as

follows. The functor p is the identity on objects and is full, moreover p satisfies

(2) p(f) = p(g) = f~g

so that p induces an isomorphism K/~ & C. The actionof D on T is given by isomor-

phisms of groups )
(3) o=0;: Dpfg T(ff), {€ Mor K,

such that (4) and (5) hold:
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(4) oda) + H=H + oy (a) for H € T(f,h),

. (Foin=ao w0

fxog(8) = Vfg(ftﬂ): B € ng .

(4.4) Definition: Consider a linear track extension & as in (4.3). We choose functions

O t :MorC — Mor K
1 = =
H:N,C — u T (£,g)
- f,g EMor (K)
with pt =1 and H(f,g) € T(tf o tg,t(fg)). We define the cochain
2 ¢ (t,H): N(C)— U D
@) SH) Q) U DO

by the element ¢ g(t,H)(f,g,h) € D(fgh) which is obtained by the "operation of pasting"
that is

(3) ¢ g(LH)(Tg) = Fy(gpy(4) with

*
A= —H(f)gh) - (tf)*H(g:h) + (th) H(f:g) + H(fg,h) .
By lemma (A.1) below we see that ¢ a.(t,l':[) is a cocycle.

(4.5) Definition: Let S be anideal in C,let D be S—trivial and let gl CC beasub-
category. We say that (& j,J) is an S—normalized linear track extension of (g,gl) by D
if a function j: S U Mor gl — Mor K and tracks J (fo,g) € T(f,ci(g).i(8))

J(8hg) € T(i(g)ohy,i(gh) are given for g € S, (fg.h) € Ng(Q), £ € p (), by € ™ (h)
and for (f,g) € N2(Ql) with f; = j(f). Moreover the following two properties are satisfied:
(1) For g €S, (fgh) € Ny(Q) and F € T(f,f,) with f,f, € p™'(f), H € T(hyh,) with
(byhy) with hyhy € p(h) the equations J(fy.g) = (B) F + I(f8),

J(g.hy) = i(g)+H * + J(g,f;) hold.

(2) For any choice of t and H in (4.4) which extend j and J respectively the cocycle
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c a,(t,H) is an S—normalized cocycle rel gl. This in particular means that the restriction of
(j,J) to Ql is a pseudo functor in the sense of [11].

Amap t:(8&,j,J) —(%,7’,J’) between such track extensions is a functor t asin
(4.1)(4) such that pt =p, tj=j, toy = Tif 41 and tJ = J’. Whence S—normalized linear
track extensions of (g,gl) by D form a category which we denote by Track. Two objects
are equivalent and we write ( &j,J) ~ ( &°,j°,J’) if there exist maps

(&3,J) — (&",j"J")— (&,i’,J") in Track. The equivalence classes form the class of con-
nected components of the category Track which we denote by

(3) 7oLracko(C,C'D) = Ob(Track)/~.

(4.6) Theorem: There is a canonical bijection

1 3l
¥ : 7y Tracks(C,C5D) & Hg(C,C™5D)
The bijection carries the equivalence class of ( &,j,J) to the cohomology class of the co-

cycle ¢ y(t,H) in (4.5)(2).

We define the trivial track extension in Track by K =G, p = 1, and T(f,g) = D(f) for

f=g and T(f,g) = ¢ for f# g, moreover o= lD(f)‘ The tracks J are given by the
zero elements in D(f), f € Mor(C). Clearly the bijection ¥ in (4.8) carries the trivial track

extension to the zero cohomology class.

(4.7) Example: Let C C coHl C Top /= be a category as in (3.1) and let EC be the full
subcategory of _T&pf consisting of objects in C. Then we obtain by (4.2) the linear track
extension &(C):

(1) Dy 4T EC—G.
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Here weuse for f: A— B in EC the isomorphism
- *
(2) ol T(£) = [LABM = x,(B™A 1) 2 (TA,B]

which is defined similarly as in (3.9)(3) by the co—H—space structure of A. One can check
that op satisfies all properties in (4.3). The bracket <C> is now simply defined by the

cohomology class

(3) <C>=¥{¥(0)}

in (4.6) above. The class <C> is more generally defined for any subcategory

C CcoH(A) where A is a cofibration category and where co—H(A) C A ¢/~ rely is the
full subcategory consisting of co-H—groups in A, see [1]. In this case we get o in (2)
similarly as in (II. 10.18) [1]. Dually we obtain the class <C> as well for any subcategory
C CH(B) where B is a fibration category and where H(B) C B, ./~ rel 4 is the full sub-
category consisting of H—groups in B. This shows that <C> is as well defined for CCH

*
in (3.1) when we use the fibration category Top .

(4.8) Proof of theorem (3.3): Using the definition of <C> above we see immediately by
(4.4)(3) that (f,g,h)*< C> represents the triple Toda bracket <f,g,h>; compare Toda’s
definition of <f,g,h> in {29).

(4.9) Example: We identify a monoid (M,-,1) with the category M with a single object
x and with M = M(,,4). Now let M be a topological monoid and let :'OM be the
monoid of path components of M with the projection p: M — rOM which carries

m €M to the component p(m)=M_ with m € M_ . We assume that the Hurewicz

homomorphism

(1) o: 7 (M_,m) =, H (M)
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is an isomorphism for all m € M. In this case the fyndamental groupoid *M of M yields
the linear track extension

(2) rlM—+-»rM:lM-———broM.

Here x;M is the natural system on rOM which carries M€ M to the homology
*
H,(M_,); induced functions are p(m)¢ = H,(£_) and p(n) =H,(r ) with

m - n={ (n)=r (m). Let
(3) 9{xM} € B3(x,M;7, M)

be the cohomology class associated to the track extension (2), see (4.4). In case M isa

group we have as well the first k—invariant

(4) k, € B%(7,BM,x,BM) & H3(x M, 7, M)

1
of the classifying space BM of M. Here the isomorphism is induced by rBMyrx M,
n = 1,2. More generally as in (3.10) we get

(5) k2 =¥{xM} .

For the proof it is enough to consider monoids M = fIX where fIX is the Moore loop

2 ith trivial O—skeleton X° = ,. In this case

space of a 2—dimensional CW—complex X
ko is represented by a cocyle ¢(d) which is determined by the crossed module

d: 12(X2,X1) —_ rl(xl); see [22] or [15]. This cocycle corresponds exactly to the cocycle
(4.4)(3) which represénts ¥{axM}. On the other hand (5) can be deduced from a result of

Igusa, compare B. 1.1. [16].

85 An algebraic model for the track category of one point unions of n—spheres.

Using free nil(2)—groups we define an algebraic track category which is equivalent to the

topological track category of one point unions of n—spheres. This is the crucial step for the
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*
computation of the bracket <S(n)> in (3.7). Recall that S(n) C Top /~ denotes the full
subcategory consisting of finite one point unions of n—spheres. By (4.7) we have the linear

track extension &(S(n)),
(5.1) Dy, T == E§(n) — §(n), n > 2,

which is defined topologically. We now describe an algebraic model of this track extension.
For this we identify §(n) with the category of finitely generated free abelian groups M,

see (3.6)(1), and we identify the bimodule Dy, in (5.1) via (3.6)(2) with the bimodule D .
Therefore (5.1) corresponds to a linear track extension of My by D .

(5.2) Theorem: The topological track extension &(§(n)) in (5.1) is equivalent to the alge-
braic track extension & (M) defined via free nil(2)—groups in (5.5) below.

Here we use the notion of equivalence in (4.3)(8) where we set S = ¢, g1 = ¢.

A free nil(2)—group is the quotient F/I‘3F where F is a free group and where I',F is the

3
subgroup generated by triple commutators in F. For a free abelian group A we choose a
free nil(2)—group G, with abelianization ng = A. We write the group structure of G,

additively. One has the well known exact sequence

2

where A2A = A A A is the exterior product and where i A(x Ay)=—=x—-y+x+yis
the commutator. Let nil be the full subcategory of the category of groups consisting of all

G, with A € Ob(Mg). There is the canonical linear extension of categories
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2y +. .9 P,

(5.4) Hom(_,A%) — il == My

where p is the abelianization functor and where the action of a € Hom(A,AzB) on mor-

phisms fO : G A GB in pil is given by f0 +a= fo + igap, . Moreover, we obtain for

n 2 2 the following linear track extension & (My):

(5.5) Hom(_,I}) T == pil 24 M, .

, Here the functor p is the same as in (5.4). For morphism f,fl : Gy — Gy in pil with
p(f) = p(fl) there is a unique homomorphism

(1) A(ff): A~ BAB
with f+ A({,fl) — 1. We now consider the commutative diagram
A
11/ a(f, 1
(2) 0—T'B-B® BB AB—0

o 0 ?_”

0— B®Z/2 T+BEB-94B AB——0
in which the rows are natural exact and in which the subdiagram O is a push out of abe-
lian groups. For the definition of the homomorphism in (2) recall that the functor I is
equipped with the universal quadratic map 7: B—TI'B and that 7 and & are defined
by 7¢(b)=b®Db, oy(b)=b®1, b € B; moreover q(b®b’) = b A b’. We now define
the track structure T in (5.5) by use of q and q in (2), namely

: T,(f") = {H : ¢H = A(f,i*)} C Hom(A,B ® B) and
®) { T (') = {H:QH = A({f)} C Hom(A,B®B) for n 3.

Addition of tracks is defined by addition of homomorphisms and induced functions (4.1)(2)

are given by composition of homomorphisms
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(?2p(f))G for n =2,
®) [‘:G ={(@pn)G for 023
g H=H p(g)

Next we define the isomorphism
1
(5) ¢ = o;: Hom(A,T', B) 2 T _(£1)

by o{a)= 7a for n =2 and o(a) = 7a for n > 3. This completes the definition of the
linear track extension (5.5); one readily checks that all properties in (4.1) and (4.3) are
actually satisfied.

For the proof of (5.2) it is enough to construct maps between linear track extensions

i 1
Here & is the subextension of (5.1) given by the subcategory E C ES(n) consisting of
all maps in ES(n) which are (n—1)—fold suspensions 227l with f in ES(1). Moreover
the map i in (5.6) is the inclusion; clearly this is a map in Track since each homotopy
class in §(n) can be represented by a map in E . The map t is more complicated. The

functor

(1) t:E, — nil

carries the object S™ ..... S" = $271X to the free nil(2)—group

(2) Gy = 7{(X)/Ty7(X)

with X = sl....,sl. Moreover t carries the morphism £1¢ 6 the homomorphism in-
duced by ,(f). In (2) we identify G2° = ,(X)*® = H_(£*7X), n > 1. This shows

that t induces the functor (3.6)(1) on homotopy categories. Next we define the map t in
(5.6) on tracks, that is
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(3) t=tp,: TEHE ) Ea T _(stg),

*
as follows. We first consider the case n = 2. Let fg: X — Y bemapsin Top where X
and Y are finite one point unions of 1-spheres. Then we get t; g in (3) by the composi-

tion of the following bijections.

T(X,5g) = [L,EX,EY]I8

(4) ~ [LX,AEY]

(5) v [1,X,3(Y)F0 %8
) ~ [pL,X,p3(Y)][* 8*
(7) ¥ [LepX,p ¥ HheD8x
(8) o T,(thtg) .

In (4) we use the adjunction and the map i: Y -— (XY adjoint to the identity of ZY.
For the infinite reduced product J(Y) of James [17] we have the homotopy equivalence
J(Y) ~ XY which carries the inclusion j:Y CJ(Y) to i and which induces the bijec-
tion (5) . Next we use the crossed chain complex p(Z) of a CW—complex Z with 70 = *:
this is the homotopy system of Z introduced by J.H.C. Whitehead [31], compare also VI,
§1 [1]. Recall that p = p(Z) i given by the homotopy groups p_ = xn(z“,z“‘l), n>2
and p, = rlzl and by the obvious boundary maps 4 : Py — Pp_y- The cylinder I,p
is defined in such way that I,p(Z) = p(I4Z). Using this cylinder we define relative hom-
topy sets as in (II 2.3)a) [1] so that the set in (6) is defined with f, = p(if). The bijection
(6) carries a track represented by a cellular map H : I, X — J(Y) to the class of p(H)
which extends (fs,g«). The crucial point for the existence of t in (3), however, is the cons-

truction of the natural map

9) h:p((Y))=p—pY
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in the category of crossed chain complexes. We define pY by pz =0 for n2 3 and by

P;r =H;Y @ H)Y, p\l( = Gy, see (2). The boundary 8: pg — p}( is the composition

¢:H,Y®HY - HYAH Y>-Gy
where i is the commutator map as in (5.3) and where q is the projection (5.5)(2). We

define h in (9) by the commutative diagram

2
py = w31 gr By, 3 2 0y
(10) 182 9
1 Y

pp=ml=nY5— G =7

where h, is the projection and where h,, is the Hurewicz map with J = J(Y). The iso-

morphism in the top row of (10) is given by the multiplication in J. The map & in (10) is
a crossed module with the trivial action of p}’ on p2Y and the map 02 is a free crossed
module generated by the attaching maps of 2—cells in J. This shows that the diagram com-

mutes, moreover, one can check:

(11) Lemma: The map h in (9) i8 a well defined map between crossed chain complexes

which induces isomorphisms hy : L ran

, for n € 2, where 7, p =ker 8 [im 0n+1 .
The lemma implies that the induced map h, in (7) is a bijection as well. Moreover the
bijection (8) is a direct consequence of the definitions. Finally define t in (3) for n 2 3 by

~ the commutative diagram

T(Ef,Tg) )
(12) l £i—2 l Hom(1,7)

T(En—1 f ,En_lg) —— T,(t1,1tg)
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where £%2 is the (n—2)—fold suspension and where & is the homomorphism in (2). This
completes the definition of t in (5.6); one can check that all properties of a map in Track

are satisfied by t.

§6 Bockstein homomorphisms and cup products

In this section we study certain cohomology groups of the category My of finitely genera-
ted free abelian groups. Let MM’ M" : MH — Ab be functors, then we write for short

n =H" om
(6.1) {H (M) =H (MH:H (_rM)):

Hn(M",M ") = Hn(Nzlﬂ , Hom ( M",M’)),

compare (1.2). A short exact sequence

(1) M0 — M- MM 0

of functors as usual induces an exact sequence

2) — HY(M?) — B°(M) — BoM") 25 B o) —

where g = f(.A4) is the Bockstein homomorphism. Now assume that 4 admits a point-
wise splitting r (i.e. a family of homomorphisms rp, :MA— M’A with Ipja =1

A € ObMy). Then we have the cohomology class

(3) n=n(A={c} € B (M" M)

which is the obstruction for the existence of a natural splitting r of 4 We define the co-
cycle ¢ by c (A)a, =-1gM(A) + M'(A)ry for A: A— B in My. Using the compo-
sition pairing

(4) Hom(A,M"B) ® Hom(M"B,M'C) — Hom(A,M'C)
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with A,B,C € Ob(gn) we get the cup product
(5) U: B%(M") @ BB (M" M) — E2 (M),

compare (IV. 5.18)[1].

(6.2) Lemma: The Bockstein A and the class 5 above satisfy the equation
B(€)=—¢Un forall ¢ € HY(M"), n€ L.

Proof: Let ¢" bea cocyclein {. Then { U # is represented by the cocycle ¢" Uc_ with

(1) (€" U ¢ )(A Ay 1) = €(Ap) © €"(Agorridp 1)

for (’11""')‘n+1) €N__ {(Mz). On the other hand a cocycle j-1 6c € B{c"} is obtained

n+1
by any cochain ¢ for which qc(Ay,...,A ) = ¢"(A,...,A ) with q in (6.1). Since

q(6c) = 0 the cocycle j-l éc is well defined. Now let a splitting r: M"A — MA be
given by rq(x) =x—jr A% X € MA. Then we can choose ¢ by

c(Ay,mdy) = roc"(Ay,..,A) and we check éc =—" Uc_ by definition of 6 in (1.3).

In fact we get

(2) FHBE) (A ity g 1) = T (Agyrmdy 1),
=—c"Uc )y 1)

We know that for the functor ® with ®*A = A® A the cohomology
(6.3) %2 = ¢

is trivial for all n, compare theorem (iii) [18]. The following exact sequences of functors

My — Ab are of importance to us:
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WRTIY. /B Ry C—

A 10— T T 82 4,42 9
J(Z:O-—-'A2 T L,e? 9,5p%2 0

'13:0—'SP2 w :@2 ;:62 + 0

#,:0—SP? 2T Zem/2—0.

The sequences 4, and .4 are defined in (5.4)(2), moreover we define the gymmetric
product SP%(B) = B8 B by the cokernel of 7 with F(aAb)=2®b—b®a. For
1(a®b)=a®b weset w(a®b) = y(a+b)-1a)-7b) and

#a®b) = 7(a&b) =a®b + b ® a, compare also [28]. By (6.3) the Bockstein
homomorphisms 8, = B(4) (i =1,2,3) are isomorphisms

(6.4) ﬂlﬂ2ﬁ3 : HnéZ n H11+ISP2 v Hn+2A2 w Hn+31-\

for n € I. The sequences Jq), A, A are pointwise split so that the classes
1) 7= 1K) with B(€)=—¢Un,

are defined for i = 0,1,2. Here, however, ﬂo needs not to be an isomorphism.
(6.5) Lemma: 1%@2%) = 7/2 and HY(®%) =0 for i =1,23.

The Lemma and (6.4) imply
/2 for n=3
(1) HY(T) = {

0 for i <3 and i =4,5,6.

Moreover we see that the Bockstein homomorphisms
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(2) < By B" (A% B (@ 7/2), n =12,
(3) By B (®1/2) x B*(sP), n <5,
are isomorphisms. By (3) one gets the isomorphism

(4) 7o - HY@ 7/2) ¥ BY®?), 0 < 5,

Proof of (6.5): The group mle? is the group of natural homomorphisms A — ézA which
can be computed by setting A = Z. This shows that the generator of nle? = /2 is the
natural map € : A — A ® I/2>— @A given by 4, in (5.3)(2). Next we know

Hle% = 0 since H2SP? = 0 by [18], see (6.4). Moreover, Hartl [14] shows H28% = ¢ by
use of his theory of 'quadratic rings’. Next we consider the exact sequence (6.1)(2) for A

in (5.3)(2). This gives us the exact sequence

8 )
(1) 0— B2A2 0, g3ez/2 — B3€% — 0

where B2A2 = 17/2 and B3A% = 0 by (6.4). Thus §; is an isomorphism and B8 = 0
since we have

(2) men/2 =1/
For this we use the exact sequence in theorem (ii) {18] with T(A) = A ® Z/2, namely
0 — Shukla®(Z,7/2) — H°@7/2 — Shukla(Z,2/2) — Shukla*(2,7/2)

where Shukla"(Z,7/2) = Extz(Z,1/2) by [26].

Remark: The result H%@% = 0 used in the proof above is as well a consequence of Igusa’s
result k™ #0 for N 2 4, compare (7.6) below. In fact, e’ # 0 would imply that B,

in (1) above is trivial and this would imply that <S(n)> is trivial for n > 3.
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Next we observe that via (2.3) the linear extension pil in (5.4) yields an element

{nil} € 122 ~ 7 /2. This element is the generator since we show

(6.6) Lemma: {zil} = By84(€) = B5(€) U ny # 0

Here € € HO &* n Z/2 denotes the generator. It is easy to check that nil admits no
gplitting on maps T,A where A:Z — Z ® 7 is the diagonal and where
T:Z®T-—TO is the interchange map, this implies {nil} # 0. Whence we get (6.6)
by (6.4) and (6.5).

(6.7) Lemma: The linear track extension &(Mg) in (5.5) satisfies
¥{ £(Mp)} = 6, {ail} = {nil} U, .

Proof: The second equation is a special case of (6.2) associated to the sequence . Now
choose a cocycle ¢" =A_ € pil asin (2.3)(1). We define for the same s the cocycle
c(s,H) € ¥{ (M)}, see (4.6)(3), by choosing H with qH(f,g) = A (f,;g). Now H isa
2—cochain in lE[om(__,®2 ) and we observe that for & in (1.8) (6H)(f,g,h) = —A where A
is defined in (4.4). By definition of ¢ in (5.5)(5) we obtain now the first equation in (6.7).

(6.8) Lemma: 7, #0 and 29, =0.

Proof: Let a € F(My,Hom(A%T")) begiven by a, : AAA—TA with
ap(aAb)=2r,(a®b)—[a,b] where [a,b] = 7{a + b) — 7(a) — 7(b). Then we have
2¢ (f) = 6(a) for {c } =5 Nowlet A=T®I,if n =0 thereis ry with
o(T ®T) =T(T)r; but this is not possible.
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We are ready for the proof of theorem (3.7). For this we give the following descriptions of

the cohomology class <S(n)>.

(6.9) Theorem: Using the identification (3.6)(4) we obtain the equations

<§(n)> = ﬁjﬂ2ﬂ3(5) = ﬁj{é‘é.l} = {pil} U Uj = (1935) U 79 U ’7j

where j=1 for n=2 and j=0 for n2 3.

All g, (i=0,1,2,3) in (6.8) are isomorphisms by (6.4) and (6.5). This implies (3.7). The
theorem shows that the cup products

(6.10) ny U n, € B(SPAT) and 1, U n, € H¥(SP%€7/2)

are non—trivial elements of order 2. Moreover o :I' — ®7/2 yields the equations

oxny = 1y and ouf; = B, by (5.5)(2).

Proof of (6.9): Using (5.2) and (6.7) we get <§(2)> = B, {nil}. This yields the equations
for n =2 by (6.6) and (6.2). Moreover the construction of & (M) and the commutative
diagram (5.6)(12) show that <§(n)> = 74,<§(2)> for n > 3. This completes the proof of
(6.9).

(6.11) Proof of (3.8): For ¢ in (3.2)(2) we construct a splitting of y:*n:j:l_——b T. This im-
plies (3.8) by (3.3) and (6.9). We can choose basis elements {b;} and {c;} such that

fb, = 0 for i <i, andim(g) Cspan {b, :i > iy} and such that g(cj) =0 for j<j, and
im(h) C spa.n{cj 1> j{)}’ We can find sf,sg,sh with the same properties, this yields the
splitting s.
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§7 Th morphism group of a free ni lements in th
cohomology of GLy(Z)

Let Gy be the free nil(2)—group with N generators, thatis Gy =G, for A = EN, see
(5.3). We have the extension of groups

(1.1) Hom(Z™ A%ZN) >— Aut(Gy) —» GLy(T)

which is obtained by restricting the linear extension (5.4) to the subcategory GLy(Z) of
Mg, see (2.5) [4]. The extension (7.1) represents the cohomology class

(1) {Aut Gy} € HA(GLy(Z),Bom(zN A%1M))

which is trivial if and only if the extension (7.1) is split. As in (2.5) [4] we see that
' . * .

(2) {Aut GN} = lN{@

where iy : GLy(Z) C My is the inclusion. This implies that {Aut Gy} is an element of

order < 2. Moreover, we prove in (7.11) below the

(7.2) Theorem: For N 2 3 the element {Aut Gy} is a non—trivial element of order 2.
For N =2, however, one has {Aut G,} = 0.

Now let

(7.3) ey € BY(GLy(T), Hom(z" &°1™))

be given by the canonical homomorphism N _1Ne /2 >— @°Z™. Then we obtain
by (6.6) and (7.1)(2) the formula
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(7.4) Theorem: {Aut Gy} = ByBy(ey) = Baley) U 1y

Here ,Bi is the Bockstein homomorphism associated to the exact sequence of
*
GLy(Z)—modules Hom(HN,Jtl(HN)), compare (6.4). Moreover r,'qu = ip®; is the restric-

tion of 7, to GLy(1), see (6.4)(1).

N
Let VS™=S".....S" bean n—fold one point union of n—spheres. The classifying space

N
B¢& (VSN) plays an important role in the construction of Waldhausen’s algebraic K—theo-

N
ry A(4+) of a point ,. The first k—invariant of B #(V S™) can be obtained via (3.10) by

restricting the class <S(n)> to the group of homotopy equivalences

N
Aut(VSn)* = GLy(Z). Therefore (7.2) and (8.9) yield the following result.

N
(7.5) Theorem:The first k—invariant K0 of the classifying space B £(VS™),

k™" € B3(GLyy (), Hom(z™ rlz")),

satisfies the equations N ﬁjﬁzﬂa(eN) = ﬂj{Aut Gy}t = {Aut Gy} U nlf where

(N2 _ N

j=1for n=2 and j=0 for n 2 3. Moreover Hom(1,0)s ® for n> 3 and

2.k = 0, For N =2 the element k2" 1> 2, is trivial.

(7.6) Remark: K. Igusa [16] showed that k""® #0 for n > 3, N > 4. The formula in (7.5),
however, gives a new characterization of this element. Moreover, P. Kahn [19] observed by
use of an example of Carlsson [6] that there is a representation

Py I/2@ 12 — GLy(T), N 2 8,

ith p. (K240 for n> 3. Th ion whether k5% is trivial i
with p p( }#0 for n 2 3. The question whether i8 trivial or not remains open.
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Using this remark we obtain the following corollaries of (7.5).
*
(7.7) Corollary: The representation Py in (7.6) satisfies pp{Aut Gyl 0.

It would be of interest to check this corollary directly.

(7.8) Corollary: The elements
nyV 7)€ BX(GLyZ,Hom(SP?Z™,r1N)) and U n}j€ BX(GLYZ,Bom(sp?zN, 1V 7/2))

are non—trivial of order 2 for N 2 4.

These elements correspond to certain non—trivial group extensions of GLNTI; in a similar
way the elements (6.10) yield non—trivial linear extensions of the category M, by (2.3).
Finally we get the following connection of <§(n)> with Igusa’s associativity class x(1)
in [16). Let

My (T) = End(V 8% < §(a)

N
be the full subcategory of S(n) consisting of the single object V S™; using (3.6)(1) this is
the monoid My(Z) of integral N x N — matrices.

N
* (7.9) Theorem: <End(V $™)> = x(1),n 2 3.

The equivariant version of this result for y(M) where M is a monoid, will appear else-

where. Using the restriction of the formulas in (6.9) we as well get
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(7.10) x(1) = ByByBa(i ) = By{End Gy}
= {End Gy} U j*ﬂo = fa(€) U J'*’lz U j*"0

This, in fact, is a simpler algebraic characterization of x(1) than the one in [16] where this
class is defined by a somewhat mysterious cocycle of high complexity, see also (3) in the

following proof.

Proof of (7.9): For a homomorphism g: A — B in My we obtain a homomorphism
8(g) : G4 — Gy as follows. We choose a basis Zg C B for each B € Ob My and we
choose an ordering < on Zg. For x’' € 2,,x € Zg let g(x’,x) € T be given by the for-

mula g(x’) = Eg(x’,x)x. We define 8(g) on generators Z, C G, by the ordered sum
<

(1) s(g)(x’) = ) g(x’x)x

in Gpg. This as well yields the cocycle ¢" = A in (2.3)(1). For the exact sequence
we define a pointwise splitting r = A%B &% by r(xAy)=x ® y for x,y €Zg,x<
y. Thus we obtain a cocycle j 1(6c) by

(2) T (6e)(f,8h) = rfyTA (g,h),

compare (6.2)(2). This cocycle represents the element S {nil}. When we restrict the co-
cycle j—1(6c) to matrices f,g,h € E=nd(IN) = My(Z) we get the equation of cocycles

(3) (o)t h) = I(f,g.b).

Here 1 is Igusa’s associativity cocycle which represents y(1), (compare A(6.3) [16] where
weset M =1, f=1I). Igusa’s definition, however, is so complicated that it takes some
effort to get an explicit formula for I by a in (4.2) [16]; in (4.2) [16] there is a missing
summation index k in the first sum. A tedious but inevitable calculation shows that the
equation (3) of cocycles ig actually satisfied. An explicit formula for ¢" = A g is contained
in (V. 7.17) [2]. Clearly (2) is the most elegant description of Igusa’s cocycle since it in-

volves no complicated summation formulas.
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(7.11) Proof of (7.2):
We first show that (7.1) is split for N = 2. Let F, be the free group on two generators

x,y, let <i(c)> C Aut(F,) be the subgroup generated by the inner automorphism i(c)
associated with the commutator ¢ =-x—y + x +y, and let K C Aut(F,) be the sub-
group consisting of all automorphisms ¢ such that ¢{c) = *c. Then there is a short exact

sequence
<i(c) > >— K — GL,(Z)

which is easily derived from the fact that the kernel of the canonical projection

Aut(F,) i U GLz(H) i8 exactly the subgroup of inner automorphisms (see [24]). In par-
ticular, we see that the restriction of p is still surjective because GLz(ﬂ) is generated by
pa, pf# and pr, where a,8,7 € K are the automorphisms sending x to x,y + x,y and
y to x+y,y, x, respectively. Now observe that conjugation by c¢ is the identity in
Aut(G,). Hence K C Aut(F,) induces a splitting for (7.1)

K/<i(c)> & GLy(Z) — Aut(G,) .
The proof of (7.2) will be completed by showing that (7.1) is not split for N = 3. Assume

that there is a splitting homomorphism 8 : GL4(Z) — Aut(G,). We shall use the following

matrices

1 0 10 T 1 0 1
A=&—10,B=[211,B=[810,C=001
0 -1 01 11 10

and the identities

(1) A2=c®=(ac)® =1,AB=BA, ABT =BTA
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to derive a contradiction. Note that there are unique functions "’i : GLy(Z) — A3 such-
that

s(U)(e;) = ujq€) + ug;eq + ugeq + 03(u) € Gg

for i=1,23 and U= (uij) € GL4(Z), where e,,e,,eq are the generators of G, and

AT is identified with the commutator subgroup of G3 via i g, ie.
/4

jhet & cf. (5.3). Let ai,ﬂi,ﬁrir,'ri € A%I3 be the elements o,(A), o;(B),

o'i(BT), 0,(C), respectively. Then A2=1 yields

& A e = —€—¢ .
(2) a3 = A*aa

since we have s(A)z(e3) = s(A)(—e3 + a3) = €3 — a3 + Ayag, where Ay denotes the in-
duced endomorphism A, = A%A of A%D3. Similarly, applying the other identities in (1)

to e,,e,eq and e respectively, yields

(3) 75+ Cary + Cly = 0

(4) a; + A*’yz - A,,‘C,.gar2 - A*C*A*73 + A*C*A*C*a3 + A*C*A*C*A**rl =0
(5) €y A ey + ay + ag + Asfls = —f5 + Byag

6) a, + A = f] + Bia, .

Now, with respect to the basis €y A €q, €3 A e, & A €y of AT the induced endomor-
phisms are represented by the matrices Ay = A, By = (BT)_l, Brf = B—l, Cy = C. Write

aij’ﬂij"" for the jth component of a;, Then the 2nd, 1st, 2nd component of (2), (3)

i’ e
and (6), respectively, yield

B B AT
g9 = =30 =0, 73y + 7yo + 733 =0, a3 = 2675,
whence the 3rd component of (4) yields
T
@y = 2679273 -

On the other hand the 1st component of (5) yields

gy = =204, — 1

which is a contradiction.
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Appendix A: Proof of the classification thegrem for linear track extengiong

The proof of theorem (4.6) is divided into three parts. In (A.1) and (A.3) we show that ¥
is well—defined and injective, respectively. The main part of the proof will be (A.2), where
an S—normalized linear track extension ( a: ’j[)"] 0) is constructed, for a given cocycle

c€ F3(Mor gl) n F3(S), such that ¥{( a’cr,jO,Jo)} = {c}. The construction is based on
well-known coherence properties in bicategories (cf. [5}, [21]). The crucial observation is
the fact that the cocycle condition corresponds exactly to the coherence conditions in a bi-
category, see (A.2)(5) below. As T. Pirashivili points out in [25], M. Jibladze also used bi-

categories in order to represent cohomology classes in Hs(g,D).

(A.1) Lemma: Let ( £j,J) be an S—normalized linear track extension of (g,gl) by D as

in (4.5) and let t,H be functions as in (4.4) which extend j and J, respectively. Then:

8) ¢ 4t,H) is an S—normalized cocycle rel cl.

b) ¢ ft,H) + éc=c t,H—=), foral c€ F2(Mor _(_}_1) n Fz(S), where H —c denotes
the extension of J given by (H—c)(f,g) = H(f,g) — at(fg)c(f,g).

c) {cg(tH)}E Hg(g,gl;n) does not depend on the choice of t and H.
d) {c4(t,H)} depends only on the connected component of (&j,J) in Track.

Proof: Using (4.5)(2) the proof of a), b) and d) is straightforward. To prove c), let t,H

and t’,H’ be extensions of j and J, respectively. Assume first that H and H’ satisfy

*

H'(f,g) = «('1)+G(g) — (tg) G(f) + H(L,g) + G(fg),

with G(f) = 7.0 if {€ Mor(Cl) US, and G(f) € T(tf,t'f) arbitrary otherwise. Then
we have ¢ ft,H) = ¢ {t",H’), whence the general case follows from b).

(A.2) Construction of ( a': JjgrJg): First we construct a certain bicategory B(c) associated
with c. Then & will be of the following form
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(1) DLT:ZJFC(Q)LQ.

Here FC(C) denotes the free category generated by the morphisms of C, see (7) below,
and T: is obtained by pulling back the tracks, i.e. the 2—morphisms, from B(c) via a
suitable function =, see (8) below. We point out that a: will actually depend on =.

The set of morphisms of B(c) is the disjoint union B(C) with
(2) B(Q) = L | B,(Q) —I- Mor(@),
where B_(C) denotes the following set of n—fold brackets, which is defined recursively,

B,(C) = Mor (C) | | Ob(C) (disjoint union)

n

Bn+1(g.) = {(u,v) € Jl:_l_Bi(Q X Bn+1_i(§,) : ‘90“ = 81"} ’
with JpA=8,A=A, §f=A, 8,f=B, for A€Ob(C) and f€ Mor(Q), f: A— B,
respectively, and §(u,v) = 80v,¢91(u,v) = 8;u. B(C) is endowed with the canonical func-
tion q satisfying q(A) =1,,q(f) =1, and q(u,v) = q(u)q(v). The subset

Ob(C) C B(C) contains the identities (up to coherent isomorphisms) of B(c). Next, for
A,B € Ob(C), let B(A,B) be the groupoid with objects

Ob B(A,B) = {u € B(Q) : dju = A,8,u =B}

and morphisms, which we call tracks,

(3) B(A,B)(v,u) = { ;) *Dqu i au=av

otherwise

subject to the composition (u,v,e) + (v,w,8) = (u,w,a + ), cf. (4.1)(1). Moreover, for
A,B,C € Ob(Q), let

(4) * = *A B.C . E.(B!C) x Q(A:B) — E(A,C)
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be the functor given by u*v = uv = (u,v) and (u,u’,a)*(v,v’,8) = (uw’,vv’,a + B). The

composition in (3) and (4) will serve as the vertical resp. horizontal composition in B(c).
*

As usual, u, and v will denote the induced functor u,v = uv, uy(v,v’,a) = (uv,uv’,a),

* *
and v u=uv, v (u,w’,a) = (uv,u’v,a), respectively.

Next, ¢ comes into the play. Note that ¢ yields natural transformations, for all
A,B,C,D € Ob(C),

A=)y p:By—1:B(AB) — B(AB)

%*

p=ppp:A —1:B(AB)— B(AB)

a=ay g op:*(1%*)— *(* x1): B(C,D) x B(B,C) x B(A,B) — B(A,D)
given by

A(u) = (Bu,u,¢(1g,15,qu))

p(u) = (uAu, —(qu,1,,1,))

a(u,v,w) = (u(vw),(uv)w,c(qu,qv,qw)).

*

Here A ,By are the functors induced by A,B € Ob(C) C B,(C), and 1 denotes the

identity functor on B(A,B) and B(C,D), respectively. The following coherence conditions

for left and right identities and associativity are satisfied, for composable

ul,A,uz,u3,u4 € B(C), with A € Ob(C) C Bl(g),

(i) MA) = p(A)
(5) (i) (u)eMuy) = a(u;,An,) + ugp(n;)
(iii) a(uy,u,,u51,) + a(uuy,ug,u,)

*
= (u;)sa(ug,uq,u,) + a(u ,uyugu,) + uya(u;,uy,u,),
because ¢ is a cocycle. Whence we know that the categories B(A,B) together with the

compositions (3), (4) and A,p,a actually from a bicategory which we denote B(c), cf. [5].
Coherence in B(c) yields a unique track
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(6) h(u,u’) € B(A,B)(u’,u),
for all uw,u’ € B(C) satisfying qu = qu’ € FC(C)(A,B). The track h(u,w’) is obtained
from the zero tracks (u,u,0) and #},p,a by means of the pasting operations in B(c), cf.

the section on coherence in [21], VII which generalizes to bicategories. Moreover q, is part

of the factorization q = 0

q
(7) B(C) —-— Mor FC(C) %0, Mor (%)
given by q;(A) = A € Ob(C) = N((C), q,(f) = { € Mor(C) = N,(C), and
q(uv) = q(u)q(v). Recall that FC(C) in (1) is the category with objects
Ob FC(C) = Ob(C) and morphisms

Mor FC(Q) = || N,(©),
“A

A
cf. (1.3), with (A,,..,A ) € FC(C)(A,B) for B — c—-lA, subject to the obvious com-

position given by juxtaposition. a4 in (7) then agrees with the canonical functor qq in
(1). We shall now use (6) to pull back the track structure from B(c) via a function
(8) 7 : Mor FC(C) — B(C)
satisfying q 7 =1. For A,u € FC(C)(A,B) set
T7(A.x) = B(AB)(7p,7))
and let the track addition of T: be the induced one, i.e. the same as in (3). Then, using
*
(6), we define Ay : T:(p,,u’) — T:(A;:,A,u’) and A : T:(p,p’) — T:(p,\,p’l) as
follows,
A zp,aw,a) = (x(Ap), 7 (Aw), = 9"(Ap) + a + 97(A,0"))
*
A ((zp, 7w ,a) = (x(pA),x(w2), — 97 (,2) + a + 97 (w,2)),

where 97(A,u) €D is given by the canonical track, i.e.

qo(Au)
(x(A)x(),7(Aw), 9" (A,)) = W(x(A) (), 7(Aps)) -
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It is now easily checked that a: in (1) is a linear track extension with D acting via the

canonical isomorphisms
I) N 'l‘w =({TA.T I) .
qO(A) = c“"‘) (72,72) x qO(A)

Moreover, for &= a‘: , we see that ¢ b(tO,HO)(f,g,ﬁ) is determined by the canonical track

from f(gh) to (fg)h in B(c),i.e.

(9) c JtO’HO) =c.
Here ¢ a(tO,HO) is defined as in (4.4)(3), with respect to the functions t, and Hy given
by t,(f) = f € Mor (C) = N,(C), and

Ho(f:g) = ("'(tof ° tog),rto(fg),O) € T:(tgf ° tof(g))-

We use the restriction of t; and H, to turn (1) into an S—normalized linear track exten-

sion ( a’cr,jO,JO) with ¥{( az,jo,.]o)} = {c}; note that (4.5) (1), (2) are satisfied.

(A.3) Injectivity of ¥: It suffices to find a map of S—normalized linear track extensions

T: (£igdg) — (&),
cf. (4.5), for all such track extensions ( &j,J) and all cocycles ¢ € ¥{( £j,J)}. By (A.1)b)

any such cocycle is of the form
c=c t,H)

for some extension t and H of j and J, respectively. Let & be of the form (4.3)(1).

Then there exists a unique functor
t:FC(C)— K
such that fto = t. Moreover, for A,u € FC(C)(A,B), let

t=1

Ap T’C'(A,p) — T(TA, )

be the function given by
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(xA,7u,a) = H(xd) — H({7xp) + (7p,74,0)
where H(u) € T(iq,u,tqu) is defined recursively as follows,
(1) E(A) =1, H1) = - (H14) ) T EL, L)
H(f) = 0,{0)
H(uv) = (tq,u)«H(v) + (tqv)*H(u) + H(qu,qv).
Note that both (1,) and t(1,)  are bijections and that the second equation in (10)

holds since ¢(1 Alarl A) = 0. Using the definition of A,p,a and the coherence in B(c)

one can check that T is a map of S—normalized linear track extensions.

Appendix B: Proof of the normalization theorems
The proof of (1.9) is based on the following lemma which is easily checked:

B.1) Lemma: F (Mor K) N ¥ (S , provided with the following coface and codegeneracy
g 8

operators d' and s,

. (A1)xc(Ag,---5A) i=0

i _ .

dc(Al,...,An) = ciAl,.. . "‘i"i+1""’An) (.)< i<n
Apc(Ay, oA, ) i=n

8'C(A A g) = €(Agsn A LA L A ),

where d(3) = Ayc(A), d%e(A) = A"¢(B) for n=1,A: A — B, and s'c(A) = ¢(1,) for
n =0, A € Ob(C), is a cosimplicial abelian group.
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Now (1.9) is a special case of the well-known normalization theorem for simplicial objects
in an abelian category (cf. [20], VIII, Thm. 6.1) since we have & = E(—l)idi, ie.

* *
(F (Mor K) N ¥ (S),6) is the associated cochain complex.

The proof of (1.10) is similar. Instead of codegeneracies, however, we shall use some addi-

tional operators t' to show that the inclusion

F (MorK)NF (SUO(Q) "~ F =F (MorK) N E'(5)

is a chain equivalence. For i = 0,...,n, let ¢ : FAYL L, F® be defined as follows:

ti A A _ C(Alg-..,Ai’OaAi_*_l)--')An) lf /\10...0 ,\n =0
(AynAp) = |
0 otherwise

(in particular 9% =0 for c€ Fl). Recall that 0 denotes zero morphisms as well as zero
elements in abelian groups. In the definition of ti we made use of the assumption that the
zero morphism 0: A — A isin _I_(_ if A € Ob(K). Note that the following identies are
satisfied:

(1) gl =t i
o Al i<
(2) td' =4 . e
d i>j+1
(3) tdg) = tlghd
(4) thdgd T = ¢,

where d' denotes the coface operator as above, and that

n min (k—1,n-1) i n
Fy = F'n N - kert'={c€F :¢c(A,..,A ) =0 if A; =0 for some i<k}
i=0
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defines a decreasing sequence of subcomplexes of (Ft,é) such that Fh = F® and

F’l: =F'(Mor K) N F*(S U O(C)) for k 2 n, whence it suffices to show that the inclusion
F; +1 C— F: is a chain equivalence for k 2 0. Let n¥ . F; — F; be the chain transfor-
mation h¥=1— ?‘k& - & k, where 7kc = (—1)k+1tkc if k{n-—1,and ¥ = 0 other-
wise, for ¢ € F". Then the fact that F; is a subcomplex and (1) — (4) combine to give

(5) Bk

*
c=c¢ for CEFk+1
k * *
(6) Wh(E) CFy ),

which completes the proof since hk is chain homotopic to the identity.
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