Special 3-dimensional flips

V.V. Shokurov

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3 Yaroslavl State Pedagogical Institute Yaroslavl 150000

-

,

.

USSR

Federal Republic of Germany

MPI/89-22

1. Definitions and examples

Let X be a normal complex algebraic variety. By $K = K_X$ we denote its canonical Weil divisor. A divisor of the form K+D is <u>log-canonical</u> if

(i) all $0 \leq d_i \leq 1$ where $D = \Sigma d_i D_i \in \text{Div}_{\mathbb{R}} X = \mathbb{R} \otimes \text{Div} X$ and D_i are different prime Weil divisors.

(ii) There exists a resolution $f: X \longrightarrow X$ such that

$$\tilde{\mathbf{K}} + \tilde{\mathbf{D}} = \mathbf{f}^{*}(\mathbf{K} + \mathbf{D}) + \Sigma \mathbf{a}_{i} \mathbf{E}_{i}$$

with discrepancy coefficients $a_i \ge -1$ and with non-singular normally crossing components of divisors \tilde{D} and E, where \tilde{K} is a canonical divisor of \tilde{X} , \tilde{D} is the proper invers image of D and $E = \Sigma E_i$ is the sum of exceptional divisors. In the case when all $a_i > -1$ the divisor K+D is log-terminal. These conditions are not only on singularities of X but also on that of D.

<u>Examples.</u> 1. If K+D is log-terminal then K is also log-terminal. K is log-terminal in all non-singular points of X. Due to Kawamata a surface singular point p is log-terminal for K iff p is a quotient singularity. These singularities were classified by O. Riemenschneider. The minimal resolution of them consists of normally crossing non-singular rational curves and its graph has one of the well-known types A_n , D_n and E_6 , E_7 , E_8 . They are types of p.

2. $K+\{y=0\}+\frac{1}{2}\,\{y=x^2\}\,$ is log-canonical on A^2 and log-terminal on $A^2\backslash\{(0,0)\}$.

Log-canonical K+D is n-complementary if there exists a Weil divisor $\overline{D} \in |-nK - \lfloor (n+1)D \rfloor|$ such that

$$K + \lfloor (n+1)D \rfloor / n + \overline{D} / n$$

is also log-canonical. Complementary means 1-complementary.

<u>Lemma</u>. If $D' \ge D$ and K+D' is n-complementary, then K+D is also n-complementary.

Take $\overline{D} = \overline{D}' + \lfloor (n+1)D' \rfloor - \lfloor (n+1)D \rfloor$.

<u>Proposition</u>. Let $Z \subseteq X$ be a subvariety on which K+D is negative log-terminal with $_{L}D_{J} = 0$. Then K+D near Z is n-complementary for some natural n.

Examples. 2. Consider negative K+D on \mathbb{P}^1 with $\ _{L}D_{J}=0$, i.e. $D=\Sigma\,d_{j}\,p_{j}$ with

$$0 \leq d_i < 1$$
 and $\Sigma d_i < 2$

where p_i are different points on \mathbb{P}^1 . In addition, let $d_1 \ge d_2 \ge ...$. Then K+D is always 1-, 2-, 3-, 4- or 6- complementary. Moreover,

K+D is not 1-complementary iff d_1 , d_2 , $d_3 \ge \frac{1}{2}$; K+D is not 1- and 2-complementary iff d_1 , $d_2 \ge \frac{2}{3}$, $d_3 \ge \frac{1}{2}$ or $d_1 = \frac{2}{3}$, $d_2 = d_3 = \frac{1}{2}$ and $d_4 = \frac{1}{3}$; K+D is not 1-, 2- and 3-complementary iff $d_1 \ge \frac{3}{4}$, $d_2 \ge \frac{2}{3}$ and $d_3 \ge \frac{1}{2}$; K+D is not 1-, 2-, 3- and 4-complementary iff $d_1 \ge \frac{4}{5}$, $d_2 \ge \frac{2}{3}$ and $d_3 \ge \frac{1}{2}$.

Let K is log-terminal near a surface point p. Then K near p is always 1-,
2-, 3-, 4- or 6-complementary. Moreover,

K is not 1-complementary iff p has the type D_n or E_6 , E_7 , E_8 ;

K is not 1- and 2-complementary iff p has the type E_6 , E_7 or E_8 ;

K is not 1-, 2- and 3-complementary iff p has the type E_7 or E_8 ;

K is not 1–, 2–, 3– and 4–complementary iff p has the type E_8 .

This is easy derived from the Riemanschneider classification or from the previous example.

4. (Alekseev, Reid, Shokurov). K is complementary on a Fano 3-fold with log-terminal singularities of index ≥ 1 .

5. (Mori, Reid). K is complementary near any 3-fold terminal singularity.

6. (Mori). K is 1- or 2-complementary near the support of negative extremal ray of fliping type on a 3-fold with terminal singularities.

7. (Mori, Morrison, ?). There exist 4-dimensional terminal quotient singularities, which are nor 1-, nor 2- complementary.

2. Adjunction of log-canonical divisors

Consider a log-canonical divisor

$$K + D_0 + D$$

where D_0 is a sum of different prime Weil divisors of X. Let

$$\nu: \mathrm{D}_0^{\nu} \longrightarrow \mathrm{D}_0 \subset \mathrm{X}$$

be the normalization of D_0 . Note that normally crossing components of D_0 are considered as normal. Let

$$(K + D_0 + D) \Big|_{D_0^{\nu}} \stackrel{\text{df}}{=} \nu^* (K + D_0 + D)$$

where the map ν^* : $\operatorname{Div}_{\mathbb{R}} X - - \rightarrow \operatorname{Div}_{\mathbb{R}} D_0^{\nu}$ is induced by the lifting of the Cartier divisors.

<u>Adjunction Theorem</u>. If $K + D_0 + D$ is log-canonical (resp. log-terminal) then

$$(K + D_0 + D)\Big|_{D_0^{\nu}} = K_{D_0^{\nu}} + C$$

is also log-canonical (resp. log-terminal).

The general statement is easy derived from the 2-dimensional case. Moreover, from the standard Minimal Model Conjectures follows

IA(D₀,D) <u>Conjecture</u>. If $(K + D_0 + D) \Big|_{D_0^{\nu}}$ is log-canonical (resp. log-terminal) then $K + D_0 + D$ is log-canonical (resp. log-terminal) near D_0 .

<u>Example</u>. IA(D₀,D) is true and useful in the dimension two. Indeed in this case D_0 is normal, D intersects D_0 only in non-singular points p of D_0 and $(D_0.D)_p \leq 1$.

<u>Proposition</u>. If dim X = 3 and D is integer near D_0 then $IA(D_0,D)$ is true.

This follows from the existence of relative minimal models due to Tsunoda, Shokurov, Mori and Kawamata [SH].

<u>Lemma</u>. If $K + D_0 + D$ is log-canonical then for any natural n

$$(\mathbf{n}\mathbf{K} + \mathbf{n}\mathbf{D}_0 + \lfloor (\mathbf{n}+1)\mathbf{D}_{\rfloor})\Big|_{\mathbf{D}_0^{\nu}} \leq \mathbf{n}\mathbf{K}_{\mathbf{D}_0^{\nu}} + \lfloor (\mathbf{n}+1)\mathbf{C}_{\rfloor}$$

The proof uses the following 2-dimensional facts

(1) If $K + D_0$ is log-terminal near p and D_0 paths through p then D_0 is a non-singular curve near p and $(K + D_0)|_{D_0} = K_{D_0} + cp$ where $c = \frac{m-1}{m}$ and m is natural. This number m is the index of $K + D_0$ in p.

(2) In addition every integer divisor near p has the index which divides m.

Epi-restriction Th	eorem. Let Z C D ₀ be a subvariety such that
(i)	$K + D_0 + D$ is log-terminal;
(ii)	$K + D_0 + D$ is negative on Z;
(iii)	$nK + nD_0 + \lfloor (n+1)D_{\rfloor} \geq nK + nD_0 + nD.$

Then the restriction map

$$|-\mathbf{n}\mathbf{K}-\mathbf{n}\mathbf{D}_{0}-\mathbf{L}(\mathbf{n}+1)\mathbf{D}_{\mathsf{J}}| ----\rightarrow |-\mathbf{n}\mathbf{K}_{0}-\mathbf{L}(\mathbf{n}+1)\mathbf{C}_{\mathsf{J}}| + \mathbf{A}$$
$$|\mathbf{D}_{0}^{\nu} \mathbf{D}_{0}^{0}|$$

is epi near Z, where

$$\mathbf{A} = \mathbf{n}\mathbf{K}_{\mathbf{D}_{0}^{\boldsymbol{\nu}}} + \left\lfloor (\mathbf{n}+1)\mathbf{C}_{\boldsymbol{\perp}} - (\mathbf{n}\mathbf{K} + \mathbf{n}\mathbf{D}_{0} + \left\lfloor (\mathbf{n}+1)\mathbf{D}_{\boldsymbol{\perp}} \right\rfloor \right|_{\mathbf{D}_{0}^{\boldsymbol{\nu}}}$$

is an effective divisor according to the previous lemma.

The proof uses the Kawamata–Viehweg vanishing theorem on a desingularization of X.

<u>Corollary</u>. If $K + D_0 + D$ is log-terminal and $\lfloor D_{ } \rfloor = 0$ then D_0 is normal. Use locally the theorem in the case n = 0.

3. Classification of log-terminal surface divisors

<u>Theorem</u>. Let K+D is log-terminal near a surface point p. Then K+D is 1-, 2-, 3-, 4- or 6-complementary near p.

<u>Scatch proof.</u> Firstly we find such contraction $f: X \longrightarrow X$ that

(i)
$$\mathbf{\tilde{K}} + \mathbf{E} + \mathbf{\tilde{D}}$$
 is log-terminal near E,

- (ii) $\tilde{K} + E + \tilde{D}$ is numerically negative on E and
- (iii) $\mathbf{E} = \mathbb{P}^1$,

where E is the exceptional locus over p. Then we combine Example 2 from Sec. 1 and Epi-restriction theorem to choose n and \overline{D} such that

(iv)
$$(\tilde{K} + E + \tilde{D})|_{E} = K_{E} + C$$
 is n-complementary where $n = 1,2,3,4$ or 6 and

(v)
$$D|_{E} = \overline{C} + A$$

where $\overline{D} \in |-n\widetilde{K} - nE - \lfloor (n+1)\widetilde{D} \rfloor |$, $\overline{C} \in |-nK_{E} - \lfloor (n+1)C \rfloor |$ and

$$K_{E} + \lfloor (n+1)C \rfloor / n + \overline{C} / n$$

is log-canonical. Due to Lemma from Sec. 1 decreasing D we may satisfy the condition

(iii) from Epi-restriction theorem. The divisor

$$\mathbf{\tilde{K}} + \mathbf{E} + \lfloor (\mathbf{n}+1)\mathbf{\tilde{D}} \rfloor / \mathbf{n} + \mathbf{\overline{D}} / \mathbf{n}$$

is numerically trivial on E and log-canonical near E by Example of Sec. 2. So K+D is n-complementary near p with a completion $f_*D \in |-nK - \lfloor (n+1)D \rfloor|$. By the way we obtain

<u>Proposition</u>. Let K+D is log-terminal near a surface point p and $d_i \ge \frac{5}{6}$ for some curve D_i through p. Then K+D is 1-or 2-complementary.

In this case $C = \sum c_i p_i$ with some $c_i \ge \frac{5}{6}$ and hence with $\sum_{i \ne i} c_j < 2 - \frac{5}{6} = \frac{7}{6} = \frac{1}{2} + \frac{2}{3}$. By Example 2 of Sec. 1 then $K_E + C$ is 1-or 2-complementary.

4. Special log-terminal flips

Follows from Proposition of Sec. 3 and restriction arguments. Inspite of Example of Sec. 2 use Proposition of the Sec. in the 2-complementary case on the 2-cover.

Let $f: X \longrightarrow C$ be such family of surfaces over a curve that

- (i) X is non-singular,
- (ii) all fibres $f^{-1}(c)$ consist of non-singular surface with normal crossing

and

(iii) the general fibre is a minimal surface of the general type.

Then any divisor K+D is log-terminal if $D = \Sigma d_i D_i$ with $0 \le d_i \le 1$ and all D_i lie in fibres. A <u>relative minimal model</u> for K+D is a birationally transformed family $\hat{f}: \hat{X} \longrightarrow C$ for which

- (iv) all fibres $f^{-1}(c)$ are proper transforms of fibres $f^{-1}(C)$,
- (v) $\tilde{K} + \tilde{D}$ is log-canonical,
- (vi) $\tilde{K} + \tilde{D}$ is relatively ample for \tilde{f} and
- (vii) discrepancy coefficients $a_i \ge -d_i$ for contracted divisors D_i .

Easy to check that such model is unique if exists. Fix a special fibre $\bigcup_{i=1}^{N} D_i = f^{-1}(c_0)$ and identify divisors $D = \sum d_i D_i$ with points of the cube $[0,1]^N$. From Kawamata results [Ka] follow that near $f^{-1}(c_0)$ the relative minimal models exist for a subcube $[1-\epsilon,1]^N$ where $\epsilon > 0$ depends of the family f near $f^{-1}(c_0)$.

<u>Relative Model Theorem</u>. There exists $0 \le d_0 \le \frac{5}{6}$ that near $f^{-1}(c_0)$ the relative minimal models exist in a subcube $(d_0, 1]^N$ and they give a locally finite convex polyhedral decomposition of $(d, 1]^N$.

Remain that conjecturely any extremal ray R negative for a log-terminal divisor K+D and of flipping type (i.e. in the dimension three contracting only curves) has an adjoint diagram or a flip. This should be a commutative diagram

consisting of

(a) a birational map $tr_R: X - - - \rightarrow X^+$ which is an isomorphism except for loci of codimension ≥ 2 ,

(b) a contraction φ^+ such that the divisor $K + D^+$ is log-terminal and relatively ample for φ^+ where D^+ is the proper transform of D.

<u>Corollary 1</u>. Let dim X = 3, Sing X C Supp D, all $d_i \ge d_0$ and D has the fibre type, i.e. $(R, \Sigma \delta_i D_i) = 0$ for some $\delta_i > 0$. Then a flip exists for R.

<u>Corollary 2</u>. If dim X = 3 and all $d_i \ge d_0$ then $IA(D_0,D)$ is true.

References

- [SH] V.V. Shokurov, Numerical geometry of algebraic varieties, Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 672-681.
- [Ka] Y. Kawamata, Crepant blowing-ups of 3-dimensional canonical singularities and their application to degenerations of surfaces.