Special 3-dimensional flips

V.V. Shokurov

> Max-Planck-Institut
> für Mathematik
> Gottfried-Claren-Straße 26
> D-5300 Bonn 3

Yaroslavl State Pedagogical Institute Yaroslavl 150000

USSR

1. Definitions and examples

Let X be a normal complex algebraic variety. $\mathrm{By} \mathrm{K}=\mathrm{K}_{\mathrm{X}}$ we denote its canonical Weil divisor. A divisor of the form $K+D$ is $\underline{l o g-c a n o n i c a l ~ i f ~}$
(i) all $0 \leq d_{i} \leq 1$ where $D=\Sigma d_{i} D_{i} \in \operatorname{Div}_{\mathbb{R}} X=\mathbb{R} \otimes \operatorname{Div} X$ and D_{i} are different prime Weil divisors.
(ii) There exists a resolution $\mathrm{f}: \mathbb{X} \longrightarrow \mathrm{X}$ such that

$$
\hat{K}+\tilde{D}=f^{*}(K+D)+\Sigma a_{i} E_{i}
$$

with discrepancy coefficients $a_{i} \geq-1$ and with non-singular normally crossing components of divisors \hat{D} and E, where \hat{K} is a canonical divisor of \hat{X}, \hat{D} is the proper invers image of D and $E=\Sigma \mathrm{E}_{\mathrm{i}}$ is the sum of exceptional divisors. In the case when all $a_{i}>-1$ the divisor $K+D$ is log-terminal. These conditions are not only on singularities of X but also on that of D.

Examples. 1. If $\mathrm{K}+\mathrm{D}$ is \log-terminal then K is also \log-terminal. K is \log-terminal in all non-singular points of X. Due to Kawamata a surface singular point p is \log-terminal for K iff p is a quotient singularity. These singularities were classified by O . Riemenschneider. The minimal resolution of them consists of normally crossing non-singular rational curves and its graph has one of the well-known types A_{n}, D_{n} and $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$. They are types of p .
2. $K+\{y=0\}+\frac{1}{2}\left\{y=x^{2}\right\}$ is \log-canonical on A^{2} and \log-terminal on $A^{2} \backslash\{(0,0)\}$.

Log-canonical $\mathrm{K}+\mathrm{D}$ is n -complementary if there exists a Weil divisor $D \in\left|-n K-L(n+1) D_{\lrcorner}\right|$such that

$$
K+{ }_{L}(n+1) D_{\lrcorner} / n+D / n
$$

is also \log-canonical. Complementary means 1-complementary.

Lemma. If $\mathrm{D}^{\prime} \geq \mathrm{D}$ and $\mathrm{K}+\mathrm{D}^{\prime}$ is n -complementary, then $\mathrm{K}+\mathrm{D}$ is also n -complementary.

Take $\bar{D}=\mathrm{D}^{\prime}+\mathrm{L}^{\left.(\mathrm{n}+1) \mathrm{D}^{\prime}\right\lrcorner-\mathrm{L}(\mathrm{n}+1) \mathrm{D}_{\mathrm{J}} .}$

Proposition. Let $\mathrm{Z} \subseteq \mathrm{X}$ be a subvariety on which $\mathrm{K}+\mathrm{D}$ is negative \log-terminal with $L_{j}=0$. Then $K+D$ near Z is n-complementary for some natural n.

Examples. 2. Consider negative $K+D$ on \mathbb{P}^{1} with $\left.{ }_{\llcorner } D^{\prime}\right\rfloor=0$, i.e. $D=\Sigma d_{i} p_{i}$ with

$$
0 \leq \mathrm{d}_{\mathrm{i}}<1 \quad \text { and } \quad \Sigma \mathrm{d}_{\mathrm{i}}<2
$$

where p_{i} are different points on \mathbb{P}^{1}. In addition, let $\mathrm{d}_{1} \geq \mathrm{d}_{2} \geq \ldots$. Then $K+D$ is always 1-, 2-, 3-, 4- or 6- complementary. Moreover,
$K+D$ is not 1 -complementary iff $d_{1}, d_{2}, d_{3} \geq \frac{1}{2}$;
$\mathrm{K}+\mathrm{D}$ is not 1 - and 2-complementary iff $\mathrm{d}_{1}, \mathrm{~d}_{2} \geq \frac{2}{3}, \mathrm{~d}_{3} \geq \frac{1}{2}$ or $\mathrm{d}_{1}=\frac{2}{3}$, $\mathrm{d}_{2}=\mathrm{d}_{3}=\frac{1}{2}$ and $\mathrm{d}_{4}=\frac{1}{3}$;
$K+D$ is not $1-, 2-$ and 3 -complementary iff $\mathrm{d}_{1} \geq \frac{3}{4}, \mathrm{~d}_{2} \geq \frac{2}{3}$ and $\mathrm{d}_{3} \geq \frac{1}{2}$; K+D is not $1-, 2-, 3$ - and 4-complementary iff $\mathrm{d}_{1} \geq \frac{4}{5}, \mathrm{~d}_{2} \geq \frac{2}{3}$ and $\mathrm{d}_{3} \geq \frac{1}{2}$.
3. Let K is \log-terminal near a surface point p. Then K near p is always 1 -, $2-, 3-, 4$ - or 6-complementary. Moreover,
K is not 1-complementary iff p has the type D_{n} or E_{6}, E_{7}, E_{8};
K is not 1-and 2-complementary iff p has the type E_{6}, E_{7} or E_{8};
K is not 1-, 2- and 3-complementary iff p has the type E_{7} or E_{8};
K is not $1-, 2-$, 3- and 4-complementary iff p has the type E_{8}.
This is easy derived from the Riemanschneider classification or from the previous example.
4. (Alekseev, Reid, Shokurov). K is complementary on a Fano 3-fold with \log-terminal singularities of index ≥ 1.
5. (Mori, Reid). K is complementary near any 3-fold terminal singularity.
6. (Mori). K is 1 - or 2 -complementary near the support of negative extremal ray of fliping type on a 3 -fold with terminal singularities.
7. (Mori, Morrison, ?). There exist 4-dimensional terminal quotient singularities, which are nor 1-, nor 2- complementary.

2. Adjunction of \log-canonical divisors

Consider a log-canonical divisor

$$
\mathrm{K}+\mathrm{D}_{0}+\mathrm{D}
$$

where D_{0} is a sum of different prime Weil divisors of X. Let

$$
\nu: \mathrm{D}_{0}^{\nu} \longrightarrow \mathrm{D}_{0} \mathrm{CX}
$$

be the normalization of D_{0}. Note that normally crossing components of D_{0} are considered as normal. Let

$$
\left.\left(\mathrm{K}+\mathrm{D}_{0}+\mathrm{D}\right)\right|_{\mathrm{D}_{0}^{\nu}} \stackrel{\mathrm{df}}{=} \nu^{*}\left(\mathrm{~K}+\mathrm{D}_{0}+\mathrm{D}\right)
$$

where the map $\nu^{*}: \operatorname{Div}_{\mathbb{R}} \mathrm{X}---\rightarrow \operatorname{Div}_{\mathbb{R}} \mathrm{D}_{0}^{\nu}$ is induced by the lifting of the Cartier divisors.

Adjunction Theorem. If $\mathrm{K}+\mathrm{D}_{0}+\mathrm{D}$ is \log-canonical (resp. log-terminal) then

$$
\left.\left(\mathrm{K}+\mathrm{D}_{0}+\mathrm{D}\right)\right|_{\mathrm{D}_{0}^{\nu}}=\mathrm{K}_{\mathrm{D}_{0}^{\nu}}+\mathrm{C}
$$

is also \log-canonical (resp. log-terminal).

The general statement is easy derived from the 2 -dimensional case. Moreover, from the standard Minimal Model Conjectures follows
$\left.I A\left(\mathrm{D}_{0}, \mathrm{D}\right) \underline{\text { Conjecture. If }}\left(\mathrm{K}+\mathrm{D}_{0}+\mathrm{D}\right)\right|_{\mathrm{D}_{0}^{\nu}}$ is log-canonical (resp. log-terminal) then $K+D_{0}+D$ is log-canonical (resp. log-terminal) near D_{0}.

Example. $I A\left(D_{0}, D\right)$ is true and useful in the dimension two. Indeed in this case D_{0} is normal, D intersects D_{0} only in non-singular points p of D_{0} and $\left(D_{0} \cdot D\right)_{p} \leq 1$.

Proposition. If $\operatorname{dim} X=3$ and D is integer near D_{0} then $I A\left(D_{0}, D\right)$ is true.

This follows from the existence of relative minimal models due to Tsunoda, Shokurov, Mori and Kawamata [SH].

Lemma. If $K+D_{0}+D$ is log-canonical then for any natural n

$$
\left(\mathrm{nK}+\mathrm{nD}_{0}+\left.\mathrm{L}^{\left.(\mathrm{n}+1) \mathrm{D}_{\lrcorner}\right)}\right|_{\mathrm{D}_{0}^{\nu}} \leq \mathrm{nK}_{\mathrm{D}_{0}^{\nu}}+\mathrm{L}(\mathrm{n}+1) \mathrm{C}_{\lrcorner} .\right.
$$

The proof uses the following 2-dimensional facts
(1) If $K+D_{0}$ is \log-terminal near p and D_{0} paths through p then D_{0} is a non-singular curve near p and $\left.\left(K+D_{0}\right)\right|_{D_{0}}=K_{D_{0}}+c p$ where $c=\frac{m-1}{m}$ and m is natural. This number m is the index of $K+D_{0}$ in p.
(2) In addition every integer divisor near p has the index which divides m.

Epi-restriction Theorem. Let $Z \subset D_{0}$ be a subvariety such that
(i) $\quad \mathrm{K}+\mathrm{D}_{0}+\mathrm{D}$ is \log-terminal;
(ii) $\quad \mathrm{K}+\mathrm{D}_{0}+\mathrm{D}$ is negative on Z ;

Then the restriction map
is epi near Z, where

$$
\mathrm{A}=\mathrm{nK}_{\mathrm{D}_{0}^{\nu}}+\mathrm{L}^{(\mathrm{n}+1) \mathrm{C}_{\lrcorner}-\left(\mathrm{nK}+\mathrm{nD}_{0}+\left.\mathrm{L}^{\left.(\mathrm{n}+1) \mathrm{D}_{\lrcorner}\right)}\right|_{\mathrm{D}_{0}^{\nu}}\right.}
$$

is an effective divisor according to the previous lemma.
The proof uses the Kawamata-Viehweg vanishing theorem on a desingularization of X .

Corollary. If $K+D_{0}+D$ is log-terminal and $L \mathrm{D}_{\lrcorner}=0$ then D_{0} is normal.
Use locally the theorem in the case $\mathrm{n}=0$.

3. Classification of \log-terminal surface divisors

Theorem. Let $\mathrm{K}+\mathrm{D}$ is log-terminal near a surface point p . Then $\mathrm{K}+\mathrm{D}$ is $1-, 2-$, 3-, 4- or 6-complementary near p.

Scatch proof. Firstly we find such contraction $f: X \longrightarrow X$ that
$\tilde{K}+E+\tilde{D}$ is log-terminal near E,
(ii)
$\tilde{K}+E+\tilde{D}$ is numerically negative on E and
(iii)
$\mathrm{E}=\mathbb{P}^{1}$,
where E is the exceptional locus over p. Then we combine Example 2 from Sec. 1 and Epi-restriction theorem to choose n and D such that
(iv)
$\left.(\widetilde{K}+E+\widetilde{D})\right|_{E}=K_{E}+C$ is n-complementary where $\mathrm{n}=1,2,3,4$ or 6 and
(v)

$$
\left.\bar{D}\right|_{E}=\bar{C}+A
$$

where $\bar{D} \in\left|-n \hat{K}-n E-{ }_{L}(n+1) \tilde{D}_{\lrcorner}\right|, C \in\left|-n K_{E}-L_{L}(n+1) C_{\lrcorner}\right|$and

$$
K_{E}+L(n+1) C_{\lrcorner} / n+C / n
$$

is \log-canonical. Due to Lemma from Sec. 1 decreasing D we may satisfy the condition
(iii) from Epi-restriction theorem. The divisor

$$
\hat{\mathrm{K}}+\mathrm{E}+\mathrm{L}_{\mathrm{L}}(\mathrm{n}+1) \hat{\mathrm{D}}_{\mathrm{J}} / \mathrm{n}+\mathrm{D} / \mathrm{n}
$$

is numerically trivial on E and \log-canonical near E by Example of Sec. 2. So K+D is n-complementary near p with a completion $f_{*} D \in\left|-n K-L(n+1) D_{\lrcorner}\right|$. By the way we obtain

Proposition. Let $K+D$ is log-terminal near a surface point p and $d_{i} \geq \frac{5}{6}$ for some curve D_{i} through p . Then $\mathrm{K}+\mathrm{D}$ is 1 - or 2 -complementary.

In this case $C=\Sigma c_{i} p_{i}$ with some $c_{i} \geq \frac{5}{6}$ and hence with $\sum_{\mathrm{i} \neq \mathrm{i}} \mathrm{c}_{\mathrm{j}}<2-\frac{5}{6}=\frac{7}{6}=\frac{1}{2}+\frac{2}{3}$. By Example 2 of Sec. 1 then $\mathrm{K}_{\mathrm{E}}+\mathrm{C}$ is $1-$ or 2-complementary.

4. Special \log-terminal flips

Theorem. Let $\operatorname{dim} X=3, K+D$ is \log-terminal near $p, \underline{\text { all }} \mathrm{d}_{\mathrm{i}} \geq \frac{2}{3}$ and $\mathrm{d}_{\mathrm{i}_{0}}=1$, $d_{i_{1}} \geq \frac{5}{6}$ for some different $D_{j_{0}}, D_{i_{1}}$. Then $K+D$ is 1-or 2-complementary near p.

Follows from Proposition of Sec. 3 and restriction arguments. Inspite of Example of Sec. 2 use Proposition of the Sec. in the 2-complementary case on the 2 -cover.

Let $f: X \longrightarrow C$ be such family of surfaces over a curve that
(i) X is non-ringular,
(ii) all fibres f^{-1} (c) consist of non-singular surface with normal crossing and
(iii) the general fibre is a minimal surface of the general type.

Then any divisor $K+D$ is \log-terminal if $D=\Sigma \mathrm{d}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}$ with $0 \leq \mathrm{d}_{\mathrm{i}} \leq 1$ and all D_{i} lie in fibres. A relative minimal model for $\mathrm{K}+\mathrm{D}$ is a birationally transformed family $\mathbf{I}: \mathbb{X} \longrightarrow \mathbf{C}$ for which
(iv) all fibres $\mathfrak{f}^{-1}(c)$ are proper transforms of fibres $f^{-1}(C)$,
(v) $\tilde{\mathrm{K}}+\tilde{\mathrm{D}}$ is \log-canonical,
(vi) $\tilde{K}+\tilde{\mathrm{D}}$ is relatively ample for $\tilde{\mathrm{f}}$ and
(vii) discrepancy coefficients $a_{i} \geq-d_{i}$ for contracted divisors D_{i}.

Easy to check that such model is unique if exists. Fix a special fibre $\bigcup_{i=1}^{N} D_{i}=f^{-1}\left(c_{0}\right)$ and identify divisors $D=\Sigma \mathrm{d}_{\mathbf{i}} \mathrm{D}_{\mathrm{i}}$ with points of the cube $[0,1]^{\mathrm{N}}$. From Kawamata results [Ka] follow that near $\mathrm{f}^{-1}\left(\mathrm{c}_{0}\right)$ the relative minimal models exist for a subcube $[1-\epsilon, 1]{ }^{\mathrm{N}}$ where $\epsilon>0$ depends of the family f near $f^{-1}\left(c_{0}\right)$.

Relative Model Theorem. There exists $0 \leq \mathrm{d}_{0} \leq \frac{5}{6}$ that near $\mathrm{f}^{-1}\left(\mathrm{c}_{0}\right)$ the relative minimal models exist in a subcube $\left(d_{0}, 1\right]^{\mathrm{N}}$ and they give a locally finite convex polyhedral decomposition of $(\mathrm{d}, 1]^{\mathrm{N}}$.

Remain that conjecturely any extremal ray R negative for a \log-terminal divisor $K+D$ and of flipping type (i.e. in the dimension three contracting only curves) has an adjoint diagram or a flip. This should be a commutative diagram

consisting of
(a) a birational map $\operatorname{tr}_{\mathrm{R}}: \mathrm{X}----\rightarrow \mathrm{X}^{+}$which is an isomorphism except for loci of codimension ≥ 2,
(b) a contraction φ^{+}such that the divisor $\mathrm{K}+\mathrm{D}^{+}$is log-terminal and relatively ample for φ^{+}where D^{+}is the proper transform of D .

Corollary 1. Let $\operatorname{dim} X=3$, Sing $X \subset \operatorname{Supp} D$, all $d_{i} \geq d_{0}$ and D has the fibre type, i.e. $\left(R, \Sigma \delta_{i} D_{i}\right)=0$ for some $\delta_{i}>0$. Then a flip exists for R.

Corollary 2. If $\operatorname{dim} X=3$ and all $d_{i} \geq d_{0}$ then $I A\left(D_{0}, D\right)$ is true.

References

[SH] V.V. Shokurov, Numerical geometry of algebraic varieties, Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 672-681.
[Ka] Y. Kawamata, Crepant blowing-ups of 3-dimensional canonical singularities and their application to degenerations of surfaces.

