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Abstract. — In this paper, we give a completely algebraic description of Nahm
transform for parabolic Higgs bundles on P

1.
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Introduction

Nahm transform is a non-linear analog of Fourier transform: Fix a closed
additive subgroup Λ ⊂ R

4 and its dual Λ∗ ⊂ (R4)∗. Given a Λ-invariant Her-
mitian bundle with a unitary connection on R

4 satisfying the anti-selfduality
(ASD) equations, and of finite energy on R

4/Λ, Nahm transform produces
a Λ∗-invariant solution of ASD equations on (R4)∗ of finite energy on
(R4)∗/Λ∗. Dimensional reduction identifies the Λ-invariant solutions of the
ASD equations on R

4 with the solutions of the reduced equations on R
4/Λ.

Nahm transform has been studied extensively for different Λ ⊂ R
4 by various

authors. M. Jardim’s expository article [Jar04] is a good introduction to the
topic with a comprehensive list of references.

In this paper, we are interested in the case Λ ∼= R
2. Identify the quotient

with the complex line C and denote its dual by Ĉ. Then, dimensional reduc-
tion yields the equations of a holomorphic Higgs bundle with a Hermitian-
Einstein metric on the complex line C.

[Sza05] describes Nahm transform for parabolic Higgs bundles with a
Hermitian-Einstein metric on CP

1 satisying some semisimplicity and ad-
missibility conditions. These parabolic Higgs bundles have at most regular
singularities in points at finite distance and an irregular (Poincar é rank 1)
singularity at the infinity. Then the Nahm tranform of a parabolic Higgs
bundle (E, θ) is defined by following the steps:

1. Construct an eigensheaf M [ on an open subset U of P
1 × P̂

1,
2. Push M [ by the projection π̂ : P

1 × P̂
1 → P̂

1,
3. Choose the “right” extension Ê of π̂∗(M [) to P̂

1.

Our approach here is to always work with projective surfaces rather than
open surfaces. The main question treated in this work is how to define Nahm
transform of stable parabolic Higgs bundles of degree 0 solely using elemen-
tary algebraic geometry. As our method is algebraic, we do not treat the
Hermitian metrics.

This method has several advantages: it is simpler, it allows one to compute
some explicit examples, and it can be carried out under milder assumptions on
the Higgs field than in the L2 case. Although Nahm transform depends funda-
mentally on the admissibility condition (Condition 1), we are able to remove
the assumption on semisimplicity of the Higgs field. Also, the assumption on
the order of the poles can be removed.
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1. Outline of the Paper

First, in Subsection 1.1 explain the notation and the notions we use and the
conditions under which our results hold. Then, in Subsection 1.2 we describe
briefly the contents of the paper.

1.1. Notation. — Let X be a projective scheme over a field K. Given a
birational morphism ω : X ′ −→ X , denote the total and proper transforms of
a Cartier divisor P by ω∗

P and ω#
P respectively.

Given a global section t of a line bundle L onX , denote the vanishing locus
of t by (t).

Let P be an effective Cartier divisor on X . Denote
– PX(O ⊕ O(−P)) := Proj(Sym•(O ⊕ O(−P))∨) by ZP,
– the structure morphism by πP : ZP −→ X ,
– the relative hyperplane bundle by OZP(1),
– the canonical section of OZP(1) by yP,
– the canonical section of OZP(1) ⊗ O(P) by xP,
– the automorphism acting on ZP by (xP, yP) 7→ (−xP, yP) by (−1)ZP .

We refer to the divisor (yP) as the infinity section and the divisor (xP) as the
zero section of ZP.

Definition 1.1. — A Higgs sheaf (E, θ) on X (with polar divisor P) consists
of a coherent sheaf E on X and a homomorphism θ : E → E(P).

A Higgs sheaf on a projective scheme X determines a unique coherent
sheaf MP on the surface ZP so that dimMP = dim E, SuppMP ∩ (yP) = ∅
and πP∗MP = E(P). The sheaf M P is called the eigensheaf corresponding to
the Higgs sheaf (E, θ). The support of M P is the spectral scheme. The sheaf
MP fits into an exact sequence

0 // E
xP−yPθ

// E(P) ⊗ OZP(1) // MP // 0 .

Let
πH(E, θ) := MP.

Conversely, let the Higgs bundle θ : E → E(P) be the push-forward of the
following sequence by πP

IdM ⊗xP : M(−P) →M ⊗ OZP(1).

Denote (E, θ) by πH(M,xP), or simply by πH(M). It is clear that πH and πH

are quasi-inverses. The correspondence extends to parabolic objects (see Def-
initions 3.4 and 3.14) in a straightforward manner. We coin this construction
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as the standard construction and the resulting objects as the standard eigen-
sheaf, the standard spectral cover etc.

Given a parabolic Higgs bundle (E•, θ) on P
1, define F := ker(E −→

coker θ(−P)P). The results of Sections 10 and 11 hold under the following
admissibility condition for the parabolic structure:

Condition 1. — For any polar point p ∈ P, the Higgs bundle (E, θ) satisfies
one of the following conditions:

– α0(Ep) > 0 and Ep = Fp, or
– α0(Ep) = 0 and F1Ep = im(Fp → Ep).

Let MP and NP be the eigensheaves corresponding to E and F on ZP. Re-
call that NP := ker(MP −→ MP

T+), where T+ = π∗(P) ∩ (xP). Then Condi-
tion 1 is equivalent to

Condition 2. — For any point p ∈ P and t ∈ T+ above p, the eigensheaf M
satisfies one of the following conditions:

– MP has only positive weights along the fiber π∗(p) andMπ∗(p) = Nπ∗(p),
or

– 0 is a weight for M P and the support of the 0-weight space is the point
t.

1.2. Results. — The paper is organized along the following lines: in Section
2, we give an overview of the conditions and results of [Sza05] which are most
often referred to in the present paper.

In Section 3, we recall the notions which will be used throughout the
paper: pure sheaves of dimension 1, parabolic sheaves, parabolic Euler-
characteristic, degree and stability of parabolic sheaves; and prove some of
their properties.

In Section 4, we define an iterated version of blow-up maps for non-
reduced zero-dimensional subschemes. This will be essential for the general-
ization of Nahm transform to Higgs bundles with higher-order poles.

In Section 5, analogous to the proper transform of a divisor with respect to
a blow-up, we introduce the proper transform of a coherent sheaf with respect
to a blow-up of a closed point. We study properties of the proper transform
for 1-dimensional pure sheaves on surfaces. For such sheaves, proper trans-
form is related to Hecke transforms of locally free sheaves. In particular, for
such sheaves, proper transform is a quasi-inverse of the direct image (Lemma
5.11), and it preserves the Euler-characteristic (Lemma 5.13). We also give



ALGEBRAIC NAHM TRANSFORM 5

a parabolic version of the proper transform, and prove that it preserves the
parabolic Euler-characteristic (Subsection 5.2).

In Section 6, we define two operations to modify the divisor of parabolic
sheaves: Deletion along E removes an effective subdivisor E of the parabolic
divisor, whereas addition along E appends an effective divisor E to the
parabolic divisor. Under an assumption (is equivalent to 1), these oper-
ations are inverse to each other. Moreover, they preserve the parabolic
Euler-characteristic (Proposition 6.2).

In Section 7, we introduce what we call the spectral triples, consisting of a
smooth surface, an effective divisor on it, and a rank-one torsion-free sheaf on
the divisor satisfying some properties. Notice that the operation πH associates
to a given Higgs bundle a spectral triple (ZP, Supp(MP),MP). We shall call
this spectral triple the standard spectral triple associated to the Higgs bun-
dle. On the other hand, there exists another way of defining a spectral triple
(Z0, Supp(M0),M0) where the surface is Z0 = P

1 × P̂
1: we call this the

naive spectral triple. The surfaces ZP and P
1 × P̂

1 are related by a series
of elementary transformations. Let Z be the resolution of indeterminacies of
Z0− → ZP. Then, we show that the proper transforms of M P and M0 agree
on Z (Proposition 7.7).

In Section 8, we construct Nahm transform of parabolic Higgs bundles on
the projective line as a composition of the operations introduced up to this
point. The starting point is the diagram

(1) Zint

ρ
P

zzvv
vv

vv
vv

vv bρbP

$$H
HH

HH
HH

HH
H

��

ZP

��

P
1 × P̂

1

{{vvvvvvvvv

##H
HHHHHHHH
ẐbP

��

P
1

P̂
1

(see (34)). Here the maps ρ
P

and ρ̂bP are blow-up maps, and Z int is called the
intermediate spectral surface. Starting from a 1-dimensional parabolic sheaf
MP

• on ZP, Nahm transform produces a 1-dimensional parabolic sheaf M̂bP
• on

ẐbP by the formula:

MP

• 7→ (−1)∗bZbP
M̂

bP
• = (−1)∗bZbP

(ρ̂bP)∗AddbE+DelE+(ρ
P
)#(MP

• ).

From right to left, this formula reads as a proper transform with respect to ρ
P
,

deletion along a divisor E+, addition along a divisor Ê+, push-forward with
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ρ̂bP, and pull-back with respect to the fiberwise (−1) multiplication. Here, E+

and Ê
+ are suitably chosen divisors related to the birational morphisms ρ

P
and

ρ̂bP respectively. Theorem 8.5 shows that our construction generalizes that of
[Sza05].

In Section 9, we describe two examples in which we use our method to
compute the transformed Higgs bundle explicitly. These examples are beyond
the scope of [Sza05]. The first example features a Higgs field with a nilpotent
residue, whereas the second one a higher-order pole.

Section 10 provides a geometric proof of the fact that the transformation is
involutive up to a sign.

In Section 11, we study the map induced by Nahm transform on the moduli
spaces of stable Higgs bundles of degree 0 with prescribed singularity be-
haviour. First, we compute the dimension of these moduli spaces (Lemma
11.1). Then, we show that Nahm transform preserves the parabolic degree,
and for Higgs bundles of degree 0, it preserves stability (Lemma 11.3). Fi-
nally, in Corollary 11.4 we prove that Nahm transformation induces a hyper-
K ähler isometry between the corresponding moduli spaces.

2. An Overview of analytic Nahm transform

In this section, we give a summary of the results of [Sza05] relevant for the
present paper.

Let P = {p1, . . . , pn} be a finite set in P
1 composed of distinct points at

finite distance, E be a rank r holomoprhic vector bundle on P
1 and

θ : E −→ E ⊗ OP1(P)

be a holomorphic map (called the Higgs field), where OP1(P) is the sheaf of
meromorphic functions with at most simple poles in the points of P and no
other poles. We assume that in any pj ∈ P the Higgs field has semi-simple
residue: in the standard holomorphic coordinate z of C and in a convenient
holomorphic trivialization {ej

1, . . . , e
j
r} of E in a neighborhood of pj it can be

written

(2) θ = Bj

1

z − pj

+O(1),
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where O(1) stands for holomorphic terms and

(3) Bj =




0
. . .

0

λj
rj+1

. . .
λj

r



,

is a diagonal matrix (the residue of θ in pj) with all the λj
k for rj < k ≤ r non-

vanishing and distinct. We suppose furthermore that an compatible parabolic
structure is given in pj: this simply means the data of real numbers 0 = αj

1 =

. . . = αj
rj
< αj

rj+1 ≤ . . . ≤ αj
r < 1 called parabolic weights. Here, the

condition 0 = αj
1 = . . . = αj

rj
is an extra condition of admissibility. For any

α ∈ [0, 1[ we then define the space FαEpj
to be the subspace of the fiber Epj

of E in pj spanned by the ej
k(pj) such that αj

k ≥ α; this gives a finite filtration

(4) {0} = F1Epj
⊂ F

α
j
r
Epj

⊂ · · · ⊂ F
α

j
rj+1

Epj
⊂ F0Epj

= Epj

of the fiber. An alternative way to define a parabolic structure at a singularity
on a Higgs bundle is to say that the holomorphic vector bundle has a parabolic
structure (i.e. a filtration as above and parabolic weights) in the singularity,
and the Higgs field is compatible with the parabolic structure in the sense that
its residue endomorphism in the puncture is the sum of its induced endomor-
phisms on the graded vector spaces of the parabolic filtration.

At infinity, we suppose that θ is holomorphic, such that its Taylor series
written in the local coordinate z−1 and some holomorphic trivialization of E

near infinity

(5) θ =
1

2
A+B∞

1

z
+ O

(
1

z2

)
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satisfy that the constant term A is diagonal with eigenvalues ξ1, . . . , ξbn of
multiplicity possibly higher than one

A =




ξ1
. . .

ξ1
. . .

. . .
ξbn

. . .
ξbn




,(6)

and the first-order term B∞ is also diagonal (in the same trivialization)

(7) B∞ =




λ∞1
. . .

λ∞a1

. . .
. . .

λ∞1+abn

. . .
λ∞r




.

Here the eigenvalues {λ∞
1+al

, . . . , λ∞al+1
} correspond to the basis vectors

spanning the ξl-eigenspace of A (where we have put a0 = 0). We make
the assumption that for a fixed 1 ≤ l ≤ n̂, none of these eigenvalues
{λ∞1+al

, . . . , λ∞al+1
} vanishes and they are all distinct. We suppose that a

parabolic structure is given in this singularity as well: that is, we are given
parabolic weights 0 < α∞

k < 1 for k = 1, . . . , r, arranged in such a way
that inside one block al < k ≤ al+1 they form an increasing sequence, and
a corresponding filtration FαE∞ for α ∈ [0, 1] of the fiber of E over infinity,
spanned by the basis elements having parabolic weight ≥ α. A sheaf E with
a parabolic structure will often be denoted by E•.

Remark 2.1. — Multiplication by the globally defined meromorphic 1-form
dz associates to θ an endomorphism-valued meromorphic 1-form that has a
double pole at infinity because the form dz does. Therefore, we will often
call A/2 the second-order term and and B∞ the residue of θ at infinity. Also,
a holomorphic vector bundle with a parabolic structure in P ∪ {∞} will be
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called parabolic vector bundle; if moreover a compatible Higgs field is given,
then we will call it a parabolic Higgs bundle.

Denote by deg(F) the usual algebraic geometric degree of a holomorphic
vector bundle F. It is clear that a subbundle F (or quotient bundle Q) of a
parabolic vector bundle E also admits an induced parabolic structure by inter-
secting with F the terms of the filtration of E, and assigning the biggest of the
weights to all filtered terms that become isomorphic after taking intersections
with F.

Definition 2.2. — The parabolic degree of E• is the real number par −
deg(E•) = deg(E) +

∑
j∈{1,...,n,∞}

∑r
k=1 α

j
k. The parabolic slope of E• is the

real number par − µ(E•) = par − deg(E•)/rk(E). Finally, (E•, θ) is said to
be parabolically stable if for any subbundle F• invariant with respect to θ with
its induced parabolic structure, the inequality par − µ(F•) < par − µ(E•)
holds.

Suppose in all what follows that (E, θ) is not the trivial line bundle OP1

together with a constant multiplication map. Denote by Ĉ the dual line of
C (another copy of C), and by P̂

1 the dual sphere, the compactification of
Ĉ by the point ∞̂. By [Sza05], the Nahm transform of a stable parabolic
Higgs bundle (E•, θ) of parabolic degree 0 is then a parabolic Higgs bun-
dle (Ê•, θ̂) on P̂

1, with regular singularities (i.e. θ̂dξ having simple poles)
in the set P̂ = {ξ1, . . . , ξbn} and an irregular singularity (i.e. θ̂dξ having a
double pole, therefore θ̂ being holomorphic) at infinity. Also, the transform
of a Hermitian-Einstein metric on (E•, θ) is a Hermitian-Einstein metric on
(Ê•, θ̂); in particular, this latter is poly-stable. We sketch the idea of the con-
struction of the transform. First, introduce a twist of the Higgs field: for any
ξ ∈ Ĉ set

θξ = θ −
ξ

2
IdE

where IdE is the identity bundle endomorphism of E. Consider now the open
spectral curve Σ[ in (C \ P) × (Ĉ \ P̂) defined by

Σ[ = {(z, ξ) | det(θξ)(z) = 0}.

In other words, denoting by π[ (respectively π̂[) the projection on C \ P (re-
spectively Ĉ \ P̂) in the product (C \ P)× (Ĉ \ P̂), this curve is the support of
the cokernel sheaf M [ of the map

θξ : (π[)∗E −→ (π[)∗E.
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Propositions 4.7, 4.15 and 4.24 together with Lemma 4.30 of [Sza05] give an
interpretation of the transform on an open set.

Theorem 2.3. — The Nahm transformed Higgs bundle restricted to Ĉ\P̂ can
be obtained as follows:

– the holomorphic bundle Ê is the pushdown π̂[
∗M

[ endowed with its in-
duced holomorphic structure; we denote its rank by r̂

– on the open set of ξ ∈ Ĉ \ P̂ over which the fiber of Σ[ consists of dis-
tinct points {z1(ξ), . . . , zbr(ξ)} of multiplicity 1, the transformed Higgs
field θ̂ acts on the subspace coker(θξ(zk(ξ))) ⊂ Ê|ξ as multiplication by
−zk(ξ)/2; this then admits a unique continuation into points where the
fiber has multiple points.

This description then gives an understanding of the behaviour of the Higgs
field near a point of P̂ and near ∞̂: we only have to understand the behaviour
of the open spectral curve near these points. Because of the special form of θ
in the singularities, we deduce that the eigenvalues of the transformed Higgs
field have indeed simple poles in the points of P̂, and are bounded near ∞̂. In
different terms, this defines a natural compactification Σ0 ⊂ P

1 × P̂
1 of Σ[.

Moreover, we gain precise information about its asymptotic expansions near
these points: namely, near a point ξl ∈ P̂ the residue of the transformed Higgs
field in a convenient trivialization of the transformed bundle is equal to

−




0
. . .

0
λ∞1+al

. . .
λ∞al+1



,

in other words it is the direct sum of the opposite of the residue of the original
Higgs field at infinity restricted to the ξl-eigenspace of the leading term and a
0-matrix (Theorem 4.32 of [Sza05]); whereas its leading term at infinity in a
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convenient trivialization is

−
1

2




p1

. . .
p1

. . .
. . .

pn

. . .
pn




,

each pj appearing with multiplicity rk(res(θ, pj)) = r − rj, and the corre-
sponding first-order term in the same trivialization is then

−




λ1
r1+1

. . .
λ1

r
. . .

. . .
λn

rn+1
. . .

λn
r




(Theorem 4.33 of [Sza05]). In particular, we deduce the formula

(8) r̂ =
n∑

j=1

rk(res(θ, pj)).

Therefore, we see an intricate interplay between singularity behaviour at the
regular singularities and the one at the irregular singularity.

Afterwards, we use the extensions of E over the singularities to define an
extension M 0 of M [ to the compactified spectral curve Σ0. These in turn
induce an extension Êind

• of Ê into a holomorphic bundle endowed with a
parabolic structure in each point of P̂∪{∞̂}, which we call the induced exten-
sion (c.f. [Sza05], Section 4.4). By definition, a local holomorphic section of
this extension has a D′′

ξ -harmonic representative obtained from a local section
of the cokernel sheaf M 0 multiplied with a bump-function of constant height
concentrated near the spectral points of ξ, such that the diameter of their sup-
port converges to 0 up to first order near the points ξl and to ∞ near ∞̂ also
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up to first order. Next, we compute the parabolic weights of these exten-
sions with respect to the transformed Hermitian-Einstein metric: for a point
ξl ∈ P̂ the non-zero weights are equal to α∞

1+al
−1, . . . , α∞

al+1
−1; whereas the

weights at ∞̂ are equal to α1
r1+1 − 1, . . . , α1

r − 1, . . . , αn
rn+1 − 1, . . . , αn

r − 1
(c.f. [Sza05], Section 4.6). In particular, all the non-zero weights violate the
requirement that they be between 0 and 1: they are actually shifted by −1.
Therefore, in order to get a genuine parabolic Higgs bundle on P̂

1, we have
to change the induced extension at ∞̂ by a factor of ξ−1, and the extension
of the basis vectors corresponding to non-zero eigenvalues of the Higgs field
at the logarithmic singularities ξl by factors of (ξ − ξl). The result we obtain
this way is called the transformed extension, and denoted Êtr (c.f. [Sza05],
Section 4.7). Finally, an application of Grothendieck-Riemann-Roch theorem
yields the degree of the transformed holomorphic bundle on P̂

1 with respect
to the transformed extensions:

(9) par − deg(Êtr
• ) = par − deg(E•).

3. Basic Material

Fix a projective scheme X over a field K with an ample invertible sheaf
OX(1). For a given coherent OX -module E, the support of E is the closed set
Supp(E) = {x ∈ X|Ex 6= 0}. Its dimension is called the dimension of the
sheaf E and is denoted by dim(E).

Definition 3.1. — A coherent sheaf E of OX -modules on X is pure of dimen-
sion d if dim(F) = d for any nontrivial subsheaf F of E.

Definition 3.2. — A subsheaf F of a pure d-dimensional sheaf E is saturated
if E/F is either 0 or pure of dimension d.

Equivalently, E is pure if and only if the associated points of E are all of the
same dimension.

Definition 3.3. — For a given coherent sheaf E onX , the Euler characteristic
is defined to be χ(E) =

∑dim(X)
i=0 (−1)i dimk H

i(X,E). The Hilbert polyno-
mial P (E) of E is defined by P (E, m) := χ(E ⊗ OX(m)).

Let D be a Cartier divisor on X . Suppose E is a pure sheaf of dimension d
and dim(D ∩ Supp E) < dim Supp E, then E ⊗ OX(−D) → E is injective.
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Definition 3.4. — Let E and D be as above. A triple (E, F•E, α•) is called
a parabolic sheaf on X with parabolic divisor D and weights α• if F•E is a
filtration of E by coherent subsheaves FiE so that E(−D) = Fl+1E ⊂ FlE ⊂
· · · ⊂ F2E ⊂ F1E = E and α• is a sequence of real numbers 0 ≤ α1 ≤ α2 ≤
· · · ≤ αl < 1. Set grF

i E := FiE/Fi+1E.

One can view grF
i E as coherent sheaves on D ∩ Supp(E).

Definition 3.5. — Let D1 be an irreducible component of D such that for any
other irreducible component D′ one has D1 ∩ D

′ ∩Supp E = ∅. We say that the
parabolic structure is trivial on D1 if grF

i E|D1
= 0 for all i > 1 and α1 = 0.

Definition 3.6. — Let E and D be as before. The pair (E,E•) is an R-
parabolic sheaf on X if E• = {Eα} is a collection of coherent sheaves
parametrized by α ∈ R satisfying the following properties:

1. E0 = E,
2. For all α < β, Eβ is a coherent subsheaf of Eα,
3. For all α and small ε > 0, Eα−ε = Eα,
4. For all α, Eα+1 = Eα(−D).

Set grF
α := Eα/Eα+ε for small ε > 0.

Parabolic sheaves and R-parabolic sheaves are equivalent: To see this, set
αl+1 = 1 and α0 := αl − 1. For any real number α, let i be the unique
integer so that αi−1 < α − bαc ≤ αi where bαc is the largest integer with
bαc ≤ α. Set Eα := FiE(−bαcD). Conversely, given an R-parabolic sheaf
E•, inductively choose 0 ≤ αi < 1 for i = 1, . . . , l so that Eαi

properly
contains Eβ for any β > αi. Set FiE := Eαi

and Fl+1 = E(−D). The
resulting triple (E, F•, α•) is a parabolic sheaf on X . Therefore, when the
(R-)parabolic structure of a sheaf E is clear from the context, we will write
E• for the pair (E,E•).

Definition 3.7. — Given two parabolic sheaves E′
• and E•, an OX -module

homomorphism ϕ : E′ → E is a parabolic homomorphism if ϕ(E′
α) ⊂ Eα for

all real numbers α. For E a parabolic sheaf and E a subsheaf endowed with
a parabolic structure, we say that E′

• is a parabolic subsheaf if the inclusion
is a parabolic homomorphism.

Definition 3.8. — Given a saturated subsheaf E′ of a parabolic sheaf E•, the
induced parabolic structure indE′

• on E′ is defined as indE′
α := E′ ∩ Eα for all

α ∈ R.
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Remark 3.9. — The induced parabolic structure for a given saturated sub-
sheaf E′ is the largest among the parabolic structures E′

• which make E′ into
a parabolic subsheaf of E•. As a consequence, it suffices to consider the
saturated subsheaves of a parabolic sheaf E• with their induced parabolic
structures to measure the stability of E•.

Definition 3.10. — The parabolic Euler characteristic of a parabolic sheaf
E• is defined as follows:

par − χ(E•) := χ(E(−D)) +
l∑

i=1

αiχ(grF
i E)(10)

If X is a curve, then the parabolic degree of E• is defined as:

par − deg(E•) := deg(E) +
l∑

i=1

αi dim(grF
i E)(11)

One can check that par − χ(E•) =
∫ 1

0
χ(Eα) dα (see [Yok93]).

Proposition 3.11. — The parabolic Euler characteristic is additive: Given
any short exact sequence

0 −→ E′
• −→ E• −→ E′′

• −→ 0

of parabolic sheaves with the same parabolic divisor D, the identity

par − χ(E•) = par − χ(E′
•) + par − χ(E′′

•)

holds.

Proof. — Recall that a sequence of parabolic sheaves is said to be exact if
for all α ∈ R the induced sequence on the α-filtered terms is exact. Taking
α = −1, we see that

0 −→ E′(−D) −→ E(−D) −→ E′′(−D) −→ 0

is exact. By additivity of the usual Euler characteristic, χ(E(−D)) =
χ(E′(−D)) + χ(E′′(−D)). On the other hand, the snake lemma implies that
for any α ∈ R the induced sequence on the α-graded pieces

0 −→ grF
α E′ −→ grF

α E −→ grF
α E′′ −→ 0

is also exact. The statement follows by applying additivity of χ to these se-
quences.

Definition 3.12. — Given a parabolic sheaf E• and L a line bundle, define a
parabolic structure on E ⊗ L by setting (E ⊗ L)α := Eα ⊗ L for all α ∈ R.
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When L = O(D), this definition of the parabolic structure of E(D) is to
some extent unnatural from the analytic point of view: indeed, the behaviour
of a fixed harmonic metric on local sections of E(D) is not the same as on local
sections of E, but changes by a factor of |z|−2 where z is a local coordinate
centered at D. However, we have two reasons to choose this convention: first,
the proposition above which says that the parabolic Euler characteristic is ad-
ditive if the weights of all parabolic sheaves are in the same interval; second,
for any parabolic Higgs sheaf (E, θ) (see the definition below) with divisor D,
this definition makes θ : E → E(D) a morphism of parabolic sheaves.

On a smooth projective curve X , parabolic Euler characteristic and
parabolic degree are related as follows:

Proposition 3.13. — If E is a parabolic sheaf on a smooth projective curve
X , then

par − deg(E(D)) = par − deg(E) + r deg D,

par − χ(E(D)) = par − deg(E) + rχ(OX).

Proof. — The first formula follows by definition, because the jumps αi of the
parabolic structures of E and E(D) are the same, and the graded pieces of the
filtration corresponding to each αi are isomorphic.

The second follows from Riemann-Roch and the isomorphism of the
graded pieces:

par − χ(E(D)) = χ(E) +
l∑

i=1

αiχ(grF
i E(D))

= deg(E) + rχ(OX) +
l∑

i=1

αiχ(grF
i E)

= deg(E) + rχ(OX) +

l∑

i=1

αi dim(grF
i E)

because the grF
i E are supported on the 0-dimensional subscheme D.

Definition 3.14. — A Higgs sheaf (E, θ) consists of a coherent sheaf E on
X together with a OX -module homomorphism θ : E → E(D). The resulting
O(D)-valued endomorphism θ is called a Higgs field. A parabolic Higgs sheaf
(E•, θ) with divisor D consists of a parabolic sheaf E• on X with divisor D

and a parabolic homomorphism θ : E• → E•(D). A homomorphism of Higgs
sheaves ψ : (E1, θ1) → (E2, θ2) is homomorphism of sheaves ψ : E1 → E2
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commuting with the Higgs fields: (ψ⊗ 1) ◦ θ1 = θ2 ◦ψ. A homomorphism of
parabolic Higgs sheaves is a homomorphism of Higgs sheaves respecting the
parabolic structure.

A (parabolic) Higgs subsheaf of E is defined in the obvious way: it is a
(parabolic) subsheaf preserved by the Higgs field.

Remark 3.15. — Starting from Section 8, we will consider Higgs sheaves on
X = P

1 with polar divisor P and parabolic divisor D = P + ∞. In terms of
Definition 3.14, these objects are defined as Higgs sheaves with polar divisor
D with an apparent singularity at ∞. In other words, the Higgs field, as a ra-
tional section with values in P, extends regularly at∞. We takeZP as standard
spectral surface for a Higgs sheaf with polar divisor P and parabolic divisor
D. It would also be possible to work with the surface ZD – these two surfaces
are related by an elementary transformation over the infinity. However, we
work with ZP because the poles of the Higgs field are already contained in P.

Definition 3.16. — A parabolic (Higgs) sheaf E• is said to be semistable if
for any given proper parabolic (Higgs) sheaf F• ⊂ E•, par − p(F•, m) ≤
par − p(E•, m) for large m. The (Higgs) sheaf E• is said to be stable if
for all proper parabolic (Higgs) subsheaves F• ⊂ E•, par − p(F•, m) <
par − p(E•, m) for large m.

3.0.1. — The standard construction described in Section 1.1 adapts to the
parabolic case as well. A parabolic Higgs sheaf θ : E• → E•(P) with
parabolic divisor D determines a parabolic sheaf M P

• on ZP with parabolic
divisor π∗

P
(D), with πP∗MP

α = E(P)α for any α ∈ R and SuppM P

• ∩ (yP) = ∅.
Write πH(E•, θ) for MP

• and πH(MP

• ) for (E•, θ).

3.0.2. Automorphism (−1). — If M corresponds to the Higgs sheaf θ : E →
E(P), the pullback (−1)∗ZPM corresponds to −θ : E → E(P). We formalize
this for parabolic Higgs sheaves as well as Higgs sheaves:

Lemma 3.17. —

πH (−1)∗ZP πH(E, θ) = πH(E,−θ),

πH (−1)∗ZP πH(E•, θ) = πH(E•,−θ).

3.1. Commutative Algebra. — Let A be a local ring with maximal ideal m.
For any A-module M , the depth of M is defined as

depth(M) := min{i : Exti
A(A/m,M) 6= 0}
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and the homological dimension dim(M) is defined as the minimal length of
a projective resolution of M .

The Auslander-Buchsbaum formula relates the two invariants:

dh(M) + depth(M) = depth(A).

If A is a regular local ring, then depth(A) = dim(A).

Corollary 3.18. — Let A be a regular local ring of dimension 2, M a torsion
A-module with dh(M) = 1. Then, any submodule M ′ of M is a torsion
A-module with dh(M ′) = 1.

Proof. — Any submodule M ′ of M is torsion, therefore not locally free and
dh(M ′) ≥ 1. Since depth(M) = 1,

Ext0
A(A/m,M ′) ⊂ Ext0

A(A/m,M) = 0.

Consequently, depth(M ′) ≥ 1. By Auslander-Buchsbaum equality,

dh(M ′) = depth(M ′) = 1.

Lemma 3.19. — Assume X is a smooth projective surface. For a coherent
sheaf M on X , the following are equivalent:

1. M is pure of dimension 1,
2. M is a torsion sheaf with dim(Mx) = 1 for all x ∈ X ,
3. dh(Mx) = depth(Mx) = 1 for all x ∈ X .

Moreover, any subsheaf of a given pure sheaf M of dimension 1 is also pure
of dimension 1.

Proof. — Apply Cor 3.18 and Prop. 1.1.10 [HL97], which in this particular
case, states that a coherent sheaf M of dimension 1 is pure if and only if
depth(Mx) ≥ 1 for all x ∈ X .

4. Iterated Blow-Ups

A sequence of infinitesimally near points (p0, . . . , pn) on X is defined re-
cursively as follows: Let X0 := X and p0 ∈ X0. By ωj : Xj −→ Xj−1,
denote the blow-up of Xj−1 at pj−1, the exceptional divisor ω−1

j (pj−1) by Ej

and let pj be a point in Ej for j = 1, . . . , n. By abuse of notation, denote the
total transform of the exceptional divisor Ej in Xn still by Ej for j = 1, . . . , n.
For 1 < j < n, set

(12) Cj := Ej − Ej+1.
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The curve Cj is a (−2)-curve on Xn.

Definition 4.1. — We call a zero dimensional closed subscheme T of a
smooth (projective) surface X linear if for each p ∈ Tred, one can find
u, v ∈ mX,p and positive integer n so that

mX,p = (u, v)OX,p and JT,p = (un, v)OX,p.

For p ∈ Tred, the integer n is uniquely determined and is equal to the length
of T at p, dimk(OX,p/JT,p). Denote this integer by np. The total length N of
T equals the sum

∑
np.

An irreducible linear subscheme T of local length n+1 with closed point p
determines a sequence of infinitesimally near points (p0, . . . , pn) with p0 = p
as follows: Let

– p0 := p,
– D0 := (un − v),
– Dj := ω#

j Dj−1 and
– pj be the unique intersection point of Dj with Ej for j = 1, . . . , n.

The divisor D0 is a smooth curve, thus so are all Dj for j > 0. Because
multp0

D0 = 1, it follows that Dj · Ej = 1, i.e. the intersection of Dj and Ej is
unique point, say pj , for j > 0.

We call the surface Xn the iterated blow-up of X at T and denote it by
ωT : F-BlT X −→ X .

Enumerate the components of a linear subschemes as T1, . . . , Tm. Then
define the iterated blow-up of X at T to be

F-BlT X := F-BlT1
X ×X · · · ×X F-BlTm X

and ωT : F-BlT X −→ X be the corresponding morphism.
Clearly, F-BlT X and ωT do not depend on the enumeration chosen. How-

ever, we need the enumeration for better record keeping: Denote the closed
point of T corresponding to Ti by pi and add the subscript i in front of previ-
ously written subscripts for the related data, thus making them pij, Eij, Cij for
appropriate values of j.

4.1. Formulas for Exceptional Divisors. — Each leg of the following di-
agram is an iterated blow-up. To keep the notation simpler, assume that
D = n · pt for some n > 0 and replace D with n in notation, making ZD



ALGEBRAIC NAHM TRANSFORM 19

into Zn etc.

Z
η0

~~}}
}}

}}
}} ηn

  A
AA

AA
AA

A

Z0 //_______ Zn

In order to construct this diagram, one has to fix a global section s of O(D) so
that D = (s). All such divisors differ by non-zero multiple. Let u be a global
section of O(pt), without loss generality assume that s = un.

Given divisor in Z0 or Zn, denote its total transform in Z by the same
letter. Attach a superscript +/− to divisors related to ηn and η0 respectively.
Denote the fiber class by F on any of the surfaces Z0, Zn and Z. Moreover,
set

C
±
0 := F− E

±
1 ,(13)

C
±
n := E

±
n .(14)

Recall that

C
±
j = E

±
j − E

±
j+1 for j = 1, . . . , n− 1.(15)

Then,

F = E
+
j + E

−
k for j + k = n + 1,(16)

F =

n∑

i=0

C
+
i =

n∑

i=0

C
−
i .(17)

Denoting the linear equivalence of divisors ∼, we see that

X0 ∼ Y0,(18)

Xn ∼ Yn + n · F.(19)

The formulae below relate various (exceptional) divisors.

Lemma 4.2. —

X0 = Xn −
n∑

j=1

E
+
j(20)

Yn = Y0 −
n∑

j=1

E
−
j(21)

C
−
j = C

+
n−j for j = 0, . . . , n(22)
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This table summarizes various relations:

(23)

E
−
n = C

−
n = C

+
0 = F− E

+
1

E
−
n−1 − E

−
n = C

−
n−1 = C

+
1 = E

+
1 − E

+
2

...
...

...
...

E
−
1 − E

−
2 = C

−
1 = C

+
n−1 = E

+
n−1 − E

+
n

F− E
−
1 = C

−
0 = C

+
n = E

+
n

We switch from the additive notation of divisors to multiplicative notation
of line bundles and sections: Let F be the fiber above pt, i.e. it is cut out
by the equation u = 0. Denote the section corresponding to divisor by the
same letter in small case, i.e. x0 is the section which cuts the divisor X0. Set
Ci = C

+
i . The equality F =

∑
C

+
i , now becomes u =

∏n
0 ci.

Given a Higgs bundle θ : E −→ E(D), the eigensheaf M D on ZD equals
coker(xn − ynθ). We want to relate M D to M0 on Z0. The sheaf M 0 is
defined by using sx0 − y0θ. We relate sx0 − y0θ to xn − ynθ.

sx0 − y0θ = unx0 − y0θ

= (
n∏

1

e−j )(xn − ynθ)

= (
n−1∏

0

cn−i
i )(xn − ynθ)(24)

For 0 ≤ k ≤ n,

xn = (

n∏

1

e+j )x0

= (

n∏

1

cn+1−j
j )x0

gcd(xn, u
k) = c11c

2
2 · · · c

k−1
k−1c

k
k · · · c

k
n

(

n∏

1

e−j ) gcd(xn, u
k) = cn0 · · · c

n
kc

n−1
k+1 · · · c

k
n

= uk(cn−k
0 · · · cn−k

k c
n−(k+1)
k+1 · · · c1n−1).

For i = 1, . . . , r, let ki be the largest power of u to divide all the elements
of the ith row of θ. Set P , Q, R to be diagonal matrices whose ith diagonal
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entries are respectively

(25)

Pii Qii Rii

cn−k
0 · · · cn−k

k c
n−(k+1)
k+1 · · · c1n−1 uk c11c

2
2 · · · c

k−1
k−1c

k
k · · · c

k
n

‖ ‖ ‖
e−1 · · · e−l uk e+1 . . . e

+
k

for k = ki and l = n− k. Then,

Lemma 4.3. —

P ·Q = (
n∏

1

e−j )R.(26)

5. Proper Transform of Sheaves

Fix a point x ∈ X . Denote the blow-up of X at x by ω : X# −→ X and
the exceptional divisor by E.

Let T denote the zero dimensional subscheme corresponding to x.
For a given coherent sheaf F on X , we call the pullback ω∗F the total

transform of F. Let

FE := Tor
O

X#

1 (ω∗F,OX#(E)E).

FE coincides with the subsheaf of sections of ω∗F supported along E.

Definition 5.1. — The proper transform of F is defined as the quotient
ω∗F/FE and will be denoted by ω#F , or simply F# when suitable.

The following sequences are exact:

0 −→ OX# −→ OX#(E) −→ OX#(E)E −→ 0
0 −→ FE −→ ω∗F −→ F# −→ 0
0 −→ F# −→ ω∗F(E) −→ ω∗F(E)E −→ 0.

To see the exactness of the latter two, tensor first sequence with ω∗F and split
the resulting sequence into two short exact sequences.

The definitions of proper transform for divisors and sheaves are compatible
with each other: For a given effective divisor D on X , denote its ideal sheaf
by JD, then J

#
D

= JD# .

Proposition 5.2. — Given a coherent sheaf F on X ,

1. If F is torsion-free, then FE and F# coincide with the torsion and
torsion-free parts of ω∗F respectively.

2. Let J be the ideal sheaf of x ∈ X . Then, J# = OX#(−E).
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3. If F is locally free at x, then ω∗F = F#. In particular, if F is locally
free, the conclusion holds.

4. If x /∈ Supp F, then ω∗F = F# and ω∗F
# = ω∗ω

∗F = F.
5. Given a locally free sheaf L on S, then (F ⊗ L)E ∼= FE ⊗ L and

(F ⊗ L)# ∼= F# ⊗ L.

Proof. — (1) follows as ω : X#\E −→ X\{x} is an isomorphism, ω∗F is
torsion-free over the open set X#\E and the torsion locus is E. (2) and (3)
follow from (1). (4) is clear. (5) follows from the locally freeness of the
sheaf L.

Lemma 5.3. — Given a coherent sheaf M on X ,

R0ω∗ω
∗M = M and Riω∗ω

∗M = 0 for all i > 0.

Proof. — The result holds for M = OX . It holds for locally free sheaves by
the projection formula and for arbitrary coherent sheaves by the existence of
locally free resolutions on smooth projective scheme X .

Lemma 5.4. — Given a coherent sheaf M on X with dh(Mx) = 1,

1. ME ∼= OE(−1)⊕m, where m = dimk(x)Mx ⊗ k(x),
2. R0ω∗M

# = M and Riω∗M
# = 0 for all i > 0.

3. If Mx is torsion, then for all y ∈ E, dh(M#
y ) = 1,

4. Tor
O

X#

i (M#,OE) = 0 for all i > 0.
5. Ext0

O
X#

(OE,M
#) = 0.

6. If M is pure of dimension 1, then E * SuppM#.

Assumption 1. — From now on, assume M is a coherent sheaf on X with
dh(Mx) = 1. Let N := ker(M −→Mx).

Lemma 5.5. — Given an exact sequence of sheaves on X

0 −→ N −→M
evT−→MT −→ 0

where evT is the evaluation map, then the sequence

0 −→ N# −→ ω∗M −→ ω∗MT −→ 0

is exact and N# = M#(−E).
For any divisor D with multxD = 1, M(−D)# = N#(−D

#).
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Proof. — The map N −→ M is 0 at x and an isomorphism of the fibers
away from x. Hence the map ω∗N −→ ω∗M vanishes along E and it is an
isomorphism away from E. As a result, the kernel and the image of this map
are NE and N#. This proves the exactness of the above sequence.

The proper transform M# fits into the exact sequence:

0 −→M# −→ ω∗M(E) −→ ω∗M(E)E −→ 0.

Tensoring this sequence by O(−E) shows that N# = M#(−E).
Given such a divisor D, we see that ω∗ = D

# + E. Starting from
N# = M#(−E) and tensoring both sides by O(−D

#), we get N#(−D
#) =

M#(−ω∗) = M(−D)#.

Lemma 5.6. — The sequence

0 −→ME −→ ω∗ME −→M#
E

−→ 0

is exact.

Proof. — Let K := ker(ω∗ME −→M#
E

). The following diagram is exact:

0

��

0

��

ME

��

K

��

0 // N# // ω∗M //

��

ω∗ME
//

��

0

0 // N# // M# //

��

M#
E

//

��

0

0 0

.

5.1. Two Sheaves. — If dh(Mx) = 1, then M has a two-step locally free
resolution over an open subscheme U containing x:

0 −→ F1 −→ F0 −→MU −→ 0.
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Denote ω−1(U) by V . This data fits into an exact diagram:

(†) 0

��

0

��

NU

��

0 // F1
Φ

//

��

F0
// MU

//

��

0

0 // H //

��

F0
// MT

//

��

0

NU

��

0

0

Here, H and N are the kernels of F0 −→ MT and M −→ MT respectively.
The stalk Mx is torsion OX,x-module if and only if rank F1 = rank F0.

Lemma 5.7. — Given an exact sequence of coherent sheaves on U

0 −→ S −→ F −→ Q −→ 0

with F locally free and Q torsion, then

0 −→ S# −→ ω∗F −→ ω∗Q −→ 0

is exact on U#.

Proof. — The sequence ω∗S −→ ω∗F −→ ω∗Q −→ 0 is exact. The first
homomorphism factors through S# because S# is the torsion-free quotient of
ω∗S. The homomorphism S# −→ ω∗F is generically injective since ω∗Q is
torsion and injective since S# is torsion free. Consequently, the image of ω∗S

in ω∗F coincides with S#.

Definition 5.8. — Given a projective scheme X , a normal crossing divisor
Σ, a locally free OX -module F and a locally-free OΣ-module M together
with a surjection φ : F −→ M , the coherent sheaf ker φ is called the Hecke
transform of F with respect to M and φ.

Remark 5.9. — Hecke transforms are locally free sheaves on X .
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Proposition 5.10. — 1. IfMx is torsion OX,x-module, then H is a torsion-
free OX -module of the same rank as F1.

2. The following diagram is exact:

(‡) 0

��

0

��

N#
V

��

0 // ω∗F1
Φ

//

��

ω∗F0
// ω∗MV

//

��

0

0 // H# //

��

ω∗F0
// ω∗MT

//

��

0

N#
V

��

0

0

3. The proper transform H# of H is a Hecke transform of F1 along E. In
particular, H# is locally free.

4. Given ω : X# −→ X as before. Then ω∗(‡) = (†).

Proof. — (1) The sheaf H is torsion-free since any nontrivial subsheaf of a
torsion-free sheaf is torsion-free. The sheaves H and F0 are of the same ranks
since they are isomorphic away from T .

(2) The exactness of the second row and the third column follows from
Lemmas 5.7 and 5.5. The exactness of the first column is as a consequence.

(3) The locus ω−1(T ) is a normal crossing divisor and ω∗MT a vector bun-
dle on this divisor. The proper transform H# of H is the kernel of ω∗F0 −→
ω∗MT which proves it is a Hecke transform.

(4) follows from Lemmas 5.3 and 5.4.

Proof of Lemma 5.4. — (1) The stalk Mx has a two-step resolution by free
OX,x-modules. Therefore, there exists an open neighborhood U of x on which
MU has a locally free resolution

0 −→ F1 −→ F0 −→MU −→ 0.
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The locally free sheaves Fi are of the same rank, say r. Let m be the fiber
dimension of M at x, then m ≤ r. Denote ω−1(U) by V . Because E ⊂ V ,
ME = TorOV

1 (ω∗MU ,OV (E)E). Using the locally free resolution of MU , we
see that ME ∼= OE(−1)⊕m where m = dimk(x)Mx ⊗ k(x).

(2) The sequence 0 −→ FE −→ ω∗F −→ F# −→ 0 is exact.
The first term is isomorphic to OE(−1)⊕m. Therefore Riω∗M

E = 0 for all i,
R0ω∗M

# = M and Riω∗M
# = 0 for all i > 0.

(3) For all y ∈ E, dh(ω∗My) = 1 and My is a torsion OX#,y-module. The
sheaf N# is a subsheaf of ω∗M and M# = N#(E). By Cor. 3.18, M#

y has
the same properties.

(4) The sheaf M#
V has a two-step locally free resolution

0 −→ F1(E) −→ H#(E) −→M#
V −→ 0,

where H# is defined by a Hecke transform as ker(F0 −→ ω∗ME) and hence

locally free. Consequently, Tor
O

X#

i (M#,OE) = 0 for i ≥ 2.
Apply OE ⊗O

X#
• to the exact sequence

0 −→ME −→ ω∗M −→M# −→ 0.

The sheaf M E ∼= OE(−1)⊕m. Hence Tor
O

X#

1 (ME,OE) ∼= O⊕m
E

. Similarly,

Tor
O

X#

1 (ω∗M,OE) = ME(−E) ∼= O⊕m
E

. By Lemma 5.6, Tor
O

X#

1 (M#,OE) =
0.

(5) Apply Ext
O

X#
(•,M#) to the exact sequence

0 −→ OX#(−E) −→ OX# −→ OE −→ 0.

The result is

0 −→ Ext0O
X#

(OE,M
#) −→M# −→M#(E) −→M#(E)E −→ 0.

Then, Ext0
O

X#
(OE,M

#) = Tor
O

X#

1 (M#,OE) = 0. The latter sheaf is trivial
by (4).

(6) If M is pure of dimension 1, then M# is torsion and dh(M#
y ) = 1

for all y ∈ X#. Consequently, M# is pure of dimension 1. As E is not an
associated point of M# by (4), E * SuppM#.

5.1.1. Morphisms. — Let M1,M2 be coherent sheave on X . Then a homo-
morphism φ : M1 −→ M2 induces φ∗ : ω∗M1 −→ ω∗M2 with ω∗(ME

1 ) ⊂
ME

2 and denote the induced morphism on the quotients M#
1 −→ M#

2 by φ#.
For coherence, we also use ω#φ for φ#.

Assumption 2. — M1,M2 are pure of dimension 1.
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Lemma 5.11. — For any homomorphism φ : M1 −→ M2, ω∗ω
#φ = φ. For

any homomorphism ψ : M#
1 −→M#

2 , (ω∗ψ)# = ψ.

Proof. — The kernel of φ − ω∗φ
# is 0-dimensional. Because M1 is pure

of dimension 1, the kernel is trivial and hence φ = ω∗φ
#. The kernel of

ψ − (ω∗ψ)# is contained in the zero dimensional subscheme E ∩ SuppM#
1 .

Hence, ψ = (ω∗ψ)#.

Lemma 5.12. — A homomorphism φ : M1 −→M2 is injective if and only if
φ# is injective. In this case, ω∗(coker φ#) = coker φ.

Proof. — (⇐) As Mi are pure of dimension 1, Mi = M#
i and φ = ω∗ω

#φ.
The injectivity follows from the left exactness of ω∗.
(⇒) φ# is injective away from E, thus ker φ# ⊂ E ∩ SuppM#

1 , hence trivial.

Lemma 5.13. — Let M be a pure sheaf of dimension 1. Then,

χ(ω∗M) = χ(M),

χ(ω#M) = χ(M).

Proof. — Lemma 5.3 (resp. Lemma 5.4) shows that the sheaf cohomology
of ω∗M (resp. ω#M ) match the sheaf cohomology of M , hence χ(ω∗M) =
χ(M) = χ(ω#M).

5.2. Parabolic Case. — Fix a divisor D on X .

Definition 5.14. — Given a parabolic sheaf M• of dimension 1 on X
with parabolic divisor D, the proper transform of M• is defined by setting
ω#(M)α := ω#(Mα) for α ∈ R. Let ω#M• have the same weights as M•.

Definition 5.15. — Given a parabolic sheaf M#
• of dimension 1 with

parabolic divisor ω∗
D, define the push-forward ofM#

• by setting ω∗(M
#)α :=

ω∗(M
#
α ) for α ∈ R. Let ω∗M

#
• have the same weights as M#

• .

Proposition 5.16. — The proper transform ω#M• of M• with divisor D is
a parabolic sheaf with divisor ω∗

D, ω∗ grF
i ω

#M = grF
i M for all i and

par − χ(ω#M•) = par − χ(M•).

Proof. — We give a proof for the proper transform. First, ω#(M)0 = ω#M .
By assumption,M• is parabolic. The sheafMβ is a subsheaf ofMα for β ≥ α.
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The previous lemma implies M#
β is a subsheaf of M#

α and ω∗ grF
i ω

#M =

grF
i M for all i. In addition,

ω#(M)α+1 = ω#(Mα(−D)) = ω#(Mα)(−D)) = M#
α (−ω∗

D).

The weights of ω#M• are the weights of M•. These make ω#M• into a 1-
dimensional parabolic sheaf.

The parabolic Euler characteristic is preserved since

M(−D)# = M#(−ω∗
D)

and ω∗ grF
i M

# = grF
i M for all i:

par − χ(ω#M•) = χ(ω#M(−ω∗
D)) +

∑
αiχ(grF

i ω
#M)

= χ(M(−D)) +
∑
αiχ(grF

i M)
= par − χ(M•).

6. Addition and Deletion

In this section, we introduce the addition and deletion operations for
parabolic sheaves.

6.0.1. Deletion. — Let P• be a parabolic sheaf on X with divisor D and
D
′, E be a effective Cartier divisors in X such that D = D

′ + E. Because
dim(Supp(P)∩D) < dim(Supp(P)), the same holds for E and D

′ as well. We
set P′ := P(−E). One can put a parabolic structure on the sheaf P′ whose
parabolic divisor is D′: For 0 ≤ α < 1, set P′

α := P′ ∩ Pα. Extend this to a
parabolic structure by setting P′

α := P′
α−bαc(bαcD

′). We call P′
• the deletion

of E from the divisor of P•, and denote it by DelE(P•).

6.0.2. Addition. — Conversely, given a parabolic sheaf P′
• with divisor D′

and an effective divisor E such that dim(Supp(P′)∩E) < dim(Supp(P′)), one
can put a parabolic structure with parabolic divisor D = D

′ + E on P = P′(E)
by setting P0 = P and Pα = P′

α for 0 < α < 1 and extending this to R in the
usual way. Denote P• by AddE(P

′
•), and call it the addition of E to the divisor

of P′
•.

Condition 3. — One has either

α0(P) = 0 and F1P = P(−E),

or
α0(P) > 0 and Supp(P) ∩ E = ∅.
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Lemma 6.1. — Let P• be a parabolic sheaf onX satisfying Condition 3, and
S• be a saturated subsheaf endowed with the induced parabolic structure.
Then S• also satisfies Condition 3.

Proof. — The induced parabolic structure is defined by the formula Sα =
S ∩ Pα for all 0 ≤ α < 1. For small enough ε > 0, one then has Sε =
S ∩ Pε = S ∩ P(−E). Because S ⊂ P, this then implies Sε = S(−E).
Assuming Supp(S) ∩ E 6= ∅, one has Sε 6= S. Letting ε → 0, this implies
α0(S) = 0, and F1S = S(−E) as claimed.

Proposition 6.2. — For any parabolic sheaf P′
• with divisor D

′ and any E

satisfying the assumption of Subsection 6.0.2, one has DelE(AddE(P
′
•)) =

P′
•. For any parabolic sheaf P• and E satisfying Condition 3, one has

AddE(DelE(P•)) = P•. Finally, par − χ(DelE(P•)) = par − χ(P•).

Proof. — The first two statements are clear from the definitions. For the third
statement, notice that P(−D) = (P(−E))(−D

′) and that for all 0 < α ≤ 1,
one has Pα = DelE(P•)α, in particular grF

α (P•) = grF
α (DelE(P•)).

7. Spectral Triples

From now on, let C be a smooth projective curve over the field K and P an
effective Cartier divisor on C.

Definition 7.1. — A spectral triple (Z,Σ,M) consists of a smooth surface Z
together with a morphismω : Z −→ C, an effective divisor Σ ⊂ Z and a rank

one torsion free OΣ-moduleM so that
(1) π : Z −→ C is flat,
(2) π|Σ : Σ −→ C is finite and flat.

Definition 7.2. — A parabolic spectral triple (Z,Σ,M•) is a spectral triple
so that M• is a parabolic sheaf whose parabolic divisor is ω∗(P).

Remark 7.3. — In fact, it would be enough to consider the pair (Z,M) as Σ
is determined by Σ = Supp(M). We include Σ in the definition for exposi-
tional purposes.

Starting from such a Higgs bundle (E, θ) one can define a spectral triple
(Z[,Σ[,M [): Set C[ := C − P and A

1 := Spec(k[λ]). Here,
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Z[ := C[ × A
1 with the obvious choice for ω[ : Z[ −→ C,(27)

Σ[ := (det(λ IdE −θ)) and(28)

M [ := coker(λ IdE −θ).(29)

Definition 7.4. — A compactification of the triple (Z [,Σ[,M [) is a spectral
triple (Z,Σ,M) and an open immersion i : Z [ −→ Z so that

1. Z is a connected smooth projective surface,
2. i(Σ[) is contained in Σ as a dense open subset,
3. i∗M = M [,

so that the following diagram is commutative:

Z[

π[
  

AA
AA

AA
AA

i
// Z

π
��~~

~~
~~

~~

C.

By (1) and (2), Z[ is dense inside Z and Σ is the closure of i(Σ[) in Z.
There are many compactifications of the triple (Z [,Σ[,M [): Given one

compactification, one can obtain other via suitable blow-ups.
The standard choice for compactification of (Z [,Σ[,M [) is
ZP := PC(O ⊕ O(−P)),
ΣP := (det(xP IdE −yP θ)) and
MP := coker(xP IdE −yP θ).

Remark 7.5. — ΣP does not meet the line at infinity (yP).

7.1. Naive Compactification: The Surface and The Curve. — We de-
scribe a compactification with Z0 = C × P

1. The spectral curve Σ0 is de-
termined by Σ[ as its closure. The sheaf M 0 is the cokernel of a morphism
between locally free sheaves as was M P.

Remark 7.6. — Σ0 meets the line at infinity (y0) over the points p ∈ P for
which θp is not a nilpotent endomorphism.

7.2. Naive compactification: The Sheaf. — Fix a section s so that P = (s)
and let Θ0 := s x0 IdE −y0 θ : E −→ E(P) ⊗ OZ0(1). Then

(det Θ0) = Σ0 + (det coker(θ)).
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We find another map Φ0 related to Θ0 : E −→ E(P) ⊗ OZ0(1) so that

Σ0 = (det Φ0).

Recall that F := ker(E(P) −→ coker θ(−P)P) and F ↪→ E is denoted by Q.
The map θ : E −→ E(P) naturally factors through F(P). Similarly, Θ0 factors
through F(P) ⊗ OZ0(1). Denote the resulting map by Φ0. The following
diagram is exact. From this diagram, we see that

SuppM0 = (det Φ0) = Σ0.

0

��

0

��

M0

��

0 // E
Θ0

//

Φ0

��

E(P) ⊗ OZ0(1) // η
∗
T−

coker θ //

��

0

0 // F(P) ⊗ OZ0(1)
Q⊗1

//

��

E(P) ⊗ OZ0(1) // η
∗
T−

coker θD
//

��

0

M0

��

0

0

(30)

7.3. — We use the ideas developed in Section 5 to compare M 0 and MP

using the diagram
Z

η
T−

~~}}
}}

}}
}} η

T+

  B
BB

BB
BB

B

Z0 //_______ ZP.

Set
– T− := Σ− ∩ (y0) and T+ := Σ+ ∩ (xP),
– F0

1 := E, F0
0 := F(P) ⊗ OZ0(1) and FP

1 := E, FP

0 := E(P) ⊗ OZP(1).
View FB

1 −→ FB

0 as a two-step locally free resolution for the sheaf M B on
U = ZB. Set

HB := ker(FB

0 −→MB

TB
).



32 KÜRŞAT AKER & SZILÁRD SZABÓ

Proposition 7.7. — For B = 0, P, T B is linear,
Z = F-BlT B ZB and ωB = ωT B ,

η
#
T+HP = η

#
T−

H0(31)

η
#
T+N

P = η
#
T−
N0(32)

Σ0#
= ΣP#

.(33)

We denote the proper transformed spectral curve (33) by Σ.

Proof. — For simplicity, assume P = n · pt with local coordinate u. at pt.
Subscheme T P is linear because T P = (un) ∩ (t) = (un, t) where t is xP or
yD. The pair u and t is clearly transversal. Rest of (1) is clear. Lemma 4.3
says that the following is diagram commutative and ηT+

#HP = ηT−

#H0:

HP

#
(∼=)

//__________________

P
��

H0
#

R
��

F(P) ⊗ OZ0(1)

Q
((RRRRRRRRRRRRR

E(P) ⊗ OZP(1)

(
Qn

1 e−i )vvlllllllllllll

E(P) ⊗ OZP(1)

The rest follows.

8. Algebraic Nahm Transform

Let (ZP,ΣP,MP

• ) be the standard parabolic spectral triple of the parabolic
Higgs bundle (E•, θ) whose parabolic divisor D is P+∞. Define the following
0-dimensional subschemes of ZP:

T+ := π∗(P) ∩ (xP),

the intersection of the pullback divisor π∗(P) and the 0-section in ZP and

T̂− := π∗(∞) ∩ ΣP,

the fiber of ΣP over ∞ ∈ ZP. Applying the ideas of Section 5 to the zero-
dimensional subscheme T+ produces a new spectral triple (ZP,ΣP, NP) out
of MP

• :
NP := ker(MP →MP

T+).

By definition, N P consists of the local sections of M P vanishing in T+.
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Next, define another spectral triple (Z,Σ, N•): The surface Z is the blow-
up ηT+ of ZP at T+, the divisor E+ is the exceptional divisor of ηT+ and
the coherent sheaf N is defined as the proper transform η

#
P
(NP) of NP. The

support Σ of N is the proper transform η
#
T+(ΣP) of ΣP. Let

N• := DelE+η
#
T+M

P

• .

The sheaf N now has a parabolic structure whose divisor is η
#
T+D = η

∗
T+D−

E
+. By our convention, the parabolic structure of N P

• (as well as that of all the
other sheaves involved further in the construction) has weights between 0 and
1 in all parabolic points.

Proposition 8.1. — If Condition 1 holds for (E, θ), then Condition 3 holds
for the parabolic sheaf N• and the divisor E+.

Proof. — Indeed, Condition 3 says that in a parabolic point p ∈ P such that
θp has a 0 eigenvalue, the relation F = F1E holds, and the smallest parabolic
weight is 0. This then implies that grF

0 (E) = coker(θp), and that the parabolic
weight associated to this graded piece is 0. By the definition of the parabolic
structure of M P, this is equivalent to saying that grF

0 (MP) = coker(θp) on the
fiber F = π−1(p), with 0 parabolic weight associated to this graded. Since the
sheaf coker(θp) is supported in the point t = F∩(xP), we see that the 0-weight
subspace of M P|F is precisely M P|t. Therefore, we have F1M

P = ker(MP →
MP|t). Now let us blow up the point t, and call E the exceptional divisor and
M the proper transform of M P. Then for the parabolic structure of M the
relation F1M = ker(M → M |E) = M(−E) holds, and the corresponding
parabolic weight is 0. This shows that Condition 3 is true for M . It then
follows for N as well because of our convention of keeping the same weights
for kernel and cokernel sheaves.

For simplicity, write π for the projection π ◦ ηT+ : ZP −→ P
1, whenever

this does not create any ambiguity, and do the same for all other projections
to P

1 composed with blow-up maps. Similarly, identify the zero-dimensional
subcheme T ⊂ Z2 with ω−1(T ) if ω : Z1 −→ Z2 does not affect T . For
example, view T̂− = π∗(∞) ∩ ΣP both as a zero-dimensional subscheme of
ZP and Z.

Now, apply the blow-up construction of Section 5 to the zero-dimensional
scheme T̂− inZ, and obtain a parabolic spectral triple (Z int,Σint, N int

• ) called
the intermediate parabolic spectral triple of (E•, θ): the surface Z int is the
blow-up ρ bT−

of Z along T̂−, the coherent sheaf N int is defined as the proper
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transform ρ
#
bT−

η
#
T+N of N with respect to ηT+ρ bT− . It is supported on the

proper transform Σint = ρ
#
bT−

Σ of Σ with respect to ρ bT− . Set

N int
• := DelE+(ηT+ ◦ ρ bT−

)#(MP

• ).

The parabolic divisor of N int
• is D

int = ρ
∗
bT−

η
#
T+D. Call Ê− the exceptional

divisor of ρ bT−
. Set Pint = D

int\π−1∞. We call Z int the intermediate surface,
Σint the intermediate spectral curve and N int the intermediate spectral sheaf.

It is possible to reconstruct the original parabolic Higgs bundle from the
intermediate parabolic spectral triple: by Lemma 5.4, we have

NP = (ηT+ ◦ ρ bT−)∗N
int and MP(−P)• = (ηT+ ◦ ρ bT−)∗N

int
• (−P

int).

The parabolic vector bundle E• is π∗MP(−P)•, and the Higgs field θ is the
direct image of multiplication map by the global section xP on ZP.

The dual divisor P̂ is defined as the image of T̂− under π̂ : P1×P̂
1 −→ P̂

1,
i.e.

P̂ := π̂(T̂−).

We equally set D̂ = P̂ + ∞̂. All the maps we have constructed so far fit into
the commutative diagram

Zint

ρ bT−

{{ww
ww

ww
ww

ww ρT−

##H
HH

HH
HH

HH
H

Z
ηT+

����
��

��
�� ηT−

##G
GGGGGGGG Ẑ

bη bT−

{{wwwwwwwww bη bT+

��
@@

@@
@@

@@

ZP
P

1 × P̂
1 ẐbP.

(34)

Here, the surfaces ẐbP, Ẑ and the related maps are defined in an analogous
manner to above. More precisely, recall that ηT+ is the blow-up of ZP at
the points T+, and ηT− is the blow-down of Z along the proper transforms
E
− = η

#
T+(π∗(P)) in Z of the fibers of π in ZP over the points of P. As

usual, call π and π̂ the two projections of P
1 × P̂

1. For any p ∈ P the proper
transform η

#
T+(π∗(p)) of the fiber over p contracts into the point in P

1 × P̂
1

which is the intersection of the infinity-fiber of π̂ with the fiber of π over p:
denote by T− ⊂ π̂∗(∞̂) the union of these points for all p ∈ P; this is a finite
set. Furthermore, recall that T̂− is the intersection of Σ0 and the infinity-fiber
of π, or said differently, the intersection of the fibers of π̂ over P̂ in P

1 × P̂
1

and the infinity-fiber of π. Then, the map η̂ bT−
is the blow-up of P

1 × P̂
1 in
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the points T̂−, ρT− is the blow-up of Ẑ in the points T−, and finally η̂ bT+ is the
blow-down of the proper transform Ê

+ = η̂
#
bT−

(π̂∗(P̂)) of the fibers of π̂ over

P̂ with respect to η̂ bT− . Call T̂+ the finite set where these fibers contract in the
0-section of π̂ in ẐbP. In other words, the relation between P

1 × P̂
1, ẐbP and

Ẑ with respect to the points P̂ and the projection π̂ is the same as the relation
between P

1 × P̂
1, ZP and Z with respect to the points P and the projection π;

whereas Z int is the fibered product of Z and Ẑ over P
1× P̂

1. Therefore, Z int

has two projections to projective lines: π = π ◦ ηT+ ◦ ρ bT−
to the base P

1 of
the geometrically ruled surface ZP, and π̂ = π̂ ◦ η̂ bT+ ◦ ρT− to the base P̂

1 of

ẐbP. Let M̂bP be the direct image sheaf (η̂ bT+ ◦ ρT−)∗(AddbE+N int) and denote
by Σ̂bP its support.

Definition 8.2. — The direct image parabolic sheaf π̂∗M̂
bP
• (−P̂) on P̂

1 with
parabolic points D̂ will be called Ê′

•.

By the definition of M̂bP
• , Ê′

• is isomorphic to
(
π̂∗ ◦ (η̂ bT+)∗ ◦ (ρT−)∗ ◦ AddÊ+DelE+ ◦ ρ

#
bT−

◦ η
#
T+(MP

• )
)

(−P̂).

Remark that by construction, the parabolic weights of Ê′
• are between 0

and 1. Furthermore, similarly to (xP, yP) on ZP, there exists a pair of globally
well-defined parameters (x̂bP, ŷbP) on ẐbP.

Definition 8.3. — Denote the direct image of multiplication by the global
section −x̂bP on M̂bP

• (−P̂) by θ̂′.

Remark 8.4. — One checks without difficulty that θ̂′ respects the parabolic
filtration of Ê′

•, hence (Ê′
•, θ̂

′) is a parabolic Higgs bundle. Using the notation
introduced in Section 1, the definitions above can be written

(Ê′
•, θ̂

′) = πH(M̂
bP
• ,−x̂bP),

or equivalently by Lemma 3.17

(Ê′
•, θ̂

′) = πH((−1)∗bZbP
M̂

bP
• , x̂bP)

Notice that the construction of (Ê′
•, θ̂

′) only assumes that θ has first-order
poles at finite distance and no singularity at infinity, but no assumption is made
on the residues of θ in these singularities, nor about stability or the degree of
E. However, the reason why we introduced this construction is that under the
assumptions of [Sza05], the two definitions of Nahm transform agree:
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Theorem 8.5. — Assume (E•, θ) satisfies the conditions of Section 2. Then,
the parabolic Higgs bundles (Ê′

•, θ̂
′) and (Êtr

• , θ̂) are isomorphic.

Definition 8.6. — In the sequel of the paper, this common object wil be re-
ferred to as (Ê•, θ̂).

Proof. — It follows from the results discussed in Theorem 2.3 that on the
open set Ĉ \ P̂ the two Higgs bundles (Ê′, θ̂′) and (Ê, θ̂) agree. Indeed, over
Ĉ\ P̂ the two surfaces P

1× P̂
1 and ẐbP are isomorphic, the same holds for the

sheaves M 0 and M̂bP and the coordinates ξ and x̂bP. Finally, the two factors of
1/2 in the definition of (Ê, θ̂) (namely, that of θξ = θ−ξ/2 and θ̂ = −z(ξ)/2)
cancel each other. Hence, we only need to check that the extensions to the
singularities agree as well.

Lemma 5.4 implies

(ηT−)∗ ◦ (ρ bT−
)∗(N

int) = N0(π−1(∞))

as sheaves, and because Ê
− ∩ Σint = (π ◦ ηT− ◦ ρ bT−

)−1(∞) ∩ Σint and
(π̂ ◦ ηT− ◦ ρbT−

)−1(P̂) = Ê
− ∪ Ê

+, this implies

(ηT−)∗ ◦ (ρ bT−
)∗AddbE+(N int) = N0(π̂−1(P̂)).

Since the projections π̂ ◦ ηT− ◦ ρ bT−
and π̂ ◦ η̂ bT+ ◦ ρT− from Z int to P̂

1 are
the same, we have the isomorphism of sheaves

π̂∗N
0(P̂) = π̂∗M̂

bP,

because both are equal to the direct image of AddbE+N int with respect to the
same projection. However, the direct image of the parabolic structure of N 0

is not the correct one: indeed, on one hand the set of parabolic points of N 0

contains the points of E+∩Σ0 with trivial parabolic structure, so these will in-
duce extra parabolic points on P̂

1 with trivial structure; and on the other hand
it does not contain the points Ê+ ∩ Σ0 ⊂ π̂−1

P̂ so that the direct image with
respect to π̂ of the parabolic structure on N 0 does not really make sense. On
the other hand, we modified the parabolic divisor of N int so that these prob-
lems do not occur when we push it down. Hence, in order to prove equality
of the bundles Êtr and Ê′ it is sufficient to prove that π∗N0 = Êtr; whereas for
their parabolic structure, we will to work directly with M̂bP(−π̂−1(P̂)).

Now, as local sections of N 0 are sections of M 0 vanishing in the points
T− = ({∞̂}) ∩ Σ0 and T̂− = (P̂ × {∞}) ∩ Σ0, this means precisely that
if ζ is a local coordinate of P̂

1 at ∞̂ then the local sections near ∞̂ of the
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direct image π̂∗N0 can be represented by a local section of the sheaf M 0

multiplied by bump-functions concentrated at the spectral points of ζ whose
heights converge to 0 up to first order as ζ → 0. On the other hand, the
induced extension at infinity is defined precisely by admitting a representa-
tion by bump-functions of constant height as ζ → 0, and the local sections
of the transformed extension are obtained from those of the induced exten-
sion upon multiplication of these latter with ξ−1 = ζ (c.f. the discussion
before 9). It is proved in Proposition 4.24 of [Sza05] that a D′′

ξ -harmonic
1-form ϕ = ϕ1dz + ϕ1̄dz̄ represents the element of M 0

ξ which is the class
of {ϕ1(q(ξ))dz} modulo the image of θ, where q(ξ) runs over the finite set
of spectral points of ξ. It follows that multiplying the harmonic representa-
tives by bump-functions of height converging to 0 instead of constant height
amounts to taking sections of M 0 that vanish at ∞̂. Therefore, locally near
the dual infinity the isomorphism of holomorphic bundles π̂∗N

0 = Êtr holds.
Similarly, near a logarithmic singularity ξl the change of trivializations to ob-
tain Êtr from Êind is to take bump-functions of height decaying as |ξ−ξl| near
the spectral points converging to ∞ ∈ P

1. This amounts precisely to taking
local sections of M 0 vanishing up to first order on the divisor {∞}× P̂. Such
local sections of M 0 are by definition the local sections of N 0, therefore the
direct image of N 0 in the logarithmic singularities P̂ of θ̂ is also equal to Êtr;
this implies isomorphism of the bundles and Higgs fields.

It remains to identify the parabolic structures of the direct image. First of
all, the set of parabolic points of Êtr

• in P̂
1 is D̂ = P̂ ∪ {∞̂}, and the same

holds for Ê′
• because the deletion procedure removes extra parabolic points

with trivial structure from M̂bP
• . Second, by Section 4.6 of [Sza05], near the

punctures the local bases of the transformed bundle defined by the representa-
tives given in the previous paragraph are adapted to the transformed harmonic
metric. Hence, the direct images of the parabolic filtrations of M̂bP(−π̂−1(P̂))•
are the filtrations of Êtr

• . Furthermore, the same thing holds for the weights as
well. Indeed, the weights of M̂bP(−π̂−1(P̂))• in the points of Ê− ∩ Σ̂bP above
ξl are equal to the parabolic weights α∞

k of the original bundle on the ξl-
eigenspace of A at infinity. This follows because the weights of M P

• at infinity
are α∞

k , because near infinity the isomorphism of sheaves N P ∼= MP holds,
and because our convention is to keep the same parabolic weights for sheaves
isomorphic near a parabolic divisor. The weights of M̂bP(−π̂−1(P̂))• in the
points T̂+ are in turn equal to 0 by the definition of adding a new divisor to
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the parabolic divisor of a parabolic structure. On the other hand, by Theo-
rem 4.37 of [Sza05] the non-zero weights of Êtr

• in P̂ corresponding to the
sections defined above are equal to α∞

k . This proves equality of the parabolic
structures of the two extensions in the logarithmic singularities. Similarly, the
weights of M̂bP(−π̂−1(P̂))• at ∞̂ are the non-zero weights αj

k of E• in points
of P: again, this follows from the fact that the weights of M P

• in the points of
π−1(P) ∩ ΣP \ T+ are αj

k, combined with the local isomorphism of sheaves
NP ∼= MP away from the 0-section of π. By Theorem 4.34 of [Sza05] the
corresponding weights of Êtr

• in ∞̂ are also equal to αj
k; whence the theo-

rem.

9. Examples

In this section, we illustrate by two examples how our approach allows
to increase the degree of generality of the setup of the transform defined in
[Sza05].

9.1. Nilpotent residues. — In this first example we show that the transform
can be defined for a Higgs field whose polar parts are not necessarily semi-
simple. The conclusion is that a zero residue matrix at infinity can induce two
nilpotent residues of rank one in points of finite distance of the transformed
object – hence, there is no analog to nilpotent parts of the preservation of
the sum of the ranks of the semi-simple parts of the residues by the transform.
Paralelly to this, the multiplicity of the parabolic weights is also not preserved
by the transform. In concrete terms, this means that a parabolic weight α of
multiplicity 1 splits up to a multiplicity 2 weight α/2; in particular, the total
parabolic degree is preserved. Notice finally that in this example we start out
with a Higgs field with a rank-two singularity at infinity, and we arrive at one
with a logarithmic pole at infinity.

Let u0 and v0 be the standard coordinates on P
1 in a neighborhood of 0 and

∞ respectively, P = {0} ⊂ P
1, E be the rank-two trivial holomorphic bundle

OP1 ⊕ OP1 , and θ on the open affine v0 = 1 containing 0 is given in matrix
form

( 1
u0

1

−1 − 1
u0

)
;(35)
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or, in homogeneous coordinates,
(

v0 u0

−u0 −v0

)
.(36)

The residue in 0 has two distinct eigenvalues ±1; whereas the limit of the field
at infinity is

(
0 1

−1 0

)
,

with eigenvalues ±i. Furthermore, setting u0 = 1 in (36), an easy computa-
tion shows that the eigenvalues ξ(v0) of the matrix can be written

(37) ξ(v0) = ±i
√

1 − v2
0 = ±i

(
1 −

v2
0

2
+O(v4

0)

)
.

In particular, since the eigenvalues are distinct for v0 = 0, in a neighbor-
hood of ∞ there exists a trivialization of E in which the matrix of this endo-
morphism is diagonal. This trivialization then clearly satisfies the properties
required by (5)-(7) with first-order term B∞ = 0, since the eigenvalues are
functions of v2

0 . However, the assumption that the eigenvalues of B∞ are all
non-vanishing and distinct obviously fails. Finally, let α0

+, α
0
− ∈ [0, 1[ be arbi-

trary weights at the singularity 0 corresponding to the 1 and (−1)-eigenspaces
respectively; and let α∞

+ , α
∞
− ∈ [0, 1[ be arbitrary weights at infinity corre-

sponding to the i and (−i)-eigenspaces.
Consider the standard spectral surface Z1 = PP1(OP1 ⊕ OP1(P)), and call

the preferred sections of OZ1(1) ⊗ OP1(P) and OZ1(1), x1, y1 respectively.
The standard spectral curve Σ1 in Z1 is defined by the polynomial

det(x1 − y1θ).

Since the standard spectral curve does not intersect the infinity-section, we
may assume y1 = 1. Then this polynomial becomes

x2
1 − v2

0 + u2
0.

The solution of this homogeneous equation is

y1 = 1 x1 = s2 − t2 u0 = 2st v0 = s2 + t2,(38)

where [s : t] stands for homogeneous coordinates on a smooth rational curve.
In other words, the mapping [s : t] 7→ u0, v0, x1, y1 defined by (38) is a closed
embedding whose image is the smooth spectral curve Σ1. In particular, it has
two branches over [u0 = 0 : v0 = 1] = 0 ∈ C which do not intersect: one
of them through s = 0, t = 1, the other one through s = 1, t = 0. The first



40 KÜRŞAT AKER & SZILÁRD SZABÓ

corresponds to x1 = −1, that is the eigenvalue −1 of the residue of θ in 0,
the second x1 = 1 to the eigenvalue 1. Similarly, the two branches of Σ1 over
∞ ∈ P

1 pass through x1 = i and x1 = −i. The pull-back of E to Σ1 is
the rank-two trivial holomorphic bundle OΣ1 ⊕OΣ1 and the map Θ is then by
definition

x1 − y1θ : OΣ1 ⊕ OΣ1 −→ OΣ1(2) ⊕ OΣ1(2).

Using the above formulae, we obtain for this map the matrix form
(

−2t2 −2st
2st 2s2

)
.

A cokernel map for this is left matrix multiplication

(s, t) : OΣ1(2) ⊕ OΣ1(2) −→ OΣ1(3);

in particular, the sheaf M P is OΣ1(3). Now, since the residue of θ in 0 has
two distinct non-zero eigenvalues {±1} and the rank of E is equal to 2, the set
t=0 is empty. Therefore, the sheaf N P is the kernel of evaluation of OΣ1(3) in
the points of the spectral curve Σ1 over the point at infinity [u = 0 : v = 1].
Because Σ1 is a double cover of P

1 and smooth over infinity, we deduce that
NP = OΣ1(1). Furthermore, it has four parabolic points: the two points over
0 ∈ C and the two points over ∞ ∈ P

1 discussed above. The weights are
as follows: the one in x1 = −1 over 0 ∈ C is α0

−; the one in x1 = 1 over
0 ∈ C is α0

+; the one in x1 = −i over ∞ ∈ P
1 is α∞

− ; the one in x1 = i over
∞ ∈ P

1 is α∞
+ .

Let us now consider the compactification Σ0 of the open spectral curve Σ[

in the surface P
1×P̂

1. We have seen that it is the proper transform of Σ1 with
respect to the elementary transformation linking Z1 to P

1 × P̂
1. Let x0, y0 be

homogeneous coordinates of P̂
1: they can be thought of as sections of ObP1(1)

vanishing in 0 and ∞̂ respectively. Since the elementary transformation in
question blows up the point u0 = 0, the relation between these coordinates
and the sections of OZ1(1) is

x0 = x1 y0 = y1u0.(39)

Therefore, the parametrization (38) transforms into

y0 = 2st x0 = s2 − t2 u0 = 2st v0 = s2 + t2,(40)

and the equation defining the curve becomes

x2
0u

2
0 − y2

0v
2
0 + y2

0u
2
0.(41)
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This curve in P
1 × P̂

1 is not smooth. Indeed, it is straightforward to check
that it has a node in the point (0, ∞̂) ∈ P

1 × P̂
1. On the other hand, it has no

other singularity, because on the complementary of the fiber of π over 0 it is
isomorphic to Σ1.

The first thing we need to identify in order to perform the elementary trans-
formations for the projection π̂ is the polar divisor P̂ ⊂ P̂

1. Recall that
it is given as the intersection points of Σ1 with the ∞-fiber of π. Plug-
ging u0 = 0, v0 = 1 in the equation of Σ1 we get x2

1 = −1. We deduce
P̂ = {[i : 1], [−i : 1]}, in other words the points {±i} of Ĉ. We now pro-
ceed in two steps: first, compute the coordinates of the surface Ẑi obtained
by performing an elementary transformation in the point [i : 1]; then perform
another elementary transformation, this time in [−i : 1], to obtain the surface
Ẑ2 = Ẑ{−i,i}.

The transformation in i is

u1 = u0(x0 − iy0) = u0(s− it)2 v1 = v0;

since these are projective variables, this is equivalent to

u1 = u0(s− it) v1 =
v0

s− it
= s + it.

The transformation in −i is

u2 = u1(x0 + iy0) = u1(s+ it)2 v2 = v1,

which is again equivalent to

u2 = u1(s+ it) = u0(s− it)(s + it) = 2st(s2 + t2) v2 =
v1

s+ it
= 1.

(42)

Meanwhile, since over the points ±i ∈ Ĉ the spectral curve has only one
branch through ∞ ∈ P

1, these modifications do not introduce new singulari-
ties. In other words, the spectral curve is transformed by these modifications
into a rational curve Σ̂2 = Σ̂−i,i with one node, in the zero section over the
point ∞̂.

Next, we need to compute the transformed bundle Ê. First, because Σ1 does
not pass through the intersection of the 0-section and the 0-fiber of Z1, the
curve Σ ⊂ Z is isomorphic to Σ1, and Σ is disjoint from the proper transform
E

+ of the blow-up Z → Z1. Furthermore, because the multiplicity of each
intersection point of Σ1 and the infinity-fiber of Z1 is 1, the curve Σint ⊂ Zint

is also isomorphic to Σ1, which is a projective line. It follows that the proper
transform of M 1 in Zint is OΣint(3), and the intermediate spectral sheaf is by
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definition N int = DelE+(OΣint(3)), which is OΣint(3) because E
+ is disjoint

from Σint. The curve Σ̂2 intersects the zero-section of Ẑ2 over each of the
points ±i with multiplicity 1. Hence, both components of the exceptional
divisor Ê+ of the blow-up of Ẑ2 in these points intersects the curve Σint in
one point. Therefore, the sheaf AddbE+(N int) = (OΣint(3))(Ê+) is isomorphic
to OΣint(5). By definition, Ê({−i, i}) is the direct image of AddbE+(N int)

with respect to the projection of Z int to P̂
1. By the computations above and

because Σint is a double cover of P̂
1, this means that Ê is the direct image of

OΣint(1). We claim that

Ê = ObP1 ⊕ ObP1 .

Indeed, since Σint is a double cover of P̂
1, clearly Ê is of rank 2. Now OΣint(1)

has exactly two independent global sections: s and t. They induce global
sections of Ê. Conversely, any global section of Ê induces a global section of
OΣint(1), and is therefore a linear combination of s and t. In different terms,
s and t give a global trivialization of Ê on P̂

1.
The last thing to compute is the transformed Higgs field θ̂. Here, the section

x̂bP is called u2, and θ̂ is the direct image of multiplication by −u2 on ObΣ−i,i(1).
Notice that using (40) and (42) we obtain

u2 · s = 2st(s2 + t2) · s = x0y0 · s+ y2
0 · t(43)

u2 · t = 2st(s2 + t2) · t = y2
0 · s− x0y0 · t,(44)

therefore the matrix of θ̂ in the above trivialization is

−

(
x0y0 y2

0

y2
0 −x0y0

)
.

Here x0, y0 are standard projective coordinates for P̂
1, vanishing at the points

0 and ∞̂ respectively. The matrix form of this map on the affine Ĉ with poles
in the points {±i} can be obtained by setting y0 = 1, and dividing each entry
by (x0 − i)(x0 + i). The result is

θ̂ = −
1

x2
0 + 1

(
x0 1
1 −x0

)
.

This matrix clearly has poles in x0 = ±i, with residues

−

(
±i 1
1 ∓i

)
,
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both of which are nilpotent. Furthermore, the spectral curve is ramified over
both of these points, as it can be seen for example from the defining equation
(41) of Σ0 upon putting x0 = 1, v0 = 1 and using the observation that tak-
ing proper transform with respect to an elementary transformation does not
change the property of the projection to P̂

1 being ramified or not. Another
way of seeing the same thing is as follows. Express v0 in terms of x0 = ξ in
(37) for example near the value x0 = i; we obtain that

(45) v2
0 = x0 − i,

which is clearly an index 2 ramification for π̂. It follows that over the loga-
rithmic poles ±i of the transformed field, both branches of the spectral curve
pass through the infinity-section of π̂.

We deduce that the parabolic filtration of Ê in these points has to be trivial,
hence with only one weight in i (resp. −i). Moreover, the norm squared with
respect to h of the cokernel vector is equivalent to |v0|

2α∞

+ , which is equal to
|x0− i|

α∞

+ because of (45); therefore, this unique parabolic weight in the point
i (resp. −i) is α∞

+ /2 (resp. α∞
− /2). On the other hand, near ∞̂ the matrix for

θ̂ looks up to higher-order terms like

−

(
1
x0

1
x2
0

1
x2
0

− 1
x0

)
;

this converges to 0 as x0 goes to infinity, and the first-order term in its Taylor
series is (

−1 0
0 1

)
,

with eigenvalues {±1}. The parabolic weight of the ±1-eigenspace is α0
±.

9.2. Higher order pole. — Although so far we assumed that the Higgs field
has at most logarithmic singularities in the singular points at finite distance,
it is relatively clear that iterating the construction several times according to
the order of the poles, one can get a transform for Higgs bundles with higher-
order poles – the transformed Higgs field will then have a ramification at
infinity. Here we describe the archetype of this phenomenon: the original
Higgs bundle has a maximal ramification at infinity, and the transformed field
has a pole in the origin whose order equals to the index of this ramification.

Let r ≥ 2 and take E to be the rank r trivial holomorphic bundle O⊕r
P1 , with

P = {0} the only regular parabolic point. Define the Higgs field as the map

θ : O⊕r
P1 −→ OP1(1)⊕r
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defined in some global trivialization {τ1, . . . , τr} by the matrix




0 u0 0 . . . 0
0 0 u0 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 u0

v0 0 . . . 0 0



,(46)

where u0, v0 are the global sections of OP1(1) vanishing in 0 and ∞ respec-
tively. Here and in all this section we identify OP1(P) with OP1(1), and cor-
respondingly replace P by 1 in all upper and lower indices.

We immediately see that at infinity the matrix (46) has only 0 eigenvalues,
so we deduce that the singular set of the transform will be P̂ = {0}. Further-
more, in a local affine coordinate v centered at infinity, the matrix becomes




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
v 0 . . . 0 0



.

It is clear that there exists no non-trivial subspace invariant by both the con-
stant and the first-order term of this matrix. Since the parabolic filtration has
to be preserved by the polar part of the field, this then implies that the only
possible filtration in this point is the trivial filtration

E|∞ = F0E|∞ ⊃ F1E|∞ = {0}.

Let us call the corresponding weight α∞. By the general hypotheses made on
the weights, α∞ is in ]0, 1[. For the sake of simplicity, let us also suppose that
α∞ < 1/r.

On the other hand, the residue of the Higgs field (46) in the only regular
singular point 0 ∈ C is of rank 1, so the transformed bundle will be of rank
1. Moreover, since this residue has only 0 eigenvalues, the standard spectral
curve passes through the zero-section over the polar point 0 with maximal
multiplicity r. Condition 1 then forces that the parabolic structure in this
polar point is trivial, i.e. the filtration is trivial and the only weight is 0.
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The spectral surface is Z1 = PP1(OP1 ⊕ OP1(1)), and

Θ1 = x1 − y1θ =




x1 −y1u0 0 . . . 0
0 x1 −y1u0 . . . 0
...

...
. . . . . .

...
0 0 . . . x1 −y1u0

−y1v0 0 . . . 0 x1




implies that the spectral curve is

Σ1 = (det(Θ1)) = (xr
1 − (−y1)

rur−1
0 v0).

This curve is singular in the point x1 = 0, u0 = 0 if r > 2. Therefore,
instead of working on this surface, we choose first to perform an elementary
transformation in the point 0 and reduce our problem to the case of a smooth
curve in P

1 × P̂
1. The elementary transformation to apply is given by the

coordinate changes x0u0 = x1, y0 = y1, and now we consider Q−1θ as a map
E → F(1) = O

⊕(r−1)

P1 ⊕ OP1(1). In concrete terms, denoting by � external
tensor product of sheaves on a product space, the map Q in the Diagram (30)
has the form diag(u0, . . . , u0, 1) in the same basis as above, and this means
that

Θ0 = Q−1(x0u0 − y0θ) : O⊕r
P1 −→ (O

⊕(r−1)

P1 ⊕ OP1(1)) � ObP1(1)

is given by



x0 −y0 0 . . . 0
0 x0 −y0 . . . 0
...

...
. . . . . .

...
0 0 . . . x0 −y0

−y0v0 0 . . . 0 x0u0



.

Therefore, the spectral curve Σ0 is defined by the equation

xr
0u0 − (−y0)

rv0 = 0,

and this is clearly a non-singular rational curve smoothly parametrized by
(x0, y0): namely, one has u0 = (−y0)

r, v0 = xr
0. As an effect of passing

to the product surface we therefore desingularize the curve, and applying the
map Q−1 we get rid of the extra fiber of multiplicity (r − 1) over 0 of the
total transform of the curve. Over the origin in P

1 one has u0 = 0, v0 = 1,
so necessarily y0 = 0, which means that the only point of the spectral curve
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over the origin is the point (0, ∞̂) ∈ P
1 × P̂

1. Moreover, putting x0 = 1 the
equation for the curve near this point becomes

u0 = (−1)ryr
0,

which means that the projection to P
1 has a ramification of index r in this

point. Similarly, the curve passes through (∞, 0) and projection to P
1 has

a ramification of index r over the infinity. In particular, it intersects the 0-
and ∞-fibers of π in these points with multiplicity r. A simple computation
shows that the map

A : (O
⊕(r−1)
P1 ⊕ OP1(1)) � ObP1(1) −→ OP1(1) � ObP1(r)

A = (y0x
r−2
0 v0, y

2
0x

r−3
0 v0, . . . , y

r−1
0 v0, x

r−1
0 )

is a cokernel for Θ0. In particular, the cokernel sheaf M 0 of Θ0 is the restric-
tion of OP1(1) � ObP1(r) to Σ0, which is equal to OΣ0(2r) because Σ0 is an
r-to-1 cover of P

1 and a 1-to-1 cover of P̂
1. By definition, the sheaf N 0 is

the kernel of evaluation of M 0 in the intersection points (∞, 0) ∈ P
1 × P̂

1

and (0, ∞̂) ∈ P
1 × P̂

1 of the spectral curve with the ∞-fiber of π and the
0-fiber in the ∞-section. We have seen above that these intersections are of
multiplicity r. It follows that N 0 = M0(−2r) = OΣ0 . Since π̂ : Σ0 → P̂

1 is
an isomorphism, we deduce that Ê = ObP1 .

Let us now identify the transformed Higgs field θ̂; for this purpose, we need
to perform additional elementary transformations on P

1 × P̂
1, but this time

with respect to the projection π̂. Namely, since the spectral curve Σ0 intersects
the ∞-section of π̂ in its 0-fiber, we need to introduce u1 = u0x0, v1 = v0.
The equation of the proper transformed curve Σ̂1 is then given by xr−1

0 u1 −
(−y0)

rv1 = 0. However, this still intersects the ∞-section of π̂, so we need
to do another elementary transformation u2 = u1x0, v2 = v1, and continue
this procedure until the proper transformed curve no more intersects the ∞-
section, that is ur = u0x

r
0, vr = v0. The equation of the proper transformed

curve Σ̂r is now ur − (−y0)
rvr = 0. Since this curve does not intersect the

∞-section of π̂, we may set vr = 1. Then the curve is given by ur = (−y0)
r.

Now, one has by definition θ̂ = π̂∗(−ur·), hence we see that the transformed
Higgs field has the form

−(−y0)
r : ObP1 −→ ObP1(r),

where ObP1(r) stands for ObP1(r{0}). This map therefore has an order r pole
in 0 (on the affine Ĉ it can be written as ±1/xr

0), and on the other hand it
clearly has an order r zero at infinity. The fibers being of dimension one, the
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parabolic filtrations are trivial in both of these points. Similar arguments as in
Subsection 9.1 show that the corresponding parabolic weights in 0 and ∞̂ are
rα∞ and 0 respectively.

10. Quasi-involutibility

As the second author has proved it in Chapter 5 of [Sza05], one of the
features of Nahm transform is its involutibility up to a sign. The proof there is
done in the framework of integrable connections, and relies on the analysis of
a spectral sequence. Our aim in this section is to give a new, more geometric
proof of the same result in terms of the techniques developped in this paper
(Theorem 10.2).

Define the K-linear map

−1 : P
1 −→ P

1

to be the extension to P
1 of the (K-linear) involution taking an element of K

to its additive inverse. It has two fixed points: 0 and ∞. We will denote by
(−1)rel the relative version of this map on any P

1-fibration over a curve. It
then induces a map on any blow-up of points in the 0-section or the ∞-section,
that we will still denote with the same symbol.

Remark 10.1. — In what follows, it will be important to distinguish the di-
visors (−1)∗P and −P: the first is the set of points −p where p ∈ P, whereas
the second is the inverse of the divisor P in the divisor group.

Recall that given a parabolic Higgs bundle (E, θ) on P
1 with singularities

on D ∪ {∞} we have constructed in Section 8 its Nahm transformed Higgs
bundle (Ê, θ̂): it is a parabolic Higgs bundle on P̂

1, the ”dual” projective line,
with singularities on D̂ = P̂ ∪ {∞̂}. Here P̂ is the set of eigenvalues of the
leading term of θ at ∞. We have also computed the eiganvalues of θ̂ at ∞̂, and
we realized that they agree with the image −1(P) of P under the involution.

The bidual ̂̂P
1

of P
1 identifies naturally with P

1 itself, hence applying the

Nahm transform to (Ê, θ̂), we obtain a parabolic Higgs bundle (
̂̂
E,
̂̂
θ) on P

1

with singularities on the set −1(P)∪{∞}. The main result of this section can
now be formulated.

Theorem 10.2. — If (E, θ) satisfies Condition 1, then there is a natural iso-

morphism of parabolic Higgs bundles between

(
̂̂
E,
̂̂
θ

)
and (−1)∗(E,−θ).
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Remark 10.3. — There is a sign change of θ between this and the corre-
sponding formula in [Sza05]. This is because there we considered the Higgs
field as a 1-form valued endomorphism, and d(−z) = −dz.

Proof. — Starting with the parabolic Higgs bundle (Ê, θ̂) on P̂
1, we wish to

construct its transform. The first object we need to understand is the stan-
dard spectral triple (W bP,ΞbP, QbP) of (Ê, θ̂). Remember that in Section 8 we
constructed the spectral triple (ẐbP, Σ̂bP, M̂bP

∗ ) out of (E, θ). First, because of
the definition W bP = P(ObP1 ⊕ ObP1(P̂)), we see immediately that W bP is
naturally isomorphic to the surface ẐbP. Since Ê is the direct image under
π̂ : ẐbP → P̂

1 of M̂bP(−P̂) and θ̂ is that of multiplication by −x̂bP, it follows
also that ΞbP = (−1)relΣ̂

bP. Finally, by the results of [BNR89] (Proposition 3.6
and Remark 3.7), we obtainQbP = (−1)∗relM̂

bP(P̂) as a sheaf. We know further-
more that the parabolic structure of Ê induces a parabolic structure on QbP. On
the other hand, because M̂bP has a parabolic structure, the above isomorphism
makes QbP into a parabolic sheaf as well. These two parabolic structures on
QbP agree: indeed, the parabolic structure of Ê is the direct image of the one
of M̂bP, so the filtration comes from the restriction of M̂bP to some branches of
the spectral curve over the parabolic points of Ê, hence the two filtrations of
QbP are the same; a similar argument works for the weights.

The next ingredient in the construction is the analog of diagram (34). The
surface Z was obtained from ZP by blowing up the points t+ of the 0-section
mapping to P under π. Therefore, its analog W for W bP is blow-up in the
points T+ of the 0-section of π̂ over P̂: clearly, this is the surface Ẑ. Now,
Zint was obtained from ZP by blowing up the points T̂− in the intersection
of the infinity-fiber of π and the spectral curve. Because of ΞbP = (−1)relΣ̂

bP,
the intersection points of the infinity-fiber of π̂ and the spectral curve ΞbP are
the points (−1)∗T− of Ẑ. It follows that (−1) induces a natural isomorphism
between the absolute surface W int of (Ê, θ̂) and Z int; hence, we will simply
write W int = (−1)∗relZ

int. Notice that this surface has a projection to both
projective lines P

1 and P̂
1 (although these projections are only rational, and

not every fiber is a single line), and the map (−1)rel above is induced by in-
version on the fibers when it is considered as a fibration over P̂

1. However, it
is possible to interpret the same map as induced by inversion of the basis of
the other fibration; we will simply write (−1) for this map in the sequel, for
any fibration over P

1. Therefore, W int can equally be written as (−1)∗Zint.
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We now come to an analog of Ẑ: this surface was the blow-down in Z int of
the proper transforms E− of the fibers of π over the points P. Applying this
to W int we obtain the result Ŵ = (−1)∗Z. Finally, arguments similar to the
above yield that the analog of ẐbP for (Ê, θ̂) is Ŵ P = (−1)∗ZP, that is the sur-
face P(OP1 ⊕OP1((−1)∗P)). We deduce that the diagram (34) corresponding
to (Ê, θ̂) is

(−1)∗Zint

(−1)∗ρT−

{{vvvvvvvvvv (−1)∗ρ bT−

&&L
LLLLLLLLL

Ẑ
bη bT+

����
��

��
�� bη bT−

##H
HH

HHHHHHH (−1)∗Z
(−1)∗ηT−

xxrrrrrrrrrr (−1)∗ηT+

%%L
LLLLLLLLL

ẐbP P
1 × P̂

1 (−1)∗ZP

(47)

The surface in the lower-left corner is the standard spectral surface of (Ê, θ̂),
it has a projection to P̂

1, and the transformed bundle is obtained by taking
the proper transform of QbP in (−1)∗Zint with respect to η̂ bT+ ◦ (−1)∗ρT− ,
deleting the exceptional divisor of η̂ bT+ from the parabolic divisor, adding the
exceptional divisor of (−1)∗ηT+ to the parabolic divisor, pushing down the
result to (−1)∗ZP, then pushing down the result to P

1 by the projection map
π of (−1)∗ZP, and finally tensoring by (−1)∗P.

We have seen that the sheaf QbP is isomorphic to (−1)∗relM̂
bP(P̂). It follows

from the property (η̂ bT+ ◦ ρT−)# ◦ (η̂ bT+ ◦ ρT−)∗ = Id for pure sheaves of
dimension 1 on a smooth surface (see Lemma 5.4), that (η̂ bT+ ◦ ρT−)#QbP =

(−1)∗AddbE+N int. To obtain the absolute spectral sheaf of (Ê, θ̂) we need to
delete from the parabolic divisor of (−1)∗AddbE+N int the exceptional divisor
Ê

+ of the blow-up map η̂ bT+ . We deduce from Proposition 6.2 that the ab-
solute spectral sheaf of (Ê, θ̂) is (−1)∗N int on (−1)∗Zint. The next step in
the construction is to add the exceptional divisor (−1)∗E+ of (−1)∗ηT+ to the
parabolic divisor of (−1)∗N int. By Proposition 8.1, Condition 1 for (E, θ)
implies Condition 3 for N int and E

+. Again by Proposition 6.2, addition and
deletion of a divisor are inverses to each other under Condition 3. We obtain
that

Add(−1)∗E+(−1)∗N int = (−1)∗(AddE+N int) = (−1)∗(η̂ bT+ ◦ ρT−)#MP .

We then consider the direct image of this parabolic sheaf with respect to
the blow-up map (−1)∗(η̂ bT+ ◦ ρT−): by Lemma 5.4, the direct image is
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(−1)∗MP. The push-down of this to P
1 by the projection (−1)∗π of (−1)∗ZP

is (−1)∗(E(P)) = ((−1)∗E)((−1)∗P), see (3.17). The final step is to tensor
this sheaf by the inverse (in the divisor group) of the effective divisor corre-
sponding to the parabolic set. Here this effective divisor is (−1)∗P, therefore
tensoring ((−1)∗E)((−1)∗P) by its inverse, we get precisely (−1)∗E. This

proves equality of the bundles
̂̂
E and (−1)∗E. Clearly, the modifications of

the sheaves involved so far transform the parabolic structure of M̂bP into the
parabolic structure of (−1)∗MP induced via pull-back by (−1) of the original
structure of M P. Since the direct image by π of the parabolic structure of
MP(−P) is the parabolic structure of E, we also see that the direct image by
π of the parabolic structure of (−1)∗(MP(−P)) is the parabolic structure of
(−1)∗E induced by pull-back under (−1) from the parabolic structure of E.
Finally, the canonical section ̂̂x(−1)∗P of (−1)∗ZP is (−1)∗xP, where xP is the

canonical section of ZP. By definition, the double transformed Higgs field ̂̂θ
is the direct image with respect to π of multiplication by −̂̂x(−1)∗P. On the
other hand,the Higgs field θ is equal to the direct image of multiplication by

xP. It follows that −̂̂θ = (−1)∗θ.

11. The Map on Moduli Spaces

In this section, we show that Nahm transform is a hyper-K ähler isometry
of moduli spaces (Corollary 11.4).

As it is shown in Theorem 0.2 of [BB04], the moduli space of stable Higgs
bundles of parabolic degree 0 with fixed simultaneously diagonalizable polar
parts of arbitrary order and fixed parabolic structures is a hyper-K ähler man-
ifold: the two anticommuting complex structures J and I are by definition
given by the local holomorphic variations of Higgs bundles and integrable
connections respectively, and the Euclidean metric on the moduli space is de-
fined as L2 inner product of the harmonic representatives of tangent vectors.
Let now M denote the moduli space of Higgs bundles on P

1 with logarith-
mic singularities in the points of D with fixed equivalence class of polar parts
(2)-(3) and fixed parabolic filtration (4) and weights αj

k, and with an irregular
singularity of rank one at infinity with fixed equivalence class of polar parts
(5)-(7) and fixed parabolic structure with weights α∞

k , up to complex gauge
transformations preserving the parabolic structures.
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Lemma 11.1. — The complex dimension of the Zariski tangent space of M

in any point is

2rr̂ + 2 − r − r̂ −
n∑

j=1

rk(res(θ, pj))
2 −

bn∑

l=1

rk(res(θ̂, ξl))
2,

where the last two sums are taken for all logarithmic singularities of θ and θ̂
respectively.

Remark 11.2. — This formula is in fact invariant under exchanging r with r̂
and θ with θ̂, as it should be because of invertibility of the transform.

Proof. — The computation is done in [BY96] for the case of parabolic Higgs
bundles of rank r with only logarithmic singularities on a curve of arbitrary
genus g. In fact, the authors there fix the residues of the Higgs field to be
block nilpotent, but the same proof works for any other fixed block-diagonal
parts as well. The result obtained there is

(48) 2(g − 1)r2 + 2 +
n∑

j=1

2fpj
,

where 2fpj
is the dimension of the adjoint orbit of res(θ, pj) in g = gl(r,K)

(see also the count of the dimension of the moduli space of parabolic vector
bundles in [MS80]). We can understand this as coming from excision: the
term 2(g− 1)r2 +2 is the degree of Ω

1 ⊗End(E) plus the constant 2 coming
from global endomorphisms of E, and in the last sum we add up terms aris-
ing in a neighborhood of each of the singular points. Explicitly, because we
only consider deformations of the Higgs field whose residues in any singular
point can be taken into the initial residue by a holomorphic change of basis,
the residue of an infinitesimal deformation corresponding to a one-parameter
family of such deformations has to be in the adjoint orbit of the residue of θ
in g; the dimension of such choices for the residue in pj is by definition 2fpj

.
In the case where irregular singularities occur, by the same excision argument
we need to define the quantity 2fp in the last sum of (48) as the dimension
of the adjoint orbit of the polar part of the Higgs field in g ⊗K K[ε]/(εnp+1),
where np is the Poincar é rank of the singularity in p.

In our case, the only irregular singularity is infinity, of Poincar é rank 1;
let us compute the dimension of its orbit in g ⊗K K[ε]/(ε2). For the sake of
simplicity, we only do this in the special case n̂ = 2; the generalization to
higher n̂ is immediate. So we suppose that at infinity the Higgs field can be
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written in the block form

1

2

(
Ξ1 0
0 Ξ2

)
+ ε

(
Λ1 0
0 Λ2

)
,(49)

where Ξ1 = ξ1Ida for some 1 ≤ a < r, Ξ2 = ξ2Idr−a, Λ1 = diag(λ∞
1 , . . . , λ

∞
a ),

and Λ2 = diag(λ∞
1+a, . . . , λ

∞
r ) (see (6)-(7)). We also assume ξ1 6= ξ2, and that

all the λ∞1 , . . . , λ
∞
a are nonzero and pairwise distinct, and the same condition

for λ∞1+a, . . . , λ
∞
r . Then the stabilizer of the adjoint action is by definition the

block matrices (
A B
C D

)
+ ε

(
α β
γ δ

)
(50)

which commute with (49) modulo ε2. It is straightforward to check that this
holds if and only if B = 0, C = 0, β = 0, γ = 0 and A and D are diagonal;
under these assumptions, α and δ can be arbitrary. Therefore, the dimension
of the stabilizer of the polar form (49) is a + (r − a) + a2 + (r − a)2, and
so the dimension of its orbit is 2r2 − r − a2 − (r − a)2. For general n̂, the
same argument gives for this dimension 2r2 − r−

∑bn
l=1(al − al−1)

2. Now, as
the transformed Higgs field θ̂ has residue of rank (al − al−1) in ξl, this can be
rewritten as 2r2 − r −

∑bn
l=1 rk(res(θ̂, ξl))

2.
Similarly, it is easy to check that under the assumptions made in (3), for all

logarithmic singularity pj the formula

2fpj
= r2 − r2

j − (r − rj)

= r2 − (r − rk(res(θ, pj)))
2 − rk(res(θ, pj))

= 2r · rk(res(θ, pj)) − rk(res(θ, pj))
2 − rk(res(θ, pj))

= (2r − 1)rk(res(θ, pj)) − rk(res(θ, pj))
2

holds, where r − rj is the rank of res(θ, pj). Plugging these into (48) and
using (8) one obtains the dimension of the Zariski tangent as claimed.

Similarly to M, let M̂ denote the moduli space of stable Higgs bundles
of parabolic degree 0 on P̂

1 with logarithmic singularities in the points of D̂
with fixed equivalence class of polar parts and parabolic structures induced by
the transform from the corresponding structures of (E, θ) at infinity, and with
an irregular singularity of rank one with fixed equivalence class of polar parts
and fixed parabolic structure induced by the transform from the corresponding
structures of (E, θ) in the points of D – as explained in Section 2 –, again up
to complex gauge transformations preserving the parabolic structures.
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Lemma 11.3. — Let (E•, θ) be a Higgs bundle on P
1 satisfying Condition 1.

Then the parabolic degrees of E• and of its Nahm transform Ê• are the same.
Furthermore, if (E•, θ) is stable of degree 0, then the same is true for (Ê•, θ̂).

Proof. — The claim on parabolic degrees follows from Grothendieck-
Riemann-Roch, as explained in Section 4.7 of [Sza05]. It is also possible to
deduce it using the fact that under the Condition 1 all operations involved in
passing from M P

• to M̂bP
• preserve the parabolic Euler-characteristic. Indeed,

by the parabolic Riemann-Roch theorem (Proposition 3.13) applied to the
curve P

1, one has par − χ(E•(P +∞)) = par − deg(E•) + r, or equivalently
par−χ(E•(P )) = par−deg(E•). Of course, a similar relation holds for Ê• as
well. Finally, we obtain the result using that par − χ(E•(P)) = par − χ(M P

• )

because π∗MP

• = E(P)•, and the analogous statement for Ê•.
Suppose now (E′

•, θ
′) is a parabolic Higgs subbundle of (E•, θ). By Remark

3.9, we may suppose that the parabolic structure of E′
• is the structure induced

by E•. By Lemma 6.1, the standard spectral sheaf (M ′)P of E′
• and the divisor

E
+ also satisfy Condition 3, because (M ′)P• is a parabolic subsheaf ofM P

• with
the induced parabolic structure. By Lemma 5.12, proper transform preserves
injective maps of sheaves. The same thing holds clearly for direct image by
a blow-up map because it is the inverse of proper transform, and for addition
and deletion, since on the level of sheaves these latter are simply tensoring
operations. We conclude that (M̂ ′)bP

• is a parabolic subsheaf of M̂bP
• , hence

(Ê′
•, θ̂

′) is a parabolic Higgs subbundle of (Ê•, θ̂). On the other hand, by the
first part of the Lemma, the parabolic degree of Ê′

• is equal to that of E′
•. In

particular, the parabolic degree of Ê′
• is positive if and only if the parabolic

degree of Ê• is positive. In different terms, if par−deg(E•) = 0, then (E′
•, θ

′)

is destabilizing for (E•, θ) if and only if (Ê′
•, θ̂

′) is destabilizing for (Ê•, θ̂).
This proves preservation of stability.

The lemma allows us to introduce the map

(51) N : M −→ M̂

defined by mapping the gauge equivalence class of the Higgs bundle (E, θ) to
the gauge equivalence class of the Higgs bundle (Ê, θ̂); by an easy adaptation
of Lemma 1 of [Jar04] to the parabolic case over a curve, this map is well-
defined. It is a bijective map between hyper-K ähler manifolds. We have the
following result.

Corollary 11.4. — The map N is a hyper-Kähler isometry.
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Proof. — By Theorem 10.2, the map N is invertible. For the fact that N

preserves the L2-metric, we refer to [BvB89]: the computations there carry
through to this case, because they only make use of the invertibility of the
transform and general properties of the Green’s operator that are satisfied in
this case as well.

Therefore, all that remains is to check that it preserves the complex struc-
tures I and J . Let us start with J : by Proposition 4.15 and equation (4.14) of
[Sza05], the restriction of the holomorphic bundle Ê to the affine Ĉ is the first

hypercohomology H
1(E

θξ
−→ F(P)), together with the holomorphic structure

induced by the trivial holomorphic structure of F(P) relative to P̂
1. (Notice

that what we called F in [Sza05] is called F(P) in the present paper.) Further-
more, by the extension [Sza05], (4.35) of this holomorphic bundle to infinity,
we have the following isomorphism of holomorphic bundles over P̂

1:

(52) Êind = H
1
(
E

y0θ−x0
−−−−→ F(P) ⊗ ObP1(1)

)
,

where the right-hand side is endowed with the holomorphic structure induced
from the holomorphic structure of the sheaf F(P) ⊗ ObP1(1) relative to P̂

1.
Let now T be an open set in an affine complex line, and (E(t), θ(t)) with
t ∈ T be a local 1-parameter holomorphic family of Higgs bundles with fixed
singularity data. The transform maps each Higgs bundle in this family to a
Higgs bundle (Ê(t), θ̂(t)); we need to show that this is a holomorphic family
of Higgs bundles on P̂

1 over T . Because of equation (52), the induced exten-
sions of the Ê vary holomorphically over T : indeed, the sheaves E(t) and F(t)
depend holomorphically on t, as well as the map y0θ(t)−x0, and the first hy-
percohomology spaces of a holomorphic family of sheaf complexes such that
all the other hypercohomologies vanish, form again a holomorphic family.
This implies that the bundles Ê depend holomorphically on t as well, because
the parabolic structures are fixed, and in order to obtain the transformed ex-
tensions from the induced ones we only need to change the local holomorphic
sections with non-zero weights, so this procedure does not depend on t at all.

On the other hand, by Theorem 8.5 the map θ̂(t) is the direct image by
π̂(t) of multiplication by −x̂bP; here π̂(t) is the projection map from Σ̂bP(t) to
P̂

1. Now, since θ(t) varies holomorphically with t, it follows that so does the
standard spectral curve ΣP(t) corresponding to (E(t), θ(t)). Since the eigen-
values of the residues of θ(t) are fixed, the elementary transformations of the
construction are performed at points that are independent of t. We deduce that
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the spectral curve Σ̂bP(t) and in particular the projection π̂(t) depend holomor-
phically on t as well. Since θ̂(t) is the direct image of multiplication by a
coordinate that does not depend on t, with respect to a projection depending
holomorphically on t, the resulting map depends also holomorphically on t.
This proves that N preserves the complex structure J .

We now come to the case of the complex structure I: it can be treated in
a very much similar way as J . Namely, in [Sza] the second author proves
that the Nahm transform of a holomorphic bundle with integrable connection
(E,∇) can also be given a holomorphic interpretation: by Proposition 5.1 of
loc. cit., the holomorphic bundle Ê on the open affine Ĉ is the first hyperco-

homology H
1(E

∇ξ
−→ F ), where ∇ξ = ∇− ξdz and F is the sheaf generated

by E and the image of ∇; and by Proposition 5.3 of loc. cit., the transformed
integrable connection ∇̂ is induced by the connection d̂ − zdξ relative to P̂

1

on F . The rest of the argument follows the line of the case of the complex
structure J .
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