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“Aber das ist eine andere Geschichte
und soll ein andermal erzahlt werden”

Michael Ende - Die Unendliche Beschichte

1. INTRODUCTION

The bias of this work has been slowly but steadily shifting since its inception. lts immediate
predecessor is the preprint [Ra2], which was itself based on the author’s Ph.D. thesis [Ral]. This
new, extensively revised version has benefited considerably from the remarks of a referee who
has weeded out of [Ra2] an embarassingly high number of naiveties, silly mistakes, misprints,
and even proposed some nice improvements which I have adopted in what is now chapter 10. 1
present my wholehearted thanks to this person, who is unknown to me.

According to N.Katz (see [Kad], Introduction), it was B.Dwork the first person to understand
that classical differential equations with irregular singularities had deep meaning in arithmetic
algebraic geometry (against the “prevailing dogma” which held that only equations with regular
singular points should have meaning). Since then, the irregular differential equations have been
gradually reappropriated into the mainstream of geometry. Initially only some specific areas
were affected, such as p-adic analysis and positive characteristic geometry, but the trend is
now spreading even to the domain of complex analysis, as witnessed e.g. by the recent book
[Mal], which reports on ideas of Deligne, Malgrange et al. towards establishing an irregular
Riemann-Hilbert correspondence.

The aim of this paper is to explore a p-adic version of the theory developed in [Mall]. In truth,
in our work the differential equations remain on the background, while the emphasis is on the
“dual world” of étale local systems naturally attached to them. In this we are guided by a well
known heuristic, which translates many concepts arising from the study of differential equations,
into dual topological notions (see e.g. the table at the end of [Kal]). In particular, it is well
understood that the notion of irregular singular point should be related to the appearance of
wild ramification on a local system. Now, in our framework, all the varieties are defined over
some p-adic field &k of characteristic zero. But for such varieties, the étale topology is very close
to the classical complex analytic topology, in particular, all ramification is tame: in other words,
the algebraic étale topology in characteristic zero is too coarse to describe the monodromy of
irregular differential equations.

We remedy this problem by replacing the algebraic étale topology with the much finer analytic
étale topology recently introduced by Berkovich. In this sense, the upgrade from algebraic to
analytic étale topology is analogous to the introduction of the space [ of Deligne, which plays
a major role in chapter XI of [Mal].

In technical terms, what we need to do is to consider our algebraic varieties as special analytic
spaces, and then work systematically inside the framework developed by Berkovich. We should
stress here, that our main object of interest remains the category of algebraic schemes (over a
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fixed local field) and algebraic morphisms: the analytic spaces are always intended as auxiliary
tools to define the finer topology and perform certain crucial constructions.

Once we have our candidate topology, we need to describe the class of analytic étale local
systems we are interested in. In this paper, we limit ourselves to the study of local systems on
smooth curves (notice that also the book [Mal] is mainly concerned with the one-dimensional
case), and we will deal with general varieties in a planned sequel to this article.

A priori one may see no reasons why one should not consider the category of ail such locally
constant sheaves of finite rank. However it turns out that, if the curve is not compact (and this
is really the only non-trivial case), certain bounds on the ramification of the sheaf around the
points at infinity must be imposed in order to obtain a reasonable theory.

In order to conveniently express this condition, we introduce a notion of analytic local funda-
mental group: the finite rank representations of this group classify the admissible ramification
behaviours of our class of sheaves. Chapter 3 and 4 are devoted to this construction, and we
refer to the introductory remarks of chapter 3 for more details. This local fundamental group
should really be thought of as a topological incarnation of the local differential Galois group of
[Kal). In particular, the upper numbering filtration defined in loc.cit. has a very satisfactory
counterpart: that is, we have a canonical higher ramification filtration on our local fundamental
group, which behaves pretty much the way it is expected of these gadgets. In terms of this fil-
tration we define also a notion of analytic Swan conductor, which is one of the main characters
in our story.

However, at present we cannot yet claim that we completely understand the local theory of
sheaves on a punctured curve: there are still a few important questions which need to be clarified,
the main, according to our opinion, being conjecture 1| in section 3.1. On the other hand, we
emphasize that none of the results in this paper depend on any conjecture: everything is proved
unconditionally. But lest the reader should fear of being dragged on some wild Swan chase,
let us highlight few firm points already established: first, the definition of the Swan conductor
itself, is given in section 4.3, together with the usual paraphernalia of representations, their
slopes and so on. Second, we can prove (theorem 9) a version of the Ar[-Hasse theorem: the
Swan conductor of a representation of finite rank is always an integer. Third, we construct
(section 4.2) a functor of meromorphic vanishing cycles for analytic étale sheaves, for a basis of
dimension one (i.e. essentially for a family of varieties over an open disc). This functor takes
values in the category of sheaves with an action of the local fundamental group.

In view of its ties with the local differential Galois group, and since the latter group classifies
connections with poles of finite order, the label “meromorphic fundamental group” which we
bestow on our construction, seems appropriate enough. Hence we derive a notion of meromor-
phically ramified local system on an open curve, and the class of such sheaves is the chief object
of study in this paper.

Our main tool for the investigation of the meromorphically ramified sheaves is the Fourier
transform. The construction of the Fourier transform for analytic étale sheaves of A-modules
(where A is some “big” torsion ring) is accomplished in chapter 6: it is really what one expects:
we take the (essentially unique) rank one local system L4 on the affine line which has Swan
conductor equal to one at infinity, then, for any vector bundle E — § with dual E' — S, we have
the dual pairing (,) : E x5 E' = S, and the Fourier transform on E is the anti-involution

F, :D(E, A) — D(E', A)

with “kernel” given by (,)’L,. We actually give a somewhat more general construction of
the kernel, using Lubin-Tate theory: all these alternative kernels become isomorphic on the
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completion of the algebraic closure of our base field, but the extra generality could be useful for
future arithmetic applications.

Qur first application of the Fourier transform is contained in section 8.4: there we prove (see
theorem 17) that the cohomology of any meromorphically ramified local system on a curve, has
finite rank. We also show by a counterexample, that finiteness does not hold if the ramification
is worse than meromorphic.

Wherever there is a Swan conductor, one expects also a formula of the Grothendieck-Ogg-
Shafarevich type. As a second application, we verify such a formula for some very special sheaf
on the affine line (see corollary 8 in section 8.4). This result is of course very modest, but is
significant nevertheless. In a future paper I will show how to derive the full conjecture 2 of
section 8.4 from these very special cases (and from the principle of the stationary phase). The
proof of corollary 8 relies on (beside the Fourier transform) a deformation argument, based on
the Kummer-Artin-Schreier-Witt theory recently developed by Suwa and Sekiguchi. For more
details, we refer the reader to the beginning of chapter 7.

In chapter 9 we prove our principle of the stationary phase, and we sketch a study of the
local Fourier transform by the usual global to local method. The knowledgeable reader will
recognize the influence of Katz’s paper [Ka2] on our presentation (except that our poor style
cannot match Katz’s elegant exposition). In particular our theorem 19 is formally identical to
theorem 3, pag.114 in loc.cit.

Our last application of the Fourier transform is of arithmetic nature: the inspiration comes
from the classical work [We] of Weil. In that paper, a special role is played by certain quadratic
characters of a locally compact topological field F. Let 3 : 7 — C* be a fixed additive character
of ', V a finite dimensional F-vector space and ¢ : V' — F a non-degenerate quadratic form.
Weil defines a Fourier transform f — f from the space of distributions on V to the space of
distributions on the dual V’. Next he proves the following formula (see [We],chapt.l,n.14]:

Doa€) =(a)- g P(Hog)(E)  (E€V?)

where y(q) is a complex number of absolute value equal to one, |¢| is a volume factor and
g' : V' = k is the transpose of ¢ (see loc.cit.).

Of the two factors, the most interesting one is, by far, v(g). In [We], the properties of v as a
function of the quadratic form ¢ are studied at length. The main result is that the assignment

g~ v(q)

descends to a group homomorphism from the Witt group W (F) of the given base field F to the
group of complex roots of unity.

In case F is a finite field, a simple application of the sheaves-to-functions dictionary of [SGAA4 %]
allows us to recover the value of y(gq) by cohomological means. In fact, in this case it boils down
to a finite (Gauss) sum, and one has the formula:

(1) v(q) = Te(Fr, HI™Y (V xp F*, q"Ly)(dim V/2))

where L is the Lang torsor associated to the character 1 (which acts as a kernel for the f-adic
Fourier transform in the finite field case), F'¢ is the algebraic closure of F' and Tr(Fr, M) denotes
the trace of the action of the Frobenius generator F'r € Gal(F°/F) on a Galois module M.
The cohomology group appearing in (1) has an obvious analogue in our theory (after all,
g* Ly is a meromorphically ramified sheaf), except that for the time being, we can only deal
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with torsion coeflicient sheaves. But this limitation cannot stop us from considering an inverse
system of kernels {L,_} (see chapter 10 for the notation) and then define

I(q) = lim HI™Y (V x, k%, ¢"Ly.)(dim V/2) @2, Qe.
n

In chapter 10 we show that I'(¢) descends to a homomorphism from the Witt group of & to
the group of isomorphism classes of one-dimensional ¢-adic Galois representations of (a certain
extension of) k. Furthermore, many formal properties of Weil’s y-invariant have adequate
counterpart for I'. The precise relationship between I' and Weil’s invariant is not completely
clear yet; nevertheless, we hope that this example may offer a glimpse of the kind of applications
which we foresee for our theory.

To conclude, we want to mention two important differences between this version of the paper
and the previous one [Ra2]. First of all, in [Ra2] an £-adic formalism was proposed for analytic
étale cohomology: [ recognize now that this issue presents non-trivial aspects, and the fierce
criticism of a referee advised a tactical retreat from that front. Nevertheless, | am confident
that an £-adic theory of meromorphically ramified constructible sheaves will eventually appear,
and I plan to come back to this subject in a sequel to this paper.

Second, in [Ra2] an incomplete proof was given of theorem 10, which states that the Fourier
transform commutes with Verdier duality. The “proof” amounted to a reproduction of a sketch
of the unpublished argument of Verdier. Another referee pointed out gaps in this approach
which cannot be easily filled. Therefore in this new version we have given a different proof,
closer in style to the method of [Ka-La].

2. PRELIMINARIES

2.1. Lubin-Tate theory. We recall here some well known facts from Lubin-Tate theory. The
paper [LT] is the original source, but a complete account can be found in Lang’s book [La).

Let k be a one-dimensional local field with valuation |- |; denote by k° and resp. 7 the ring
of integers of k and a uniformizing parameter in k°. Let q be the cardinality of the residue field
k = k°/m, where as usual m = (7) is the maximal ideal. Set p = char £k > 0. Let also k® be
the algebraic closure of k and k* its completion, with the unique valuation | -| that extends the
valuation of k.

Following Lubin-Tate [LT], we let §, be the set of power series f € k°[[X]] such that

f(X) = X mod degree 2
F(X) = X9 mod ~.

The simplest example is just the polynomial f(X) = X 4+ X9. Recall that a formal group
F is a power series F(X,Y) = Y,;0;; X*Y7 with coefficients a;; € k, satisfying the identities
F(F(X,Y),Z2) = F(X,F(Y,2)), F(X,Y) = F(Y,X) and F(X,0) = 0. A homomorphism
of the formal group F into the formal group F' is a power series f(X) € k[[X]] such that
f(F(X,Y)) = F'(f(X), f(Y)). In particular an endomorphism of F' is a homomorphism of F
into itself. We say that a formal group is defined over k° if its coefficients a;; are in k°.

The following theorem summarizes the main features of the Lubin-Tate construction:

Theorem 1. a) For each f € §, there exists a unique formal group Fy, defined over k° such
that f is a (formal) endomorphism of Fy. Moreover, for any two power series f,g € F» and
every a € k° there is a unique [a];, € k°[[X]] such that [a];, € Hom(Fy, Fy) and [a];, =
aX mod degree 2.
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b) The map a ~ [a]; ; gives a group homomorphism k° — Hom(F;, 7)) satisfying the compo-
sition rule
[a)g.nolals,g = [ably
In particular, if f = g, this map is a ring homomorphism k° — End(F}).

Proof. This is theorem 1.2, chapt. 8 of [La]. O

We will write {a]; in place of [a];,; in particular notice that [7]; = f.
Given f € §x, the associated formal group F; converges, as a power series, for all pairs
(z,y) of elements of k° such that |z|,|y| < 1. We introduce the notation A(a,p) for the set

{z € ke, |z —a| < p}. Here a € k* and p is a real number. Then it is clear that F induces a
group structure on A(0,1). Any a € k° induces an endomorphism [a]; of this group.

Definition 1. For any positive integer n we let G, C k* be the kernel of the iterated power [r]}.
Also we define Goo = UpsoGly.

We collect here some well known results about G;:

Theorem 2. 1) The action of k° on A(0, 1) induces an isomorphism of k°-modules between G,
and the additive group k°/m".

2) The field k(G,) is a totally ramified abelian extension k with Galois group isomorphic to
(k°/mm)x.

Proof. See theorem 2.1, chapt. 8 of [La]. O

We specialize now to characteristic zero, that is char(k) = 0. In this case it is known (see
[La], section 8.6) that for any formal group F over k, there exists a formal isomorphism

A F =G,

where G, is the usual additive formal group over k, that is G,(X,Y) = X + Y. The isomor-
phism X is called the logarithm of F, and it is uniquely determined by /' and by the condition
dA(0)/dX = 1.

Lemma 1. Let I' be a Lubin-Tate formal group, i.e. F = F; for some f € §.. Then the
logarithm X = Ap can be written in the form:

Xe

i

AX) = Y (%)

with ¢;(X) € k°[[X]].
Proof. This is lemma 6.3, chapt. 8 of [La]. O

It follows easily from the lemma that A converges over A(0, 1}, therefore it induces a group
homomorphism

XA A0,1) — G, (k).

The following theorem measures the extent to which A fails to be an isomorphism of groups:
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Theorem 3. Let ep(Z) be the power series (with coefficient in k) which is the inverse of Ap(X).
Then ep(Z) converges on the disc A(0, |r|Y9=1) and induces the inverse homomorphism to Ap
on the subgroups

A0, a]0=) T G, (0, /7).
AF

(the group on the right coincides set-theoretically with the group on the left, and we use the
notation G, to emphasize that it is endowed with additive group structure).

Proof. See lemma 6.4, chapt. 8 of [La]. O

Remark: a) It can be shown that A is a homomorphism of k°-modules, i.e. for all a € k°
there is an equality of power series:
a- A= Xefa];.
b} Using theorem 3 and (a) it is not hard to show that the kernel of X is the subgroup G-

In what follows we will reserve the symbol p; for the constant |x|*/(9-1),

2.2. Complements of étale cohomology. Berkovich has defined an étale topology on his
analytic varieties, and has studied the corresponding cohomology. In the work [B1], which is
the reference for all the definitions which are implicit in this paper, he establishes the usual
properties for his cohomology, like proper and smooth base change and Poincaré duality. In [B2]
and (B3] he introduces two constructions of vanishing cycles.

In this chapter k will denote an arbitrary complete valuation field.

We denote by Et(X) the category of étale analytic varieties over X and for any ring A, we
let S(X, A) be the category of sheaves of A-modules on Et(X).

In his paper, Berkovich considers mainly finite rings of coefficients, of the form A = Z/nZ.
Tor our purposes, these are not quite enough, since we have to consider characters of an infinite
divisible group G into AX.

Our first task is to extend the main results to more general torsion rings A. Instead of trying
to reprove all the statements that we need beginning from scratch, we take a shortcut: we will
show that in order to compute the effect of a cohomological functor on a sheaf F of A-modules,
it suffices to regard F' as a sheaf of abelian groups and compute the cohomological functor inside
the category of sheaves of abelian groups. This will allow us to quickly derive our results from
the theorems of Berkovich.

To start with, let A be any torsion ring and let D{X, A} (resp.(D* (X, A)) be the derived
category of complexes (resp. of complexes vanishing in large negative degrees) of sheaves K of
A-modules and similarly define D™ (X, A); denote by Wy the forgetful functor from D{.X, A) to
D>X,Z2).

Let f: X — Y be a map of analytic spaces over k. I'irst of all there is a direct image functor

Rf.:DH (X, A) =Dt (Y, A).
Proposition 1. The functor Rf, commutes with the forgetful functor, i.e.
Rf,eTy =WyokRf,.

Proof. For any sheaf F we will construct a resolution I by sheaves which are both injective as
sheaves of A-modules and flabby as sheaves of abelian groups. One checks as in the algebraic
case that flabby resolutions are f,-acyclic : to do this one can look at [Mi] chapt. 111 sections
1,2,3 and convince oneself that all the arguments work without change in the present situation.
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Then I' computes at the same time Rf. in the categories D(Y,A) and D(X,Z), and the
proposition follows.

For each z € X, choose a geometric point z’ localized at z, i.e. an imbedding of the residue
field H(z) of = in the completion of its algebraic closure. We form the locally ringed space
X' = Ugexz’ that we endow with the discrete topology. This space is an inductive limit of
analytic spaces and therefore carries a natural étale site XJ,. Let m : X/, = X be the obvious
map.

The sheaf 7*F is the direct product over the stalks F,, = z'*F at the points ' € X’. For
every ' € X’ choose an imbedding into an injective A-module F,, — I : we see I» as an
injective sheaf of A-modules over the point z’. The product I° = Il /¢ x: 1.+ is an injective sheaf
of A-modules on X’ and clearly F imbeds into 7,/. Since =, preserves injective sheaves, we have
constructed the first step of an injective resolution of A-modules; if we iterate this construction
we obtain a full Godement resolution I" for . On the other hand, 7 is also flabby as a sheaves
of abelian groups (since every sheaf on X’ is flabby) and #. preserves flabby sheaves, therefore
I' is also a flabby resolution, as wanted. O

Next we turn to cohomology with support. For the notation we follow section 5.1 of [B1], to
which we refer the reader for all the relevant definitions.

Recall (see loc.cit) that a ¢-family of supports ® defines a left exact functor ¢g : S(Y,A) —
S(X,A) as follows. If F € S(Y,A) and f: U — X is etale, then

(6o F)(U) = {s € F(Uy)|Supp(s) € ®(f)}.

For example, if ® is the family of all closed subsets, then ¢ = ¢.. If the map ¢ : X - Y is
separated then the family of all ¢-proper subsets of X is a paracompactifying ¢-family, and we
get a left exact functor which is denoted by ¢..

We can derive the functor ¢ in the two categories D* (X, Z) and Dt (X, A), and in this way
we obtain two functors that we denote both by R¢s. The following proposition shows that in
the cases of interest no ambiguity arises from this choice of notation.

Proposition 2. Suppose that the family ® is paracompactifying. Then the two functors defined
above coincide, i.e.

RpgoWy = WyoRy.

Proof. The proof of proposition 1 produces for any sheaf of A-modules a resolution that is
injective in the category of sheaves of A-modules and flabby in the category of sheaves of abelian
groups.

To prove the theorem, it suffices to show that this resolution is acyclic for the functor ¢4
defined on the category S(X, Z), thus the proposition follows from lemma 2 below. O

Lemma 2. Suppose that the family ® is paracompactifying. Let F' be a flabby sheaf of abelian
groups. Then R*¢s(F) =0 for alln > 0.

Proof. 1t is shown in [B1}, proposition 5.2.1, that B*¢4(F) is the sheaf associated with the
presheaf (U — X) = HQ(”(U¢, F). Therefore it suffices to show that under the stated hypothe-
sis, Hg(y)(Us, F') = 0 for all étale morphisms U — X and all n > 0. Since the restriction to U of
a flabby sheaf of abelian groups on X, is a flabby sheaf, we have only to prove this for U = X.

Consider the morphism of sites = : X., — |X|, where | X is the space X with its underlying
analytic topology. The morphism 7 induces a spectral sequence

HE(1X|, R'r, F) = HEY(X, F).
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We will prove that R¢m,F = 0 for all ¢ > 0. Assuming this for the moment, we show how to
conclude. It follows from the vanishing that HE(|X|, 7, F) = H} (X, F). Since F is flabby by
hypothesis, we obtain from [B1], corollary 4.2.5, that 7. F is flabby in the analytic topology.
Then 7, F' is ['g-acyclic, by lemma 3.7.1 from [Gro| and the lemma is proved.

To see that RIn,F = 0, we can look at the stalks of this sheaf. For any point z € X, let
G be the Galois group of the algebraic closure of the residue field #H{z). According to [B1],
proposition 4.2.4, we have (RIT, F), ~ HYG,, F,), ¢ > 0. Since F is flabby, it follows from
[B1], corollary 4.2.5 that F} is an acyclic G,-module, as wanted. [

As a corollary, we get a proper base change theorem for sheaves of A-modules.

Theorem 4. Assume that char(%) is invertible in A. Let ¢ : Y — X be a separated morphism
of k-analytic spaces, and let f : X' — X be a morphism of analytic spaces over k, which gives
rise to a carlesian diagram

Yl > }/

A
/
X —X
Then for any complez K* € DF (Y, A) there is a canonical isomorphism in Dt (X', A)

S (RHK) =~ RG(fK).
Proof. The usual devissage reduces to the case where K is concentrated in degree 0. Then the

theorem follows from proposition 2 and theorem 7.7.1 of [B1]. O

Let D (X, A) be the subcategory of D" (X, A) consisting of cohomologically bounded com-
plexes. Let ¢ : ¥ — X be as in theorem 5 and suppose that the fibres of ¢ have bounded
dimension. Then, by corollary 5.3.8 of [B1] and proposition 2 we deduce that R¢ takes D (X, A)
to D?(Y,A) and extends to a functor R¢, : D™ (X, A) = D~ (Y, A).

The following projection formula is proved as in [B1], theorem 5.3.9.

Theorem 5. Suppose that F* € D (X,A) and G € D~ (Y, A) or that F- € D*(X, A) has finite
Tor-dimension and G* € D(Y, A). Then there is a canonical isomorphism
L L
(2) P & R$(C) = R(#" (F) & G).
O

Remark: we point out that the isomorphism of the theorem is functorial in both F" and G".
Explicitly, let f: F' — F" and g : G' — G be maps of complexes; then the isomorphism (2)
induces the following commutative diagram

~

L 1.
F @ Re(G) Rpi(¢"(F') ® &)
L 1.
1ORé:(g) R¢:(¢°(1)Bg)

F & R$(G) ——> Ry(¢" (F) & C).

Finally we explain briefly how to deal with Poincaré duality for sheaves ol A-modules.



10 LORENZO RAMERO

Let A’ = A be a ring homomorphism and let F' (resp. G) be a sheaf of A-modules (resp. of
A’-modules) on the analytic space X. Then F becomes a sheaf of A’-modules by restriction of
scalars, and we can form the tensor product F @, &, The sheaf of A’-modules F @4 G carries
also a canonical structure of sheaf of A-modules. To describe this structure, recall that a sheaf
of A-modules S is by definition a A-module object in the category of sheaves of abelian groups;
in other words, the structure of § is determined by a collection of endomorphisms Ay : S — S
for all A € A, such that AsoAd = (AX)% and 15 = ids. Then the structure of F @4 G is given
by the rule: Agg ¢ = AR ®a idg.

Proposition 3. One can assign to every separated flat quasifinite morphism ¢ : Y — X and
every sheaf of A-modules on X a trace mapping

Try : " (F) = F.

These mappings are functorial on F' and are compatible with base change and with composition.
If ¢ is finite of constant rank d, then composition with the adjunction map

. . T,
F o ¢.8'(F)=¢d"(F) =3 F
gives the multiplication by d. These properties determine uniquely the trace mappings.

Proof. In theorem 5.4.1 from [B1] the mappings are constructed in the category of sheaves of
abelian groups, but the construction shows that Try, commutes with the homomorphisms A*,
A € A, i.e. it preserves the structure of A-module. O

Let X be an analytic variety over k. Denote by p,, the sheaf ol roots of unity of order n.
We write uf for the d-th tensor power of u, with itsclf. Then we define the sheaves A(d)x =
1e ®@z/n Ax. By the argument above, A(d)x is a sheaf of A-modules.

-~

Let n be an integer prime to char(k). Here we specialize further and assume that nA = 0.

Proposition 4. Suppose that k is algebraically closed. Then one can assign to every smooth
connected k-analytic curve X a trace mapping isomorphism

TI‘X : HS(JY, A(l)x) — A.
Proof. Theorem 6.2.1 of [B1] constructs trace mappings

Trx : H3(X, up) = Z/nZ

[

with corresponding properties. By theorem 5, these mappings induce isomorphisms of abelian
groups
TI‘X : Hrf(/‘{,f\(l)x) jad Hf(){,uu) ®z/nzl‘\ — Z/nz®z/nzA ~ A,

But the remark after the proof of theorem 5 implies that this isomorphism preserves the A-
module structure. [J

Using proposition 4 we can now establish the usual formalism of trace maps, just by following
{B1] and making the obvious modifications. We leave the details as an exercise for the referee.
Let G',G" € D? (Y, A); a general nonsense argument provides us with a canonical morphism
in D* (X, A) ( _ ‘
Ré.(Hom(G,G")) — Hom(R$:G', R$G ).
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Applying this morphism to complexes of the form ¢*F"(d)[2d] and using the trace mapping
R¢(¢* F (d)[2d]) = F° we obtain for any G* € DP(Y, A) and F* € DP(.X, A) a duality morphism

Ro.(Hom(G", ¢" F (d)[2d])) — Hom(R$G, F').
Theorem 6. The duality morphism is an isomorphism.

Proof. The proof is given in [B1], theorem 7.3.1, with A = Z/nZ. With the help of the remarks
above, the reader can verify that the same proof goes through with no change for a general ring
Asuch that A =0. O

3. THE ANALYTIC FUNDAMENTAL GROUP OF AN AFFINE CURVE

The aim of this section is the construction of a canonical descending filtration on the analytic
fundamental group of G,,. Some remarks about the parallel positive characteristic situation
may motivate our idea. Let F be a field of positive characteristic, and let 0 be the origin of
AL. The henselization of A} at the point 0 is by definition § = SpecOﬁl'u, where O%, o is the
henselization of the local ring of germs of regular functions around 0. Then S has a generic point
7o, and for any choice of a geometric point 7, localized at 7y, we have the local fundamental
group at 0 of Ay — {0} which is the étale fundamental group m; (7,7,), in other words, the
Galois group of the separable closure of the field of fractions of O ;. It is well known that the
inertia subgroup f of m(7n,,7,) has a distinguished subgroup P, called the wild inertia subgroup.
The quotient I/P is the tame inertia, which is isomorphic to the product I11,Z, ranging over all
primes € # p. Morcover, [ is endowed with a canonical descending filtration, 10, indexed by
the positive real numbers r > 0, such that 7 = /(% and P = J,,, /(). The Swan conductor of
an f-adic representation of m(7g,7,) is given in terms of this higher ramification filtration.

In the analytic setting, the replacement for 7y is a certain huge and rather unwyieldy pro-
analytic space, from which it does not seem to be feasible to extract any detailed information.
To our rescue comes Gabber-Katz’s theorem on the local-to-global extension of local £-adic
representations. Briefly put, this states that any finite rank {-adic representation of m, (1, 7,)
extends functorially to a smooth é-adic sheaf on G,,,, which has at most tame ramification at
infinity.

The foundations of the theory of the fundamental group of analytic spaces have been estab-
lished recently by de Jong [del], and we are therefore encouraged to proceed in the following
way. We will begin a close study of 7{*(G,,,Z), and find a certain canonical filtration on it.
Then we will try to define a notion of local fundamental group, basically by decreeing that the
local-to-global extension theorem should hold, and we will seek to convince the reader that this
approach gives rise to a reasonable theory. In particular, the higher ramification filtration will
be exported from the global to the local fundamental group.

3.1. The asymptotic Kummer exact sequence. Let X be any good analytic space over
the complete non-archimedean field & of characteristic zero and residue characteristic p. We
introduce the sheaves p,= and Uy on the étale site of X, by setting

o (Vy={feOv(V) | =1 (n>>0)}
Uy (V) ={f e Ov(V) | [1— flap <1}

for any étale morphism V — X; the usual multiplication of functions defines an abelian sheaf
structure on .
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Lemma 3. (Asymptotic Kummer exact sequence) There ezists a short ezact sequence of étale
sheaves

0 —> ftpee —> ! ——> Oy 0.

J —log(/)

(3)

Proof. We only have to prove the surjectivity of A, and for this we can check on the stalks. Let
p € X be any point, and f € Ox ,. Choose some pointed étale morphism (V,¢) — (X, p) where
f extends to an element f € Oy (V). Take a compact neighborhood W of ¢ in V so that f
is bounded on W, and we can find an integer N such that |p" flapw < p1 = p/(~P). Then
g = exp(p" f) is defined and belongs to Ow (W); moreover, ¢ vanishes nowhere on W. Hence
g defines an analytic map W — G,,. Define W’ as the fibre product in the following square
diagram

w' W

g
l pagt l

Gp ————> Gy,

Then W’ is étale over W and h = ¢'/*" is defined as an element of Ow:(W'). One sees easily
that A(R) = ¢*(f) and the claim follows. O

Suppose now in addition, that X is the analytification of a connected algebraic scheme A’. Then
H(X,U") is the group U? of elements = € k° which are congruent to 1 modulo m. Taking the
cohomology of the exact sequence (3) we obtain

() 0— HO(X, Ox)/AUY) — HY (X, fipe) —> H'(X,U") —> H'(X, Ox).

Now we make the further assumption that the field k& be algebraically closed. This hypotesis
will be lifted only towards the end of section 4.1. Under this hypothesis, we have A(U!} = k.
Furthermore, we point out that, if the variety X is proper, then the leftmost term in (4) vanishes.
For this reason, and for others which will shortly be apparent, the case when X is proper is
scarcely interesting.

Lemma 4. Suppose X = X" for some k-algebraic scheme A'. Then the inclusion of sheaves
Hoeo — Uy induces a natural imbedding

lim H'Y(X, ppn) = H' (X, Uy).

n—oo

Proof. 1t suffices to consider the usual Kummer exact sequence

0 > fpn - U Uy - ()

and observe that the induced sequence
0 — .u'p"‘ — HO(X,UI{—) _— HU(.—\’,UI{') —_— 0

is exact. [J
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We notice that, due to the well-known compactness properties of the algebraic étale topology,
the group lim, o, H'(X, gtp~) can be suggestively rewritten as H'(X, jtpe ). What seems to be
happening is that the analytic and algebraic contributions to the (abelianized) fundamental
groups are distribuited onto respectively H°(X,Ox) and H'(X,U%). Accordingly, I do not
expect any exotic coverings coming from the cohomology of U!, but | do not know how to
compute it completely. Therefore I will just conjecture this problem away:

Conjecture 1. The imbedding of lemma 4 induces an ezact sequence
00— ]1’((\.), ﬂvpm) — HI(X,U}‘-) I Hl(z\,, OX)
whenever X is the analytification of a k-algebraic scheme X',

We take the time out to make some side remarks on the cohomology of &4!. These will not
have any bearings on the continuation, so the hurried reader is invited to skip them.

The question of the structure of H'(X,U") is meaningful and not trivial even in the proper
case. Suppose now that X is the analytification of a proper scheme. Then, as it is well known,
the group H!(X, 0%) is invested of geometric meaning, by means of its identification with the
set of k-rational points of the Picard scheme Pic(X). The natural imbedding 2}y < O yields a
morphism H!(X,U}) = H'(X, O%), so we may ask whether //'(X,}) has geometric meaning
as well. | propose the following conjectural picture. First of all, let us introduce the sheaves
Uy, 0% defined by

Uy (V)={felU(V) | [1=lowp <pr}
ORV)={f € Ox(V) | [flow < p1}

for any étale map V — X. The restriction of A induces an isomorphism U —=» 0% . The
situation is summarized by the following diagram

HYU(X, 0%) <2 HY(X,uL) < B (xue) 28 gix, 09) 2= BY(X, Ox).
We recall that H'(X, Ox) is canonically identified with the tangent space ToPic(X) of Pic(X)
at the point 0 € Pic(X'). Hence the following conjectures arise naturally:

1) the map 73 is injective and identifies H*(X, O4!) with an open neighborhood (with the
topology inherited from k) of the origin in TyPic(X);

2) the composition j; 0320 H'(A)™! corresponds, via the identification in (1) and the standard
identification H'(X, O%) = Pic(X), to the classical exponential map for (p-adic) Lie groups.

Then we expect that also the map j, be the imbedding of an open disc around 0 € Pic(X).
This should be in fact the smallest open disc which contains all the p-power torsion elements in

Pic(X).

Back to business: in any case, we notice that the composition of the morphisms ppn — UL —
Ox is the zero map. Thus, if we let #(X) be the preimage of H'(X, jipe) inside H' (X, ppes),
we get an exact sequence

0— HD(Xy O)\)/k — ’H(’Y) - I{I(A)a)u'p“’) —0

with a canonical splitting, coming from the map of sheaves ppn < prpes.

After these generalities, let us specialize to the case X = A", Let & be a cooordinate on
Al; we get H(AD") = k(z)/k, where k({z) denotes the group of entire power series over A",
This group should be dual to a certain quotient of the yet-to-be local fundamental group around
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infinity. According to our philosophy, there should be a canonical filtration on this group, and
that in turns should leave a print on H({A%"). As a first step, we are going to define a canonical
filtration on H({A*").

Definition 2. Let k[z]/k — H(A}*") be the imbedding of the group of polynomials in x with
vanishing constant term, induced by our choice of a coordinate x over A%, For any integer
n > 0, we define F,(A*") C H(AV*") as the subgroup of polynomials of degree < n. {F,}n>0
ts the meromorphic ramification filiration in cohomology. -

The union |, Fu(A") is called the meromorphic ramification in the cohomology of A"
and is denoted by H(A"*™ }mer.co-

We need to show that the meromorphic filtration is canonical, i.e. that it does not depend
on the choice of the coordinate . This is taken care of by the following lemma.

Lemma 5. Let z be some coordinate function on A°™. Any other coordinate is of the form
az + b for some a,b € k.

For the proof we require the following version of Weierstrass preparation theorem, whose proof
can be found for instance in Lang’s book [La], theorem 2.2, chap.5.

Proposition 5. Let o be any complete local ring, and suppose that [ € of[z]] is a power series
whose coefficients are not all in the mazimal ideal m of 0. Say that f(z) = Yo, aiz’ and
Ay ey Gpoy €M, a, € m. Then f factors uniquely as a product

flz) = (2" + 62”7 + ..+ b,)g ()
where by, ...,b, € m and g is a unit inof[z]]. O

Proof. (of lemma 5) Let f(z) = Y_;2,a;2’ be the power series expression for some other coor-
dinate function. We want to show that a; = 0 for j > 1. Suppose this is not the case. The
supremum of the values la;| (7 = 0,1,...) is attained for some index fmax. In order to apply
proposition 5 we would like that jh.x > 1. We can easily “jolt” the coeflicients, by replacing
f(z) with f(cz) where ¢ € k has large norm. We can also arrange that |a;_,,| = 1, by replacing

f(ez) with f(z) = aj! f(cz). Then proposition 5 gives us a factorization f(z) = P(z)g(z)
where P(z) is monic of degree jma, with coefficients in m. It follows that the roots of P(z) have
norm strictly less than 1. Let p be the maximum of these norms. In the closed disc of radius p
centered at 0, the above formal factorization decomposes the analytic function expressed by f
as the product of P and another analytic function g. In particular, f is not an injective map on

the disc, hence it cannnot be a coordinate function. [

The next example is & = G, and X = G2'. Repeating the same considerations we get a
canonically split short exact sequence

00— k('T! $_1>/k - H(ngn) — Hl(Gmwl‘p“’) —0.

Here we have chosen some coordinate = on A! and have denoted by k(z,z~!) the group of power
series in z and x~! which are entire over all of G,,,. Loosely speaking, this rather large group
describes all the characters of the analytic fundamental group of G,,, which are wildly ramified
at either 0 or infinity.

Let T be some geometric point of G&*. De Jong [del]] has defined the analytic fundamental
group 7" (G, Z). In keeping with our philosophy, there should be an imbedding of the local
fundamental group into m{*(G%*, T), which should be canonical up to conjugate action and such
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that the image should inject into a quotient group 7*°4°(G2"  T) of elements which are “tamely
ramified” at the point 0. This translates as follows.

First of all, the tamely ramification comes from the term H'(G,,, ptpeo) =~ Q,/Z,. We isolate
a subgroup ’H(G““)’""“ro = k((z)/k)} D (Qp/Z,) C H(BE™). Inside H(G2P)™°*? we further select
the subgroup of characters with meromorphic ramification at infinity:

H(Go mereo = (k[z]/k) @ (Qp/Z;) C H(GT).

The proof that these subgroups are canonically determined is the same as for lemma 5, so we
omit the details.

It is obvious that the image of the canonical map i : H(A*")1er 0o = H(G2") lands into
H(G ) merco

Definition 3. The meromorphic ramification filtration on H(G2") is the increasing sequence of
subgroups F,(G%"), n =0,1,2..., defined as i(F,(A"*")) + (Qp/Z,).

3.2. prime-to-p torsion cohomology. In this section we want to determine the group

HYG;, lim puy)
(p,N)=1

where N ranges over all positive integers prime with p. As predictable, the answer is the same
for both algebraic and étale cohomology. Nevertheless, this result does not seem to descend
directly from Berkovich’s general comparison theorems in [B1]. The following result will not be
used in the sequel, and it is included only for the sake of completeness.

The proof uses the so-called Mittag-Leffler technique. This material should be pretty standard,
but since Berkovich takes pains to prove a very special case (see [B1], lemma 6.3.2) of proposition
6 below, we do not feel too ashamed for including some extra details.

Definition 4. Let A = {A,,dnm : Am = A,} be a projective system of abelian groups. One
says that A satisfies the Mittag-Leffler condition if for any n € N the decreasing sequence

{¢n.m(Am)} of subgroups of A, is stationary.

Proposition 6. Let {X,}.en be an increasing family of subsets of the analytic space X satisfy-
ing X =, Xn and X, C Int(X,41) for alln. Let F be an cbelian étale sheaf on X and assume
that for a given j, the projective system {H='(X,, F)}, satisfies the Mittag-Leffler condition.
Then the canonical map

HY (X, F) = imH’ (X, F)
n
is bijective.
Proof. A proof for the topological category is given in [Ka-Sh], prop. 2.7.1. To handle the
analytic étale case requires hardly any changes. O

Proposition 7. There exists a canonical isomorphism

H‘(Gj‘,{‘, lir.nApN) ~ [ﬁn Z/NZ.
(p.N)=1 (p,N)=1
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Proof. Write G2} = o A€, €7') where A(e,¢7!) is a closed annulus of inner radius ¢ and
outer radius €~!. We apply proposition 6 with 7 = 1 and F = lim py (to be picky, choose

(p,N)=1
a sequence of positive real numbers ¢, — 0). We need to compute lim H'(A(e,¢™1), F). As
€

A(e,e71) is compact, we have (see [B1], prop. 5.2.9)

H' (A, ), F) = lim H(A(e, ™), juw).
(p.N)=1

On the other hand, it follows easily from [B1], theorem 6.3.5 that
H'(A(e, ™), i) ~ Z/NZ

and the claim ensues. O

4. THE LOCAL FUNDAMENTAL GROUP

4.1. Meromorphic ramification filtration. In this section we complete the job started in
the previous one, in that we define the local fundamental group of A*" at infinity, or better,
what should be thought as a certain canonical quotient of it. Furthermore, we will exploit the
meromorphic ramification filtration in cohomology to define a canonical descending filtration on
it.

To justify our procedure, we have to unveil another (not so) secret source of inspiration. This
is the theory of the differential Galois group in characteristic zero, and our model is Katz’s paper
[Kal]. For the convenience of the reader, we give a quick digest of some aspects of it, in so far
as they are relevant to our situation (k algebraically closed of characteristic zero).

The theory comes in both global and local flavors. [for the global theory, one is given a
smooth, connected and separated k-scheme and a category DE(X) is introduced whose objects
are all the pairs (M, V) consisting of a locally free Ox-module of finite rank M, together with
an integrable connection V on M. Morphisms are the horizontal Ox-linear maps. With the
obvious notions of tensor product and internal Hom, DE(X}) is a “ncutral Tannakian category
over k”. Any rational point z € X (k) defines a k-valucd [ibre functor.

If w is any such fibre functor, we denote by =¥/ (X,w) the affine k-groupscheme Aut(w):
this is the differential fundamental group of X/k with base point w. Let @(wf’”(](, w)) be

the category of finite dimensional k-representations of :rrf‘.” (X,w). By some general theorem on
neutral Tannakian categories, the functor w defines an equivalence of tensor categories

DE(X) —> Rep(r{! (X, w)).

One also knows that any two k-valued fibre functors are (non-canonically) isomorphic.

For the local theory, let K be a complete discrete valuation field with residue field k. After
choosing a uniformizing parameter ¢, we can identify K = k((¢)). We denote by D the ring of all
t-adically continuous k-linear differential operators of K to itself. If # is any non-zero derivation
in D, its powers 1,8, 6%... form a K-basis as left K-module.

We denote by DE(K/k) the category of those left D-modules whose underlying K-vector
space is finite dimensional. In terms of a choice of #, an object of DE(K /k) is a pair (M, V(8))
of a finite dimensional K-vector space M and a k-linear map V(f) : M — M satisfying the
usual Leibnitz rule

i

V(6)(fm) = 8(f)m + [V(6)(m)
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forall f € K, m & M. DE(K/k) has natural internal Hom and tensor products, which make it
into a rigid abelian tensor category.

It is convenient to choose the derivation # = t?f:‘ in D. Then any one-dimensional object V'
in DE(K/k) is of the form D/D(# — f) for some f € K and the isomorphism class of V is the
image of f in

d
(5) K 1108 (K) = K(2))/Z+ h[[e] = K[t ')/Z.
One knows that, if V and W are two non-isomorphic one dimensional objects in DE(K/k), then
Homp(V, W) = 0 = Exty, (V, W)

and for V = D(f — f) we have Homp(V, V) = k while Exty,(V,V) a one-dimensional k-space
with basis the class of D/D(# — f)?. In particular, notice that the trivial object has non-trivial
extensions by itself. An iterated extension of the trivial object is called R.S.-unipotent. This
notion applies to the global theory as well.

The crucial result of the local theory is Levelt’s theorem in [Le], which states that, given any
non-zero object V in DE(K/k), there exists a finite extension L of K, which can be written in
the form K (t!/V) for some integer N, and such that the inverse image V, of V from DE(K /k)
to DE(L/k) is an iterated extension of one-dimensional objects of DE(L/k}.

The global and local theories are tied together thanks to the following observation.

Let DE(Gm)rs.o be the subcategory of DE(G,,) consisting of all objects which are regular
singular at zero. In terms of the choice of a coordinate z on G,,, the rank-one objects L of
DE(Gy,)rs.o are of the form

(k[m, z~, m% -+ P(:z:))

where P(z) € k[z] and the group of isomorphism classes of such L is the additive group k[z]/Z
via the map L = P(z) mod Z. Comparing with (5), we see that the inverse image functor

DE(Gm )35.0 — DE([(/IC)

induces an equivalence between the full subcategories of rank-one objects.
This prompts us to make the following

Definition 5. We say that an object V of DE(Gy,,) is special if there ezists « positive integer
N such that the inverse image of V by the morphism

N
r—T
Gﬂ‘l Gﬂl

is a finite direct sum of objects of the form L @ U, where
L is of rank one, regular singular at zero
U is R.S.-unipotent.

Then Levelt’s result implies
Theorem 7. (see [Kal], 2.4.10) The inverse image functor
DE(G,,) = DE(K/k)

when resiricted to the full subcategory of DE(G,,) consisting of the special objects, induces an
equivalence of categories. [
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The quasi-inverse functor is called the canonical eztension.

The £-adic analogue of theorem 7 is Gabber-I{atz’s theorem on the local-to-global extension
of representations of fundamental groups (see [Ka3], theorem 1.4.1). The notion of siopes and
Swan conductor familiar from local class field theory have also appropriate counterparts in the
differential equations setting. These are obtained as follows. First, consider a one-dimensional
object L € DE(K/k), and let L = D/D(t% ~ f) for some f € K; then the slope A of L is defined
to be the integer

max{0, —ord,(f)).

Next, if V is an arbitrary object in DE(K/k), find an extension E = k((t'/V) such that Vg is
a succcessive extension of one-dimensional objects Ly, ..., L,. To each of them we associate its
slope Ay, ..., A, (computed with respect to the uniformizing parameter of E). Then the set of
slopes (with multiplicity) of V is defined to be the collection of the numbers A;/N, ..., A,/N.
One can show that the slopes are intrinsic invariants of V, independent of all the choices made.

In place of the Swan conductor, we have the irreqularity indez of V' which is defined as the
sum with multiplicities of its slopes.

Theorem 7 allows to construct plenty of k-valued fibre functors on DE(K/k), namely choose
any point @ € kX = @,,(k), and associate to it the functor w, obtained by composing the
canonical extension functor with the functor “fibre at a”.

Hence the local differential Galois group can now be defined as I4;; = Aut{w,). It is endowed
we a canonical upper numbering filtration, given as follows. For any real number z > 0, denote
by DE(S)(K /k) the full subcategory of DE(K/k) of objects all of whose slopes are < z. Dual
to the inclusions

DES)(K/k) C DE(K/K)
we have homomorphisms of corresponding groups
laigy —= Aut{wa| DES(K/K)).

Their kernels are closed normal subgroups of I, denoted Iffff)! The usual properties of the
filtration have satisfactory differential analogues; see [Kal] for further details.

To see how this may be relevant to our discussion, we go back to formula (5). One way to
interpret (5) is as describing the group of k-valued characters of /4;,. By the observation above,
this is also the group of characters of a certain quotient of #¥//(G,,,w).

On the other hand we have the standard formula

Hom(m{™ (G2}, T), ppee) = H' (G, jipeo).

mer.oQ

We are therefore led to compare the two formulas
Hom(lyy;, k) = (k[t)/ k) @ (k/Z)

() Hom(T, sty ) = (k[E]/ %) ® (Q4/Z,)-

In the first one we have isolated the summand k/Z, to stress the similarity between differential
and analytic settings. This summand is responsible for the differential equations of rank one
with regular singularities at the origin. In other words, the complement k[z]/k classifies the
differential equations of rank one defined over all of A'. The upshot is that

the rank one differential equations on the affine line correspond ezactly to the an-
alytic étale sheaves with meromorphic ramification.

Dual to the imbedding H™e%2 C H'(GA, py) we have a quotient map 78" (G, 7) — I.
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The situation is less mysterious than what it may seem. To understand what is going on, we
consider our standard pp-torsor £, given as the sheaf of local sections of the logarithm

log : A(0,1) = A'.

An easy computation shows that the class in H'(A!, ppee) of £ is the clement ¢ € k(t). The
same class in Hom(Jy4,;, k) represents the differential equation

d
Ef=f

whose sheaf of horizontal sections is given by the scalar multiples of the exponential function.

We may ask why bound ourselves to the meromorphically ramified étale sheaves, since we
could as well try to extend the theory of the differential Galois group, to comprehend also the
p-adic differential equations with essential singularities.

I will come back later on more extensively on this matter. One of the main reasons is that [
have come to believe that the essentially ramified sheaves are in a sense “too wild”. For instance,
I can show that if a sheafl has only meromorphic singularities, then its cohomology has finite
rank, while for an essentially ramified sheaf this never happens.

We should comment briefly on the discrepancies appearing on the “regular singularities”
components of the character formulas (6). Let a € k be any element. The corresponding
differential equation of rank one is

=i

When a is a rational number, the sheaf of solutions is already defined on the algebraic étale
topology, and in fact it is a Kummer sheaf with finite monodromy. This accounts for the
appearance of the term Q,/Z, in the second formula in (6). On the other hand, when a ¢ Q,
the corresponding horizontal sections converge only on small discs, and there is no analytic étale
covering of G&* over which these sections can be prolonged. Yet the corresponding differential
module has its independent life, which explains the term k/Z on the differential side of (6).

We recall next a few notions from [del] section 2. For any analytic space X, let Cov(X) be
the category of analytic étale covering spaces of X. Every geometric point Z of X defines a
set-valued fibre functor F5 : Cov(X) — Set, which assigns to a covering Y — X its fibre Yz over
Z. Then 7¢"(X,Z) is the group of automorphisms of Fz. For a topological group G, denote by
G — Set the category of discrete sets with a continuous G-action. The fundamental group of
X has a natural pro-discrete topology, and Fr can be refined to a functor from Cov(X) to the
category 7" (X, Z) — Set.

After these preliminaries we can proceed with the construction of the canonical filtration on
# 7% (G4*, F). The idea is to mimick definition 5, and in this way give ourselves a “good” quotient
to work on.

For convenience, let T be a geometric point localized at the point 1 € G% and let 7 :
TG, E) — 779(GE?,T) be the canonical map (see [del], section 2). We denote by P the
kernel of 7. It is the intersection of the images of all the maps

by, T (G, T) = T (G, T)

m "

induced by the endomorphisms ¢y : z = z¥ of G°*. From (4) we obtain a natural map:

(8) lim H°(G2r, O)/k — Hom(lim Im¢n., pipe) = Hom (P, ptpe0 ).
N N
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Definition 6. We denote by A the subgroup of the direct limit group in (8), consisting of all
polynomials in the rational powers /N (N € N) with vanishing constant term. By the usual
argument we see that this subgroup is canonically determined, in particular is independent of the
choice of the coordinate z.

The essential ramification subgroup of #i" (G2, ) is the normal subgroup of P

I,, = ﬂ Ker(f: P — ppe).
feA

Notice that Pp.. = P/l.,, is an abelian group.
Lemma 6. /.,, s a normal subgroup of #{"(G%*,T).

Proof. Let v € n¢"(G2*,%) and f € A. Then f: P = iy extends to a character f(z!/V) :
Im@n. = ptpw for some N. The conjugate y(Kerf)y~' depends only on the class

¥ e i (G, E)/Impn. ~ZL/NE.

Clearly Z/NZ acts as the group of deck transformations of the covering ¢y : G5 — G327, i.e.,
% corresponds to a morphism

TG —— G2P

m

where ( is an N-th root of 1. Unwinding the definitions one checks easily that F(Kerf(zV/N )7t =
Kerf(¢z'/") and from this the claim follows. [J

Definition 7. The quotient w{"(G2*,T)/1.,, is called the meromorphic fundamental group of
G and is denoted by T (G, T). We impose a topology on n¢" (G, %) by declaring that
the intersection of finitely many subgroups

Ker(F(z'/N) : Imy, = pipe) (f €.A)

introduced in the proof of the lemma, form a cofinal system of open neighborhoods of the identity
element. (By [Bou), chapter 111.2 the topology is well defined and unique).

Remark: [ tend to think that the topology of 7" (G2, T) is just the quotient topology induced
by the projection

(9) n(Glr,7) - TG, )

but I do not know how to prove (or disprove) this statement. Is it perhaps buried in the
generalities of [SGA1]? In any case, the map (9) is continuous, and this suffices to prove the
following

Theorem 8. The fibre functor F: restricts to an equivalence between a full subcategory Cov™ " (G2)
of Cov(G") and m"" (G*?, T) — Set. Moreover, for ench object of Y € Cov™ (G4') there exists
an integer N such that the fibre product Yy in the diagram

Yy — VY

oy

3%
an an
G 22, g

extends to an abelian Gualois covering of Al:°",
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Proof. For the first statement, we only need to show that every n**" (G2}, T)-set which consists
of a single orbit is in the image of Fz. Since the map (9) is continuous and surjective, this is a
consequence of [del}, theorem 2.10. The second statement follows easily from the definition of
the topology of #**" (G4, Z). O

We regard the second part of theorem 8 as an analogue of Levelt’s main theorem. Of course,
in our case the result is built into the construction.

We also notice that 7 descends to a natural map on 7" (G2*, %) and we have a short exact
sequence

(10) 0 2 Prer = 7" (G%", F) — 719(G",7) — 0.
Next, our filtration is defined on the meromorphic fundamental group:

Definition 8. We set [®) = z**"(G2*,F) and for any positive real number r we let I be the
subgroup of P,.. consisting of the elements ¢ such that

flo)=0

for all f € A which have degree less than or equal to r. It is clear that v > r' = [} C I,
hence {I(")}, g defines a descending filtration on the meromorphic fundamental group, which we
call the meromorphic ramification filtration.

Finally we go local. Let co be the “point at infinity” on the projective line P!. Choose some
local coordinate z on P!, centered at oo (i.e. z(c0) = 0).

Definition 9. The pro-analytic space 1, is the projective system {A(00, )" }ocr<1 0f pointed
open discs

Afoo, ) ={peP' | 0<]|z(p)<r}
where ¢, , 1 A(0o, 1) = Ao, s) (r < 8) is the natural imbedding.
Recall (see [B2], section 2) that an étale space over 7, is just an object of the direct limit
category Et(ne) = lim BEt(A(oo,r)*) (where Et(X') denotes the category of étale morphisms

0<r<1
Y — X and the transition maps are given by the pull-back functors). The natural restriction

map defines a functor
BU(G) —> Bt (o).

Y —— Y,

Definition 10. The category Cod™* (1) is the full subcategory of Et(ne) consisting of all
objects of the form Y, for some object Y € Cod™ (GZ).

Proposition 8. The restriction map induces an equivelence of categories

R : Co™ (G ) — Lov™ (1))
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Proof. Suppose Y7, Y, are two connected étale coverings in Cov™ " (G%" ) such that there exists
an isomorphism ¥ : ¥}, ~ Y,,. Take an integer N as in theorem 8, so that both Y} y and Y3 5
extend to abelian Galois coverings of Al%". Then the isomorphism ¥ induces an isomorphism
¥t Yi Ny =~ Yo N, between abelian Galois coverings of 1.,. In order to show that iy comes
from a global isomorphism, it suffices to check that the canonical map

H(Al'an)mer.w — Hl(nooa )up“")
is injective. In turns, this is equivalent to showing that for all » > 0 the map
k[z7"]/k = H"(A% (00, 1), 0)/ log(H (A" (00, r),U"))

is injective, which can be checked explicitly.

This shows that Y} 5 and Y, 5y are isomorphic. Let Gy be the group of deck automorphisms
of the covering ¢n : Gy — Gy For ¢ = 1,2, the descent data from ¥; » to ¥; is given by a set
of isomorphisms

YN Yin (0 € Gn)

with the usual cocycle conditions. Similarly, the descent data for the isomorphism % is given by
a set of square diagrams
YN

7’
Yl,Nn }Q,Nn

Lo

oYy g —> vy " Yz Ny
Since all the spaces involved arc étale over G, , all the maps in these diagrams are determined by
the image of any chosen point in some disc A*(o0, 7). Therefore the diagrams extend uniquely
to descent data over all of G,,, which shows that Y; and Y; are isomorphic. [

In analogy with the differential case, we can call R~! the canonical eztension functor.

Definition 11. Let F5 be the fibre functor over Couv(G2}) defined by a geometric point T. Then
Gz = Fro R is a fibre functor for Cov™ " (). The local meromorphic fundamental group
T () 18 the automorphism group of Gz. It is well defined up to an isomorphism which
depends only on the choice of T.

Corollary 1. Fach choice of a geometric point in G,, determines an isomorphism
(G T) 2 w7 (o)

The meromorphic filtration on w{"°" (G} carries over to a canonical filtration on the local mero-
morphic fundamental group, which is in particular independent of the choice of base point. [J

To ease notation sometime we will write 7 instead of #7"*"(5,,). The short exact sequence
(10) has a local counterpart

mer alg

0= P27 (M) = 71 (M) = 0

where the rightmost term is the algebraic local fundamental group, which is canonically isomor-
phic to 2(1)

We give here a sample of the first few elementary properties of the meromorphic ramification
filtration. First of all, since the map

Py A—> A
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is an isomorphism (you can always take an N-th root of t'/*') one checks easily that for all real
numbers r > 0 there is an induced isomorphism

by 2 T —> J(rIN)

Next, we would like to explicit the connection between the meromorphic filtrations on the
fundamental group and on the cohomology of G2, as given in definition 3. The compatibility
between the two is expressed by the following

Proposition 9. Let f € H(GZ}) and let n be the smallest integer such that f € F,(G**). Then
n is also the smallest real number such that ['™ ¢ Ker(f : Poer = fipeo)

Proof. First of all, it is obvious that N ON Ker(f : Puer = fipe), so that the infimum over the
set of real numbers with this property is smaller than or equal to n. Suppose that this infimum
r is strictly smaller than n. For any g € A of degree less than r, set Cy = f(Kerg) C ppee. By

hypothesis:
C, =0.
g

Since all the proper subgroups of j,« are finite and nested into each other, this means that for
some g we have already Cy = 0. Take N an integer large enough so that both fy = @3 (f) and
gn = ¢x(g) extend to homomorphisms 7 (AM**, T) = fiye.

By construction we have Kergy C Kerfy and therefore we can find an endomorphism w of
tpeo Which makes the following diagram commute:

71 (A" ) s prpee
| /
p
We have End(jzp) >~ Z;, the isomorphism being given by

v (= () (v € Zp, € € pip).

Suppose that w = (=) and consider the ladder diagram with exact rows

0 — ftp= —> ! —> Oy —>0
(11) l(—)’ l(—)* lv
0 —> Hpoo Ut —2> 0y 0.

From the long exact ladder for the cohomology of (11) we derive that

fN=w.gn =7 9gn-

~ But this is a contradiction, since the degree of gy is strictly smaller than the degree of fy. The
claim follows. O

By inspecting the proof of lemma 6 it easy to see that the topological group #**"(7,,) has a
cofinal system of open normal subgroups. Let Z be the partially ordered set of all these open
normal subgroups (with order given by inclusion). Since the intersection of any two normal
subgroups is again a normal subgroup, we see.that Z is a small cofiltered category in a natural
way. We identify Z with a subcategory of 7" — Set by sending the normal subgroup S to
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quotient set w7**" /S with #**"-action given by translation. Select a right inverse functor § of
the functor F5 of theorem 8:

F:Z -5 Cov™(Gyy).
Then the composition
m o 3 : I _) Mtuer(nw)

defines a pro-analytic space over 7., which we denote by G™e.
Let A be any ring. Recall that, for any analytic space X = lim X;, the category S(X, A) of
i€l
sheaves of A-modules on X is defined as lim S(Xj, A}, where the maps in the direct limit are the
il
pull-back functors.

If G; is a group of automorphisms of X;, we let S¢, (X}, A) be the category of sheaves F' on
X; with a G;-action, f.e., the datum for all g € G; of a map p, : ¢*F — F satisfying the usual
associativity condition. If it is given a compatible system of groups {G,}, i.e. such that for > j
there is a map ¢;; : G; — G; with the property that every diagram of the kind

g
JY" — /\,,'

X; 29 x,
commutes, then we can let ¢ = lim G; and define the category Sg(X, A) = lim Sg,(X;, A).
il iel
All this applies in particular to the pro-analytic space G™¢". Let F be any sheaf of A-modules
on 7. and X € ™ any object. Then the pull-back of F to X is an object in S,(G™", A), well
defined independently of the choice of X. This construction defines a functor

A S(Neoy A) = SL(G™T7,A).
Proposition 10. The functor A is an equivalence of categories.

Proof. Let F' € S.(G™",A); by definition, there is a meromorphic étale covering X of some
pointed disc A*(0o,7) on which F lives. Set Y = R~!(X) and let j : X — Y be the imbedding
of X into Y. Clearly ¢ : Y — G,, is a connected (Galois covering, and it suffices to show that
G = j.F can be descended to a unique sheaf on G,,.

Choose any point p € Y and a coordinate z on Gy, centered at 0. For any positive real number
r, let A*(0,r) be the pointed open disc in G, with radius » and center 0. Since Y is tamely
ramified at 0, the connected component Y, of ¢~'(A*(0, r)) containing p is an étale covering of
A*(0,7) of finite degree. Let m(") be the subgroup of = which stabilizes Y,. Then G, = G}y, is
a sheaf with 7{") action, and it suffices to show that for any » we can descend G, to a unique
sheaf on A*(0,r), since 5o Yr =Y and U,y 7 = 7. But the map Y, = A*(0,r) is finite
étale and descent theory for such morphisms is a standard result. O

Lastly, we mention that all the constructions above have also “arithmetic” variants: suppose
that Xj is an analytic variety over the complete but not necessarily algebraically closed base
field k. Let k* be the completion of an algebraic closure of k and let X7, be the base change of

X, to k2. Then there is a short exact sequence (sec [deJ], proposition 2.13)

(12) 0 — i (Xza) ) — m (X4, T) — Gal(k*/k) — 0.
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Lemma 7. Suppose as above that k is a general complete field. The subgroup I.,, C m (G, 2., T)
is normal inside (G 4, T).

Proof. Let f € A be an element and take ¢ € Gal(k®/k). As in lemma 6 we see f as a
homomorphism f: P — p,«. Unwinding the definitions one checks easily that

o(Kerfyo™' = ker f°

where f — f° denotes the natural action of Gal(k®/k) on the group H%(G_ 1., 0). The claim
follows. O ’

The definitions 2 and 6 have to be slightly modified: the exact sequence (4) yields a natural
imbedding of the group k[z]/A(U') inside the group Hom(m; (G i, %), ptpe). For every N € N
and every finite field extension E of k we have a map ¢y : Gy g — G i and the analogue of
formula (8) leads us to replace A with the group Ay consisting of all polynomials in the rational
powers of z and with coefficients in k°. Then each element of f € A) determines a character
filmey g, — ppeo for some N, E.

Definition 12. The group 77 (G, x, T) is the quotient 7 (Gm x,T)/ less. We define a topology
on 17" (G, T) by declaring that the intersection of finitely many subgroups

Ker(F(z'/N) : Im$n,ge — fip=) (f € A

form a cofinal system of open neighborhoods of the identity element.

We obtain from (12) the exact sequence
0 — 71 (G, 70, F) — 77" (G i, T) — Gal(k®/k) —= 0,
Remark: from the definition we see in particular that the topology of #7*"(G_ 4, , %) is strictly

finer than the topology which is induced by its imbedding in 7" (G, &, F).

With this topology, an argument like in theorem 8 shows that the category 77" (G, 4, F) —Set
is equivalent to a certain category Cov™*" (G, x) of étale coverings of G, 1.

Next, we define in the obvious way the pro-analytic space 74 and a restriction functor
R : Cov™ (G i) = Et(7004) which is an equivalence onto its essential image Cov™ (oo ).
Then the group m**" (7. x) is given as in definition 11. [n particular we derive a short exact
sequence

(13) 0 —> 17" (1 20 ) —> 77 (0,1) —> Gal(k®/k) —0.

Similarly we can construct.the pro-analytic space G**" in this.more general setting, and it is
easily seen that the analogue of proposition 10 still holds.
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4.2. Meromorphic vanishing cycles. Let now C be a smooth curve defined over the field k,
and s some k-rational point on C. Fix also a k%-geometric point 3, localized at s. To this data
we associate the germ of k-analytic space (C, s). It follows from [B1] theorem 3.4.1, that we can
find an isomorphism of k-germs ¢ : (C, s) = (P}, 00).

Recall from section 4 of [32] that any k-germ (X, ) determines a pro-k-analytic space X (z)
and the assignment (X,z) — X(z) induces a functor from k-germs to pro-k-analytic spaces.
There is an obvious map of pro-k-analytic spaces 7., 1 — P1(00), induced by the natural imbed-
ding and hence we can define the pro-k-analytic space G**" as the fibre product in the following
fibre diagram:

mer rmer
G —— Gy

A

C(s) — PL(co).

The pro-k-analytic space G**" is determined up to isomorphism: in fact, suppose ¢, ¢ :
(C,s) = (P}, c0) are two isomorphisms as above. Then we can write ¢; = @3 for an
automorphism 9 : (P},00) — (P},00) and this implies easily the claim. We also define
s = C(8) Xp1(co) Moo,k and then we have a category Cov™ (7,) consisting of all the fibre prod-
ucts C X, 7, with C € Cov™" (1,,). By composing the fibre product functor Cov™ (7s,) —
Cov™"(n,) with the fibre functor Gz of definition 11, we get a fibre functor for Cov™ (n,),
whose group of automorphisms we denote 7*¢"(7,) and sometime just m, to ease notation. It is
isomorphic to 7**" (1. ), but the isomorphism depends on the choice of the map ¢. A topology
can be defined on this group, so that the mentioned isomorphism becomes a homeomorphism.

¥

In particular, we can see the pro-k-analytic space ¢™°" as a functor
3 4

mer (

I, — Cov )

T ——Gr

where Z, is the small cofiltered category of open normal subgroups of 77" (s,).
For a k-analytic space X, we denote by X — An the category of X-analytic spaces, defined
in the obvious way; then if Z = lj_ry Z; ts a pro-k-analytic space, a Z-analytic space X is by

iel
definition an object of the direct limit category lim Z; — An, where the maps in the direct
ile

system are induced by the fiber products X; = X X5, Z; - X (for X € Z; — An and j > 7).
We remark that the category of Z-analytic spaces admits fibre products and cofiltered projec-
tive limits. For any ring A, the category S(X, A) of sheaves of A-modules on X is by definition
S(lim X;, A). More generally, if G is a topological group, we let Sg(X, A) be the category of the
i>i
shéajves of A-modules on X endowed with a continuous G-action. If all the maps Z; — Z; are
étale, then the category So(X, A) has enough injectives and every injective object of Sg(X, A)
is injective also in S(X, A).
In particular, we obtain the category C(s) — An of C(s)-analytic spaces; if X is an object of
this category, the special fibre X, is defined and it is a k-analytic space.
For a C(s)-analytic space X, we let X5 = X, X, 5, X, = X X¢@) M, Xy, = X Xe@) G
and for any object T' € Z, we set Xy = X Xg(,) Gr. Similarly, if F' € S(X,A), we denote by
F,, {resp. Fr) the restriction of F to X,, (resp. to Xz) and for any morphism ¢ : Y — X of
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C'(s)-anaytic spaces we write ¢,, : Y, — X, (resp. ¢5: Y7 = X, ) for the map induced by
the base change 7, — C(s) (resp. = C(s)).

Moreover, let w : **"(n,) — Gal(k®/k) be the map as in (13); then w(T') is a subgroup of
finite index in Gal(k®/k), corresponding to a finite extension kr of k. The morphism Gr — C/(s)
factors as a composition

Gr — C(s) xx kr — C(s).

If we let X, = X X, kr, we obtain a diagram

XT T, Xk.,. “ ki X;

R

Gr — C(8) Xy ky «——3

For F € S(X,,,A), we define a left exact functor

Ure i S(Xy,,A) = S, (X, A) 1 oy lim 77 (Fr).
TeZ,

By deriving ¥**" we obtain a functor RYP®" which we call the functor of meromorphic
vanishing cycles.

The functor of meromorphic vanishing cycles enjoys analogues of most of the properties which
Berkovich proves for his functor RV,. We give hereafter a sample of such results. The proofs
are minor variations of those for the corresponding statements in Berkovich’s paper, therefore
we omit, the details.

Let A be any torsion ring in which the residue characteristic of & is invertible and for any X
as above, let D¢ (X, A) be the derived category of S¢(X, A) (and similarly for DE, D3).

Proposition 11. Let ¢ : Y = X be a smooth morphism of C(s)-analytic spaces. Then for any
sheaf F of A-modules and any q > 0, there is a canonical isomorphism

SL(RIUTTF) ~ RIWT (o) F).
O

Proposition 12. Let ¢ : Y = X be a compact morphism of C(s)-analytic spaces. Then for
any " €e DY (Y,, A) there is an isomorphism in D} (X7, A)

qu’:.c" (RQSQ,- F) o~ R%‘(R\P::cr F).
O

Corollary 2. Let X be a C(s)-analytic space compact over C(s). Then for any sheaf F of
A-modules on X, there is a spectral sequence

EPY = HP (X5, RIU(F)) = HPY(X5,, F).



28 LORENZO RAMERO

For technical reasons, we will need the following slight gencralization of the meromorphic
vanishing cycle. Suppose that the field k is the completion of an algebraic extension of a complete
subfield ky, and moreover, that there is a ko-germ (Cy, so) such that (C, s) = (Cl, so) X4, k.

Then define Z, x, as the subset of Z, consisting of all elements of the form S N7 e (n, ;) for
some S € Z,,. We obtain a left exact functor

e 1 S(Xy, A) = Se(XpyA) . Foo lim iz (Fr)

* ne.ko
T‘EIl.kn

and hence its derived functor RV 0 as above.

Notice that the action of m on RIW'L is continuous with respect to the coarser topology
induced by the imbedding 7 — #**"(5,,). Notice moreover, that propositions 11 and 12 have
obvious variants for R .

The next proposition relates the more general (unctor RW* to our lunctor of vanishing

cycles. Let
f i Saperinig) (X5) = Sx(X5)

be the natural forgetful functor (which forgets part of the group action).

Proposition 13. With the notation above, suppose that X is a Cy(sg)-analytic space and set
X = Xo Xy, k. Let Fy be a sheaf of A-modules on Xy, and denote by I the inverse image of
Fy on X,,,. Then for any integer q there is a canonical isomorphism

FIRIWEST(F)) ~ ROWESL (F).
Proof. Let T = SO w7 (), 4) € I, k- For ¢ =0 it suffices to remark the isomorphism
trdre (Fr) = 155, (Fo.s)-

The case ¢ > 0 follows from this, by observing that all injective sheaves are acyclic for both

functors lI';':z’ and lI’,,'"'f’,’;u. 0O

To end this scction, we want to derive a workable formula for the stacks of the vanishing cycles
functor. With the notation above, let ¢ be any point in X5 and for each 1" € Z,, denote by {1 the
image of ¢ in X, X kr. Let us write 5, = lim Z, for a certain family {Z4}- Then there exists a C-

analytic space X such that X = l}in X x(cc,’,)Za. If I is a sheaf of A-modules defined on X,,,, then

[«3
by definition we can find a such that F" has a representative Fy, on Xy = X X(¢s) Za. Let Fr be
the restriction of Fy to X, X¢ Gr and finally, denote by j, the morphism X, x¢c Gr = Xo Xy k7
which represents jr. We have

RIUmer (F), =~ (11_11:1 RI(i%57. Fr)):
TeZ,
> lim (7 5. Fr),
Tez,
= lim (quT-FT)tT
Te,

Next a standard argument yields

(Rjr.Fr)ip = lim H(7' Ur, Farr)
Ur
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where Uy ranges over all the étale neighborhoods of ¢ in X, X, kr. Putting everything together
we get

(14) ROWP(F), ~ lim lim H7(j7' Ur, Farr).
TeI, Ur
4.3. Swan conductor. In this section we establish some basic facts about the linear repre-
sentations of the local fundamental group. The representations we have in mind are continuous
group homomorphisms
p 7 (1) = GiL(n, A)

where A is a ring of a certain kind. Rather than axiomatizing the properties of A which we
need, we give a list of typical rings with which we will deal in our applications. Hence in the
sequel A will be either

1) a finite extension E, of the completion B, of the field Q,(up) (taken with its natural
topology), or

2) the ring of integers O of E,, which is a complete discrete valuation ring whose residue field
we call F and whose maximal ideal is m (with the m-adic topology), or

3) any of the artinian rings O, defined as O/m” (with the discrete topology).

Lemma 8. Suppose that A is of type (1) or (2). Let V be a finite rank free A-module with
a continuous Pp,..-action p : Py., — GL(V). Then the image of p consists of semisimple
elements.

Proof. Let r be the rank of V over A and let G be the Zariski closure of the image of Fp.,
in GL{r, E,). Since P, is commutative, up to replacing Ey with some finite extension, G
decomposes as a direct product TU, where T is a torus and U is a unipotent group. It suffices
to show that U = 0. The group U is isomorphic to an affine space AR . Let L be a lattice inside
U (i.e. a compact G-submodule of maximal rank). Then clearly M, ¢*L = 0 and p~'(Idy) =
N, &*p~'(L). But since multiplication by € is an automorphism in P, we derive p~'(L) =
Kerp. Let u € U be any element. Then for some big enough » € N we have £*u € L, and the
claim follows easily. [J

Proposition 14. Let A and p : P, — GL(V) be as in lemma 8. Then P, acts on 'V through
a discrete quotient.

Proof. First of all, the lemma implies that, up to replacing E, with some finite extension, V
decomposes as a direct sum of one-dimensional P,,..-modules and hence we can assume that V'
itself is one-dimensional. Then the P,,..-action is given by a continuous character x : Py, = E}.
If we compose with the valuation map EY — Z, we obtain a continuous map P,.. = Z. But
all the discrete quotients of P, are torsion groups, hence this map is trivial, and x lands into
0*. The group ©* is homeomorphic to a direct sum F* @ O, by means of the identification of
F* with the group of roots of unit inside @, and the logarithm map O ~ 1 4 £0. It suffices to
show that the induced map = : P,., — O, obtained by projecting on the second factor, is the
trivial group homomorphism. For this, we write: #=1(0) = #~1(N, *0) =N, £*7~1(O). Since
multiplication by £ is an automorphism in F,.,, the claim follows. O

To take care of torsion rings A of type (3) we need some preparation. Let G be some group
and p : G = GL(V) a representation of G' on some finite rank free A-module V. For any
character y € Hom(G), p,) we let V, the maximal submodule of V on which G acts as x i.e.

plgv=xlg)lv (9€G, veV).
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Notice that this definition makes sense since any A of type (3) contains the multiplicative
subgroup pipe.

Proposition 15. Assume that A is of type (8). Let G be a finite commutative p-group and
p: G = GL(V) a representation of G as above. Then there is ¢ canonical decomposition

Ve~ @ Vi
xe Hom(G p,)

Proof. Let g be some element in G. Let p® be the exponent of G and choose a primitive root
of unity { € e of order p*. First of all we remark that all elements of the form ¢* — {7
(i 2 4 mod p") are invertible in A. This follows easily from [Wa] proposition 2.1. For 1 < j < p"

we define )
C; =TI - ¢).

i#j
Clearly we have

(15) IT (ee)-¢)=0

1<ig<pn
as an element of End (V). Define the element 7; € End (V) by setting
m =G [(el9) - ¢
J#
From (15) it follows that the image of ; lands into the submodule V, ;; = Ker(p(g) — ¢).

Lemma 8. The morphism

Brgjep TV = P Vo
1<i<p"

15 tnjective.
Proof of the lemma: For any subset § C {1,2, ..., p"} define more generally

Ts = H(P(ﬂ) - Ci)-

igs
For any such S and any two distinct elements ¢, § in the complement of S we show that
(16) Kermgy(ip N Kermgyyyy = Kerms.

The lemma will follow easily from (16) and a simple induction argument.
Let v € Kermgy(iy N Kermgygs) and set w = w5(v). Then we have

(plg) = ¢)w = (p(g) — ¢)w =10

which implies (¢' — ¢F)w = 0. Since (¢* — ¢/} is invertible, this yields w = 0 and proves (16).
O

Next we show that the composition

@iy
D; Vo.i -V ~D; Voo

(Vi cony Upn) —> 35 0;
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is the identity map. This is a direct calculation:

i (3 vk)=c 1_.[3;6!( (g )_C')(EA vg)
= Zk Cﬁ J;tu(P g) — )
- C nj;ﬁl( ( ) - C'
_C'- HJ;&l(CJ - :)vf

=v;.

Together with lemma 9 this shows that V is isomorphic to the direct sum of G-stable A-modules
&V,

Let g1,..., g be a set of gencrators of G. To conclude the proof, it suffices to remark that,
for any character Y € Hom (G, jip ),

Vi= g1.x(g) Mo O Y gm x(gm)

and that this intersection of A-modules is a direct summand of V. O

Corollary 3. Assume again that A is a ring of type (8). Let p: Py.., — GL(V) be a represen-
tation of P,,.. into a finite rank free A-module V. Then there is a direct sum decomposition

Ve~ @ V.

X€ Hom(P,,." poa )

Proof. The proof is a typical “filter” argument: since V' has the discrete topology, p factors
through a discrete quotient P of Pp,.,. Then P is a commutative p-power torsion group, and
hence it is the direct limit of the filtered family F of its finite subgroups.

We argue by induction on the rank r of V. Thanks to proposition 15 we can choose for each
subgroup S € F a character ys : S — ftpw and a non-zero G'-stable direct summand Vg in V
such that

1) pvs = Xs;

2)Vp C Vs and yr restricts to ys on S for any S, 7 € F such that S ¢ T

Then, since the rank = is finite, the submodule

V= lim Vs
SeFe
is non-zero and it is clearly a direct summand in V. On V' the action p is given by the character

lj:_n s and the complement of V¥’ has rank strictly less than r, which shows the claim. 0O
SeFe

Suppose A is a ring of any of the types above. Let M be a one-dimensional A-representation
of Pner. Since all the discrete quotients of P, are p—powcr torsion groups, the proposition
implies that P, acts on M through a continuous character x : F.r — pipe

This character corresponds to an element f, of the mlgebr"s .A mtroduced in section 3.

Definition 13. The degree of the element f, is called the slope of the Pp..-module M and it is
denoted by A(M). In particular, the slope of a simple P,..-module is always a rational number.

Finally, let V an arbitrary Pn..-module free of finite A-rank. If A is of type (3), corollary 3
shows that V' decomposes as direct sum of P,..-stable rank one A-submodules.

The same holds for a ring of type (1) or (2), at least after replacing A by a A’ still of the
same type and contained into a finite extension E) of E,.
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Remark: [t is easy to verify that the direct sum of the simple components of Vi, =V @4 A’
which have the same fixed slope A is a submodule V., of V4 which is already defined over A,
i.e. there is a submodule V) of V such that Vy , = V), @4 A'.

Hence we denote by A(V) the set of the slopes of the simple rank one components of Vy;
clearly A(V) is a finite subset of @, whose elements are called the slopes of V. Gathering the
simple components of V4, which have same slope, and using the remark above we obtain a
canonical decomposition of V' as direct sum

V= @ A

AEA(V)

where each V) is purely of slope A.

Definition 14. The Swan conductor sw(V) of a F,,..-module V, is the rational number
STU(V) = E)\EA(V)A ' f‘kﬁ V:\.

The next result is our version of the Hasse-Arf theorem.

Theorem 9. Let V be ¢ finite rank free A-module with an action of 77" (1)ee). Then sw(V) is
@ positive integer.

Proof. For an element f(z!'/N) € Alet us denote by M, the one-dimensional A-module on which
P, acts through the character f. Then, at least after replacing A by a finite extension, the
Pe--module V has a decomposition of the kind

Vo~ EB Mf"’

Jes

for some finite set S of elements of A. Let y € 7¥'9(5),,) be any element. We can define a new
action of P, on V, by setting

(p, v) — '}’])"}/-1(1)) (P€ Prer, 7E "Taig(ﬁoo))'

Let V" be the module V with the new P,,-action. Since vP,.,7™! = Pper as subgroups of
T (1), it follows that V¥ ~ V. On the other hand, we can write

M} = M,

where f7 € A denotes an element of the form f(Cz'/"N) for some ¢ € uy. Hence we see that
the set S must be stable under the substitution f— f¥ for any v as above. Suppose that N
has been chosen minimal among the integers such that we can write f as a polynomial in z*/¥.
Then it is easy to see that the orbit {f7 | ¥ € n{*?(51,,)} consists of exactly N elements. On the
other hand, A(M;) = A(M}-) is a rational number of the form n/N (n € N). The claim follows
directly from these facts. 0O
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5. THE LUBIN-TATE TORSOR

In this chapter we introduce and study the sheaf that plays the role covered by the Lang
torsor in positive characteristic. 1 believe the name “Lubin-Tate torsor” is appropriate enough
for this object. We return to the setup of chapter 2: here & is a one-dimensional local field of
zero characteristic, i.e. a p-adic field.

Let F be a fixed Lubin-Tate group and let A(0, p) be the open disc of the affine line centered
at the origin and of radius p. Then A(0,p) is an analytic variety and we can regard F as
an analytic map A(0,1) x A(0,1) = A(0,1); the functional identities for F say that A(0,1)
becomes a commutative analytic group with addition given by the power series F. Similarly,
the logarithm Ag defines a morphism of analytic groups Ap : A(0,1) — A}

5.1. Construction of the torsor.
Lemma 10. The logarithm Ap : A(0,1) = Al is an élale covering of A..

Proof. Let A, = U,»D, be the covering of the affine line by closed discs of radius r centered at
the origin. Denote by E, the connected component of A™'(D,) containing 0.

From remark (a) following theorem 3 we get an equality of formal power series: Ae[r]} = 7™ .
By analytic continuation, this formal identity gives rise to a commutative diagram of analytic
maps:

x]|3
A(0,1) 7 A(0,1) A(0, py)
A A A
Al —— Al < Ga(p1)-

We remark that, for sufficiently large n,., E, is the connected component of the inverse image
of ep(n2D,) by [#7]. Looking at the diagram above, we see that the restriction of A to E, is a
finite map, hence E, is an affinoid domain in A(0,1) for all » and A(0,1) = U,50F,. Note that
for r < s, F, is a closed neighborhood of E.. It follows easily that X is étale and surjective if
and only if the induced maps E,. — D, are étale and surjective for all r.

Given r > 0, choose an integer n, large enough such that 7]} (E,) C A(0, p;). By theorem
3, the power series ep converges on A(0, p;). This means that ep defines a morphism on the
quasiaffinoid space A(0, p;), and therefore the restriction of XA to A(0,p,) is an isomorphism
of quasiffinoid spaces. It follows that X : E, — D, is an étale covering if and only if [r]}" :
E. = 7. D, is an étale covering. Let g € §, be any other power series; the homomorphism
;0 : A(0,1) = A(0,1) of quasiaffinoid spaces has an inverse [1],, and therefore it is an
isomorphism. From theorem 1.(b) we see that [1]; so[r];°[1]y; = [#];. Therefore it suffices to
prove that for some g € § the morphism g = [}, : A(0,1) = A(0,1) is finite and étale. Then we
select g(Z) = 72 + Z9. Now consider the map of schemes A, — Al defined by the polynomial
g(Z): this map ramifies over a finite set of points 21, ..., z,, € AL (k) = k, and using the jacobian
criterion one checks easily that |z;| > 1 for all i. On the complement of z,, ..., z,, g restricts to
an étale covering U — A, — {z,,..., z.}. By proposition 3.3.11 of [B1], it follows that the map
g% 1 U — ALY — {z,,...,z,} is also an étale covering. But clearly [r], is obtained from g°»
by base change to A(0,1) C AL®", and the lemma follows {rom corollary 3.3.8 of [B1]. O
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Remark: the proof of the lemma shows in particular that the restriction of the analytic
covering A : A(0,1) = A to any bounded disc A(0, p) < Al factors as a trivial (split) covering
followed by an algebraic covering of finite degree.

For any positive integer n, let k, = k(G,), ko = Upsok, and Em the completion of k..

It has already been remarked that G, = Ker(A : A(0,1) = A‘}:ﬂ) In particular, this kernel is
contained in k.

As usual we obtain a sheaf of sets (in the rigid etale topology) over A} by taking the étale
local sections of the morphism A; let us denote by ¢ this sheaf.

For any given complete field extension E of k, there is a base change map p: AL, — Al and
we can form the pull back ¢ = p*¢. For our purposes, the really useful sheaf is ¢;_; for brevity
we will denote it simply by ¢..

Definition 15. The sheaf ¢, acquires a transiation action of the discrete group G, which as
usual makes it into a Gy, -torsor. We call ¢, the Lubin-Tate torsor.

Let A be some torsion ring in which the residue characteristic of & is invertible, and ¢ : G, —
A* be a character of G,. We can form the associated sheaf

£¢Z¢WX¢A

which is a rank one local system of A-modules on G,.

A note about notation: for a map f: X — G, sometime we will write £(f) in place of f*L.
Also, if F is a complete extension of k,, the base change map 7 : G, r — G gives us a new sheaf
Lp = 7"L. If it is clear from the context which base field we have in mind, we will omit the
subscript F. Given a linear coordinate t on G,, sometime we will write G, (p, t} for the analytic
group obtained by restricting the addition law of G, to the disc A(0, p) = {z € G,, [t(z)| < p}.

We list here some elementary properties of L, that follow from the general yoga of torsors.
Let m : G, x G, — G, be the addition map, and pr,, pry : G, X G, = G, the projection maps
on the first and second factor. Then £y comes with:

LT1) a rigidification at the origin:

Ly,10y = Ay, q0)
LT2) a trivialization:
m* Ly @priLy' @ prily’ ~ Ag,xe.,
compatible with the rigidification at the origin {0,0} induced by LT1.
LT3) In particular:

E¢—1 ~ E:bl

We will denote by p(,t) the supremum of all real numbers p such that £, trivializes on
G, (p,t). If ¢t happens to be the same parameter which we chose to give the power series expansion
for the morphism X, we get p(v,1) > p1 and equality holds if and only if ¥ is injective. Moreover
p(i,t) = oo if and only if ¥ is trivial.

Before moving on, we should remark that the difference between one choice or another of
the underlying Lubin-Tate group, is purely arithmetic. By this we mean the following: suppose
that F, I’ are two Lubin-Tate groups, and G,G', the respective torsion groups. Take two
characters 1,9’ of G, and respectively G . Then over the completion of k(G) (resp. of
k(GL,)) we obtain the Lubin-Tate torsor Ly (resp. Ly). We can pull-back both of them to the
common overfield %a, and there we have
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Proposition 16. Fora € :’5“ let piq : A~ — Aa be the morphism x — az. Then there exisls

a € k° such that, with the above notatwn
'C,'b;l:q = u;ﬁgj;":l?a'

Proof. I am grateful to G. Faltings for furnishing the following explanation. It suffices to compare
a general Lubin-Tate torsor F' with the classical G,,. To distinguish the two analytic groups,
call Ap (resp. Ag,) the analytic space A(0,1) endowed with the group law F (resp. the
multiplicative group law). The torsion of G,, is of course . To prove the claim it suffices
to show that the group homomorphism % : G = iy~ is induced by a morphism of analytic
groups $:Ap — Ag,., because in that case we can find out the right a € ke by noticing that
AG,. © 1:[)”)\;‘1 is an endoomorphlsm of G,, hence of the form g, for a certain a.. Now, the map
1 induces a map on the Tate groups b T(F) = T(Gy), or what is the same, an element of
T(G)* ~ T(G") (here G* is the Cartier dual group of G). This is the same as giving a compatible
system of group scheme homomorphisms

" Pt Fln] = pyn (n>0)

defined over Q.. In turns, this is a map of p—lelSlble group schemes F[p™] — ppe which
determines the needed morphism ¢ Ap = Ag_, over Oe. O

The proof of the following proposition is taken from [SGALI%], Sommes trig. We reproduce it
here to stay on the safe side.

Proposition 17. Let ¥ : G, = A* be a non-trivial character. Then:
H: (Ga(p,t)y_, Ly) =0
for all p > p(9, t).

Proof. Let A, be the connected component of A7'(G,({p,t)) containing 0. For a koo-rational
point z of A,, let 7, be the translation 7;(g) = g[+,]z on A,, where [+,] is Lubin-Tate group
law. Also, let 7, be the translation by y € G,, with respect to usual addition law on G,.
The formula Aer, = 73(,y°A states that the pair (7., 73} is an automorphism of the diagram

A, = G, (p,t).

Let t(z) be the induced automorphism of (G, (p,t),Ly). For z € G this automorphism
gives the identity on G, (p, ), and multiplication by ¥ (z)~' on L.

Let % (x) be the automorphism of H;(G,(p,t);_,Ly) induced by #(z). Then yy(z) is
multiplication by #¥(z)~!. On the other hand, the following “homotopy” lemma shows that
Yu(z) = ¥y (0). Since by hypothesis p > p(3,t), we can find 2 € G(p,t) N G such that
1 —%(z)~! is invertible; but we have seen that multiplication by (1 — ¥(z)~!) # 0 is the zero
map, therefore the claim follows.

Lemma 11 (“Homotopy” lemma). Let X and Y be two rigid analytic varieties over a com-
plete valued field F, with Y connected. Let G be « sheaf on X and (3, ¢€) a family of endomor-
phisms of (X, G) parametrized by Y, i.e.:

P:Y XX —Y XX isaY-morphism and

€: P prsG — priG a morphism of sheaves.
Assume 1 1s proper. For y € Y( ), let ¥y(y )' the endomorphism of H:(X,G) induced by
Py X — X and ¢, 1 450 —3 G. Then ¢y (y)* is independent of y.
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Proof. In fact, RPpr,,pr3G is the constant sheaf on ¥ with stalk H2(X,G), and ¥y (y)" is the
fiber at y of the endomorphism :

RPpry,pr3G £ RPpry,$'pryG - RPpr,,priG.
a

To apply the homotopy lemma to the present situation, we take ¥ : A, X G,(p,t) —
A, X G, (p,t) defined by ¥(z,y) = (z,y+ A(z)). O

5.2. The character induced by Galois action. We conclude this chapter with some obser-
vations about the Galois action on L. Let ¢ be the pull back of ¢, to A;l;.,; by transport of

structure we get a natural action of Gal(k®/ko) on @, covering the action on A%ﬂ. This action is

inherited by E‘b’;,. In particular, if p is a k-rational point of Ai_.n, then the stalk £y, becomes
a representation of Gal(k®/ko) of rank one. For any n < co, let k% denote the maximal abelian
extension of k,. It is clear that the action on Ly, factors through Gal(k%/ks,). I do not know
the complete structure of Gal(k2®/k.); in particular | don’t know whether there is a canonical
generator that takes the place of the Frobenius element as in the finite field case. Instead we

make the following:

Definition 16. Let k" be the mazimal unramified extension of k. Clearly k" C k2 and k*" N
koo = k. We say that an element 0 € Gal(k®/ke,) 1s a Frobenius element if the image of o in
Gal(k*r [k) is the canonical Frobenius generator.

Our aim is to give an explicit formula for the trace Tr(o, £,,) of the endomorphism induced
by the Frobenius element ¢ on the stalk of £y at the point p. We start with two elementary
lemmas:

Lemma 12. The map p+— Tr{c,Ly,) is a continuous group homomorphism Tr, : ko = AX.

 Proof. 1t follows easily from LT1 and LT2 that the map Tr, is a group homomorphism. More-
over, it follows from lemma 3 that the restriction of ¢ to A(0,p,) is the trivial G, -torsor;
therefore the restriction of £y to the same disc is a trivial line bundle, and we conclude that the
kernel of Tr, contains this entire disc, i.e. the map is continuous. O

Lemma 13. k% = U, coo k2.

Proof. 1t is clear that k2 C k2%, On the other hand, let z € &% and let xy, ..., z,, be the orbit of
z for the action of the full Galois group Gal{k®/k); take n big enough such that [k, (z4,...,znm)
kil = [keo(Z1y -y @m) © Kkeo]. Then there is a natural isomorphism Gal(k,(z1,...,2m)/k,) =~
Gal(keo (21 ey Tm)/koo), and this last group is abelian, being a quotient of Gal(k2/ky,). [

It follows from the lemma that the choice of a Frobenius element o in Gal(k2®/k.,) is equivalent
to the choice of a sequence oy, 0y, ... of liftings of Frobenius o, € Gal(k%®/k,) such that the
restriction of 0,4, to k2 acts as o,. Let 8, € k, such that the Artin symbol (8,,4k%%/k,) acts on
k& as 0,. Then by local class field theory, it follows Nmy_,, /«, (Bn+1) = Br. Also, by Lubin-Tate
theory it follows G, = =.

Conversely, the choice of a compatible system of eclements 3, € k, as before is equivalent to
the choice of a Frobenius element o.

For the next result we need.some notation. First of all we select for each positive integer n:

1) a generator v, of G, as an k°-module, such that [#™~"],(v,,) = vu;
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2) an element 8, € k, such that the sequence of these elements satisfies the compatibility
condition above, and corresponds to the choice of a Frobenius element og;

3) a power series b,(2z) = z - r,(2), where r(z) € k°[[z]] satisfies r(0) # 0 and such that
by (vn) = B

Finally, let T, be the trace map from k, to k.

Theorem 10. Let p be a point in A,jl:a (ko) = koo, and choose an integer n such that:
(a) |7"p| < p1;
(b) [k(p} : k] < n.
Let m be any integer > 2n + 1. Then, with reference to the notation above:

Tr(og, Lyp) = ([”"}_nTm (A’(Zm) dﬁ: mm)]! (u,,)) .

Proof. First of all, notice that the group Gal(k®/ks) acts also on A(0, 1)z, in such a way that

the logarithm becomes an equivariant morphism. Let g € A7 (p). Let & be any lifting of og to
Gal(k/kw); then essentially by definition we have:

(17) Tr(ag, Lyp) = $((9)[-/19)

(where [—]; denotes subtraction in the formal group). Obviously this formula is independent of
the choices involved. Take n such that (a) is satisfied; by inspecting the proof of lemma 10 and
the remark that follows it, we obtain:

A7Hp) =[] (e(n"P))[+/1G .-

In particular we can take ¢ € [r"];'(e(7"p)) in equation (17). We recall now the definition of
the generalized Kummer pairing, introduced by Fréhlich in (Fr]: let F'(k;) be the subgroup of
A(0,1) (ko) consisting of the elements rational over k,; then there is a bilinear map:

() Fk) x kX — G,

n

defined as follows. If 8 € kX, let 75 be the element of the Gal(k%®/k,) which is attached to
B by the Artin symbol. If @ € F(k,), choose v in A(0,1)(E) such that [r*];(7y)} = . Then
(e, BYF = 75(7)[—/]y. Clearly, if we take n such that both (a) and (b) are satisfied, the right
side in formula (17) translates as ¢ ({e(7"p), 8,)5).

Then the formula of the theorem follows immediately from theorem 1 of [Wi]. O

5.3. Semilinear Galois action. Since the sheaf ¢ is already defined over k, it is natural
to expect the full Galois group Gal(k®/k) to act on Ly. In this section we show that this is
indeed the case, at least when the Lubin-Tate formal group under consideration is the classical
multiplicative group G,,. The action thus obtained will not be linear, but rather semilinear in a
precise sense. In this way, our theory acquires a “p-adic flavour” which is unusual in an f-adic
setting. Of course there should be a parallel p-adic Fourier transform over p-adic fields, where
the full meaning of this semilinear action is revealed. We feel that the present limitation to
¢-adic (or €-torsion) coefficients is only due to our current incomplete understanding, and it will
be eventually removed.

As announced, in this section we restrict to the Lubin-Tate group G,,. Take a prime £ whose
residue class generates Z/p? by Dirichlet theorem on primes in arithmetic progressions, there
are plenty of such £. With this choice, the Galois group of Q,(s,=) over Q, is easily seen to be
isomorphic to Z;. Let @ be the ring of integers of By.
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The group G, attached to G, is just p,0. and any character 1 : ppo — OF lifts to a character
P prpee — Qoprpee )5 conversely, we can deal with 4 and then obtain 1 by projecting onto Q.
Clearly we can assign 9 by identifying the two copies of pipee, one in Qg(pp=) and the other in
Q,(ptp=). Such identification also induces a unique isomorphism x between Gal(Q,(ttp)/Qe)
and G = Gal{Qp(pp=)/Q,), given explicitly by the rule

o($(9)) = d(x(0)9)

for all 0 € Gal(Q,(itye)/Q, and all g € pyw. Another way of seeing this is as saying that ¥
becomes G-equivariant, if we endow B, with the G-action extended by continuity from Q,(pye)

(0,2) = x(o)z
for 0 € G, © € B,. Having equivariance for ¥ is exactly the condition needed to transfer the
G-action from ¢, to the associated locally constant sheaf £,. The G-action on £, is not linear,
but has the following semilinearity property:

o(bs) = (x()8) - a(s)

for any local section s of Ly and all 0 € G, b € B,.

Next, let K be any algebraic extension of ky, and K its completion. There is a natural
surjection 7 : Gal(K/k) — G and the G-action on £ 1 lifts in a natural way to an action of
Gal(K/k) on Ew,f’ which satisfies again the same semilinearity condition above (after replacing
x by its composition with 7). For a detailed proof the reader is referred e.g. to proposition 1.4

of [B2].

Remark: in the algebraic setting, one usually introduces the topos Sy of sheaves of sets on
the scheme X, and then, for any given ring A, assigns to Sy a structure of A-ringed topos. by
selecting the ring object Ax defined by the constant sheaf on X with stalks isomorphic to A.
As the above construction illustrates, in the étale analytic setting, the choice of the constant
O, -sheaf is not the most natural: one should rather take the geometrically constant sheaf O, x,
twisted by the semilinear Gal(k®/k)-action defined in this section.

6. FOURIER TRANSFORM

We are now ready to define the Fourier transform. With the set-up of the previous chapters,
we only have to mimic the construction of the Deligne-Fourier transform. The proofs of most of
the main properties reduce to routine verifications, carried out by applying projection formulas,
proper base change theorem and Poincaré duality, exactly as in Laumon’s paper.

6.1. Definition and main properties. We consider complexes of sheaves of 0,-modules,
where Q,, is one of the rings of type (3) according to the list in section 4.3. Let L, be the locally
constant Lubin-Tate @, -sheaf of rank 1 associated to the Lubin-Tate group F' defined over the
field k, and the character 9 : G, — ©X. In this chapter and the following one, the base field is
a complete extension £ of k.

Let § be an analytic variety over ¥ and 7 : E = S an analytic vector bundle (defined in the
obvious way) of constant rank r > 1. We denote by 7’ : ' — S the vector bundle dual to E — S,
by {,): E Xs E' = G, g the canonical dual pairing and by pr: EXsE = E, pr': ExgE — F
the two canonical projections.
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Definition 17. The Fourier transform for € = S, associated lo the character 1, is the trian-
gulated functor
Fy :DP(E,0,) — DF(E,0,)
defined by
Fy(K) = Rpri(Ly((,)) @ pr" K))[r)-
We will usually drop the subscript 4, unless we have to deal with more than one character at

the same time. For later use we also introduce a special notation for a closely related functor:
the operator F , is given by the following formula:

Fye = Rpr.(Lu((,)) ® pre &)

Next we would like to show that F shares some interesting properties with the Fourier transform
defined over finite fields.

To start with, we state and establish involutivity: denote by # : E/ — S the double dual
vector bundle of E. The previous construction applies to E' and its dual E” to give a Fourier
transform F’ (and the related functor F.). We consider the composition:

D(E,0,) = D' (E,0,) 2 Dt (E”, 0,,).

Denote by @ : E = E” the S-isomorphism defined by a{v) = —(v,-). Also, let ¢ : § < E,
o': S FE, 0”:85 < B’ the zero sections of &, 7/, 7" respectively. We denote by s :ExXsE — E
(resp. by s’ : E' x5 E' = E) the addition law in the vector bundle E — S (resp. in E' — S) and
by [-1] : E = E the inverse map for this addition law.

Theorem 11. There is a functorial isomorphism:
FloF(K')y =~ a,(K)(-r)
for K € DP(V,By) (The brackets denoting Tate twisl, as usual).

Proof. (Cp. {Lau2], theorem (1.2.2.1)). We fix some notation: let e : EXgE' XgE" — E' x5 E”
be defined as a(e, e/, ¢”) = (¢',¢” —a(e)) and f:EXE' — E" as (e, ") = "’ — a(e).
Consider the commutative diagram:

B
E Xs E’ > E”
prn p]'”
E X5 E' x E” . - E' x E”
prga pr”
E, Xs EI EI XS EH
N N
E EI EI!

where the two squares are fiber diagrams.
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It follows easily from property LT2 that
(18) PrizL((,)) @ prisL((,)) = a"L((,))-

Then we have:

FOF(C) = (R ) & pr )

=~ Rpry(L ( ((,)) ® pr"* (Rpri(L((,)) ® pr* K)))[2r]

~ Bt (C(() 6 oL@ Pt Nl - (rope s changs
NRpr,’Rprm.( SL(()) @ pri,L(()) ® priypr* K)[2r] (proj.formula)
=~ Rpry Rpryg,(a* (( )) ® pri,pr i) [2r] (by formula (18))
~ Rpri’Rprys, (" L({,}) ® prigpr’ K)[2r] (functoriality)
~ Rpry'(pr* K" ® Rpr g0 L(({,)))[2r] (projection formula)
~ Rpr)(pr* K" @ B*Rpr{L({,)))[2r]. (proper base change)

To end the proof we apply to 7’/ : E' = S and L = Q, the lemma 14 below. O
Lemma 14. For any L' € D’ (S, Q,,) we have:
F(r*L'[r])) > o L (-r).
Proof. By the projection formula:
F(m*L'[r]) = L' @ RpriL({,))[2r].

On the other hand, using proper base change, property LT1 and proposition 17, we get:

o RpriL((,)) = Rm0,, = O, s(—r)[-2r]

RpriL((, ))|E/—ovsy = 0-

O

Corollary 4. F is an equivalence of triangulaled categories of DF (E, Q,) onto DP (E', Q,,), with
inverse a* F'(=)(r). O

In the case of the Fourier transform over a finite field, it is known moreover that F preserves
the t-structure coming from middle perversity. As explained in [Lau2], this boils down to the
equality of functors F, = F, .. Even in absence of a theory of perverse sheaves for analytic
varieties, we can still prove the corresponding statement:

Theorem 12. The canonical map of “forget support” induces an isomorphism of functors:
P Fy(=) = Fy.(=)

Proof. Fix as usual a coordinate ¢t on AL. First of all, an argument like at the beginning of
the proof of [Ka-La] Theoréme 2.4.1 reduces us to the case » = 1. Moreover, the assertion
is obviously local on S, hence we can suppose that there exists a fiberwise lincar isomorphism
z:E S AL. Then also E' is trivialized by a coordinate y : ' — A§ such that t({e, &')) = z(e)y(e’)
for all local sections e, e’. Next we can find a unique E D E such that 2 extends to a (unique)
isomorphism T : E — P},

Let j : E Xs E' < E Xg E' be the natural imbedding. Clearly it suffices to show that for all
points of the type (00,p) € E xs E

Rj(Lo((,)) ® P K ) (eopy = 0.
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We consider the map 7: E' Xg EXsE — E x5 E defined as (¢, ¢, ¢,) = (e,5(e,e,)). We form
the fibre product diagram

E XsEXgE —>E xsExgE

ExsE —1——>Exs ¥
and by smooth base change
P RiL(£((,)) @ pr ) = RiZT (L((,)) @ pr* K).
In particular

Rj (L(()) @ pr K)oy = RI2T(L((,)) @ Pr K ) (p,co,0)-

Let Cg be the partially ordered set of all the étale neighborhoods of (y(p), 00,0)in Ay x sPLx AL.
We introduce the family C$ consisting of all the varieties of the form W x g B such that

1) B is an open disc in AL, centered at zero, i.e. B = {a € AL |t(a)] < g}, and W 5
Al xsPLis an étale neighborhood of (p,c0) € PL x¢ AL;

2) the image ¢(W) is contained in an open subset of the form N(p) xg C, with C an open
disc in P} of radius r¢ around co i.e. C = {a € PL| |t(a)| > r5'} and N(p) some fixed open
neighborhood of y(p) in Aj;

3) the ratio rg/rc is equal to the constant §.

Lemma 15. for any real number § > 0 the family C{ is cofinal in Cs.

Proof. Let 0 : U — A} x5 PL x5 AL be any étale open neighborhood of {(p,00,0) and ¢ € U a
chosen lifting of (p, 00, 0). We have an induced map of germs

(U! Q) — (A.IS' Xg E,.IS Xs A.IS"I (p,oo,(])).

Notice that the residue fields of the points (p,o0) € AL x5 P§ and (p,00,0) € Ay x5 PL X5 A}
are naturally isomorphic. Therefore, it follows from theorem 3.4.1 of [B1] that the germ (U, q)
is isomorphic to a product of germs (W', ¢') X (AL, 0), where ¢ : (W', ¢') = (AL x5 PL, (p, o0))
is a morphism of germs with an étale representative. Concretely this means that there exists an
open subset ¥V C W’ xg A; with an open imbedding V' < U which make the following diagram
commute

W x5 AL < v —~U
¢XIA1J lﬂ'
(A}g Xs P}g) XE A}; =A15 Xs ]P‘ISXS A};.

Then proposition 3.7.8 of [B1] says that we can find inside V a subset of the form W" x B’
which fulfills condition (1) above. Conditions (2) and (3) are casy to fix, by taking open subsets
BCc B and WCW" O

Fix a real number § strictly greater than p(i,¢). Let W x; B € C& be any neighborhood as
above and set Bs = y~!(BxgS5), C° = CNAL, C¢ =37 (C° xg S), W® = W x a1, pi (E' X5 E).
Furthermore, we obtain obvious projection maps o : W° — Cg and g: C% — C°.

In view of the lemma, the theorem will follow if we show that

(19) Hi(W® x5 Bs, 7 L((,)) ® 7" pr* K) = 0.
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We remark the commutative diagram

rl)
B xsExsE — 2 s F x E

(20) - l lprz
pr

E Xg E E.

Moreover, let i : E' xg E — AL be the map (¢, e) — (e, ¢'}; an casy application of the Yoga of
torsors yields

(21) L)) 2 pras L)) @ prinLln).

We apply the Leray spectral sequence for the morphism prj, : W° xp B — W°.
Set M = pry K ® L(p); then, in virtue of (20) and (21) it suffices to show that

Rpryp.(pr2al((,)) ® prizM) =0
for all points w € W°. We consider the commutative diagram

. axlp Bxlgp

W xs Bs C_g- Xs Bs C°xg B
N
E’XSEXSE’—p'—“-"EXSE' W 'Ga

where m(e, b) = ab. Set u = f§ o a(w), take a small open neighborhood U C C° around u, and
let A, = m(U xg B). One checks easily that, if U/ has been chosen small enough, then A, is
some open disc of finite radius r, centered at the origin. Denote by £ the connected component
of A71(A,) C A(0,1) which contains 0 € A(0,1). We form the fibre diagram

ml

- Vi vy

-

UxgB<E2X2_ ((860)-1U) x5 B.

By construction, the sheaf m* L trivializes on the étale covering of finite degree f : V|, — U xg B.
It follows that m*Ljy«zp is a direct summand in f.0, and hence we obtain an imbedding

(22) Rpr5.(prasL((,)) ® priaM)(goc)—2 ) = R (pr12 0 9).(Pri2 09)" Migoa)-1 vy (g 2 0).

Notice also that for all y € U, the geometric fibre (pr; o f)~'(y) is a finite union of open discs.
In order to apply this observation, we need the following lemma, which is a minor variation of
[B1] Corollary 7.4.2, and whose proof we leave therefore as an exercise for the referee.

Lemma 16. Lel ¢ : X — Y be a separated smooth morphism of pure dimension d, and sup-
pose that the geometric fibres of ¢ are non-empty and have trivial cohomology groups HI with
coefficients in Q,, for ¢ < 2d. Then for all F € S(X,0,) we have Ri¢.¢"F =0 forqg > 0. O

Next, since we have taken W xg B € C§ and § > p(3,t), we see that the sheaf m*Ljyx 5 is
never trivial on any of the geometric fibres {y} xg B (y € U). From this, together with (22)
and lemma 16 (applied to pr,, o g) we derive easily that

Rpr 5. (pr3al((,)) ® priaM)i(goa)-1v = 0.
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This proves (19) and the claim of the theorem. [J

Remark: it is well known that theorem 12 formally implies that the Fourier transform
commutes with Verdier duality. A Verdier duality theory for étale analytic sheaves has been
established by Berkovich in [B5].

We list hereafter a few of the other main formal propertics of the Fourier transform. The
proofs have the same flavour as the previous proof of involutivity, and proceed exactly as in
Laumon’s paper, therefore we limit ourself to give the statements and refer the reader to the
corresponding results in [Lau2].

Theorem 13. (Cp. [Lau2], theorem (1.2.2.4)) Let E; — E, a morphism of vector bundles over
S of constant ranks ry and ry respectively, and let [’ : €, — ¥| be the transpose of f. Then there
ts a canonical isomorphism

Fa(RfK) = [T Fi(K)[ra = 1)

for all K; e DP(E,,0,). O
Corollary 5. There is a canonical isomorphism

Rm{F(K)~ "K' (-r)[-7]
for all K- e DP(E,,0,). O
Definition 18. The convolution product on € = 5 is the operation

«:DP(E,0,) xD’(E,0,) = D'(E,0,)

defined as

K+ K; = Rsi(K| 5 K,).
Proposition 18. (Cp. [Lau2], proposition (1.2.2.7)) There is a canonical isomorphism

FK; % K;3) ~ F(K;) © F(K;)[-r]

for all K|, K, € D’(E,0,). O

Proposition 19. (Cp. [Lau2], proposition (1.2.2.8)). There is a canonical “Plancherel” iso-
morphism
L
Rel(F(K;) © F(K3) ~ Rm(K, © [-1]°K3) (~r)
forall K, K, eD(E,0,). O

Proposition 20. (Cp. [Lau2], proposition (1.2.8.5)). Let S; 2 S bea morphism of E-analytic
varieties. Let E; =5 S; and E| IV S, the vector bundles over S, obtained by base change from

ES S andE 5 S. Denote by fg : 1 = E and fg: : E] = €' the canonical projections. Then
there exists a canonical isomorphism

FRfg,K) ~ Rfp Fi(K)

for all K* € DP(E,,0,) (we have denoted by F, the Fourier transform for the vector bundle
E — 51) O



44 LORENZO RAMERO

6.2. Computation of some Fourier transforms. The following examples of calculation of
Fourier trasforms are taken from [Lau2), with the cxception of proposition 24, which has no
analogue in positive characteristic.

Proposition 21. Let F <y E be a vector sub-bundle over S of constant rank s. Denole by

it
FL < ' the orthogonal of F in E'. Then there is a canonical isomorphism
F(0.0, pls) = i+0, pa (9 — 5]
O

Proposition 22. Let e € E(S) (i.e. a section of E = §). Denote by 1, : E = E the translation
by e. Then there ts a canonical isomorphism

Fre.K) = F(K)® L({e, )
forall K- €D’ (V,0,). O

Proposition 23. Let o : E = E' be a symmetric isomorphism. Denote by q : E = G, and
¢ : ¥ = G, the quadratic forms associated to o (i.e. q(e) = (e, a(e)) and ¢'(e') = (a~'(e'),€)).
Let [2] : B — E' be multiplicalion by 2 on the vector bundle ¥'. Then there is a canonical
1somorphism

2] F(L(g)) ~ L(—¢') ® =™ Rm L{q)[r].
O

For the next result, we suppose E =+ S has rank one for simplicity. Let B % S bea
sphere bundle inside E, i.e. a fibre bundle over S with an open imbedding 7 : B < E which is a
morphism of S-varieties, and such that over each point s € S, the restriction 7, : 871(s) < 7=1(s)
is the imbedding of an open ball of finite radius centered at a(s) € #71(s).

We also fix some linear coordinate ¢t on G, and let D 2, § be the dual bundle of B — S, te
the fibre bundle over S with a closed S-imbedding i : D — E, defined by the equation

|t((e, €Nl < p(,8) (e € B,e' € D).

In other words, the restriction #, : §"*(s) — 7" (s) is the imbedding of a closed disc centered at
a'(s).

Proposition 24. i) F{i.0,p) = 70, s[1],
11) -7:(_7'0:18) = I.t()n,D(_l)[_l]'

Proof. By theorem 11 we see that (i) and (ii) are equivalent. We will prove (ii}. By proper base
change we can assume that S is a point; then B is an open disc G, (o, ¢) and D = Dy is a closed
disc of radius 8 = p(¥,t)/a. Set T = G, (,t) X Dy. Note that the condition a8 = p(+,¢) implies
that £((,)) trivializes on T. Tt follows that the restriction of F (50, g (o)) to Dg coincides with
0,[-1). Therefore it suffices to show that F (50, 6.(a.)) vanishes outside Ds. To this purpose
we can check on the stalks, and then the claim follows from proposition 17. [



ON A CLASS OF ETALE ANALYTIC SHIEAVES ) 45

7. KUMMER-ARTIN-SCHREIER-WITT THEORY

This chapter is a prelude to the following one: we review and complement the theory of the
deformation from Artin-Schreier-Witt to Kummer, which has been developed by Sekiguchi and
Suwa in [Se-Su].

To start with, let n be any positive integer. Let ji,» be the group of p*-order roots of unit
in the algebraic closure Q¢ of the field Q of rational numbers; we fix once for all a generator ¢,
of jip» and denote by K the field of fractions of the ring A = Z,y{g,~] with maximal ideal m.
Recall that if B = Z[p~'], then the sequence of sheaves of groups on the étale site on SpecB

9
1—Hpr —— G >~ U, B 1
I ———pr"
is exact and is called a Kummer exact sequence.

On the other hand, let F be a field of positive characteristic p, and let W, » be the Witt group
scheme over F of dimension n. Then we have the Artin-Schreier-Witt exact sequence of groups

0 > Z/p" —> Wog — > Wpg —> 0

T —aP — 1

on the étale site on SpecF. Here the p-th power map is given by the canonical ring structure on
W, r.

The purpose of the IKummer-Artin-Schreier-Witt theory (in short KASW theory) is to as-
semble the two above short exact sequences into a single diagram of group schemes on the étale
site over SpecA. To this purpose, we must first replace the Kummer exact sequence by another,

essentially equivalent one. In detail, define maps 7,5, : G, , = Gn p by 7(uy,..., %) = 2,

and X, (v, ..., un) = ugtth - .. ut" "', Also, let © : G, p = G}, ;; be the morphism (uy, ..., u,) =
(uf, ur'ud, ..., u;l uR). -All these maps are group scheme homomorphisms, and the kernel of ©
is the subgroup of all points of the form a, = (¢*"*, (7", ..., {), for ¢ ranging over the elements
of ptpn. Clearly the assignment ¢ — a, defines an isomorphism onto Ker®, and hence we have a

commutative diagram with exact rows

1 —-‘P-’J'p" _PG:"B —e)—G:,.'B —- 1

1, l::,.

1 > fLpe gl W] ? - m,5 — 1.

We can now state the fundamental

Theorem 14. (See [Se-Su], Assertion 1) For every integer n > 0 there exists a smooth group
scheme W, over SpecA, containing the constant group scheme (Z/p®) 4, such that
(a): the ezact sequence

0 — (Z/p")a —> W, —> W, /(Z/p")A —0

has the Artin-Schreier- Witt exacl sequence as the special fibre, and
(b): is isomorphic to the Kummer ezact sequence

1 —ftpr —> G g —2> G}, g — 1
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on the generic fibre. [

Following [Se-Su] we denote by V, the quotient group scheme W, /(Z/p") 4. The groups W,
and V, abound with structure, most of which will be useful for our purposes. We proceed to
describe some of this structure.

Recall that, for every n > 2, the truncation map from W, 7 to W,,_, y induces a commutative
diagram with exact rows

0—Z/p—Z/p" —L/p""' —>0
@ Pl
0 —Gar War > Wa_1r— 0.

The counterpart of this diagram is the following

Theorem 15. (See [Se-Su], Assertion 1) For each n > 2 there exists ¢« commutative diagram
with ezact rows

00— (Z/p)a— (Z/p)a —> (Z/p" )4 —0

T

0 > Wi 4 »Wor ——Wo_1 s —0.

which gives a deformation of the ezact sequence (23) to a diagram of ezact sequences of multi-
plicative groups

1 > Ip > Hpr —e—e— flpr =t ——— ]

o]

] ——G,, — (Gp,)" — (G)" ' — 1.

In the latter diagram, the imbedding G,, — (G,,)" is the map v (1,...,1,u) and the epimor-
phism (G, )" = (G )"~ ! 1s given by (w1, .oy upn) = (W1, ey Upq). O

The underlying schemes of W, and V,, can be described somewhat more explicitly. Recall
that, as a scheme, W, ¢ is isomorphic to Az. The sequence of truncation maps W, g = W,y =
... = Wy p >~ A} corresponds to a chain of linear projections A} — Az™' — ... - AL. Moreover,
all the subquotients W, /W, r are canonically isomorphic to G, r.

We can similarly consider the sequence of epimorphisms W, 4 — W,_, 4 = ... = W,
derived from diagram (24). The subquotients are isomorphic to the group scheme W, 4. The
underlying scheme of W), 4 can be given as follows. For every j < nset {; = (¢" and let
A =1-=(;; then Wy 4 ~ SpecA[X, 1/(1+ AX)]. Notice in particular that W, 4 is already defined
on the smaller ring A, = Z[u,]. 1t is also true that the group law of W 4 is defined on A, as well.
Moreover, the group scheme W, 4, is independent of the choice of A. A similar discussion holds
for the group scheme V, 4 and the chain of epimorphisms V,, 4 = V1.4 = ... = V; 4 obtained
by taking the cokernels of the vertical arrows in diagram (24). Let ¢ : SpecA/A — SpecA be the
canonical inclusion. With this notation, one has

Proposition 25. (See [Se-Su], Theorem 8.8) For each j (1 < j < n — 1) there ezists a polyno-
mial F; € Z[(j+1, X1, ..., X;] inducing a group homomorphism

Fj . Wj+1,A — l:,Gm.A/,\
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and each W; 4 is given by

1 1 1
4 AKXy, L X .
Wia 22 SpecAlXss o X T3 TR 70 X X T AKX

Moreover, the group law on W; 4 is determined by requiring that the morphism oy : Wi 4 —
(G, a ) given by

(X1s ooy X;) = (1 AX1, B (X0) 4 AXay ooy Foi(Xey oo X_1) + AX)
be a group homomorphism.
Stmilarly, for each j there are polynomials G; € &[(j41, X1, ..., X;] such that

1 1 1

A S AlXy oy Xy '
Va4 = SpecA[X, T+ 23X, Fi(X)+ A X, n_1(X11---vXj—1)+’\pX“]

and such that the above statements remain valid afler replacing W; 4 by V; 4, F; by G, A by A*
and oy, by of,. 0O

Remarks. 1): Proposition 25 allows to complete the statement of theorem 15 and of part
(b) of theorem 14. In fact, the epimorhisms W, 4 — W,_; 1 can be expressed in terms of the
coordinates introduced in proposition 25, as the projections (X, ..., X,) — (X1,..., X—1) and
similarly for the maps V, 4 — V, 4. Moreover, the isomorphism on the generic fibre in theorem
14(b) extends to a commutative diagram with exact rows (in the fttp topology)

0— (Z/P")A > W, 4 ATEEN n,A > ()

R

1 —— (stpn) s —> (G a)” ——> (Gt )" —> 0.

Here the map (Z/p") — p,n is given by a = (3 in particular it restricts to the trivial morphism
on the special fibre.

2): Since the special fibre of W, 4 and V, 4 is isomorphic to A}, , we see that F;(X, ..., X;) =
1 (mod m) for each j (1 < j < n-1).

7.1. Formalities. We will need a formal scheme version of the KASW theory. As a matter of
notation, for any A-scheme X, we will denote by X the formal completion of X, with respect to
the m-adic topology on A. - Thcn X is a SpfA-formal scheme, where A is the m-adlc completion
of A, with {raction field K. Similarly, any morphism of A- schomcs ¢: X =Y defines a map
qS : X — Y. If E is any complete field containing I\, with ring of integers E£°, then a base
change functor is defined, A" = A’g. from the category of SpfA-formal schemes, to the category
of SpfE°-formal schemes. As usual, for any such field £ we will normalize its norm | - | so that
|pl = p~*. The symbol m will denote either the maximal ideal of A, A or £°, depending on the
context. 5

To ease notation, set F; = Fj(zy,...,2;) + Az;py and G; = Gj(zy,...,z;) + Az, The
following identifications are immediate:

Gpm.pe = SpIE°(z,y)/ (zy — 1)

Wage = SPLE*(T1, Y1, vy By n)/ (01 (L4 A1) = 1,185 = 1, oy paFy = 1)
Vn,.f:?" = Spro<m17 Y1y ey Ty yn)/(yl(l + Apml) - ]-: yEG} - 11 sy yn(Gn—l - 1)-
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Given a SpfFE°-formal scheme X', we will denote by A, (resp. [A,) its generic fibre, which is a E-

analytic space (see [B3]) (resp. its special fibre, which is a scheme over Spec£2°/m). We can then

form the analytic space (émlgo)q, which can be described as an annulus C of equation |z| = 1,

z € (AL.)®. Similarly, the space (Wnlgo)ﬂ is the set of all (@1, ¥, ..., Zn, ¥u) With |z, || < 1
and such that

_n(ltAz) =1

1

vk (zy,z)=1 i=2,..,n-1.

These conditions imply that |y;| = 1 for all ¢, and moreover y; is determined by z, ..., 2;.
Since A € m, we deduce from remark (2) after proposition 25, that F; = 1 (mod m), that is
|Fy(21, .., 2i41)] = 1 whenever |2,], ..., |#;41] < 1. Therefore the generic fibre of ngo is an n-fold
product of closed discs D; x ... x D; of radius 1. ~

The same argument and the same conclusion apply to (V,; geo),.

We make the obvious remark that the map ¥, extends to a morphism @), go —+ Gy, go and
we consider the following diagram of formal schemes:

N
e -~

X
Wn,E" n,Ee

(25) ;zwl lA

g ~
Gm,pe — G e

The group scheme structures on our schemes are handed down to their formal completions and
even to the associated analytic spaces, so the above is a diagram of homomorphisms of formal
group schemes, which restrict, on the generic fibre, to homomorphisms of analytic groups.

In particular, we obtain certain group structures on D; X ... x D, (resp. on C) and a map
of analytic groups (Téw), : Dy X ... x D; = C. In coordinates, it is given by the polynomial
Fo(21, 0y Zn) = AZn+ Fo (21, ..., Tn_y1). According to our normalization, we have |A| = p=1/=Y),
More generally, for all j < n, a standard calculation gives

|1 — CJ| =p; = ])lP—l.;P’—i .

From remark (2) after proposition 25 it then follows that the image of (Tdw), is contained in
the closed disc D,, C C which is centered at the point 1 € C' and has radius p,. The inclusion
D, <= C can be lifted explicitly to a map of formal schemes j : SpfE°(z) — SpfE°(z, y)/(zy—1)
defined as z — 14 (1—¢,)z. This suggests to introduce a morphism ¢ which makes the following
diagram commute:

W’I,E"
/ JA
SpfE° (x) L, SpfE°(z, y)(zy — 1).
Clearly, ¢ is determined by sending

A + 1
Iy
1_Cn 1"'Cﬂ

Lemma 17. The map &, : (W, g}, = (SpfE*(z)), = D, is surjective.

T

(I?ﬂ(zl’ Tery wn—l) - 1)
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Proof. Let (Z/p"), be the general fibre of the subgroup (Z/p") 4 of W, 4, provided by theorem

—~—

14. This is a finite subgroup of (W, 4),. We see from remark (1) after proposition 25 and from
our explicit description of Ker®, that (Z/p"), is mapped by (7aw), onto the set p,» C E.
Since the primitive p®-roots of unit have absolute value equal to p,, it follows that the reduction
modulo the maximal ideal of the set ¢((Z/p"),) C D, covers all the A/m-rational residue classes

in (Spfﬁ(a:)), = A}Um. In particular, after base changing to SpfE° we see that the induced map
on the special fibres ¢, : (W, g.), = Abojm X oo X Apo = Ap. o is nOt constant.

Take two points a,b € (Z/p"), which have distinct residue classes in A,]a/m» and define a map
i: SpfE°(t) — fv"‘,,,gn by ¢ — at 4+ (1 — t)b. By construction, the composition ¢ : SpfE°(t) —
SpfE°(z) is a morphism of formal schemes, represented by some polynomial P(t) with the
property that its reduction P(t) € A/m[{] is not a constant. Clearly it suffices to show that
(¢t), is surjective. Luckily, this is an elementary statement.

Let p € D, be any point. We want to show that p is in the image ol (¢7),. To start with,
let H(p) be the completed residue field of the point p. After base changing to H(p), we may
assume that p is rational over our base field. Then the claim amounts to showing that the
polynomial P(t) = P(t) — p has a root t; such that {to| < 1. Let P{t) = Yo, ait’ (with
am # 0); by hypothesis we know that |a;| < 1 for all ¢, and there exists j > 0 such that |a;| = 1.
Let b; = a;/ay,; the b;’s are the elementary symmetric polynomials in the roots &g, ...,¢,_; of
P. Since la;| = 1, there exists a subset I C {0,...,,m — 1} with |/} = m — j and such that
t' = [ier ti 2 lam|™". Then bo/t' = [1;q; ti = ao/a; hias norm |ag| < 1, which says that |t;] <1
for at least one : ¢ I. O

Proposition 25 and theorem 15 give us a commutative diagram

W, ge — W,_1 Ee

0 g |

n n-—1
Gm.E" > Gm,E" .

Therefore, we can iterate the construction above, to obtain a factorization

o

Wn., Be

o
aw
SpfE*(z4, ..., :C,.,) — G;L.E”

such that the image of (SpfE°(zy, ..., 2,}), is a product of discs D, X ... x D,, C (G}, g. )y, with
specified radii.

Proposition 26. The map ¢, , ts an isomorphism of analytic spaces.

Proof. Taking into account that all the maps in diagram (26) are group homomorphisms, a
simple induction argument, using lemma 17, shows that ¢, , is surjective. Injectivity follows
easily from theorem 14(b), which also implies that ¢, , induces isomorphisms on the local rings
at each point. O
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The map ¢, , is even an analytic group isomomorphism, if we endow (SpfE°(z,...,z,)), with
the group structure which makes of j, , the imbedding of a ?.ubgroup

We turn again to diagram (25): conS|der the composition 85 : Spfiz°(z) = Gyp ge. In coordi-
nates, this is the map z = (1+ (1 —¢,)2)?". An easy computation shows that the i image of the
induced map of analytic spaces is the closed disc D C (@,,,'Eo),, which is centered at the point

le (@,,,,,,E.a),J and with radius as above and find a factorization

SpfE°(z)

(27) ';l {

SpfE®(z) —— G, g

where ' is the map & — 1 + A’z. We can combinc diagrams (25) and (27) to get a new one

(28) ¢l' ) 1

SpfE° (z) —— SpfE°(z)

where o : 17,,,5« — SpfE°(z} is determined by requiring that j'o = $.oy. The following is an
immediate consequence of the definitions and of lemma 17.

Lemma 18. The map o, s surjective. []

Again, with the obvious group structures, dna.gram (28) induces group homomorphisms on the
generic fibres. Finally, we consider the composition @Jn SpfE*{zy, ..., Tn) = Gmlﬂo. The usual
argument tells us that ©3, factors through a map © : SpfE® (1, ..., 2,) — SpfE°(z4, ..., z,) and a
linear map 7}, : Spr°(:r1, ey Tp) = @“m’E. which induces on the generic fibres an imbedding D,» x

X Dpp (Gm £o )n- We endow (SplE°(zy,...,2,)), with the analytic group structure which
turns Jj into a group homomorphism. Putting this together with remark (1) after proposition
25, we see that diagram (28) factors through a diagram

(29) ¢.] ) k l

SplE(zy, .y 2p) 2, SpfE®{xy, ..., z,).

)
=)
)

Proposition 27. The map 0,, : (Vage)y — Do X ... X Dpz ts an isomorphism of analytic
spaces. With the assigned group structure on Dy X ... X Dge, it is even an analytic group
isomorphism.

Proof. Diagram (29) presents (fJ,,,Eo),, (resp. Dyp X ... X Dyr) as quotient of the analytic group

()7\7,,,30),, (resp. of (SpfE°(zy,...,,)),) by the action of the subgroup (Z/p"),. Seen this way,
On .y is the map induced by the isomorphism ¢, , on the quotient spaces. Hence it is an isomor-
phism as well. O
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8. GLOBAL RESULTS

We continue with the notation of section 6. In particular, cverything is defined over some
complete base field £ O k. Up to a finite base change, we can even assume that E contains
the field K introduced in section 7. Since here we arc interested in geometric questions only, we
can and do assume throughout that our Lubin-Tate group is G,, and then ¢ : g0 = OF will
be a character of the group of p-power roots of unit.

Let f(z) € E[z] be any polynomial. It defines a finite morphism f : A — AL and we
want to study the cohomology of L(f) := f*L. Unless f is a constant, we have non-vanishing
cohomology only in degree one, hence we are really interested in determining H} (A}Ej JL(f))-

Our strategy consists in subdividing A! into two regions A' = D, U (A! —= D,), where D, is
a closed disc centered at the origin, with some big radius ». Then we will apply the standard
short exact sequence

(30) 0 — H}(A! = Dy, L(f)) — H(A, L{])) — HY(D:, L(])) —> 0.

8.1. Integration inside and outside the disc. Set f(z) = 3_[_y ;27 (an, # 0) and define
fo(z) = a,,z™. Clearly, for ro >> 0 we have |z| > rq = |f(z)| = |a,2z™|. Select a real number
ro with such a property. Then, lor any r > ry the restriction fia_p, has image contained into
A' — D, with v’ = |an,|r™.

Write f(z) = a,z™ - (1 + E;-"z'ol ﬁ—zj‘"‘). By our choice of rq, the factor in parenthesis has
norm equal to 1 when |z| > r,. After maybe replacing ry by a larger number, we can even
assume that this factor is arbitrarily close to 1, uniformily for |z| > re. In particular, for rg

31=0 a.
in the region Al — D, and in fact defines an automorphism ol this region. It is clear that f;(x)
and fy(z) give a factorization of f in their domain of definition:

_ . 1/m
sufficiently large and any r > ry, the power series f;(z) =2 - (1 + ) —‘fl—a:-""‘) converges

Al_p Loa_p Loa_p,

Therefore H}(A! = D,, L(f)) ~ H}(A' — D,, f{ L(fo)) ~ H!(A' — D,, L(fo)) and, given r > ro,

we can rewrite the exact sequence (30) as
(31) 0 — HI (A = D;, L{fo)) — HI (A", L([)) — H'(D:, L(f)) —0.

Let [p] denote the action of p determined by the Z,-module structure on the formal group
G,,. From the proof of lemma 10, we obtain for every n > 0 a commutative diagram of analytic
maps

D, ——D,,

a
Dplpn—l —_— DPI/P

where « is given by the power series a(z) = exp(p"z). The radiuses attached to the discs
appearing in the diagram, are arrived at via an elementary calculation, which we omit.

Definition 19. The n-th analytic Kummer torsor K™ is the sheaf on D, ;, of étale local sec-
tions of the morphism [p]™ -endowed with the natural translation action of the group Ker{p]" =
KerAN D, . When there is no danger of confusion, we will usually omil the superscript n.
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Let 4, be the restriction of ¥ to Ker[p]*. We form the associated bundle
Ky =K XKerpppn ¥n-
Then diagram (32) says that there is an isomorphism
(33) O"K:‘It, o~ ’C’MDP,FH—I .

Therefore fra*Ky ~ ,C(f)”—l(phpn_l). Take ny big enough, so that pp™~! is greater than

|am|r?. Then, for any n > ng, we can select r = (Ja,|"1p1p"~1)Y/™ in the exact sequence (31),
and according to (33) we can rewrite the former as

(34) 00— H (A" = D, L(fo)) — HA(A', L{f})) — H' (D, [*a*Ky) —> 0.

Next, recall that the logarithm X is an isometry on the open disc of radius p;. It follows that
[p]” is an isomorphism on the open disc of radius p;p~". Let us write o(f(z)) = exp(p™ f(z)) =
Yis1 (" f(z))". By our choice of the radius r, we have: |z| < r = |p® f(z)] < p1/p. Hence we
see that for iq sufficiently large, and || < r, the rest power series A(2) = ¥ i5; 3(p" f(2))* has
norm less than p;p~". Set ¢g(z) = a(f(z)) — h(z). By the yoga of torsors

(35) [fa’Ky g K @R Ky,
By the choice of mq, h*Ky is a constant sheaf (of rank one), therefore f*a*Ky =~ ¢*Ky.

8.2. Cohomological trivialities. We want to construct a section s, : D, /, — (9n|ko)n for
the analytic group homomorphism o,. We can proceed as follows. First, notice that the
map z — (z,1,..,1) defines a section sy for the morphism £, : G}, , — Gy a. After for-

mally completing, this is still a section &, for $.. We have seen that the map o factors as
i}n’En AN SpfE®(zy, ..., Tp) —5> SpfE*(z) , and unwinding the definitions one checks easily

that, after base change to SpfE°, 8, induces a section § for €. Thanks to proposition 27 we
can set s, = 0, .5,. For later use, we point out that s, : (SpfE°(x)), = (SpfE°(zy,...z,)), is
given by a sequence of n power series (f;(z), ..., fa(z)) all of which, by the maximum principle,
have coefficients in E°. Therefore, s, extends to a morphism of formal schemes s : SpfE°(z) —
SpfE®(z,,...z,) defined just by taking the same power series.

et H be the kernel of o, i.e. the preimage of the zero section Op. : SpfE° — SpfE°(z). We
obtain an isomorphism of analytic spaces over D, .

”n X Dm/p L > (Vn,Eo)q

DP[/P'

Explicitly: v(h,z) = h + s(y) if + denotes the group law in V, go.

—~

Let O,y be the constant sheaf of O,-modules on (V, go),. We derive:
RopOnv =~ Rpo Ry 0,y = Rpa.O, y.

Moreover, R'p..Q,y is the constant sheaf G' with stalk G ~ H(H,,0,) at all points z €
D,,/p. Therefore, the Fp-term of the Leray spectral sequence for p, can be computed as follows:
HY (D, ypy Rip2.0yy) = 0 if i > 0 and H(D,,/p,p2.0ny) = Gi. In particular the spectral
sequence degenerates and we have H"((f),,,Eo)n, Onv) ~Gi.
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~

On the other hand, recall (proposition 27) that (V, ge), is isomorphic to a product of n discs

of different radiuses. Thus H‘((V,,’;;.),,, 0,.,v) vanishes for i # 0 and is free of rank one for ¢ = 0.
We conclude

0, t=0

(36) R‘a,,.O,,,v o~ R'-pg.O,.,v ~ { 0 i >0

The situation so far is summarized by the following diagram, in which the square is fibred

-~

Hy X Dpyjp = (V, o)y ~—— Hy X D,

(37) N le

D D,.

pilp
Our target is to compute H*(D,, ¢g*Ky). We write
HY(H, x D,,5°g"Ky) ~ H'(D,, R.5°¢"Ky) ~ H'(D,, ¢"Ky ® R7.0,)

and notice that the last term is isomorphic to H'(D,, g*°Ky) by virtue of (36) and of the proper
base change theorem. Hence we are reconduced to the study of H'(H, X D,, 7 g*Ky) ~ H'(H, X
D,-, g‘O’;KJ,’b).

To this purpose, we go back to diagram (28). It is not hard to decide that the Z /p™-torsor K
can be recovered as the sheaf of local sections of the morphism §n in (28). We introduce another
Z /p™-torsor, over the étale site of (f}n’Eo)q, by taking the sheafl of local sections of ¥,. Call W
this torsor. It is clear that W =~ 07K, and after taking the associated locally constant sheaves
we have also Wy, ~ a:Ky.

8.3. Resolution of a singularity. In the last section we derived an isomorphism
(38) HYD,, f*a*Ky) ~ H' (H, X D.,g"W,).

It remains to compute the right-hand side of this equation, and for this we revert to formal
schemes.

The polynomial map ¢ : D, = D,,;, extends to a morphism of formal schemes g : SpfE°(z) —
SpfE°(z). To describe 7 in detail, we find it convenient to rescale the coordinates:

D, — Do

4

Dl—“"“g‘-“i‘"Dl.

Here §;(z) = b; - = (i = 1,2) are linear maps which identify the discs of radiuses r, respectively
p1/p, with discs of radius 1, and hence §(z) = byg(b;z). Notice that it may be necessary to pass
to some finite ramified extension in order to define f;; since we only want geometric results, this
is harmless. Write f(z) = Y72, a;@7 and g(z) = p" f(z) + iy £(p" f())’. Then

ig

F(z) = bop" f(br) + b2 Y :—,(p”f(blw))‘-

i=2 U
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Let us examine this expression: we have byp™ f(b12) = bap"an, b z™ - Z_T:_nl baa; iz ; due to our
choice of the radius r, one sees easily that

(39) lbop"an, b7 =1 and  |ba;bl| <1 forall j < m.

We also need to bound the term 3 (p” f(b;z))*. Recall the following elementary estimate:

(40) |zt < py = < 12> L

1!'
ﬁm

We know that |z| < 1 implies |p” f(b1z)| < p1/p; select any ¢ € E° with |e] = p. Then, directly
from (40) we derive: |z| < pi/p = |3z'c| < p1 = |32 < pulel™ = (p1/p)p' .

By the maximum principle, this says that all the coeflicients of the polynomials bzﬁ(p"f(blz))"
have norm strictly less than 1. We sum up our findings in the following

Lemma 19. The polynomial § defines a map § : SpfE°(z) — SpfE°(z) which provides a formal
model for the morphism g of analytic spaces. Moreover, the induced map g, on the special fibre
depends only on the leading coefficient of the polynomial [ which enters in the definition of g.

Proof. : In order to give a map of formal schemes, we only need to know that the coefficients of
G are in E°, and this we know by the argument above, and by (39). The same estimates show
that only the leading term of f(z) determines the reduction of §(z) modulo the maximal ideal,
since the other terms only contribute to form coefficients which have norm strictly less than
1. O

Next we define Y to be the fibre product in the following fibre diagram

-

1’}n E® y

(41) l ) l

SplE°®(z) <=— SpfE°(z).
Notice that on the generic fibres, diagram (41) coincides with the square in diagram (37).

Definition 20. The n-th formal Wilt torsor W™ on the élale site of ﬁ,,_go is the sheaf of local
sections of the map . As usual we drop the superscript when no confusion is likely to arise.

Again we can form the associated locally constant sheal of A-modules W¢. On the one hand
W, restricts to a sheaf W, , on the special fibre (V, g-), = W, go/m; on the other hand, there
exist morphisms of sites

-~ ~ -~

(Vo 5o)met ~— Vo goYnget — V5o )t

from the so-called quasi-étale topology of the analytic space (ﬁn,ﬁ-o)q to the étale site of the
formal scheme )7,,|Eo and respectively, to the étale site of (17,,,5;.:),,; the latter morphism p is
just the natural restriction map. See [B3] for details, where it also shown that the cohomology
computed in the quasi-étale site is compatible with étale cohomology, i.e. that for any formal
scheme A and any sheaf /" on & ., one has

H* (X, gors " F) 2 H* (X, o0, F).
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With this notation, it is easy to check that
(42) ;a.u‘W¢ ~W,.

We would like to apply the theory of vanishing cycles for formal schemes of [B3]. For the case
at hand, Berkovich’s theory gives a canonical isomorphism

HY(H, x Dy, g"Wy) =~ H'(Y,, RU,g"W,,).

However, this isomorphism would be really useful, only if we knew that Y is smooth. In that
case, a simple argument would tell us that RU,g*W, ~ @;W, ,, and this would allow us to
conclude quickly. Since we do not know whether ) is smooth, we will find instead a morphism
T:2Z — ) from a smooth Z, which induces an isomorphism on the generic fibres. Then we will
replace g*W,, by 7°a"W,,.

Here is how we do 11; Composmg the chain of cplmorplusms V,, o — Vn 1B —F .. — Vl go
we obtain a map ¢ : V,1 Bo — V1 go- Let Ogo : SpfE°® — V1 Ee be the zero section of the formal
group scheme 1’31|Eo and denote by Hy the preimage ¢=!(0g.) C v",Eo. H, is a smooth formal
scheme; in fact, by the remark after proposition 25, the map ¢ is just a linear projection in
certain coordinates.

Gathering our scattered constructions we can put together a diagram

1“}n,E" i* Sprw(:El: reny 23,,) # Spr°(:1:)

s
I~ g

-~ v -~ L3 —~
Vn JE° — G Gm‘}go

m,E°

(43)

where 8 (resp. 3) is a section for f],, (resp. €) and we have defined o as the composition ,¢.

Moreover, s : SpfE°(z) — V, go is a morphism with the property that o, ,s, = 5, and the

vertical morphisms j' and j/, restrict on the generic fibres to imbeddings of analytic spaces.
We define a morphism of formal group schemes 6 : Hy — H by

6(h) =h — sa(h)
where of course the — is given by the group structure of Vo e

Lemma 20. The morphism é, : Hy, — H, is an isomorphism.

Proof. Let us introduce the auxiliary morphism 4 : @m ge — G;;’E, defined as z -+ z — 5,5, (z).

(This time “—” is given in terms of the group law on Gm o) As On 1S an isomorphism (propo-

sition 27), to prove the claim it suffices show that o, ,,5 oy, is an isomorphism o, ,(Ho,) —

onn(Hy). Using diagram (43), this is in turns equivalent to showing that 4, restricts to an
isomorphism &y ,(Hp,) = @y, (H,). From theorem 15 one can easily check that

@y g (Hop) = @yy (Vn ge)y N {(21, 0 20) € (Gl po)y | 1 =1}

We will show that ;5-,, restricts to an isomorphism of the space {(1,zy,...,z,) € (@’,:,IE, )n} onto
its image; this_clearly implies the lemma. To this purposc we can write down the coordinate
expression for 4,:

n—1

6y i (1,0, ey @) = (1,22, 00y £) = (B (L, 22, 0oy Ta)y Ly ey 1) = (257 - 2577, Tgy ey Bp)
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from which the claim is immediate. O

Let w : Ho x SpfE°(z) — V, g be given by (h,z) + 8(h)+s(z) (addition taken in V, g.). From
lemma 20 it follows easily that w, is an isomorphism. Finally dcfine Z as the fibre product in
the following fibre diagram

T

Zz Yy SpfE°(z)

| Pk

Ho x SpfE*{z) —— V), g —— SpfE°(z).

Notice that the composition ow is just the projection on the second lactor. Thus, we see
that 2 is isomorphic to Hy X SpfE®(z), and in terms of this isomorphism the composition
Z — Y — Sp{E°(z) becomes the projection on the second factor. In particular, Z is a smooth
formal scheme, as required.

8.4. Repatching.
Lemma 21. With the notation above we have

' . _* _ T:E:W 8 7‘= 0
Ry Wy = { o i

Proof. Define 2, as the fibre product in the following fibre diagram

¢ —

z W, go

JoF

T 8 5
Z—">Y—V, go.

Then clearly N .
Grad Wy > GYW, > 0y 2,
According to corollary 4.5 of [B3] we have
RilI}'TC;,ni;;w\b = CI',aRilI,') Tr; g‘W¢
and since Z, is smooth, by [B3] Corollary 5.4 we obtain
R"III,,O,,,Z,_n =0 i> 0.
Since (; : Z; — Z is an étale covering, the assertion follows. O

Lemma 22. Let fo : A' — A’ be the morphism o — «™. Then H (A, ,Ly(fo)) is a free
O, -module of rank m — 1.

Proof. After a finite extension, we can assume that O, contains all the m-th roots of unity. Let
j: Gy < Al be the obvious imbedding. Then we have

(44) HY(AL,  Ly(fo)) = HIAS, foly(fo) = D HIAL 71K ®Ly)
X Z/mZ-Q,

where the sum is indexed by the characters of the group

116G, E)/ o1 (G, T) = Z/m.
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Now, by proposition 17 the summand corresponding to the trivial charcter gives no contribution
in (44). Moreover, by proposition 29, each of the remaining terms is a free Q,-module of rank
one. The assertion follows. O

Theorem 16. The cohomology group H! (A}g\c,ﬁ(f)) is a free Q,-module whose rank is equal
to deg(f) — 1.

Proof. From lemma 21 we derive a canonical isomorphism
Hl(zm Ty;g.wa') = Hl(zu T;a:W\b,s)'

Since w, is an isomorphism, so is 7,, hence the left-hand side in the above equation computes
HY(Y,g"W,) and by (38) this is isomorphic to H!(D,, f*a*Ky).

On the other hand, the right-hand side depends only on the special fibre of the map g. By
lemma 19, we know that @, is determined by the leading coeflicient of f. With the notation of
section 8.1, this implies that there exists an isomorphism

HY(D,, f*a’Ky) ~ H'(D,, foa"Ky).
Comparing with (34) we obtain a short exact sequence
0 — HYA' = D,, L(fo)) — HYA', L(f)) — HY(D,, fsa"Ky) —= 0

which says that dimg, H!(A!, L(f)) = dimg, H!(A', L(fy)); after a linear change of coordinate
on A! we can assume that fo(z) = 2™, and then the claim follows from lemma 22.

Corollary 8. For any positive real number r let U. = Ay — D,. Then for all r >> 0 we have
Ho(U, 5., Ly(f)) = 0.

Proof. Let A, C D, be the open disc of radius r centered at the origin. Then by [B1] Proposition
5.2.9 it follows
HZ (A, Ly(f)) = lim HY(A 5., Ly(f)).
r>0
Since the cohomology of £(f) is a finitely generated module, the limit is already attained for
some r >> 0. By the usual short exact sequence we derive H}(A' - A, L(f)) =0 for r >> 0.
Since HHU_z.,Ly(f)) — HL(A' — A,, L(f)), the conclusion follows. [J

Definition 21. Let C be an open curve defined over E and let s be any IJ-rational point on the
smooth compactification C of C. Let I be a locally constant sheaf of O, -modules of finite rank

on C. We say that F has meromorphic ramification at the point s if the sheaf F,, over 7, is
trivialized over some covering G € Coy™"" (n,).

Proposition 28. Let IV be a locally constant sheaf of finitely generated Q,-modules on G, g
which is trivialized on some meromorphic covering of G, 5. Then Hc’(AlE?u,F) is ¢ finitely
generated Q,-module.

Proof. 1t follows from theorem 8 that we can find an integer N such that ¢} F extends to a
locally constant sheaf on AL with meromorphic ramification at the point oo € P}. Then, after
a finite extension of @,, by corollary 3 in section 4.3, ¢} F is a direct sum of sheaves of the
type L£(f;) ® M; for various polynomials f; and finitely generated ©@,-modules M;. Moreover F
is a direct summand in the sheaf ¢n. P F =~ dn. (B:L(f;) @ M;). Hence the claim follows easily
from theorem 16. O
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An argument as in the proof of corollary 6 yields
Corollary 7. Let F be a sheaf like in proposition 28. Then for all r >> 0 we have
H)U #.,F)=0.

r,ﬁ“ '
ad

Lemma 23. Let X be a compact analytic variety and F a locally constant sheaf of finitely
generated O, -modules on X. Then we can find a finite subring A C 0, and a locally constant
sheaf F' of A-modules on X such that F ~ F' ®,4 O,,.

Proof. First of all, since X is compact, we can find a finite covering | J; U; = X by open subsets,
and for each 7 a finite étale morphism V; = U; such that G = Fjy, is the constant sheaf associated
to a certain finitely generated Q,-module M;. . The descent data for F' from V; to U; is then
essentially a finite set of automorphisms of M;. These automorphisms are then defined already
over some finite subring A; C Q,. Hence we can find a locally constant sheaf F; of A;-modules
on U; such that Fly, = F; ®4; On.

Similarly, let U;; = U; N Uj, so that F is defined by a cocycle system of morphisms ¢;; :
(Fi®a4,00)u,; = (F3Q4, On)u,,. Again, these morphisms are already defined on some big finite
subring A;; D A; + A; and the claim follows easily. [

We come now to the main result of this chapter.

Theorem 17. Let C' be an open curve over E' and F' a locally constant sheaf of O, -modules of
finite rank on C. Suppose that F is meromorphically ramified at all the points in C — C. Then
HYC4,, F) is a finitely generated O, -module.

Es)

Proof. Let By, .., B, be n small discs around each of the points s, ..., s, of C — C'. For each disc,
take an imbedding
j,‘ : B,‘ — PIE
such that the image of s; is 00. Then it follows from proposition 8 that we can find sheaves F;
on G, such that: 1) 37 F; ~ Fip,_{,,) and 2) F; trivializes on a meromorphic covering of G,,.
Now, it follows easily from corollary 7 that, after replacing B; by some smaller discs, we obtain

H:(B, - {S,‘}, F) = 0.

On the other hand, the complement X = C — |J; B; is a compact affinoid domain. Take a finite
subring A C @, and a sheafl ' of A-modules on X as in lemma 23, so that Fix = F" @4 O,.
Then we have

Hcl(Xap)chl(XaFv)®A Oﬂ'

But it follows from {B3] Corollary 5.6 that the right-hand side is a finite A-module, and this
implies the theorem. O

Remark: One may wonder whether the condition on the ramification on F is really necessary
for the finiteness of the cohomology. We will not attempt here a precise analysis, but we give
an example to demonstrate the general situation.

We construct inductively a sequence of polynomials in one variable f;(¢) (i = 1,2,...) and
positive real numbers r;y < r; < ... such that lim; s = o0 and lim;L. fi = f is an entire
power series on the affine line A}. Suppose f; of degree 7 and r; have already been constructed,
with the property that H} (A, L(f;)) = HX(A,,, L(f;)) is a free ©,-module of rank equal to i —1.
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Choose an element § € £* of norm small enough so that || - r; < p;. Set fi1(¢) = (14 6¢) fi(2).
Then it is clear that

L:(fi+l)|Ari = L(f-')m,'.

and as a consequence we get an imbedding
H (A", L(fi)) = H (A, L(fiy))-

On the other hand, the polynomial f;;,(t) has degree i+1, hence by the usual argument (and by
theorem 16) we find riy; > 0 such that H}(A,.,,, L(fi+1)) is free of rank i. Clearly the sequence
f1(t), fa(t), ... converges to some f(t) and the cohomology of £(f) cannot be finitely generated.

What we learn from the above counterexample is that the finiteness properties of analytic
étale cohomology have much to do with the ramification of the coefficient sheaf. This should
be contrasted with the case of algebraic étale cohomology, where the finiteness properties are
completely unrelated to ramification. I do not know whether this phenomenon has analogues in
any one of the various sheaf theories currently available.

As for the case where finiteness does hold, we should remark that actually we expect a
much more precise statement than theorem 17. Recall that in positive characteristic, the Euler-
Poincaré characteristic of an étale sheaf is predicted by the Grothendieck-Ogg-Shafarevich for-
mula.

Noticing that, inside the class of meromorphically ramified sheaves, the natural analogue of
the Grothendieck-Ogg-Shafarevich formula makes perfect good sense, we are led to the following

Conjecture 2. Let C be an open curve defined over I, and IY a locally constant sheaf of O, -
modules of finite rank on C. Suppose that I' has at most meromorphic ramification at each of
the points of C — C. Then the Fuler-Poincaré characteristic of F' is given by the formula

Xe(Cgar F) = rk(F)x(C) - Z sw,(Fy,)

seC~C

where x(C) is the Fuler-Poincaré characteristic of C.

We remark that for a sheaf of the form £(f) (f some polynomial map on A'), proposition 9
gives sweo (£(f)y..) = deg f. Then theorem 16 can be restated as

Corollary 8. Conjecture 2 holds true for all the sheaves of the form L(f) as in theorem 16. O

This is the reason why we spent considerable effort in computing the exact rank of the
cohomology of £(f), while a simpler argument would have sufficed to prove its finiteness. In a
sequel to this paper we plan to show how to derive the full conjecture 2 from corollary 8 and
the principle of the stationary phase which is object of the next chapter.

9. STATIONARY PHASE

9.1. Vanishing at infinity. In this section we prove a vanishing result which will be used in
the next section. The principle of the stationary phase captures special features of the Fourier
transform on rank one vector spaces. Hence here the base variety S is reduced to a point and
both E and its dual E' are affine spaces of dimension one, identified with A}.

Fix some integer 7 > 0 and let 9 : G, — O be a non-trivial character. £ = £,, denotes the
rank one locally constant sheaf of ©@,-modules on G, = G, g attached to the Lubin-Tate torsor
and the non-trivial character .
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We choose linear coordinates z and y on the first and second factor of AL x AL and a
linear coordinate ¢ on G,. Then the dual pairing (,) of the previous section reduces to a map
i Al x Al 5 @, defined by the ring homomorphism E[t] = E[z,y] which sends ¢ to zy. For a
complex K of Q,-modules on A!, the Fourier transform in degree ¢ is then the functor

FIUK')= R pri(pr' K" @ u* L)

where pr, pr’ are the two projections of A' x A' on the two factors.

We apply the constructions of section 4.2 to the germ of analytic space (C, s) = (P}, c0). We
denote by S the pro-analytic space associated to this germ. Also, let X denote the pro-analytic
space (A x Pp) Xp1 S. The sheaf p*£ induces a sheafl on X, ,, which we will denote by the
same name. Then for each ¢ > 0 we may form RIWP " (11" £}, which is a sheaf on Xz = A}E\u.

A bit more generally, suppose that £ is the completion of an algebraic extension of a complete
subfield Ey containing k... All the varieties and sheaves introduced above are obtained by base
change from corresponding objects defined over Ej, and we can consider the functor R¥}'* .

Theorem 18. With reference to the notation above, RTW*"p (1" L) = 0 for all g > 0.

Proof. The proof is basically a variation of the proof of theorem 12 (with the two affine axes
swapped in A x P! x A'). Thanks to proposition 13, it suffices to consider the case I = Ey,
and hence we need only to study RIUP (u*L). We will show that the stalk of RIWer(;i* L)
vanishes at all points p € Al.

Let Y = (A! x P! x A') xp1 S . We define a map 7 : A' x P! x Al — Al x P! by letting
(z,y,2) = (z + 2,y). Then 7 induces a smooth map of pro-analytic spaces Y — X which we
denote again by 7. Proposition 11 applies and we obtain

T (RO (1" L)) =~ RIW) (1) 1" L).

In particular
(RO (5 L)y = (RO (73" L)) o)

To determine the stalk at (0, p) of the right-hand side, we will use the formula 14 of section 4.2.
With reference to the notation from section 4.2 we have

(RO (73 ))opy = lim i H (35 U, (r* " C))
T€Zo Usr
where (7*u* L) denotes the restriction of 7*p* L to A' x Gr x A" and Ur ranges on all the étale
neighborhoods of (0, 00, p) inside AL, XPj, x AL . Let Cr be the partially ordered set consisting
of all such Ur and let C = Jpez, Cr-
Next we introduce the family C$ consisting of all the varietics of the form By X Wy such that

1) By is an open disc in Ap_, of radius rp and centered at 0, and Wy 2 PL, x AL is an
étale neighborhood of (oo, p) € Py X Ap_;

2) the image ¢(Wr) is contained in an open subset of the form B’ x N(p}, with B’ an open
disc of radius ry around co and N(p) some fixed open neighborhood of p;

3) the ratio rg/rw is equal to the constant 4.

Lemma 24. For any real number § > 0 the family C° = Jpez_ C3 is cofinal in C.

Proof. This is of course just a special case (up to swapping-the axes) of lemma 15 of section 6.1,
with S = SpecFr. O
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Fix a real number § strictly greater than p(i,t). Let By x Wy € C4 be any neighborhood as
above, and set Wy = Wy Xp1 Gr. In view of the lemma, the theorem will follow if we show that

(45) HY(Br x Wr, (L)) =0 (g2 0).

Let prys : Bp X Wy — Wr be the projection. Define p/ : Al x A" = G, by setting (y, z) — yz.
An application of the Yoga of torsors gives us the isomorphism

(T*w" L)r 2 pripLip) @ pryglin').

Now we can proceed exactly as in the proof of theorem 12 and conclude that Rpryg, (7*p* L)y = 0,
which, by virtue of the Leray spectral sequence for prys, implies (45). [J

8.2. p-adic stationary phase. We continue with the notation of section 9.1. Let X be the
S-space (Pg x P}) Xp1 S = P} X S so that there is an embedding of S-spaces X — X. We have
two natural projections

PL .

Given an F-rational point s € AL, we will consider also the germ (AL, s) and the associated
analytic spaces AL(s) and 7,. For any sheaf F' of O,-modules on Ay we will let F(s) =
H®°(Gmer, F,,) which, according to proposition 10, carries a natural structure of 7**" (x,)-module.

For a given sheaf G on AL x AL we denote by G the extension by zero of G to PL x AL; then
G\ determines a unique sheaf on X, . We are interested in studying complexes of the form

Kp = RUT((pr F): @ (17 L)1)
where F' is a sheaf on AL .

Lemma 25. Suppose that F is locally constant on the complement of a finite set S C AL, and
that the stalks of I at all points are finitely generated O, -modules. Then K. vanishes on the
complement of SU{oo}. If, moreover, S C Ap(E) and F is the cxtension by zero of Fla _s then
F(F) is a complez concentrated in degrees 0 and 1, and F'(F) is supported on a finite set.

Proof. With the notation of section 4.2, let Y be an S-analytic space, j : Y, — Y the open
imbedding and ¢ : Yoz = Y the imbedding of the special fibre. Let G be a sheaf on Y, and H
a locally constant sheaf on Y. Then one has the standard general formula

RUT(FHQG) ~i"H @ RV G.

Let F} be the extension by zero of F' to PL and set U = A}, — S; clearly pr*f+ is locally constant
on U x S. Then from theorem 18 and the above remark we derive

Kpjy = " Fu @ (R (10 L))jv = 0

which proves the first claim.

Assume now that S C AL (L) and F is extended by zero from U. By Poincaré duality and
proper base change, it is clear that F*(F) can be non-zero only for =1 < ¢ < 1. Since F is
extended by zero from a locally constant sheaf on U, it is also obvious that F~1(F) = 0.

Let T' = {t;,...tn} be any finite collection of points in A', with the property that F'(F),, # 0
for all t; € T. Let K be a complete extension of £ big cnough to contain the residuc fields of
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all the points ¢;. Let m : AL — A:?a be the base change morphism. Define g, : AL, — AL as
z + t;z. By Poincaré duality we obtain

H(Ug,m*Hom(F,A) @ piy 7" Ly-1) # 0

for all ;. This implies that 7" I’ contains &;u;, (7" L) as a direct summand. Since F has finitely
generated stalks, it follows immediately that the cardinality of T is bounded, i.e. F'(F) has
punctual support. O

Suppose that for a certain point s € PL(E) the stalk /i, vanishes. The definition of RWTer
being purely local, it is clear that the stalk of K} at s only depends on F,,. This prompts us to
make the following

Definition 22. For any point s € Py(E) let pr, : 1, X 7a — 7, be the projection on the
first factor. For a topological group G, denote by Rep(G,0,) the category of O, -modules with
continuous G-action. The local Fourier transform at the point s is the functor

FL) : §(n,, ) Rep(T7" (110, On)
F ————— R'UP (prs, F @ (11" L) muxnas)-

We are now ready to state the main result of this chapter.

Theorem 19 (Principle of Stationary Phase). Let I’ be « sheaf on AL, which is the exten-
ston by zero of a locally constant sheaf with finitely generaled stalks, defined on the complement
of a finite subset S C AL (E). Then there is a canonical equivariant direct sum decomposition

fﬁ(F) (00) =~ @UESU(m}ﬂ(:é?;)(Fﬂ.))'

Proof. Let s € SU {00} and define ¢ : 3, x § — X as the map of S-spaces induced by the
obvious imbedding. Notice that ¢ is a smooth morphism. Thus, from proposition 11 we derive

H ($Kp) ~ RAIPE (87 ((pr* F): ® (17 Ly)) = FL™ (F,)).

It follows from lemma 25 that, under the stated hypotheses, 7y (F),. =0, i.e. Fy(F),_ reduces
to a single sheaf placed in degree zero. Hence the spectral sequence of corollary 2 gives

Fo(F)(oe) = H°(50, R°U Fyu (1), ).

On the other hand, consider the compact morphism pr’ : X — S induced by the projection onto
the second factor. From proposition 12 we derive

RO (F(F),.,) =~ RO Rpry  ((pr* F)y @ (1" L)) [1] = Rpris. (Ke)[1].

From lemma 25 we know that the complex K. is concentrated on the set S U {oo}, therefore
Ripri, (Kz) vanishes for ¢ > 0 and the claim of the theorem follows. O

Remark: the proof also shows that RU" ((pr* F): @ (u"Ly):) vanishes for 1 # 1.
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9.3. Basic study of the local Fourier transform. In this scction we propose to show how
our local Fourier transforms honour their name with a behaviour which, as much as possible,
mimicks that of their namesakes introduced by Laumon.

It is my belief that the meromorphic quotient of the analytic local fundamental group provides
the right framework in which to place the theory of the local Fourier transforms. In other words,
I expect that, for any sheaf F on AL with only meromorphic ramification, the monodromy at
infinity of FJ(F) can be completely described in terms of this meromorphic fundamental group.

Currently 1 do not know yet how to prove such a claim: 1 hope to return to this problem in
a future paper.

To start with, we construct a functor

w: Rep(m**" (1), On) — S(m,, Cy).

This can be obtained as follows. Given an O,-module V with a n]*¢"(n,)-action, we can use the
isomorphism of corollary 1 (or better of its “arithmetic” variant, as at the end of section 4.1)
to induce an action of 77" (G,, g,Z) on V. This depends on the choice of a geometric point
Z € G, . Then a standard argument yields a locally constant ©,-sheaf wz(V') whose stalk at
the point T is canonically identified with V. Then we define

w(V) = wz(V)py,-

In what follows we will bound ourselves to the study of sheaves which are in the essential
image of w, and consequently we will regard the local Fourier transforms as functors

Fie) : Rep(77*" (1), On) = Rep(n7™ (1eo), On).

b loe

Lemma 26. 1) Let V € Rep(m**" (n,), On) be unramified, i.e. suppose that the x*" (n,)-action
on V factors through the quotient Gal(E°/E). Then

FEn&N V) = 0.

loc

2) If we denote by O, the trivial representation of rank one, then
fw(bolzg)(on) = On.
Proof. For (1), we observe that
Fone (V)= Fn (0n) @ V

which allows us to reduce to the case V = Q,; from lemma 14 we derive F(0,){oc) = 0 and
the claim follows from theorem 19. Part (2) is dealt with in a similar way, by considering the
(global) Fourier transform of the extension by zero of the trivial sheaf @, g, and using theorem
19 to analyse the local contributions at infinity. 0O '

Definition 23. Let x : (G g,%) — OX be « non-trivial character. It defines a locally
constant O, -sheaf K, on G,,,,E which we call the Kummer sheaf associated to the character y.

Proposition 29. Let G(x, ¥) be the O, -module with continue Gal(E*/FE)-action defined as

G(x, %) = H; (G e Ky ® Ly).

Then: 1) G(x, ¥) is a free O, -module of rank one and the Hi(G,, ps, K\ ® Ly) vanish for i # 1;
2) if j is the imbedding of Gy, g in A, there is a canonical isomorphism

Foli.Ky) = 3K @ G, ).
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Proof. The second statement can be infered, mutatis mutandis, from the proof of proposition
1.4.3.2 of [Lau2]. It is easy to verify that the cohomology of K\, ® £, vanishes in degrees i # 1.
To show that G'(x, %) has rank one, we can use (2) and the involutivity theorem 11 to obtain

- - - Fad L L i —
(1)L (-1) > 5K, @ G, %) © G(x™, ).
This implies that G, %) é G(x~', %) must be free of rank one, hence the claim. O

Definition 24. We say that a representation of 7w
tient 739 (n,).

mcr(

1) is tame if it factors through the quo-

Lemma 27. For any V € Rep(m**" (1), 0n) of finite rank there exists a locally constant sheaf
V over G,, g such that V,, ~V and V,_ is a tame representation of " (1o,).

Proof. This is a direct consequence of theorem 8. O

For s € G g (E), let p, : AL, — AL be the map = — sz and set L(s) = (u;Ly),... This
O,-module is a rank 1 representation of e (100) Of Swan conductor one.

The translation map 7, : A, — A defined by z — z + s induces a morphism 7, — 7, and
hence a group homomorphism

Ty mer(nu) mer (ns)

as well as a functor

: Rep(r 77 (1), 0n) = Rep(n7" (o), 0n.).

Proposition 30. 1) For all s € PL(E) the functors F3%) are ezact.

2) If V € Rep(m7*" (n0), On) is a tame representalion, then f,‘ﬁ,?)(V) =0.
8) If V € Rep(n*"(n,),0n) and s € AL (E) then

FLeV) ~ FON 7 V) @ L(—3).

Proof. The first claim follows immediately from the remark after the proof of theorem 19. For
the proof of the second claim, thanks to proposition 13 we can base change everything to Es,
at the cost of replacing everywhere the vanishing cycle functor with its generalization RW"* .
We leave to the reader to state the obvious variants of the principle of the stationary phase for
the more general functor. Basically, all the statements remain formally unchanged. Therefore
we only show the proof for the case £ = E*°, in which case

19 (o) = T (Gy 1, F) = Z(1),

Thanks to part (1}, we can also assume that V' is a simnple representation. After replacing Q, by
some finite extension, any representation of 2(1) diagonalizes. Hence we can assume that V is a
rank one Q,-module, attached to some character y : i(l) — 0. The case of a trivial character
has already been taken care of in lemma 26. Let x be a non-trivial character; we consider the
associated KKummer shecal K, on G, g and its extension j.K, to Ag. Now, let A be an open
disc in Ay, centered at 0. Denote by K the extension by zero of j.Kya. Then K} imbeds in
J«Ky and there is a short exact sequence

0= K, = .k = KL —0.
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An argument as in the proof of lemma 25 shows that F (K ) is a complex concentrated in degree
zero, and hence we obtain a short exact sequence:

0— f”(&;) — F1L.Ky) - FUKL) — 0.

Let s € G, (F) be any point. It is easy to check that x;K is isomorphic to the extension by
zero of 7K, ,-1(a)- It follows:

Hi(Ap, K @ ;L) = HI (17 (A), 5Ky ® Ly).
From proposition 5.2.9 of [B1] we know that

HE(AD K ® L) 2 lim HIG65(2), K@ L),
&=

Proposition 29 says that the left-hand side of this equation has rank one, therefore the limit is
already attained for some value |so|. This means that on the complement U = Ay — p; ! (A) we
have 70K )v = F*(K\)w, and therefore FO(K)y = 0; in particular F(K7), . = 0. Next,
notice that the sheaf XY is locally constant on the complement of a single point p (of type (2)
in the notation of [B1], paragraph 3.6) in AL, namely the point corresponding to the sup-norm
on the disc A (see [B1], remark 6.3.4). Therefore lemma 25 applies, and shows that Ky, 1s

concentrated on {p,0co}. It is also clear that the stalk of IK}C{, over oo is isomorphic to the stalk

of Ki_ over the same point. Now, the same argument which was used in the proof of theorem
19 shows that F°(KY7)(c0) ~ H°(P}, K..,). This implies Ky, = 0. It follows that also the stalk
of Ki, vanishes over oo, and therefore ]—‘,E,T;;Q)(K:x,,,w) vanishes, as stated.

For (3), let 77V be a global extension of 7}V, as provided by lemma 27. According to part (2)
and theorem 19, the only contribution to F(V)(oo) (resp. I(r}V)(o0)) comes from f@j;::’(vn,)

(resp. }"d(f,':‘c’)(‘r: Vp.}). Proposition 22 allows to compare the two terms and yields the claim. O

Proposition 30 says that it suffices to study the functors f‘(,,",'z) for the values s = 0 and
s = 0o to know all of them. From this point on, the theory proceeds formally as in the finite
field case. We leave the task of making a detailed study of this theory to a sequel of this paper.

Remark: If we take the formal multiplicative group G, as the underlying Lubin-Tate group,
then the theory above can be refined by using the constructions of section 5.3. Suppose that
a sheaf I is defined over (the completion of) any algebraic extension Ey of Q,. In this case
the principle of stationary phase gives a canonical decomposition of the semilinear " (74, )-
representation which describes the asymptotic behaviour of F{F), in terms of local contributions.
In particular the local Fourier transforms land in the category of these semilinear representations.

10. THE HOMOMORPHISM [

10.1. Definition and basic properties. From now on we restrict for simplicity to the Lubin-
Tate torsor arising from the multiplicative group G,,. Accordingly, the value p, equals p~'/(P—1),
Also, G, equals the group ,» of p"-th roots of unity. We pick a non-trivial character ¢ of the
group G = pp with values in the ring of integers O of B,. Then, by composing with the
natural projections we obtain a compatible sequence of characters ¥, : jipe — Q/€".

Let V be a k-vector space, ¢ : V — V' a symmetric isomorphism and f : V — k the associated
non-degenerate quadratic form. We take inspiration from formula (1) of the introduction to make
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the following definition:
I'(f) = lim HI™V(V x, ke, [ Ly,) ®o Ex(dim V/2).

In this chapter we will be concerned with the study of the Gal(k®/k.,)-module I'(f), seen as a
function of f. With the present setup, this cohomology group carries also a semilinear action of
Gal(k®/k), as explained in section 5.3. Even though it may be interesting and worth exploring,
we will not deal here with this extra structure.

As usual, to make sense of the “half Tate twist” we extend the coeflicient field: the E,
appearing above is the extension of By containing ¢'/2. Then the Tate module E,(1/2) is the
unramified Galois representation on which Frobenius acts as multiplication by ¢~'/2.

The next two results establish the elementary properties of I'.

Lemma 28. For any [ as above, T'(f) is a Gal(k®/k.,)-module of rank one, which depends only
on the isomorphism class of f.

Proof. 1t suffices to prove the corresponding result for the torsion modules [, (f) = HI™YV(V x,

ke, f7Ly.). Let g be another non-degenerate quadratic form, in the same isomorphism class as
f. Then we have g = foh for some automorphism h : V — V. We get

HI™Y(V % k%, g Ly,) o HI™V(V 5 k0 [ Ly,) = HI™Y(V X, B, f°Ly,)

which proves the second assertion. Since the characteristic of % is different from 2, we can always
find a basis {ej,...,,e,} of V, such that the quadratic form f diagonalizes in this basis. Let ¥;
for i = 1,...,m be the span of e;, and let p; : V — V; be the projection such that p;(e;) = §;;e;.
Denote also by f; the restriction of f to V;. The yoga of torsors (for which we refer to [SGA4Z])
implies the formula
[ Lepifil®..QpfmL.

Since HY(V; X, k%, frL) = H°(V; x, k°, fr£) = 0, it follows that H3(V; x, k%, fr£) # 0 if and
only if § = 1. Then, by Kunneth formula we have:

Calf) 2 T(f1) & oo @ Ta(fin).

Hence, to prove the first assertion it suffices to assume dim V' = 1. Let f’ be the inverse transpose
of f, defined as in proposition 23. Combining proposition 23 and the involutivity theorem 11

we obtain
L

L)~ L) S Tulf) & Tulf)

which implies that T',(f) is free of rank rank one. [
Remark: the proof also shows that the groups Hi(V x, E“, f*L) vanish for i # dim V.

Proposition 31. The map f — I'(f) descends to a group homomorphism from the Witt group
W (k) of k to the group of isomorphism classes of rank one Gal(k®/ke,)-modules (with multipli-
cation given by tensor product).

Proof. Again, we reduce easily to the corresponding statement for torsion coefficients. Let
f:V ok g: W — k be two nondegenerate quadratic forms, and let f@g: VAW — k be
their sum. Denote also by py (resp. pw) the projection of ¥V @ W onto V (resp. onto W). From
another application of the yoga of torsors, one obtains

(46) (fOg)Lp, fLOPwY L.
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Using (46) and the Kunneth formula it follows
Ta(f) @ Talg) = HIMVHSW(V @ W) x4 K, 9} [ L ® P g™ L) = Tn(f B )

which says that I, induces a homomorphism from the monoid of isomorphism classes of quadratic
forms, to the group of isomorphism classes of Gal(k®/k.,)-modules of rank one. Let fy :
V@ V' — k be the standard quadratic form induced by the dual pairing: fy(z,¢) = (z,€)
for all z € V,€ € V’. We want to show that [',(fi/) is the trivial Gal(k*/k,,)-representation.
But this is nothing else than a special case of lemma 14 in section 6.1. Since the rclations in
the Witt group are generated by all the isotropic quadratic forms of the form fy, the claim
follows. O

10.2. Computation of ['(f). In this section we obtain some information on the Galois struc-
ture of F'(f).

For a € k*, let M, denote the {-adic representation of Gal(k®/k.,) corresponding to the
character 0 = o(y/a)/v/a = %1 and let f, : k = k be the quadratic form z — az?.

Lemma 29. With the notation above
[(fa) = T(f1) ® M,.

Proof. Define a projective system of sheaves M, = {M, . }.en on AL, by requiring fo. (Ey /A") =
(Ex/A") @ M, ,. Then we have

Ho (A f2Ly,) = HO (A Ly, ® fou (Bx /A7) 2 H (A, Ly, @ M)
By M, ~ M, ® M,, the assertion follows. O
Given a general non-degenerate quadratic form f: V — k on a vector space of dimension =,

denote by D(f) the discriminant of f. Set H}(V, [*Ly) =lim H}(V, [*Ly,) Q0o Ej.

Proposition 32. With the notation above, let n = 2m (resp. = 2m+ 1) and d = (-1)"D(f).

Then we have
] . N My(=m) T even
JHc (V,f [..p) =~ { HCI(AI’L:¢ ® _/\Ad)(_m) n odd.

Proof. Let U = f~'(G,,) and W = f~1(0). Then from Theoreme 3.3 and Table 3.7 of [SGAT]
Exp. XII Quadriques, we derive

My(—(m — 1)) g=mn—1,7neven

My(—m) g=n-—1,no0dd
q L d
BB = g (—n-1) g=2n-2

0 otherwise,

From this and the projection formula we obtain

HU, f*Ly) = 1im H; (G, Ly, @ R"™ j11(0/€")) @0 En.

Since W is the affine cone over the non-singular quadric Q@ C P(V) defined by f, we can compute
HI(W, f*Ly) = HI(W,E,) by using [SGA7] Exp. XV Formule de Picard-Lefschetz. We have
HIW.E,) = an} (W,E,\) by Prop. 2.1.2(ii) loc.cit. In the long exact sequence

o= HiG (W B = HI(W,E,) » HI(W - {0}, B) — ...
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we have HI(W,E,) = E, for ¢ = 0 and = 0 otherwise by Prop. 2.1.2(i) loc.cit. Finally, since
W — {0} is a G,,-bundle over ¢}, we obtain

My(—(m - 1)) g=mn—1,neven

My(—m) ¢ = n, neven

9 ~ 1

HI (W, By) = Ey(—(n-1)) g=2n-2
0 otherwise.

From these computation we can easily deduce the claim. (Warning: in this proof we have used
somewhat freely an ¢-adic language: this is only a harmless abbreviation for some more cumber-
some notation, and does not imply that we rely on a formalism of analytic f-adic sheaves). O

Corollary 9. With the notation above
T(fa)®? =~ M_,
and the Gal(k®/ky)-action on T'(f) factors through ji,.
Proof. 1t follows immediately from proposition 32 and proposition 31. O

As an example we consider the classical case of the norm of the quaternion algebras. Recall
that for any pair of elements a, b € k, one obtains an associative k-algebra (5;.3) of dimension 4,
with basis {1,1, ], k}, and multiplication fixed by the rules:

‘=a j=b ij=-ji=k

1
Let = be a uniformizing parameter for k. If ¢ € OF is not a quadratic residue modulo 7, then
the algebra (%%) is a division algebra and any two division algebras arising in this way are
isomorphic. We denote by H this division algebra: it is the quaternion algebra over k. The
algebra H is endowed with a norm map N : H — k. The norm map induces a homomorphism

from the multiplicative group H* to k*. In terms of the basis given above, one has
(47) N(z-1+y-i+z-j+w-k)=2"—-ay’ —n2’ +arw’

The following result is now a straightforward consequence of proposition 32 and corollary 9.
Theorem 20. The action of Gal(k®/k.) on ['(N) is triviel. O

In [We] it is proved that, with the notation of the introduction, the constant (N} equals —1.
This shows that Weil’s invariant is not a homomorphic image of ours.

10.3. Quadratic Gauss sums. In this final section we obtain an explicit description of the
Galois action on ['(z?), thus complementing proposition 32. Unfortunately our method works
only when the residue characteristic is different from 2. Therefore in this chapter we assume
throughout that p is odd.

Let f; : A' — A! be the quadratic form in one variable z + 22

Let D, be the closed disc of radius r in A, centered at the origin and j : A = D, = A
the imbedding of the complement of D,. Suppose that the restriction of f;L to D, is not the
constant sheaf. Then the pair (A!, D,) gives an exact sequence in cohomology

H(A', f1£) = HY(D,, fi£) = HX(A' — D, f; L).
By Poincaré duality HZ(A' — D,, fi£) ~ Hom(H°(A' = D,, fiL71),B;) = 0, and therefore

HY(AY, f1L) ~ HY(D,, f:£).if and only if HY(D,, f1£) # 0. Set r, = p;’*. We will show that
indeed H'(D,,, f; L) does not vanish.
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Basically we follow the arguments of chapter 8, except that now we try to keep track of the
Galois action. First of all, we call back on stage the Kummer torsor K(*) defined in section 8.1.
Throughout this section we will need only K(), which therefore we will simply denote by K.

The restriction of the character 9 to u, = Ker[p] is a character of the latter group, and we can
form the associated local system Ky, of O,-modules on D, ;,. Then by formula 33 we obtain

Q‘K\b“ o~ C,p‘“)pl .

Comparing with section 8.1, and keeping in mind that p > 2 by assumption, one checks easily
that in formula 35 we can take g{z) = apz?. We deduce an isomorphism

fily, = [ia'Ky, = g°Ky,.

In particular
HYD,,, i Ly) ~ lim HY(D,,,9*Ky.) ®o Ey.

In order to study ¢g*K,, we will use the Witt torsor W = WO defined in section 8.3. Recall
that this is a sheaf on 171,,‘0. Notice that the theory of V, 4 is considerably simpler than the
general case, and was already developed in [0O-S-S], where it was called G*"). We form the
associated 0),-local system W¢_ =W X0, Pn-

With the notation of chapter 8, formula 42 gives an isomorphism

[_L,V*Wlﬂn ~ O';K:'pn-

Next we have to replace ¢ by its integral model g : Spfk®(z) — Spfk°(z), as in lemma 19. For
this it is necessary to extend the base field to k(i,e, A!/?), since the map B, of section 8.3 are
defined only after passing to this overfield. After that, we can choose the constants b;, b, in such
a way that § becomes the map

Spfk® (z) —Z» Spfk°(z) - 22,

Moreover, peeking at [O-S-S] one can check that for the special case of V; 4, the map o is linear,
hence it is an isomorphism. and we can identify the formal scheme ) of diagram 41 with Y,
itself. In particular, ) is smooth and after the identification we also get g = 7.

Let # be the subgroup of Gal(k®/ks) which fixes k(gpe, A/?). Then from the diagram 41
we derive an H-equivariant isomorphism

H* (D 0Ky = H (V5 W, ).
We can now state the main result of this section.

Theorem 21. The action of H on Hl (AL, f{Ly) ts unramified. Let Fr be any lifting of Frobe-
nius in ‘H. Then we have the formula

Tr(Fr,H (A, [ Ly)) = Z P (tresr, (z%))

zelr

where tryr, 15 the trace map of the field extension F/F, (here F is the residue field of k).
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Proof. By the arguments above, it suffices to prove the same claim for H!(Y,, g*W,,_ ). Here we
can use Berkovich’s vanishing cycles, as in section 8.4. The situation is simpler than loc.cit.,
since Y is already smooth. Hence the same argument of lemma 21 yields

H Yy g* Wy, ) ~ H (Vs g2 W, ).

The first consequence is that the action of  is indeed unramified. Finally we recall that the pair

W, ,,W,) is isomorphic to the pair (Ag, L) where £ is the Artin-Schreier torsor on Ag, which

provides the kernel for the Deligne-Fourier transform. Morcover the map g, is given by z — z?.
A standard application of the Grothendieck-Lefschetz fixed point formula yields

Te(Fr, H' (A3, 8:Ly.)) Z¢ (trese, (=

zer

Together with the remarks above, this concludes the proof of the theorem O

Remark: Saibi has defined and studied in his thesis [Sa] a Fourier transform over general
unipotent groups in positive characteristic, complete with a sheaves-to-functions dictionary, and
his theory applies especially to the Witt group schemes W,. One could hope to combine this
construction into the line of thought developed in this chapter, and thereby extend the range
of its usefulness. For instance, one would expect to be able to remove our assumption on the
residue characteristic of &, just by pushing the analysis to the next level n = 2. Unfortunately,
already for W, the calculations involved become overwhelmingly complicated. It is clear that,
if the deformation argument has to play any role in future developments, a more systematic
approach will have to be found.
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