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"Aber das ist eine andere Geschichte

und soll ein andermal erzöhlt werden"

Michael Ende - Die llnenbHcfJe \!5esc~icf)te

1. INTRODUCTION

The bias of this work has been slowly but steadily shifting since its inception. Its immediate
predecessor is thc preprint [R(2), which was itself based on the author's Ph.D. thesis [Rai]. This
new, extensively revised version has benefited considerably from the rcmarks of a referee who
has weeded out of [Ra2] an embarassingly high number of naiveties, silly mistakes, misprints,
and even proposed some nice improvements which I havc adopted in what is now chapter 10. I
prescnt my wholehearted thanks to this person, who is unknown to mc.

Accord ing to N. Katz (see [Ka4), Introd uction), it was ß.Dwork thc fi rst person to II nderstand
that c1assical differential equations with irregular singlilarities had deep meaning in arithmetic
algebraic geometry (against the "prevailing dogma" which held that only equations with regular
singular points should have meaning). Since then, the irrcgular differcntial equations have been
gradllally reappropriated into the mainstream of geometry. Initially only some specific areas
were affected, such as p-adic analysis and positive characteristic geometry, but the trend is
now spreading even to the domain of complex analysis, as witnessed e.g. by the recent book
[Mal], which reports on ideas of Deligne, Malgrange et al. towards establishing an irregular
Riemann-Hilbert correspondence.

The aim of this paper is to explore a p-adic version of the theory devcloped in [Mal]. In truth,
in our work the differential equations remain on thc background, while the emphasis is on thc
"dual wortd" of etalc local systems naturally attachcd to them. In this we are guided by a weIl
known heuristic, which translates many concepts arising frolll the study of differential equations,
into dual topological notions (sec e.g. thc table at the end of [KaI]). ]n particular, it is weil
understood that the notion of irregular singular point sholild be related to the appearance of
wild ramification on a local system. Now, in our framework, all the varieties are defined over
some p-adic field k of characteristic zero. But for such varieties, the etale topology is very elose
to the classical complex analytic topology, in particular, aB ramification is tarne: in other words,
the algebraic etale topology in characteristic zero is too coarse to dcscribe the monodromy of
irregular differential equations.

\Ve remedy this problem by rcplacing the algebraic etale topology with the much finer analytic
etale topology recently introduced by Berkovich. In this sense, the u]?grade from algebraic to
analytic etale topology is analogons to thc introduction of thc space E of Deligne, which plays
a major role in chapter XI of [Mal].

]n tecllnical terms, what wc need to do is to consider our algebraic varieties as special analytic
spaces, and then work systematically inside the framcwork developed by Berkovich. We should
stress here, that our main object of interest remains the category of algebraic schemes (over a
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fixed local field) and algebrak morphisms: the analytic spaces are always intended as auxiliary
tools to define the finer topology and perform eertain crucial eonstructions.

Once we have our candidate topology, we need to describe the dass of analytic etale loeal
systems we are interested in. In this paper, we limit ourselves to the study of local systems on
smooth curves (notiee that also the book [Mal] is mainly concerncd with the one-dimensional
case), and we will deal with general varieties in a planned sequel to this artidc.

Apriori one may see no reasons why one should not eonsider the category of all such locally
constant sheavcs of finite rank. However it turns out that, if the curve is not compact (and this
is really the only non-trivial case), eertain bounds on the ramification of the sheaf around the
points at infinity must be imposed in order to obtain a reasonahle theory.

In order to eonveniently express this eonditioll , we introduce a notion of analytic local funda-
, mental group: the finite rank representations of this group dassify the admissible ramification

behaviours of our class of sheaves. Chapter 3 and 4 are devoted to this eonstruction, and we
refer to the introductory remarks of chapter 3 for more details. This local fundamental group
should really be thought of as a topological inearnation of the loeal differential Galois group of
[KaI]. In particular, the upper Ilumbering filtration defined in loe.eil. has a very satisfactory
counterpart: that is, we have a eanonical higher ramifieation filtration on our Ioeal fundamental
group, which behaves pretty much the way it is expected of these gadgets. In terms of this fil­
tration we define also a notion of analytic Swan eonduetor, which is olle of the main characters
in ou r story.

However, at present we cannot yet claim that we completely understand the Ioeal theory of
sheaves on a punctured curve: there are still a few important questions which lleed to be clarified,
the main, aecording to our opinion, being eonjecture 1 in seetion 3.1. On thc other hand, we
emphasize that none of the results in this paper depend on any conjecture: everything is proved
unconditionally. But lest the reader ShOltld fear of being dragged on some wild Swan chase,
let us highlight few firm points already established: first, the definition of the Swan conductor
itself, is given in section 4.3, together with the usual paraphernalia of representations, their
siopes and so on. Second, we can prove (theorem 9) a. version or the Arf-Hasse theorem: the
Swan conductor of a representation of finite rank is always an integer. Third, we eonstruct
(section 4.2) a functor of meromorphie vanishing eyc/es for analytic etale sheaves, for a basis of
dimension one (i. e. essentially for a family of varietie.s over an open disc). This functor takes
values in the category of shcaves with an action of thc loeal fundamental group.

In view of its ties with the loeal differential Galois group, and since the latter group classifies
connections with poles of finite order, the label "meromorphie fundamental group" which we
bestow on our construction, seems appropriate enough. Henee we derive a notion of meromor­
phically ramified local system on an open curve, and the dass of such sheaves is the chief object
of study in this paper.

Our main tool for the investigation of thc meromorphically rarnified sheaves is the Fourier
transform. The construction of the Fourier transform for analytic etale sheaves of A-modules
(where A is some "big" torsion ring) is aceomplished in chapter 6: it is really what one expects:
we take the (essentially unique) rank one local system LTjJ on the affine line which has Swan
conductor equal to one at infinity, then, for any veetol' bundle E ---7 5 with dual E' ---7 5, we have
the dual pairing (,) : E XS E' ---7 5, and the Fourier transform on E is the anti-involution

FTjJ : D(E, A) ---7 D(E', A)

with "kerneI" given by (,).LtjI. We actually. give a. somewhat more general eonstruction of
the kernel, using Lu bin-Tate theory: all these alternative kerneis bccome isomorphic on the
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completion of the algebraic closure of our base field, but thc extra generality could be useful for
future arithmetic applications.

Our first application of the Fourier transform is contained in seetion 8.4: there we prove (see
theorem 17) that the cohomology of any meromorphically ramified loeal system on a curve, has
finite rank. We also show by a eounterexample, that finiteness cloes not hold if the ramification
is worse than meromorphie.

Wherever there is a Swan conductor, one expects also a forlllula of the Grothenclieck-Ogg­
Shafarcvich type. As a second application, we verify such a formula for some very special sheaf
on the affine line (see corollary 8 in section 8.4). This result is of course very modest, but is
significant nevertheless. In a future paper I will show how to derive the fuH conjecture 2 of
section 8.4 from these very special cases (and from the principle of the stationary phase). The
proof of corollary 8 reHes on (beside the Fourier transform ) a deformation argument, based on
the Kummer-Artin-Schreier-Witt theory recently developed by Snwa and Sekiguchi. For more
details, we refer the reader to the beginning of chapter 7.

In chapter 9 we prove our principle of the stationary phase, and we sketch a study of the
local Fourier transform by the usual global to local method. The knowledgeable reader will
recognize the influence of Katz's paper [Ka2] on our presentation (except that our poor style
cannot match Katz's elegant exposition). In particular our theorem 19 is formally identical to
theorem 3, pag.114 in loc.cit.

Our last application of the Fourier transform is of arithmetic nature: the inspiration comes
from thc classical work [We] of Weil. In that paper, a special role is played by certain quadratic
characters of a locally compact topological field F. Let 7/J : F ---+ CX be a fixed additive character
of P, V a finite dimensional F-vector s.l?ace and q : V ---+ F a non-degenerate qlladratic form.
Weil defines a Fourier transform f t---7 f from the space of distributions on V to the space of
distributions on the dual V'. Next he proves the following [ormula (see [We],chapt.I,n.14]:

where ,(q) is a complex number of absolute value equal to Olle, Iql is a volumc factor and
qt : V' ---+ k is the transpose of q (see loc.cit.).
Of the two factors, the most intcresting one is, by rar, ,(q). In [We]' the properties of, as a
function of the quadratic form q are studied at length. Thc main result is that the assignment

q t---7 ,(q)

descends to a group homomorphism from the Witt group Hf(F) of the given base field F to the
group of complex roots of unity.

In case Fis a finite field, a simple application of the sheaves-to-fu nctions dictionary of [SGA4 t]
allows us to recover the vallle of ,(q) by cohomological mea.ns. In fact, in this case it boBs down
to a finite (Gauss) sum, and one has the formula:

(1)

where LI/; is the Lang torsor associated to the character 7/J (wh ich acts as a kernel for the l-adic
Fourier transform in thc finite field case), pa is thc aJgebraic c10sufc of Fand Tr(Fr, M) denotes
the trace of the action of the Frobenius generator Fr E Gal(pa / F) on a Galois module M.

The cohomology group appearing in (1) has an obvious analogue in our theory (after all,
q+ LI/; is a meromorphically ramified sheaf), except that for thc time being, we can only deal
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with torsion coefficient sheaves. But this limitation cannot stop us from considering an inverse
system of kerneis {L,p,.} (see chapter 10 for the notation) and then dcfine

r(q) = I~ H~im V (V Xk 'ka
, q.LI# .. ) (dirn V12) Q9Zl Ql'

n

In chapter 10 wo show that r(q) descends to a homomorphism from the Witt group of k to
the group of isomorphism classes of one-dimensional f-adic Galois representations of (a certain
extension of) k. Furthermore, many formal properties of WeH's ,-invariant havc adequate
counterpart for r. The precise relationship between rand WeH's invariant is not completely
elear yeti nevertheless, we hope that this example may offer a glimpse of the kind of applications
which we foresee for our theory.

To conelude, we want to mention two important differences between this version of the paper
and the previous one [Ra2). First of all, in [Ra2) an f-adic formalism was proposed for analytic
etale cohomology: I recognize now that this issue presents non-trivial aspects, and the fierce
criticism of a referee advised a tactical retreat from that front. Nevertheless, J arn confident
that an f-adic theory of meromorphically ramified constructible sheaves will eventually appear,
and 1 plan to corne back to this subject in a sequel to this paper.

Second , in [Ra2) an incomplete proof was given of theorem 10, which states that the Fourier
transform commutes with Verdier duality. The '~proof" amounted to a reproduction of a sketch
of the unpublished argument of Verdier. Another referee pointed out gaps in this approach
which cannot be easily -filled. Therefore in this new version we havc given a different proof,
eloser in style to the method of [Ka-La).

2. PRELIMINARIES

2.1. Lubin-Tate theory. We recall here some weil known facts from Lubin-Tate theory. The
paper [LT) is thc original source, but a complete account can be found in Lang's book [La).

Let k be a one-dimensional local field with valuation I. I; denote by kO and resp. 1r the ring
of integers of k and a uniformizing parameter in kO. Let q be the cardinality of the residue field
k = kO Im, where as usual m = (1r) is the maximal ideal. Set p = char k > O. Let also k a be
the algebraic closure of k and ka its completion, with the unique valuation I.! that extends the
valuation of k.

Following Lu bin-Tate [LT), we let J":Ir be the set of power series 1 E kO [[Xl) such that

j(X) ~ 1r .•,'( fiod degree 2

I(X) ~ )(q fiod 1r.

The simplest example is just the polynomial I(X) = 1r ~'( + ~'(q. Recall that a formal group
F is apower series F(X, Y) = Lij aijXiyj with coefficients aij E k, satisfying the identities
F(F()(, y), Z) = F()(, F(Y, Z)), F(X, Y) = F(Y, X) and F(~,(, 0) = O. A homornorphism
of the formal group F into the formal group F' is apower series f(~'() E k[[X)) such that
f(F(}(, Y)) = F ' (/(X), I(Y)). In particular an endomorphism of F is a homomorphism of F
into itself. We say that a formal group is defined over kO if its coefficients aij are in kO.
. The following theorem summarizes the main features of the Lubin-Tate construction:

Theorem 1. a) For each 1 E Jlr there exists a tiniqtle formal group Ff , defined over kO stich
that 1 is a (formal) endomorphism 01 PJ . Moreover, for any two power series I, 9 E Jlr and
every a E kO there is a unique [a)J,g E kO[[~'(l) such that [a)J,g E Hom(FJ, Fg) and [a)J,g ~

aX mod degree 2.
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b) The map a 1-+ [aJf,g gives a group homomo1phisrn kO -t IIom(Ff , Fg ) satisfying the compo­
sition rule

[a]g,ho[aJf,g = [abJf,h'

In particular, tf f = g, this m(lp is a ring homomorphis7rt kO ---7 End( Pf ).

Proof. This is theorem 1.2, ehapt. 8 of [LaJ. 0

\Ve will wri te [aJf in plaee of [aJf,f; in partiell lar notiee that [1rJf = f.
Given f E ~., the associated formal group Ff eonverges, as apower series, for aB pairs

(x, y) of elements of ka such that lxi, lyl < 1. We introduee the notation .6.(a, p) for the set
{x E ka

, Ix - al < p}. Here a E ka and p is areal llllmber. Then it is clear that F induces a
group strueture on .6.(0,1). Any a E kO induces an endomorphism ralf of this group.

Definition 1. Por any positive integer n we let Gn C k a be the kerne! oJ the iterated power [1rJt.
Also we define Go:; = Un>OGn .

Wc collect here some weB known results about C n :

Theorem 2. 1) The action oJ kO on .6.(0, 1) induces (ln isomorphism of kO-modules between Gn

and the additive group kO Imo.
2) The field k(Go ) is a totally mmified abelirln extension k with G(llais group isomorphic to

(ko/mO)x.

Proof. See theorem 2.1, chapt. 8 of [La]. 0

We spedalize now to eharaetcristic zero, that is ehar(k) = O. In this ease it is known (sec
[La], section 8.6) that for any formal group F over k, thcre exists a formal isomorphism

where Ga is the usual additive formal group over k , that is Ga (.X·, Y) = .X + Y. The isomor­
phism A is called the logarithm of F, and it is uniquely determined by Fand by the eondition
dA(O) I d..:\{ = 1.

Lemma 1. Let F be a Lubin-Tate formal group, l.e. F = Pf for some f E JlI"' Then the
logarithm A = Ap can be wriUen in the form:

...yqi

A(..-Y) = " gj("'Y)-'
~ /TI

J

Proof. This is lemma 6.3, chapt. 8 of [LaJ. 0

It follows easily from the lemma that A eonverges over .6.(0,1), thcrefore it induees a group
homomorphism

A : .6.(0,1) -t Ga (ka).

The following theorem measures the extent to whieh A fails to be an isomorphism of groups:
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Theorem 3. Let ep(Z) be i,he power senes (with coeJJicient in k) which is the inverse of Ap(X).
Then eF(Z) converges on the disc ß(O, 11T1 1/(q-l)) mul induces the inverse h01nomorphism to Ap
on the subgroups

(the group on the right coincides set-theoretically with the group on the left, and we use the
notation Ga to emphasize that it is endowed with additive group structure).

Proof. See lemma 6.4, chapt. 8 of [La]. D

Remark: a) lt can be shown that A is a homomorphism of kO-modules, i.e. for all a E kO
there is an equality of power series:

a· A = AO[a]j'

b) Using theorem 3 and (a) it is not hard to show that the kernel of A is thc subgroup Goo •

In what follows we will reserve the symbol PI for the eonstant 11T1 1!(q-l).

2.2. Complements of etale cohomology. Berkovich has defined an ctale topology on his
analytic varieties, and has studied the corresponding cohomology. In thc work [B1], whieh is
the reference for all the definitions whieh are implicit in this paper, he establishes the llsual
properties for his eohomology, like proper and smooth base change and Poincare duality. In [B2]
and [83] he introduces two eonstructions of vanishing eycles.

In this chapter k will denote an arbitrary completc valllatioll field.
We denote by Et(.IY) the eategory of etale analytic varieties over .X allel for any ring A, we

let S(.X, A) be the eategory of sheaves of A-modules on EtCY).
In his paper, Berkovich eonsiders mainly finite rings of cocfficients, of thc form A = Z/nZ.

For our purposes, these are not quite enollgh, sinec wo have to consider characters of an infinite
divisible group G oo into 1\ x.

Our first task is to extend the main results to more general torsion rings 1\. Instead of trying
to reprove all the statements that we need beginning from scratch, we take a shortcut: we will
show that in order to eompute the effect of a eohomological fUllctor on a sheaf F of A-modules,
it suffices to regard F as a sheaf of abelian groups anel computc thc cohomological funetor inside
the category of sheaves of abelian groups. This will aHow us to quickly derive our results from
the theorems of Berkovich.

Ta start with, let A be any torsion ring and let D(.IY,I\) (rcsp.(O+ (.<Y, A)) be the derived
category of complexes (resp. of complexes vanishing in large ncgative dcgrees) of sheaves JC of
I\-modules and similarly define D- (X·, A); denote by \{1 x the forgetful functor from D(.IY, A) to
[J\)<, Z).

Let f : )( ---+ Y be a map of analytic spaces over k. First of a.1I there is a. direct image funetor
Rf. : 0+ (X, A) ---+ 0+ (Y, 1\).

Proposition 1. The functo1' Rf. comml.ltes with the forgetful funetor, l.e.

Rf.owx = wl'0Rf•.

Proof. For any sheaf F we will eonstruet a resolution I· by sheaves which are both injective as
sheaves of A-modules and f1abby as sheaves of abelian grollps. One checks as in the algebraie
case that flabby resolutions are f.-acyclic : to do this one can look at [Mi] chapt. III seetions
1,2,3 and eonvinee oneself that aB the arguments work withotlt change in thc present situation.
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Then !. eomputes at the same time Rf. in the eategories D(Y, A) and D(X, Z), and the
proposition folIows.

For eaeh x EX, ehoose a geometrie point x' loealized at x, i.e. an imbedding of the residue
field 1i(x) of x in the eompletion of its algebraie closure. We form the loeally ringed spaee
X' = UvExx' that we endow with the diserete topology. This space is an induetive limit of
analytie spaees and therefore earries a natural etale site ~Y;t. Let 1r : X~t -+ X et be thc obvious
map.

The sheaf 1T. F is the direet product over the stalks FXI = x '* F at the points x' E X'. For
every x' E X' choose an imbedding into an injective A-module FXI Y I:r l : we see lvi as an
injective sheaf of A-modules over the point x'. The product JO = TIxIEXI!VI is an injeetive sheaf
of A-modules on X' and clearly F imbeds into 1T.I. Since 1r. preserves injective sheaves, we have
eonstructed the first step of an injective resolution of A-modules; if we iterate this construction
we obtain a full Godement resolution !' for F. On the other hand, I is also flabby as a sheaves
of abelian groups (since every shcaf on .X' is ftabby) and 1T. preserves ftabby sheaves, therefore
l' is also a flabby resolution, as wanted. D

Next we turn to cohomology with support. For the notation we follow section 5.1 of (BI], to
which we refer thc reader for all the relevant definitions.

Recall (see loc.eil) that a 4>-family of supports cI> defines a Ieft exact functor cPiI> : S(Y, A) -+
S(~t, A) as foBows. If F E S(Y, A) and f :U ---t )( is etale, then

(4)iI>F)(U) = {s E F(U~)ISupp(s) E cI>(f)}.

For exam pIe, if <I> is the family of aB closed sn bsets, then </>4J = </>.. Ir the map </> : ~Y -+ Y is
separated then the family of all <p-proper subsets of X is a paracompactifying <p-family, and we
get a left exact functor which is denoted by cP!.

Wo can derive the functor </>4J in the two categories n+ (X, Z) and n+ (X, A), and in this way
we obtain two functors that we denote both by R<j><). The following proposition shows that in
the cases of interest no ambiguity arises from this choice of notation.

Proposition 2. Suppose that the family cI> is paracompactifying. Then the two junctors defined
above coincide, i.e.

RcPlflO \J! x = \J! y 0 RcPiI>'

Proof. The proof of proposition 1 produces for any sheaf of A-modules a resolution that is
injective in the category of sheaves of A-mod ules and flabby in the catcgory of sheaves of abelian
groups.

To prove the theorem, it suffiees to show that this resolution is acyclic for the functor cP4>
defined on the category Sp<, Z), thus the proposition follows from lemma 2 below. 0

Lemma 2. Suppose that the jamily <I> is paracompactijying. Let F be a [labby shea/ 0/ abelian
groups. Then R"cP4>(F) = 0 for oll n > O.

Proof. It is shown in (BI], proposition 5.2.1, that R"cP<I>(F) is the sheaf associated with thc
presheaf (U ---t ~Y) J--t H~(j) (U~, F). Therefore it suffices to show that under the stated hypothe­
sis, lI~(j) (U", F) = 0 for all etale morphisms U -7 X and aB n > O. Since the restrietion to U of
a flabby sheaf of abelian groups on X, is a flabby sheaf, we have only to prove this for U = X.

Consider the morphism of sites 1T : X et -+ I~YI, where I~Yl is the space X with its underlying
analytie topology. The morphism 1T induces a spectral sequence

H:(I~YI, R11T.F) => Ht+q(X, F).
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We will prove that Rqrr.F = 0 for all q > O. Assuming this fol' the moment, we show how to
conclude. It follows from the vanishing that H~(I){I,rr.F) = f1~>(..Y, F). Sincc F is flabby by
hypothesis, we obtain from [BI], corollary 4.2.5, that rr.F is flabby in thc analytic topology.
Then rr.F is f4>-acyclic , by lemma 3.7.1 from [Gro] and the lemma is proved.

To see that Rqrr.F = 0, we can look at the stalks of this sheaf. For any point x E ..Y, let
G;r be the Galois group of the algebraic closure of the residue fjeld 1l(x). According to [BI],
proposition 4.2.4, we have (Rqrr.P);r ~ Hq(G;r, Pz), q 2:: O. Since F is flabby, it follows from
[BI], corollary 4.2.5 that Pz is an acyclic Gz-module , as wantcd. 0

As a corollary, we get a proper base change theorem for sheaves of A-mod ules.

Theorem 4. Assume that char(k) is invertible in 1\. Let fjJ : Y -t ..Y be aseparated morphism
01 k-analytic spaces, al1d let f : )(' -7 ..Y be a morphism 01 analytic spaces over k, which gives
rise ta a cartesian diagram

Y'~Y

.'! !.
X'~)(

Then lor any complex Je E 0+- (Y, A) there is a canonical isamol'fJhism il1l)+ (..Y', A)

j. (R4>!JC) ~ Rq,;(/· JC).

Proof. The llsllal devissage redllccs to the case where Je is cOllccntrated in degree O. Then thc
theorem follows from proposition 2 alld theorem 7.7.1 of [BI]. 0

Let [j (..Y, A) be the subcategory of 0+ (..Y, A) consisting of cohomologically bounded com­
plexes. Let 4> : Y -7 ..Y be as in theorem 5 and suppose that the fibres of 4> have bounded
dimension. Then, by corollary 5.3.8 of [BI] and proposition 2 we deduce that R4>! takesIJ)" (..'(,1\)
to IY(Y, A) alld extends to a functor R1>! :0- (..'(,1\) -+ D- (Y, 1\).

The following projcction formllia is proved as in [131], theorem 5.3.9.

Theorem 5. Suppose that p' E 0- ()(, A) and G' E D- (Y,I\) or that F' E DP(..Y, A) has finite
Tor-dimension and Gf. E D(Y, A). Then there is a canonical isomorphism

(2)

o
Remark: we point out that the isomorphism of the theorem is functorial in both p' and G'.

Explicitly, let f : p' -7 pi. and 9 : G' -+ GI. be maps of complexes; then the isomorphism (2)
induces the following commutative diagram

L

F' 0 R4>! (G')

J~M,(g)1
L

p' 0 R4>!(G')

Finally we explain briefly how to deal with Poincare duality for sheaves of A-modules.



10 LORENZO RAMERO

, '

Re/>. (1lom(G' 1 G" )) -----7 1lom (R4>! G', Re/>!C/·).

Let A' ---7 A be a ring homomorphism and let F (rcsp. G) be a sheaf of A-modules (resp. of
AI-modules) on the analytic space ~Y. Then F becomcs a sheaf or A'-modules by restriction of
scalars, and we can form the tensor product F 0,\1 G. The sheaf of A'-modules F 0,\1 G carries
also a canonical structure of sheaf of A-modules. To describe this strllctllre, recall that a sheaf
of A-modules S is by definition a A-module object in the category of sheaves of abelian groups;
in other words, the structure of S is determined by a collection of endomorphisms As:S ---7 S
for all A E A, such that AsoA; = (AN)s and l s = id s . Then thc strllcture of F 0,\, G is given

by the rule: XP0 /\IG = Ap®/I.' id G .

Proposition 3. One ean assign to every separated flat quasifinite morphism 4> : Y ---7 .X and
every shea/ 0/ A-modules on )( a traee mapping

These mappings are Junetonal on Fand are compatible with base change and with composition.
1/4> is finite 0/ constant rank dJ then composition wilk lhe adjunction map

gives the ffiultiplication by d. These properties determine uniquely the trace mappings.

Proof. In theorem 5.4.1 from [BI] the mappings are constructed in the category of sheaves of
abelian groups, but the construction shows that Tr tP commlltes with the homomorphisms '\.,
A E A, i.e. it preserves the structure of A-module. 0

Let ~Y be an analytic variety over k. Denote by ttn the sheaf or roots of unity of order n.
We write J-L~ for the d-th tensor power of J-Ln with itsclf. Then we define the sheaves A(d)x =
IL~ 0z/ n Ax · By the argument above, A(d)x is a sheaf of A-modules.

Let n be an integer prime to char(k). Here we specialize further and assume that nA = O.

Proposition 4. Suppose that k is algebraically closed. Then one can assign to every smooth
connected k-analytic curve ~Y a trace mapping iS011lOTphism

Proof. Theorem 6.2.1 of [BI] constructs trace mappings

Trx : H;(X, J-Ln) ---7 Z/nZ

with corresponding properties. By theorem 5, these mappings induce isomorphisms of abelian
groups

Trx : If;(~Y,A(l)x) ~ H;(~Y,J1,n) 0z/nzÄ ---7 Z/nZ0z/nzA ~ A.

But the remark after the proof of theorem 5 implies that this isomorphism preserves the A­
module structure. D

Using proposition 4 we can now establish the usual formalism of trace maps, just by following
[BI] and making the obvious modifications. We leave the details as a.n exercise for the referee.

Let C', G', E H)P (Y, A) j a general non sense argu mcn t provides llS with a canon ical morphism
in IT)+ (X, A)
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Applying this morphism to eomplexes of thc form cj>- F' (rl)[2d] and llsing the trace mapping
R4>!(4)'" F' (d)[2d]) -t F' we obtain for any C' E [j (Y, A) allel p' E Dl' ()(, A) a duality morphism

Rcj>_ (1l01n(G', 4>- P' (d)[2(n)) -7 1lom(Rcj>!C', P').

Theorem 6. The duality morphism is an isomorphism.

Proof. The proof is given in [BI}, theorem 7.3.1, with A = Z/nZ. With the help of the remarks
above , the reader ean verify that the same proof goes through with HO change for a general ring
A such that nA =O. D

3. THE ANALYTIC FUNDAMENTAL GROUP OF AN AFFIN~~ CURVE

The aim of this section is the eonstruetion of a canonieal deseending filtration on the analytic
fundamental group of Gm' Some remarks about the parallel positive eharaeteristic situation
may motivate our idea. Let F be a field of positive charaeteristic, allel let 0 be the origin of
Ai-. The henselization of Aj. at the point 0 is by definition S = SpecO~1 ,0' where O~l ,0 is the
henselization of the loeal ring of germs of regular funetions around O. Thon S has a generie point
TJo, and for any choice of a geometrie point 7jo localized at 170, we have the loeal fundamental
group at 0 of Ai- - {O} whieh is the etale fundamental group 1Tl (1701 Tjo), in othcr words, the
Galois group of the separable closure of the field of fraetions of O~l o' It is weIl known that thc
inertia subgroup J of 1Tl (170, 7jo) has a distinguished subgroup P, eaIl~d thc wild inertia subgroup.
The quotient J / P is the tarne inertia} which is isomorphie to the prodllet Il l Z l ranging over all
primes e =j:. p. Moreover} [ is cndowed with a canonical descending filtration, [(r)} indexed by
the positive real numbers l' ;::: 0, such that I = [(0) and P = Ur>o J(r). The Swan conductor of
an e-adie representation of 1Tl (170) 1]0) is given in terms of this lligher ralllification filtration.

In thc analytic setting, the replacement for 170 is a certain huge anel rather unwyieldy pro­
analytic space} from which it does not seem to be feasible to extract any detailed information.
To our rescue comes Gabber-Katz's theorem on the local-to-global extension of loeal e-adic
representations. Briefly put, this states that any finite rank e-adic representation of 1Tl (17o, 7jo)
extends functorially to a smooth e-adic shcaf on Gm, whieh has at most tarne ramification at
infinity.

The foundations of the theory of the fundamental groll p of analytic spaees have been estab­
lished recently by de Jong [deJ], and we are therefore eneouraged to proceed in the following
way. We will begin a elose study of 1Tfn(Gm,x), and find a certain canonical filtration on it.
Then we will try to define a notion of Ioeal fundamental group, basically by decreeing that the
local-to-global extension theorem should hold, and we will seek to convince the reader that this
approach gives rise to a reasonable theory. In particular} the higher ramification filtration will
be exported from the global to the loeal fundamental grOllp.

3.1. The asymptotic Kummer exact sequence. Let •.-'( be any good analytic space over
the eomplete non-archimedean field k of charaeteristie zero and resid ue characteristic p. Wc
introduce thc sheaves jLpoo and U} on the etale site of .Y, by setting

J-lpoo (V) ={I E Ov (V)
ul (V) ={I E Ov(V)

IP" = 1 (n >> 0) }
]l-fIBup < I}

for any etale rnorphism V -t ~\""; the usual multiplication of functions defines an abelian sheaf
structure on Ul.
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Lemma 3. (Asymptotic Kumme,' exact sequence) There exisls Cl shm't exacl sequence 0/ etale
sheaves

(3)
A

O-...JLpo<> ~UI_OX -0.

i I--------+- log ( f)

Proof. We only have to prove the surjectivity of A, and for this we can check on the stalks. Let
P E )( be any point, and 1 E Ox,p. Choose some pointed 6tale morphism (F, q) ---+ (.,1(, p) where
f extends to an element / E Ov(F). Take a compact neighborhood Hf of q in F so that f
is bounded on t{l, and we can find an integer N such that IpN flllUP,W < PI = pI/(1-p). Then
9 = exp(pN f) is defined and belongs to Ow(W)j moreover, 1I vanishes llowhere on W. Hence
9 defines an analytic map W ---+ Gm' Define W' as the fibrc product in the following square
diagram

Then t{l' is etale over Wand h = gI/pN is defined as an element of Ow/ (IV'). One sees easily
that A(h) = if;* (/) and the claim follows. 0

Suppose now in addition, that ~'( is the analytification of a con nected algebraic scheme ...l'. Then
HOP(, U I ) is the group VI of elements x E kO which are congrllcnt to 1 modulo m. Taking the
cohomology of the exact sequence (3) we obtain

Now we make the further assumption that the field k be algebraicaJly c1osed. This hypotesis
will be Iifted only towards the end of section 4.1. Under this hypothesis, we have A(VI

) = k.
Furthermore, we point out that, ifthe variety ~Y is proper, then the leftmost term in (4) vanishes.
For this reason, anel for others which will shortly bc appal'cnt, the casc when X is proper is
scarcely interesting.

Lemma 4. Suppose ~Y = x an for sorne k-algebraic scheme ..-1'. Then the incltlsion 01 sheaves
/-lpo<> Y Ul induces a natural imbedding

lim H 1 (~y , JLp n) Y /1 1 (~y,U} ).
n-+e>o

Proof. It suffices to consider the usual Kummer exact sequencc

and observe that the induced sequence

'.
is exact. 0
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We notice that, duc to the well-known compactness propcrties of thc algebraic etale topology,
the group lim n -+oo H 1(./Y, pp") can be suggestively rewritten as H 1 (X ,Ilpo<». What seems to be
happening is that the analytic and algebraic contributions to the (abelianized) fundamental
groups are distribuited onto respectively H°(.X, Ox) and Hl (.X, UJ.:). Accordingly, I do not
expect any exotic coverings coming from the cohomology of U1

, but J do not know how to
compute it completely. Therefore I will just conjecturc this problem away:

Conjecture 1. The imbedding oJ lemma 4 induces an exacl sequence

o- 1f I ( .l' , ppo<» ---+- 111 (){ ,UJ.:) ---+- H 1 (."Y, 0 X )

whenever X is the analytification oJ a k-algebraic scheme .1'.

We take the time out to make some side remarks on the cohomology of U1 • These will not
have any bearings on the continuation, so the hurried reader is invited to skip them.

The question of the structure of H 1 (X,U 1
) is meaningful and not trivial even in the proper

ease. Suppose now that X is the analytification of a proper scheme. Then, as it is weil known,
the group H 1 (."Y, 0;") is invested of geometrie meaning, by means of its identification with the
set of k-rational points of the Pieard seheme Pie(."Y). The natural imbedding ul y Ox yields a
morphism H 1 (."Y, U}) ~ H 1 (."Y, 0x), so we may ask whether lJl (X:, UJ.:) has geometrie meaning
as weil. I proposc the following conjeetural picture. First of all, let IlS introduee the sheaves
U5/, Oj! defined by

U5/ (V) = {f E Ul (V) I
Oj! (V) = {f E Ox (V) 1

11 - flsup < pd
IflBUP < PI}

for any etale map V --+ X. The restrietion of A induces an isomorphism U5/ -=::... O~ . The

situation is summarized by the following diagram

1[1 (."Y, Oj;)~ H 1(."Y, Ul) .J:.- H 1(."Y,Uj/)~ fIl (X~, Oj;)~ H 1(."Y, Ox).

We recall that H 1
(.,,'(, Ox) is eanonically identified with the tangent space ToPic(."Y) of Pic(."Y)

at the point 0 E Pic(."Y). Henee the following conjectures arise naturally:
1) the map j3 is injective and identifies Hl (."Y, Oj;) with an open neighborhood (with the

topology inherited from k) of the origin in ToPic(."Y)j
2) the eomposition jl oj2oH1(A)-1 corresponds, via the identification in (1) and the standard

identification H 1(X, 0;") = Pic(."Y) 1 to the classical exponential map for (p-adic) Lie groups.
Then we expect that also the map jl be the imbedding of an open disc around 0 E Pic(X).

This should be in fact the smallest open disc which contains all the p-power torsion elements in
PicP()·

Baek to business: in any case, we notice that the composition of thc Illorphisms Ilpn --+ Ul --+
Ox is the zero rnap. Thus, if wc let 1l(X) be the pl'cimagc of Hl (.1' ,Ilpo<» inside 1f1(X, J.Lpoo) ,
we get an exact sequence

o----+ HO(."y, Ox)jk ---...1l(.,,'() ---+- H I (X ,ppo<» ----+- 0

with a canonical splitting, coming from the map of sheavcs f-lpn Y Ppo<>.

After these generalities, let HS specialize to the case .,,'( = A1 ,an. Let x be a cooordinate on
Al j we get 1i(A1,an) =. k(x)jk, where k(x) denotes the group of entire power series over Al,an.

This group should be dual to a eertain quotient of the yet-to-be loeal fundamental group around
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infinity. According to our philosophy, there should be a canonical filtration on this group, anel
that in turns should leave a print on 1l(AI,an). As a first step, we are going to define a canonical
filtration on 1l (A 1,an).

Definition 2. Let k[x]/k Y 1l(A1,an) be the imbedding 0/ the grou]) 0/ polynomials in x with
vanishing constant term, induced by our choice 0/ a coordinate x over A1,an. Far any integer
n 2::: 0, we define Fn (A1,ao) C 1l(A1,an) as the SUbgTVUp 0/ polynomials 0/ dcgT'€e :$ n. {Fn }n~O

is the meromorphic ramification Jiltmtion in cohomology.
The union Un>0 Fo (AI,an) is called the meromorphie ramijica tion in the cohomology 0I AI, an

and is denoted by 1l(A1,an )mer.co.

We need to show that the meromorphic filtration is canonical, i.e. that it does not depend
on the choice of thc coordinate x. This is taken eare of by the following lemma.

Lemma 5. Let x be some coordinate function on A1,an. Any other eoordinate is 01 the lorm
ax + b lor some a, bE k.

For the proof we require the following version of Weierstrass preparation theorem, whose proof
can be found for instance in Lang's book [La], theorem 2.2, ehap.5.

Proposition 5. Let 0 be any complete Iocal ring, and suppose that f E o[[x]] is apower series
whose coefficients are not all in the m(lximal ideal m of o. Say that f(x) = L::o aixi and
ao, ... , an -l E m, an ~ In. Then I lactors uniquely as a product

f(x) = (xn + b1xo
-

I + .... + bn)g(a:)

where b1 , ... , bn E m and 9 is a unit in o[[x]]. 0

Proof. (ar lemma 5) Let f(x) = L:j:o ajxj be thc power series expression for some other coor­
dinate function. We want to show that aj = 0 for j > 1. Suppose this is not the case. The
supremum of the values lajl (j = 0,1, ...) is attainecl for same index jmax' In order to apply
proposition 5 we would like that jmax > 1. Wc can easily "jolt" the coefficients, by replacing
f(x) with f(cx) where cE k has large norm. Wc can also arrange that laj",..1= 1, by replacing

f(cx) with J(x) = aj~.,.f(cx). Then proposition 5 gives us a. factorization J(x) = P(x)g(x)
where P(x) is monic of degree jmax with coefficients in m. It follows that the roots of P{x) have
norm strictly less than 1. Let p be the maximum of these norms. In the closed dise of radius I!..
centered at 0, the above formal factorization decomposes thc analY!,ie function cxpressed by f
as thc product of P and another analytic funetion g. In partieular, f is not an injective map on
the disc, hence it eannnot be a coordinate function. 0

The next example is X = Gm and ..Y = G~. Repeating thc same considerations we get a
canonically split short exact sequence

o~ k(x, x-I)/k~1l(G~)~ HI(Gm,/Lpoo)~ O.

Here we have chosen same coordinate x on Al and have denoted by k(x, X-I) the group of power
series in x and X-I which are entirc over all of Gm. Loosely spcaking, this rather large group
describes all the characters of thc analytic fundamental grau)) of Gm, whieh are wildly ramified
at either 0 or infinity.

Let x be same geometrie point of G~. De Jong [deJ] has defined the analytie fundamental
group rrfn (G~, x). In keeping with our, philosophy, there ShOltld be an imbedding of the local
fundamental group into rrfn(G~n,x), which should be canonical up to eonjugate action and such
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that the image should inject into a quotient group 7T~od.O(G~:1 x) of elements which are "tamely
ramified" at the point O. This translates as follows.

First of all, the tamely ramification comes from the term 1I 1 (Gm 1 J-lpoo) :::: Qp/Zp. We isolate
a subgroup 1l(G~)mod.O = k((x)/k) EB (Qp/Zp) C 1l(G~). Inside 1l(G~)mod,O we further select
the subgroup of characters with meromorphic ramification at infinity:

The proof that these subgroups are canonically determined is the same as for lemma 5, so we
omit the details.

It is obvious that the image of the canonical map i : 1l(AI ,an )mer,oo ---+ 1l(G~n) lands into
1l(Gan )mod,O

m mer.oo·

Definition 3. The meromorphz'c ramification filtration on 1l(G~n) z's the z'ncreasing sequence 01
subgroups Fn(G~n), n = 0, 1,2..., defined as i(Fn(A1,an)) + (Qp/Zp).

3.2. prime-to-p torsion cohomology. In this section wc want to detcl'mine the grollp

H 1(Gan tim 'L )Oll _ ~N

(p,N);::1

where N ranges over all positive integers prime with p. As prcdictable, the answer is the same
for both algebraic and etale cohomology. Nevertheless, this result does not seem to descend
directly from Berkovich's general comparison theorems in [BI]. The following result will not be
used in the sequel, alld it is included only for the sake of completeness.

The proof uses the so-calied Mittag-LefHer technique. This material should be pretty standard,
hut since Berkovich takes pains to prove a very special case (see [BI], lemma 6.3.2) of proposition
6 below, we do not feel too asharned for inclllding some extra details.

Definition 4. Let A = {A n1 rPn,m : Am ---+ An} be a project.ive system oJ abelian groups. One
says that A satisfies the Mittag-Leffier condition iJ Jor any n E N the decreasing sequence
{4>n,m (Am)} of subgroups 0/ An is stationary.

Proposition 6. Let {Xn}nEN be an increasing Jamily of subsets of the analytic space )( satisfy­
ing X =Un .tYn and "'Yn C Int(.tYn+d for all n. Let F be an abe/ian etale sheaf on X and assume
that for a given j, the projective system {Hi- 1(.tYn, F)}n satisjies the Mittag-LeJfier condition.
Then the canonical map

Hi(X, F) ~ limHi(.tYn , P)­n
is bijective.

Proof. A proof for the topological category is given III [Ka-Sh], prop. 2.7.1. To handle the
analytic etale case requires hardly any changes. D

Proposition 7. There exists a canonical isomorphism

BI (Ge:::, liT. J-lN):::: li!f Z / NZ.
(p,N);::l (p,N)=l
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• • I

\7(O)(fm) = O(f)m + f\7(O)(n1-)

Proof. Write G~n = U€>o A (f, f-l) where A (f, f-l) is a elosed anIlllllIS of inner radius fand
outer radius €-1. Wo apply proposition 6 with j = ] ami P = l~ Ji'N (to be pieky, ehoose

(p,N):=1

a sequence of positive real numbers f n --+ 0). Vve need to compute I~ H 1 (A(f,f- 1 ),F). As
€

A(€, €-1) is compact, we have (see [BI], prop. 5.2.9)

H 1(A(f,€-I),F) = lim H 1(A(f,f- 1),PN)'-(p,N)=1

On the other hand, it follows easily from [BI], theorem 6.3.5 that

H 1 (A(€,€-I),JlN) ~ Z/NZ

and the claim enSlles. D

4. THE LOCAL FUNDAMENTAL GROUP

4.1. Meromorphic ramification filtration. In this section we complete the job started in
the previolls one, in that we define the loeal fundamental group of A1 ,an at infinity, or better,
what should be thOllght as a certain eanonieal quotient of it. Furthermore, we will exploit the
meromorphie ramifieation filtration in cohomology to dcfine a eanonieaJ deseending filtration on
it.

To justify our procedure, we have to unveil another (not so) seeret source of inspiration. This
is the theory of the differential Galois group in eharaeteristic zero, and our model is Katz's paper
[KaI]. For the convenience of the reader, we give a quick digest of some aspeets of it, in so [ar
as they are relevant to our si tuation (k algebraically closed of eharacteristie zero).

Thc theory comes in both global and toea,} ftavors. For thc global thcory, olle is given a
smooth, connected and separated k-schemc and a catcgol'Y f] E(.X) is introdueed whose objeets
are all the pairs (11.1, \7) consisting of a loeally free Ox-module of finite rank M, together with
an integrable connection \7 on !v[. Morphisms are the horizontal Ox-linear maps. With the
obvious notions of tensor product and internal Hom, DE(.,Y~) is a "neutral Tannakian category
ovcr k". Any rational point x E ."Y(k) defines a k-valucd fibl'e funetor.

If w is any such fibre functor, we denote by 1r~iJJ(.,,'(,W) the affine k-groupseheme Aut(w):
this is the differential fundamental group of )(/k with base point w. Let Rep(1r~iJJ(.X,w)) be

thc eategory of finite dimensional k-representations of 1r~iJJ (X·, w). By some general theorem on
neutral Tannakian categories, the funetor w defines an equivalenee of tensor categories

DE()() -::... Rep(1r~iJJ(.,,'(, w)).

One also knows that any two k-valued fibre funetors are (non-canonieally) isomorphie.
For thc loeal theory, let [{ be a eomplete diserete valuation field with residue field k. After

ehoosing a uniformizing parameter t, we can identify !( = k((t,)). We denote by TJ the ring of all
t-adieally continuous k-linear differential operators of J{ to itself. If 0 is any non-zero derivation
in V, its powers 1,0, (P ... form a f{-basis as left [(-module.

Vve denote by DE(I(/k) the category of those left V-modules whose underIying I(-veetor
spacc is finite dimensional. In terms of a choice of 0, an objeet of DE(I{/k) is a pair (M, \7(0))
of a finite dimensional I(-vector space M and a k-linear map \7(0) : A1 --+ NI satisfying thc
usual Leibnitz rule
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for all f E J<, m E M. DE( 1\"(k) has natural internal Hom and tensor products, which make it
into a rigid abelian tensor category.

It is convenient to choose the derivation 0 = t1; in Tl. Then any one-dimensional object V
in DE(J</k) is of the form 'D/Tl(O - I) for some lEK and the isomorphism class of V is the
image of f in

(5)
d

J(/t dt log(J(X) = k((t))/Z + tk[[tJ] ~ k[t.-1]/Z.

One knows that, if V and Ware two non-isomorphic one dimensional objects in DE(J(/k), then

Homv(V, W) = 0 = Extb(V, W)

and for V = 'D(O - I) we have Homv(V, V) = k whilc Extb(\I, \I) a one-dimensional k-space
with basis the dass of IJ/IJ(O - 1)2. In particlllar, notice that the trivial object has non-trivial
extensions by itself. An iteratcd extension of the trivial objeet is ealled R.S.-unipotent. This
notion applies to the global theory as weil.

The crucial resllit of the loeal theory is Levelt's theorem in [LeJ, which states that, given any
non-zero object V in D E (J( / k), t here exists a fi nite extension L of J(, \V hich can be wri t ten in
the form J«t 1/ N ) for same integer N, and such that the inverse image VL of V from DE(l\"(k)
to DE(L/k) is an itcrated extension of one-dimensionaJ objeets of DE(L/k).

The global and loeal theories are tied together thanks to the following observation.
Let DE(Gm)RS.O be the subcategory of DE(Gm) consisting of all objeets whieh are regular

singular at zero. In terms of the choice of a coordinate x on Gm, the rank-one objects L of
DE(Gm)RS.O are of the form

(k[x, x-I], x:x + P(x))
where P(x) E k[xJ anel the group of isomorphism classes of such L is the additive group k[xJ/Z
via the map L I-T P(x) moel Z. Comparing with (5), wo see that the inverse image funetor

DE(Gm)RS.O --+ DE(l\"jk)

induces an equivalenee between the full su bcategories of rank-one objeets.
This prompts us to make the following

Definition 5. We say that an object V of DE(Gm ) is special il therc exists a positive integer
N such that the inverse image of V by the morphism

is a finite direct sum of objects of the form L 0 U, wher"€
L is of rank one, regular singular at zero
U is R.S.-unipotent.

Then Levelt's result implies

Theorem 7. (see [Ka1J, 2.4.10) The inverse image funetor

DE(Gm) --+ DE(J(/k)

when restricted to the full su,bca tegory 0 f D E (Gm) consisting 0f the special objects, induces an
equivalence 01 categories. 0
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The quasi-inverse functor is called the canonical extension.
The E-adic analogue of theorem 7 is Gabber-Katz's theorem Oll thc local-to-global extension

of representations of fundamental groups (see [Ka3L theorem 1.4.1). The notion of slopes and
Swan conductor familiar from loca.l dass field theory have also appropriate counterparts in the
differential equations setting. These are obtained as folIows. First, consider a one-dimensional
object L E DE(I(/k), and let L = 1J(D(t1t - f) for some f E ](j then thc slope Aof L is defined
to be the integer

max(O, -ord t (f)).

Next, if V is an arbitrary object in DE(I</k), find an extension E = k((t l / N ) such that VE is
a succcessive extension of one-dimensional objects LI, ... , Ln. To each of them we associate its
slope "\ll "',"\n (computed with respect to the uniformizing pa,rameter of E). Then the set of
slopes (with multiplicity) of V is defined to be thc collection of thc numbers "\1/N , "'1 .,\n/N.
One can show that the slopes are intrinsic invariants of V, independent of all the choices made.

In place of the Swan conductor, we have thc irregularity index of V which is defined as the
surn with multiplicities of its slopes.

Theorem 7 allows to construct plenty of k-valued fibre funetors on DE(I</k), namely choose
any point a E kX = Gm (k), and associate to it the functor W a obtained by composing the
canonical extension fllnctor with the fllnctor "fibre at a".

Henee the loeal differential Galois group can now be defined as [dill = Aut(wa ). It is endowed
we a canonical upper numbering filtration, given as folIows. For any real number x ~ 0, denote
by DE($.z;)(I</k) thc full subcategory of DE(/</k) of objects all of whose slopes are::; x. Dual
to the indusions

DE($.Z;)(]</k) c DE(I</k)

we have homomorphisms of eorresponding groups

ldill --+ Aut(waIDE($.r)(]</k)).

Their kerneis are closed normal su bgroups of Idil/ l dcnoted I J~)f' The usual properties of the
filtration have satisfactory differential analoguesj see [KaI] for further details.

To see how this may be relevant to our discussion, we go back to formula (5). One way to
interpret (5) is as describing the group of k-valued characters of / dill' By thc observation above,
this is also the grou p of charactcrs of a eertain quotient of 1r~il/ (Gm, w).

On the other hand we have the standard formula

Hom(1r~n (G~ ,x), jLpoo) ~ Jf1 (G~\ JLpoo).

Dual to the imbedding 1l~~~..~ C 111(G~n ,jLpoo) wc have a quotient map 1rfn (G~, x) --+ 1.
We arc thereforc led to eompare the two formlilas

Horn (Idil/' k) = (k[t]/k) ED (k/Z)
(6) Hom(l, jLpoo) = (k[t]/k) ED (Qp/Zp).
In the first one we have isolated the summand kfZ, to stress the similarity between differential

and analytic settings. This summand is responsiblc for the differential equations of rank one
with regular singularities at thc origin. In othel' words, the eomplement k[x]/k dassifies the
differential equations of rank one dcfined over alt of Al. The upshot is that

the rank one differential equations on the affine line correspond exactly to the an-
(7) alytic etale sheaves with meromorphic rmnificat!·on.
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The situation is less mysterious than what it may seem. To understand what is going Oll, we
consider our standard jlpoo-torsor L, given as the sheaf of loca.l sections of the logarithm

log: .6(0, 1) -7 Al .

An easy computation shows that the dass in H1(Al) J-Lpoo) of [, is the element t E k(t). The
same dass in Horn (Idi/f' k) represents the differcn tial equation

d
dtl =f

whose sheaf of horizontal sections is given by the scalar multiples of the exponential function.
We may ask why bound ourselves to the meromorphically ramified etale sheaves, since we

could as weil try to extend the theory of the differential Galois group} to comprehend also thc
p-adic differential equations with essential singularities.

I will come back later on more extensivelyon this matter. One of thc main reasons is that I
have come to believe that the essentially ramified sheaves are in a sense "too wild". For instance}
I can show that if a sheaf has only mcromorphic singularities} then its cohomology has finite
rank, while for an essentiaJly ramified sheaf this lIever happens.

We should comment brieflyon the discrepancies appearing on the "regular singularities"
components of the character formulas (6). Let a E k bc any element. The corresponding
differential equation of rank one is

d a
dl l = t f.

When a is a rational number, the sheaf of solutions is already defined on the algebraic etale
topology} and in fact it is a Kummer sheaf with finite monodromy. This accounts for the
appearance of the term Qp/Zp in the second formula in (6). On the other hand, when a ~ Q,
the corresponding horizontal sections converge only Oll small dises, anel there is no analytic etalc
covering of G~n over which these sections ean be pl'olongecl. Yet the eorresponding differential
mod nie has its independent life} which cxplains the term kfZ 011 the differential side of (6).

We recall next a few notions from [deJ) section 2. For any analytie spaee __Y} let Cov(__Y) bc
the eategory of analytie ctale eovering spaces of __Y. Every geometrie point x of .X defines a
set-valued fibre funetor Fx : Cov(.X) -7 Set, whieh assigns to a eovering Y -7 __Y its fibre Yy over
x. Then rrfn (..,y) x) is the group of automorphisms of Fx' For a topologieal group G, denote by
G - S!ll the eategory of diserete sets with a eontinuous G-action. The fundamental group of
X has a natural pro-diserete topology, and FF ean be refincd to a fnnetol' from Cov(X) to the
eategory rrfn(jY} x) - Set.

After these preliminaries we ean proeeed with the constrlletion of the eanonieal filtration on
rrfn(G~, x). The idea is to mimiek definition 5, alld in this way give oursclves a "gooel" quotient
to work on.

For eonvenienee, let x be a geometrie point loealized at the point 1 E G~n and let T :

rrfn(G~n} x) ---7 rr~lg(G~n} x) be the canonieal map (see [de.]], section 2). We denote by P the
kernel of T. lt is the interseetion of the images of all the rnaps

1JN. : rrrn
(G~n )x) -7 1r~n (G~n ,x)

indueed by the endomorphisms 1JN : x f-T x N of G~. From (4) we obtain a natural map:

(8) lim HO (G~n ,0) / k -7 Horn (lim ImrpN*) J-lp<x» 7 Hom(P, Ilpoo).- -N N



20 LORENZO RAMERO

Definition 6. We denote by A the subgroup of the direcl limit group in (8), consisting 0/ all
polynomials in the mtional powers X

1
/

N (N E N) with vanishing constant term. By the usual
argument we see that this subgroup is canonically determined, in ]JflT'licular is independent of the
choice 0/ the coordinate x.

The essential mmification subgroup of 1rfn(G~,x) is the normal subgroup 0/ P

Ie6 , = nKer(/ : P -7 tLp~)·
JE.A

Notice that Pmcr = PI leu is an nbelian group.

Lem ma 6. Ie, J is anormal subgroup 0/ 1rfn (G~n ,x) .

Proof. Let, E 1rfn(G~n, x) and / E A. Thon / : P -7 Itl'~ extcnds to a character J(x 1/ N )

Im4>N.. -7 Itp~ for some N. The conjugate ,(Ker/),-l depends only on the dass

'Y E 1rfn(G~, x)/Im~N" ~ ZI1VZ.

Clearly ZINZ acts as the group of deck transformations of the covering ~N : G~ -7 G~n, i.e.,
'? corresponds to a morphism

'Y : G~n ------+- G~n

x I )0 (x

where (is an IV-th root of 1. Unwinding the definitions olle checks easily that :::Y(Kerf(x1/N)):yl =
Kerf((x 1

/
N ) and from this the claim folIows. 0

Definition 7. The quotient 1rin (G~n I x) lIen is called ihe mero7HOTphic fundamental group 0/
G~ and is denoted by 1rrer(G~\ x). We impose a topology on 7l'~er(G~ ,x) by declaring that
the intersection 0/ finitely many subgroups

(/ E A)

introduced in the proo/ of the lemma, form a cofinal system of open neighborhoods 0/ the identity
element. (By [Bou], chapter 111.2 the topology is well defined and unique).

Remark: I tend to think that thc topology of 1r;ner (G~;l I x) is just thc quotient topology ind uced
by the projection

(9)

but I do not know how to provc (or disprovc) this statement. Is it perhaps buried in the
generalities of [SGAl]? In any case, the map (9) is continuous, anel this suffices to prove the
following

Theorem 8. The fibre functor F-x restriets to an equivalence betwcen a full subcategory !l2Jl.mcr (G~n)
of Cov(G~) and 1r;ner (G~, x) - Set. Moreover, Jor each object oJ Y E Covmer

(G~) there exists
an integer IV such that the fibrc product YN in the dingram

YN ----+- Y

1 1
Gan ~Gan

m m

extends to an abelian calois covering 0/ A1,an.
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Proof. For thc first statement, we only need to show that evel'Y 7rr,er(G~', x)-set which consists
of a single orbit is in the image of F~. Since the ma.p (9) is continuous and surjective, this is a
consequence of [deJ], theorem 2.10. The second statement follows easily from the definition of
the topology of 7r1er (G~ ,x). D

We regard the second part of theorem 8 as an analogue of Levelt's main theorem. Of course,
in our case the result is built into the construction.

We also notice that T descends to a natural map on 7rrer (G~ 1 TE) and we have a short exact
sequence

(10) O P. mer (Gon -) olg (Gon -) 0--+ mer --+ 7r 1 m 1 X --+ 7r 1 tn , X --+ .

Next, our filtration is defined on the meromorphic fundamental group:

Definition 8. lVe set ](0) = 7riner (G~n 1 x) and for any positive real number r we let ](r) be the
subgroup 01 Pmer consisting of the elements a such Ihat

/(a) =0

for all f E A which have degree less than 01' equal 10 r. It is clear that l' > r ' => [(r) C ](r') 1

hence {[(r)}rER defines a descending filtration on the meromorphic fundamental group, which we
call the meromorphic ramification filtmtion.

Finally we go local. Let 00 be the "point at infinity" on thc projective Hne pi. Choose same
loeal eoordinate z on pt, centered at 00 (i.e. z(00) = 0).

Definition 9. The pro-analytic space 1}oo is the projective system {~(00,7')"' }O<r<l 01 pointed
open discs

~(oo, rr = {p E pi o< Iz (p) I < 7'}

where 4>r,$ : ~(oo, 1') --+ .6.(00, s) (1' < s) is the natural imbedding.

Recall (see [82], sectiOIl 2) that an etale space over 1}oo is just an object of the direct limit
category Et(1}oo) = 1!E! Et(.n(oo,r)-) (where Et(X) denotes the category of etale morphisms

O<r<l
Y --+ X and thc transition ma.ps are given by thc pull-back fUllctors). Thc natural restriction
map defines a funetor

Et(G~n)~ }<~t(17oo)'

y I ~ }'"I'/OQ

Definition 10. The catego7']j Covner (17oo) is the Juli subcalegol'Y of Et(17oo) consisting 01 all
objeets of the form YfJoo for some objeet Y E covrner

(G~).

Proposition 8. The restriclion map induces an equivalence of categ07~ies
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Praof. Suppose YI , Y2 are two con nected etale coverings in CovlJler
(G~~) such that there exists

an isomorphism 1/J : YI " ~ Y2". Take an integer N as in theorem 8, so that both YI,N and Y 2 ,N

extend to ahclian Galois coverings of AI,an. Then thc isomorphism 1/J induces an isomorphism
1/JN : YI ,N'1 ~ Y2,N'1 between abelian Galois coverings of 7700' In order to show that 1/JN comes
from aglobai isomorphism, it suffices to check that the eanonical map

1l(AI
,an )mer,oo ---7 H 1(7700' f-Lpoo)

is injeetive. In turns, this is equivalent to showing that for all 7' > 0 the map

k(Z-l]/k ---7 HO(6:(oo, r), 0)/ log(HO(ß*(oo, r),U 1
))

is injeetivc, whieh can be checked cxplicitly.
This shows that Y1,N and Y2 ,N are isomorphie. Let GN be thc grollp of deck automorphisms

of the covering epN : Gm ---7 Gm. For i = 1,2, the descent data from Yi,N to }'i is given by a set
of isomorphisms

a-Yi,N ---7 Yi,N (a E GN)
with the usual cocycle conditions. Similarly, the descent data for the isomorphism 1/J is given by
a set of square diagrams

t/JN
Y1,N11 ,. }'2,N11

er.),NQ~ er" }LQ
Since all the spaces involved are etale over Gm, a.ll the maps in these diagrams are cletermined by
the image of any ehosen poi nt in some dise L~"(00, r). Theref0 re the cl iagrams extend uniquely
to dcscent data over all of Gm, which shows that Y1 and Y2 are isomorphie. 0

In analogy with the differential case, we can eall ~-l thc canonieal extension funetor.

Definition 11. Let Fr be the fibre functor over Cov(G~~) defined by a geometrie point x. Then
Gr = Fx 0 ry:t-l is a ]ibre functor for Covmer (7]oo). The IDeal merom01']Jhie fundamental group
1frer (7]00) is the automorphism group of Gx . It is weil defincd up to an isomorphism whieh
depends only on the ehoiee 01 x.

Corollary 1. Eaeh ehoiee of (l geometrie point in Gm detennincs an isomorphism

The meramorphie filtmtion on 1T;ner (G~n) earnes over to a eanonical jilt1llt.iOn. on the local mero­
morphie fundamental group, which is in pClrtieular independent, of the ehoice 0/ base point. 0

To ease notation sometime we will write 1T instead of 1T;ner (7700)' Thc short exaet sequenee
(10) has a loeal counterpart

o---7 P ---7 1f~er (7]00) ---7 7rflg (1700) ---7 0

whcre thc rightmost term is the algebraic loeal funda.mental grollp, which is eanonieally isomor­
phie to Z(1).

We give here a sampie of the first few elementary properties of the meromorphie ramification
filtration. First of all , since the map
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is an isomorphism (you can always take an N -th root of tl/Al) one checks easily that for all real
numbers r > 0 there is an induced isomorphism

Next, we would like to explicit the connection between the meromorphic filtrations on the
fundamental group and on the cohomology of G~n, as given in definition 3. The compatibility
between the two is expressed by thc following

Proposition 9. Let 1 E 1l(G~n) and let n be the smallest integer such that f E Fn(G~). Then
n is also the sma//est real numbe r such that 1(n) C J(er(f : Pmer ---7 I"pco)

Proof. First of alt, it is obvious that 1(0) C Ker(f : Pmer ---7 I"poo), so that the infimum over the
set of real numbers with this propcrty is smaller than or eqllal to n. Suppose that this infimum
r is strictly smaller than n. For any !J E A of degree less than 1', set Cg = f(Kerg) C ftpoo. By
hypothesis: nCg = O.

9

Since all the proper subgroups of J-lpco are finite and nested into each other, this means that for
some 9 we have already Cg = O. Take 1'/ an integer large enough so that both f N = 1>,. (1) and
gN =1>,.(g) cxtend to homomorphisms 1rl (AI,an, x) ~ ftpCO.

By construction we have KergN C Ker fN and thereforc we can find an endomorphism W of
ftpoo which makcs the following diagram commutc:

We have End (llpco ) ~ Zp, the isomorphism being given by

Suppose that w = (-p and consider the ladder diagram with exact rows

(11)

>.o-----+- IIp<xo -----+- U 1 - 0 x------+-O

1(-p 1(-)' 1,
>.o-----+- Ilpo<> -----+- U 1 -----+- 0 x-----+-o.

From the long exact ladder for the cohomology of (11) we derive that

IN =W.9N =,'gN'

But this is a contradictioll , sincc the degree of!JN is strictly smaller than the degree of fN. Thc
claim folIows. D

By inspecting the proof of lemma 6 it easy to see that t.he topological group rrrer (1}oo) has a
cofinal system of open normal subgroups. Let I be the pal'tially ol'dered set of a.B these open
normal subgroups (with order given by inclusion). Since thc intersection of any two normal
subgroups is again anormal subgroup, we see.that I is a. sIllall cofiltered category in a natural
way. We identify I with a subcategory of 1r~er - Set by scnding thc normal subgroup S to
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quotient set 1r1ner / S with 1r~er-action given by translation. Sclect a right inverse functor J of
the functor F~ of theorem 8:

Then the com posi tion
9l 0 J : I -+ Covmer (Tloo)

defines a pro-analytic space over TlC01 which we denote by gmer.
Let A be any ring. Recall that, for any analytic space X = 1!!!.1 "'Yi1 the category S(X, A) of

jE!

sheaves of A-modules on X is elefined as tim S(...Yi, A), where the maps in tlle direct limit are the-iE!

puH-back functors.
If Gi is a group of automorphisms of .Xi, we let Sc; (...Yi , A) be the category of sheaves F on

Xi with a Gi-action, i.e., the datum for all 9 E Gi of a map Pg : y" F --+ F satisfying thc usual
associativity condition. Ir it is given a compatible system of groll ps {Gd, 1:.C. stich that for i > j
there is a map <Pij : Gi -+ G j with the property that cvery eliagram of the kind

commutes, thcn we can let G = l~ Gi alld define thc category Sa(X, A) = Il.gl SG; (Xi, A).
jE! jE!

All this applies in partiCltlar to the pro-analytic space gmer. Let F be any sheaf of A-mod ules
on 1700 and ..Y E gmer any object. Then the pull-back of F to ...Y is an object in S1} (gmer, A), weil
defined independently of tho choice of ...'(, This construction defi nos a functor

A: S(Tloo, A) --+ Slr(gmer, A).

Proposition 10. The functor ,,\ is an equivalence 0/ cnteg01'ies.

Proo/. Let F E SJr (gmer, A) j by definition, there is a meromorphic etalc covering ...Y of some
pointed disc ~ * (00, r) on which F lives. Set Y = 9l- 1(...Y) anel let j : ...Y --+ Y be the imbedding
of X into Y. Clearly <P : Y -+ Gm is a connected Galois covering, and it suffices to show that
G = j.F can be descended to a unique sheaf on Gm'

Choose any point p E Y and a coordinate x on Gm centered at O. Für any positive real number
r, let .6.* (0,1') be the püinted open disc in Gm with radius r allel center O. Since Y is tamely
ramified at 0, the connecteel component Yr of tP- 1 (~ .. (0, r)) containing p is an etale covering of
~. (0, r) of finite degree. Let 7[(r) be the subgroup of 7[ which stabilizes Yr • Then Gr = GlYr is
a sheaf with 7[(r) action, and it suffices to show that for any l' we can elescend G r to a unique
sheaf on ~ * (0, r), since Ur>O Yr = Y and Ur>O 7[(r) = 7[. But thc map Yr -+ L~" (0, r) is finite
etale and descent theory for such morphisms is a standard reslllt. D

Lastly, we mention that all the constructions abovc have also "arithmetic" variants: su ppose
that )[k is a;..n analytic variety over the complete but not necessarily algebraically c10sed base
field k, Let k" be the completion of an algebraic closure of k anel let "'Yka be the base change of

"'Yk to k".. Then thcre is a short exact sequence (sec [deJ], proposition 2.13)

(12)
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Lemma 7. Suppose as above f}w,t k is a genem,l complele fieh!. The SUbgTYJUp Ie88 C 1T"1 (G "'k'" x)
m,

is normal inside 1T"1 (Gm,k 1 X).

Proof. Let f E A be an element and take a E Gal(ka /k). As in lemma 6 we see f as a
homomorphism j : P ---7 J.Lp""'" Unwinding thc definitions one checks easily that

a(Kerj)a- 1 = ker JU

where f f---t JU denotcs the natural action of Gal(ka /k) on the group 11°(G
m

k'" 0). The claim
folIows. 0 '

The definitions 2 and 6 have to be slightly modified: the exact sequcnce (4) yields a natural
imbedding of thc group k[x]/.-\(U1) inside the group Hom(1T"1(Gm ,k,X),/Lpoo). For every N E N
and every finite field extension E of k we have a map cPN,E : Gm,E ---7 Gm,k anel the analogue of
formula (8) leads lIS to replace A with the group Ak consistillg of aU polynomials in the rational
powers of x and with coefficients in ka

• Then each element of f E A k determines a character
f : Im4>N,E+ ---7 JLpoo for some lV, E.

Definition 12. The group 1T;nel' (Gm,k, x) is the quoüent 1Tl (Gm,k' x) / IeH' lVe define a topology
on 1T;ner (Gm,k, x) by declaring that the intersection 0/ jinitely many sllbgroups

form a cofinal system of open neighborhoods 01 the identity element.

\Ve obtain from (12) the exact sequence

Remark: from thc definition we see in particular that thc topology of 1T;ner (Gm k" ,x) is strictly

finer than the topology which is induced by its imbedding in 1T~er (Gm,k' x). '

With this topology, an argument like in theorem 8 shows that the category 1T~er(Gm,k'x) -Set
is equivalent to a certain category Covmer (Gm,k) of etale coverings of Gm,k'

Next, we define in the obvious way the pro-analytic space 1]oo,k and a restriction functor
9t : Covmer(Gm,k) ---7 Et(17oo,k) which is an equivalencc onto its essclltial image Covmer (1]oo,k)'
Then the group 1Tr

er (71oo ,d is given as in definition 11. In particular we derive a short exact
sequence

(13)

Similariy we can construct.the pro-analytic space yrer in this.morc general setting, and it is
easily seen that the analogue of proposition 10 still holds.
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4.2. Meromorphic vanishing cycles. Let now C be a smooth curve dcflned oyer the field k ,
and s some k-rational point Oll C. Fix also a kG-geolllctric point 8, localized at s. To this data
we associate the germ of k-analytic space (C, s). lt follows from [131] theorem 3.4.1, that we can
find an isomorphism of k-germs cP : (C, s) -t (lP'k' 00).

Recall from scction 4 of [132] that any k-germ c.,Y,:r:) detel'lIlillCs a pro-k-analytic space X (x)
and the assignment (X, x) ---7 .X(x) induces a functor from k-gcrms to pro-k-analytic spaces.
There is an obvious map of pro-k-analytic spaces 1JN,k ---7 P1(00), induced by the natural imbed­
ding and hence we can define the pro-k-analytic spacc 9;ner as the fi bre prod uct in the following
fibrc diagram:

! !
C(s) -----+- Pk(oo).

The pro-k-analytic space 9;ner is determined up to isomorphism: in fact, suppose cP1' cP2 :
(C, s) -t (IP~, (0) are two isomorphisms as abovc. Then we can write cP1 = cP27/J for an
automorphism 7/J : (Pk, (0) ---7 (lPl, 00) and this implies easily thc claim. We also define
1J6 = C(s) Xp~(N) 1Joo,k and then we have a category COymer(1}6) consisting of a11 the fibre prod­
ucts C x1Joo 1]6' with C E COymer (1J00). By composing the fibre product functor Covmer (1]00) ---7
Covml'lr (1J,) with the fibre functor Gr: of definition 11, we get a fi bre functor for Covmer (1J,),
whose group of automorphisms we denote 1frer (1J6) anel sornetimc just 1f, to ease notation. It is
isomorphie to 1fr)er (1Joo), but the isomorphism depcncls on thc choice of thc map 4>. A topology
can be defined on this group, so that the mentioncel isomorphisIll becomes a homeomorphism.
In particular, we can see the pro-k-analytic space 9;ner as a functor

x, -----+- Covmer (1}6)

T I ~ GT

where X6 is the sma11 cofiltered category of open normal su bgroll ps of 7ri"er (1}6).
For a k-analytic space ..,y1 we denote by .IY - An the category of ..Y-analytic spaces , dcfined

in the obvious way; then if Z = lim Zi is a pro-k-analytic space, a Z-analytic space X is by-iEI

definition an object of the direct limit category l!E.l Zj - An, where the maps in the direct
iE!O

system are induced by thc fiber products X j = X xZi Zj ---7.1Y (for)( E Z, - .An and j > i).
We remark that the catcgory of Z-analytic spaccs ad mits fi brc prod ucts a.llei cofiltered projec­

tive limits. For any ring A, the category S(X, A) of sheaves of A-modules on X is by definition
S(lim .IYj , A). More generally, if G is a topologieal group, we let SG(X, A) be the category of the

+--
i?i

sheavcs of A-modules on X cndowed with a continIlolls G-actioll. If all thc maps Z, ---7 Zj are
etale, then the category Sa(X, A) has enough injcctives anel every injectivc object of SG(X, A)
is injective also in S(X, A).

In particular , we obtain thc category C(s) - An of C(s)-analytic spaces; if X is an object of
this category, the special fibrc X ll is deflned and it is a, k-analytic space.

For a C(s)-analytic spacc X, we let Xi" = X 6 X 6 8, XI'J. = X XC(6) 1]61 Xii. = X XC(6) 9;ner
and for any object T E X6 we set X T = X XC(6) (lT' Simila.rly, if F E S(X, A), we denote by
FTj. (resp. FT ) the restrietion of F to X 1J • (resp. to X T ) anel for any morphism 4> : Y ---7 X of
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C(s)-anaytic spaces we write <PT/. : Y 11 • -t XT/. (resp. qr,.: Yi" -t XT/.) for the map induced by
the base change 7], -+ C(s) (resp. s -+ C(s)).

Moreover 1 let w ; 1rrer(7],) -t Gal(ka /k) be the map as in (13); then w(T) is a subgroup of
finite index in Gal (k a

/ k), corresponding to a finite extension kT of k. The morphism YT -t C (s)
factors as a composition

9T -+ C(s) Xk kT -+ C(s).

If we let X kT = X Xk kT , we obtain a diagram

For P E S(X11 • I A), we define a left exact functor

By deriving \l1~er we obtain a functor R\l1~er which we call the /unctor 0/ meromorphic
vanishing cycles.

Thc functor of meromorphic vanishing cycles enjoys analogues of most of the propertics which
Berkovich proves for his functor R\l1 11 • We give hereaftcr a samplc of such results. Thc proofs
are minor variations of those for the corresponding statements in Berkovich 's paper, therefore
we omit the details.

Let A be any torsion ring in which thc residue characteristic of k is invertible and for any X
as above 1 let Da (X, A) be the derived category of Sa(X, A) (and similarly for Di;l Dö)'

Proposition 11. Let rP : Y -+ X be a smooth morphism 0/ C(s)-analytic spaces. Then for any
sheaf F 0/ A-modules and any q ;::: 0, there is a canonical isomorphism

o

Proposition 12. Let 4> ; Y -+ X be a compact morphism 0/ C(s)-analylic spaces. Then for
any p' E 0+ (Y111 A) there is (ln isomorphism in 0:- (Xi"l A)

o

Corollary 2. Let X be a C(s)-analytic space compact over C(s). Then /or any sheaf F of
A-modules on X 11 • there is a spectml sequence

o
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For technical reasons, we will need the following slight gcncralization of the meromorphic
vanishing cycle. Suppose that the field k is the completion of an algcbraic extension of a complete
subfield k01 anel moreover, that there is a ko-germ (COl so) such that (C, s) = (Co, so) Xk o k.

Then definc IJ,ko as the Sll bset of 1 J consisting of all elements of the form Sn /Trer (1]J,k) for
some S E 1&0' We obtain a lcft exact functor

\[1:;::~0 : S(X'1" A) ---t S,..(X" A): F ~ 1i.!l1 i~jT.(FT)

TEI·.i<o

and hence its derived functor R\[1:;:~ko as above.
Notice that the action of /T on Rqqi;~~ko is continuous with rcspcct to thc coarser topology

induced by the imbedding 'Ir "-r /Tier (1]J o)' Notice moreover , that propositiolls 11 alld 12 have
obvious variants for R'lJ:,ner. .

~/' ."-;0

The next proposition relates the more general fllllctor R'lJ~~~ko to our functor of vanishing
cyclcs. Let

f : S'l"r"·{'1.o)(X,) ---t SJr(X,)

be the natural forgetful functor (which forgets part of the group action).

Proposition 13. With the notation above, suppose that X o is a Co(so)-analytic space and set
X = X o Xko k. Let Fa be a sheaf of A-modules on Xo,'1'o und denol.e by F the inverse image of
Fa on X'1•. Then for uny integer q tllere is a canonicalisomorjJhism

f( Rq w;;::r (F)) ~ Rq \lJ ~:~~o (F) .

Proof. Let T = S n 'Ir~er(1]"d E LJ,ko ' For q = 0 it suffices to remark the isomorphism

i~jT. (Fr) ~ i~js. (Fo,s).

The case q > 0 follows frolll this, by observing tha.t aJI injectivc sheaves are acyclic for both
functors \[1mer and 'lJmer. D'1'0 r,.,k o

To end this scction, we want to derive a workable formula for thc stacks of thc vanishing cycles
functor. With thc notation above, let t be any point ill Xi' anel for cach T E LJ , denote by tT the
image of t in X, X kT • Let us write 1], = I~ Za for a ccrtain falllily {Za}. Thcn there cxists a C-

a
analytic space)( such that X = l~ ,)( X(C,,)Za. If Fis a sheaf of A-modules defined on Xr,., then

0:

by definition we can find Cl' such that F has a representative Fa on "'Ya = ",Y x(C,&) Za. Let Fa,T be
the restriction of Fa to "'Ya Xc (Ir and finally, denote by jT thc morphism "'Ya XC YT ---t X a Xk kT
which represents jT' We have

Rqw:;:er(F)t ~ (iigt Rq(irjT.Fr))t
TEI.

~ lim (ir nqjT* Fl')t-rEI.
~ liT (HqjT.PT )tT

TEI.

Next a standard argument yiclds

(RqjT.Fr)tT ~ l~ IIq(jr1UTl Fa,r)
UT
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where UT ranges over all the etale neighborhoods of tr in .Xa Xk kT . Putting everything together
we get

(14) RqW:;:er (F)t ~ 10; 1!.:II JJq Ur l UT , Fa,T)'
TEI. Ur

4.3. Swan conductor. In this section we establish some basic faets about the linear repre­
sentations of the local fundamental group. The representations we have in mind are continuous
group homomorphisms

p : 7r~er (1100) --+ OL(12, A)

where A is a ring of a eertain kind. Rather than axiomatizing the properties of A which we
need, we give a list of typical rings with which we will deal in our applications. Hence in thc
sequel A will be either

1) a finite extension E,\ of the completion Jai of the field Qt(/-lpoo) (taken with its natural
topology),or

2) the ring of integers 0 of OC,\, which is a complete discrcte valuation ring whose residue field
we call Fand whose maximal ideal is m (with the rn-adic topology), or

3) any of the artinian rings On definoo as O/mn (with tbc diserete topology).

Lemma 8. Suppose that A is of type (1) or (2). Let V be Cl finite 1unk free A-module with
a continuous Pmer-action p : Pmer --+ GL(V). Then the image of p consists of semisimple
elements.

Proof. Let r be the rank of V over A and let G be the Za.riski closure of the image of Pmer
in GL(r, E,\). Sinee Pmer is commutative, up to replaeing E,\ with some finite extension, G
decomposes as a direct produet TU, where T is a torus and U is a unipotent group. It suffices
to show that U =O. The group U is isomorphie to an affine space AE),. Let L be a lattice inside
U (i.e. a compact O-submodule of maximal rank). Then clearly nn enL = 0 and p-l(Idv ) =
nntnp-l(L). But sinee multiplication by e is an automorphism in Pmer , we derive p-l(L) =
Kerp. Let u E U be any element. Then for some big enough 12 E N we have f"u E L, and the
claim follows easily. 0

Proposition 14. Let A mul p : Pmer --+ GL(V) be as in lemma 8. Then. Pmer aets on V through
a discrete quotient.

Proof. First of all, the lemma implies that, up to replacing JE:,\ with some finite extcnsion, \I
decomposes as a direet sum of one-dimensional Pmer-modules and hence we ean assurne that \f

itself is one-dimcnsional. Then the Pmer-aetion is given by a eontinuous eharacter X : Pmer --+ E~ .
If we compose with the valuation map E~ --+ Z, wc obtain a continuous map Pmer --+ Z. But
all the diserete quotients of Pmer are torsion groups, hence this map is trivial, and X lands into
OX. The grou p {}X is homeomorphic to a direet su 111 FX EB 0, by means of the identification of
FX with the group of roots of unit inside 0, and the logarithm map 0 ~ 1 +eo. It suffiees to
show that thc induced map 7r : Pmer --+ 0, obtained by projccting on the second ractor, is the
trivial group homomorphism. For this, we write: rr-1(O) = 1r- 1 (nn enO) = nn .en1r- 1 (O). Since
multiplication by eis an automorphism in Pmer , thc claim folIows. 0

1"0 take eare of torsion rings A of type (3) we need some prcparation. Let G be some group
and p : G --+ GL(F) a representation of G on some finite rank free A-module \f. For any
character X E Hom(G, Jlpoo) we let V:x the maximal submodule of \f on which G acts as X i.e.

. .
p(g) v = X(g)tJ (g E G', v E Vx)'
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Notice that this definition makes sense since any A of type (3) contains the multiplicative
subgroup J.1.poo.

Proposition 15. Assume that A is of type (9). Let G be a finite commutative p-group and
p : G -T GL(\I) a representation of G as above. Then the1'e is a canonical decomposition

\I ~ EB lIx'
XE Hom(G,f.Jpoo )

Proof. Let 9 be some element in G. Let pr! be the exponent of G alld choose a primitive root
of unity ( E JLpoo of order pr!. First of all we remark that all elements of the form (i - (i
(i * j mod pr!) are invertible in A. This follows easily from [\Va] proposition 2.1. For 1 ::; j ::; pr!
we define

Ci = II(i - ().
iti

Clearly we have

(15) II (p(g) - (i) = 0
l~i~p"

as an element of End A (1I). Define the element 'Tri E End A (\/) by setting

'Tri = Ci-
1 II(p(g) - (i).
iti

From (15) it follows that the image of rri lands into the submodule \fg,'i = Ker(p(g) - (i).

Lemma 9. The morphism
EBl~i:$p,,'Tri : \1 -+ EB \fg,(i

l~i:$p"

is injective.

Proof of the lemma: For any sllbset S C {1, 2, ... , pr!} dcfinc more generally

rrs = I1(p(g) - (i).
i~S

For any such Sand any two distinct elements i, j in the complement of S we show that

(16) KerrrSU{i} n Kerrrsu{j} = Kerrrs.

The lemma will follow easily from (16) alld a simple induction argumcnt.
Let v E KerrrSU{i} n Kcrrrsu{j} anel set w = 'Trs(v). Then we have

(p(g) - (i)W = (p(g) - (i)w = 0

which implies ((i - (i)w = o. Sincc ((i - (i) is invertiblc, this yields 'IV = 0 allel proves (16).
o

Next we show that the composition

ffi V $jlfj ffi TI
Wi g,(j ., V )0 Wj ~ g,(j

(UI, .. ') up ") ~ Ei Vi
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is the identity map. This is a direct calculation:

:n

Together with lemma 9 this shows that V is isomorphie to the direct sum of G-stable A-modules

EI1j Vg,(i.

Let gl, ... , gm be a set of generators of G. To eOllclude thc proof, it sllffiees to remark that,
for any eharaeter X E Hom(G, !lpo<>),

V x = Vgt,x(gI) n ... n Vg... ,X(gm)

anel that this intersection of A-modules is a direct summand of V. D

Corollary 3. Assume again that A is Cl ring 01 type (3). Let p : Pmer ---+ G L(V) be a represen­
tation 0f Pmer into a jin i te rank free A -nwdule V. The n there is a di reet swn decomposition

V ~ EB \Ix'
xe JIom(Pm~r,llpOO)

Prool. Thc proof is CL typieal "filter" argument: since V has the diserete topology, p factors
through a discrete quotient P of Pmer . Then j5 is a commutative p-powcr torsion group, anel
hence it is the direct limit of the filtered family F of its finite subgroups.

We arguc by induction on the rank r of \I. Thanks to proposition 15 we can choose for each
subgroup 5' E F a charaeter Xs : 5 ---+ J-lpoo and a lIon-zero G-stable dircct summand Vs in V
such that

1) PlVs = XS;
2)VT c Vs and Xr restricts to Xs on 5' for any 5, T E F SlIch that S' C T.
Then, since the rank t' is finite, the submodule

V' = lim Vs-Se:Fo

is non-zero and it is c1early a direct summand in \I. On V' thc action p is given by the character
!im Xs and the complement of \I' has rank strietly less than 1', which shows the claim. 0-Se:Fo

Suppose A is a ring of any of the types above. Let A1 be a. one-dimcllsional A-representation
of Pmer . Since a11 the discrete quotients of Pmer are p-power torsion groups, the proposition
implies that Pmer acts on ]I;{ th rough a continuous eharaeter X : Pmer ---+ Ilpo<>.

This eharaeter corresponds to an element Ix of the algebra A introduced in section 3.

Definition 13. The degree 01 the element Ix is ealled the slope 01 the Pmer-module M and it is
denoted by A(M). In partieular, the slope 01 a sim]Jle Pmer -module is always a rational number.

Finally, let V an arbitrary Pmer-module free of finite A-ra.nk. If A is of type (3), corollary 3
shows that F decomposes as direct sum of Pmer-stable rank one A-submodules.

The same holeIs for a ring of type (1) 01' (2), at least after repla.cing A by a A' still of the
same type and eontained into a finite extcnsion E'), or E),.
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Remark: It is easy to verify that the direct sum of the simple components of VAl = V 0A A'
which have the same fixed slope .-\ is a submodule FA,,>. of V.41 which is already defined over A,
i.e. there is a submodule V>. of V such that VA',>. = V>.0A A'.

Hence we denote by A(V) the set of the slopes of the simple rank one components of VA';
clearly A(V) is a finite subset of Q, whose elements a.re callod the slopes of V. Gathering the
simple components of VAl which have same slope, alld using tha remark above wo obtain a
canonical dccomposition of V as direct SUIl1

V = EB \1,\
>'EA(V)

where each V~ is purely of slope .-\.

Definition 14. The Swan condttclor sw(V) oJ a Pmer-modulc V, is the rational number

The next result is our version of the Hasse-Arf theorem.

Theorem 9. Let V be a fin ite m nk free A -module wi fh an action 0f rr~er (1700)' Then sw (V) is
a positive integer.

ProoJ. For an element J(x 1/N ) E A let us denote by lHJ the one-dimensional A-module on which
Pmer acts through the character J. Then, at least after replacillg A by a finite extension, the
Pmer-modulc F has a decomposition of the kind

for some finite set S of elements of A. Let, E rrr1g (1100 ) bc any element. \Ve can define a new
action of Pmer on V, by setting

Let V1' be the module V with the new Pmcr-action. Since ,Pmer,-l = Pmer as subgroups of
1t"~er (1]00)' it follows that \11' ~ V. On the other halid, we ca,ll writo

where f1' E Adenotes an element of the form f((x 1fN ) fol' some ( E IlN' Hence we see that
the set S must be stable under the substitution f 1-t 11 for any , as ahove. Suppose that !'l
has been chosen minimal among the integers such tha.t we ca.n write f as a, polynomial in X lfN .

Then it is easy to see that the orbit {f1 I, E 1t"r
,g

(1}00)} consists of exactly N elements. On thc
other hand, >'(MJ ) = .-\(Mrr) is a rational number of the form n/N (n E N). The claim follows
directly from these facts. 0
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5. THE LUBIN-TATE TORSOR

33

In this chapter we introduce and study the sheaf that plays the role covered by the Lang
torsor in positive characteristic. I bclieve the name "Lubin-Tate torsor" is appropriate enough
for this object. We return to the setup of chapter 2: here k is a one-dimensional local field of
zero characteristic, Le. a p-adic field.

Let F be a fixed Lubin-Tate group and let ß (0, p) be the open disc of the affine line centered
at the origin and of radius p. Then .6.(0, p) is an analytic varicty and we can regard F as
an analytic map ß(O, 1) X 6.(0,1) -7 ß(O, 1); the functional identities for F say that ß(O, 1)
becomes a commutative analytic group with addition givclI by the power series F. Similarly,
the logarithm AF defines a morphism of analytie groups Ap : .6.(0,1) -7 Ai:.

5.1. Construction of the torsor.

Lemma 10. The logarithm Ap : .6.(0, 1) -7 Ai: is an etale covering 0/ Al.

Proo/. Let Al = Ur>oDr be the covering of the affine lino by closed dises of radius r eentered at
the origin. Denote by Er the connected component of A-1 (Dr) containing O.

From remark (a) followi ng theorem 3 we get an eq uality of formal power series: AO [11'"JJ = 1I'"n. A.
By analytic continuation, this formal identity gives rise to a commutative diagram of analytic
maps:

.6.(0,1)
[lrlj

• .6.(0, 1) .. .6.(0, pd

~l ~l ~l
Al

:11""
~ Al .. Ga (pd·

We remark that, for sufficiently large nn Er is the conncctcd componcnt of thc inverse image
of ep (1r~Dr) by [1r~]. Looking at the diagram above, we see that the restrietion of A to Er is a
finite map, henee Er is an affinoid domain in .6.(0,1) for all rand .6.(0,1) = Ur>oEr • Note that
for r < s, E(/ is a closed neighborhood of Er' It fo11ows easily that A is etale and surjective if
and only if thc induced maps Er -7 Dr are etale and surjcctive for all 7'.

Given r > 0, choose an integer nr large enough such that [7r]j"( Er) C ~ (0, PI)' By theorem
3, the power scries ep converges on ~(O, pd. This means that CF defines a morphism on thc
quasiaffinoid space 6.(0, pd, and therefore thc rcstriction of A to 6.(0, Pt) is an isomorphism
of quasiffinoid spaces. It follows that A : Er -7 Dr is an 6tale covcring if and only if [1r]? :
Er -7 1rn" . Dr is an etale covering. Let 9 E Jlr be any othor power scries; the homomorphism
[1]/,9 : ß(O,l) -7 ~(O, 1) of quasiaffinoid spaces has an inverse [1]9,1 and therefore it is an
isomorphism. From theorem l.(b) we see that [1]J,go[1I'"]Jo[l]g,j = [1r]g. Therefore it suffiecs to
provo that for some 9 E J thc morphism 9 = [1r]g : .6.(0,1) -7 .6.(0,1) is finite and etale. Then we
seleet g(Z) = 1rZ + zq. Now eonsider the map of schemcs Ak -7 Ak defined by the polynomial
g(Z): this map ramifies over a finite set of points Xl' ... , X m E Ai: Cf) = k, and using the jaeobian
eriterion one checks easily that lXii;::: 1 for all i. On the complement of Xl' ... , In, 9 restricts to
an etale eovering U -7 Al - {Xl' ... , In}. By proposition 3.3.11 of [BI], it follows that the map
gan : van -7 Al an - {Xl' .... , X n } is also an etale covering. l3ut. e.1.early [1r]g is obtained from gan

by base change to ~(O, 1) c Al an, and the lemma follows from corollary 3.3.8 of [BI]. 0
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Remark: the proof of the lemma shows in particular that the restrietion of the analytic
covering A : D.(O, 1) -T Ai to any bounded disc ß(O, p) e-..t Al factors as a trivial (split) covering
followed by an algebraic covering of finite degree.

For any positive integer n, let kn = k(GnL kco = Un>okn anel kco thc completion of kco .
lt has already been rcmarked that Gco = Ker(A : D.(O, 1) -T Al. ). In particular, this kernel is

k"
contained in kco .

As usual we obtain a sheaf of sets (in thc rigid etaJe topology) over Al by taking the etale
local sections of the morphism A; let us denote by rP this sheaf.

For any given complcte field extension E of k, there is a base change map p : Ak -T Al and
we can form the pull back <PE = p'" rP. For our purposes, the really useful shcaf is 4>kfX}; for brevity
we will denote it simply by rPoo'
Definition 15. The shea/ <1>00 aequires a translation action 0/ the discrete group G fXJ , which as
ustwl makes it into a Cco-torsor. l·Ve eall rPoo the Lubin-Tate 1.01'801'.

Let A be some torsion ring in which the residuc characteristic of k is invertiblc, and 'l/J : G oo -T

Ax be a character of G00' We can form thc associated sheaf

LIjJ = rPoo xljJ A

which is a ra,tlk one local system of A-modulcs on Ga.
A note about notation: for a map f : .X -T Ga sometime we will write L(/) in place of f'" L.

Also, if Fis a complete extension of kOOl the base change map 1r : Ga,F -} G gives us a new sheaf
LF = 1r.L. If it is clear [rom thc context which base field we havc in mind, we will omit the
S11 bscript F. Given a linear coorelinate t on Ga, sometime we will wl'ite Ga (p, t) for the analytic
group obtained by restricting the addition law of Ga to the disc .ö (0, p) = {X E Ga, It(x) I < p}.

\Ve list here some elementary properties of [,.pl that follow from thc general yoga of torsors.
Let m : Ga X Ga -T Ga be the addition map, alld pr 1 , pr2 : Ga X Ga -T Ga the projection maps
on the first and second factor. Thon LIjJ comes with:

LTl) a rigidification at the origin:

LT2) a trivialization:
.,~ 10\ • ('-1 10\ • ('-1 A

nl '-'1jJ \()I pr1,-,.p \()I pr2'-'1jJ ~ ,~"xG"

compatible with the rigidification at the origin {O, O} indllced by LTl.
LT3) In particular:

[,.p_1 ~ [,;1.

We will denote by p( 'ljJ, t) the Sllpremum of all real num bers p such that [,.p trivializes on
Ga (P, t). If t happens to be the same parameter which wc chose to give the powcr series expansion
for the morphism A, we gct p('l/J, t) ;::: PI and equality holds if and only if'l/J is injective. Moreover
p('ljJ, t) = 00 if and only if 'l/J is trivial.

Before moving Oll, we should remark that the differencc between one choice or another of
the underlying Lubin-Tate group, is purely arithmetic. By this we mcan thc following: suppose
that F, pi are two Lubill-Tate groups, and Goo ,G'co the respective torsion groups. Take two
characters 'ljJ, 'ljJ' of Goo and respectively G'co. Then over the completion of k(Goo ) (resp. of
k(G'co)) wcobtain the Lubin-Tate torso~[,t/J (resp. LIjJ'). \Vec.a.n pllll-back both ofthem tothe

common overficld "k a , and there we have
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Propositio n 16. For a E ka
, le t f!'(1 : AL --+ Al. be the 171m'phism x f---7 ax. Then there exists

,...... k'" k'"

a E k a such thnt, with the above notation

L:.ljJ,J;", ~ P:LTjJ',k""

Proof. I am grateful to G. Fa.ltings for furrlishing thc following explanation. It suffices to compare
a general Lubin-Tate torsor F with the classical Gm' To distinguish the two analytic groups,
call ßp (resp. .6.6 ",) the analytic space .6.(0,1) cndowed with the group law F (resp. the
multiplicative group law). The torsion of Gm is of course Jl,poo. To prove the claim it suffices
to show that the group homomorphism 7/J : Gco --+ Jl'Poo is induced by a Illorphism of analytic

groups :;j; : D.p --+ ßo"" because in that case we can find out thc right a E ka by noticing that

At, m 0 ;JA"i/ is an endoomorphism of Ga, hence of thc form IL a for a ccrtain a.. Now, the map

7/J induces a map on the Tate groups ;j : T(F) --+ T(Gm ), or what is the same, an element of
T(G)* ~ T(G t ) (here G t is thc Cartier dual group of G). This is the same as giving a compatible
system of group scheme hOlllomorphisms

;[;0 : F[n] --+ pp" (n > 0)

defined ovel' Ok"" In turns, this is a map of p-divisible group schemes P(p=] --+ PpCC> which

determines the needed morphism ;j; : ß F --+ .6.0 ". over Ok"" 0

The proof of the following proposition is taken from [SGA4!], Sommcs trig. We rcproduce it
here to stay on the safe sidc.

Proposition 17. Let 7/J :G= --+ Ax be a non-trivial chamcter. Then:

for all p > p('ljJ, t,).

Proof. Let ß p be the connected component of A-1 (Ga (p, t.)) containing O. For a kco-rational
point x of ß p , let Tz; be thc translation rx(g) = g[+f]x on 6. p , where [+fJ is Lubin-Tate group
law. Also, let r~ be thc translation by y E Ga I with respcct to usual addition law on Ga'
The formula AOTx = r~(z;)o.x states that the pair (rn r~(x)) is an automorphism of the diagram
6 p --+ Ga (p, t).

Let 7/J(x) be the induced automorphism of (Ga (p, t), LTjJ). For X E Gco this automorphism
gives the identity on Ga (p, t.), and multiplication by 'ljJ(X)-l 011 Lt/J.

Let 7/Jl/(x) be the autornorphism of H;(Ga (p,t.);;oo' L:.,p) induced by 7/J(x). Then 7/JH(X) is
multiplication by 1/'(X)-l. On the other hand, thc following "homotopy" lemma shows that
7/JH(X) = 7/JH(O). Since by hypothesis p > p(1/',/.), we call find x E G(p,t)nCco such that
1 - 7/J(X)-l is invertiblej but we have seen that multiplicatioll by (1 - 1J1(X)-l) #- 0 is the zero
map, therefore the claim folIows.

Lemma 11 ("Homotopy" lemma). Let 4'Y and Y be two r-igid (lnalytic varieties over a com­
plete valued field F, with Y connected. Let 9 be a she(lf on X and ('ljJ, c) a family of endomor­
phisms of (4'X", 9) pammet7'ized by Y I i.e.:

7/J : Y X )( ~ Y X X is a Y -morphism and
E: 7/J* pr;9 ~ pr;9 a morphism of sheaves.

Assume 7/J is proper. For y E Y (F), let 'ljJII (y) * th e endomorphism 0f lf; (X· ,g) induced by
'ljJ,,: X ~ 4''( aud t y : 7/J;g ---+ g. Then 7/JH(Y)* is irideperulc7it ofy.
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Proof. In fact, RPprl !IH;9 is the constant sheafon }" with stalk H[(.X, 9), and 7f;H(Y)* is the
fiber at y of the endomorphism :

RPprl!pr;g ~ RP prl !7P*pr;g~ RP prl !pr;9.

o
To apply the homotopy lemma to the present situation, wo take 7f; : 6. p X Ga (p, t) ---t

6. p X Ga (p,t) defined by 7P(X, y) = (x, Y + ..\(x)). 0

5.2. The character induced by Galois action. Vve conclllde this chapter with some obser­
vations about the Galois action on LI/J. Let (fi be thc puH back of 4>/X) to Al j by transport of

kei

structure we get a natural action of Gal(k G /koo } on ~, covering the action on Al . This action is
kei

inherited by 12.p,kei' In particular, if p is a k/X)-rational point of ~ei' then the stalk 12T/J,p becomes

a representation of Gal(ka / koo ) of rank one. For any n ::; 00, let k~b denote the maximal abelian
extension of kn • It is clear that the action on 12.p,p factors through Gal(k:/koo ). I do not know
the complete structure of Gal(k:/koo ) j in particular I don 't know whether there is a canonical
generator that takes the place of the Frobenius element as in the finite field case. Instead we
make the following:

Definition 16. Let kur be the maximal unramijied extension 0/ k. Clearly kur C k~ and kur n
koo = k. ~Ve say that an elemen t a E Gal(k~ / k oo ) is a FrobenillS eleme n t if the image 0f a in
Gal( kur / k) is the canonical Frobenitls generatm'.

Our aim is to give a.n cxplicit formula for thc trace Tr(a, [.lj;,p) of the endomorphism induced
by the Frobenius element 0' on the stalk of 121/1 at the point p. VVe start with two elementary
lemmas:

Lemma 12. The map pM Tr(u,12TjI,p) is a continllotls group h07Homorphism Tra : koo ---+ /\ x.

Proof. It follows easily from LT1 and LT2 that the map Tra is a, grollp homomorphism. More­
over, it follows from lemma 3 that the restriction of 4>00 to 6(0, PI) is the trivial Goo-torsor;
therefore the restriction of 12TjI to the same disc is a trivial line bundle, and we conclude that thc
kernel of Tra contains this entire disc, i.e. the map is continuolls. D

Lemma 13. k~ = Un<ook~b.

Proof. It is clear that k~b C k~. On the other hand, let x E k~ alld let Xl, ... , X m be the orbit of
x for the action of the fuH Galois grou p Gal(ka

/ k); take n big cnough such that (kn (Xl' ... , X m ) :

kn ] = (koo(XI, ... , X m) : k/X)]. Thcn there is a natural isomorphism Gal(kn(xI' ,.. , xm)/kn ) ~

Gal(koo(xI' ... , xm)/koo ), and this last group is abelian, being a quotient of Gal(k~/koo)' 0

It follows from the lemma that thc choice of a Frobellius element 0' in Gal(k~ / koo ) is equivalent
to thc choice of a sequence 0'0, al, ... of liftings of Frobenius an E Gal(k~b / kn ) such that the
restriction of U n+l to k~b acts as an' Let ßn E kn such that thc Artin symbol (ßnl k~b /kn) acts on
k~b as Uno Then by loca.J class field theory, it follows Nmk ..+l/k" (ßn+l) = ßn- Also, by Lubin-Tate
theory it follows ßo = 1L

Conversely, the choice of a corn patible system of elements ßu E kn aB beforc is equivalent to
the choice of a Frobcnius element u.

For the next result we need.some notation. First of all we, selcct for each positive integer n:
1) a generator Vn of Gn as an kO-module, such that (rrm-n]J(um) = Un;
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2) an element ßo E ko such that the sequence of these elements satisfies the compatibility
condition above, and corresponds to the choice of a Frobenius element aß;

3) apower series bo(z) = z . ro(z), where r(z) E kO[[z]] satisfies r(O) =I- 0 and slIch that
bo(vo) = ßo-

Finally, let To be the trace map from ko to k.

Theorem 10. Let p be a point in A}a (koo ) = koo , and choose an integer n such that:

(a) 11r°pl < PI i
(b) [k (p) : k] ::; n.
Let m be any integer 2:: 2n + 1. Then, with reference to the notation above:

Tr(Jß,I~~,p) = 7/J ([1r~-Jm C'(:m) d:; I,;JL(Vn )) •

Proof. First of all, notice that the group Gal(k G /koo ) acts also on 6(0, l)}?a in such a way that
the logarithm becomes an equivariant morphism. Let q E ,X-I (p). Let a be any lifting of aß to
Gal(k/koo)j then essentially by definition we have:

(17)

(where [-]/ denotes su btraction in the formal groll p). Obviously this formula is independent of
the choices involved. Take n such that (a) is satisfied; by inspecting the proof of lemma 10 and
the remark that follows it, we obtain:

A-1(p) = [rrO]jl(e(rrOp))[+j]Goo •

In particular we can take q E [rr O ]jl(e(1r°p)) in equation (17). We recall now the definition of
the generalized Kummer pairing, introduced by Fröhlich in [Fr]: let F(ko ) be the subgroup of
6(0, l)(koo) consisting of the elements rational over ko ; then there is abilinear map:

( , )~ : F(kn ) X k~ -----+ Go

defined as folIows. If ß E k~, let 'Tß be the element of the Gal(k~b/ko ) which is attached to
ß by the Artin symbol. If Cl' E F(ko ) I choose f in 6(0, 1) (k) such that [rr O

]/ (,) = CL Then
(a,ß)~ = 'Tß(')[-/]'- Clearly, if wo take n such that both (a) and (b) are satisfied, thc right
side in formula (17) translates as 1jJ( (e( 1r0 p), ßo)~).

Then the formula of the theorem follows immediately from theorem 1 of [Wi]. 0

5.3. Semilinear Galois action. Since the sheaf cP is already defined over k, it is natural
to expect the full Galois group Gal(kG /k) to act on LT/J. In this section we show that this is
indeed the case l at least when the Lubin-Tate formal group under consideration is thc classical
multiplicative group Gm. The action thus obtained will not be linear, but rather semilinear in a
precise sense. In this way, our theory acquires a "p-adic flavour" which is unusual in an e-adic
setting. Of course there ShOllld be a parallel p-adic Fourier transform over p-adic fields, where
the fuH meaning of this semilinear action is revealed. We feel that the present limitation to
f-adic (or e-torsion) coefficients is only due to our current incomplete understanding, and it will
be eventually removed.

As announced, in this section we restrict to the Lubin-Tate group Gm. Take a prime ewhose
residue dass generates Z/p2 j by Dirichlet theorem on primes in arithmetic progressions, there
are plenty of such e. With this choice, the Galois group of Qi(J-!p"") over Ql is easily seen to be
isomorphie to Z;. Let 0 be the ring of integers of Bi,
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The group Goo attached to Gm is just J-Lpoo and any character 'ljJ : J-Lpoo -+ O~ lifts to a character
~ : J.lpoo -+ Ql(J.lpoo) x; conversely, we can deal with ~ and then obtain 'ljJ by projecting onto O~.

Clearly wo can assign ~ by identifying the two copies of J.lpoo, one in Ql(J-tpe<» and the other in
Qp(J-Lpe<». Such identification also induces a unique isomorphism X between Gal(Ql(ppoo) /Qt)
and {I = Gal(Qp(J.lpe<> )/Qp), given explicitly by the rule

er(;j;(g)) = {;(x(a)g)

for all a E Gal(Qt(J.lpe<> )/Qt and all 9 E J-tpe<>. Another way of seeing this is as saying that ;j;
becomes Q-equivariant, if we endow IBt with the 9-action cxtended by continuity from Qt(J-Lpe<»

(er, x) M x(er)x

for er E {I, x E Bt . Having equivariance for 'ljJ is exactly the condition needed to transfer the
Q-action from </>00 to the associated locally constant shcaf L!J;. The {I-action on Lt/J is not linear,
but has the following semilinearity property:

er(bs) = (x(a)b) . er(s)

for any local section s of LlJ! and all er E Q, b E Bi'
Next, let !< be any algebraic extension of koo , and !< its completion. There is a natural

surjection 7r : Gal(I</k) -+ Q and the v-action on Ll/Jlke<> lifts in a natural way to an action of
Gal(I</k) on Lt/J,Jb which satisfies again the same semilinearity condition above (after replacing
X by its composition with 7r). For a detailed proof the reader is referred e.g. to proposition 1.4
of [B2].

Remark: in the algebraic setting, one usually introduces the topos Sx of sheaves of sets on
the scheme .X, and then, for any given ring A, assigns to Sx a structurc of A-ringcd topos. by
selecting the ring object Ax defined by the constant sheaf on X with stalks isomorphie to A.
As the above construction illustrates, in the etale analytic setting, the choice of the constant
On-sheaf is not the most natural: one should rather take the geometrically constant sheaf On,X,
twisted by the semilinear Gal(ka /k)-action defined in this section.

6. FOURIER TRANSFORM

We are now ready to define the Fourier transform. With the set-up of the previous chapters,
we only have to mimic the construction of the Deligne-Fourier transform. The proofs of most of
the main properties reduce to routine verifications, carried out by applying projection formulas,
proper base change theorem and Poincare duality, exactly as in Laumon's paper.

6.1. Definition and main properties. We consider complexes of sheaves of On-modules,
where On is one of the rings of type (3) according to the list in section 4.3. Let L", be the locally
constant Lubin-Tate On-sheaf of rank 1 associated to the Lu bin-Tate group F defined over the
field k, and the character 1/J : G oo -+ O~. In this chapter and the following one, the base field is
a completc extension E of koo '

Let S be an analytic variety over E and 7r : E --7 5 an analytic vector bundle (defined in the
obvious way) of constant rank r ~ 1. We denote by 7r' : E' -+ 5 the vector bundle dual to E -+ 5,
by (,) : E XS E' -+ Ga,E the canonical dual pairing and by pr : E XS E' -+ E, pr' : E XS E' -+ E'
the two canonical projections.
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Definition 17. The Fourier t.ransform for E ---+ S.. associa ted 1.0 the charYlcter 'ljJ, is the trian­
gulated functor

dejined by
F!J!(I(') = Rp~(L:1{J((,)) 0 pr" IC))[rJ.

We will usually drop the subscript 'ljJ, unless we have to deal with more than one character at _
the same time. For later use we also introduce a special nota.tion for a c10sely related functor:
the operator FI/;,,, is given by the following formula:

FI/;,,, = Rpr~CC!J!((,)) 0 pr" ]('))[7'J.

Next we would like to show that F shares some intercsting properties with the Fourier transform
defined over finite fields.

To start with, we state and establish involutivity: denote by 'ff" : Eil ---+ S the double dual
vector bundle of E. The previous construction applics to E' allel its dual Eil to give a Fourier
transform F ' (and the related functor F;). We consider the composition:

D(E, On) 2t rt (E', On) ~ liY (Eil, On).

Denote by a : E ~ Eil the S-isomorphism defined by a(v) = -(V J .). Also, let a : S Y E,
a' : S 4 E', a" : S Y Eil the zero sections of 'ff,1T"',1T"" respectively. Vve denote by s : E Xs E ---+ E
(resp. by s' : E' XS E' ---+ E') thc addition law in thc vector bllndlc E ---+ S (resp. in E' -+ S) anel
by [-1J : E -+ E the inverse map for this addition law.

Theorem 11. There is a /unctorial isomorphism:

F'oF([(") ~ a,,(IC)(-l')

for 1(' E DP (F, Ht) (The brackets denoting Tate twis(. as USlllll).

Proof. (ep. [Lau2J, theorem (1.2.2.1)). We fix some Ilotatioll: let a : E XS E' Xs Eil ---+ E' Xs Eil
be defined as a(e, e', eil) = (e', eil - a(e)) and ß : E X Eil ---+ Eil as ß(e, eil) = eil - a(e).

Consieler the commutative diagram:

EilE'

ßE Xs Eil -------~)" Eil

Ipr" Ipru

E X s E' X Eil _~__a ---+-

:/~
E X s E' E' X S Eil

V~;/~
E

where the two squares are fiber diagrams.
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It follows easily from property LT2 that

(18)

Then we have:

F'oF(]{") ~ FI(Rpr~(,C((,))0 pr·fC)[rJ)
~ Rprf'(L:( (,)) 0 pr'· (Rprf (L:( (, )) 0 pr· Je))) [21']
~ Rprf'(L:( (,)) ® Rpr23!pr~2(L:( (,)) 0 pr· ]("))[21']
~ Rprf'Rpr23!(pr;3L:((,)) 0 pr~2!((')) 0 pr~2PI'·f(")[2r]

~ Rp~'Rpr23! (0'.!((, )) 0 pri 2pr· J(') [21']
~ Rpr11Rpr13! (ü· ! ((, )) 0 pr~3pr· ](') [21']
~ Rpr~/(pr· f(' 0 RprI3 !0'* !((, )))[21']
~ Rp~/(pr* f(' 0 ß* Rpr;'!( (,) ))[21'].

(proper base change)
(proj.formula)

(by formula (18))
(functoriality)

(projection formula)
(proper base change)

To end the proof we apply to 'TrI : E' -t Sand L = On the lemma 14 below. 0

Lemma 14. For any L' E oP (S, On) we have:

F( rr·L" [1']) ~ a:L" (-1').

Prool. By the projection formula:

F(rr· L"[r]) = L' es> Rpr;!((, ))[21'].

On the other hand, using proper base change, property LTI and proposition 17, we get:

a'· Rprf!( (,)) =Rrr!On =On,5 (-1')[ -27']
Rprf!( (, )) IE/ -0-/(5) = o.

o
Corollary 4. F is an equivaleHce 0/ triangulated categories olDP (E, On) onto [)P (EI, On), with
in verse a· F' (- )( r) . D

In the case of the Fourier transform over a finite field, it is known moreover that F preserves
the t-structure eoming from middlc perversity. As explaincd in [Lau2J, this boils down to the
equality of functors flJ; = Ft/J,.. Even in absence of a thcory of perverse sheaves for analytic
varieties, we can still prove the corresponding statement:

Theorem 12. The canonical map 01 "Iorget support ~ induces an isomorphism 01 functors:

Proof. Fix as usual a eoordinate t on A1. First of all, an argument like at the beginning of
the proof of [Ka-La] Theoreme 2.4.1 reduees us to the case f' = 1. Moreover, the assertion
is obviously local on S, henee we can suppose that there exists a fiberwise linear isomorphism
x : E -=+ A1. Then also E' is trivialized by a coordinate y : EI -+ A1 such that t( (e, e')) = x(e) y( el)
for all loeal sections e , e'. Next we can find a unique E :) E such tha.t x extends to a (unique)
isomorphism x : E --+ P1,

Let j : E XS E' y E Xs EI be thc natural imbedding. Clcarly it sllffices to show that for all
points of the type (00, p) E E XS E'

Rj. (.c1J; ((,)) 0 pr· !()(oo,p) = o.
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Wo consider thc map T : E' Xs E x s E' -+ E x s E' defi ned as (c~ 1 c, e;) f-t (e, s' (e~ 1 e~)). Vve form
the fibre product diagram

E' Xs E XS E'~ E' XS E Xs E'

,0 t j t,
E Xs E' )0 E Xs E'

and by smooth base change

In particular

Rj. (L:( (, )) 0 pr- J()(oo,p) ~ Rj:ro- (L:( (, )) 0 pr- J<..")(PlN,O)'

Let es be the partially ordered set of all the etale neighborhoods of (y(p), 00, 0) in A1 Xs P1 X A1.
V'fe iIltrod uce the family C~ consisting of all the varieties of the form ~/V XE B such that

1) B is an open disc in Ak, centered at zero, i.c. B = {n E Akllt.(a)1 < rB}, and W .!t
A1 X s IP1 is an 6tale neigh borhood of (p, 00) E P1 X s A1;

2) the image 4>(W) is contained in an open subset of the form N(p) XE C, with C an open
disc in Pk of radius re around 00 i.e. C = {a E Pkllt(a)1 > f'C l

} and N(p) some fixed open
neighborhood of y(p) in A1;

3) the ratio rB/re is cqual to the constant o.
Lemma 15. Par any real number 8 > 0 the family C~ is coJiHal in es.

Proof. Let a : U -+ A1 Xs P1 Xs A1 be any etale open neighborhood of (p, 00,0) and q E U a.
chosen lifting of (p, 00, 0). We have an indueed map of germs

(U, q) -7 (A1 XS lP1 XS A1, (p, 00,0)).

Notiee that the residue fields of the points (p,oo) E A1 XS P1 and (p, 00, 0) E A1 XS P1 XS A1
are naturally isomorphie. Thcreforc, it follows from theorem a.4.1 of [BI] that thc germ (U, q)
is isomorphie to a prod llct of germs (W' , q') XE (Ah, 0), whcl'C rj> : (W' 1 q') -7 (A1 X s P1, (p, 00))
is a morphism of germs with an etale representative. Coneretcly this means that there exists an
open subset \f C I'V' XE Ak with an open imbedding V '---7 U whieh mako the following diagram
eommute

~V' XE Ak .. F )0 U

~Xl.'! 1"
(A1 XS p1) XE Ak A1 XS IP1 XS A1·

Then proposition 3.7.8 of [B1] says that we ean find inside \f a subset of the form W" X B'
which fulfills eondition (1) above. Conditions (2) and (3) are easy to fix, by taking open subsets
BeB' and IV C J<V". 0

Fix areal number 8 strictly greatcr than p(7/J, f.). Let J<V X,~, B E C~ bc any neighborhood as
above and set Bs = y-I (B XE 5), Co = CnAk, C~ = x- l (CO X B S), H/o = IV xA1 xsp'1 (E' XS E).
Furthermore, we obtain obvious projcction maps 0' : H/o -7 C~ and ß : C~ ~ Co.

In view of the lemma, the theorem will follow if we show that

(19)
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Wo remark thc commutative diagram

(20)

prlJ
E' XS E XS E'---~.. E' XS E

,0 t pr 1pr,

E Xs E' ------+-) E.

Moreover, let I-l : E' x s E -7 Ak be the map (e', e) f---7 (e, e'); an easy a,pplication of the Yoga of
torsors yields

(21 )

We apply the Leray spectral sequellce for the morphism pr l :! : WO XB B -7 Wo.
Set M = pr;!( 0 L(J-t); then, in virtue of (20) and (21) it suffices to show that

Rpr12. (pr;3L ((, )) 0 pr~21\1)w = 0

for all points 'W E Wo. We consider the commutative diagram

oxlB ßxIB
Wo Xs Bs ----~)o C~ Xs Bs ------+-)o CO XE B

E' XS 1XS E' __p_r_:J"'_~.E x~ E' ---('-}--+-.1:
where m(a, b) = ab. Set u = ß 0 O{W) , take a smaH open neighborhood U C Co around u, and
let ß r = m(U XE B). Olle checks casily that, if U has beeil chosen small enough, then 6.r is
some open disc of finite radius r, centered at the origin. Dünote by E the connectcd component
of A- I (6.r ) C 6.(0, 1) which contains 0 E 6.(0,1). We form the fibre diagram

By constructioll, the sheaf 1n· L trivializcs on thc etale covcl'ing of finite degree I : VI -7 U XE B.
It follows that 1n- LlUxsB is a direct summand in I.On anel hence we obtain an imbedding

(22) KJprI2.(pr;3L( (,)) 0 pr~2M)I(ßoo)-1(U) y RQ(pr12 0 g). (pri:! 0 gr 1\1J(ßOO)-I(U) (q 2: 0).

Notice also that for all y E U, thc geometrie fibre (pr l 0/)-1 (y) is a finite union of open discs.
In order to apply this observation, we need the following lemma, which is a minor variation of
[BI] Corollary 7.4.2, and whose proof we leave therefore as an exercise for the referee.

Lemma 16. Let</.> : ..-Y -7 Y be aseparated smooth m07'phism 01 pure dimension d, and sup­
pose that the geometrie jibrcs 01 <p are non-emply and lwve trivial cohomology groups lIg with
coeffieients in On /or q < 2d. Then /07' all F E S(.X, On) tUe have Rqc/>.</.>· F = 0 for q > o. 0

Next, since we have takcn Hf XE B E C~ and 8 > P(7f;, t,), we see that the sheaf m· LlUxe B is
never trivial Oll any of thc geometrie fibres {V} XE B (y E lJ). Frolll this, together with (22)
and lemma 16 (applied to pr l :! 0 g) we derive easily that

Rpr l :!. (pr;3L( (,)) 0 pr~2~1)I(ßoa)-IU = O.
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This proves (19) and the claim of the theorem. 0

Remark: it is weIl known that theorem 12 formally implies that the Fourier transform
commutes with Verdier duality. A Verdier duality theory for etale analytic sheaves has been
established by Berkovich in [ß5].

We list hereafter a few of the other main formal propertics of the Fourier transform. The
proofs have the same flavour as the previous proof of involutivity, and proceed exactly as in
Laumon 's paper, therefore wc limit ourself to give the statements and refer the reader to the
corresponding rcsults in [Lau2].

Theorem 13. (Cp. [Lau2], theorem (1.2.2.4)) Let EI -4' E2 a morphism oJ vector bundles over
S oJ constant ranks 1'1 and 1'2 respectively, and let l' : E~ -t E~ be the transpose 0/ /. Then there
is a canonical isomorphism

Corollary 5. There is a canonical isomorphism

R1f~F(J(') ~ 0'.'-(' (-1') [-1']

Definition 18. The convolution product on E -4' 8 is the operation

defined as
L

J(i * l\';' = Rs! (/(; [8J JCJ.

Proposition 18. (Cp. [La112], proposition (1.2.2.7)) There is (l canonical isomorphism

L

F(I(i * 1(;) ~ F([(i) 0.1'(R';)[-1']

Jor all [(i, 1(; E JDP (E, On). 0

Proposition 19. (Cp. [Lau2], proposition (1.2.2.8)). There is a canonical aPlancherel" iso­
morphism

L L

R7r;(.1'(I(i) 0 .1'(J<:~)) ~ R1f!(A'i ® [-lr K;')(-1')

/01' all f(i, [(; E J)P (E, On). 0

Proposition 20. (Cp. [Lau2], proposition (1.2.3.5)). Let 8 1.4 8 be a 7n01phism 0/ E-analytic

varieties. Let EI ~ SI mul E; ~ 8 1 the vector bundles ove,. 8 1 obtainerl by base change Jrom

E ~ 5 and E' Ä S. Denote by JE : EI -4' E and JE' : E; ---7 E' the canonical projections. Then
there exists a canonical isomorphism

.1'(RfE!l(') ~ RJE,!.1'1 (1e)

/01' alt Je E iY (EI' On) (we have denoted by F 1 the Fourier' ~ransform for the vector bundte

E1 ---7 51)' D
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6.2. Computation of some Fourier transforms. The following examples of calculation of
Fourier trasforms are taken from [Lau2), with thc cxceptioll of proposition 24, which has no
analogue in positive characteristic.

Proposition 21. Let F Ä E be a vector sub-bwulle over S of constant rank s. Denote by
• .J..

Fl. Y E' the orthogonal 01 F in E'. Then Uwre is Cl cmwnical isomoTphism

o

Proposition 22. Let e E E(S) (i.e. a seetion of E ~ S). Denote by Te : E -+ E the translation
by e. Then there is a e(lnonieal isomorphism

for all Je E DP (V, On). 0

Proposition 23. Let 0' : E ..:;. E' be asymmetrie isomoT'phism. DeTwle by q : E --T Ga and
q' : E' --+ Ga the quadratie forms llssociated to 0' (i.e. q(e) = (e,a(e)) aud q'(e') = (0'-1 (ei), e')).
Let [2) : E' --+ E' be multiplication by 2 on the tJcct.OT' bwulle E'. Thc71 there is a canonical
isomorphism

[2)"F(,C(q)) ~ ,C(-q') 01r'"R1r!L(q)[r).

o

For the next result} we suppose E ~ S has rank one for simplicity. Let B -4 S be a
sphere bundle inside E, i.e. a fibre bundle over S with an open imbedding j : B '-7 E which is a
morphism of S-varicties, anel such that ovcr each point s E 5', thc restrictioll j~ : ß- 1(8) '-7 1r- 1(s)
is the imbeelding of an open ball of finite radius centered at 0"(8) E 1r- 1(s).

We also fix some linear coordinate t on Ga and let D .4 S bc the dual bundle of B --+ 5, i.e.
thc fibre bundle over S with a c10sed S-imbedding i : D --+ E', defined by the equation

It ((e,e') )I < P('ljJ, t) (e E B 1 e' E D).

In other words, thc restrietion i~ : ß'''(8) --+ 1f'''(s) is the imbcdding of a closed disc centered at
o-'(s).

Proposition 24. i) F(i"On,D) = j!On,B[1),
ii) F(j!On,B) = i.On,D(-1)[-1).

Proof. By theorem 11 we see that (i) and (ii) are equivalent. VVc will prove (ii). By proper base
change we call assurne that S is a. point; then B is a.n open disc Ga (0', t,) anel D = Dß is a c10sed
disc of radius ß = p('ljJ, t)/a. Set T = Ga (0:, t) X Dß . Note that the condition o:ß = p( 'ljJ, t) implies
that L( (,)) trivializes on T. It follows that the restriction of F(j!On,Ga(o,t)) to Dß coincides with
On[-1]. Therefore it suffices to show that F(j!On,G,,(fr,t)) vanishes outside D ß • To this purpose
we can check on the stalks, anel then the claim follows from proposition ] 7. D
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7. KUMMER-ARTIN-SCHREI ER- "'VITT TB EORY

This chapter is aprelude to thc fo11owing one: wc review allel complement the theory of the
deformation [rom Artin-Schreier-Witt to Kummer, which has been developed by Sekiguchi and
Suwa in [Se-Su].

Ta start with, let n be any positive integer. Let Itp " be the group of ]ln-order roots of unit
in the algebraic c10sure Qa of thc field Q of rational 11 11 mbersj we fix Ollee for a11 a generator (n
of }Lp" and elenote by K the field of fractions of thc ring A = Z(p)[Jip"] with maximal ideal m.
Recall that if B = Z[p-l], then the sequence of sheaves of groll ps on the etale site on SpecB

1~ Jip"~ Gm,B --!...... Gm,B --+- 1

t I JI tP"

is exact and is called a Kummer exact sequence.
On the other hand, let Ir be a field of positive chal'acteristic ]1, and let v\!n,rr be the Witt group

scheme ovcr F of dimension n. Then we have the Artin-Schreier-Witt exact sequence of groups

Io~ Z/pn --+- lVn,i'~ lVn,:r~ 0

X ~XP-:l;

on the etale site on SpecF. Here the p-th power map is given by the canonical ring structure on
lVn,l'"

The purpose of the Kummer-Artin-Schreier-Witt theory (in short KASW theory) is to as­
semble the two above short exact sequences into a single diagram of grollp schemes on the etale
site over SpecA. Ta this purpose, we must first replacc the Kummer exact sequence by another,
essentially equivalent one. In detail, define maps 1r, ~n : G~l,1J ---+ Gm,B by 1r(Ul, ... , un ) = 'ltn

anel E n(UI' , un ) = Ul ui ..... U~"-l. Also} let (3 : G~l,lJ ---+ G~,Jj be the Illorphism (Ul, ... , un ) f-f

(Ul, ullu~, , U~~lU~), ·All these maps are group schcme homolllorphisms, and the kernel of 8
is the subgroup of all points of the form a( = ((p"-l 1(p"-::l, ... , CL for Cranging over the elements
of Itpr>.. Clcarly the assignment ( H a( defines an isolllorphislll OlltO Kere, and hence we have a
commutativc diagram with exact rows

We can now state the fundamental

Theorem 14. (See [Se-Su], Assertion 1) For every integer n > 0 there exists a smooth groufJ
scheme Wn over SpecA, contail1il1g the constant groUlJ scheme (Z/pn)A, such that

(a): the exact sequence

has the A rtin-Schreier- H1itt exact sequence as the special fibre, lInd

(b): is isomorphic to the Kummer exact sequence

" e1 -... !lp.~~ B '--+-~ B~ 1, ,
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071 the generic jibre. D

Following [Se-Su] wo denotc by Vn thc quotient group schcI11c }Vn/(Z!JP)A' The groups Wn

and Vn abolInd with structure, most of which will be useful fol' our purposes. We proeeed to
deseribe some of this strueture.

Recall that, for every n ;::: 2, the truncation map from H/n,V to Hin_I" induees a commutative
diagram with exaet rows

(23)

o~Z/p~ Z/pn~ Z/pn-l ------+- 0

r r r
The counterpart of this diagram is the following

Theorem 15. (See [Se-Su], Assertion 1) For each n ;::: 2 lherc exists CL commutative diagmm
with exact rows

(24)

o~ (Z/P)A~ (Z/pn)A~ (Z/pll- ILl ------+- 0

r r r

r

which gives 11 deformation of the exaet sequence (23) to a diagrmn 0/ C:J:oct sequences of multi­
plicative groups

1~ Itp ---")1 jJ.p" --....... /lp"- l ---")1 1

r r
1~ Gm ------+- (Gm)n ------+- (Gm )n-l~ 1.

In the latter diagram, the imbedding Gm '-7 (Gm )'1 is the mop 1/, M (1, "., 1, 1t) and the epimor­
phism (Gm )1l --+ (Gm )n-l is given by CUI, ... , ull ) f---t (11.1, ... , Un-l)' D

The underlying sehemes of Wn and Vn can be dcscribed somewhat more explicitly. Recall
that, as ascheme, H/n,i' is isomorphie to AV. The sequenee of trullcatioIl maps 1'Vn,lI' --+ Hln-I,1' --+
... --+ WI,v ~ Ai eorresponds to a ehain of linear projcetions ~ --+ ~-l --+ ... --+ Ai-. Moreover,
alt the su bq uotients vVj +l ,v/lllj ,v are eanonically isomorphie to Ga,lP'.

V'Je ean similarly consider the sequence of epimorphisms Wn,A --+ }Vn-I,A --+ ... --+ WI,A

derived from diagram (24). The subquotients are isomorphic to the group scheme WI,A' The

underlying scheme of W1,A ean be given as follows. For evcry j < n set (j = (~,,-j and let
A =1-(1; then WI,A ~ SpecA[.Y, 1/(I+)uY)]. Notice in particlllal' that W1,A is already defined
on the smaller ring Al = Z[pp]. lt is also true that the group law of }VI,A is defined on Al as weil.
Moreover, the group seheme }VI,A, is independent of the choice of A. A similar diseussion holds
for the grollp scheme V",A and the ehain of cpimorphisms Vn,A -* Vn-I,A --+ ... --+ VI,A obtaincd
by taking the cokernels of the vertieal arrows in diagram (24). Let ~ : SpecA/A --+ SpecA be the
eanonical indusion. \Vith this notation, one has

Proposition 25. (See [Se-Su], Theorem 3.3) For each j (1 ::; j ::; n - 1) there exists a polyno­
minI Pj E Z[(j+ll Xl, .", Xj] inducing a group homomorphism..

P j : Wj+I,A --+ 1•• Gm,A/>'
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and each }Vj,A is given by

[
1 1 1

Wj,A::::= SpecA Xl, ",,"-'(j, 1 \ V , F (X) \ Y , ... , p. (X y.) AY)'+"'''-\.1 ·1 1 +""'\2 )-1"- 1,···,"- )-1 + ..-)
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lvloreover, the group law on }Vj,A is determined by J'eqtlirinfJ that the morphism olw : }Vj,A ~
(Gm,A)j given by

("-YI, ... , ..-Yi ) M (1 + A..-Y1, PI (..-Yd + A..-Y2 , ... , Fi - 1("-'(I, .",..-Yj - 1) + A..-Yi )

be a group homomorphism.
Similarly, for each j there are polynomirlls Gj E Z[(j+l' XI, ... , Xj] such that

1 1 1
Vn,A::::= SpecA("-'(I""'''-Ym AP;'( 'F (X) IVY , ... , Po (Y y.) APX]'1 + ..- 1 1 1 + ..- 2 n-l ..- 1,···,"- J-l + n

und su.ch that. the above statements remain valid af/.f;1' repladng }Vi,A by Vi,A, Pj by Gj , ..\ by..\P
und aJw by ot, 0

Remarks. 1): Proposition 25 allows to complctc the statement of theorem 15 and of part
(b) of theorem 14. In fact, the epimorhisms Wn,A ---+ W n- 1,A can be expressed in terms of the
coordinates introduced in proposition 25, as the projections (.Yl, ... , ~Yn) t---+ (..-Y1 , .•. , X n - 1) and
similarly for the maps Vn,A ~ Vn,A' Moreover, the isomorphism on the generic fibre in theorem
14(b) extends to a commutativc diagram with exact rows (ill the fttp topology)

o---+- (Zlpn)A • }Vn,A __x_..... Vn,A --..... 0

! !aw !0v

1 - {Jtp")A ----+- {Gm,A t ~ {Gm,,,t}n ----+- O.

Here the map (ZlpU) ---+ IIp'' is given by a f-1 (~; in particular it rcstricts to the trivial morphism
on the special fibre.

2): Since the special fibre of }Vn,A and Vn,A is isomorphie to A:;/m, we see that Fj(X~I' ... , ..-Yj ) :=;:

1 (mod rn) for each j (1 ::; j ::; n - 1).

7.1. Formalities. We will need a formal scheme version of thc KASW theory. As a matter of
notation, for any A-scheme ..-Y, we will denote by ..-Y the forma.l completion of ..-Y, with respect to
the rn-adic topology on A. Then ..-Y is a SpfA-formaJ scheme, where A is the rn-adic completion
of A, with [raction Held K. Similarly, any morphism of A-schcmes 4> : ..-'( ---+ Y defines a map
~ : ..-Y ---+ Y. If E is any complete field containing K, with ring of integers EO, then a base
change functor is defined, X H .l'Eo from the category of SpfA-formal schemes, to the category
of SpfEo-formal schemes. As lIsual, for any such field E we will normalizc its norm I . I so that
Ipl = p-l. The symbol m will denote either the maximal idca.l of A, A 01' EO, depcnding on the
context.

Ta ease notation, set Fi = Fj {Xl"",xi) + AXi+l and Gj = Gi {Xl, ... ,xi) + APXj+l' The
following identifications are immediate:

Gm,EO = SpfEO(x, v)/(xv - 1)
W'l,Eo = SpfEO (Xl, Yl, , In, Yn) I (Vl (1 +AXl) - 1, Y2~;'I. - 1, ,YnFn-l - 1)
Vu,Eo = SpfEO(Xl' YI, , In, Yn) I(Yl (1 + ..\Pa:d - 1, Y2G1- 1, , Yn(Gn- 1 - 1).



48 LORENZO RAMERO

Given a SpfEo-formal scheme ,Y, we will denote by ,1'1] (resp. ,1',,) its generic fibre, which is a E­
analytic space (see [B3]) (resp. its special fibre, which is a scheme over SpecBo Im). We can then
form the analytic space (Gm,Eo )1], which can be described as an annulus C of equation lxI = I,

x E (Ako) an. Similarly, the space CWn,Eo)1] is thc set of aB (x I, YI , ... , X n, Yn) with IXi I, IYi1::; 1
and such that

Vd1 + AXt} = 1
YiFi-l(Xl, ... ,Xi) = 1 i =2, ... ,11.- 1.

These eonditions imply that IYi I = 1 for aB i, and moreover Yi is detel'mined by Xl' ... ,Xi'
Sinee A E m, we deduce [rom remark (2) after proposition 25, that Fi == 1 (mod m), that is

IFHxI, .. ,xi+d 1 = 1 whenever lXII, ... , IXi+ll ::; 1. Thcrcfore the generie fihre of )1)n,Eo is an n-fold
produet of closed discs D 1 X ... X D 1 of radius 1.

The same argument and the same condusion apply to (Vn,Eo )1]'
We make the obvious remC1rk that thc map En extends to a. morphism G'~~ Bo -+ Gm,Eo and

we eonsider thc foBowing diagram of formal schemes: '

-.
- X-.
Wn,Eo~ Vn,Eo

(25)

The group schema struetllrcs on our schemes are hallded down to their formal completions and
even to the associated analytic spaees, so the abovc is a diagram of homomorphisms of formal
group sehemes, which restrict, on the generic fibre, to homomorphisms of analytie groups.

In partieular , we obtain certain grollp structures on D1 X ... X D 1 (resp. on C) and a map
of analytie groups (ruw)1] : D1 X ... X D 1 -+ C. In coordinates, it is given by the polynomial

Fn (Xl, ... , X n ) = AXn +Fn (XI, ... ,X n -l)' According to ollr norma.lization, wo have lAI = p-l/(P-l).

More generaBy, for aB j ::; n, a standard ealculation gives

-1

11 - (jl = Pi := p(p-t)pJ 1 •

From remark (2) after proposition 25 it then follows that tha image of (mw)1] is eontained in
the dosed dise Dp ,. C C which is centered at the point 1 E C alld has radius Pn' The indusion
Dp ,. Y C can be lifted explicitly to a map offormal schemes j : SpfEO(x) -+ SpfEO(x, y)/(xy-1)
defincd as X f---7 1+(1- (n)X. This suggcsts to introd tlCC a morphism 4> which makes the following
diagram commutc:

Clearly, 4> is determined by sending

x f---7 ~( X n +~((1~.(Xl' ..., xn-d - 1).
1- n 1- n
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Proof. Let (Z/pn)fJ be thc general fibre of the subgroup (Z/pIlLl of Wo,A, provided by theorem

14. This is a finite subgroup of (WO,A)fJ' We see from remark (1) after proposition 25 and from
our explicit description of Kere, that (Z/pO),., is mapped by (ß'w),., onto the set J-lp" C E.
Sinen the primitive pO-roots of unit have absolute vahle equal 1,0 Po, it follows that thc reduetion
modulo the maximal ideal of the set c/>((Z/pO),.,) C Dp covers alt thc A/m-rational residue classes

in (SpfA(x))$ = A~/m' In particular, after base changing to SpfEo we see that the indueed map

on the special fi bres c/>6 : (WO,EO)6 ::= Ako Im X •.• X Abo Im --+ Abo Im is not eonstant.

Take two points a, bE (Z/pn),., which have distinct residllc classes in A~/ml and define a map

i : SpfEO(t) --+ Wo,Eo by t f---t at + (1 - t)b. By construction, the composition 4>i : SpfEO(t) --+
SpfEO(x) is a morphism of formal schemes, represented by some polynomial P(t) with the
property that its reduction P(t) E A/m[tJ is not a canstant. Clearly it suffices ta show that
(4)i)fJ is surjcctive. Luckily, this is an elementary statement.

Let p E D 1 be any point. \Ve want to show that p is in thc image of (c/>i)T/' 1'0 start with,
let 1i(p) be thc campleted residue field of the point p. After base changing to 1i(p), we may
assume that y is rational over our base field. Then the claim amoull!.s ta showing that the
polynomial P(t.) = P(t) - p has a root ta such that ltal ::; 1. Let PU) = L~a aiti (with
am ::I 0); by hypothesis we know that laii::; 1 for all i , and there exists j > 0 such that lail = 1.
Let bi = adam; the bi's are the elementary symmetrie polynomials in the roots ta, "'1 tm- 1 of
P. Sinee lajl = I, there exists a subset I C {O, ... ,1n - ]} with 111 = 1n - j and such that
t I = niEI ti ?:: lam l- 1

. Thon ba/tl = DiO ti = aa/nj has norm laal ::; I, which says that It i I ::; 1.
for at least OIlC i ~ I. 0

Proposition 25 and theorem 15 give us a commutative diagram

(26)

Therefore, we ean iterate the eonstruction above, to abtain a. factorization

such that the image of (SpfEO (Xl 1 ••• , Xn ))11 is a product of discs f)PI X .•. X D p" C (G~,Eo )111 with
specified radii.

Proposition 26. The map c/>n,,., is an isomorphz'sm 01 analytic spaces.

Proof. Taking into account that alt the maps in diagram (26) are grollp homomorphisms, a
simple induetion argument, using lemma 17, shows that c/>n.f) is surjective. Injeetivity follows
easily from theorem 14(b)" which also implies that c/>n'T/ induees isomorphisms on thc local rings
at eaeh point. D
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The map <Pn'f/ is evcn an analytic group isomomol'phism , if we endow (SpfEO(Xl' ... , X n))" with
the group structure which makcs of jn,,, the imbcdeling of a SlI bgroup.

We turn again to diagram (25): consider thc cOll1positioll Oj :SpfBO(x) ---7 Gm,Eo. In coordi­
nates, this is the map x f-t (1 + (1 - (n)x)P". An easy computation shows that the image of the

induced map of analytic spaces is the closed disc D c (Gm,EO)" which is ccntcred at thc point

1 E (Gm,Eo)" and with radius IAIP. Hence we can proceed as above anel find a factorization

(27)

where j' is the map x H 1 + ,\I'x. We can corobine diagrallls (25) alld (27) to get a new one

(28)

....
- XWn,Eo ----+-.. Vn,Eo

·l _ al
SpfEO(x)~ SpfEO(x)

where a : Vn,Eo ---7 SpfEO(x) is determined by requiring that j'a = ~v. The following is an
immediate consequence of thc definitions and of lemma 17.

Lemma 18. The map a" is smjective. 0

Again, with the obvious group structures, diagram (28) induces grollp homomorphisms on the

generic fibrcs. Finally, we considcr thc composition ein: SpfEO(Xl' ... , In) ---7 G~ So, The usual,

argument teils us that ein factors through a map e:SpfEO(Xl' '.'j xn) ---7 SpfEO(Xl1 "'1 X n ) and a

linear map j~ : SpfEO(Xl1 "'1 x n ) ---7 G~ Eo which induces on the generic fibres an imbedding Dpp X
, 1

... X Dp~ e.-t (G~,EO)f/' We endow (SpfEO(Xl1 ... , x n ))" with the analytic group structure which
turns i~ into a group homomorphism. Putting this together with remark (1) after proposition
25, we see that diagram (28) factors through a diagram

(29)

....
Wn,Eo x ,-Jo Vn,Eo

•.l _ D.!
SpfEO(Xl' ... , x n )~ SpfEO(Xl' ... }x n ).

Proposition 27. The map an,,, : (Vn,Eo)" ---7 D p'; X ... X Dpp" is an isomorphism 01 analytic
spaces. With the assigned group structure on Dp~ X .•. X Dp~, it is even (In analytic group
isomorphism.

Proof. Diagram (29) presents (Vn,Eo)" (resp. Dp~ X ..• X Dpd as quotient of the analytic group

(Wn,Eo)" (resp. of (SpfEO(Xl1""Xn))f/) by the action of the subgroup (Z/pll)". Seen this way,
an,,, is the map induced, by l~he isomorphism <Pn,tj on the qU9tiqnt spaccs. Hence it is an isomor­
phism as well. 0
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8. GLOBAL RESULTS
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We continue with the notation of section 6. In pal'ticular, everything is defined over some
complete base field E :> kco ' Up to a finite base change, wo can even aS.sume that E contains
the field K introduced in section 7. Sinee here we are interestcd in geometrie questions only} we
can and do assurne throughout that our Lu bin-Tale group is Gm and then 'Ij; : /-lpoo --+ O~ will
be a charactcr of thc group of ]}-power roots of unit.

Let j(x) E E(x] be any polynomial. It defines a finite morphism I : Ak --+ Ak and we
want to study the cohomology of 12(f) := j. 12. Unless f is a. eonstant, we have non-vanishing
cohomology only in degree one, henee we are really interested in determining H; (A~" ,12(f)).

Our strategy consists in subdividing Al into two regions Al = Dr U (Al - Dr), where Dr is
a elosed disc centered at the origin, with some big radius 1'. Then wo will apply the standard
short exact sequenee

8.1. Integration inside and outside the disco Set f(x) = Lj:;::o njx j (am f:. 0) and define
fo(x) = amx m

• Clearly, for 1'0 » 0 we have lxi ~ 1'0 => If(x)1 = lamxml. Select areal number
7'0 with such a property. Then, ror any r ~ ro thc restrietion IIAl -D" has image contained into
Al - Drl} with r' = lamlrm.

Write f(x) = amxm . (1 + L:j=~l ~xj-m). By our choice of 7'0, the factor in parenthesis has

norm equal to 1 whcn lxi ~ 1'0. After maybe replacing 7'0 by a larger number, we can even
assume that this factor is arbitrarily elose to 1, uniformily for lxi ~ 7'0. In particular, for 1'0

sufficiently large anel any r ~ 1'0, the power sefies 11 (x) = x . CL + L:]~~1 ';:xj
- m

) 11m converges

in the region Al - D r , anel in raet defines an autolllol'phism or this region. Tt is c1eal' that 11 (x)
and fo(X) give a factorization of I in their domain or definition:

Therefore ll;(AI
- Dn12(f)) ~ fl~(Al - Dr,f:12(Jo)) ~ H~(A1 - Dr,[.(fo)) and, given l' ~ 7'0'

we can rewrite the exact sequence (30) as

Let [P] denote the action of TJ determined by the Zp-module structtlre on the formal group
Gm. From the proof of lemma ]0, we obtain for eve!'y n > 0 a eommutative diagram of analytic
maps

(32)

Dp" Dp"

A! 1~J'
Dp1p,,-1~ Dpt/p

where Q' is given by the power scries a(x) = exp(pn x). Thc radiuscs attached to the dises
appearing in the eliagram, are arrived at via an elementary cakulation, which we omit.

Definition 19. The n-th analytic Kummer torsor K(n) is the slleal on Dpt/p 01 etale local sec­
tions of the nwrphism (p]" -endowed with the nalural lrans!a!.ioll action oJ the group Ker(p]n =
!(erA n D PR. lVhen there is no danger oJ confusion, we will 1l8ually omil the supcrscript n.
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Let 1/Jn be the restriction of 1/J to Ker[p]n. \Ve form the associated bundle

KIJ; := K X KCI'[p]n 'l/Jn-

Then diagram (32) says that there is an isomorphism

(33)

Therefore f~O!~KIJ; ~ L(f)IJ-1(Dp1P.. -tl. Take no big enough, so that ptpno-l is greater than

lamlr~. Then, for any n ~ no, we can select r = (Iaml-Iptpn-t)l/m in the exact sequence (31),
and according to (33) we can rewrite the former as

Next, recall that the logarithm ..\ is an isometry on the open disc of radius Pt. It follows that
[p]n is an isomorphism on thc open disc of radius PIP-n. Let us writc a(f(x)) = exp(pn f(x)) =
L:i~ 1 ~ (pn f (x)) i. By ou r choice of the radius r 1 we have: IxI ::; 7' => Ipll I (x) I ::; PI / p. Hence we
see that for iosufficiently large, and lxI ~ r, the rest power series h(x) = Li>io ~(pn f(X))i has
norm less than PIP-n. Set g(x) = a(f(x)) - h(x). ßy the yoga of torsors

(35) f~ Ci~ ICIJ; ~ g~ Kl/' 0 h~ KIJ;.

By the choice of mo, h~ ICIJ; is a constant sheaf (of ran k one), thereforc f~ o:~ KIJ; ~ g~Kw'

8.2. Cohomological trivialities. \Ve want ta canstruct a. section stj : Dpl/ p -7 (Vn,kO)1] far
the analytic graup homomorphism u1]' We can proeeed as folIows. First, Ilotice that the
map x H (x, 1, ... , 1) defines a section So for thc morphislll ~n : G:~,A -7 Gm,A' After for-

mally eorn pleting, this is still a section So for t n • VVe havc seen that the map U factars as

Vn,Eo~ SpfEO(XI' ... , xn ) --=-. SpfEO(x) 1 anel unwinding the definitions one checks easHy

that, after base change to SpfEO, So induces a section s for L Thanks to proposition 27 we
call set s1] = u;;,~S1)' For later tlse, we point Oll t that s1) : (SpfEO (x))1] -7 (Spf8° (Xl, ",x n ))1) is
given by a sequence of n power series (11 (x), "'1 fn(x)) aB of which, by the maximum principle,
have coefficients in EG. Thcrefore, s1] extends to a morphism of formal schemes S : SpfEO(x) -7

SpfEO (Xl, ... X n ) defi ned just by taking the same power serics.
Let H be the kernel of u, Le. the preimage of the zero scction OEo : SpfEo Y SpfEO(x). We

obtain an isomorphism of analytic spaces over Dpdp

111/ X D ptfp "f__---+-" (i\,Eo)1)

~ ~

Explicitly: l(h, x) = h +s(y) if + denotes the group law in Vn,Eo.

Let On,V be the constant shcaf of On-modules on (Vn,EO )'1' \Ve derivc:

nUtj~On,v ~ Rp2~Rl;IOn,V ~ n]J2~On,v.

Moreover, RiP2~On,v is the constant sheaf gi with stalk g~ ~ H i(f/1)' On) at a11 points x E
D ptfp . Therefore, the E2-tcrm of the Leray spectral sequence for Ih can be computed as follows:
Ifi(Dptfp , FljP2~On,v) = 0 if i > 0 alld IIO(Dpl/p,])2~On,v) ~ ,g~. In particular the spectral

sequence degenerates and we have l!i((Vn ,Eo)1/' On,V) ~ g~.
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On the other hand} reeall (proposition 27) that CVn,EO)J1 is isomorphie to a produet of n dises

of different radiuses. Thus H i ((Vn,Eo)J1' On,V) vanishes für i =1= 0 anel is free of rank one for i = O.
We eonclude

(36)
i = 0
i > 0

Thc situation so far is summarizeel by the following eliagram} in which the square is fibred

(37)

Our target is Lo eompute H 1 (Dn g'"K!JJ)' We write

III(HJ1 X D r }ug'"K.1/J) ~ H 1(Dr1 Rli,"ag'"K.1/J) ~ HI(Dng'"Kl/J o Rä',"On)

and notiee that the last term is isomorphie to H 1(Dr1 g'"Kl/J) by virtuc of (36) and of the proper
base change theorem. Henee we are reeondueed to the study of H I (11" X Dn (f'* g'" Kl/J) ~ 11 1(Hf) X

Dn g*u;Kl/J).
To this purpose, we go back to diagram (28). It is not hard to decide that the Z/pTl-torsor K.

ean be reeovered as thc sheaf of loeal seetions of the morphism Bf} ill (28). Vvc introduee another

Z/pn_torsor, over thc 6tale site of (Vn,Eo )f)1 by taking the sheaf of loea1 seetiolls of Xtj. Call W
this torsor. It is deal' that W ~ u~K, and after taking the associated loeally eonstant sheaves
we have also W1/J ~ u~Kl/J'

8.3. Resolution of a singularity. In the last section we derived an isomorphism

(38)

It remains to eompute the right-hand siele of this equation , alld for this we revert to formal
sehemes.

The polynomial map 9 : D r --+ Dp./p extends to a morphism of formal sehemes 9 : SpfEO(x) --+
SpfEO(x). To deseribe 9 in detail} we find it eonvenient to reseale thc coordinates:

Here ßj(x) = bi . x (i = 1,2) are linear maps whieh identify the discs of radiuses r , respeetively
Pl/P, with discs of radius 1} and hellce g(x) = b2g(b1x). Notice that it may be neeessary to pass
to some finite ramified extension in order to define ßi; sillec we only want geometrie results, this
is harmless. Vvrite f(x) = L:7=o ajx j anel g(x) = pTl f(x) + L::~2 n(pn f(x))i. Then
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Let l1S examine this expression: we have b2pll f(b 1x) = b2pllamb~nxm + L:j=~1 b2ajb{x j ; due to our
choice of the radius 7', one sees easily that

(39) and

We also need to bound the term ~(pli f(b 1x))i. Recall the following elementary estimate:

(40) lxi::; p, =} I~xil ::; p, i::O: l.

We know that lxi::; 1 implies Ipn /(b1x)1 ::; P1/P; select any cE Ea with Icl = p. Then, directly
from (40) we derive: lxi::; PI/P => Itrxicil ::; PI => Itrxil ::; {J1]cI-i = (PI/P)p1-i.

By the maximum principlc , this says that all the eoefficicnts of thc polynomials h-h (pli f(b 1x))i
have norm strietly less than 1. We sum up our findings in thc following

Lemma 19. The polynomial 9 defines a map 9 : Sp/EO(x) --+ Sp/EO(x) which provides a fOr7nal
model for the morphism 9 0/ analytic spaces. lvforeover, I,he indticed map gJ on the special fibre
depends only on the leading coefficient of the polynomial f which enters in the definition of g.

Proof. : ]n order to give a map of formal sehemes, we only Ilced to know that the coefficients of
?i are in EO, and this we know by the argument abovc, and by (39). The same estimates show
that only thc Icading term of f(x) dctcrmines the reductioll of g(x) modulo the maximal ideal,
since the other terms only contribute to form eoefficients whieh havc norm strictly less than
1. D

Ncxt we define y to be the fibre product in thc following fibre diagram

(41)

.....
..... 11
Vn,EO ot( Y

"t ~ 1
SpfEO(x)~ SpfEO(x).

Notiee that on the generic fibres, diagram (41) eoineides with the square in diagram (37).

Definition 20. The n-ih formal ~Vilt torsor Wn
) on the clnle site of Vn,Eo is the sheaf 0/ local

sections 0/ the map X. As ustlal we drop the stiperscript when no c071fusion is likely to arise.

Again we can form the associated locally constant sheaf of A-modules WI,b' On the one hand

WI,b restricts to a sheaf Wl,tJ,j on thc special fibre (VII,Eo), :::: ~Vn,EO/m i on the other hand, there
exist morphisms of sites

..... I-l...... j.I .....

(Vn,Eo )J1,et 1-- (Vn,Eo )J1,qet -----+- (Vn,Eo )et

from the so-called quasi-etale topology of the analytic space (Vn,EO)'1 to the etale site of the
formal scheme Vn,Eo and respectivcly, to the etale site of (Vn,Eo)'1; the latter morphism J1 is
just the natural restriction map. See [B3] for details, where it also shown that the cohomology
eomputed in thc quasi-etale site is eompatible with etale cohomologYl i.e. that for any formal
scheme X and any sheaf F on X'1,et one has

"'
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With this notation, it is easy to check that
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(42)

We would Iike to apply the theory of vanishing cycles for formal schemes of [83]. For the case
at hand, Berkovich 's theory gives a canonical isomorphism

H 1 (fltj X Dng"W,p) c:= JIl(YIl R\lJf/g"WTjI).

However, this isomorphism would be really useful, only if we knew that Y is smooth. In that
case, a simple argument would tell us that RWtjg"WTjI c:= e::WTjI,.n anel this would allow us to
conclude quickly. Since we da not know whether Y is smooth, we will find instead a morphism
r : Z --+ Y from a smooth Z 1 which ind uces an isomorphism on the gcneric fi bres. Then we will
replace g·Wl/J by r·g·Wl/J.

Here is how we do it. Composing the chain of epimorphisms Vn,Eo --+ Vn_1,Eo --+ ... --+ V1 ,Eo
we obtain a map q : Vn,EO --+ V1 ,Eo, Let DEo: SpfEo --+ Vt,Eo be the zero section of the formal

group scheme )}1,Eo anel denote by Ho the preimage '1-1 (Dso) C Vn,Eo, Ho is a smooth formal
scheme; in fact, by the remark after proposition 25 , thc lnap q is jllst a linear projection in
certain coordinates.

Gathering our scattcred constructions we can put togethcr a diagram

(43)

where 30 (resp. S) is a sectiOll for ~n (resp. €) and we have defined U as the composition an€.

Moreover, S : SpfEO(x) --+ Vn,Eo is a morphism with the propcrty that un,tjstj = stj and the
vertical morphisms j' and j~ restrict on the generic fibres to imbeddings of analytic spaces.

V\fe define a morphism of formal group schemes <5 : Ho --+ H by

o(h) = h - su(h)

where of course the - is given by the group structure of Vn,Eo.

Lemma 20. The morphism otj : Jla,f/ --+ Htj is an isomorph/sm.

Proof. Let us introduce the auxiliary morphism J : G~,Eo --+ G:~,Eo defincd as x f-t x - 3aEn(X).
(This time "-" is given in terms of the group law on G~,Eo), As un,tj is an isomorphism (propo­
sition 27), to prove the claim it suffices show that Un,t70f/u,~,~ is an isomorphism un,tj(/Ia,f/) --+
un,tj(Htj). Using diagram (43), this is in turns equivalent to showing that 8tj restricts to an
isomorphism etv,f/ (I/a,tj) --+ Q'v,t7 (/Itj). From theorem 1.5 olle can easily check that

\Ve will show that Jf/ restricts to an isomorphism of the space {(1, X2, ... , x n) E (~,Eo)tj} onto
its image; this clearly implies the lemma. To this purpose we can write down the coordinate
expression for 8tj:

\

8tj : (1, X2, ... , x n) f-t (1, X2, ... , x n) - (En'f/ (1, X21 ... , Xn), 1, "., 1) = (x;P . ...X;? ..-l ,X21 ... , x n)
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Then clearly

from which the claim is immediate. D

Let w : Ho X SpfEO(x) ---+ Vn,Eo be given by (h, x) f--+ o(h) +s(x) (addition taken in Vn,Eo). From
lemma 20 it follows easily that w,., is an isomorphism. Finally dcrine Z as the fibre product in
the following fibre diagram

2 T'_----+-) Y ) SpfBO(x)

1 !. !.
Ho x SpfEO(x)~ Vo,EO~ SpfEO(x).

Notice that the composition (JW is just the projectioll Oll thc sccond ractor. Thus, we sec
that Z is isomorphic to Ho x SpfEO(x), alld in terms of this isomorphism the compositioll
Z ---+ Y ---+ SpfEO(x) becomes the projection on the second factor. In particular, Z is a smooth
formal scheme, as required.

8.4. Repatching.

Lemma 21. ~Vith the notation above we haue

Riw 7"'g*W = { 7.:g;WtP ,8 i = 0
, ,., 'I tP 0 i > O.

Proof. Defi l1e 2 1 as the fibre product in the following fi bre diagram

( * *......*W (* ......... W-.. ..n..
1 T,.,fl tP ':::::!. 2X 1,1) ':::::!. 'VO,Zl"

According to corollary 4.5 of [ß3] we have

Ri'Tt ( ............ W ,....., (. Ri,T. ··w'.:1',., 2,,.,X,., tP - 1,8 . '.:1',.,7,., g tP

and since 2 1 is smooth, by [B3] Corollary 5.4 we obtain

RiW,.,On,Zl,1J = 0 i > O.

Since (1 : 2 1 ---+ Z is an etale covering, the assertion folIows. D

Lemma 22. Let fo : Al ---+ Al be the morphism x f--+ xm" Then H; (AiJo ,[.,p (fo)) is a free
On -module of rank m - l.

Proof. After a finite extension, we can assll1ne that On contains all the rn-th roots of unity" Let
j : Gm Y Al be the obvious imbedding. Then we have

(44) II~(A~o,[.,p(fo)) ':::::!. fl~(A~alfO![.!JJ(fo)) ~ E9 11~(A~aljIKx0[.,p)
x:Z / mZ --+ iÜI..

where the sum is indexed by thc characters of the grollp. . .
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Now 1 by proposition 17 the summand eorrcsponding to the trivial eharcter gives no contribution
in (44). Moreover , by proposition 29, eaeh of the remaining terms is a free On-module of rank
one. The assertion folIows. 0

Theorem 16. The cohomology grou]J H ; (Aß-" , I:- (/)) is a /ree On -module whose rank is equal

to deg(l) - 1.

Proo/. From lemma 21 we derive a canonical isomorphism

HI(Zt]1 r;r/W1jJ) ~ H I (261 T6'"g:Wt/J,6).

Since wt] is an isomorphism, so is T l1 , hence the left-hand side in the above equation computes
HI(y, g'"Wt/J) and by (38) this is isomorphie to III(Drl l'"o:'"Kt/J)'

On the other hand, the right-hand side depends only on the special fibre of the map g. By
lemma 19, we know that g, is determined by the leading coefficient of f. With the notation of
section 8.1, this implies that there exists an isomorphism

HI(Drl /.0:'" Kt/J) ~ H 1 (D r , /;0:. Kt/J).

Comparing with (34) we obtain a short exact sequence

which says that dimBl H; (Al, [.(/)) = dimBl lI~ (Al, [,(10)); after a linear change of coordinate
on Al we can assume that fo(x) = x m

, and then the claim follows from lemma 22. D

Corollary 6. For any positive real number r let Ur = Al - D r. Then for all r » 0 we haue

lI~ (Ur,E" , [,t/J (/)) = o.
Proof. Let ~r C Dr be the open disc of radius r centcred at the origin. Then by [BI] Proposition
5.2.9 it follows

If~ (Aß-" , [,t/J (/)) ~ 1!E; H; (6 r ,E" , [.t/J (I))·
r>O

Since the cohomology of [.(f) is a finitcly generated module, the limit is already attained for
some r >> o. By the usual short exact sequence we derive H; (Al - 6 n I:-(f)) = 0 for r >> O.
Since H; (Ur,E'" ['!JJ(f)) y EI; (Al - 6 r,1:-(1)), the conclusion folIows. 0

Definition 21. Let C be an open curve definer! over E and let s be any E-rational point on the
smooth compactification C 0/ C. Let Ti' be a locally constant sheaf 01 On -modules 01 finite mnk
on C. We say that F has meromorphic mmification at the point s if the shea/ Ft]. over 1], is
triuialized ouer some covering 9 E Covmer (1]6) .

Proposition 28. Let F be a locally constant shea/ 0/ finitely generated On -modules on Gm,E

which is trivialized on some meromorphic covering 0/ Gm,E' Then I{~ (Ai", F) is a finitely
genemted On -module.

ProoJ. It follows from theorem 8 that we can find an integer N such that 4JNF extcnds to a
locally constant sheaf on Ab with meromorphic ramification at the point 00 E Pb. Then, after
a finite extension of On, by corollary 3 in section 4.3, 4>NF is a direct sum of sheaves of the
type [.(fd 0 Mi for various polynomials fi and finitely generated On-modules Mi. Moreover F
is a direct summand in the sheaf 4>N ... cP'NF ~ 4JN," (ffiif.(fi) 0 Mi). Hence thc claim follows easily
from theorem 16. 0
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An argument aB in the proof of corollary 6 yields

Corollary 7. Let F be a sheaf like in proposition 28. Then for all r >> 0 we haue

f/;(U E......a,F) = O.r,

o
Lemma 23. Let ..:'( be a compact analytic variety and F a locally constant sheaf of finitely
generated On -modules on .X. Then we can find a finite subring A C On and a locally constant
sheaf pi of A-modules on X such that P::: P' 0A On-

Proof. First of all, since )( is compact, we can find a finite covering Ui Ui = ,.,Y by open subsets,
and for each i a finite etale morphism Vi -+ Ui such that G = F1 Vi is the constant sheaf associated
to a certain finitely generated On-module Mi' . The descent data for F from Vi to Ui is then
essentially a finite set of automorphisms of Mi' These automorphisms are then defined alrcady
over some finite subring Ai C On' Hence we can find a locally constant sheaf Pi of Ai-modules

on Ui such that flUt = Pi 0A; On·
SimilarlYI let Uij = Ui n Uj , so that F is defined by a cocyde system of morphisms cPij :

(Fi 0Ai On)IUij -+ (Fj 0Aj On)\Uij' Again, these morphisms are already defined on some big finite
subring A ij :::> Ai + A j anel the claim follows easily. 0

We come now to the main result of this chapter.

Theorem 17. Let C be an open curve ouer E and F a locally constant sheaf of On -modules of
finite rank on C. Suppose that F is meromorphically ramified ai all the points in C - C. Then
H; (CEa' F) is a finitely gene ra ted On -module.

Proof. Let BI, .. , B n be n small discs around each of the points SI, •.• , Sn of C - C. For each disc,
take an imbedding

ji : Bi '-t Pk
such that the image of Si is 00. Then it follows from proposition 8 that we can find sheaves Fi

on Gm such that: 1) jt Fi ::: FIBi-{Ii} and 2) Fi trivializes on a meromorphic covering of Gm'
Now, it follows easily from corollary 7 that, after replacing Bi by some smaller discs, we obtain

On the other hand, the cornplement )( = C - Ui Bi is a compact affinoid domain. Take a finite
subring A C On and a sheaf P' of A-modules on X aB in lemma 23, so that FIX = P' 0A On'
Thcn we have

H;(X, F) ~ H;(X, F') 0A On'

But it follows from [B3] Corollary 5.6 that the right-hand side is a finite A-module, and this
implies the theorem. 0

Remark: One may wonder whether the condition on the ramil1cation on F is really necessary
for the finiteness of the cohomology. We will not attempt here a precise analysis, but we give
an example to demonstrate the general situation.

We construct inductively a sequence of polynomials in one variable li(t) (i = 1,2, ... ) and
positive real numbers rl < "2 < ... such that limi-+cc ri = 00 and limi-+cc li = I is an entire
power series on the affine line Al. Suppose fi of degree i and ri have already been constructed,
with the property that HJ (Al, [(li)) = III (~ri 1 [(li)) is a free On-module of rank equal to i-1.
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Choose an element °E k X of norm small enough so that 10[' ri < PI' Set Ii+l (t) = (1 +öt)fi(t).
Then it is clear that

L:(/i+dI6.-; ~ L:(/i)16.-;
and as a consequence we get an imbedding

H;(A1
, L:(/i)) Y lI~(AI, L:(li+d).

On the other hand, the polynomial li+dt) has degree i+ 1, hence by the usual argument (and by
theorem 16) we find ri+l > 0 such that H1 (.6 r ;+l' L:(/i+d) is free of rank i. Clearly the sequence
11(t), 12(t), ... converges to some I(t) and the cohomology of [,(/) cannot be finitely generated.

What we learn from the above counterexample is that the finiteness properties of analytic
etale cohomology have much to do with the ramification of the coefficient sheaf. This should
be contrasted with the case of algebraic etale cohomology, where the finiteness properties are
completely unrelated to ramification. I do not know whether this phenomenon has analogues in
any one of the various sheaf theories currently available.

As for the case where finiteness does hold, we should remark that actually we expect a
much more precise statement than theorem 17. Recall that in positive characteristic, thc Euler­
Poincare charactcristic of an etale sheaf is predicted by the Grothendieck-Ogg-Shafarevich for­
mula.

Noticing that, inside the dass of meromorphically ramified sheaves, the natural analogue of
the Grothendieck-Ogg-Shafarevich formula makes perfect good sense, we are led to the following

Conjecture 2. Let C be an open curve defined over E, and F a locally constant sheaf 0/ On­
modules 01 finite rank on C. Suppose that F has at most meromorphic mmification at each 01
the points 0/ C - C. Then the Euler-Poincare characterz'stic 0/ F is given by the /ormula

Xc (CE<1 , F) = rk(F)x(C) - L sw6 (F11 ,)
JEC-C

where X(C) is the Euler-Poincare characteristic 0/ C.

We remark that for a sheaf of the form L:(I) (f some polynomial map on Al Lproposition 9
gives sWoo (L:(/)11"',,) = deg f. Then theorem 16 can be restated as

Corollary 8. Conjecture 2 holds true Im' all the sheaves of the form L:(f) as in theorem 16. D

This is the reason why we spent considerable efrort in computing the exact rank of the
cohomology of L:(/), while a simpler argument would have sufflced to prove its finiteness. In a
sequel to this paper we plan to show how to derive the full conjecture 2 from corollary 8 and
the principle of the stationary phase which is object of the next chapter.

9. STATION ARY PHASE

9.1. Vanishing at infinity. In this section we prove a vanishing result which will be used in
thc next section. The principle of the stationary phase captures special features of the Fourier
transform on rank one vector spaces. Hcnce here thc base variety S is reduced to a point and
both E and its cl ual E' are affine spaces of dimension one, identified with Ak.

Fix some integer n > 0 and let 1/; : Goo -t O~ be a non-trivial character. L: = L:,p denotes the
ran k one locally constant sheaf of On-modules on Ga = Ga,E attached to thc Lubin-Tate torsor
and the non-trivial character 1/;.
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We ehoose linear coordinates x and y on the first and second factor of Ak X A} and a
linear coordinate t on Ga. Then the dual pairing (,) of the previous section reduces to a map
IL : Al X Al --+ Ga defined by the ring homomorphism E[t) --+ E[x, y) which sends t to xy. For a
complcx Je of On-modules on Al, the Fourier transform in degrec q is thon thc funetor

Tq(JC) = Rq+l prapr* I'i."" <9 Il* [)

where pr, pr' are the two projeetions of Al X At on the two factors.
We apply the construetions of section 4.2 to the germ of analytie spaee (C, s) = (IP}, (0). We

denote by S the pro-analytic space associated to this germ. Also! let X denote the pro-analytic
spaee (A} x Pk) xrk S. The sheaf Jl* L induces a shcaf on X1)oo' which we will denote by the
same name. Then for each q 2:: 0 we may form Rqw:;:,:r (Jl* L), whieh is a sheaf on X co =Aß" .

A bit more generally, suppose that E is the completion of an algebraic extension of a complete
su bfield Eo eon taining kco • All the varieties and sheaves in trod lIecd above are obtained by base
change from corresponding objects defined ovcr Eo, alld we can considcr the functor RW~:':Eo'

Theorem 18. With rcference to the notation above, RhJl';:':Eo (/l* L) =0 for all q 2:: O.

Proof. The proof is basically a variation of the proof of theorem 12 (with the two affine axes
swapped in Al X pI X Al). Thanks to proposition 13, it sufficcs to consider thc ease E = Eo,

and henee we need only to study Rqw~~r(/1* L). \Ve will show that the stalk of Rqw~c:r(Jl* L)
vanishes at aB points p E Al.

Let Y = (Al X pI X Al) Xr1 S . We definc a map 7 : Al X pI X Al --+ Al X pI by letting
(x, y, z) t--+ (x + z, y). Then Tinduces a smooth map of pro-ana.lytic spaces Y --+ X which we
denote again by r. Proposition 11 applies and we obtain

In particular

(Rq\J1~::r(p* L))p ~ (Rq\J1;~r (7;00Il* L) )(O,p).

To determine the stalk at (0, p) of the right-hand side, we will use the fOl'mula 14 of seetion 4.2.
With reference to the notation from SectiOIl 4.2 we have

(Rqw;~r(r;oop·L:))(O,p) ~ I~ ll!!.lllq(f;IUr , (r*JL* L)T)
TeI oo Ur

where (r* p*L)r denotes the restriction of T* JL* L to Al X gT X Al and UT ranges on all the etale
neighborhoods of (0,00, p) inside AkT XPkTXAkT' Let CT be the partially ordered set consisting
of all such Ur and let C = U-rezoo CT ·

Next we introduee tha family C~ consisting of all thc varietics of the form BT X WT such that

1) Br is an open disc in AkT 1 of radius rB and centercd at 0, anel H'T .!t PkT X AbT is an
etale neighborhood of (00, p) E Pk

T
X AbT;

2) the image cP(Wr ) is cOlltained in an open su bset of the form B' X N (p) 1 with B' an open
disc of radius 7'w around 00 alld f\l(p) some fixed open neighborhood cf p;

3) the ratio 7'B/rW is equal to the constant b.

Lemma 24. F07' any real number b > 0 the family Co = U-reIoo C~ is cofinal in C.

Proof. This is of course just a special case (up to swapping-thc axes) of lemma 15 of section 6.1,
with S = SpecET . 0
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Fix areal number 8 strictly greater than p(7f;, t). Let J3T X lVr E C~ be any neighborhood as
above, and set WT = WT Xf'l 9r. In view of the lemma, the theorem will follow if we show that

(45) (q ~ 0).

Let pr23 : BT X W T ---+ W T bc the projection. Define IL' : Al X Al ---+ Ga by setting (y, z) M YZ.
An application of the Yoga of torsors gives us the isomorphism

Now we can proceed cxactly as in the proof of theorem 12 and conclude that Rpr23 ," (r* J-L'" .c)T = 0,
which, by virtue of the Leray spectral sequence for pr23 , implies (45). 0

9.2. p-adic stationary phase. Vve continue with the notation of section 9.1. Let X be the
S-space (lPk X Pk) Xf'k S = Pk X S so that there is an embcdding of S-spaccs X ---+ X. We hava
two natural projections

X

/~
pk S.

Given an E-rational point s E Ak, we will consider also the germ (Ak, 8) and the associated
analytic spaces Ak (s) and 1],. For any sheaf F of On-modules on Ak we will let F(s) =
[fO(g,;er, FJ1.) which, according to proposition 10, carries a natural structure of 1Trer(1],)-module.

For a given sheaf G on Ak X Ak we denote by G! the extension by zero of G to IPk X Ak; then
G! determines a llnique sheaf on Xfjoo' We are intcrestcd in stlldying complexes of thc form

where F is a sheaf on Ak.
Lemma 25. Suppose that F is locally constant on the comp/ement 01 a finite set S c Ak and
that the stalks 01 F at all points are finitely generated On -modules. Then IK.p vanishes on the
comp/ement 01 5 U {oo}. 1f, moreover, S c Ak (E) and F is the extension by zero 0/ FlAI -5 then
F(F) is a comp/ex concentrated in degrees 0 and 1, and .1"1 (F) is supported on a finite set.

Proof. With the notation of section 4.2, let Y be an S-analytic spacc, j : Y 1/00 ---+ Y the open
imbedding and i : Yoo ---+ Y thc imbedding of the special fibre. Let G be a, sheaf on Yfj and H
a locally constant sheaf on Y. Then one has the standard general formula

RW;::,r (j. H ® G) ~ i* H 0 Rw;~rG.

Let F! be the extension by zero of F to Pk and set U = Ab - S; c1carly pr* F! is locally constant
on U X S. Then from theorem 18 and the above remark we derivc

which proves the first claim.
Assume now that S C Ak (E) and F is extended by zero from U. By Poincare duality and

proper base change, it is clear that .1"i (F) can be non-zero only for -1 :s; i :::; 1. Since F is
extended by zero from a locally constant sheaf on U, it is also obvious that F-I(F) =0.

Let T = {tl, ...tn } be any finite collection of points in Al , with the property that .1"1 (F)t; i= °
für a11 t j E T. Let !( be a cümplete extension of E big enough to contain the residue fields of
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all the points ti. Let 1f : Ai< -+ Al be the base change morphism. Define J-lt; : A
K
I -+ AKl as

k"
x M tiX, By Poincare dllality we obtain

for aB t i . This implies that 1f- F eontains EBi/-L;; (1f-'c) as a direet summand. Since F has finitely
generated stalks, it follows immediately that the eardinality of T is bounded, i.e. F 1 (F) has
punetual support. D

Suppose that for a eertain point s E Pk(E) the stalk ~~ vanishes. The definition of R\l1~:r

being purely Ioeal, it is clear that the stalk of nq. at s only depends on Ft]•. This prompts HS to
make the following

Definition 22. For any point s E Pk(E) let prt]. : 77~ X 1}oo -+ 1}.~ be the projection on the
first Jactor. For a topologieal group G, denote by Rep(G, On) the eategory oJ On -modules with
eontinuous G -action. The loeal Fourier transJor'm at the ]Joint s is the Junetor

Fl~~~) : S(1}J' On) ---..........,. Rep(1frer (1}oo), On)

F I !JL Rl\l1~~r (pr~.F 0 (Ji- 'c~)It].xt]oJ.

We are !lOW ready to state the main result of this chapter.

Theorem 19 (Principle of Stationary Phase). Let F be a sheaJ on Ak, which is the exten­
sion by zero oJ a loca//y constant shea! with finilely generaler} "talks, deßned on ihe complernent
oJ a finite subset S c Ak (E). Then there is a canonieal equivar'ianl direet surn deeomposition

Proo]. Let sES U {oo} and define <p : 1}~ X S -+ X as the map of S-spaees ind lleed by the
obvious imbedding. Notiee that <p is a smooth morphism. ThllS, from proposition 11 we derive

It follows from lemma 25 that, under the stated hypotheses, :FJ (F)'1oo = 0, i.e. F.p (F)'1oo red uces
to a single shcaf placed in dcgree zero. Henee thc speetraJ scquenee of eorollary 2 gives

On the other hand, eonsider the eompaet morphism pr l
: X --+ S indueed by the projeetion onto

the seeond factor. From proposition 12 we derive

From lemma 25 we know that thc eomplex lKp is eoncentl'ated on the set S U {oo}, therefore
Rqpr~*(lKF) vanishes for q > °anel the claim of the theorem fallows. D
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9.3. Basic study of the local Fourier transforln. In tltis scction wc propose to show how
our loeal Fourier transforms honour their name with a behaviour which, as mueh as possible,
mimieks that of their namesakes introd Heed by Laumon.

It is my belief that the meromorphie quotient of the analytie loeal fundamental group provides
the right framework in which to place the theory of thc loeal Fourier transforms. In other words,
I expect that, for any sheaf F on A1 with only meromorphie ramifieation, the monodromy at
infinity of F$(F) ean be eompletely deseribed in terms of this meromorphie fundamental group.

Currently 1 do not know yet how to prove such a. claim: I hope to return to this problem in
a future paper.

To start with, we eonstrllet a [unctor

w : Rep(1f~er(1],), On) -+ 5(1]6) On)'

This ean be obtained as folIows. Given an On-mod ulc V with a n-r1er (1]~)-aetion, we ean use the
isomorphism of eorollary 1. (Ol' better of its "arithmetic" variant, as at thc end of seetion 4.1)
to induee an action of 7r~er (Gm,E, x) on V. This depends on the ehoice of a geometrie point
x E Gm,E' Then a standard argument yields a loeally eonstant On-sheaf U)z(V) whose stalk at
the point x is eanonieally identified with V. Then wc define

w(V) = Wz(V)I1J.'

In what follows we will bound ourselves to the study of sheaves whieh are in the essential
image of w, and eonsequently we will regard the loeal Fourier tl'ansfonns as funetors

.1t;:) : Rep(1f~er(778)' On) -+ Rep(1f~er(71oo), On)'

Lemma 26. 1) Let V E Rep(1fr;er (1]8)' On) be unramified, i.e. suppose that the 1fr;er (1],) -action
on V factors through the quotient Gal( Ea / E). Then

;::(00,00)(\1) = 0
!J!,loc •

2) I/ we denote by On the trivial representation of mnk one, tllen

f~~i:)(On) = On'

Proof. For (1), wc observc that

F(oo,co)(V) "-' F(oo,oo)(0 ) iOI V
.p,loe - t/J,loe n VY

whieh allows us to reduee to the ease \I = On; from lemma 14 we derive ft/J (On)(oo) = 0 and
the claim follows from theorem 19. Part (2) is dealt with in a similar way, by eonsidering the
(global) Fourier transform of the extension by zero or the trivia.l shear On,G

m
1 and using theorem

19 to analyse the loeal eontributions at infinity. 0 -

Definition 23. Let X : 1fr1g (Gm,E, x) -+ O~ be II non-trivial charactel'. It defines a locally
constant On -slleaf IC x on Gm,e which we call the [(wnmer sheaf associated to the character X.

Proposition 29. Let G(X, 'lj;) be the On-module with continue Gal(Ea / E)-action dejined as

G(X, 1jJ) = H~ (Gm,E", Kx ® Lt/J).

Then: 1) G(X, 'lj;) is a free Oll-module 0/ rank one (md fhe lI~ (GIIl , r:;" 1 !C X® Lt/J) vanish fo1' i =j:. 1,­
2) i/ j is the imbedding 0/ Gm,E in Ak, there is (l C(Lnon}:cal isomorphism
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Proof. The second statement can bc infered, mutatis mutartdis, from the proof of proposition
1.4.3.2of [Lau2]. It is easy to vcrify that the cohomology of Kx 0 [TjJ vanishcs in degrees i ::j:. 1.
Ta show that G(X, 'ljJ) has rank one, we can llse (2) and thc invollltivity theorem 11 to obtain

L
This implies that G(X,1/J) 0 G(X- 1,1/J) must be free of rank one, hence the claim. 0

Definition 24. We say that a representation of rrr;er (77,) is tarne if il factors through the quo­
tient rr~lg ( 1],) .

Lemma 27. For any V E Rep(rr;ner (1]0), On) of finite rank therc exists a locally constant shea/
V ouer Gm,E such that V!,/o :::: V and V'1oo is a tarne rC]J1'csentation 0/ rrr;er (7]00)'

Proof. This is a direct consequence of theorem 8. 0

For s E Gm,E (E), let p, : Ab -t Ak be the map x t-+ sx anel set L(s) = (fL;L:\b)!'/OQ' This
On-module is a rank 1 representation of 1I'r;er (7]00) of Swan conductor one.

The translation map T, : Ak -t Ak defined by x t-+ x + s induces a morphism 7]0 -t 1]8 and
hence a group homomorphism

as weIl as a functor

Proposition 30. 1) For all s E IPk(E) the /unctors :F~~t:c) are exact.

2) I/ V E Rep(1f~er ( 7]00), On) is a ta rne represen ta tion, then :F~~~~\ V) = O.
3) If V E Rep(1I'l er (7]8)' On) and s E Ak (E) then

:F~~i:)(V) ~ :F~~;:)(T;V)0 L(-s).

Proof. The first claim follows immediately from the rcmark aftcr the proof of theorem 19. For
the proof of the second claim, than ks to proposition 13 we can base change everything to jjja,
at the cost of replacing everywhere the vanishing cycle funetor with its generalization !tW;C::E'
We leave to the reader to state the obvious variants of the principle of the stationary phase for
the more general functor. Basieally, all the statements remain formally unchanged. Therefore
we only show the proof for the case E = Ea, in whieh case

alg ( )"""" alg(G ·)""""Z..... (l)1I'1 7]00 - 1r 1 m,E ,X - •

Thanks to part (1), we can also assume that \I is a simple representation. After replacing On by
some finite extension, any representation of Z(l) diagonalizcs. Hcnee we can assurne that V is a

rank one On-module, attaehed to some character X : Z(l) -t (lI~. The ease of a trivial eharacter
has already been taken care of in lemma 26. Let X bc a non-trivial characterj we consider the
associated Kummer shcaf K-x. on Gm,E and its extension j .. JC x to Ak. Now, let 6 be an open
disc in Ak, centered at O. Denote by K~ the extension by zero of j .. K.xl~' Then K~ imbeels in
j .. Kx and thcre is a short exaet sequence

o-t K~ -t j.Kx -t K~ -t O.
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An argument as in the proof of lemma 25 shows that F(K:~) is a complex concentrated in degree
zero, and hence we obtain a short exaet sequence:

Let s E Gm (E) be any point. It is easy to eheck that J.L:K.~ is isomorphie to the extension by
zero of j",K:XIJj-;1 (11)' It folIows:

H: (Ak, K-~ es> 11:L.p) ::: 11: (p:; 1 (~), j",K-x 0 LIjJ)'

From proposition 5.2.9 of [BI] we know that

H;(Ak,K-x®LIjJ)::: tim H;(p:;1(f:j.),K.x 0L.p).
1.sI-tO

Proposition 29 says that the left-hand side of this equation has rank one, therefore the limit is
already attained for some value Isol. This means that Oll the complement U = Ak - /1;01 (ß) we
have FO(K:~)IU ~ FO(K.:..Jlu, and therefore ;:O(.K:~)lu = 0; in particular FO(K~)1)"", = O. Next,
notice that the sheaf K~ is locally eonstant on the complement of a single point p (of type (2)
in the notation of [BI], paragraph 3.6) in Ak, namely the point eorresponding to the sup-norm
on the dise ~ (see [BI], rcmark 6.3.4). Therefore lemma 2,5 applies, anel shows that KK" is

x

eoncentrated on {p, oo}. It is also clear that the stalk of IK.~II over 00 is isomorphie to the stalk
x

of KÄ: over the same point. Now, thc same argument which was uscd in the proof of theorem
x

19 shows that FO(.K:~)(oo) ~ HO(Pk, IKk~). This implies IKk~ = O. lt follows that also the stalk

of KÄ:
x

vanishes over 00, and therefore F~7~~)(Kx,1)"",) vanishes, as statcd.
For (3), let T;V be a global extension of T.s"'V, as provided by lemma 27. Aeeording to part (2)

anel theorem 19, the only eontribution to F(V)(00) (resp. F( T.s'" V)(00)) comes from F~~i:) (V1),)
(resp. F~~i:)(T.:V1)o))' Proposition 22 allows to eompare the two terms and yields the claim. D

Proposition 30 says that it suffices to study the fu netol's F~~;':C) for the values s = 0 and
s = 00 to know aB of them. From this point on, the theory proceeds formally as in the finite
fjeld case. We leave the task of making a detailed study of this theory to a sequel of this paper.

Remark: If we take the formal multiplicative grollp Gm 3.'3 the undcrlying Lubin-Tatc group,
then the theory abovc ean be refined by using the eonstruetions of seetion 5.3. Suppose that
a sheaf F is defined over (the eompletion of) any algebraie extension Eo of Qp. In this ease
the principle of stationary phase gives a eanonical dceomposition of the semilinear rrrer (1Joo)­
representation whieh deseribes the asymptotie behaviour of F( F), in terms ofloeal contributions.
In partieular the loeal Fourier transforms land in the category of these scrnilinear representations.

10. THE HOMOMORPHISM r
10.1. Definition and basic properties. From now on we restriet for simplieity to the Lubin­
Tate torsor arising from the multiplieativc group Gm. Aeeordingly, tha value Pl equals p-l/(P-l).

Also, GTI equals the group Jlpn of pTl-th roots of unity. We pick a non-trivial charaeter 'Ij; of the
grou p G co = J-Lp"'" wi th val ues in the ring of integers I(} of Bi' Then I by eom posi ng with the
natural projections we obtain a eompatible sequenee of eharaeters 1/Jn : Jlp"'" ---+ oien.

Let \I be a k-vector spaee, (1 : lf ---+ V' a. symmetrie isomorphism and J : \I ---+ k the associated
non-degenerate quadratie form. We take inspiration from formula (1) ofthe introduetion to make
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the following definition:

r(f) = l~ H~im v (V Xk ka, f* L..pJ ®o E,\ (dim V/2).
n

In this chapter we will be concerned with the study of the Gal(ka /koo)-module r(f), seen as a
function of f. With the present setup, this cohomology group carries also a semilinear action of
Gal(ka /k), as explained in section 5.3. Even though it may be interesting and worth exploring,
we will not deal here with this extra structure.

As usual, to mako sense of the "half Tate twist" wo extcnd thc coefficicnt fieId: the E,\
appearing above is thc extension of Bi containing ql/2. Then thc Tate module E,\ (1/2) is the
unramified Galois reprcsentation on which Frobenius acts as multiplication by q-l/2.

The next two results establish the elementary propcrties of r.
Lemma 28. For uny f as above, r(f) is a Gal(kG /koo)-module of rank one, which depends only
on the isomorphism dass oj f.

!:rooj. It suffices to prove the corresponding result for the torsion modules r n (f) = H~im V (V Xk

ka
, f* L:.",J. Let 9 be another non-degenerate quadratic form, in the same isomorphism dass as

f. Then we have 9 = foh for some automorphism h : V ---7 F. VVe get

H~im V (V Xk kO, g*L:.",J ~ If~im v (V Xk kU
1 h* /* LIJiJ ~ IJ~lim \' (V Xk kO, f* LIJiJ

which proves the seeond assertion. Sinee the eharaeteristic of k is difrerent from 2, we ean always
find a basis {eIl'''' em} of \f, such that the quadratic form f diagonalizes in this basis. Let \ti
for i = 1, ... , 7n be the span of ei, and let Pi : V ---7 \ti be the projection such that p,(ej) = 8ijei'
Denote also by fi the restrietion of J to \!i. The yoga of torsors (for which we refer to [SGA4~])

irnplies thc forrnula
j* L:. ~ P; f; L:. ® ... ® 1); f~ L.

Since I{~(\"i Xk /ia, f;!) = HO(Vi Xk kG
, f; [.) = 0 1 it follows that Ht (\ti Xk ka,I; [.) i- 0 if and

only if j = 1. Then, by I<unneth formula we have:

Henee, to prove the first assertion it suffices to assume dirn V = 1. Let l' be the inverse transpose
of I, defined as in proposition 23. Combining proposition 23 and thc involutivity theorem 11
we obtain

L L
[.(J) ::= [.(f) ® r n (/) ® r n (I')

which implies that r n (f) is free of rank rank one. 0

Remark: the proof also shows that the groups H~(\f Xk 'kG
, I-!) vanish for i i- dim \f.

Proposition 31. The map 1 H r(f) descends to n [JIYJtlTJ homonwrphism from the lVitt grotlp
W(k) 01 k to the grou]J of isomorphism dasses 01 TYJ,nk one Gal(kU /koo)-modules (with multipli­
cation given by tensor product).

Prool. Again, we red uce easily to the corresponding statement for torsion coeffieients. Let
1 : V ---+ k, 9 : ltV ---7 k be two nondcgenerate quadratic forms, and let 1 EB 9 : \I EB lrV ---7 k be
their sumo Denote also by Pv (resp. Pw) the projcction of \I EB Hf onto \I (resp. onto W). From
another application of the yoga of torsors, one obtains

(46)
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Using (46) and the Kunneth formula it follows

r n (f) €I r n (g) ~lf~im V +dim W ((V EB H') X k ka
I p~, J* I: €I P~l' 9 *1:) ~ r n (f EB g)
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whieh says that r'n induces a homomorphism from thc 1l10noid of isomorphism classc.c; of quadratic
fonns, to the group of isomorphism classes of GaJ(ka Ikev)-modules of rank one. Let Iv :
V EB V' ---+ k be the standard quadratic form induced by the dual pairing: Iv (x,~) = (X,~)

for all x E \I, ~ E \I'. VVe want to show that f n (Jv) is thc trivial Ga'! (k aI koo)-representation.
But this is nothing else than a special case of lemma 14 ill section 6.1. Since the relations in
the Witt group are generated by all the isotropie quadratic forms of the form Jv, the claim
folIows. D

10.2. Computation of f(J). In this section we obtain some information on the Galois struc­
ture of r(f).

For a E k X
, let Ma denote the e-adie representation of Gal(ka Ikev ) corresponding to the

character a f---t a(Vä) I v'ä = ±1 and let la : k --+ k bc the quadratic form x f---t ax 2
•

Lemma 29. lVith the notation above

Proof. Define a projective system of sheaves M a = {JV1 a ,n}nEN Oll A/;, by requiring Ja* (E>. I An) =
([>.1 An) EB Ma,n- Then we have

11; (Al, f: LtPJ ~ H; (Al, Lw" 0 Ja. (E>. I An)) ~ IJ; (At, LIJ;" 0 M a,n)'

By M a ~ J\t1 l €I M a , the assertion folIows. 0

Given a general non-degcllcrate quadratie form f : \I ---+ k Oll a vectOI' space of dimension n,
denote byD(j) the discriminant of f. Set H~(\I, f· LIJ;) = 1~1 fI~(V, f· [,,pJ 00 E>..

71

Proposition 32. H'ith the notation above, let n = 21n (resp. = 2m + 1) and d = (_l)m D(f).
Then we have

n even
n odd.

Proof. Let U = j-l (Gm) and W = f- 1(0). Then [rom Theoreme 3.3 and Table 3.7 of [SGA7]
Exp. XII Quadriques, we dcrive

q = n - 1, n even
q = n - 1, n odd
q = 2n - 2
otherwise.

From this and the projection formula we obtain

H;(U, f· I:lJJ) ~ lim JI1(Gm , [,w .. @ Rq-l flu!(Olen)) @()J E>..­n
Since W is the affine cone over the non-singular quadric Q C P(V) defined by f, we can compute
Hg(W, j. f.lJJ) = Hg(W, E,\) by using [SGA7] Exp. XV Formule de Picard-Lefschetz. We have
H~(W, E>.) = fIfo} (lV, E>.) by Prop. 2.1.2(ii) loe.cil. In the long exact sequence

. .

... -r fIfQ} (W, E>.) --+ Hq(W, E>.) --+ Ii
q(W - {O}, JE>.) --+ ...
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we have Hq(W, E).) = E). for q = 0 and = 0 otherwise by Prop. 2.1.2(i) loe. cit. Finally, since
Hf - {O} is a Gm-bundle over Q, we obtain

q = n - 1, n even
q = 11" nevcn
q = 2n - 2
otherwise.

From these computation we can easily deduce the claim. (\Varning: in this proof we have used
somewhat freely an e-adic language: this is only a harmless abbreviation for some more cumber­
some notation, and does not imply that wo rely on a formalism of analytic f-adic sheaves). 0

Corollary 9. lVith the notation above

r(la)0 2 ~ lH_ 1

and the Cal(ka/koJ-action on r(J) lactors through Il4.

Prool. It follows immediately from proposition 32 alld proposition 31. D

As an example we consider the claBsical CaBe of the norm of the quaternion algebras. Recall

that for any pair of elements a, b E k, one obtains an associative k-algebra (7f) of dimension 4,

with basis {1, i,j, k}, and multiplication fixed by thc rules:

·2 .2 b" •• kI = a J = IJ = -J I = .
Let 1r be a uniformizing parameter for k. If a E Oj;. is not a quadratic residue modulo 1r, then
the algebra (T) is a division algebra and any two division algebras arising in this way are
isomorphie. Wo denote by H this division algebra: it is thc quaternion algebra over k. The
algebra H is endowed with a norm map N : In ---+ k. The norm map induces a homomorphism
from thc multiplicative group EI'" to k'". In terms of thc basis given above, olle has

(47) l'l(x . 1 + y . i + z· j + w • k) = x 2
- ay'2 - 1rZ

2 + a1rw
2

.

The following result is now a straightforward conscquencc of proposition 32 and corollary 9.

Theorem 20. The action 01 Gal(ka / koo ) on r(N) is trivial. D

In [We] it is provecl that, with the notation of the introduction, thc constant ,(N) cquals -l.
This shows that Weil's invariant is not a homomorphic imagc of ours.

10.3. Quadratic Gauss sums. In this final section we obtain an explicit description of the
Galois action on r(x 2), thus complementing proposition 32. Unfortunately our method works
only when the residue characteristic is different from 2. Therefore in this chapter we assume
throughout that J1 is odd.

Let 11 : Al ---+ Al be thc quadratic form in one va.riable x M x 2 •

Let D r be the closed disc of radius r in Al, ccntered at the origin and j : Al - Dr ---+ A
the imbedding of the complement of D r • Supposc that thc restriction of I; [. to D r is not the
constant sheaf. Then the pair (Al, D r ) gives an exact sequcncc in cohomology

H~ (Al, /;!) ---+ H 1 (Dr , /; [.) ---+ H;(A1
- D n /; !).

By Poincare d uality Ir; (Al - Dn li'c) ~ Hom( /10 (Al - Dn fi ,C-1), Bt) = 0, and therefore

H1 (Al, li.c) ~ fIl (Dn li .c). if anel ooly if fI1 (D r , fi'c) '# O. Set 1'1 = pi/ 2
• We will show that

indeed lfl(Dri , li.c) cloes not vanish.
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Basically we follow the arguments of chapter 8, except that now we try to keep track of the
Galois action. First of all, we call back on stage the Kummer torsor lC(n) defined in section 8.l.
Throughout this section we will need only K(1), which therefore we will simply denote by K..

The restriction of the character 'lj; to J.Lp = Ker[p] is a character of the latter group, and we can
form the associated local system 1C..p .. of On-modules on Dpdp • Then by formula 33 we obtain

a'" K..!. ~ [,.,. ID .
"'.. "''' Pi

Comparing with section 8.1 , and keeping in mind that p > 2 by assumption, one checks easily
that in formula 35 we can take g(x) = apx 2 • We deduce an isomorphism

f '" f' f'" '" Je '" ,....1 "--'..p .. ~ 1 a .p" ~ 9 "-'.p ...

In particular

H 1(D ri , f; L..p) ~ 1l!!I H 1(D r1 , g'" IC.pJ 00 E),.
n

In order to study g·Je.pn we will use the Witt torsor W= \\1(1) defined in section 8.3. Recall
that this is a sheaf on V1,ko. Notice that the theory of V1,A is considerably simpler than the
general case, and was alrea;!y dev:.!?ped in [O-S-S], where it was called g(),P). We form the

associated On-local system W..p" = W xO n 1J;n.
With the notation of chapter 8, formula 42 gives an isomorphism

Next we have to replace 9 by its integral model 9 : SpfkO(x) ---7 SpfkO(x), as in lemma 19. For
this it is necessary to extend the base field to k(J-Lpoo, ..\1/2), since the map ßl of section 8.3 are
defined only after passing to this overfield. After that , we can choose the constants b}, b2 in such
a way that 9 becomes the map

......

SpfkO(x)~ SpfkO(x)

Moreover , peeking at [0-S-8] one can check that for the special case of V1,A, the map a is linear,
hence it is an isomorphism. and we can identify the formal scheme Y of diagram 41 with \\
itself. In particular, Y is smooth and after the identification we also get g= g.

Let 11. be the subgroup of Gal(ko/koo ) which fixes k(J.Lpoo,)..1/2). Then [rom the diagram 41
we derive an 1l-equivariant isomorphism

We can now state the main result of this scction.

Theorem 21. The action of1l on H~(AL ftL.p) is unramijied. Let Fr be any lifting 0/ Frobe­
nius in 1l. Then we have the formula

Tr(Fr,lI~(Al,f; L..p)) = L 1j;(trvlvp (x 2
))

::EI'

where t rr IVp is the troce map 0/ the field extension F/Fp (here F is the residue field 0f k).
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Proof. Ey the argu mcnts above, it suffices to prove the same claim for H 1 (Y'1' g*Wt,lJn ). Here wc
can use Berkovich's vanishing cycles, as in section 8.4. The situation is simpler than loe.cit.,
since Y is already smooth. Hence the same argument of lemma 21 yields

H 1 (Y'11 g*Wl,b.J ~ H1(y", g:WIJI .. ,,)·

Thc first consequcnce is that thc action of 1i is indeed unramified. Finally we recall that the pair
(VI,." \V,) is isomorphie to the pair (~, L:) where [. is thc Artin-Schreier torsor on Ai, which
provides the kernel for the Deligne-Fourier transform. Moreover the map g" is given by x H x2

•

A standard application of the Grothendieck-Lefschetz fixed point formula yields

Tr(Fr, H1(~, g:[.tjJJ) = L 7jJ(tfJr/F
p
(X 2)) •

.rEr

Together with the remarks above, this concludes the proof of the theorem D

Remark: Saibi has defined and studied in his thesis [Sa] a Fourier transform over general
unipotent groups in positive characteristic, complete with a sheaves-to-functions dictionary, and
his theory applies especially to the Witt group schemes Wn • One could hope to combine this
construction into thc line of thought developed in this chapter, and thereby extend the range
of its usefulness. For instance , one would cxpect to be able to remove our assumption on the
residue characteristic of k, just by pushing the analysis to the next level n = 2. Unfortunately,
already for VV2 the calculations involved become overwhelmingly complicated. It is clear that,
if the deformation argument has to play any role in future developments, a more systematic
approach will have to be found.
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