Boundary Value Problems in Boutet
de Monvel’s Algebra for Manifolds
with Conical Singularities 11

Elmar Schrohe and
Bert-Wolfgang Schulze

Max-Planck-Gesellschaft Max-Planck-Institut

zur Forderung der Wissenschaften e.V. fiir Mathematik

AG "Partielle Differentialgleichungen und Gottfried-Claren-Str. 26
Komplexe Analysis” 53225 Bonn

Universitit Potsdam GERMANY

Am Neuen Palais 10
14469 Potsdam
GERMANY

MP1/95-97






Boundary Value Problems in Boutet de Monvel’s
Algebra for Manifolds with Conical Singularities 11

Elmar Schrohe and  Bert-Wolfgang Schulze
Max-Planck-Arbeitsgruppe
”Partielle Differentialgleichungen und komplexe Analysis”
D-14415 Potsdam
Germany

August 11, 1995

Abstract
We complete the work of Part | and present a pseudodifferential calculus for boundary
value problems on a manifold D with finitely many conical singularities.
Outside the singular set, D is a smooth bounded manifold, and we use Boutet de Monvel’s
calculus in its standard form. Near a singularity, D is diffeomorphic to the cone X x
[0,00)/X % {0}, where X is a smooth compact manifold with boundary. We then work
on the cylinder X x R, with operators of Mellin type on R taking values in Boutet de
Monvel’s calculus on X.
First we construct the so-called cone algebra without asymptotics. It provides a framework
in which all the relevant operations can be performed, although it is too coarse a tool to
achieve a Fredholm theory. To this end we then develop the cone algebra with asymptotics,
a calculus for boundary value problems based on meromorphic Mellin symbols. The
associated operators act between Mellin Sobolev spaces with and without asymptotics.
A basic result is the construction of parametrices to elliptic operators in the algebra. The
ellipticity is defined in terms ol the symbols involved. It entails the Fredholm property of
the associated operators and allows conclusions on regularity and asymptotics of solutions
to elliptic equations. '
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Introduction

In this paper we construct an algebra of pseudodifferential boundary value problems of
Boutet de Monvel type on a manifold with conical singularities. We began this project
with Part [, [40]. In order to keep the present article self-contained, we start in Section
1 with a review of the fundamental material, in particular, the concepts of the Mellin
Sobolev spaces with and without asymptotics, meromorphic Mellin symbols, and the
ideals of Green and smoothing Mellin operators.

We then construct two operator algebras with symbolic structure, namely the cone algebra
without asymptotics in Section 2, and the cone algebra with asymptotics in Section 3.
The basic concept is the same in both case. A manifold with conical points and boundary,
D, is a topological Hausdorff space, which, outside the finite set of the so-called singulari-
ties, is a smooth manifold with boundary. Close to a singularity, D is diffeomorphic to the
cone X x [0,00)/X x{0}. The cross-section, X, is a compact manifold with boundary. We
blow up the singularity and work on the cylinder X' x R,. Here we use Mellin operators
with respect to Ry taking values in Boutet de Monvel’s calculus on X.

The essential difference between the two calculi is that the cone algebra without asymp-
totics is based on smooth (parameter-dependent and operator-valued) Mellin symbols
while in the cone algebra with asymptotics we employ meromorphic (operator-valued)
Mellin symbols. In fact the cone algebra without asymptotics may be viewed as an ana-
log of the pseudodifferential calculus with totally characteristic or Fuchs type symbols.
The precise relation is given by the so-called Mellin quantization. Details can be found in
Section 2.4. The operators in this calculus act on the Mellin Sobolev spaces H*" intro-
duced in Part [; the so-called weight v here is fixed. The residual operators in this calculus
are smoothing with respect to the regularity parameter s, but they do not improve the
weight «. In general, they are not compact. Therefore the cone algebra without asymp-
totics provides an excellent framework in which all relevant operations can be performed;
it is, however, not precise enough to yield a Fredholm theory.

The cone algebra with asymptotics is a subalgebra of the cone algebra without asymp-
totics. The operators now have meromorphic Mellin symbols. In view of a decomposition
theorem ([40, Theorem 4.1.8], here Theorem 1.7.6) the singularities can be confined to the
regularizing part of the operator. The final algebra therefore consists of operators that
are sums of

(1) a Mellin operator with a holomorphic (operator-valued) Mellin symbol, localized to
a neighborhood of the singularities,
(i1) an operator in Boutet de Monvel’s calculus for the smooth part of D, localized away
from the singularities,
(ii1) a Mellin operator with a regularizing meromorphic Mellin symbol, localized to a
neighborhood of the singularities, and
(iv) a Green operator.

The operators in the cone algebra with asymptotics act on the Mellin Sobolev spaces with
and without asymptotics. Here, the analyticity of the Mellin symbols plays a decisive,
role. The residual elements in this calculus are the Green operators. Apart from minor
complications due to the existence of the ‘type’ in Boutet de Monvel’s calculus, these
operators are characterized by the fact that they, as well as their adjoints, map any
weighted Mellin Sobolev space H*?,s > —1/2, to a Mellin Sobolev space H3*’ with



infinite regularity and asymptotics described by P. These operators are compact, and
this will enable us to obtain Fredholm results.

The construction of the cone algebra with asymptotics is carried out both for the case of
classical symbols and for that of non-classical symbols. We define a notion of ellipticity.
In general, it requires (i) the ellipticity of the interior symbol, (ii) Fuchs type ellipticity
close to the singularities, and (iit) the invertibility of the principal conormal symbol. In
the case of classical operators the situation is slightly simpler. We obtain three principal
symbol levels: the interior principal pseudodiflerential symbol, the principal boundary
symbol, and the principal conormal symbol. The ellipticity condition asks that all three
be invertible.

We eventually construct parametrices to elliptic elements: Given an elliptic operator A
in the cone algebra with asymptotics, we find an operator B within the cone algebra with
asymptotics, such that AB — [ and BA — I both are Green operators. B therefore is
a Fredholm inverse to A. Morcover, the fact that we know the structure of B rather
precisely allows us to conclude for the regularity and the asymptotics of solutions u to an
equation Au = f, given the regularity or the asymptotics of f.

[t 1s the general intention of our approach to obtain ‘pseudodifferential’ algebras for singu-
lar spaces by an iterative process. Parallel to the geometric description of the singularities
in terms of, say, repeatedly forming cones and wedges of increasing singularity orders, one
would like to obtain higher pseudodifferential algebras by constructing cone or wedge al-
gebras with correspondingly arranged symbolic structures, the (operator-valued) symbols
taking values in the pseudodifferential algebras already treated. During the last few years,
this has become realistic, and, by a sequence of papers and books of Schulze [41, 45, 44, 49],
Dorschfeldt & Schulze (9], Egorov & Schulze [10], Schrohe [35, 38], more and more explicit.
The symbols along the cone axis for example are modelled on a parameter-dependent ver-
sion of the calculus for the base of the cone and adapted to the Mellin quantization, with a
very precise control up to the conical singularities. The subsequent singularity, the wedge,
locally is the Cartesian product of an infinite model cone and the edge. Following a recent
point of view [49], the symbols therefore should be analogs of the boundary symbols in
Boutet de Monvel’s calculus, living on the cotangent bundle of the edge and acting along
the model cone. Starting with a closed compact manifold as the cone base, the operator
algebras on the corresponding manifolds with conical singularities regarded as a “surface”
have been constructed in [44, 49]. In the present case the base of the cone is a manifold
with boundary, hence the resulting singular manifold has a boundary. The context then
is the analysis of boundary value problems, and for applications as well as for index prob-
lems Boutet de Monvel’s algebra is the natural framework. One challenge in carrying out
the above program is the complexity of the structures involved. The resuiting theory on
one hand contains Boutet de Monvel’s calculus, namely by restricting to the cross-section;
on the other hand, it includes the algebras for manifolds with conical singularities when
the cross-section is a closed compact manifold, namely by restriction to the boundary.
In order to facilitate the handling of the calculus we have introduced in Part | a new
and very fast approach to Boutet de Monvel’s calculus with parameters based on ideas
from the edge pseudodifferential calculus. Parts of our paper also develop further the
means on the cone algebra in the boundaryless case: For one thing, we treat the case
of nonclassical symbols. This requires a more careful analysis of the smoothness of the
operator-valued Mellin symbols up to the singularity, which in turn led us to a simplified
parametrix construction. Also our approach to Mellin quantization is considerably easier
than earlier presentations.



In Part I, we already commented on the relation of our calculus to the work of other
authors. Let us recall that, for the early interest in phenomena near conical singularities,
motivated by concrete models and applications in engineering, Kondrat’ev’s paper [21]
was a major breakthrough. It brought about a general understanding of the concept of
ellipticity for differential boundary value problems, of the role of the Mellin transform,
and of the weighted Mellin Sobolev spaces for the Fredholm property. The calculation of
the asymptotics of solutions near conical points by means of the meromorphic inverses of
the conormal symbols is often referred to today as Kondrat’ev’s technique.

Another version of the analysis of operators near conical singularities in the boundaryless
case has been developed by Plamenevskij [29], who emphasized specific Mellin transfor-
mation techniques with respect to the cone axis variable. This approach was extended by
Derviz (6] to the case of boundary value problems. He constructed a Boutet de Monvel
type calculus including a concept of ellipticity as well as parametrix constructions.

Our calculus, however, is more precise and gives more insight into the problem: By using
Mellin symbols that are smooth up to zero we obtain an algebra with the ideal of Green
operators as the residual elements. This in turn allows us to operate on Mellin Sobolev
spaces with asymptotics and to obtain information on the asymptotics of solutions to
elliptic equations.

The paper [26] by Melrose has established another approach to the analysis of pseudod-
ifferential and Fourier integral operators with totally characteristic symbols. Applying
these techniques, Melrose and Mendoza [28], in particular, established a Fredholm the-
ory including ellipticity and parametrix construction for an algebra of pseudodifferential
operators on manifolds with conical singularities, the cone bases being closed compact
manifolds. In recent years, applications to Atiyah Patodi Singer type index theorems
were given [27].

The results obtained here will play a role for the index theory on manifolds with con-
ical singularities. Following the general concept, they will also serve as the necessary
foundation for an iteration of the calculus, in particular, for manifolds with edges and
boundaries, to be performed in a series of forthcoming papers.

Acknowledgment: The authors thank S. Behm, Ch. Dorschfeldt, J. Gil, M. Korey, N.
Tarkhanov, J. Seiler (Potsdam) as well as B. Gramsch and R. Lauter (Mainz) for valuable
discussions.

1 Review of Smoothing Mellin and Green Operators

[n this section we will recall some of the concepts introduced in the first part of this paper
[40]. When referring to a definition, lemma, or theorem in Part I, we shall write e.g.
Definition 1.3.1.3 to indicate Definition 3.1.3 of Part .

1.1 Notation. Manifolds with Conical Singularities

An n—dimensional manifold with boundary is a topological (second countable) Hausdorff
space M such that each point in M has a neighborhood which is diffeomorphic to either
R” or the closed half-space ﬁ—i The former points are called the interior points of M,
the latter the boundary points. We will use the standard notation int M and 0M.



1.1.1 Definition. A manifold with boundary and conical singularities D of dimension
n + 1 is a topological (second countable) Hausdorff space with a finite subset ¥ C D
(‘singularities’) such that D\X is an n 4+ l-dimensional manifold with boundary and, for
every v € L, there is an open neighborhood U of v, a compact manifold with boundary
X of dimension n, and a system F # () of mappings with the following properties:

(1) Forall ¢ € F, ¢ : U - X x[0,1)/X x {0} is a homeomorphism with ¢(v) =
X x {0}/X x {0}.

(2) Given ¢y,¢2 € F, the restriction ¢1é5' : X x (0,1) = X x (0,1) extends to a
diffeomorphism X x (—1,1) = X x (-1,1).

(3) The charts ¢ € F are compatible with the charts for the manifold for D\, i.e., the
restriction ¢ : U\{v} — X x (0,1) is a diffeomorphism.

We can and will assume that, for each singularity v € &, the system F 1s maximal with
respect to the properties (1), (2), and (3).

1.1.2 Definition and Remark. Let D be a manifold with boundary and conical sin-
gularities. By assumption, D\Z is a manifold with boundary. Properties 1.1.1(1) and (2)
imply that any neighborhood of a point v € X contains points of the topological boundary
of D\X, namely of X x (0,1).

We may therefore define the interior and the boundary of D just as usual: z € D is an
interior point of D if there is an open neighborhood of z which is homeomorphic to an
open ball in R"*!, and int D is the collection of all interior points; 8D = D\int D is the
boundary of D. We always have & C 9D,

1.1.3 Definition. Let D be a manifold with boundary and conical singularities. Then
the topological boundary dD of D is a (boundaryless} manifold with conical singularities
in the sense of [47, 1.1.2, Definition 10].

By ID (the “stretched object associated with D”) denote the topological space constructed
by replacing, for every singularity v, the neighborhood U in Definition 1.1.1 by X x [0,1)
via glueing with any one of the diffeomorphisms ¢. This procedure also defines a “stretched
object” IB associated with B = dD.

1.1.4 Notation and Assumptions. Throughout this article we will keep the following
notation fixed.

e D is a manifold with conical singularities of dimension n -+ 1 with singularity set ¥;
D is the associated (n + 1)—dimensional stretched object defined in 1.1.3.

e B = dD is the boundary of D, cf. 1.1.2, it is of dimension n and a manifold with
conical singularities (without boundary); B is the corresponding stretched bound-
ary object defined in 1.1.3.

In a neighborhood of one of the singularities,

o X will denote the cross-section as in 1.1.1; by definition, X is a manifold with bound-
ary of dimension n, in particular, X contains its boundary. For practical purposes,
this is often inconvenient. We shall therefore agree to denote by X the open interior,
and by X the manifold including the boundary. X" = X x R+;7A =X x R,.



e Y = 0X is the topological boundary of X;Y is a closed manifold of dimension n—1;
Y=Y x R+.

We will assume that X is endowed with a Riemannian metric and embedded in a closed
Riemannian manifold §2 and that /D has a Riemannian metric which coincides with the
canonical {cylindrical) metric on X X [0,1) near each singularity.

1.2 Symbols and Sobolev Spaces

As before, X will be the interior of a compact n—dimensional manifold with smooth
boundary Y. We assume X to be embedded in a compact manifold 2 without boundary,
e.g. the ’double’ of X. In a collar neighborhood of the boundary we introduce normal
coordinates. A point there can be written x = (y,r) with y € Y,7 > 0. If U is an open
subset of R™~!, then coordinates in U x R. will also be written in the form z = (z/,7) or
likewise z = (z’, z,,), with ¢’ € U and r,z, € R.

1.2.1 Sobolev Spaces on R™ and R7}. Let U be an open subset of R*~!. For a function
or distribution u on U x R let rtu denote its restriction to U x R,. We shall also use
the operator r* to indicate the restriction of functions or distributions on £ to X.
H*(R"),s € R, is the usual Sobolev space over R*. We let H*(R%}) = rt H*(R") and
H$(R?) = {u € H*(R") : supp u C R} }. Equivalently, H3(R?%) is the closure of C{°(R%)
in the topology of H*(R").

For functions or distributions in H*(R%),s > —1/2, we let e* denote the operator of
extension (by zero) to R®. For —1/2 < s < 1/2 this yields a bounded map

et : H*(R?) = H*(R™).

The notation extends to the case of compact manifolds via a partition of unity. This
defines the spaces A*(Q), H*(X), and Hi(X). We shall employ the notation H*() x
R), H*(X x R), Hi(X x R), etc., understanding that we use L*(X x R) with the measure
dzdt.

S(R™) denotes the space of all rapidly decreasing functions on R", and S(R}) is the
space of all restrictions of functions in S(R") to R%}. We have the following relations

S(R+) = pI'Oj - Hn]U,TEN Ha’f(R'l')a
Sf(R.{..) = ind - lima,fEN H[}_a,_T(R_}_),

where H97(R..), Hy'"(R4) are the weighted Sobolev spaces defined by

He"(Ry) = {(r)"uw:u€ Hi(Ry,)},
H"(Ry) = {{r) "u:ue H (R4, )}
1.2.2 Group Actions and Operator-Valued Symbols. Let £, F' be Banach spaces

with strongly continuous group actions {s) : A € R;} and {&, : A € R} respectively.
By definition this means that

(i) A= k) € C(R4,L,(E)), M = &y € C(Ry, L,(F)) (strong continuity of x and &),
and

(1]) KaKky = K, E.,\K,ﬂ = k,\“.



Here £, (-) refers to the space £(:) endowed with the strong topology.

Let U C R* and p € C°(U x R™, L(E, F)),n € R. We shall write p € S*(U,R™, E, F)
provided that, for every K CC U and all multi-indices «, 3, there is a constant C' =

C(K,a, ) with

1% -2 { D2 DY p(y, m}eenllcs,ry < C (), ye KmpeRr, (1)

cf. [44, 3.2.1, Definition 1]. The space S*(U,R™; E, F) is a Fréchet space topologized by
the choice of the best constants C.

A symbol p € S¥(U,R™ E, F'} is said to be classical, if it has an asymptotic expansion
p ~ 3520 p; with p; € S*77(U,R™; E, F) satisfying the homogeneity relation

pi(y, An) = M &ap;(y, n)Ka-1

forall A > 1,|p| > 1.
For the usual or weighted Sobolev spaces on Ry, we will always employ the group action

k2 f1(r) = N2 F(0r). (2)

On E = C we use the trivial group action «) = :d. For B = F = C we shall write
S#(U,R™) instead of S*(U,R™; C, C). The above definition then coincides with the stan-
dard symbol class notation.

If F{ « I, < ... is a sequence of Banach spaces with the same group action, and F is
the Fréchet space given as the projective limit of the Fj, then let

SHU,R™ E, F) = proj — lim, S*(U,R"; E, F},). (3)

Vice versa, if £ is the inductive limit of the Banach spaces F; — F; — ... with the same
group action, then

SHU,R™ E, F) = ind — limg S*(U, R™; Ey, F). (4)

Finally, a symbol p belongs to S*(U,R"; [/, F'), E = ind — limFE}, F' = proj — lim Fy, if the
group actions coincide on the Fy and F}, respectively, and p € S*(U, R™; Ex, 1) for all k
and . We give it the topology induced by all the topologies of the spaces S*(U, R™; Ey, F7).
We will, in particular, deal with the spaces S*(U,R™; S'(R;),S(R4)). For the inductive
and projective limit constructions we shall then use the representation of S(R+) and
S(R;), respectively, as limits of weighted Sobolev spaces over R, cf. 1.2.1.

In view of the nuclearity of C*(U) we have

SHU,R™ E, F) = C™(U)®.S*(R°, R E, F), (5)
the functions in the last space on the right hand side being independent of y.

1.2.3 Definition. Let U = U; x U; € R* x R" be open and p € S*¥(U,R*; £, F) an
operator-valued symbol. Then the pseudodifferential operator op p is defined by

lopp(Nw) = (2m)™ [ [ O nly,y',m) (o' (1)



for f € C§P(Us, E),y € U;. This reduces to
fop P(NN(y) = @0 [ &¥n(y,m) flm)en, (2)

for ‘simple’ symbols, i.e. those that are independent of y'. Here, f(7) = (2m)~% fetm
f(y)dy is the vector-valued Fourier transform of f.

We may also consider the case, where a part of the covariables serves as parameters:
p € S*(U, R} x R); E, F) defines a parameter-dependent operator op p(A) by

fopp(N) fl(y) = (2m)™" f fu e p(y, ' 1, A) f(y')dy'dn (3)
for f e C°(Uy, E).

1.2.4 The Manifold Case. Let ) be a smooth manifold, and £, F' Banach spaces
with strongly continuous group actions. Moreover, let P : CP(Q}, E) = C*(Q, F') be a
continuous operator. We shall say that P € opS#(Q,R™; E, F) if the following holds:

(1) For all C§® functions ¢,v, supported in the same coordinate neighborhood, the
operator (¢Py). : CP(U,E) = C=(U, F) induced on U C R™ by ¢Py and the
coordinate maps has the form (¢P). = opp for some p € S¥(U,R"*; E, F').

(i1) For all C§® functions ¢,v, with disjoint supports, the operator ¢P is given as
an integral operator with a kernel in C®(Q2 x Q, L(E, F)) (more precisely a kernel
section, see 7, Section 23.4)).

If P depends on a parameter A € R/, then (i) carries over, while in (ii) we ask that the
integral kernel belongs to S(R!,C®(Q x Q, L(E, F))).

Suppose we are given a locally finite covering of the manifold by relatively compact co-
ordinate neighborhoods {€};} with associated coordinate maps x; : ; — U;. Then we
can find p; € S*(U;,R™ E, F) and an integral operator K; with C* kernel such that
P(f o x;)(x; (=) = op p;(f)(z) + K;f(z) for all f € C§>(U;, E). We shall call the tuple
{p;} the symbol of P.

Let now Q; N 4 # B, and suppose that both ¢ and 9 are supported in the intersection.
Denote by P; and Py the operators on C§°(Q, £) induced by (¢o x;')op p; (4 ox;') and
(foxi')oppr (3 o xi'). Then P; — Py is an integral operator with a kernel in C*( x
Q,L(E, F)). Vice versa, given a tuple {p;} with this property, we can define an operator
P CP( E) = CP(8), F) whose symbol is {p;}. Hence the notion S*(Q,R™; E, F)

makes sense.

1.3 Boutet de Monvel’s Calculus

1.3.1 Definition. Let z € R,d € N and U C R*! open. In the following definition
the parameter-dependence will always refer to the parameter A € R'.

(a) A regularizing parameter-dependent singular Green operator (s.G.0.) of type 0 on
U x Ry is a family of integral operators

Go(A) : G (U, S(R)) = C=(U, C(R.,))



given by a kernel in S(R,C®(U x Ry x U x Ry)). Here we identify C°(U, S(R4))
and C=(U,C(Ry)) with subsets of C®(U x R.). A regularizing s.G.o. Gy of type d
is a parameter-dependent operator of the form Go(A} = %_; Go;(A)3? with regularizing
parameter-dependent s.G.o’s Gy; of type zero and the derivative 3, on Ry.

A parameter-dependent s.G.o. of order ;2 and type d on U is an operator

(V) : CR(U, S(R)) = C¥(U, S(R))

that can be written G = ¥7_,[op ¢;]8? + Go, where each g; is a (parameter-dependent and
operator-valued) symbol g; in S*~(U, R*"! x R}; §'(R4), S(R+)) and Gy is a regularizing
parameter-dependent s.G.o. of type d. ‘

(b) A regularizing parameter-dependent trace operator of type 0 on U X Ry is an operator

To(A) : C°(U, S(R4)) = C=(U)

with an integral kernel in S(R,C(U x U x R,)). A regularizing trace operator Ty of
type d is a sum Tp(A) = j=0 To;07; each Ty; being regularizing of type 0.

A parameter-dependent trace operator 1" of order p and type d on U is an operator that
can be written T = Ejzo[op t;107 + Ty, with ¢; in S*~9(U,R*! x R};8'(Ry),C) and a
regularizing parameter-dependent trace operator Tp of type d.

(c) A regularizing parameter-dependent potential operator on U is an operator

Ko(X) : C&P(U) = C2(U,C*(Ry))

given by an integral kernel in S(R!, C®(U xR xU)); a parameter-dependent potential op-
erator K of order  is asum K = op k+ K with a symbol k in S*(U, R*™ ! xR!; C, S(R..))
and a regularizing parameter-dependent potential operator /.

(d) All these spaces of operators carry Fréchet topologies in a natural way: We use the
topology of non-direct sums of Fréchet spaces in connection with the natural topologies
on the symbol spaces and on the spaces S(R/,...) for the integral kernels.

(e) We call g = ZLU G9;0, t = Ef’:o t;07, and k symbols for G, T, and K, respectively.
We shall say that they are classical, if the g;,t;, and k are classical in the sense of 1.2.2.

1.3.2 Remark. Let £, F be Fréchet spaces and suppose both are continuously embedded
in the same Hausdorff vector space. The exterior direct sum £ @ F' is Fréchet and has
the closed subspace A = {(a,—a):a € £ N F}. The non-direct sum of £ and F then is
the Fréchet space E+ F := E@® F/A.

1.3.3 Parameter-Dependent Operators and Symbols in Boutet de Monvel’s
Calculus. Let U C R™! be open. A parameter-dependent operator of order ;1 € R and
type d € N in Boutet de Monvel’s calculus on U x R, is a family {A()) : X € R!} of
operators

. Ce(U x Ry) C=(U x Ry)
PLN+GO) KO ]
AT R S . S

AN =

where
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P(:) =opp(:) with pe SE(U x Ry x U x Ry, R* RY), Py = 1t Pet,
G(-) is a parameter-dependent singular Green operator of order ;2 and type d,
K(-) is a parameter-dependent potential operator of order p,

T(:) 1is a parameter-dependent trace operator of order iz and type d,

S() is a parameter-dependent pseudodifferential operator of order y on U.
The subscript ‘tr’ indicates that the symbol p satisfies the transmission condition (see [30,
Section 2.2.2.1] or 1.2.1.5) at the boundary U x {0}. Note that the decomposition P, + G
is not unique; the regularizing pseudodifferential operators provide examples for operators
that belong to both classes. We shall write A € B*4(U x Ry;R'). The topology on this
space is that ol a non-direct sum of Fréchet spaces induced by (1) and the topologies on
the spaces of pseudodifferential, singular Green, trace, and potential operators.
A parameter-dependent regularizing operator A of type d in Boutet de Monvel’s calculus
on U is one that can be written in the form (1) with all entries being regularizing operators.
We shall write A € B~*4(U x Ry4;R'), and give this space the obvious Fréchet topology.
It is a consequence of 1.3.1 that the operators in (1) indeed have the desired mapping
properties.
In general, all entries will be matrix-valued.
Given an operator A € B*4(U x Ry;R!) there is the quintuple @ = {p, g, k,t, s} of the
symbols for the operators P,G, K, T, and S, respectively, cf. 1.3.1(e¢). As pointed out
before, there is a certain ambiguity in the choice of the symbols; we understand them as
equivalence classes of tuples inducing the same operator modulo B~>¢(U x Ry ;R'). We
usually refer to this symbol as the full symbol of A.
Moreover, we have a parameter-dependent operator-valued symbol oA(A), the so-called
complete (parameter-dependent) boundary symbol of A, namely

oa(A)z', €, N)

1ot Y COOR n1 Cmﬁ n2
_ [ optp(z, 6, 0) + 9z, €,N) k(€0 ] 0(®+) . (®+) "
t(m’, 5” ’\) 3("3’: ffu ’\) . Ccm™ Cma

with p,g,t,k, s as before, ' € U, £ € R*, A € R’. Again, we understand the symbol
on(A) as an equivalence class of tuples in the corresponding symbol classes with the
property that

A —op'oa(A) € B~4(U x Ry; RY).
Here, a; ~ ay iff op’a; —op’ay € B~4(U x Ry; RY) and op’ denotes the pseudodifferential
action with respect to the z'-variables.

1.3.4 Boutet de Monvel’s Algebra on a Manifold. Symbol Levels. Let X be an
n-dimensional C'* manifold with boundary Y, embedded in an n-dimensional manifold £
without boundary, all not necessarily compact. Let Vi, V, be vector bundles over Q and
Wi, W, be vector bundles over Y.

Let {2;} denote a locally finite open covering of 1, and suppose that the coordinate
charts map X N Q; to U; x Ry € R} and Y N Q; to U; x {0} for a suitable open set
U; CR™ ! unless Q; NY = 0.

For a smooth function ¢ on Q write My for the multiplication operator with the diagonal

matrix diag{¢®, #|y }. We will say that A € B#4(X;R"), if
Ce (X, W) C=(X, Vs)
A(N) o - e (1)
Ce(Y, Wh) C(Y, W)
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is an operator with the following properties:

(i) For all C§° functions ¢,%, supported in the same coordinate neighborhood £; in-
tersecting the boundary, the operator

C5°(U; x Ry, V1) C=(U; x Ry, V2)
(MgA(AYMy). - & - ® ,
Cg°(U;, Wh) C=(U;, Ws)

induced on U; x Ry by MyA(M)My and the coordinate maps, is an operator in the
class B#4(U; x R4; R} of Boutet de Monvel’s calculus on R? in the sense of 1.3.3.

(i1) If ¢, are as before, but the coordinate chart does not intersect the boundary, then
all entries in the matrix (Mg A(A)My). — except for the pseudodifferential part — are
regularizing.

(i) If the supports of the functions ¢, € C$°(Q) are disjoint, then (MgA(A)My). is
an integral operator whose kernel density is C*° and a rapidly decreasing function
of A in all semi-norms defining the Fréchet topology of the smooth densities.

We topologize B*%(X;R!) as the corresponding non-direct sum of Fréchet spaces.
GH4(X;RY) is the subspace of all elements in B#4(X;R') where the pseudodifferential
part can be taken to be zero. Note that G=°4(X; R!) = B~=<(X;R").

For each coordinate patch {}; intersecting the boundary, A(A) induces an operator

_ P+ G0 KN
A= ey s
on U; x Ry, cf. 1.3.3(1). We find a quintuple a;(A) = {p;(A), g;(A), k;(A), ;(X),5;(A)} of
symbols for P;{A), G;(A), K;(A), T;(A), S;(A) in the sense of 1.3.3.

Given an interior chart £;, A()) induces a pseudodifferential operator P;(A) with a symbol
p;{}) in the sense of equivalence classes modulo S, cf. 1.2.4.

We call the system

ay(A) = {pi(})}
a complete (parameter-dependent) interior symbol for A. For those 7 where (1, intersects
the boundary, the system {oA(A);} given by

oa(A);(2',,0) = (OPIHPJ'(%{,/\)+gj(cc',§’,)\) kj(a:',.ff,,\))

tj(mlaglu’\) Sj(mlygl) ’\)
Ce>(Ry)™ Ce(Ry)™
& — @
cm cm

is the complete (parameter-dependent) boundary symbol for A(A).

We shall call A classical, if all entries in the quintuples a; = {p;, g;, k;, t;, s;} are classical
elements in the respective symbol classes, i.e., p; and s; are classical pseudodifferential
symbols, while g;,k;,t; are classical operator-valued symbols, cf. 1.3.1(e). Write A €
B%*(X;R'). The operator A then has:
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e A principal pseudodifferential symbol, oy(A) = oy (A)z,, A), well-defined as a
function on (T*X x RY)\0, where 0 denotes the zero-section in the sense that
(€,A) = 0, with values in vector bundle morphisms between Vi and Vp; o(A) is
the component of homogeneity p with respect to (£, 1) of the complete interior
symbol a,(A).

e A principal boundary symbol, operator-valued, ox(A) = ok(A)(z', £, A), defined on
(T*Y x RY\0. The construction is as follows. In the complete boundary symbol
oa(A) replace op? p(z, €, Do, A) by opf p(2’,0,€, D, A). We then obtain a classical
operator-valued symbol, namely

( op7, pi(,0,6,0) + g;(a', €, A) ki(a', €, )) )
ti(xla Era A) Sj(:t:', ¢, ’\) '

We define ox(A) as its component of homogeneity g with respect to (€, A). We then
have a bundle morphism

S(R4) @V, S(Ry) @ TV,
ok(A): 23 — ) :
ﬂ'*wl ‘TT*WZ

here 7 : (T*Y xR)\0 = Y is the canonical projection. This formulation differs from
that in [30, Section 3.1.1.1] in that we have replaced H¥ by its Fourier preimage
S(Ry); it is, however, obviously equivalent.

1.3.5 Definition. We will say that A € B#Y(X;R!),d < uy = max{y,0} is parameter-
elliptic if there is an operator B € B~*¢(X;R!),d < (—p)4, such that

o for each interior coordinate chart, the local components p;,q; of the complete
symbols of A and B, respectively, satisfy the relations

pigi —1,q;p; — 1 € S7'(U; x Uj, R* R'), and (1)

e for each coordinate chart intersecting the boundary, the local complete boundary
symbols a;, b; satisfy the following relations: For all functions ¢;,¥; € C§°(U;) with
pjY; = p; we have

wiabip; — @il = ¢y, (2)
eibjaph; — il = cy, (3)

with suitable parameter-dependent symbols ¢, c; of order —1 and types d;, =
(=jt)4,d2 = py. Here [ is the identity.

For classical operators, these two conditions are equivalent to the invertibility of both the
principal pseudodifferential symbol and the principal boundary symbol.

1.3.6 Theorem. Let A € B*Y(X;R!) be parameter-elliptic, d < uy. Then there is an
operator B € B~#*(X;R"),d' = (—u). such that

Ri=AB— 1B "(X;RY and Ry = BA—1¢ B™™%(X;R/),
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where dy = (—p)4,d2 = g In particular, in the notation of 1.3.4:

H* (X, Vi) H= (X, V,)
A(N) @ — @
H (Y, W) =Y, W2)

is a Fredholm operator for s,s — pu > —1/2.

1.3.7 Wedge Sobolev Spaces. Let F and ) be as in 1.2.2, ¢ € N,s € R. The wedge
Sobolev space W?*(RY, E) is the completion of S(RY, E) = S(R?)®, £ in the norm

1/2
liellwegue,zy = ( [ 0 Wpms Fommun)lsn)

cf. [44, Section 3.1]. W*(R?, E) is a subset of S'(RY, E) := L(S(R?), E). For k, = id we
obtain the usual Sobolev spaces of E-valued distributions.

Suppose {Ex} is a sequence of Banach spaces, Exyy — Ei, E = proj — lim E;, and the
group action coincides on all spaces. Then

W?* (R, E) = proj — lim W*(R?, E).

Vice versa, if By — Eiyy, £ = ind — lim Ey, and the group action is the same for all
spaces, then

W?(R?, E) = ind — lim W?!(RY, Ey).
We shall write w € W7, (R?, E), il there is a function ¢ € C5°(R¥) such that u = ¢u.
Similarly, for v € S'(R%, E), write u € W} (RY, E), if for arbitrary ¢ € CP(RY), du €
W3 (R, E).

1.4 Sobolev Spaces Based on the Mellin Transform

1.4.1 Mellin Transforms. For 8 € R, I's denotes the vertical line {z € C: Rez = §}.
We recall that the classical Mellin transform Mu of a complex-valued C§°(R )-function
u 1s given by

(Mu)(z) = fum () dt. (1)

M extends to an isomorphism M : L#(Ry) — L%*(Ty2). Of course, (1) also makes sense
for functions with values in a Fréchet space £. The fact that, for v € C§°(Ry), one
has Mulr, ,_ (2) = M, (177u)(z + v) motivates the following definition of the weighted
Mellin transform M.,:

Myu(z) = M) (2 + ), € CE°(Roy, ).
The inverse of M, is given by

[M;1h)(z) = —l—_/r t™"h(z)dz.

= —
271 Ty,

1.4.2 Parameter-Dependent Order Reductions on . Let {! be a closed com-
pact manifold. For i € R there is a parameter-elliptic pseudodifferential operator
A* € opS*(2, R*; R), depending on the parameter 7 € R such that

AR(r) : HE(Q, V) = H™H(Q, V)
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is an isomorphism for all 7. Parameter-ellipticity here simply means that there is a symbol
q € S7#(Q,R™ R) such that A*q — 1 and gA* — 1 both are elements of S7'(2, R*; R).
In order to construct such an operator one can e.g. start with symbols of the form
(€, (r,C))" € S*(R™,RE; R,) with a large constant C' > 0 and patch them together to an
operator on the manifold ! with the help of a partition of unity and cut-off functions.
Alternatively, one can choose a Hermitean connection on V and consider the operator
(C + 72 — A)%, where A denotes the connection Laplacian and C is a large positive
constant.

1.4.3 Totally Characteristic Sobolev Spaces. (a) Let {A* : 1 € R} be a family
of parameter-elliptic pseudodifferential operators as in 1.4.2. Tor s,y € R, the space
H*Y(2*) is the closure of C§(Q") in the norm

1/2
el any = { fop I M |dz|} . 1)

Recall that n is the dimension of X and  and that ['g = {z € C: Rez = §}.
(b) We let H*(X") = {f|x~ : f € H"(2)}. The space H*{X") carries the quotient

norm:

XA = u}.

l|wllagevixny = inf{|[ fllasviany : f € H(QY), f

(c} Ho"(X") is the space of all distributions in H*Y(2") with support in X" =X xR,
Since, by definition, CZ(Q1") is dense in H*7(Q"), the space Hy” (XN ") is the closure of
Cg°(X™) in the topology of H*7(Q1).

(d) For s =1 € N we obtain the alternative description

we HYQN) ff M2(t8,)F Du(z,t) € LE(QY)

for all £ <1 and all differential operators D of order <! —k on Q, cf. [44, Section 2.1.1,
Proposition 2].

(e) The space H*7(X") is independent of the particular choice of the order-reducing
family.

(F) H7(X™) C Hipo XP); HOO(XM) = OHO(XN); HOO(X M) = 172 LH(X™).

(g) H*%(X") has a natural inner product

1
(H,U)'HD,U(XA) = é__/ (M“(Z)aMU(Z))Eg(X)dZ'
mwe rgg._]_
(h) If ¢ is the restriction to X of a function in C§(f2 x R), then the operator My of
multiplication by ¢,
My HY (XP) = H (X,

is bounded for all s,v € R, and the mapping ¢ — My is continuous in the corresponding

topology.
(i) Suppose that {Q; : j = 1,...,J} is an open covering of 2, and {¢;} is a subordinate
partition of unity. Let {R* : 4 € R} be an order-reducing family on R™. We can define

the space H*”(R™ X R) as before and denote by ||-||#+~(rnxRr,) the corresponding norm.
Then

J 1/2
el = (Z ||(¢’j“)*||’2mn(nnxa+)) (2)

i=1
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furnishes an equivalent norm on H*7(Q2"). Here, (¢;u). is the distribution induced on
R™ x R, via the coordinate functions.

(j) Near each singularity v, ID is diffeomorphic to X, with suitable X, as in 1.1.1. We
define H*"(ID ) as the space of all distributions belonging to H>7(X/) near a singularity v
and belonging to H*(ID ) in the interior; for the precise construction use a cut-off function
w, near each singularity v.

Notice that (e) is a simple consequence of the fact that if {A# : x € R} and {A#: u € R}
are two order-reducing families, then for each p, the operator A*A~* is parameter-elliptic
of order zero. (h) is immediate from (d) and interpolation in counection with 1.4.7, below.
We define the spaces H®7(Q), H7(X) and Hy7(X) as the intersections of the corre-

sponding spaces taken over all s € R.

1.4.4 Remark. On R™ we may choose a particularly simple order reduction, namely
A#(t) = op (€, 7). Using the transformation &, ., defined by

Buy0(r) = exp(r(" o — 1)) = (D) omer

one can check that
Hully”'T(R"xR.,,) = ”(I)nﬁu“H-(Ran);

in other words,
H(R® x Ry) = {t'l;'l"*'"’u(a:,ln t):ue H'(R* x R)}, (1)

cf. [44, 2.1.6(4)]. For X = R in = R"™ we obtain

H (R x Ry) = {t7F u(z,Int) : w € H(R2 x R)}, (2)
HV(R2 x Ry) = {t7F Pu(z,Int) :u € HY(R: x R)}. (3)

We have the following relation between the Fourier and the weighted Mellin transform:

(M- f(,))(1/2 — v +27) = [Fulz, ))(7).

Here, f(z,t) = t~"/**%u(z,Int). As the notation indicates, both transforms act with
respect to the last variable only. Therefore

MyH 2R x Ry) is isomorphic to Fi, H*(R} x R)

if we identify the lines 'y, and R.
The well-known fact that for —1/2 < s < 1/2 we have Hj(R}) = H*(R%) together with
1.4.4 then implies that

,Hs,fy()\n\) — Hgﬂ(‘){"\)’ —1/2 < 8§ < 1/2. (4)

The following lemma is new; it has not been given in Part [. We include it here since it
gives more insight into the structure of H®W+™2( X1,

1.4.5 Lemma. .
T/ (X0) = 0(X)@H(Ry)
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Proof. In view of the nuclearity of C®(X) we have C®(X, H*"(R,)) = C®(X)®x
H*®Y(R4). So we only have to show the identity

W (XR) = O(X, HO(Ry))

To this effect note that H>"+"/2(X*) consists of smooth functions, so for v = u(z,t) €
Heor+n/2( X ") we can consider the function z 5 u(z,-).
The norm on H®"**2(X") is given by the family of semi-norms

Pra(w)? = [[177(t8,) 07wz, DlZa(xay = _/||iﬂ(t3t)ka§”(fﬂa Mizmyyde,

with suitable differential operators d2 on X, cf. 1.4.3. On the other hand, the last
expression is of the form

[ a@zu(z, )ds, 1)
)

where gy is the semi-norm on H*7(R) defined by

@) = [ 17700 F(0) Pt

By Sobolev’s lemma, (1) is a system of semi-norms that is defining for the topology of
C®(X,H>"(Ry)). This shows the assertion. <

The following lemma also is new. We shall need it in Section 3.1.
1.4.6 Lemma. Let f € H'"(R,) for somey > 1/2. Then
lim f(t) = 0.
Proof. Without loss of generality we may assume that f(t) = 0 for ¢ > 1. By definition,
(8, [ € L*(Ry), §=0,1.

In particular, f € C(R,) by Sobolev’s lemma, and it makes sense to consider f(¢) for
t > 0. Moreover,

sl < 186l ds (-
< (/;1 Is—‘f(sf;‘,j')('r‘)|2 afs)]/2 (ftl g2y ds)1/2 (1—1)

1/2

< Collfllen (L =274,

so f is bounded whenever v > 1/2. We have vy — ¢ > 1/2 for suitably small £. The fact
that H'"(Ry) = t*H'""*(Ry) shows that | f(1)| < Cy—e|[fll1r—ct = 0ast = 0*. <

1.4.7 Proposition. The inner product in 1.4.3(g) extends from C(X") x C(X") to
a non-degenerate sesquilinear form

H (XN x He" T (X") = C
for all s € R. This admits the identification Hg* 7 (X") = (H*Y(X"))". Moreover,
[/ l2eerxmy = sup {I(S, v)moo(xm] : ”””7{;':'“’()(/«) =1}

furnishes another equivalent norm on H*Y{X").

17



1.4.8 Theorem. Let s > 1/2,7 € R,u € H*(Q"). Then the restriction you = ulyn of
u to Y is well-defined and belongs to H*~1/27=1/2(Y"); the mapping

Yo : HS,"Y(QA) = Ha—]/2,"f—l/2(y!\)

is continuous. Clearly, the same assertion holds if we replace Q" by X"
By r denote the normal coordinate in a neighborhood of Y. Then the operators y; : u —
Ful|ya define continuous mappings

73 . Hs,‘i(ﬂf‘\) N Ha—j—l/?,v‘—l/?(y:\) &Ild
o HO(KP) o I,

1.4.9 Lemma. Choose a smooth function ¢ equal to 1 in a neighborhood of Y and
supported in the neighborhood of Y, where the normal derivative is defined. Then the
operator f v O.(¢f), defined for f € C*(Q") has a bounded extension to an operator

HAON) = HTI(Q).

1.4.10 Theorem. The spaces H*Y(Q") are invariant under changes of coordinates if we
restrict ourselves to the subspaces of functions with support in a compact set § x {t :
0 <t < R}, and if we ask that the diffeomorphism, say ®, respects the set {t = 0},
i.e. ® is the restriction of a diffeomorphism of  x R, (in particular, we will then have
®(z,0) € 2 x {0}).

More precisely: Let ® be a difleomorphism on  x Ry, respecting {t = 0}. Then the
space

{ue H"(Q") :u=0 on {t > R} forsuitable R}

is invariant under the change of coordinates induced by ®.

We say that a diffeomorphism ® of X” is boundary-preserving if there are open neighbor-
hoods Uy, U; of X* in Q", and & extends to a diffeomorphism ® : U, — U, respecting
{t = 0}. This immediately leads to the following corollary.

1.4.11 Corollary. Also the subspace of H*?(X") consisting of the distributions that
vanish for large t is invariant under changes of coordinates induced by boundary-preserving
diffeomorphisms.

1.4.12 Definition. Let F be a subspace of D'(X*) or D'(Q") with a stronger topology.
Suppose that ¢ is a smooth function on R, and that multiplication by ¢ is continuous
on F. Then [¢].F denotes the closure of the space {¢u:u € F} in F.

1.4.13 Theorem. Let w € CP(R;),w = 1 near zero. Then for s > s',vy > +'
WA (X") = w7 (X7

is continuous. For s > s',+ > +' the embedding
(WX ) o W] 17 (X)

is compact.
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1.4.14 Definition. For s,y € R,w a cut-off function on R, let
KMXMN) ={ueD(X") wu e H(X"),(1-w)ue H (X"} (1)

Here, H} . (X")is as in 4.2.1. The definition is independent of the choice of w by 1.4.3(f).

cone

In the notation of 1.4.12,

Kom(X7) = [l (X7) + [L = o] HE o (X7 (2)
similarly,

Co (A7) = [w]H"(X7) + [1 — @] HE o (X7), (3)
cf. 1.4.3(c). We shall give K*7(X") the Banach topology induced by (2):

lllcorqany = Nwwllmsrxay + 11 — w)ullgg,,.xn)-

1.4.15 Remark. Note that, in contrast to Definition 1.3.1.18, we have slightly changed
the notation, replacing [1 — w|H*(X") and [l — w]H3(X") by [l —w]|H? . (X*) and [1 —
WIHG one(X7") respectively. The results of Part I hold with both conventions.

1.4.16 Definition. Let © be the'interval (0,0],0 < 0, and let s,y € R.

K& (X") is defined as the intersection (),5o K77~ ¢(X"). We endow this space with the
projective limit topology.

For © = (—o0, 0] define £F7(X") as the intersection of all the above spaces for § < 0.

1.4.17 Remark. (a) Let ©v € K*7(X"),s > 1/2. By Theorem 1.4.8 the restriction uly
belongs to K*~1/27-1/2(YA),
(b} From Remark 1.4.4 we obtain natural dualities

LX) 2 K (X)) and K§Y(XM) & K77(XM)

for all 5,7 € R.
(c) Let ¢ be as in 1.4.3(h). Then the multiplication operator

My K*(X™) = K2(X™) and My : K(XY) = Kg7(X")

1s continuous.
(d) Of course, all these distributions may take values in finite-dimensional vector bundles
with a Hermitean structure which are restrictions of smooth Hermitean bundles on 2 x R..

1.5 Spaces with Asymptotics

1.5.1 Definition. (a) A weight datum g = (v, ) consists of a number ¥ € R and an
interval © = (0, 0] with —oco < 0 < 0.

(b) The collection of asymplotic types As(X,g) for a weight datum g = (v, (0, 0]) with
0 > —oo (“finite weight interval”) is the set of all finite vectors

P={(pj,Tij,Lj)Zj=0,...,N(P)€N}

consisting of
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(i) p; € C with 22 — y 4+ 0 < Rep; < %t — 5, where n = dim X,

(it) m; €N, and

(iii) L; a finite-dimensional subspace of C®(X).
The elements P of As(X,g) are called asymptotic types.
If g is a weight datum with § = —oo, (“infinite weight interval”) then As(X,g) is the
family of all vectors P = {(p;j,m;,L;) : 7 = 0,...,N(P) < oo} with the additional
assumption that

(iv) Rep; & —o0 as j = oo, whenever P is infinite.

By mc P denote the set {p; : 7 =10,...,N(P)}.

Correspondingly, As(Y,g) is the set of all P = {(p;,m;,L;) : j € N} with 2 -y +8 <
Rep; < 7 +79,m; € N, and [; a finite-dimensional subspace of C*(Y’). As before we
assume that Rep; = —oo as j — oo whenever P is infinite. Finally we let for g = (v, @)

As(X,Y,g)={P=(P,P): PLe As(X,g), P, € As(Y,(v - 1/2,0))}.

(c) The space K" (X?"), for P = {(pj,mj,L;) : j = 0,...,N} € As(X,g) with finite
weight interval consists of all u = u(z,t) € K*7(X") such that for suitable ¢;x € L;,0 <
J < N,0 <k <mjy, and all cut-off functions near zero, w,

N mj

=33 cplx)t P In* t w(t) € KgT(X7);

7=0 k=0

cf. 1.4.16 for the definition of KLg7(X"). In the case of an infinite weight interval first let
gr = (v,(—k,0]), £=1,2,..., and define P, € As(X,g) by

1 1
nt - - A<Rep3§%—fy}

P =A{(pj,mj, L;) € P:

Then let
€00 = (1K 0

KE7(X") is the intersection of all K3"(X*),s € R. It is a Fréchet space.

(d) Near each singularity v, ID is diffeomorphic to X, x R.., with suitable X, as in
1.1.1. We define Hp"(ID) as the space of all distributions belonging to Hz"(X2) near a
singularity v and belonging to H*(ID) in the interior; for the precise construction use a
cut-off function w, near each singularity v.

1.5.2 Remark. The representation of a function in the form

N m;

=3 cik(z)t™ In*tw(t) + f(z,t) (1)

3j=0k=0
with f € Kg7(X") as in 1.5.1(c) depends on the particular choice of coordinates. Un-
der a change of coordinates, the function Z?:o Yo cir(z) 7% In* tw(t) transforms to a

function E?’:O S cgk(:a)t_p; In*tw'(t) +9(z,t) with g € K=M(X*) for arbitrarily large
M. As indicated by the use of N’ and pj}, there may be more and different exponents in
the resulting representation. It is straightforward to see, cf. 1.3.2.2, that all p; are of the
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form pp —{, for a suitable px and [ € N. Moreover, if the ¢;; vary over a finite-dimensional
subspace of C®(X), then so will the c},.
Spaces with asymptotics are therefore well-defined if we either keep coordinates fixed or
else interprete the subscript PP associated with an asymptotic type P as an equivalence
class of of possible asymptotic types. This is the sense in which all the notation involving
asymptotic types should be understood.

Recall that we always have

KE(X7) = Kl g(X7) + KF7(X7).

(=00,0]

1.5.3 Definition. For P € As(X,g) and g = (v, 0) let
Sp(X") = [WIKF(X7) + [1 - w]S(X7),
where S(X") = §(R4)®,C®(X). The definition depends on the choice of O,
1.5.4 Lemma. Let ¢ € CP(Q x R), ¢ = ¢|xn. Then the multiplication operator
My KY1 (XM = K7 XH)

is bounded. If P € As(X,g) satisfies the “shadow condition” (i.e. given a triple
(p,m,L) € P and j € N, there is an element (p — j,m(3), L(7)) € P with m(j) >
m, L(j) 2 L) then also

My K(XY) = KF/(X7)

is continnous.

1.5.5 Remark. Of course, all notions make sense for distributions with values in finite-
dimensional Hermitean vector bundles which are smooth up to the boundary with the
obvious modifications.

1.6 Green Operators. The Algebras C¢(X", g) and Cq(D,g)

1.6.1 Definition. Let g = (v,4,0) with 4,6 € R,0 = (8,0],—c0c < 8 < 0;g also is
called a weight datum. Moreover, let P, ¢} be two asymptotic types, P = (P, P,) €
As(X,Y,(6,0)),Q = (@1,Q2) € As(X,Y,(—v,0)), and V;, W;,... smooth Hermitean

vector bundles.

(a) Let

Ge () LK(XMNWV) @ KHY N W), K8 (XM, Ve) @ K=Y A Why)).

s>—1/2

We shall write G € CZ(X", g)pg if the following holds: for all s > —1/2

&) - @ (1)

Lo XM, V, Sp, (X", V,
G= |: G'G GK ] ( ) 1) Pl( ) 2)
CFT GS K:s',y_lfz(}//\’wl) 8}6;2—1/2(}/"\,14/2)
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and
Ko (XM, V) Sg, (X™ W)
G*: S? - & (2)
)C.s,—&—l/'l(y/\’ Wz) 55;1-1/2(};1\’ Wl)

are continuous. In (2), G* is the formal adjoint of G. 1t is defined from the duality between
K XA W) @ K312V A W) and Ko7 (XA, W) @ K5~ 1V/2(YA W), which comes

from an extension of the inner product

(100 a0 = 5= [ (MAG), M) iaonyde

27‘|’i n?l
1

e [ (Mou(2), Maa(2)rr
e FHF

on HO(X™) @ H>~Y/?(Y™). Notice that the second term on the right hand side differs
from the standard inner product on H*7(Y"), where the integration is over I',/,_,, for
dimY = n — 1. Since (Mu)(z + 1/2) = M(t'/?u)(2), this term yields a duality between
H12(YAY and H-»"""1/2(Y 7). As before, we will not refer to the bundles in the no-
tation.

(b) C&(ID,g)prg is the corresponding space with X replaced by ID and the spaces
SE (XM Vo)., Sor YA, W) by HE (D, Vo), ..., HG "2 (1B, W,). We call the el-
ements of C2 (X", g)pg and C*(ID, g)pg the Green operators of type zero on X” and D,
respectively.

(c) Let d € N. An operator G acting as in (1) is called a Green operator of type d, if it

can be written i '
a7 0
G = EGJ' l Or I jl (3)

i=0

with Green operators G; of type zero. The order s in (1) then is assumed to be > d—1/2.
With the replacements in (b) we can use the same definition for operators acting on
functions over ID. In (3), 0, denotes the normal derivative defined in a neighborhood
of the boundary of the Riemannian manifolds X” and D, respectively, multiplied by a
cut-off function, so that it makes sense everywhere.

We shall write

G e Cg‘(XA:g)P.Q and G € cg}'(D ’g)PrQ!

respectively. Without loss of generality we assume that the asymptotic types P and @ in
(1) and (2) are the same for all G;, 57 =0,...,d.

(d) The mapping properties (1) and (2) give a natural Fréchet topology for the spaces
CEL(XN g)po and CE(ID,g)pq. The spaces CL(X", g)pg and C&(ID,g)pg are topolo-
gized as non-direct sums of Fréchet spaces, cf. 1.3.2.

In the following, g, P, @ will denote an arbitrary weight datum and arbitrary asymptotic
types. Vi, W, ... are Hermitean vector bundles smooth up to the boundary.
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1.6.2 Theorem.

Ce(X",8)ra (1)
~ § rA §—1/2 A n -1 s v A —y=1[2 A
=[S (XN V) @ Sy (YN W) & [S3T(XN ) @ S50 (Y w)).

The isomorphism is given by the mapping that associates with GG its integral kernel. Here,
Q = (Q,,0Q,) is an asymptotic type in As(X,Y,g). Q, is constructed by replacing each
element (p,m, L) € @ by the complex conjugate (p,m, L),k = 1,2. Similarly,

Ce(ID,g)prq (2)
A~ 0,8 00,6—1/2 2 0, — 00,—y—1/2
= [HRA(D,Vs) @ HE VB, Wa)| & [ HE (D, Vi) @ M (B, W)

1.6.3 Corollary. (a) Let ¢, and ¢, be excision functions for the singular set of D, and
let G € C&(ID,g). Then ¢,G¢, is a regularizing singular Green operator in Boutet de
Monvel’s calculus for ID.

1.6.4 Lemma. Let G, € C&(X",g)pg and Gp € CZ(ID,g)pq. Then the mappings

K ( XN W) KH (XA W)
G'] : 23] — 37)
K;a,‘y—l/Z(YA, Wl) K:t,5—1/2(yf\’ Wz)
and
H(ID, V) HY (D, V)
Gg . Ga — @

H’*’V‘Uz([B,W]) th,J-l/‘Z(B)WZ)
are compact for every choice of s,t > —1/2.

1.6.5 Lemma. Let g = (v,4,0),82 = (6,7,0) be weight data, P,Q, R, and S asymp-
totic types, let G, € C4(X",g1)pg, and G, € C& (X", g2)r,s. Then

G.G, € Cg?(XAa gB)R,S'

with g3 = (7,7, ©) and a resulting asymptotic type S'. We tacitly assume that GG, and
(I3 act on vector bundles so that the composition makes sense.
The corresponding result also holds with X" replaced by ID .

1.6.6 Definition and Remark. For g = (v,4,0) we let Cg(X", g) denote the space
of all operators that belong to any one of the families C&(X*, g)pg for arbitrary d, P, Q.
In view of Lemma 1.6.5, the elements of Co(X", g) that act on fitting weight data and
vector bundles can be composed. The composition is continuous with respect to the
corresponding topologies. The corresponding results are true for Co(D, g).

1.7 Mellin Symbols with Values in Boutet de Monvel’s Algebra

The following lemma is easily deduced from the elementary properties of the Mellin trans-
form, see [20] or [40, Appendix 5.1].
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1.7.1 Lemma. (a) Let w be a cut-off function near 0. Then Mw(z)=2"M(—tdw)(z).
Since —tow € C§P(Ry), its Mellin transform is rapidly decreasing on each line Ug. If x
is a smooth function on C which vanishes near zero and is equal to 1 near infinity, then
XMuw is rapidly decreasing on each line I'g, uniformly for # in compact intervals.

iven a cut-off function w € C°(R..) with w(t) = 1 near zero, p € C, and k € N, let
b) G i 1 CP(R h C,and ke N, I

k d*
bp(2) = Moo (17 I L)) = (=27 M(t810)(2))(= — p).

Here we interprete M,_,, as the weighted Mellin transform M., withy < 1/2—Rep. Then
Ypx extends to a meromorphic function in C with a single pole of order k + 1 in p. If x
is a smooth function on C which vanishes near p and is equal to 1 outside some compact
set, then x, x is rapidly decreasing on each line g, uniformly for 8 in compact intervals.

1.7.2 Definition. (a) A Mellin asymptotic type is a sequence

P ={(pjsmj, L)} ez

with p; € C, Rep; = £oo as § = Foo, m; € N, and L; a finite-dimensional subspace of
finite-dimensional operators in B=¢(X).

We denote the collection of all these asymptotic types by As (B“""d()\’)). Just like in
1.5.1, we let 1cP = {p, : 7 € Z}.

(b) Let P € As (B‘“"d(X)), p € R,d € N. Then MiE*(X) denotes the space of all
functions

a € A(C\ncP,B**(X)) (1)
with the following properties
(i} in a neighborhood of p; € 7P
a(z) = Y vie(z = p) ™5 + ao(2) (2)
k=0
with v, € L;, k= 0,...,m;, and ap holomorphic near p;.
(i1) Given ¢; < ¢y in R we can find o1 € L; such that, for each § € [y, ¢3],

WBrir)— Y S by a(B+ir)o € BHGR,), 3)

{7:pj€le1,e2)} k=0

uniformly for 8 in [c1, ¢

We call the elements of Mﬁ’d(X) Mellin symbols of order u, type d, with asymptotic type
P.

We are assuming in (1) that the vector bundles a(z) is acting on, cf. 1.3.4(1), are inde-
pendent of z.

(c) f;:f,(X) is the corresponding space with B44(X) replaced by B4*(X).

(d) If P = 0 then we shall write M4*(X) and MS”‘:,(X).
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1.7.3 Remark. The topology of M}’—ﬁ'd(X) 1s given by three semi-norm systems
(i) that for the topology of A (C\TI'C P, B (X)) ;

(ii) that induced by a — vj; € L; C B~¢(X), where a € M&*(X) is as in 1.7.2(2),
and the Euclidean topologie on L;;

(iil) that given by 1.7.2(ii).

ME*(X) is a Fréchet space in the above topology. Mp™*(X) =N, ME* (X) is a nuclear
Fréchet space.

1.7.4 Theorem. Let P be a Mellin asymptotic type, p € R,d € N. The function
a € A(C\rcP, B#4(X)) is a Mellin symbol in Mp*(X) if and only if it can be written

afo}

(=3l T ] )

with a; € Ms_k’o(X). Here, O, stands for the operator given by the normal derivative in
a neighborhood of the boundary, multiplied by a suitable cut-off function. @ is a slightly
modified asymptotic type; it contains the same p; and mj, but the L; are now suitable
finite-dimensional spaces of finite-dimensional operators in B~°(X).

{

1.7.5 Proposition. Let u,y € Z, d,d € N, and let P = {(p;,m;,L;)}, P' =
{(p,m}, L)} be two Mellin asymptotic types. For a € ME?(X) and b € MEY(X)
the function
c(2) = a(z) b(z) (1)
belongs to Mp,® (X), where
o 1= p+
o &' =max{y +d,d};

e P” is a suitable Mellin asymptotic type that can be determined from a and b; in
particular, tc P" C ngP UncP’.

We are tacitly assuming that the composition in (1) makes sense, i.e. a(z) and b(z) are
acting on appropriately chosen bundles.

1.7.6 Theorem.
MEL(X) = ME*(X) + Mp=4(X).

1.7.7 Definition. Let v € R, E, F Hilbert spaces.
(a) If f is a function on U C C, then let (T7f)(z) = f(z + v) whenever 2 4 vy € U.

(b) For a polynomially bounded function g on 'y, with values in L(E, F) let opyg :
C&(R4, E) = C°(R4, F) be defined by

(opprg)(u) = Mg Mu

with the vector-valued Mellin transform M : L*(Ry, E} = L*(Ty 0, F).
(¢) For g defined on I'y/5_,, v € R, let

opheg = 1" oppy (T7g) 177 = M gM,,

with the weighted Mellin transform M,,. In particular, op}, = opy,-
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1.7.8 Lemma. Let « € Mt*(X), n € Z,d € N, v € R, P a Mellin asymptotic type
with tc P ([ j2—y = 0. Suppose that, for fixed z, a(z) € B#4 (X) acts on vector bundles
as in 1.3.4. Then

Ce (X", Vi) Co(X", V)
opra &) — & (1)
Cs (YN, W) C=(YMW,)

is a continuous operator.

1.7.9 Theorem. Under the assumptions of 1.7.8, op}, a has a bounded extension

HTHE (XM ) T (XA, 1)
opL a: & — (5]
HEET (YA, W) HHITET (YA W)

forallse R, s >d—1/2.

1.7.10 Corollary. Let w,w’ € CZ(R,). Under the assumptions of 1.7.8

}Cs,‘H-%(XA’ W) }Cs—u.1+%(/\m’ V)
wop?'w(a) W' 7] — ®
K25 (YA W) K st B (YA W)

is bounded for all s € R,s > d —1/2.

1.7.11 Lemma. Use the notation of 1.7.8 and assume additionally thatd = 0,s > —1/2,
and p < 0. Then the operator A = opjsa has a formal adjoint A* with respect to the
dualities

'H""H-%(‘XA, V]) @ H3|1+T‘Q;I(Y/‘\, ‘/VI),,H(-)-O,—’Y'%(XA} Vl) D H—s,—"r—ﬂg—l(yf'\, Wl)
and
H-’_‘-‘r'f'l' %(A’A’%) @ 'H’—’u”H' na;l()//\’ WQ)’HEQ+J‘1“7- %(X/\"/z) Ga %—8-}'#:_"7- n;_]( YA,WQ).

We have

A* =opy e with o =a(n+1-2)% (1)
the last asterisk indicates the matrix adjoint. The fact that a € ME°(X) implies that
a*) e Mg’O(X) for a resulting asymptotic type Q.

1.7.12 Theorem. Let a € ME?(X), with y,d, P as in 1.7.8. Moreover, let w,u’ €
Ce(Ry) and g = (v +1/2,0),0 = (0,0] be a weight datum.

Then for every asymptotic type @ = (Q1,@Q2) € As(X,Y,g) there is an asymptotic type
R = (R, Rz) € As(X,Y,g) such that

KJ«S:H‘%(XA,M) KSR_IU)'T+%(AIAJ%)
wopp(a)w': &) — &
n=t e oot D=L
}C:?,Z+ (YN W) Kl (Y, Wh)

is continuous for all s > d —1/2.
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1.8 Mellin Operators and Green Operators

1.8.1 Theorem. Leta € M'}E(X),,u € Z,d € N, P a Mellin asymptotic type. Moreover,
letye R, (2 0,w,w € CP(R,), and suppose that

71'(3P N F]/z_fy = Tl'cp N F]/g_.,,.;_ﬁ = @
Then
wt? op}e(a)wi —wopy(TPa) P wy € CE(X", g)a,r (1)

for suitable asymptotic types @, R € As(X,Y,g),g = (v + n/2,7 + n/2,(—00,0]), de-
pending on P;(TPa)(z) = a(z + B). The operator in (1} has finite-dimensional range.
It is given as a contour integral around the finitely many singularities of a in the strip
between I'1j3_y and I'yjo_y4p. In particular, the difference is zero if a has no singularities

in the strip {1/2 -y < Rez <1/2 — v+ f}.
For # < 0, the same is true with the weight datum g = (y+n/2—8,v+n/2+4 0, (~0c0,0]).

1.8.2 Theorem. Let h € Mi™*(X), vy € R, ncP N ['1j2—y = . Moreover, let w,w, wo,
w3, wy be arbitrary cut-ofl functions near 0 € R, and ¢ € C°(Ry). Then

(a) wopj(h) ¢ € CE(X",g)q.0-
(b) popls(h)w € CA(XA, g)on
(c) wropiy(h) wa — w3 opje(h)ws € CE(X", 8)q,R-

In (a), (b) and (c), Q and R are suitable asymptotic types in As(X,Y,g); O is the ‘zero’
asymptotic type, and g is the weight datum g = (v + n/2,v + n/2,(—00,0]).

1.8.3 Remark. (a) In the notation of 1.8.1, we have for f € C(X") and 8 € R

Pwopl (@ f = ¥w [ AL GG

- w /F 1=%a(z + B)M(w, f)(z + B)dz

12—~

= wopl(TPa)w t*f. (1)

By 1.8.1, the last operator equals wtPop},(a)w; f modulo a Green operator, say G. Here
we have assumed that I'yj3_, N7cP =@ = ['yj5_yyp N TcP. For every j > 3 we therefore
have

wtiop)(a)w —wtiopl;Pla)w, = 7P G,

which also is a Green operator, namely with respect to (v 4+ n/2,v + n/2,(—o0,0]), even
(y+n/2,y+n/24+]—8,(—00,0]) for 3 > 0 and with respect to (y+n/2 -3,y +n/2+
7,(—00,0]) for B8 < 0.

(b) In view of 1.8.1 and the discreteness of the singularity set we note the following
consequence: If 3 > 0, [y, N7ecP =8, and € > 0 is sufficiently small, then on C(‘,"’(HXTA)

wtiopl(a)wy = wtlopiy(a)w. (2)

Part (a) of this remark is the basis for the proposition below.
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1.8.4 Proposition. Let v € R,7 > 0, and 0 < pg,p, < 5,k = 1,...,7. Moreover, let
Py, P, be Mellin asymptotic types with 1cPx N Tij2—yip, = @ = mc PN Fyjpyiyr, and
finally let ax € ME(X),af € Mp“(X). For w,w € CP(Ry) define

,
A = wt ) opi(ax)wi, and
k—

A = wly op},;p;‘(a'k) w

Then A — A’ € C&(X",g)q.r, whenever T5_, ar(z) = S5, ak(2) for all z.
Here, g = (v +n/2,7 + n/2,(—0,0]); @ and R are resulting asymptotic types.

1.9 The Algebras Cy16(X", g) and Cy¢(D,g).

1.9.1 Definition. Let y,v € R,p—v € N,d € N, and let g = (y+n/2,7v+n/2—p,©)

be a weight datum, g € R. We suppose that ©@ = (=N, 0], for some N € N\{0}.

For d € N we let CM+G(X",g) denote the space of all operators A= Ay + Ag, where
(i) Am is a Mellin operator of the form Ay = t7 05" w; 7 opyy(h;) @; with

(i.

suitable cut-off functions w;,w; near zero,

1)
(i2) y=(p—-v)-3<v <9,
(i.3)
(i.4)

1

h; € prmd(X) and
Mellin asymptotic types P; with 7¢ P, N Tyja_; = 0.

(ii) Ag is a Green operator in C&(X", g)pg for suitable asymptotic types P,Q €
As(X,Y, g).

Clearly, CM+G(XA,Q) - CKJ‘:_G(XA,Q), since

N-1
12 Z wit! opry (k)05 = t™* 3 w74 opi (k) @;
J=0 7=0

and p —v € N. Cif',o(ID,g) is the corresponding space, where in (i) we replace X* by
DD, and in (i) we additionally make the support of w;,&; so small that the operators are
well-defined on the cylindrical parts of /D close to the singularities. In view of 1.8.2 we
might also ask that the cut-off [unctions w; and @; are independent of j.

In the following we will assume that v, u,v € R,d, N € N,0 = (=N, 0], and the weight
datum g = (v + n/2,v + n/2 — u, ©) are fixed with the properties in 1.9.1 unless spec-
ified otherwise. In order to also fix the notation suppose that A acts on vector bundles
WVi,-.., W, in the following way:

C& (XM W) Ce(XMV2)
A ) — @
Ce(Y AN, Wh) C(Y", Wa).
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1.9.2 Remark. Using Theorem 1.7.4 and the definition of the Green operators, an
operator A € Chf, (X", g) can be written

with A; € CM+G(X"\,g).

1.9.3 Theorem. For operators A € C'M+G(X"‘,g) and B € OM+G(D , &) the mappings

K2 (XM W) Kot s—r( XA V)
A D — ©®
KT (YA W) Ko B T —m (YA W)
and
H+E(ID, V)) He (D, V)
B: @ — @

HHEE (B, W) He =1 (B | W)
are continuous for all s > d — 1/2.
IfP=(P,P) € As(X,Y, (v + n/2,0)) is an asymptotic type, then there is a resulting
asymptotic type P’ = (P, P}) € As(X,Y,(y + n/2 - 11,0)) such that

lk, .’7+2(){/\"/1) K:;?'Y‘f‘%-#(XA"/?)
A: D — D
n—1
K ""*T(Y'\ Wh) Ko™ T TRV, W)
and . .
Hp T2 (D, Vi) Hy"TTTHD, V)
B: é — ®

s+t Vg 2
Hyt T (B,WY) HE T B, W)

are continuous for all s > d — 1/2.

Note: Since © = (—N,0] is a finite weight interval, 7cP; and mcP; are finite sets in
the strip {1/2 —4 -~ N < Rez < 1/2 — v}; mcP| and mcP; are finite sets in the strip
{1/24+p—v—N<Rez<1/2+p—~},cf 151

1.9.4 Lemma. Let A € C’M+G(XA,g) be as above. Given a, > 0 witha 4 3> N we
will have

ta A tﬁ & Cé(XA, g)P".Q’

with resulting asymptotic types P’ and @)'. In particular, CﬁiG(X"‘,g) C C4(X", g) for
i —v > N. Recall that © = (—N, ().

1.9.5 Definition. Let A = Ay 4+ Ag € C’M_l_G(X",g) be as in Definition 1.9.1. Define
o (Ay=h;, 7=0,...,N—(u—v)—1,

and call oy;?(A) the conormal symbol of order v — § of A.
Note that for § > N — (i — v), the operators w; 7% op}j(a;) @; are necessarily Green
operators.
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1.9.6 Remark. We know from Proposition 1.8.4 that two operators in CX}':_G(X",g)
which have the same conormal symbols of all order differ only by a Green operator,
provided the weights +; are suitably chosen.

Vice versa, the conormal symbols oy, 7(A),7 =0,..., N—(u—v)—1, are also well-defined.
This follows from the proposition, below, which is of independent interest.

1.9.7 Proposition. The operator A in1.9.3 is a Green operator, if and only if oy ” (A) =
0,7=0,....,.N—(p—v}—1

1.9.8 Theorem. Let A € Cy,o(X", g),g = (v +71/2,7 +n/2 — 11,0). Then the formal
adjoint A* of A belongs to Cyp,(X", h),h = (—y —n/2 + u,—y — n/2,0).

1.9.9 Theorem. Let A € C’Xﬁ_c(/\"‘,g), H € C&(X"h)gr, K € C&(X", k)51, where
h=(y+n/2—4460),k=(4v+n/2,0), and Q, R, S, T are corresponding asymptotic
types. Then

HA € C&(X" hi)g (1)
AK € CE(XM ki)g r (2)

with hy = (y+n/2,6,0),k, = (§,y+ n/2 — 41,0) and resulting asymptotic types Q, k.

1.9.10 Theorem. Let A € C;{giG(X",g) and B € CK;L‘:'C;(X",h) with h = (y +n/2 +
iy +n/2,0) and g = (y+n/2,y +n/2 — 1,0). Then AB € CK,,"':;;’-JI(X",k) with
k=(y+n/2+ i,y +n/2—p,0). The conormal symbols satisfy the relations

ot T(AB)= Y [TV ok P(A)] ok (B,

pto=r

1.9.11 Lemma. Let P be a Mellin asymptotic type, d € N, and h € Mp**(X). Then
[ + h(z) € B~>4(X) is an invertible operator on H*(X,V}}) & H*(Y,W1),s > d — 1/2,
for all but countably many z € C. Moreover, there is a Mellin asymptotic type @@ and an
fe Maw'd()\') such that

[(F+h()™" =T+ f(2).

2 The Cone Algebra without Asymptotics

2.1 General Mellin Symbols with Values in Boutet de Monvel’s
Algebra

In Section 4 of Part I we introduced Mellin symbols with asymptotics; they are meromor-
phic functions on C with values in Boutet de Monvel’s algebra. For the definition of the
Mellin operator opj,a associated with the Mellin symbol @, we only need to know « on the
line T'y/3-, and we certainly do not need its analyticity. We shall extend the calculus to
even larger classes of Mellin symbols by considering the case where the symbols addition-
ally depend on the space variables ¢ and t' — comparable to studying pseudodifferential
‘double’ symbols p(z,y, {) after having treated Fourier multipliers p(¢).



2.1.1 Notation. In the following let ;1 € Z and d € N be fixed. Given f € C®(R; x
Ry, B*4(X;T/;_,)) we shall write f = f(¢,V, z), where z indicates the variable in Ty .
For t,t', z fixed, f(t,t',2) is a boundary value problem in Boutet de Monvel’s calculus, so

it acts on sections of vector bundles over X and Y. In order to fix the notation, assume
that — —_
C>®(X, V) C=(X, V)
ft, 1, 2) B - P (1)
C(Y, Wy) Co(Y, Wa)

with smooth vector bundles Vi, V4, over X and W,, Wy, over Y.

2.1.2 Definition. Let f € C*(R4 x R, B4 X;[/3—y)). Foru € C’(?c'(/T\’-A,Vl) &
GSO(YAﬂ W) = COOO(R+1CDO(X’ Vi) e C=(Y, Wl)) let

op Slult) = 5 [ / Y S0 2l S (1)

rl/'-?-'v

The right hand side of (1) is to be understood as an iterated integral. If f is independent
of t’ or, equivalently, f € C=(Ry, B#4(X;T/2_)), then (1) reduces to

1
onefJu(t) = 5 [ 7 )M (2} 2
We did not specify the variable z in (1) or (2), understanding that, for fixed ¢/, u(t') =
u(-,#) is in C°(X, V,) @ C=(Y, W) and that f(,%,z) acts as an operator in Boutet de
Monvel’s calculus with respect to the z-variables.
Like pseudodifferential double symbols, Mellin double symbols are not uniquely deter-
mined. It is immediate from integration by parts in (1) that

opll\,{,z[lnk(t/t')f(t, ', z)] = op}‘,‘;z[aff(t,t', z)). (3)

For f € C®(R4 x Ry, B¥4(X ;[ j2—y)) or f € C®(Ry,B*4(X;[/2-,)) we will have a
continuous map

Cce(xX™ Vi) (X", V)
opaf @ — @ - (4)
Ce (Y, W) C=(Y" Ws)

Smoothness of f up to zero yields continuity of op},f on the weighted Mellin-Sobolev
spaces, cf. Theorem 2.1.3; the preceding relation (3), however, shows that smoothness is
not necessary.

2.1.3 Theorem. Let f € C°(Ry x Ry, B*4(X;T1/2-4)),w1,w2 € CFP(Ry). For s >
d — 1/2, there is a bounded extension

WOV MR 1)
wi[op}y flws : & - ©® : (1)
%8’7_*-% (YA, Wl) ?‘l{s_ﬂ"H-n:;l(YAa W2)
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Ford=0and s < —1/2

Cweew gt
w1 [opyy flws : @ - @ (2)

n=—1 n=1

HS’FY-*-_——(YA W]) ?‘{.3_#’7-‘“—(}//\ Wg)

is continuous. Here, the subscript {0} indicates that we are using the Hy-spaces for
s — p <0, and the usual H-spaces otherwise.

For the proof of Theorem 2.1.3 we need the following two results.

2.1.4 Lemma. Let [ € C°(R; x Ry,B*(X;[/2—y)) as in 2.1.3. Then there are
functions ¢; € C®(R4), ¥; € C*(Ry), 5 = 1,2,..., tending to zero in the topology of
C*(R,), elements a; € B*4(X;ija-y),7 = 1,2..., tending to zero in the corresponding
topology, and a sequence {\;} € [' such that

fit, v, z) Z)‘J% t)a;(z) (1)

with convergence in C*(Ry x Ry, B“'d(X; ['i1j2-4)). Conversely, each series of this type
defines an element of C®°(Ry x Ry, B*4(X; T /2-)).

Similarly, if g € C®°(Ry,B*%(X;T1/2-4)), then there are null sequences p; € C°(Ry)
and a; € B4 X;'yj2—,) and a sequence {);} € I such that

= _Aipi(t)a;(z)

i=1
Again, all series of this form determine elements in C*°(Ry, B4 X; T /5-,)).
The same results hold with B**(X;[y-) replaced by Bfl’d(X; I'ija—y).
Proof. By definition

C(Ry x Ry, B X; Ty ) = C=(R X B, BP4(X; Ty j51)) [y s
In view of the nuclearity of C*°(R) we have
(R x R, BH(X; Ty 1)) = [C(R)D.C®(R))ErBH(X; Ty /oy,

Representation (1) then is immediate from the representation of elements in w-tensor
products of vector spaces, cf. Treves {51]. <

2.1.5 Proposition. Let a € B*4(X;[/;—y). Then
(

WEXN) HRTE(X, 1)
opya: @ - &
HoTH B (YA, W) H~ BT (YA W)

is bounded for each s > d —1/2. For d =0 and s < —1/2,

?'L;ﬂ“‘"%(hff\’ ‘,/1) HZ[‘];‘;‘Y"*‘%(AI/\’ Vz)
oppa: fan — @
'Ha,‘ﬁ%(y/\, Wi) 'H_s-—urv-i—%(yf\, W)

is continuous. As before, the subscript {0} indicates that we are using the Hy-spaces for
s — u <0, and the usual ‘H-spaces otherwise.
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Proof. For both statements we may use the proof of Theorem 1.4.1.11. For the sake of
completeness let us repeat the argument. For simplicity we will assume that the vector
bundles over X are trivial one—dimensional while those over Y vanish.

Write a(1/2 — v +it) = T, a;(7)8 + ¥i_, ri(7)0?, where the a; are local terms, given
by symbols of order u — 7 and type zero, whlle each 7;(7) is an integral operator whose
kernel is rapidly decreasing in 7 and smooth in the space variables up to the boundary of

X.

The normal derivative 8, maps H*"*3(X") to H*~ 17+ 2(X*) for s > 1/2. Moreover, the
integral operators induced by the r; are continuous on both the spaces H*7*+2(X"), s >
—1/2 and 'HM+ (X"),s < —1/2.

So we can focus on the first sum and assume that we are dealing with a single parameter-
dependent operator a = a(7) of order y and type zero in Boutet de Monvel’s algebra on
R}, supported by a compact set, uniformly in 7.

Now we reduce the problem to a continuity result for operator-valued pseudodifferential
operators: We know from 1.4.4 that M, H*""3(R% x Ry) = F 1 H*(R? x R) and

1W7H;’1+;(R1 x Ry) = Fup  H3(RY x R), identifying ['y/5—, and R. F,4, denotes
the Fourier transform with respect to the last variable. Applying additionally the Fourier
transform with respect to the first n—1 variables, ', the space F, H*(R%} xR) is mapped
to W*(R"! x R, H*(Ry)) and F.41 H(R? x R) is mapped to W (R x R, Hj(R)).
Hence, for s > —1/2,

opira = M7 F' ap(a) F'M,  HOHE(RE x Ry) — HT#"H5(RE x Ry)
is continuous if and only if
opTa
= (}—’.7:“+1)_1 O'A((I.) (}‘ffrH.]) : Wa(Rn X R, HS(R+)) — WS—;&(Rn X R, Hs_p(R+))

is bounded. The latter fact, however, is given in 1.2.2.19.
For s < —1/2, the continuity of

oplsa = M F op(a) FIM, : HYVE(RE x Ry) = MM TR x Ry)
is equivalent to that of
(F'Foi) Voala) (F Fap) : WH(R™ x R, Hi(Ry)) = W#(R® x R, H{o} (R4)).

Again, 1.2.2.19 gives the desired result. Notice that we can omit the subscripts comp and
loc, for a(T) is compactly supported. <

Proof of Theorem 2.1.3. We first notice that

wi[opys flwz = opysg
with g(¢,%',z) = wi(t)wa(t') f(L,7', z). Using the representation 2.1.4(1) it is sufficient to

show the following two facts:

(i) Multiplication by a function ¢ € C(Ry) is a bounded operator on H*"(X*, V)
and H*Y(Y*, W) for all s and v and for arbitrary vector bundles V over X, W over
Y'; the corresponding operator norms depend continuously on the semi-norms of ¢
in C*°(R,), keeping the support in a fixed compact set.
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(ii) For a (¢,t')-independent Mellin symbol a € B#4(X;T/5_), the operator op},a has
the required mapping properties.

Fact (i) is stated and proven in 1.4.3(h), while (ii) is precisely the statement of Proposition
2.1.5. <

We now introduce the operator classes with respect to this calculus.

2.1.6 Definition. Let v € R be fixed.

(a) MB;*°(X")is the set of all linear mappings
G e LICO(X™, V) @ CP(YN, W), C2(XM, Va) @ C2(Y, Wa)) (1)
such that, for all w),w; € C(Ry) and all s € R,

Mg BN W) MR (X, W)
w[Gwz : & o & (2)

HOHT (YA W) HET (YA, W)

is continuous. The subscript {0} indicates that we use the Ho-spaces for s < —1/2,
the usual H-spaces otherwise.

(b) For d € N, MB;>?(X") is the space of all operators of the form
4 .
8 0
0=16 ki

with G; € MB;=°(X"). Here 0, denotes the normal derivative with respect to
dX =Y, and the matrix refers to the vector bundles the operator acts on, cf. (2).

(c) For p € Z and d € N, MB*4(X") is the space of all operators of the form op}, f+,
where f € C°(Ry x Ry, B#YX; T /3_y)) and G € MB=4(X").

2.1.7 Remark. Let G* denote the adjoint operator to G' € MB;*%X"), taken
with respect to the sesquilinear pairing associated with 2.1.6(2), for details cf. 2.3.2,

below. The relations H)" (XA V) = H->=7"} (X", Vi) and H®HE (XA V) =
proj — lim,_, H*" 5 (X" V;) together with the corresponding results for the spaces over
Y imply the following mapping properties:

Moy XMWY HRTTERL W)
w G wy o) — 7]
HO (YA, W) Hom = (YA W)

The following lemma and Corollary 2.1.9, below, show that the definitions in 2.1.6(b) and
(c) are consistent:
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2.1.8 Lemma. Let f € C°(R; x Ry, B*¥(X;"1/2—,)). Then f can be written

d y
=3 sl | § Y] ()

3=0

where f; € C(Ry x Ry, B*™9°(X; T /2—y)) and the matrix on the right hand side of (1)
refers to the vector bundles f(t,t,z) is acting on, cf. 2.1.1(1).

Proof. 'This follows from the decomposition 2.1.4(1): Each of the operators a; €
B*4(X;Ty/3—y) can be written

d
o 0
ai:zaik[o Il’

k=0

with a;, € B+ 0(X; ['1/2—). We can then rearrange the summation, since it is absolutely
convergent in all semi-norms. <

2.1.9 Corollary. For f € C°(R; x Ry,B~(X;T}/,_,)) the operator op},f is an
element of MB;4(X").

Proof. This is immediate from 2.1.8 and 2.1.5. <

2.1.10 Remark. Note that there are symbols f & C®(R4,B7°(X; I\ 2—,)) such
that still opj,f € MB;*°(X"): Choose an arbitrary parameter-dependent operator
0 # a € B=%X;T1/3_,). Then the symbol f defined by f(t,z) = t'/%a(z) is an element
of C®°(Ry,B7%(X; [1/2-4)\C®(Ry, B~ X; '1/5-,)). On the other hand, the fact
that op},a belongs to MB;*%(X") by 2.1.9 together with Lemma 2.1.11, below, implies
that op}, f € MB7>°(X").

2.1.11 Lemma. Let ¢ € L°(R.) and suppose that for all j € N we have
(1070 € L=(Ry), (1)
Then the operator M, of multiplication by ¢

M, s 1 (X™) = H*(XP), and
M, - HGT(X") — H™(X7)

is bounded for all s,v € R.

Proof. By interpolation and duality we may assume that s € N. Then H*7(X") is the
space of all functions u = u(z,t) on X* such that ¢277(t8,)’ D,u(z,t) € L*(X") whenever
7 < s and D is a differential operator of order < s — 5. Now (1) together with Leibniz’
rule implies the assertion. Since multiplication by ¢ does not increase the support, the
argument for Hy (X ") is the same. <4



2.1.12 Theorem. (Asymptoti_c Summation) Let d € N be fixed, pi1, fiz, . .. a sequence
in Z tending to —oo, f; € C°(Ry x Ry, B*4(X;/5_)), and p = max ;. Then there
is an

f € C®(Ry x Ry, B4(X; Ty pa-y))
such that for any N € N there is a J with

J
T =Y 1€ C®(Ry x Ry, B M4 X; Ty jay)). (1)

i=1

This f is unique modulo C*°(Ry x Ry, B=4(X;T5_,)). We shall write f ~ 352, f;.
The same result is true with Ry x Ry replaced by Ry, Ry x Ry, or Ry

Proof. Choose a partition of unity {¢s : £ = 1,..., K'} and cut-off functions ¥, on X, sub-
ordinate to the coordinate neighborhoods, satisfying ¢zifr = @r. Let @, € B»(X) denote
Pk

0 wily
the (operator-valued) symbols @ f;(¢, %, 2)Wr. We have f;(1,t,2) =0 | @ f;(t, 1, 2) Wy €
C(Ry x Ry; B74(X; Iy /5y )) while &, f;(t, ', 2)¥y is given by a quintuple of symbols
in the respective classes.

Now we appeal to the theorems on asymptotic summation in these classes, cf. [30, Section
2.2.5.1 Proposition 3|. In fact, the present situation differs from the case treated in [30] in
two respects: (i) we have the parameter z € 'y, and (ii) we have the additional vari-
ables ¢ and ' in which everything is smooth on R.;. Inspection of the classical summation
procedure, however, shows that neither (i) nor (ii) causes any difficulty: The variable z
enters like an additional covariable while ¢ and ¢’ enter like additional space variables, so
that the same procedure can be applied. <

the operator of multiplication by [ , similarly for Wy. For =1,2,... consider

2.2 The Kernels of Mellin Symbols

2.2.1 Mellin Operators and Kernels. As the exposition in Section 2.1 shows, the
theory of general Mellin symbols does not depend on the particular choice of the line
['y/2-~. Throughout this section we will therefore assume that y = 1/2 and consider the
line FO.

We will be interested in the (operator-valued) kernels of Mellin operators with symbols
f e C®R, x Ry,Bd &X ['9)). As before, p € Z and d € N are fixed. According to 2.1.2
we have for v € C(X")

!

(1) - ft,t, iT)u(‘t')(i—de. (1)

i.‘

1

lopas”/1u(0) = 5

8““‘-\8
o g

So, Op}\i;zf is the integral operator with the distributional (operator-valued) kernel

i

K1) = o / (t,)'" F{t, i) = (ML, )](5) (2)

with respect to the density 4 on Ry. The integral in (2) is to be understood as a
distributional integral.
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Occasionally we shall need the following consideration.

2.2.2 Lemma. Let f € C*(R; x Ry, B*4(X;[)), and let ¢ € C(Ry). Then

opyr [$(t/t) f(t, 1, 2)] = OI)MZ[MU'Z,.O—}Z{QB(F))Ml_/12,C—bpf(t’tl’ O3 (1)

For the moment we assume the expression on the right hand side makes sense. This fact
will be shown later in Theoremn 2.2.17.

Proof. By 2.2.1, the integral kernel of the operator on the right hand side is

l;(ta tl) = [¢(P) 17’]2,c_+pf(t) t,7 C)]p:t/t’ = (ﬁ(i/t’)[Ma;,(qu(t’ t,$ C)]P=t/¢"

Again by 2.2.1, the last expression is the integral kernel of the operator on the left hand
side of (1). Hence both operators coincide. <

2.2.3 Definition and Remark. S([g,B7°¢(X)) denotes the Schwartz space of
all rapidly decreasing functions on [y with values in B=>4(X). It coincides with
B=°>4( X [). To these functions we apply the inverse Mellin transform Ml/2 and call
T the resulting space:

T = M ;5[S(To, B=4(X))] .
What is the topology on 77 The nuclearity of S(I'g) implies that
T = M75{8(D0)®-B~"4(X)] = M7,8(To)®,B-4(X).

So the natural topology on 7 is the projective limit topology induced via the topologies
on B~*%(X) and on Mlle(I"o). The latter in turn simply is the topology carried over

from S([y) by the isomorphism 1"/[1_/12. More precisely: the semi-norm system

1/2
pmn(g) = {f | DMrNg(ir) |? d’f} , (1)

M, N € N, on §(I'g) induces the system

1/2
gun(h) { f | 0™ p (08,)" 1(p) P — } (2)

on Ml_/le([‘o). Here we have employed the fact that

M
Ml (=0 = (4] (00002). )

Summing up we have the following: Let p; be a semi-norm system for the topology of
B~=¢(X). Then the topology on 7T is given by the system {rpn; : M, N,7 € N} defined
by

oo d 1/2
s k { [ pi(0™ p60,)" k(p))? "} . 4)

P
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2.2.4 Theorem. Choose ¥ € C°(Ry) with ¢ = | near 1, f € C®(Ry x Ry, B(X;
['o)) and let k(t,t,p) = [ﬁfl_/lz'z_)pf(t,t’,z)](p). Then

(l - Il)(p))k(t,il, P) € Cm(ﬁ+ x E+a7l’) : (1)

In particular, the singular support of k(t,#,-) is contained in {p = 1} for all t,#' € R}.
Moreover, the mapping (¥, f) — (1 — ¥)k induces a separately continuous operator

CP(Ry) x C(Ry x Ry, BHY(X; 1)) = C®(Ry x Ry, 7). (2)
Clearly, the corresponding result holds with R, x Ry replaced by R,.

Proof. Using that CW(R+ x Ry, BH4(X;Ty)) = C°(R, x Ry)®B#YX;T,) and
C*(R; x R+,'T) Ce(Ry x R+)®,T7' we only have to show the following:

For a € B**(X;[g) and k = Mwa, we have (1—y)k € T, and the mapping ¢ = (1—9)k
induces a continuous operator from B#%(X;[y) to 7.

In order to see this let us first check that, for each fixed p, the operator (1 — ¥(p))k(p)
belongs to B~>¢(X): 1 — 4(p) vanishes near p = 1, thus, for each L € N, the function
In~% p (1 —¥(p)) is smooth on Ry, and we can write

(1= 9(Dhlo) = 5= [(1- "a(ir)dr
= (=) s o / (10,)-p a(ir)dr
1 .
= (=) 7 p— [ p™(=i0,)Pa(ir)dr
after integration by parts. Since a € B*¢(X;I,) we conclude that, for fixed p, (1 -
V(p))k(p) € B*~L4(X), hence in B=>4(X).
In a similar way we will now show that the 7-semi-norms for (1 — )k are finite. Letting

¥;(p) := (p8,)7 (1 — ¥(p)), we obtain that ¢; € Cf°(R4) for 7 € N. Moreover, we have
for arbitrary L, M,N € N

10 p (p8,) V(1 — $(e)M(e)] = 5= [ 10" p(p8,)¥ [0 (1 — () In~" p) (BFa) (i)
Leibniz’ rule shows that the integral is a linear combination of terms of the form
WM (o) [ o7 (0Fa)ir)dr, (3)
where 7, + j2 + 73 = N. We may now choose a semi-norm system {p; : 7 = 1,2,...} for

B~>4(X) such that each p; is a semi-norm on B*~#4(X). Fixing N, M and j, choose
L>M+4N+75+2. Then M = L — j3 < 0; moreover (1 +72)791(8Fa)(z7) € B*#4(X; R,),

so that o
p; (/ p~ (19 OFa(iT)) d‘r) <C

with a constant C' = C(L, 51, 7), independent of p. We conclude that, in the notation of
2.2.3(4), the semi-norm rpn;((1 — ¥)k) can be estimated by finitely many expressions

- ’ 2 dp)
const. {./0 |lnM'L_JS P (p) ?p} < 0.
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Thus all the semi-norms in 2.2.3(4) are finite, and they continuously depend on the semi-
norms for a in B#*(X; ) and on the semi-norms for ¥ in Dk, K C Ry compact. Here,
Dy denotes those elements in C$°(R.) that have support in a fixed compact K C Ry.
For details see [31, Theorem 6.6]. This completes the proof. <

2.2.5 Corollary. Let f,1, and k be as in Theorem 2.2.4 and define

h’(iatlaz) = Ml/?,p—)z{(l - l’b(p))k(t,t’,p)}.

Then h € C*(Ry x Ry, B7°%(X;Iy)). Clearly, the same result holds with R} x Ry
replaced by R .

Proof. This follows from the tensor product representation in Lemma 2.1.4 together with
the fact that M, ;37 = S([o, B=4(X)) = B~4(X; ). <

2.2.6 Lemma. Let ¢ € CP(Ry) and a € B*(X;Ty). Then lp(p)[Mf/]z'z_}p(t(z)](p)
defines an element of £ (R, B*%(X)). The mapping

Co°(R4) x BH(X; Do) = €' (R4, B*(X))

given by (p,a) — (,o(Ml_flza) is separately continuous.
The Mellin transform of (M 5a) gives an element of A(C, B*4( X)), and the mapping

Co(Ry) x BH4(X; o) = A(C, B*4(X))
given by (p,a) — M(np(M]",;a)) is separately continuous.

Proof. By definition, &'(R.,B*%X)) = L(C®(R4),B*%X)) with the topology of
bounded convergence. In order to show that ¢ Ml':,lza € £'(Ry, B X)) let ¢ € C=(R..)
and denote by ( , ) the duality induced by the inner product on LQ(R+,%§) via

(u:¢) = (uaﬁ)Lz(R_‘_‘%E),U,w € CgD(R.§.) Then

o0

(M rmpt¥) = (o [ 0™ alir)dr, )

00
e o]

= ([ 57" alin)dr, )

(a0}

(=08 [ o777 (1 + i) Na(ir)dr, piot)

- 00
o

= /p-"f(l+w”a(ir)dm-'(pap)N(pso(pW(p))%”- (1)

The last integral is an L'-integral with values in B#%(X), provided N is sufficiently large.
This follows from the fact that, for every semi-norm ¢ on B#4(X), we have ¢(a(:7)) =

O((7)")-



Moreover: if the semi-norms for ¥ in C°(Ry.) tend to zero, then the last integral tends
to zero in all semi-norms of B#¢(X). So it indeed defines an element of £'(R., B#4(X)).
Now let us show the continuity of the mapping (y,a) — ga(M;,lza) from C§°(Ry) x
BrA(X;To) to E'(Ry,B»YX)): As ¢ varies over a bounded set in C®(R,), the
integral in (1) can be estimated in terms of finitely many semi-norms for a €
B*4(X;Ty) and finitely many semi-norms for ¢ € Dk, K C R, compact. TFi-
nally note that the Mellin transform yields a continuous map from &'(Ry, B#4(X)) to
A(C, B*?). Indeed, this follows from the fact that

'Ry, B*(X)) = E'(Ry)QB*(X) and
A(C,B*4(X)) = A(C)&.B"(X),

together with the fact that the Mellin transform maps £'(R;) to A(C). The latter is
well-known. It is easily seen in the following way. For f € (R} ) we have M f = (f,17%).
Now t=* € C®°(Ry4, A(C)) = C®(R4)®..A(C), so pairing it with f € £'(Ry) = C=(R4)

gives an element of A(C) in a continuous way. <

2.2.7 Proposition. Let a € B*4(X;T) and ¢ € CP(Ry). Then M't,o(Ml‘/;a) €
M54 (X), and the induced mapping

CP(Ry) x BH(X;To) = M54 (X)
is separately continuous.

The proof of Proposition 2.2.7 is rather lengthy. We shall give it in several steps stated
as independent lemmas. The final conclusion will be obtained in 2.2.16. As a preparation
we first recall what is the topology of B#?(X; ).

2.2.8 The topology of B*¢(X;I). For simplicity we shall assume that the vector
bundles V} and V, are trivial one-dimensional while W, and W, are 0. We choose on
Q0 a covering by coordinate neighborhoods, a partition of unity {¢; : 7 = 1,...,J} and
cut-off functions {; : j = 1,...,J} subordinate to this partition such that @;3; = ;.
By «; denote the corresponding coordinate maps. In a first step we write an operator

A € B*4(X;Ty) in the form

Z‘Pa 1/)J+R( ).

[n this representation, we have R(z) = YL, Ri(2)8' where each R; is an integral operator
with a kernel function ki(z,z,y) € S(Lo,, C®(X x X)), while

0i A(2); = K™ (5. Aj(2)1s0);
here ¢;., ¥;. denote the functions ¢; o &;' and 9; 0 k7' on R”, £*(-) indicates the pull-
back operators from Euclidean space to the manifold, and A;(z) is a suitable parameter-
dependent operator on Euclidean space.
The topology on B*4(X;[,) then is that of a non-direct sum of the topologies of

S(To, C®(X x X)) and those of the symbol spaces on relatively open subsets of R},. Let us

40



recall what those are. Let U be an open subset of R*~!. An element A € B4*(U x Ry; [')
has the form ,
A(z) = lop p(=)]+ + Y op'g;(2) 0 &2 . (1)
7=0

We briefly recall the precise meaning of (1), cf. 1.3.3:

(i) pe SLU xR,R*xR,), [opp(z)]y =rYopp(z) et, with e™ denoting the operator
of extension {by zero) from U x R; to U X R and r* that of restriction to U/ x Ry;
op is the usual pseudodifferential action with respect to the variables in R™. Here,
we identify R, and T'y.

(i1) For j = 0,...,d, g; is a parameter-dependent and operator-valued singular Green
symbol in S#=7(U,R"™! x R;;S'(Ry),S(R4)), cf. 1.2.2; op’ denotes the pseudod-

ifferential action with respect to the variables in R*~!.

We therefore topologize the operators in B#4(U/ x Ry, [y) as a non-direct sum, cf. 1.3.2,
via the topologies on Si(U x R,R"* x R,) and S*~7(U,R*! x R,;S(R),S(Ry)) for
j =0,...,d. Note that the latter is the projective limit proj-lim, ;0o S*~9 (U, R*"! x R;
Hy "7 T(Ry), HP"(R4)) with the usual weighted Sobolev spaces on Ry, cf. 1.2.1.

2.2.9 Lemma. Let £, F and Y be Fréchet spaces, and assume that £ and F are em-
bedded in a common vector space X. Suppose T : &€+ F — Y is a linear map, and the
restrictions

T - E=Y, T:Foy

are continuous in the topologies of € and F. Then
T:E+F =Y

is continuous in the topology of the non-direct sum (cf. 1.3.2 for the definition of non-
direct sums of Fréchet spaces).

Proof. Let {p1,p2,---}, {q1,92,..-}, be increasing systems of semi-norms for £ and F
respectively. Denote the translation invariant metric in Y by d. Then a system of
semi-norms for £ + F is given by r;(z) = inl {p;(e) + ¢;(f} : e+ f = z}. So sup-
pose g € £+ F and V C Y is an e-ball about T'zg. Then there is a 7 € N and a
§ > 0 such that d(Te,0) < £ and d(Tf,0) < %, provided that e € £, f € F, p;(e) < §
and ¢;(f) < é. This implies that Tz € V for all z with r;(z — zp) < §: In this case
we can find ¢, € &, fi € F such that ¢, + fi = ¢ — 2o and p;(e1) + ¢;(f1) < §. Hence

d(Tz, Tz) = d(T(z — 0),0) < d(T(e1),0) + d(T(f),0) < e. Q

2.2.10 Outline. We saw in Lemma 2.2.6 that, for ¢ € C°(R4) and a € B*4(X; ),
we have N[(gmwl'z,lza) € A(C,B*%(X)). In order to prove Proposition 2.2.7 we therefore
only have to show that

M(pMya) € B*4(X; D),

for each line g, uniformly for 8 in compact intervals, plus the continuity of the corre-
sponding mapping; indeed this is everything Definition 1.7.2(b) requires. Let us make
the same simplification as in the proof of Proposition 2.2.8: We assume that the matrices
in B#4(X;Ty) consist of the left upper corner only, i.e., the operators act on a trivial
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one-dimensional bundle over X only, the bundles over ¥ vanish. It will become clear that
full matrices can be treated in the same way. Under this assumption Lemma 2.2.9 shows
that it is sufficient to prove the following:

(1) For s = s{z) € S(Iy,C®°(X x X)) the function M(p Ml'/lzs)lr'3 is an element of
S(Tg, C*(X x X))}, uniformly for § in compact intervals, and the corresponding
mapping i1s continuous.

(2) For p € S (U x R,R" x ['g), the function M (¢ Ml"/lzp)[pﬁ is an element of S}(U x
R,R" x ['g), uniformly for 8 in compact intervals, and the corresponding mapping
1s continuous.

(3) For ¢ € S*(U,R*! x I'y; E, F'), the function M(p Ml"/lzg)h9 is an element of
SH(U, R x [g; E, F), uniformly for § in compact intervals, and the corresponding
mapping 1s continuous.

Here, as in Proposition 2.2.8, U denotes an open set in R*™'| while £ = H;”7"(R,),
F = H"(R;) for arbitrary fixed o,7 > 0. Moreover, we can assume in both cases that
the symbols vanish outside compact sets in U x R and U, respectively.

We will now prove the statements (1), (2), and (3) of 2.2.10, starting with (1). The final
conclusion will be reached in 2.2.16.

2.2.11 Lemma. Let ¢ € CP(Ry), h € S([p), s € S(I'y, C®(X x X)). Then

(a}) 1/2h € C(Ry4). The mapping h — Ml_/lzh is continuous from S(I'y) to C*(R4).
(b) H . Moreover, H|r, € S(I'g) for every 3, with estimates
umform]y in ;é for ,8 in compact intervals. The corresponding induced mapping
(¢, h) = H from CP(Ry) x S([y) into this subspace of A(C) is separately contin-
uous.

(c) F := M((le_/;s) € A(C,C®(X x X)), F |rye S(Tp, C*(X x X)) for every §,
with estimates uniformly in 3 for B in compact intervals. The mapping (¢, s) — F
is separately continuous from C§P(Ry) X §(Lo,C(X x X)) to this subspace of
A(C,C=(X x X)).

Proof. (a) By the Mellin inversion formula, cf. 1.4.1, (M1/lzh)( )= & [ t7**h(is)ds. The
integral converges, and we can diflerentiate under the integral 31gn "for the derivatives.
(b) In view of (a}, t,oMl‘/'zh is a function in C§°(Ry); its Mellin transform therefore is
rapidly decreasing on each line ['g, uniformly in 3, cf. Theorem 1.5.1.7 or {20]. Clearly,
the mapping (¢, g) — g is separately continuous from C§°(R4) x C®°(R;) to C°(R4.),
and the Mellin transform is continuous from C§°(R..) to the subspace of A(C) consisting
of functions that restrict to S(['g), uniformly for 8 in compact intervals, i.e. the space
M5 for dim X = 0. So the separate continuity follows from (a).

(c) follows from (b), noting that S(Is, C®(X x X)) = S(Ip)®.C=(X x X) and
A(C,C®(X x X)) = A(C)®,C®(X x X). For the continuity assertion we use the
continuity of the Mellin transform from C§°(R4, C*°(X x X)) to the corresponding sub-
space of A(C,C=(X x X)). <

We need some preparations for showing statements (2) and (3) of 2.2.10. Lemma 2.2.14,
below, contains a technical result relating Mellin and Fourier transform.
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2.2.12 Lemma. Letu be a function on Ry and § € R. Then
(Spu)(r) = e /u(e™) (1)
defines a function Spu on R. If, additionally, uw € t° L*(R..), then
(Mpu)(1/2 — B+ 1i7) = (FSgu)(r).

Here, Mg is the weighted Mellin transform, and F is the one-dimensional Fourier trans-
form: Ff(r) = [e™%" f(0) do. Vice versa, if h = Mpu, then

(Mg h](t) = u(t) = [S5"F~vl(1), (2)
with v(7) = h(1/2 — B + 7).

Proof. By a straightforward computation. <

2.2.13 Lemma. Let F be a Banach space and let {x) : A € Ry} C L(E) be a strongly

continuous group action, cf. 1.2.2. Then there are constants ¢ and M such that
||f6,\||c(E) <ec ma‘x{/\,)\_l}M.

A proof may be found in [17] or {44]. <

We can now prove statement (3) of 2.2.10.

2.2.14 Lemma. Let E, F be Banach spaces with strongly continuous group actions &y,
krx, A€ER4. Let p€ R, m,k € N, and

a € S*(R7, RE x To.; B, F).

For the notation see 1.2.2. Suppose that « = a(z, £, z) vanishes for all z outside a compact
set, say K. Then for every ¢ € C§?(R,.) the function

A(Q) = M (p(t) M7 . 000)
is analytic on C with values in S*(R™,R*; E, F). Moreover, for all 8 € R,
A lry€ SHR™, RE x Tg; B, F) , (1)

uniformly for 8 in comnpact intervals, and the mapping (p,a) — A from CP(Ry) x
Sk(R™, R x [y; E, ') to this Frechet subspace of A(C, S*(R™,RF; E, F)) is separately
continuous. Here the index K of S* indicates the space of those elements that vanish for
z outside K.
Proof. We have

S*RI,Rf x Loy B, F) = C=(RP,S*(R%R§ x Lo, E, F))

= Cm(Rm)®ﬂS#(RD,R? X FD,z; E, F)
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Similarly, A(C, S*(R™,R%; E, F')) = C®(R™)®.A(C, S*(R°, R*; E, F)). Without loss
of generality we may therefore assumem =0, 1.e.,a € 5'*‘(13‘,2c X [oz; F, F) is independent
of z. We conclude that
PIM; 0] € (R, SR, B, F)
applying the same considerations as in equation (1) of the proof of Lemma 2.2.6: A
pairing with ¢ € C®(Ry) and integration by parts gives us an integral that converges in
all semi-norms of S#(R*; E, F). Moreover, the tensor product argument used there shows
that
A= M(pM; ) € AC, S*(RY E, ).

This proves the first part of the statement.

Now consider Alr,. We may assume 3 = 0 in view of a well-known property of the Mellin
transform: (M f)(z + B) = M.,.(t? f)(2), so that replacing A|r, by Alr, corresponds to
replacing ¢(t) by t=Pp(t) € C(R4). For the analysis of A|r, it is more convenient to
switch from the Mellin to the Fourier transform. We write the variable in 'y in the form
z=1i7,7 € R and let p(7) = «(i7) . According to 2.2.12 we have

(MyjppM7pa)(it) = (FSippSipF " p)(7)
= (Fe(e)F'p)(r) .
The symbol p is an element of S*(R**': £, F) and r = @(e™") = ¢(r) is a function in
Ce&(R). So our task is reduced to showing that ¢ = Fy(r}F-1p € S¥(R*, E, F). We
abbreviate n = (£,7) and consider a derivative Df¢q = Df‘ DP2gq. We then estimate
1% y=1{ DB [Frartp(r) F54, 0) (€, 7)Y iy e, (2)

= ||'~‘(n)-* DE(nE * )&, 7)8m (e Fy

1% (-1 f ’,Z‘(U)(Dgp)(fﬁ — o)do Kpyllce R

= N [ 7 =)D DEP)E o)do rigleis

= | / k(f,a)(n)_'l'[)(T_O-)E;(f,o)_l(D?I Dg’P)(f,U)"(E,ﬂ)"(n)(e,a)-‘da’”E(E.F)

— 00

< f”k(f,a’)(n)_' ||£(F)|¢(T - J)Hl'&(f,a)_l(‘DEl Df?P)(fa‘7)’5(5,0)||£{E.F)||“(n)(5,a)—l | c(m)ydor

Here we have used the fact that (scalar) multiplication by ¥(r — ¢) commutes with the
action of £. According to 2.2.13 there are constants ¢ and M such that

1 ¢ oyt lleery < eL(&, om)™ (3)

and
oy llceey < L€, o,m)™, (4)

where L(£,0,1) = max{{€,0)" (n),(£,0) ()"},  Peetre’s inequality states that
(a+b)’ < c,{a)’ (5! for arbitrary a,b € R™, m € N,s € R. We recall that n = (£,7)
and conclude that

(€,0)7 () S C((&,0) = (&,7)) = C{o—7)
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and, by symmetry, (¢,0) {(7)”' < C (o — 1) for a suitable constant C. For the last expres-
sion in (2) we combine this estimate with (3) and (4). Together with the facts that

”k(f,a)“l(Dfl D% p)(€, o)k, )l ce,r) = O((g,a)u—lﬁl)

and that 1,b is rap]dly decreasing we conclude with Peetre’s inequality that the final integral

in (2) is O((n)*").
This shows (1). Clearly, all estimates depend continuously on ¢ and p, thus they depend

continuously on a, and the corresponding mapping is separately continuous. <

2.2.15 Lemma. Letp¢€ S, (R™, R" x ['y), and suppose that p vanishes for = outside a
compact set K C R*. Let ¢ € C§°(R..). Then

g = M(pM;;;p) € A(C, Si.(R",R™)) ; (1)
it vanishes for z outside K. Moreover, for every 0 € R,
qirs € Si(R",R" x Tp) . (2)

The corresponding estimates are satisfied uniformly for 8 in compact intervals. The
mapping (p,p) — ¢ is separately continuous as a map from

C(R.) % St (R R x Ty) )
to this Fréchet subspace of A(C,S*(R"! x R4,R"™)). As before, the index K in (3)

indicates that the functions vanish for = outside K.

Proof. If it were not for the subscript “¢r”, (1} and (2) would follow from Lemma 2.2.14,
because the usual symbol classes correspond to the operator-valued symbols with £ =
F = C and trivial group action.

So we only have to show that the transmission property is preserved under the operation
in (1). This, however, is simple: a symbol @ € S*(R™ R™ x I'y) has the transmission
property iff

6:na($', 0, 5’: (6’) €n, z) € Sp(RZ‘—l ’ R?’_l X FU12)®7T fe,, (4)
cf. [30, Section 2.2.2.1, Definition 2|. In the present situation we have
07,4(C, 2, 0,8, (€) &) = Muse(p(t)M7y, 07, p(",0,8,(£) &, 2) (5)

€ A(C, SR R*")&. He.

by a tensored version of the argument in 2.2.14. The last space coincides with
A(C, S*(R™ ! R )@, He,) and (1) is proven. For (2) we can argue in the same way:
restricting (5) to [ furnishes an element in $#*(R™*~!, R*"")®, H,. Note that the symbols
always vanish for z and 2’ outside a compact set.

Finally the separate continuity of the mapping follows from the closed graph theorem and
the continuity properties established in Lemma 2.2.14, since the topology of the space
with the transmission property is finer than the original one. The closed graph theorem
indeed can be applied: a mapping A : C°(R4) = Y, Y a locally convex space, is contin-
uous if and only if its restriction to the Frechet spaces Dy are continuous. As before, Dk
denotes those elements in C$°(R, ) that have support in a fixed compact K C Ry, «
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2.2.16 Conclusion. As pointed out in Remark 2.2.10, the assertion of Proposition
2.2.7 follows from Lemma 2.2.14 and Lemma 2.2.15.

2.2.17 Theorem. Let f € C(Ry x Ry, B**X; ). For ¢ € C°(Ry) define
h(t,t',¢) = Moocle(p)M iy, f(1, 8, 2)] .
Then h € C*(R,; x Ry, M5®(X)). Moreover, the induced mapping
C(R4) x C°(Ry x Ry, BHX;To)) = C=(Ry x Ry, MEY(X))

is separately continuous. Clearly, the corresponding statement holds with Ry x Ry
replaced by R.

Proof. This is immediate from Proposition 2.2.7 together with the fact that

C=(Ry x Ry, BH(X; Do) = C=(Ry x By )@uB (X3 o)
Co(Ry x Ry, MEU(X)) = C®(Ry x Ry)&MH(X) .

2.2.18 Corollary. We use the notation of Theorem 2.2.17 and assume additionally
that ¢ = 1 near 1. Then Corollary 2.2.5 implies that

f—h = Mp[(1 — )My f] € C°(Ry x Ry, B~4(X, T)).

2.2.19 Corollary. Let f € C®(Ry x Ry, B*4X;10)), ¢ € C&P(Ry), and suppose
that, for some fixed N € N, we have (1L — p)Np(p) € CP(R4). Then there is a symbol
fv € C=(R; x Ry, BN X:Ty)) such that opMzM(,oMl“/lzf = opflv’;sz.

Proof. Clearly, M(le'l,lzf = M(p(p)ln_Nplan Ml'/lz_z_)pf. We obtain the assertion
from an application of Theorem 2.2.17 and the fact that In™p ;,;}z_}pf(t,t’,z) =

My ., (07 f (2,1, 2)]. <

2.2.20 Proposition. Let f € C®(Ry x Ry, B*YX;[y)), and suppose that, for some
fixed N € N, we have

(t - t,)_Nf(t7t’a z) € Cw(ﬁ-h‘ X ﬁ'ht':B“,d(‘X; FU.Z)) .
Then there is a symbol fy € C®(Ry x Ry, B~ N4(X;Ty)) such that opj®f = opit® fn.

Proof. Let g(t,t',2z) = ()N (¢t —=t')"N f(1,t, z). Then g € C=(R, x Ry, B X; o)), and
(1, 2) = (5 — 1)Vg(t,¥,2). Choose ¢ € C°(Ry) with ¢ =1 in a neighborhood of 1.
Let
h’(t:tla C) = IWUQ.P—*([d’(p)‘rwl_/]z,quf(t:tri z)] (1)
and
hﬂ(t7il> C) = jwl/Z,ﬂ—'C[(l - ¢)(P) 1—/12,z—>pf(t’t’72)] .
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It follows from Corollary 2.2.5 that ho € C'°°(ﬁ+ x Ry, B~4(X;T)). Since optf =
opM h + op /%hy, it is sufficient to treat opys°h for a function h as in (1).
Now opM % is the integral operator on C°(X") with the distributional kernel

()M gy, F (8,1, 20 e, = [(p) I p My, g(t, 8, 2)]] s

where ¢(p) = (l - )N InNpap(p) € C°°(R+); recall that the density on R, was .

2
Furthermore, In jru‘l/.fll,2 (ot 2) = MDY [0Ng(t,1,2)]. Therefore, according to
Lemma 2.2.2,

[2,2—p

Opj]\(j;zil(tjt ’C) - Op [MP—W(P( )Ml—/;,z—bp{aivg(t! tl? 2)}]

By Theorem 2.2.17 M[@Mﬂg(afg)] € C(R,; x Ry, M54 X)). This yields the asser-
tion. <

2.2.21 Proposition. For f € C°°(R+ x Ry, B4 (X;Ty)) and ¢ € CP(R,) we have
M 1/2f) € C*(Ry x Ry, M} c,(X)) and the induced mapping

C&(Ry) x C=(Ry x Ry, BYH(X;T0)) = C°(Ry x Ry, MEL(X))
1s separately continuous.

Proof. We only have to make sure the space on the left hand side is mapped into the
space on the right hand side. The separate continuity will then follow from the closed
graph theorem applying the argument at the end of the proof of Lemma 2.2.15. [n order
to see the former statement, we only have to check that, for every 8 € R, M(le‘/lzf €
Ce(R; x ﬁ+,3”’d(X I's)), uniformly for 8 in compact intervals. The tensor product
representation in Lemma 2.1.4 d.“OWS us to assume that f(,7,2) = oft,t)a(z), where
a € C°(Ry xRy) and a € BY 4x; [o). Without loss of generality assume o = 1. We
have, for arbitrary ¥ € N,

(MM, f1(t, 1, 8 + i)
= [M‘PM1/2Q](f8 +17)

1 e ,
_ G4ir -z
= 5= fo e(p)p frnp a(z)dzdp

1 eS] . o0 .
= 5o [T el) [ pttatio)dodp

1 feo |
N E]O (=p83,) N [P ﬂ]f (1 +i0)Np~ 1+ a(io)dodp. (1)

Since the semi-norms for a(ic) are all O({¢)*), the integral converges in B%4%(X) for fixed
ﬁ,'r Moreover, we now write u = p — 1 and use the binomial expansion (1 + u)# =
Z ( ) w + O(uN*1) to conclude that

[MeMha)(B+47) = [Mpp” M{al(ir)
N

> (%) it 1 M) ©

=0

+ [M@n M a](ir)
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with a function px € C§°(Ry) that has a zero of order N + 1 in p = 1. According to
Corollary 2.2.19 the remainder term in (2) yields an operator that can be rewritten with a
Mellin symbol in C*(R4 x Ry, B#~N=14( X T'5)) while the other terms yield elements of
C=(Ry x Ry, B#*34(X:Tp)). Hence we obtain an asymptotic expansion for the symbol
on [z in terms of the symbol on Iy, and it only remains to check the assertion for 8 = 0.
We use a similar argument as before. First choose a function ¢ € CP(Ry) with ¥{p) =1
near p = 1 and ¢ = . Now use a Taylor expansion for the function ¢ € C§°(R) given
by g(u) = ¢(e*). We have g(u) = ;-V=0 g9 (0)/5! v + gn, where gn(w)u=N=1 is smooth
in u = 0. Therefore,

N
p)=2_c;ln’ p+ow(p) (3)

J=0
where ¢; = g(0)/5!, and cpN( ) = gn(Inp). In particular, gn(p)In""="p is smooth near
p=1,and so is (1 — p)"¥"'Gn(p). We conclude that

N
Z c; M ja[1H(p) 1anMl_le,z—)pa](iT)

i=0

+Ma[b(p)pn(p) My, ., 0l (i)
N
: ‘; ;M palb(p) M, ,8ia)(iT) (4)

+ M [ (p)pn(p) M, ., ,al(i7).
Employing Corollary 2.2.19, the last term can be rewritten as a Mellin operator with a
Meliin symbol in C=(Ry x Ry, B*N-14(X;Ty)), since ¥ @y is a function in C°(R.)
which vanishes to order N +1 in p = 1. For the terms under the summation we note that

M{(p) My, Da] = Ba — M((1 = (o)) M}

1/2,z—p"2

[M@Mlﬁf](ta tla zT)

Bia).

The first term on the right hand side is an element of C=(R; x Ry, By~ 74 (X To)) while
the second is an element of C®(Ry x Ry, B~4¢(X;Ty)) according to Corollary 2.2.5.
Since N was arbitrary, we obtain the desired result. <

2.2.22 Remark. The last argument in the proof of Proposition 2.2.21 can be used to
obtain an asymptotic expansion for the operator opM [Mcle/zf] independent of the fact
whether f is a classical symbol or not:

Let f € C=(R,; x Ry, B#4(X;Ty)), and let ¢ € CP(R,). Write p(p) = Z N o ¢;Inp +
@n(p), where ¢; = [ oexp]¥)(0)/5! and Gy In"Vp is smooth near p = 1. Then equation
(4) in the proof of Proposition 2.2.21 together with Corollary 2.2.19 shows that

opy MM, f) = chopM 8 f + opy,:fin

with fy € (R, x Ry, B~ N-14(X; T)).

2.2.23 Remark. For several cases we have proved continuity results of the following
form: For suitable Fréchet spaces F' and (, the bilinear map

A'C(?O(R.l.)XF—)G

is separately continuous. Since C§°(Ry) is barrelled, the mapping A automatically is
hypocontinuous, see Kothe [22, 40.2(5)].
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2.3 Compositions and Adjoints

In this section we will show that the operators in the union of the classes MB&4(X*),
p € Z,de N, form an algebra and that elements of nonpositive order and type zero have
adjoints within the calculus.

We will sometimes need the following observation. The proof is straightforward by induc-
tion.

2.3.1 Lemma. For each 1 < k € N there are constants cy;, dy; such that

k -
(ta;)k = Eckjtjaf and (1)

i=1

k
21 di; (L0,) (2)

kg

The coefficients di; are easily seen to be the Sterling numbers of the first kind, while the
ck; are the Sterling numbers of the second kind [19].

We start with the result on adjoints.

2.3.2 Lemma. Let 0 > u € Z and f € C®(R, x ﬁ+,B“'°()\';Fl/2_,,)), wi,wy €
Cs*(Ry), s > —1/2. Then the operator

HE(NN, V) HTEITE (XN, Va)
wifopy flws : 9 - b
HHT (YA, W) Ho=#THET (YA, W)

has a formal adjoint with respect to the pairings between

HHE (XA, V) H(‘)’ﬂ:-‘f'%(XA’ i)
S and ay
HTE (YR, W) HoT (YA, W)
on one hand, and
HomrHE (XA V) Hy TR (XN W)
@ and Fas)
Ho=mat 5T (YA, W) Hoot = 5 (YA, W)

on the other. The adjoint is given by

(w1 [opar flwa)* =@ [opay " f @y, (1)

where
fO@2) = (it t,n+1-32), (2)

and the asterisk denotes the pointwise formal L*-adjoint of the operator f(t,{',n-+1—%):

C(X, Vi) & C=(Y, W,) = C=(X, 14) @ C=(Y, Wy) in BHO(X).
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Proof. We use the representation of f established in Lemma 2.1.4. It implies the conver-

gence of the corresponding series for wi[op},f]wz. We therefore have, using the notation
of 2.1.4(1),

]

(wi fopprflwz)™ = D Aj(wipslopisaslwah;)”

A
I
-

Ajwath; [OP;;_HGE'*)]MQ% (3)

[
I

I
.Mg

We have employed a fact from Lemma 1.5.1.10: The adjoint of the Mellin operator
op}sa, given by the ¢,t-independent symbol @ € B*4(X;T,/;_,), is the Mellin opera-
tor opy " a*) with al*)(2) = a(n+1—2)*. Now (3) implies (2) and completes the proof.
<l

Now we shall have a look at compositions. For what follows, the choice of «y is not essential,
and we assume v = 1/2. We will need the following observation.

2.3.3 Theorem. For f € C®(Ry x Ry, B*Y(X;y)) there is a Mellin symbol g €
C=(Ry,B*4(X;Ty)) such that, for arbitrary N € N,

0Pl /(1,1 2) — opifg(t, 2) = op}f (s, 1, 2) ®

for suitable hy € C®(R. x R4,B~NM4(X;Ty)). In particular, op:\ézf — opylg €
MBI_/°2° “(X™). The Mellin symbol g can be chosen with the asymptotic expansion

Z ’atf Jajf(t,t', Z)|tl=g . (2)
Proof. A Taylor expansion gives for arbitrary N € N
N-1 i
! ! i ’ P '
fe,t,2) =3 j—'(t — Y& f(t,t, 2)|e=e + fn (2,1, 2)
=0 J°

with (¢ — )™ fy(t,,2) = 1/(N = DU g (1 = )V 200 f(t,t + 0(' — 1), 2)df € C=(Ry x
R, B#'d(x; FO))
By Proposition 2.2.20 there is a jy € C®(Ry x Ry, B*~N4(X;T,)) such that opy,* fy =

opll\jl,zg')N. In order to treat the terms under the summation let

L2y = " 7! - aj’f(f')t,az)lt'zt and
o
h’j(taz) = ? 83’f(t,t’,2)|tl=t

Choose ¥ € C§?(R4) with ¢ = 1 near 1. The function ¢; defined by
ei(p) = (P = 1Y In"p ¢(p)

is in C§°(R4). Moreover, according to Lemma 2.2.2,

opa f; = opyr [Mijzp; Iwp M ;] ?)

+oppr [Myja(1 — ) M3 fi).
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We have M(1 — l,b)M;,lsz € C=(Ry x Ry, B~=4(X;[y)) by Corollary 2.2.5. For the
term before, we note that lnij]"/'z,z_}phj(t,z) = M7y, ,(0ih;(t,2)). Since dh; €

C*(Ry, B*9¢(X; o)), an application of Theorem 2.2.17 yields that

9(60) = Mijapmclpi(p) In?p Miyhj)
= Mijzpsclei(p) M3 05hs] € CF(Ry, B*74(X;To)) .
Since N is arbitrary, we obtain a sequence {g;} of Mellin symbols of decreasing order.
According to Theorem 2.1.12 we may choose g € C®°(R4, B#4(X; T'¢)) with g ~ 372, g;,
and we will have for any N € N,

1/2 1/2 1/2 .~
opyi S — opyig = opyrin

for suitable gy € C°(Ry x Ry, B#N4(X;Ty)). It remains to show that g can be taken
with the asymptotic expansion (2). One expansion is given by the above consideration:

© 1 e ,
9(0:0) ~ 3 M2l ()M (RO 1,1 =)
J=0J"

Using Remark 2.2.22 and Lemma 2.3.1, it may be written in the form

Z dm(—t’@,’)kaif(t, ', z)'t’:t

k=0
with suitable constants di;. The constants dy; are independent of f; they contain informa-
tion about the functions (p=' — 1)7/In? p,j € N, for suitable 7,m, and on the coefficients
in the conversion formula 2.3.1(2). We may therelore choose a particularly simple f to
determine them. For f(t,%',z) = p(t')z*, ¢ € C°(R,), we have

opy* flu(t) = (—td)*(pu)(t)

F(k
=y ( l) (100 (£)(~tB)Fu(t)
=0
12 [ (K ! k-1
= ot |3 (7) (00tet0e o
=0
a1 P
= bl L (=0 ALY, Nyt
noting that &'z = k- ... (k=14 1)z = (—kk_—!;—!zk_". Hence di = 6k, just as asserted.

<

2.3.4 Theorem. Given f € C®(Ry x Ry, B*YX;[y)) there is a symbol g €
C*®(Ry, B**X;Ty)) such that, for arbitrary N € N,

opy f(t, ', 2) — opyitg(t', 2) = opys ha(t, 1, 2)

with suitable hy € C®(Ry x Ry, B~N4(X;Ty)). In particular, op;ff — Dpjl.ézg €
MB;/O;’d(X’\). The symbol g can be taken with the asymptotic expansion
|

g(t” Z) ~ Z T(_taf)j(—az)-?f(t?tfa Z) [t:t’ .

3=0J"
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Proof. This is analogous to the proof of Theorem 2.3.3 by interchanging the roles of ¢ and
i <

2.3.5 Theorem. Let py,pq € Z and dy,d; € N. Fix w € C°(R..). Then the composi-
tion of operators yields a continuous mapping

MBI (X7) x MBI (X") = MBI(X"),

given by
(op}\,’;gfl -+ G;,opfézfz + Gz) — (op}\,’?fl + Gl)w(op}v’,’zfg + G ).

Here 1 = py + po, and d = max{p, + dy,dz}. More precisely we should take into account
the vector bundles the operators are acting on and use the following formulation.

Let Vu, Vi, V, be vector bundles over X and Wy, Wy, W, be vector bundles over Y; let
opy’Si + Gj € MBIU(XN), 7 = 1,2 with f; € C™(Ry x Ry, B4 (X;Iv)), G; €

AfBl_;;o‘d"(X") having the mapping properties

filt,t',2) € L(C®(X, Vo) @ C®(Y,W,),C=(X, V) @ C=(Y,W1)),

Gy € LICOX Vo) C(YN, We), (X", Vi) @ C(Y™N, WL))
fit,t',2) € L(C®(X, V)@ Co(Y,W)),Co(X, Vo) ® C(Y, W),

G € LICOX™ V)@ CR(YN, WL), CP(XM Va) @ C(YA, W) .

Then
(opy /i + G )w(opys f + G2) = opi*f + G € MBES(X™)

with = py + po, d = max(pz + di,dp), f € C®(Ry x Ry, B*4(X; o)), and G €
MB 3 (X") such that
Ft, 1, 2) € LIC=(X, Vo) @ C(Y, Wy), (X, Va) @ C(Y, Wa))

and

G € LICPX", Vo) @ C° (Y, W), C2(X7, Vo) & C(Y", Wa)).
Proof. The proof splits into four parts in a natural way:

(1) The composition GiwG,.

(i1) The composition G w opfl\;‘r,?fg).

(i11) The composition (opl 2 f)wGly.

(iv) The composition (opaify )w(op}ézfz).

Without loss of generality we may assume that the bundles are trivial one-dimensional
over X and 0 over Y. So let us show (i) - (iv).

(i) We may write Gy = 32, H0F with Hy, of type zero. Then GywGy = Y[GwH|9¥,

and it is easily checked that the operators GjwHj belong to MB;'/C;'O(X") for they
have the required mapping properties.
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(i) Using Lemma 2.1.8, write fo(t,¢',z) = £i_oh;(t,t,2)0! with h; € C=(Ry x
R.,B#"9%(X;Ty)). An application of Theorem 2.1.3 shows that for w;,w, €
Ce(R,), the operators wGiwopy,’(h;)w, have the mapping properties required

for an operator in MB]/°2°U(XA) Hence le[opiffg] € MByy {XM).
(iii) is proven in the same way.

(¥) Lot (t#,2) = w(€)S(0,0,2). Then Ji € O=(R, x Ry B (X)) and, by
Theorem 2.3.4, there is a symbol gy = q1(t,z) € C®(Ry,B*%(X;T,)) with

opr i filw = opM o= oph’,’ g1 mod MB2> o (X’\). Similarly there is a go =

@t 2) € C=(Ry, B*4(X; ) such that opM ’f, = opAé g2 mod MBI/O; (XM,
Now we apply Lemma 2.1.4, writing

!]l(t,z) Z)\J‘PJ “J(z

I

@t z) = Z i (1)b;(2

with suitable {A;

}s { ;} € 1!, and null sequences {p;}, {;} € C=(R,), {a;} C
B#l,dl()\’;ro) {b } C B#»

dz(X; [y). We note that
o [N (t)ai(2)] opy IAi()bi(2)] = opps [AiAe 3(8) Wa(t') ej(2)],

where c;i(2) = a;(z)obi(2); here o denotes the composition B#41 (X)) x B#2%(X) —
B#4(X). Since this composition is continuous we obtain the assertion from (i), (ii),
and (iii). <

2.3.6 Remark. In 2.3.5 we may assume that both fi, and f, are independent of ¢'.
Then f can be taken independent of ¢ with the asymptotic expansion

f(t,2) ~ Z BJf‘tz)( —10,) falt, z). (1)

In fact this is a consequence of the asymptotlc expansion formulae in 2.3.3 and 2.3.4 in
addition to the identity (z +y)? = X yr=yg ;",-—;:c y", cf. [49, proofl of Theorem 1.3.30].

2.4 Mellin Quantization

2.4.1 Push-forward of Pseudodifferential Operators. Let U,V be open sets in
R*, x : U = V a diffeomorphism. Moreover, let £, F be Banach spaces with group
action. Given an operator

P:C(UEY = C=(U, F),
the push-forward x.P : CP(V, E) = C*®(V, F) is defined by

(x+ P)f(z) = [P(f o X)Ilx~'(=)].
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If P = opp for some p € S¥(U,R"™ E, F) then there is a symbol ¢ € S*(V,R"; E, F)
with opg¢ = x.P modulo regularizing operators, and ¢ is unique up to symbols in
S=°(V,R™ E, F). In this sense y defines a push-forward also on the symbol level:

X« : SY(U,R™ E, F)/S~(U,R™ E, F) = S*(V,R™ E, F)/S~°(V,R™ E, F).

The mapping is injective; the inverse is induced by the push-forward via x~!. The same
statements are true for symbols with the transmission property.

One way of proving this is to first convert the symbol p to a ‘double’ symbol p(y, v, )
by multiplying p by a cut-ofl function ¢ = ¢(y,y’) near the diagonal {y = y'}; opp and
opp; only differ by a regularizing operator. Then one can compute a ‘double’ symbol
q € SHV x V,R"™ E, F) with y.opp1 = opq; and finally switch to a y'-independent
symbol g with op ¢ = op g modulo regularizing operators.

In what follows it will often be possible to find a ‘double’ symbol ¢ with x.opp = op ¢ by
a straightforward substitution in oscillatory integrals. We will then also write q; = x.p.

2.4.2 Corollary. Let x : U — V be a difleomorphism of open sets in R, and let
a € C(U,B*%X;R)) induce a pseudodifferential action by

op a(u)(y) = o= [ [ & aly, mu(y)dy'dn (1)
7

for u € CP(U,C(X,V}) & C=(Y,W))). For the push-forward y.op a we then have
xsopa =opb+ G, (2)

where

(i) the symbol b belongs to C=(V, B#4(X;R)). It is determined via the symbol push-
forward of the various local symbols for a. [n this sense we shall use the notation
b= y.a.

ii) The operator G’ belongs to B=°¢(X"). In other words, we can write
p g

ad a0

G=3 G, ; (3)

; 0 7
=0

here 9 is the normal derivative on X, and each (/; is a matrix of integral operators

with kernel functions which are smooth up to the boundary of X.

Proof. We have C®(U, B4 X;R)) = C*(U)®.B*4X;R). Since convergence of the
symbols implies convergence of the associated operators, it is sufficient to assume that
aly,n) = ¥(y)A(n) with v € C°(U) and A € B*4(X;R). The assertion is certainly
true for regularizing A: In this case, op a already has the form (3); hence the push-
forward is of the same type and (2) holds with b = 0, for 8, is not affected. We can
therefore localize with respect to a coordinate neigborhood §; for ! and assume that A
is given locally by a quintuple of parameter-dependent symbols in Boutet de Monvel’s
C&lCU]llS, (pﬁgjakj)tjasj): where p; = PJ(:B:E)T?) € ‘S'::‘(XJJR? x R‘n)a Xj = Qj N ’FAT’ is
a pseudodifferential symbol with the transmission property, g is a parameter—dependent
singular Green symbol, etc., cf. 1.3.4. We then have to show that their push-forward is
preserved.
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In order to see this, let us focus on p;; the arguments for the other symbols are similar.
We have
(U x X;,R* x R) = C°(U)&, 5, (X;, R* x R); (4)

thus ¥(y)p(z, €&, 1) € S, (U x X;,R* x R). These spaces are invariant under coordinate
transforms, therefore the push-forward x.[4(y)p(z, €,7)] belongs to S(V x X;,R* x R)
modulo $7*(V x X; R* x R). We know that the push-forward of the regularizing
part is regularizing. Employing now (4) with with U replaced by V plus the fact that
C®(V,F) = C®(V)®,F for every Fréchet space F, we see that y.[¥(y)p(z,&,n)] €
C>=(V, Si(X;,R* x R)) may be considered the pseudodifferential part (with transmission
property) of a parameter-dependent symbol tuple for an operator in C(V, B#¢(X;; R)).
Applying the same argument for the four other components g;, k;,t;, and s; we obtain
the symbol b € C*(V, B*(X;R)). <

2.4.3 Pseudodifferential and Mellin Symbols. Given f € C®(R., B4 X; o)) let

b(y,n) = f(e!,—in), y,m€R. (1)
Denoting by exp the diffeomorphism y + €% from R — R, we have

op%zf = exp,op b. (2)

CP(Ry, CR(X, V) @ C=(Y, V) let u*(y) = u(e¥); then
[op32” f(w)](e¥) = [op b(u*)}(y). This is a simple consequence of the identity

1 T /ev\? dt’ i
- & v N g, —
Qm.r/a/ (t’) f(e¥, z)u(t) m dz o

A _

Equation (1) implies that b € C*(R,B*4(X;R)). According to Corollary 2.4.2, we will
have exp,op b = op @ mod B~*¢(X"). Hence,

In more detail: For v €

8

e‘(y'y’)”f(e”, —in)u*(y')dy'dy.

é\-.g

8

opyy’f =opa mod B®(XA),
We shall now analyze the relationship between f and a.
2.4.4 Definition and Remark. For p € Z and d € N let
MB*( XN = {opi*f + G : [ e CP(Ry, B(X;Ty)), G € B~HXMN).
Analogously, we let
MBEHX") = {opy’f + G : f € C®(Ry, BL(X;Ty)), G € B4(X")}.

For f € C®(Ry, B~ X; Ty)), opilézf is an integral operator with smooth kernel on X"
Hence MB~4(X") := N, MB*4(X") = B4 (X").

The following lemma may be considered a ‘coarse’ quantization result. [t shows that

pseudodifferential and Mellin symbols induce the same operators modulo B=°>¢(X") as
long as we consider symbol classes with arbitrary behavior near ¢t = 0.
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2.4.5 Lemma.
MBp,d()\rA)/MB—oo,d(XA) o B“‘d(/\’A)/B_w'd(XA), and
MBYA (XN MB=4(X™) = B XM /B™=4(XM).

The isomorphism is given by [+ exp, b with b(y,n) = f(e¥, —in); the inverse by a — f
with f(s,z) = [In. a](In s,12).

Proof. By 2.4.2 and 2.4.3 the mapping [ — exp,b, where b = f(e¥, —in), maps the left
hand side to the right hand side injectively. A direct computation then yields the above
inverse. <

2.4.6 Corollary. If f € C®(Ry,B*X;T,)) and op}.ff € B~4(X"), then f €
(R, B-=4(X; [v)).

Let us now have a look at a classical element f € C'°°(ﬁ+,l3’§'d(X; ['g)). For each t € Ry
we have the complete parameter-dependent interior symbol ou(f(t)) and the complete
parameter-dependent boundary symbol aA(f(¢)), cf. 1.3.4. Both are smooth up to ¢ = 0.
Thus all the homogeneous components of the local representatives p; of the interior symbol
and the homogeneous components of the elements g;, k;,t;, s; of the local representatives
of the Green, potential, trace and boundary part of the boundary symbol are smooth up
tot=0.

2.4.7 Lemma. If [ ¢ C>(Ry,BY(X;Ty)) and opp’f € B=4(XA), then f €
C=(Ry, B~*4(X; o))

Proof. In virtue of Corollary 2.4.6 we know that f € C*(Ry,B~>¢(X;Ty)). Thus all
homogeneous components of the symbol of f vanish on R.. Since they are smooth on
R, we obtain the assertion. <

For what follows it will be interesting to know more precisely what the push-forward by
exp looks like. We start with a formal calculation.

2.4.8 Lemma. Let p € S*(Ry,R). Then exp,opp is the pseudodifferential operator
with the ‘double’ symbol

1
(exp.p)(t,t'7) = p(Int, M(¢,¢) ' 1) s M(2,¢) 7" (1)
Here M(t,1) = '2%‘,“1 is C* and strictly positive on Ry x R

Proof. For u € CP(R), ¥ = e, we have

[op p(u o exp)](Int) = %]f U t=9)1(1n ¢, n)u(e? ) dy' dy

1 7. , dt’
= - /] ez(lnt—lnt)np(lni’n)u(tf)_dn
mJJ t’

1 1T, , dt’
_ (t—tM(t .

1 17 o .
N Trf/ 6'“”’)Tp(ln‘t,M(t,t')“r)u(t’);M(t,t’)—ldtrdm
0
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This gives (1). The function M(¢,t') is smooth and > 0, for In is monotonely increasing.
Moreover, M has no zero since, for t = ¢, we have M(t,t) =1 > 0. <

2.4.9 Lemma. (a) EM(t, ) |uzi= cxt™ ! for suitable ¢, € R, k = 0,1,... . In
particular, (#'8y)F[t'M(t,t')]|s=: is srnooth up tot = 0.
(b) t*=1OK[M(t,¢')"]|¢= is smooth up tot =0,k =0,1,... .

Proof. (a) Let w,v € Ry. We havefor 1 +z =2, |z| <1

u o (S (1P
Inu—Inv=In(-)=In(l +2) = —) = , —
() =In( ) ; ; ; r >
hence | ( )k( )k
nu—Ilnv (- (u—wv
M = =
(u,v) % — v gk+1 pk+1
Therefore

OF M (1, v) |uzw= k‘ﬂv“k'l
u b U=y * k + 1 *
This proves the first statement. Applying Lemma 2.3.1 we obtain the second statement,
too.

(b) By induction, 5[M(¢,2')7!] is a linear combination of terms of the form
Mt )T T 9 M,
=1

where » < k and Y_7_, 71 = k. This implies that 5[M(¢,')™!] |i=¢ is a linear combination
of terms t™t1¢~"% 0 <r < k. <

2.4.10 Definition. Let 4 € Z, d € N. By C°°(ﬁ+,l§id(X;R)) we denote the set of
all @ € C=(Ry, B#(X;R)) for which there is a b € C*°(R,., B#¢(X;R)) such that

a(t,7) = b(¢,tr).

We call these operator-valued symbols lotally characteristic or Fuchs type symbols. Anal-
ogously we define C® (R, B4%(X;R)) as the set of all « € C(Ry, B4*(X; R)) for which
there is a b € C°(Ry, B4%(X; R)) such that a(t,7) = b(t, t1).

2.4.11 Remark. What does this mean for the symbols of the corresponding operators
in Boutet de Monvel’s calculus? For each fixed ¢ > 0, the parameter-dependent operator
a(t) € B4 X;R) has a complete parameter-dependent interior symbol oy(a(t)) and a
complete parameter-dependent boundary symbol o4(a(t)) see 1.3.4 for details. The fact
that € C(Ry, B*4(X;R)) implies that both oy(a(t))(x, £, 7/t) and aa(a(t)) (', &, 7/1)
are smooth in ¢ up to ¢ = 0. If « € C°(Ry, B4*(X;R)) then

(1) the homogeneous components of the local complete parameter-dependent interior sym-
bols oy (a(t))(z, &, 1/t) are smooth in t up to ¢t = 0;
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(i1) for the local complete parameter-dependent boundary symbols (now also depending
on t),

Opl pJ(I t 5 )+gj(II’t1 é’” T) kj(ml)tﬁél’ T)
on(a(O))s(, €, 7) = ( veT Ll kb dm) )

all the homogeneous components of the operator-valued symbols

gj(xlw t, 6’; T/t)a kj(mfa t& 6’: T/t)) 'tj(ﬂlf, tm €Iy T/t), Sj(mla t: é") T/t)
are smooth in ¢ up to t = 0.

2.4.12 Theorem. For f € C®(Ry, B*(X;Ty)) there is an a € C=(Ry, B*4(X;R))
with
opa =opy’f mod B~ XM, (1)

If f € C~(R,, B4 (X; I'o)), then we can find a € C*°(Ry, B4*(X;R)).

Proof. We know from 2.4.3 that opy,"f = op (exp, p)} where p(y,n) = f(e¥,—in), and,
according to Lemma 2.4.8, ¢/(2,t',7) = [exp,p](t,¥',7) = p(Int, ML, t')~' )5 M(t,¢')~
= f(t,—iM(t,¢")"'7) - M(t,t')"'. Let us convert the ‘double’ symbol ¢; to a symbol
c € C®(Ry, B»4(X;R)) independent of ¢"

c(t,7) Z MB sDXe (8,1, 7)oz (2)

Now
OEDEe (1) = Bﬁ{(—i)k(aff)(t,—iM(t,t')"lr)%M(t,t’)"“l}. (3)

By induction this is a linear combination of terms of the form

(BF9 1)1, =M (4, 8) 7 ) 7 gy (1), 5 =0,k )

where gx;(t,t') is a linear combination of terms of the form

"°H8{Mtt "

Here r = k+ 1+ and lp+ 50, l; = k. Using Lemma 2.4.9 we conclude that ¢~ g;;(¢,1)
1s smooth up to t = 0.

Combining (3) and (4) we see that 85 D¥¢,(¢,#,7) |¢#=: is a linear combination of terms
of the form (9f* f)(t, —itt) (tT)JskJ(t), where si; is a smooth function on Ry. Since
(ak“f)(t —itT) € C°°(R+ B#=k=id( X R)), we obtain the symbol a by asymptotic sum-
mation in C=°(Ry, B*4(X;R)). Note that there is asymptotic summation in this class:
Given a sequence {a;} with a¢; € C®(Ry,B*4(X;R)) and a;(t,7) = b;(t,t7) for
b; € C°(Ry, B* 74 X;R)) choose b ~ T b; and let a(t,7) = b(t,t7). Then a — ZN_O a; €
C*(R,, B+N4(X;R)) € C=(Ry, B*N4(X;R)); hence op c — op a € B~=4(X").

If f is classical, then the construction shows that the resulting a also 1s classical. <
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2.4.13 Theorem. (Mellin Quantization) Let a € C=(Ry,B*4(X;R)). Then there
is an f € C*(Ry, B*%(X;Ty)) such that

op:\,’;zfzopa mod B™®¢( XM, (1)

For later use we note that f(t,ir) — a(t,—7/t} € C®(R4, B*~ 1d(){' R.)).
For a € C(R,, B%*(X;R)) we can choose f € C>(Ry, B44(X;T0)). In that case, f is
unique up to an element in C*°(R4, B~°4(X;Ty)) and

f(t,ir) = alt, =7 /t) € C=(Ry, BE™(X; o).

Proof. We know from Lemma 2.4.5 that opa = op;_,’,’zg with

g(t,t',z) = [In.a](Int,Int’,iz) ; (2)

here, we use the ‘double’ symbol of [In, a] one obtains by straightforward substitution in
the oscillatory integral. Given a symbol ¢ € S*(R4,R) a computation similar to that in
2.4.8 shows that

(In. q)(y, v, 1) = q(e¥, M(e¥, e )n)e¥ M(e¥, e¥')

with the function M(¢,t') = =t introduced in 2.4.8. Hence, in our case,

g(t, ' it) = a(t, —M (¢, ) ' M(¢,1). (3)

Now we apply Theorem 2.3.3. We have opng g = opyy f mod B~*?¢(X") whenever f €
C*=(Ry,B*%(X;Ty)) has the asymptotic expansion

o0

f,2)~ 3 ;1( 1O, 0 g(1, 1, 2) N - (4)
By assumption, the symbol b(t, 7) = a(t,¢7!7) is an element of C*(R., B44(X;R)). Thus
tHOka)(t,t7'7) = Ikb(t,7) € C(R4,B* % (X;R)). By Lemma 2.4.9, the function
(40 (' M(t,1')) |1r=¢ is smooth up tot = 0 for 7 = 0,1,.... So all the terms on the right
hand side of (4) are smooth up to ¢t = 0, and the asymptotic summation can be carried
out in C°(Ry., B4 X;T)).
If a is classical, then the asymptotic expansion (4} produces a classical Mellin symbol f.
Suppose we have f,f € C°°(R+ B*4(X:Ty)) with opy’f = opa = opjt’f mod
B-=4(X"). Then op}i’f — opif'f € B==4(X"), s0 f — [ € C™(Ry, B-=4(X;Ty))
by Corollary 2.4.6. If, in addition, f and f are classical Mellin symbols, then f — f €
C°(Ry, B~4(X; Fo)) by Lemma 2.4.7. From the corresponding identity in the non-
classical case we have

f(t,i7) — a(t, —7/t) € O=(Ry, B (X; To)),

since the homogeneous components of order g vanish on R, and are smooth up to ¢t = 0.
<

2.4.14 Mellin Quantization for Arbitrary Weights. In the previous section we stud-
ied the question how to associate to a totally characteristic pseudodifferential symbol a€
C=(R,, B*4(X;R)) a Mellin symbol fij2 € C=(Ry,B#4(X;Tp)) with opa = opM ? fiya
mod B~=¢(X"). Given an arbitrary weight v € R this result allows us to easily find a
Mellin symbol f, € C=(Ry, B#4(X; T /2-,)) such that op a = op}, f, mod B=>¢(X"):
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2.4.15 Theorem. For every a € C®(Ry,B**(X;R)) and every v € R there is an
f‘y € COO(R.{_,B#’d()\’; [‘1/2_7)) such that

oplfy =opa mod BTH(XM). (1)
The corresponding statement holds for classical symbols.

Proof. The Mellin symbol f, can be computed in terms of the function f = fy/; in
Theorem 2.4.13. The definition of op}, shows that

1/2
o = bl i = ol

where g, (t,1,z) = (t/')"/277 f1;5(t, 2= 1 /2+7). We convert g, to a t"-independent symbol
fv with

St 2) ~ (=00} 0 gn (2,1, 2) o=

gk
?“||--A

.
Il
o

i

|(—t'3t')k(§)]/2—7|t'=t 0 fiplt 2 = 1/2 4 7)

o
1l
=

l b
NERNgE:
lr—d ?a““';—

(1/2 = 7)*% fipu(t, 2 — 1/2 + ), (2)

a—l

b
1l
=]

where we used that (—t'0,)5(t/t)"/* o= = (205)* 2% |pzr = (1/2 — 4)*. Since Sz

is smooth up to ¢ = 0, the asymptotic summation can be carried out in C®(Ry,
B“'d(/\’; ['1/2-+)), and we obtain the assertion.
If a is classical, then so is fi/; by 2.4.13, hence f, will be classical. <

2.4.16 Remark. In Part I we defined spaces M&*(X) of (¢,t')-independent Mellin sym-
bols of order p and type d. They are meromorphic functions on C, their only singu-
larities are poles described in terms of the asymptotic type P. We can then consider
the classes C(R,., Ma?(X)) and the associated Mellin operators. If the singularity
set P is empty we shall write h € C®(Ry, M5*(X)). Then h(t,-) is an entire func-
tion, and Cauchy’s theorem implies that op},h = opx:,h, for all 4,7 € R. We now let
fiy2 = h|r,. According to Theorem 2.4.15, opisfy = opas(hir,,,_,) mod B4 X1,
Therefore, fy — hlr,,_. € C®°(Ry4, B~ X; T /3_,)). This can be viewed as a slightly
different convergence result for the Taylor series on the right hand side of 2.4.15(2).

2.4.17 Corollary. For every a € C®(R,,B*4(X;R)) there is an h, € C°(R,,
MS’d(X)) such that
oplthy =opa mod B4(X") (1)

for every v € R. The corresponding statement holds for classical symbols.

Proof. According to Theorem 2.4.13 we find f € C°(Ry, B#4(X;Ty)) with opa = opif;zf
mod B~*?(X"). Choose ¢ € C&(R..) with ¢(p) =1 in a neighborhood of p = 1. Let

h’(t!z) = Mﬂﬁzp(p)Ml_/lz,(—ypf(ta C)

Then h € C (R, M4*(X)) by Theorem 2.2.17 and f — h € C®(Ry, B~®4(X;T,)) by
Corollary 2.2.18. By Cauchy’s theorem, cf. Remark 2.4.16,

opph = opyh = op}#f =opa mod B~#(X).

Given classical f, the Mellin symbol & will be classical by Proposition 2.2.21. <
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3 The Cone Algebra with Asymptotics

3.1 The Cone Pseudodifferential Operators

3.1.1 Notation and Terminology. Let us recall the ‘stretched object’ ID associated
with the manifold with conical singularities D, cf. Definition 1.1.3. It is a manifold with
cylindrical ends obtained by replacing, for each singularity v, a neighborhood of v by the
cylinder X x [0,1). We assume that the gluing near X x {1} between the cylindrical
and the remaining part has been performed by a fixed diffeomorphism. We will now
construct an algebra of operators which consists of usual operators in Boutel de Monvel’s
calculus outside any neighborhood X x {0}, and Mellin operators on functions or sections
over X x [0,1). We will patch these operators together to operators acting on functions
or sections over /D). In order to avoid superfluous pull-backs and push-forwards we will
identify operators defined over the above cylindrical part of ID by operators defined over
X x[0,1) or X x R;. We shall say that a function or distribution on D is supported close
to the singular set, if there is an € > 0 such that it vanishes outside the sets X x [0,¢)
associated with the singularities. Conversely, we shall say that it is supported away from
the singular set, if it vanishes on all the sets X x [0,¢) for suitable ¢ > 0. We shall also
use the terminology “on the singular part of ID ” and “on the regular part of ID 7. We
shall now consider Mellin symbols & € C®°(Ry x Ry, M2*(X)). Here p € Z, d € N,
and P is a Mellin asymptotic type, cf. 1.7.2(a). For (t,#) € Ry x Ry, A(t,#)-) is a
meromorphic function on C with singularities described by P; it takes values in Boutel de
Monvel’s algebra over X. C®(R, x Ry, ME4(X)) is endowed with the natural Fréchet
topology induced by the Fréchet topology of M4%(X). By definition we have MEA(X) —
B X; ['y/2-y), hence

C™(Ry x Ry, MpY(X)) = C®(Ry x Ry, BH(X; Ti/2-4)) (1)
provided the line I';j2_, does not intersect the singularity set mcP of P.

3.1.2 Conventions. For the rest of this section let p € Z, d € NN € N,y € R, and
the Mellin asymptotic type P be fixed; go is the weight datum (y + 2,7 + %, (=N, 0]).
We shall always assume that

ch N [‘1/2_7 = @

Moreover we suppose that a generic element h € C* (R, x Ry, M5*(X)) acts on vector
bundles ¥}, V2 over X and W,, W; over Y as in Section 2, cf. 2.1.1(1).

Unless specified otherwise, w,w;,wa,...,&,01, &, . .. denote functions in CP(R.,.).
When speaking of an element A € B*4(ID ) in Boutet de Monvel’s calculus on ID , we mean
an element of Boutet de Monvel’s calculus on the open bounded manifold D \ {¢t = 0}.
The following lemma collects a few straightforward results.

3.1.3 Lemma. For h € C(R, x Ry, M5*(X)) the following assertions hold.

(a) There are functions @;,; € C*°(Ry4), j = 1,2,..., tending to zero in the topology of
C*(R,), elements a; € ME4(X), 5 =1,2,..., tending to zero in the Fréchet topology of
Mp'd(X), cf. 1.7.3, and a sequence {);} € I' such that

(L, 1,2) = 3 Aes{es(4)as(2) )
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with convergence in C®(Ry x ﬁi,Mﬁ'd(X)). Vice versa, each series with these prop-
erties_deﬁnesd an element of C*(Ry x Ry, ME%(X)). A corresponding result holds for
C(Ry, Mp*(X)).
(b) h can be written
SRR PN

h(t}t:z):ji:%h.f(tatz) Or [] )
where h; € C°(Ry x E,Mg‘j’o(/\')), 0. denotes the normal derivative, and Q) is a
slightly modified Mellin asymptotic type with mc@Q = nc P, cf. Theorem 1.4.1.5.

(c)
C=(Ry x Ry, Mp*(X)) = C2(Ry x Ry, M5*(X)) + C=(Ry x Ry, Mp™*(X))

is a non-direct sum of Fréchet spaces. This result will be improved by Theorem 3.1.9,
below.

()

(XM W) 0=(X, Vs)
opah : ® — &)

C&(Yh, Wh) C=(Y", W,)
1s continuous. _
(e) For wy,w; € CP(RYy)

'Hs’ﬂ'%(X’\, Vi) HS—H,‘Y-}-%(A’A’ Va)
wi[opashlws : ® — @
HHE T (YA W) HI=w 5 (YA W)

is bounded provided s > d — 1/2. Ford =0 and s < —1/2,

Hy (XA ) Hiy " (XA, W)
wy [oprghw: &) — D
HEH 5 (YA W) Ho# T (YA, Wa)

is bounded. The subscript {0} indicates that we are using the Hyp-spaces for s — pp < 0
and the usual H-spaces otherwise.

Proof. (a) is immediate from the nuclearity of C*®(R; x Ry), cf. the proof of Lemma
2.1.4.

(b) follows from (a) and the decomposition result for M5?(X) in Theorem 1.7.4,

(¢) follows from (a) and Theorem 1.7.6.

(d) and (e) follow from the corresponding results in the case without asymptotics, since
h|r1f2—‘r € COQ(R+ X R_,_,B“’d(X; ]._‘1/'2_..,,)) as 'TI'CID N P]/g_.-, = @ <

We shall need the following Lemma as a preparation for Theorem 3.1.6, but it also is of
independent interest.

3.1.4 Lemma. Let h € C®(Ry x Ry, M5*(X)) and ¢ € C(Ry) with ¢(p) = 1 for
p close to 1. Define hy(t,t',z) = M, (p) M7 h(t,1', (). Then

h— hy € C°(R, x Ry, M7= X)).
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Recall that we showed already that A~ hy € C®(Ry x Ry, B4 X;T/2-4)) N C=(R4
xRy,, My ( (}), cf. Theorem 2.2.17 and Corollary 2.2.18.

Proof. Without loss of generality let us assume y = 1/2. Choose 3 € R and a nonnegative
integer M > p+|B|+1. Then DMh(¢,t',-)is integrable along I'5. Moreover, the analyticity
of the function z — p~* DMh(t,t', z) together with Cauchy’s Theorem implies that

/ T o (DMR)(, ¢ i) dr = f T O DMLY, B+ i) (1)
so that (M5(DYR))(t,¥,p) = p~ M]/l2 oo (DYR(, T, ¢+ B)). Hence, for 2 = f + 17,

(h = hy)(t, z) (2)

= [Ty (p))(M,,;m (t,t,p) dp

= [T = () M (ML (DH R (L, Y p) dp

= ‘/000 p6+ﬂ_ ( )) 111 [)[) M1/2/ C—}p(D‘zwh)(t:tia C + ﬁ) d

= [T P = v )Ml €+ B) dp

= [Mij2pm:(1 = 9(0)) My o, h(2, Y, C+ B)] (2 — B)- (3)

On the other hand, the function (¢,t',2) — A(t,t,z + ) is an element of C*(R; X
R, M&%(X)); the corresponding symbol estimates hold uniformly for 8 in compact
intervals. Applying Corollary 2.2.18, the function in (2) is an element of C™(R, x
Ry, B-°4(X;4)), uniformly for § in compact intervals. <

3.1.5 Corollary. For h € C®(R, x Ry, ME%(X)) we have h — hy € C°(R; x
R, M5>%(X)). The notation is as in Lemma 3.1.4.

Proof. We can write h = hg + h,, with hg € C°°(E+ x Ry, Mg’d(X)) and h, € C°°(ﬁ+ X
R, M5™=(X)). Denoting by the subscript % the result of the operator f Mv,bM,Y“lf of
Lemma 3.1.4 we have

h — hy = (hg — hoy) +hs — hyy.

By Lemma 3.1.4, kg — hoy € C®(R; x Ry, M5™%(X)), while hyy € C=(Ry x
R, M;%(X)) by Theorem 2.2.17. q

3.1.6 Corollary. If h € C°R,; x Ry, Mi¥(X)) and hlr, .., € C*(Ry x
R, B¢ X; ) /3—y)) then h € C°(Ry4 x Ry, Mz (X)).

Proof. Denote, as before, by the subscript ¢ the result of the operator f M¢ﬂ4;'f
of Lemma 3.1.4. Then hy € C*(R; x Ry, M;%%(X)) by Theorem 2.2.17, while
h— hy € C2(Ry x Ry, M5%%(X)) by Corollary 3.1.5. <
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3.1.7 Theorem. (Asymptotic Summation) Let h; € C®(Ry x Ry, My (X)), g =
0,1,..., with pu; = —o0 and j = max {1;}. Then thereisan h € C*°(Ry xRy, M54 (X))
with h ~ 522, h;, i.e., given M € N there is a J € N with

h— Zh € C*(R, x Ry, M5~M4(X)). (1)

7=0

Proof. We have hj|r, € C°(R4 xRy, B#4(X;Ty)) so that, by Theorem 2.1.12, there is an
f € C=(Ry x Ry, B#4(X; 1)) with f ~ ¥ hj|r, modulo C®°(Ry x Ry, B=4(X; [)).
Let h = M;le_/lzf for some ¥ € CP(R4) with ¢(p) = 1 near p = 1. Then h €
C=(R, x Ry, ME(X)). Given M € N there is a J such that f; := f — 7o hilr, €
C»(Ry x Ry, B#~MA(X;Ty)). Then

J
h=3hi = MyM7hfs—M(1—4) M, (zhm)

j=0 J—U

€ C°(R; x Ry, MM (X))
by Lemma 3.1.4 and Theorem 2.2.17. <
3.1.8 Lemma. Given h € C®(Ry x Ry, M54 (X)), wi,w, € CP(Ry), and Q =

(@1, Q2) € As(X,Y,(y+%,(—N,0]), there is a resulting asymptotic type R = (R, Ry) €
As(X,Y, (v + 5,(=N,0]) such that

HoT 3 (XM W) Hp T3 (XN V)
wi [opRsh]ws : 65 — &
HITET (YA, W) H T (YA W)

is continuous for each s > d — 1/2.

Proof. This follows from the representation in 3.1.3(&): First fix 7, and consider
hi(t, 1, 2) = Xw;(0)w;(te;(2) with A; € C, ¢;,¢; € CP(R4) and a; € ﬂfflﬁ’d()\').
By Lemma 1.5.4, multlpllcatlon by 1; maps HQ'Y 2(X"‘ Vi) @ Hg ’W T (Y™, W) to
He: e (X" V) & 7-{8 Valen (Y™, Wy). Here, @' = (Qf, Q%) is the a.symptotic type induced
by Q with the shadows’ in 1.5.4 added.

According to Theorem 1.7.12, opjsa; maps this space to Hyp u'7+2(X"\ Vi) @

H;?’T-I-Tl(l/"‘, W) for suitable B’ = (R}, R}). Now the continuity of the multiplica-
tion by ¢; shows the continuity of othJ

The topologies on C°(R4) and M} (X) are stronger than the topologies of continuous
mappings involved. Therefore the fa.ct that 3724 h; converges in the symbol topology

implies the assertion. <
3.1.9 Theorem. For h € C=(R; x Ry, M5™*(X)) and w,w; € CP(RY),
wi[opyshlws € C?v}iG(A,A:gO)-

64



Proof. Write
N

. -
h(t,t' z) = Z,—'afh((],t’,z)+iN+‘hN(t,t',z)

7=0."
N ik z -

= > i 310} 1(0,0,2) + NPy (V' 2) + 1V R (8,1, 2)
jk~0 k!

= Zt’t’kh )+ Nt 2) + R (, t, 2) (1)
1,k=0

with the obvious notation. Then hjx € Mp™*(X),hy € C*(Ry x Ry, M5™*(X)), and
hv € C=(Ry, Mp=4(X)). |

Let us treat the three terms separately starting with ¢/¢*4;,. Choose a small g, > 0 such
that [')j2—yth—e, N TcP = 0; ex = 0 is allowed. Indeed, for & = 0, we can always choose
€0 = 0, since ['1j2—y N7wc P = § by assumption. Theorem 1.8.1 shows that

w1 [Op;{,fij i hjk]wg = wlij+kt_ek [OpL(T_k-*_E"hjk)]tc"wQ + ij
= P opl (T hj)ws + Gix,

with G € Cg;(.XA,gU).

Let us check that w,t?**[op3; (T *h;x)]w, is a smoothing Mellin operator: For one thing
T*h; € M,;fi’;l(X); the notation T7%P indicates that the position of the poles are
shifted by k. Moreover, we will have vy — (j + k) < v —¢x < v, if &4 is chosen sufficiently
small. B

Next let us show that opjy [t'N“.ilN(t’,z)] is a Green operator in C&{X",g,). According
to Lemma 3.1.3(b), we can write

& 0
hNtZ ZhN.?tz I:OT [}

with hy; € C°°(ﬁ+,M5°°’O(X)) for a suitable asymptotic type @ with nc@Q = wcP.
Choose v € R with N < v < N+ 1 and m¢P N [yj3-4+, = 0. By Theorem
1.8.1, wilopighn [tV wy = wit?opy (T hn 1tV Y w, + GitV+'=Y for some G; €
C? (X",gg)R,g with dppropriate asymptotic types R = (R, R2),5 = (51, 5:). In view
of the factor t¥ we conclude that

’H-‘-','H-%(XA’ Vi) S'Y+2(A’A,V2)
wi[opirhn it lwy o ® — ®
HEER (YL W) S (v W)
is continuous. Its adjoint is the operator wyt™ ! [oplhn ;]*'@1 = WatV*Hopyy~ “hfv}JEl,
of. Lemma 2.3.2. It maps H*™""5 (X" V3) @ H* "~ (Y, W;) to SO‘Y_-(XA, Vi) @
So”” 7 (Y™, Wy). Hence the second term in (1) is a Green operator.
In essentially the same way we can treat the third term. This completes the proof. <

3.1.10 Lemma. Let h € C®(Ry x Ry, M4%(X)). Then, for all B,y € R,w,w; €
Cs°(Ry) we have
wi [opXgh)tPws = witPopl, TP h]w,.

Recall that T—? is the translation operator by f: T=Ph(t,t',z) = h(t,¥, 2z — B).
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Proof. Without loss of generality assume that Vj, V5 are trivial 1-dimensional while W; =
W, =0. Let v € C[‘,’O(X’"A), z € X, t € Ry, be fixed. It is sufficient to show that

wi (B)[opih) (tPwau) (2, t) = wy ()P [opR TP h)(wau)(z, 1) . (1)
Let us first suppose that
h(t, 1, z) = @(t) ¥(t'} a(z) (2)
with % € C°(Ry), a € M4%(X). Then
fop, ] ({Pwau)(t) = 5% /F () fﬂ L)) (Yl i;_’dz
= o [ PewaE [T e () G
_ -;Ezﬁfp(t) jr a(w - B) /0 ) (b wa ) (1) %dw.

1/2—y+p

The interior integral furnishes a holomorphic function of w which is rapidly decreasing
on all lines 'y, uniformly for § in compact intervals. Since the function w = a(w — z) is
holomorphic with values in B#4(X) and polynomially bounded, Cauchy’s theorem shows
that we can replace integration over I';/,_ ;s by integration over T';;;_, in the outer
integral. This proves the assertion for k of type (2).

In the general case, Lemma 3.1.3(a) shows that & is a series in terms of this kind which
converges in all semi-norms. This implies the convergence of the corresponding operators
in, say, L(C(R,., C®(X)), C® (R4, C®(X))). Hence (1) also holds in the general case.
<

3.1.11 Theorem. Given h = h(i,t',z) € C*(Ry x Ry, ME4(X)), there is a g =
a(t, z) € C°(Ry, Affo’d(X)) such that, for all w,,w; € CP(R4),

wilop}yhlws — wilop}rglwr € Chfya(X ", go) (1)
Similarly, there is an § = §(t',z) € C®°(Ry, M5*(X)) such that

wilopishlws — wilopidlw: € Caiya(X”, 80). (2)
If P = O, then we can achieve that the error is in C&(X, go).

Proof. According to Lemma 3.1.3(c), & can be written as a sum of two functions, one in
Ce(Ry x Ry, M44(X)) and one in C*(R, x Ry, M;°%(X)). From Theorem 3.1.9 we
know that the latter induces an operator in Cg,;iG(XA,gO) after multiplication by w; and
wy. Hence we may assume that P = O. Let m = 2N + 2. A Taylor expansion gives

m=—1
ht, b z) = Y 17h;(L, 2) + U ha(t, 1, 2) (3)

i=0

with h;(t, z) = §8/h(t,0,2) € C=(Ry, ME*(X)), and hn € C(Ry x Ry, M5*(X)). By
Lemma 3.1.10

wiopp[t7h;lws = wiopi [t T hylws
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so let us look at t™h,,(¢,t,z). We apply Theorem 2.3.3 in connection with Theorem
2.2.17 and Corollary 2.2.18: There is a function ¢, = gm(t,2) € C*(Ry, MS'J(X)) and
an R ¢ JMB,;‘”'d(X), such that

opay (T~ hm) = opp(T="""gm) + R.
Therefore, applying twice Lemma 3.1.10,
Wiopfy(hm(t 1, )™y = wr0ph (TN (1,8, 2)™ N ey
= wiopy (T gm (L, 2)Jwe + @tV RN Ny

The first summand is of the desired type. In view of the fact that both N+1 and rn— N -1
are > N, both witV*! and wyt™ V=1 map HO"F3(X") to Sg+%(X"). Hence the second
summand is an operator in C&(X”,g)o 0. This concludes the proof of the first part; the
second part follows in the same way. <

3.1.12 Remark. We deduce from Lemma 3.1.4 and Theorems 2.3.3, 2.3.4 that we may
choose ¢ and A with the asymptotic expansion

o(t,7) ~ Zji( 1 0.V (L, ¥, 2)|oe, and
3=0
HELZ) ~ 50 AP BPA oo

-
Il
=}

modulo C=(Ry, M5 (X)).

3.1.13 Lemma. Let h € C*(Ry X R, M54(X)),w e CP(Ry,), and ¢ € C(Ry)
with suppw Nsupp = §. Then

(a) wloplhlip € CA(XA, &0, and

(b) plop}shlw € CE(X™, 8" )o,0.

Here, g' = (v + 3,7+ %, (—00,0]).

Proof. (a) Writing

d +

a7 0
h(t,t',z) = Zhj(t,t’,z)[ 0 I ]

i=0
we see that it is no restriction to assume d = 0. Moreover, we find ¢ € C*(R4),& €
Ce(Ry) with 9p = p,wd = w, and suppp Nsuppe = @. Then w[ol)M lo =

e >0

wopyy [@(t) h(t,t',2) ()] ¢. In other words: we may assume that there is an
such that

h(t,t',z) = 0 whenever |t — '] < e.

Now let m € N be arbitary and g, = (v + 3,7+ %,(—m,0]). It is sufficient to show the
result for g,, instead of g’. Applying Lemma 3.1.10

wlopihle = wopih{t,t, 2)t™] [t ]
= wi™ fop}T "R [t 1)
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Note that ¢, = t™™¢ € C&(R4) and, for arbitrary L € N, (¢ — t)"X(T-™h)(t, 1, 2)
€ C°(R4 x Ry, B#4(X; I 3-y)). Combining Proposition 2.2.20 with Theorem 2.1.3, we
conclude that, for every s > —1/2,

HHE (XA, V) HeM™ (XA, V) 857 H(XM V)
Clovile: & w8 T
’H"‘H‘T(YA, W) ’HOO,‘V'Fm"'%(YA, Wa) SZ+T(YA7 Wa)

Now consider the adjoints. We first note that, indeed, there is an adjoint, since, by
Proposition 2.2.20, wlop},hly = wlop)ishole for some hg of order < 0. Write

[wopih]@]” = B [@ [opash] @) ; (2)

and apply the above method, then (a) is settled. The proof of (b) is analogous. <

3.1.14 Lemma. Let R € B=4(X") and ¢,y € C(R,). Then, for every choice of
T1,72 S RJ
v Ry € Co(X", &oo

with g = (717721 (—O0,0])

The proofis an easier analog of the proof of Lemma 3.1.13, using the fact that, for every
choice of M € N, ™My and t~M1) are functions in CZ(Ry). <

3.1.15 The Cone Algebra. Lety € R, u,v € Z such that p —v € N, d,N € N,
N >0. Writeg = (v + 2,7+ %2 — j1,(—=N,0]). Let V1, V; be vector bundles over ID and
Wy, Wy vector bundles over @D = IB . In order to connect to the assumption made before
assume that, near the conical points, i.e., on X x [0,1) and Y X [0,1), respectively, ¥
and V; are induced from bundles over X while W, W, are induced from bundles over Y.
By C§°(ID, V1) denote for the moment the space of all smooth sections of ¥} that vanish
near the singular set.

C**(ID,g) is the space of all operators

Co(D, V1) Ce(D,Va)
A: &P — @ (1)
C&(B, W) C=(B,W,)

that can be written in the following form
A=Ay + Ay + R, (2)
where

(i) Am = wit™*[opishlws, with suitable functions wi,w; € Ce*(Ry) supported in [0,1)
and h € C*(R;, M5*(X)), is a Mellin-type operator acting on functions supported
close to the singular part.

(i1) Ay = 1 Aro, with suitable functions 1,1 € C(ID), supported away from the
singular set and A € B“¢(ID), is an operator in Boutet de Monvel’s calculus on the
regular part of ID.
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(i) R e CM+G( , &), is a sum of smoothing Mellin and Green operators, acting close
to the singular set, cf. Definition 1.9.1.

We call the entity of all C*4(ID,g),r > v € Z,d € N the cone algebra associated with
the weight datum g.

3.1.16 The Classical Cone Algebra. C’;’d(ﬂ),g) is the space of all operators A =
Ap + Ay + R € C*U(ID, g) for which, in the notation 3.1.15,

(i) the Mellin symbol h is an element of C*(Ry x Ry, M4%(X)), and
(ii) the pseudodifferential operator A is an element of B4*(ID).

3.1.17 Remark. By Theorem 2.4.12 we have C*(ID,g) — B*YID). Let g, =
("Y + %:7 + % — i (—NI,O]), 82 = (’7 + %?7"’ .rz_L — i (_N%O]) with Nl 2 N2a and use the
notation of Definition 3.1.15. Then

C*YD,g,) = C"(D,g,).

3.1.18 Remark. The boundary /B = 01D of D is a boundaryless manifold with conical
singularities, and the corresponding cone algebra C*4(IB ,g’) is embedded in C*4(ID , g):

C"(B,g) — C*(ID,g);

here g' = (y + 24,7 + %% — 41, (—N,0}), and the embedding is given by identifying
parameter—dependent operators A(XN) of the form

0 0
A = ( 0 5\

in Boutet de Monvel’s calculus on X with the parameter-dependent operator

S(A) 1 C=(Y, W) = Co(Y, W)

—

C=(X, V) C=(X, V4)
) CRY W) C= (Y, Wa)

in the usual pseudodifferential calculus on Y, plus the corresponding identification of the
lower right corners of elements in Boutet de Monvel’s calculus on #J with pseudodiffer-
ential operators on /B . The shift in the weight is due to the fact that dim /B =n —1 and
that the dimension determines the positions of singularities, ¢f. Definition 1.9.1(i.2).

3.1.19 Lemma. Suppose A € N2, C*~#4(ID,g). Then A € C&(ID ,g).
Proof. For arbitrary M € N write
A =tM10, opih)ws 4+ (1 —wy) Ag(l — ws) + R;

here, h € C®(R,, M5%(X)),Ay € B~4(X), and R € N0 Chiic(ID,g). Accord-

ing to Theorem 3.1.9, tM~#w, [op] hlwe € tMCLE (D, g) = C,‘{f,_l_"éd( ,g). By Lemma
3.1.14, (1 —wq) Ay(l —ws) € C4(ID, g). The fact that, by Lemma 1.9.4, C47M4ID ,g) <
C&(ID ,g) whenever u — M > N completes the argument. <
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3.1.20 Lemma. Letw € CP(R4),w(t) =1 fort close to 0, s,y € R. Then multipli-
cation by (1 —w(t))t™" defines bounded maps

(1 —w(@)t™ : H(Q") = H (M), (1)
and

(1 —w(@)t™™ : H(X") = H (XN, (2)
provided that N > [s] + 14 n/2 —v. Recall that Q is the boundaryless ‘double’ of X.
Proof. (2) follows from (1). (1) is local in the z-variables. First let s € N. In order to

check that, for ©w € H*(Q"), we have (1 — w(t))t~Nu € H*>7(Q") it is sufficient to check
that, given k, o with |a| + k£ < s,

£271(19,)492 [(1 — w(t))t™u| € LH(U x Ry)

for any coordinate neighborhood U for £2. By Leibniz’ rule for differentiation the left hand
side is an expression of linear combinations of terms of the form

gr/2=rkko (1 (1)) k)g=N—ka ghks ey,

where k; + k2 4+ k3 = ko < k. Since Btk“agu € L? and the preceding factor is a bounded
function, we get the desired statement.

For s € —N, we use the dualities (H*(Q"), Hy*(27)) and (K (Q"), H™*~(Q")). The
subscript "0” indicates that we deal with distributions with support in @ x R, a fact
we need not worry about, for we multiply by a function that vanishes for small . The
corresponding adjoint operator to (1 — w(¢))t™" is (1 — @(¢))t~N*"; the shift by n is due
to the fact that HY2(Q") = L*(Q"). So the task is to show the boundedness of

(1 = BN H(QN) = HY(QY)

for s € N, and this can be done in the same way as before. <

3.1.21 Theorem. Let g € C®(Ry x Ry, M&%(X)), and suppose that, for all k,l € N,

"898l g € Cy(Ry x Ry, ME(X)). (1)
Then n .
HIEE(XM, W) HITHTEE (XN, V)
OppMY & - S

HOHT (YA W) TR (YA W)

is bounded for each s > d—1/2,v € R. For fixed s,~, we only need to have (1) for finitely
many k and [. Note that this Theorem generalizes Lemma 2.1.11

For the proof we need the following results.
3.1.22 Lemma. Let g be as in Theorern 3.1.21. Then
opprg = exp,op b

for b= b(r,r", p) = e~ (2=~ g(er e 1/2 — v —ip).
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Proof. Let u € C(R4., C*(X)). Then
1 o
¥ N ropN—2 rogt NI
(oplyg)ule’) = gm_ frm f (" /)" gl 1!, 2)u(t)dt! [t'dz
= 2 // —{r=r")(1/2—~y+ir) ( r er',l/Q—fy-i-ir)(uoexp)(?“')d‘f“’d'r
m
= (op b)}(u o exp)(r)

where b(r, 7', p) = e=(1/2=N=rg(er o' 112 — 5 —ip). <

3.1.23 Lemma. ForseR
TN = exp, H*(Q x R).
Here exp is the mapping (z,7) — (z,€").

Proof. Using a partition of unity on {2 we see that the result is local in the z-variables.
We can therefore apply Remark 1.4.4 and immediately get the statement. <

3.1.24 Corollary. Restricting to X*, we conclude that

H (XM = exp, HY(X x R).

Proof of Theorem 3.1.21. 1t is sufficient to prove the theorem for y = 1/2, for
0prg = 17 2 [opy T /A gt /2,

Moreover, we may work with trivial 1-dimensional bundles Vi, V;, while Wy, W, can be
assumed to be zero. By 3.1.22, the boundedness of op,; 1271/2=74 is equivalent to the
boundedness of

opb: H*(X xR) = H*(X x R),
where b(r, 7/, p) = g(e",e”,1/2 — v —ip) € C°(R x R, B*¥X;R)). This boundedness

result, however, is well-known. Notice that, for fixed s, we only need finitely many
estimates on b for the continuity of op b, thus we only need a finite number of the estimates
n (1) for g. <

We are now able to prove a stronger version of Lemma 3.1.13, namely the following.

3.1.25 Lemma. Let g € C*(Ry, M5%(X)), and w,w, € CP(R,) with wiwy = w.
Then, for every choice of 4, N,

wi fopisg) (1 = w2) € CG(X™, (1,7, (=N, 0))o,0

Here O refers to the asymptotic type (v,~,(=N,0}).
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Proof. Without loss of generality we may assume that d = 0 and that Vi, V; are trivial
one-dimensional while Wy, W, vanish. We then have to show that, for each s > —1/2,

wi [oplyg] (1 — ws) : K 3(X7N) = 83T (X (1)
and
(w1 [op9] (1 = wa))™ s L5775 (X") = 8577 F(X1) (2)

are continuous. Let us start with (1). In view of the factor wy, it is indeed sufficient to
show that, for each M € N,

s—u+M

wi [opeg] (1 — wa) : K5 E(XN) = Hy “HHTHE (xm) (3)

is continuous. Here we let, for the moment H ’T+’(X"),.§ € R, denote the space
No<e<n HEITETH(X M), where N refers to the welght datum (y + 5,9 + %, (=N, 0]). Now
wi [opisg] (1 — w2) = op},sh with

Wt 1) z) = wi(t)g(t, 2)(1 — wa(t)) € C°(Ry x Ry, MES(X)).

Since we have a zero of infinite order, we can apply Proposition 2.2.20: For each mn € N,
we find a symbol k., € C®(Ry x Ry, B*~™0(X; T /3-,)) with op};h = op}sh,.. We need
to know more about the precise form of h,, and therefore review the proof of Proposition
2.2.20. We have hn,, = hy + I, where

ho = M(1—1(p))M; " h, and

hn = (L —1)T" Mp(p)MHITh).

Here 1 is an arbitrary C§°(R..) function equal to 1 near p = 1, and ¢ € C§° (R+)
is a suitable function. Clearly, hy € C®(Ry x Ry, Mg™°(X)) arld hem € C*(Ry X
R, M4 ™%(X)). Note that, for suitable functions @&y, € CP(Ry) with @, (t),&q(t)= 1
near ¢t = 0, we have

ho(t,t',z) = @1(t)ho(t,t',2)(1 —@n(t)), and
h(t,t,2) = D18 hm(t, 1, 2)(1 — ().

Next apply Lemma 3.1.20: Given v, € R, there is a £ > 0 such that
(1= @)« Ho(X") = H™ (X7 (4)
is continuous. By Lemma 4.2.2, also
(1= @))% K272 (X7) = HH(XM) (5)
is continuous, provided k is large. We have from Lemma 3.1.10

wi lopag) (1 — w2) = oplsho + opYshm
= O [opYrho] t¥(1 — @)t ~*
+@n [oply [t = )y MM (@2 R)] F] (1 — @)tk
= t*a, [opLT'khg] (1 =) t"'k
+tm G [opyw(t —t )""T"‘“’“(McpM;'(a;"h))] (1 — @)tk
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Both the symbols T7*hy and T MeM_'07h satisfy the assumptions of Theorem
3.1.21, since h vanishes for |t — | < €, where € is a suitable positive number, (t — )~V ¢
Ce(RA\{|t — ¢/} < €}), and h has compact support with respect to ¢ and is independent
of t' for large t'. Applying Theorem 3.1.21 and using (4) as well as (5)

wi [opfyg) (1 = w) : K3 (X7) = HTsmt i (X7

is continuous. Now let 0 < ¢ < N and, in (4), v = v + ¢ Since

op}i°g = oplsyg

on CZ(Ry4,C%®(X)), which is dense in H*¢(X"), a second application of Theorem
3.1.21 in connection with (5) shows that also

1 003} (1 = wa) : KATHE(X?) o Brmstmat Ere(X )

is bounded. According to (3) this is what we had to show for (1).

Next let us prove (2). Note first that op},g indeed has an adjoint in the Mellin calculus,
since it can be written with a Mellin symbol of negative order. The argument now is
simple: we have, by Lemma 2.3.2,

[wr [opReg] (1 —w2))* = (1 = @2) [oppr 9] @

with ¢i*) (2,1, 2) = g(t',n+1—%)*. Choose arbitrary m and k in N. Applying an argument
analogous to that used in the first part, we may replace (1 — @;)[opyy "g™]@, by

1751 = @) [opa | Grt* + 7H(L = @) [op] The| @y t™E,

where by € C®(Ry x Ry, M5=°%(X)) and hy € C°(Ry x Ry, ME™™°(X)) satisfy the
assumption of Theorem 3.1.21, and @&;,&, € CZ(Ry) are suitable functions. Multiplica-
tion by &#™* or &;t* maps K*~7"5(X") to H¥ "2 K (X*) for arbitrary K € N. The
operators opJsh; and opjshy map this space to H ™~ #~"~7-K( X"} Finally, multiplica-
tion by 1 — &y sends this space to distributions v that vanish in a fixed neighborhood of
{t = 0} and have the property that

"R (19,Y 9%u € LHXN), for j+ |a] < s +m—pu.
Since m and K were arbitrary, these functions are elements of S;” 2 (X*), and the proof
is complete. <

3.1.26 Lemma. Let h = h(t,t,2) € Ce(Ry x Ry, M54 X)), and wy,w, € CP(Ry).
Then there is a g = g(t,z) € C2(Ry, M45*(X)), depending on w,w,, such that

wi fopish]wz — opirg € CG(X ™, o),

o = (7+ %:7 + %s(_N:O])'
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Proof. Let h(t,t,2) = h(t,t, z)w, ()ws(t'), so that wiopl hlw; = oplsh. Next choose
g for h according to Theorem 3.1.11. By construction, we may assume that g(t,z) =0
whenever t ¢ supp w;.

Now pick functions &1, @, € CZ(R4) that are equal to 1 near zero and on the support of
wi and wq, so that &1w; [opi h] wate = w; [op)sh]wz. By Theorem 3.1.11,

wi [op}yhlw, — @1 [op}yg] @2 € CG(X", go).

Clearly, @i [op};gl@2 = [opisg)@:. Moreover, [opygl(1 — @) = @ifopyy)(l — &) €
C&(X",go) by Lemma 3.1.25, so the proof is complete. 4

We next analyze the structure of those Mellin operators that induce Green operators.
An essential tool is the following result which extends Proposition [.4.3.7 and follows by
similar arguments.

8.1.27 Proposition. Let g = (y+ 3,7+ 5,(=N,0]),p € Z,d € N, and wy,w, €
Cs°(Ry),w;(t) =1 for small t. Consider an operator of the form

N-t
A= W Z tjlop}}hj]w'z + RN

J=0

for Ry = tNw;[opighn|w,. Here, h; € M,’;‘gd(z\’), j=0,...,N =1, for suitable asymptotic
types P; with mcP; N Ty, = 0, while hy € C*(Ry4, M,ﬁ;f(/\’)) for an asymptotic type
Py withmePy O Lyjp_y = .

Suppose A € C&(X",g). Then h; =0forj=1,...,N —1.

Proof. Tor simplicity let us deal with a trivial scalar bundle over X” only. Choose a

cut-off function w near zero and a function ¢ € C§°(X). For p € C with Rep < 1/2 let

up(t) = 7 Pw(t)d(z) € K72 (XN). By 1.7.1(b) we have Mu,(z) = v(z + v — p), where
c

v(2) = Mw(z) ¢ = (- + f(2)) ¢ (1)

with an entire function f and some ¢ # 0. By assumption, there is a Green operator
G € Cg(X", g) such that

N-1
0=A+G =3 wtopy(h;)w+ Ry +G.
=0
We will show that we can recover the functions hg, ..., hy_1 by considering the Mellin

transform of (A + G)u,. Hence all will have to vanish in order for A 4+ G to be zero.

We may choose w with support very close to zero. Therefore it is no loss of generality to
ask that wy w = w; in other words, the function w, can be ignored in our considerations.
Let us now analyze the eflects of the various operators. The continuity of Ry :
K273 (XM) = wKe#+3+N(XA) for arbitrary s > d — 1/2 implies that Ryu, €
Sg+%(X") for all p. Hence M5, Rnu, exists for all v < 5 < v+ N . It yields a
holomorphic function of z € {1/2 —v — N < Rez < 1/2 — v} for fixed p € {Rep < 1/2}
and vice versa of p for fixed z, cf. Theorem 1.3.2.8.
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v+3

The function Gu, belongs to S * (X"} for a finite asymptotic type R independent of p.
For fixed p, the Mellin transform M5 ;,,Gu, exists for all but finitely many 4 in [y,v+ N)
and yields a holomorphic function of z in the semi-strip

Se={2€C:1/2-y—-N<Rez<1/2—7,Imz > o}, (2)

for a suitably large constant o, depending on R. For fixed zy € 5, and pg, the function
p — M3,.Gup(20) is holomorphic in p as p varies over a suitably small neighborhood of
po in {Rez < 1/2}.
Choose a small € > 0 such that

(i) 7cPi N yjgeymer; =@ for y=0,..., N,

(i1) Pp has no singularities with real part in [1/2 —y —¢,1/2 — 7]
Then wi[opisholu, = wilopas holu,. Moreover, there are Green operators G; €
C&(XNg), 7=1,..., N —1 such that

topyyhiu, = twiopif ™ hiu, + Gju,.

Fix zp with real part 1/2—v—e. The operators G; are independent of € for small € > 0 for
they are determined by the singularities of the h;. We may apply the above statement:
M5G5u,, exists for all but finitely many 4 in [, v+ N); for fixed po, zo with large Im 2, the
function p — M G;uy(zp) is holomorphic in p whenever p runs over a small neighborhood
U of po in {Rez < 1/2}. _
Restricting p to U we have u, € H®"9+3(X") and therefore t[op}“ " h;lu, €
Hoorter 3 (XA), uniformly for p € U. In particular, My (1 — w))t%opi ™ hjuy(zo) ex-
ists and extends to a holomorphic function of p on U. Finally,

Motz (t (0P34 P ) (20) = Mypemjins([0PRrhsl up)(20 + 5) = hj(z0 + 5)v(20 + 5+ 7 = p)

extends to a meromorphic function of p on C.

Now we fix j5. By possibly increasing the imaginary part of z; we may assume that
Myt Gup(zo), My Giup(20), and My Ryup(zo) are holomorphic in p in a small neigh-
borhood of py = zg + v — jo We then integrate M(A + G)u,(z) over a small contour C
around pg. By Cauchy’s formula, the holomorphic contributions vanish, and (1) implies
that

1 .
Gy /C M,+E(A + G)“p(ZO) dp = ¢ hj,(z0 + j0)9-

On the other hand, A + G = 0, hence h;,(zo0 + jo) is zero. Since we may vary zo slightly
and since we know that the h; are meromorphic functions, we conclude that A; and con-
sequently all ; vanish. <

3.1.28 Proposition. If g € C°(R,, M5%(X)),wi,wr € CC(R,) equal to 1 near zero,
and

Wi [OpLg] wy € Cé(A’AagU)PaQ
for go = (v + 3,7+ 3, (= N,0)) and some asymptotic types P and Q, then

9(t,2) € VO Ry, M5™*(X)) + 5o/ *(Ry, M5™(X).
Moreover, the asymptotic types P and @ both are O.
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Proof. For simplicity let us assume that the operators act on a trivial 1-dimensional
bundle V; = V; over X while the bundles W;, W, over Y are zero. Also it is no loss of
generality to assume d = 0. We first write

N-1 45
tJ .
g(t,Z) = E }Tafg((],z) +tNgN(taz)

i=0 J°

with gy € C®(Ry, M5°(X)). According to Proposition 3.1.27, the fact that w[op},g)ws
i1s a (Green operator implies that ;.i!afg([],z) =0fory =0,...,N—1, so that ¢ €
tNC= (R4, M5°(X)). Applying now Lemma 3.1.10, we conclude that w, [op},g]w; has the
mapping properties of a Green operator with asymptotic types P = @ = 0. Next we
employ Lemma 3.1.26 and suppose that

w [oprsg] w2 = opiyg,

for otherwise we might replace ¢ by a function with the same properties. According to
Theorem 1.6.2, the Green operator has an integral kernel k& = k(t,t, z,y) in

55T H(XNG.85"H(XY) = SY(R4)B55T (R)O,C(X x X).

From the kernel k we can recover the symbol by

g(t,2) = fo Py ke (1, 1)t 1.

Here kx(i,t') is the operator on, say, C°°(X), resulting from the action of the integral
operator with kernel k(¢,t', z, y) for fixed ¢,%". Let us suppose first that

k(t,t',z,y) = f(t)go(t)x(z,y)
with f € S3(R4), g0 € S5 "(R4), lx € C=(X x X). Then

g(t,2) = Cf(¢)(Mgo)(2) Lx,

where Ly is the operator on C°(X) given by the kernel {x. Thus Lx € B~°(X), and all
semi-norms in B~°°(X) can be estimated in terms of the semi-norms for [x. Moreover,
M, go(2) € S(T'1/2-~): In fact, on one hand M., : wHZR (R+) = S(T'1/2—); on the other
hand, M, : (1 — w)S(Ry) = S(I'ij2—y). Now we restrict to the line ['y/,_,. We have
glryu, (12 4i7) = 127747 f()R(T) Lx with h(T) = (M,go)(1/2— 7 +1i7) € S(R). We

shall now prove that

9(ts2)Ir e, € SE (R BTN T ar)). (1)
In order to sec this, we only have to make sure that the function t'/2=7+7 f()h(7) belongs
to 85/2(R+,S(R)). This in turn amounts to checking that it satisfies the estimates

” sup ITn a:z(tat)h{(t)la .t—1+ir—N+zf(t)h(T)}lIlm(m) < 00
for every choice of ry,rg,l1,{; € N,e > 0. Using the fact that, for { € N, we have

(t8,)'t="H" = (—y +i7)! and QLT = ¢ In' ¢, this follows from the properties of f;
and h.
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In view of the properties of the m tensor product, relation (1) stays true for general k,
since the semi-norms for g can be estimated in terms of the semi-norms for f, gy, and lx.
Now we choose a function ¢ € C§°(Ry) with ¥(p) = 1 for p near 1. From Proposition

2.2.7.and the nuclearity of S(IJ/Z(R+), we conclude that

MyM;'g € SRy, MG=C(X)).
On the other hand we know from Lemma 3.1.4 that
M(1 —4)M;'g € C=(Ry, Mp™"(X)).

We see that g = g1 + g with g; € C®(Ry, Mg°*(X)) and g, € S§* (R4, M5 (X)).

Now we again apply Propsition 3.1.27 to see that 0{(g(0,2) + ¢2(0,2)) = 0,7 =
1,...,N = 1. Since }Cﬁ’;‘,{g](Rg = MNso K°V/2+N=¢ we deduce from Lemma 1.4.6 that
pi(ga(t, 2)) = O(tN %) for every € > 0 and every semi-norm p; in M5°>%(X). On the other
hand, g, is smooth in ¢; so we find that Gfgl(O, z)=0,7=1,...,N -1 and the proof is
complete. <

3.1.29 Corollary. (a) lf g € C”(ﬁ.,.,MS’d(X)), and opyg € Cg;(X",g), then g €
tNC= (R, ME4(X)).
(b) If g € C=(Ry, M5*(X)), and
; n n
Op:{fg € Oé()&/\, (’f + 5)7 + 5: (—OO) 0])a
then ¢ € C*(Ry, M5°%(X)), moreover g vanishes to infinite order at ¢ = 0.
(0) 1f g € (R, ME(X)), and opleg € CA(X™, g), then g € C=(Ry, Mg=H(X)).

Proof. (a) We have
N-1;

t .
gt 2) =Y ;Ofg(ﬁ,z) +t"gn(t, z)
i=0 J-

for suitable gy € C™(Ry, M&Y(X)). Using that elements in Sé,/z(R+,M5°°‘d(X)) are
O(tN=¢) for each € > 0, see Lemma 1.4.6, we conclude that # g(0,z) =0forj =0,...,N—
1.

(b} is immediate from the fact that functions in Sé/z(R+,M5°°’d(A’)) are O(tV~°) near
t=0.

(c) Since g € C*(Ry, Ma:ﬁ'd()\’)) by Proposition 3.1.28 we obtain that all homogeneous
terms of the symbols vanish on Ry. By definition of the topology in C*(R., Mgfjl(X)),

all homogeneous symbol terms are smooth up to t = 0, so g € C2(Ry, M5™4(X)). <«

3.1.30 Proposition. Let h € C=(Ry x Ry, M54(X")), M = t~#op}h, and A €
B#A(X") with

M — A e B~ (XM).
Suppose wi,ws,ws, and &, &y, D3 are two triples of functions in C°(R.) equal to 1 near
zero with wywy = wy, wiws = ws and &1Qy = @y,0,03 = &3. Then, for every y € CP(Ry)
with ¥ = 1 on suppw, U supp @y,

[wleg -+ (1 - UI)A(I — w3)]x = {L:)lﬁ/fd)z + (]_ - J)l)A(l - ".:)3)])(
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modulo Cé(XA,g),g = (7 + %a7 -+ % - H, (_0070])
Note that

[wiMwy — (1 —w)A(l = ws)]x = wiMwz — (1 — wi)A(x — wa)

and

Proof. Choose a function w € C°(R) with w =1 near zero and ww; = w. In particular,
we will then have ww, = w. Then

wiMw, —iy M@, = [wMw; + (w) — w)Mw,] — [wMOy + (&) — w)Md,)
= wM(wy — @) + (w1 —w)Mw, — (&) — WYMo,
= wM(wy — @) + (w1 —wW)Mx + (W) — WM (wy — X)
—(@ —w)My — (& — w)M (@ — )
= wM(w; — @) + (wy — )My
(w1 —w)M{w; ~ x) — (@1 — w)M (D2 — X). (1)

Now supp w Nsupp (wy — @) = @, supp (w; —w) Nsupp (w2 — x) = B, and supp (&, —w) N
supp (@2 — x) = 8. In view of Lemma 3.1.13 we therefore have

wM(wy — @), (W1 = w)M (w2 = x), (@ —w)M(@ — x) € C&(X", 8),
and the only term of interest is
(wl —L:)l)MX: (wl —(:)l)MUJ"‘(w] —L:’l)M(X—w) (2)

The fact that supp (w; — @) N suppw = § implies that the first summand on the right
hand side of (2) is an operator in C&(X", g). Now we use that

(wr =@M (x —w) = (01 = @) A(x —w) + (w1 = &) R(x — w) (3)

with an operator B € B~*4(X"). According to Lemma 3.1.14, the second summand is
an operator in C&(X",g), so the remaining contribution is (w) — & )A(x — w).
Consider the second difference.

(1 ~w)A(x —w3) — (1 —@)A(x — @3)
(1 =)A= @) + (1 — ) Al — w3)
—(1 = &1)A(x —w) — (1 = &) A(w — @)
= —(w —O)AN —w)+ (I —w)A{w —ws) — (1 =& )A(w — @3). (4)

Since supp {1 — w;) N supp{w — w3) = @ and supp (1 — &) Nsupp (w — @3) = B, we
may replace A in the last two summands by an operator in B~°>¢(X"). An application
of Lemma 3.1.14 then shows that the second and the third operator in (4) belong to
C&(X", g). Since the operator —(w; — @;)A(x — w) cancels the operator remaining from
the first difference, the proof is complete. <
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3.1.31 Proposition. Every operator in C**(ID ,g) for g = (y+ 2,7+ % — u,(~N,0])
can be written in the form

A=w t™[opihlws + (1 —w)Ay(l —ws) + R (1)

with h € C=(Ry, M54(X)), Ay € B*4(ID),R € CM+G( ,&); moreover, we can choose
Ay int such a way that, for all functions w,& € C§°([0,1/2)), equal to 1 near 0 and with
ww = w, we have

wt™[opleh]d — wAyo € B~ (XM). (2)

In (1), wy,wq,ws are functions in Cg°(R.) supported in [0,1/2) with w(t) = wy(t) =
wa(t) =1 fort close to zero and wyw; = wy,w w3 = ws. The representation is independent
of the choice of wy,ws,ws in the following sense: if we replace wy,wq,ws by &y, Wy, w3 with
the same properties, we have to modify R by an operator in C&(ID , g).

For the proof we need the following lemma.

3.1.32 Lemma Let A € B»Y(X"),v € R, and let v,v, € C*(R,) be functions with
1 (t) = 2(t) = 0 for small t. Then there is a Mellin symbol hy € C®(R, M5*(X)) with

17 opleh1 — b1 Ay € B4 XN). (1)
Proof of Lemma 3.1.32. By Lemma 2.4.5 we can find f € C®(Ry, B*4(X;Ty/5_,)) with
7" opar f — 1Aty € BT (X7M). (2)

Moreover, f(t,z) =0 for small ¢ due to ¥y, hence f € C=(Ry, B**(X;1/2-,)). We now
apply Theorem 2.2.17 and Corollary 2.2.18 to find ~ € C°°(R+, M54 X)) with

opjf —opigh € MBI=H(Xh) = BT4(X").
<
Proof of Proposition 3.1.31. Clearly, each of the operators of the form (1) is an operator

in the cone algebra C*¢(ID,g). In order to see that each operator can be represented in
this way we do the following. Suppose A € C*?¢(ID,g) is given in the form

A =@t [opyrhlds + 1 Agihr + R

with b € C=(Ry, M5*(X)), Ay € B*(ID), and R € Cyi' o(ID,g). Applying Theorem
2.4.12 we find A, € B¥4(X") (even in C=°(Ry, B*4(X;R)) with

GJ[[O})LB]L’DQ - Al € B—W'd(XA).

Hence t'“&l[op:{,,;tjég —t7v A, € B~4(X"), and t7VA, € B¥4(X"). Next consider the
operator A, = ¥ Ay, Choose functions xi, x2, x3 € C§°(R4 ), supported in [0, 1), equal
to 1 on [0,1/2), and satisfying x1x2 = X1, X1X3 = x3- Then

Az = x1Aaxs + x1A2(1 — x2) + (1 — xi)Asxa + (1 — x1)A2(L — x3)-

Notice that x1A2(1 — x2) and (1—x1)Azx3 are regularizing operators. Since A, = ¢, fi,;,v,bg
with functions 1, %, vanishing near the singular set, both these operators induce Green
operators in C&(X”,g) by Lemma 3.1.14,
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Applying Lemma 3.1.32 we find h; € C®(R, M54 (X)) with
t_yOpth —_ X]A2X2 - B_m’d(XA). (1)
So let

h’l(titl: z) = @1(‘{)’7’“1 Z)a}g(t’) + h2(t= 2)1
Ay = t7VA| 4+ A,
Given w,& with support in [0,1/2) we have wy; = w,dy2 = @, and therefore
wlt™oplshy — Aglo = w[@t™ [oplhla —t7 Ao
+ wlt™opprhs — x1A2x2] 0.
Now choose w; € C(Ry) with wy(t) = 1 near zero and support in [0,1/2) such that
(X X suppwy) N [supp 1, U supp 2] = @; moreover choose wy,w; € C*(R4) with wy,ws
equal to 1 near zero and wywy = Wy, wiw3 = ws. 3
We then have, with the abbreviation M = t~¥opj,h,
A— R —[wit™"[opyhi]ws + (1 — w1 ) Ay(1 — wy)]
= (:.)1 M(L‘z —- wlcbl Mu.)gwg — wlt‘“[Opth]wz (2)
+A2 - (1 — wl)[t"”Al -+ Az](l - LU3). (3)

Consider the first difference (2) first. In view of the fact that suppw; Nsupp (1 —wq) =0
while supp &, is compact, Lemma 3.1.13 implies that

wlu")l MLT)QUJQ = wlf.:h M(I)z + G[

with an operator G € C&(X",g). Moreover, since (X x suppw;) Nsuppyy, = B, we
may assume that w;(t)}ho(t, z) = 0; if necessary, we can modify h, to achieve this while
(1) remains preserved. So (2) equals (1 — w;)iy M @, + G|. Let us now have a look
at (3). Since (X x suppw;) Nsupp® = @ and (X X suppws) Nsupph, = B, we have
Az — (1 —wy)As(l —w3) = 0. We introduced A, as an operator satisfying

1Ay — iy M Dy € B™4X).

It is therefore no restriction to assume that t7¥ A, = x;t™ A, x;. An application of Lemma
3.1.14 shows that

(1 — wl)t—"Al(l — QJ3) = (l — wl)f.:h M&Jg(l —w;g,) + Gz
with G, € C&(X", g). Next we notice that suppws Nsupp (1 ~ wy) = @, and therefore
(l - LLJ])C:)] M(:)g(l - (JJ3) = (1 - wl)ﬁ)] M(L’z + GS

with G € C&(X", g).

Thus the sum of (2) and (3) is a sum of Green operators in C&(X",g). We now have
proven that each operator in C&(X”*,g) can be represented in the form (1} with A, €
C(Ry x Ry, MG*(X)) and special wy,wy,ws. Applying Proposition 3.1.30, we see that
any other choice of cut-off functions results in a change in C&(X", g) only.

Finally, we apply Theorem 3.1.11 in order to see that we may find a function h €
C>(R,, M5*(X)) satisfying

wit ™ [opishi|we — wit ™ [opishlw, € Oé(XA,g).

This completes the proof. <
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3.1.33 Totally Characteristic Symbols. The operator Ay in Proposition 3.1.31 is
uniquely determined by 3.1.31(1), (2) up to an element of B=°¢(ID ). Applying the Mellin
quantization result 2.4.12, we can find a symbol a € C°°(ﬁ+,g”'d(X;R)) such that the
operator t™[op}sh] —t~[op a] is an element of B~*¢(X"); hence

wit ™ [op alwg — wy Aywy € BT X1)

for all wy,w; € CP(Ry.), supported in [0,1/2). We can and will therefore assume that the
pseudodifferential part Ay of A has a totally characteristic operator-valued symbol.

3.1.34 Totally Characteristic Symbols in the Classical Case. For A € CHUID,g)
written in the form of Proposition 3.1.31 there is an a € C®(R4,B5*(X;R)) with

t™ [opi k) =t~ [op a] € B4 X 1)

and
1™ [op a] — Ay € B™4(X").

Indeed, we then have h € C*(Ry, JMS','L(X)) and Ay € B5%(ID). By Theorem 2.4.12 the
associated totally characteristic symbol a is also classical.

Note that the parameter-dependent homogeneous components of order v both of & and
a in the sense of 2.4.11 are uniquely determined by A. Those of h are smooth in t up
to £ = 0, while the homogenous components of oy(a(t))(z, £, 7/t) and oa(a(t))(z', &, 7/t)
are smooth in ¢t up tot = 0.

For fixed ¢, the function AY(¢,7} = h(t,—ir) € B**(X;R,)} is a parameter-dependent
operator. By Theorem 2.4.13, its principal symbols are locally near ¢ = 0 related to that
of a by

opla®))(z, & /t) = oy(h7(t,))(=,§7);
ox(a®), ¢\ 7/t) = k(b (L, )¢, 7).
Similarly we have the following relation between the symbols of Ay and a from 3.1.33:
ayla))(z,§,7) = toy(Ag)(z,t,¢,7);
ai(a()(z €, 1) = t"of(Ag)(z' 1, &, 7).
In particular,
tyo-:b(A¢)($ata§17/t)lf=0 = a;(hv((], '))(Ji,f,T), and
ol (Au)(&, 1,67 /Dl=0 = X (RY(0,))(z, €, 7).

3.1.35 Theorem. Let A € C**(ID,g) for g =(y = 3,7+ 2 — p,(—N,0]) have two
representations as in Proposition 3.1.31:

A = wit™opihlws + (1 —wi)Ay(l —ws) + R

-~

= Ot *[opighlos + (1 — &) Ay(1 — ) + R

with R, R € Cyf,c(ID ,g) of the form
N-1 _
R=uw ) ¢ lopyhilws + G

1=0
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N-1 . 3
R=ad ) #"[opyhsles + G.
=0

in the obvious notation. Then

(h + ho) — (h + ho) € 1C™(Ry, M5* (X)) N C=(Ry, M5 (X)); (1)
Ay — Ay € B~HID); and (2)

1, 1+ - .
ﬁc")fh((],z) + h;(z) = ﬁafh((),z) +hi(2),7=0,...,N—(p—v)— 1. (3)

Notice that other values of j are irrelevant. In fact, we may also limit the upper index in
the summation for B and R to N — (. —v) ~ L.

Proof. The fact that, for ¥, ¢, € CP(R4), we have ¢ (R — R)¢2 € CL(ID ,8) =
l?_*‘”'d(lD) together with the required compatibility of & and Ay on one hand and & and
Ay on the other, cf. Condition 3.1.31(2), implies that Ay, — Ay, € B=*¢(ID). This proves

2).
%n) order to see (3), choose a function w € CP(R4) such that wws = w, Wy = w.
Then w(l —w;) =0 = w(l — &), ww, = w, wy; = w. Hence wA = wt™[op} hlw: +
wR = wt=[op] h)a, + wR. We next recall from Lemma 3.1.13 and Theorem 1.8.2 that
wt™[opl k) (@2 — wy) and w IS t7="[op i k] (@2 — w; ) both are elements in C&(X", g).
We deduce that
N-1 .
wt™[ophy(h = R)lwe +wt™ Y 17 [opih; — opjih;] we € CE(X™, g). (4)

i=0
We next use a Taylor expansion and write

N-1 45

(h—h)(t,z)= 3 3-' (970(0,2) — BR(0, 2)) + £V (1, 2)

=0 J°

with f € C®°(Ry, M5*(X)). Then we apply Proposition 3.1.27 for the uniqueness of the
Mellin symbols and conclude that identity (3) holds.
Finally, we consider the operator with respect to the simplified weight datum g = (v +

2 v+ 2 —p,(—1,0]), so that the operators w t=*+[ops;h;lw, and @ t~v+ [op;’jﬁj]@ are
Green operators for all 7 > 0. We conclude that

0 = wt™[ops(h + ho) — oply(h + ho)|ws + G,
where Gy € C4(X*, g). From (3) we know that kg — ke = A(0, ) — A(0, -), so
wt™opylh — b+ h(0,-) — h(0,-)]ws € C&(X", B).
We conclude from Proposition 3.1.28 that
h—h —1(0,-) = h(0,.) € tC®(Ry, MH*(X)).

Relation (1) follows. <

82



3.1.36 Symbol Levels in the Cone Algebra. Let A be an operator in C*¢(ID,g),
g=(y+ 37+ 5 —u(=N,0)) represented in the form of Proposition 3.1.31:

A = wit™[opahlws + (1 —wi)Ay(l — ws) + R,
where wy,wq,wa € C§([0,1/2)),w,ws, w3 = 1 near zero, wyw, = wy,wws = ws, and
wlopihlo — wAyw € B4 (X1M)

for all w,@ € C§°([0,1/2)). Then we define the following:
(a) The pseudodifferential symbol of A is the pair {gy(Ay),0A(Ay)} in the sense of 1.3.4.

(b) As a preparation for the definition of the conormal symbol write the operator R in
the form (cf. 1.9.1)

N-1
R=1""w)_ tlopyh;lo+G
7=0

with w, @ € C§°([0,1/2)) equal to 1 near zero, y; € R satisfying v — (p—v)—j <v; <4,
hj € Mp=(X),mcPiNT1j2-y; =0, and G € C&D,g).
Then the conormal symbol of order v — 7 of A, o377 (A), is given by

v—j 1 i .
’-TMJ(A):J_-"h(J)(O)’*'hj’ 7=0,...,N—(p~v)-1

3.1.37 Principal Symbols in the Classical Case. Using the notation of 3.1.36,

let A € :,‘d(lD,g). We then can define the principal symbol of A. It is a triple
{oy(A),0%(A),05(A)}, where

o 0y(A) := oy(Ay) is the principal psendodifferential symbol of Ay in the sense of
1.3.4;

o o¥(A) := 0%(Ay) is the principal boundary symbol of Ay in the sense of 1.3.4, and

o o},(A) is the conormal symbol of A in the sense of 3.1.36.

3.1.38 Theorem. Let A€ C*(ID,g),g=(v+ 37+ %—pn(—N,0),s >d-1/2

Then A has continuous extensions

’Hs""*%(ID,V]) 'H-’-#,*Y-i-%-u(ﬂj’vz)
A @ — @ (1)
HOHT (1B, W) HO- AT H (B W)
and
H (D, V) He (D, W)
A: & — @ . (2)
n—1 —_ n—1_
Hy T (B,WY) Ho!"TT TN, W)

For v > p the mapping (1) is compact. In (2), P = (P, Py) € As(X,Y, (v + ,(—=N,0]))
is a given asymptotic type, while @ = (Q1,Qz) € As(X,Y,(v+ 2 — p,(=N,0])) is a
resulting asymptotic type.
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Proof. By Definition 3.1.15, we can write A a sum of operators A = Ay + Ay + R, where
Apn is a Mellin operator supported close to the singular set, Ay is a pseudodifferential
operator supported on the regular part, and R is an operator in Cryia{D,g). So it is
sufficient to prove the result for the three operators separately. For Aas it has been estab-
lished in Lemma 3.1.3(e) and Lemma 3.1.8. The pseudodifferential operator is supported
away from the singular set. There H*7(ID,V}) coincides with H} (intlD,V}). Therefore
neither the weight 4 nor the asymptotic types play a role; the assertion follows from the
usual mapping properties of Ay:

H,., (intD), V3) HIZ# (intID , V3)
e, (inblB, W) HS=*(nt B , Wh)

For the operator B we employ Theorem 1.9.3.

Finally, to see the compactness for ¢ > v we notice that the range of Ay and Ay is in fact
contained in H*~*" T2 -v(ID, %)G}H’_"”*’%‘”([B , Wa), which is compactly embedded in
HEHHITE (D, Vy) @ Ho-wrH (B W,), since 1 > v. Writing R = ¥ R; 4+ G, where
each R; is of the form w,#7~"[opysh;lw, with k; € M;J,w’d(X) and G € C&(ID,g), we know

n=1

that each R; indeed maps continuously to H®"*27(ID,V;) @ H®>"* ™5 (B, W,), so
we can also use the compact embedding argument. For G at last we know from 1.6.4 that
it yields a compact mapping between the spaces in (1). <

3.2 The Algebra Structure

3.2.1 Outline. It is the purpose of this section to show that the operators in the cone
algebra can be composed without leaving the class; it is obvious that addition and scalar
multiplication can be performed within the calculus.

Solet v € R, juy,po, 1,02 €Z, dy,dy € N, 0 < N €N, py — 14,43 — vy, € N. Moreover
let

g = (v+57+3—m,(=N0),

g = (v+3-mv+3—m— i (=N,0]),

Ay = A+ A+ M+ G e Ci(ID,g,),

Ay = A+ Ay +Ma+Gy € Cw’d’(ﬂ) ' 82)

We assume that the operators A, and A; act on vector bundles which ‘fit together’, cf. e.g.
the assumptions in Theorem 2.3.5. We know from Theorem 3.1.38 that the composition

A2A, is defined as an operator on weighted Mellin Sobolev spaces. We shall see now that
A2A1 € CUS’dS(D,g3) with

B3 = (’Y+ E,7+ z — —'sz("’N»O]) , V3 =1 + 1y, dy = max{n +dy,di }.

2 2
In other words: The composition of operators defines a continuous multiplication
C%(ID,g,) x C*4(ID,g,) = C** (D, gs). (1)

The subspaces of smoothing Mellin and Green operators form two-sided ideals within this
setting; the above mapping has the following continuous restrictions.

sz%;(lD:gZ) X Cyl’dl(magl) — Cﬁ‘f?}'(magfs)a (2)
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C(ID,g,) x Coih(ID,g) — CRis(D,gs), 3)

CE(ID,gy) x C(ID,g)) — C&(ID,gs), (4)
Cw'dz(IDagz) X Cg?l(”) &) — Cg‘(lD,g;,). (5)

Note the ‘dy’ at the right hand side of (3) and (5). Since both A; and A, are sums of four
terms, we will have to deal with 16 terms, and this makes the exposition a httle lengthy.
The line of thought is as follows. We shall first show the ideal property of Cq (D, ), thus
dealing with seven compositions, see Lemma 3.2.2. We then prove the ideal property of
Cm+c(ID,-), see Proposition 3.2.3. This leaves us with four compositions. One of them
is trivial: the composition AyyA;y is an operator in B*%([D ). We shall treat the others
in Lemma 3.2.4 and 3.2.5. Notice that the composition ApAqpr is a Mellin operator,
Ay Ary is a pseudodifferential operator, while Aqpr Ay and AzyAja each are a sum of a
Green operator and a pseudodifferential operator supported away from {¢t = 0}.

In particular, since the Green operators and the smoothing Mellin operators are smoothing
on the regular part of ID, we have

¢ The pseudodifferential symbol {oy(A24,),0A(A241)} of A2A; is the Leibniz product
of the pseudodifferential symbols of A, and A,. Locally,

oy(A)(#,€) = (ou(Ar)#ou(A1))(E,€) ~ Za: éafff-»(Az)(i, €)D5oy(A1)(%,6),

and

oa(A2 A& E) = (oa(Ar)fton(A))(F, E).

¢ The conormal symbol of A,A, is given by

ot T (A A = Y T o (A Yoy (A, (6)

ptg=j

7=0,...,N={u +p2 —vn — ) — 1, with the conormal symbols ¢3; 7(A;) and
any Y(Ar) of Ay and A, respectively.

For simplicity we shall keep the notation A, Aya,. .., Ge, v, ..., ds fixed.
3.2.2 Lemma. The Green operators have the mapping properties 3.2.1(4) and (5).

Proof. From Theorem 1.6.2 we know the kernels of Green operators. In particular, we
note that, for 5 € N, the composition with the normal derivative 8?G is a Green operator
of type zero whenever G is. From the mapping properties in Theorem 3.1.36 we therefore
obtain the required mapping properties of Green operators. q

3.2.3 Proposition. The smoothing Mellin operators have properties 3.2.1(2) and (3).

Proof. We know from Theorem 1.9.10 that the smoothing Mellin operators form an
algebra. We therefore have to consider the compositions

(i) A M.
(il) MyAim.
(iti) Ay M.
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(IV) MgAlw.
Let us begin with (i). We have to deal with a composition
1w, [op};"’ hg] wytd ™™ [opashi)ws

with hy € C°(Ry, MZ(X)), wi,wi,ws € CP(RL), j € N, by € Mp®™"(X), P a
Mellin asymptotic type, and y — 5 <7 <7y, mcP N Ty, =0.

We first apply Lemma 3.1.10 to commute #/~*1 to the left, replacing ha by 71 =9 hy; next
use Theorem 3.1.11 and Lemma 3.1.25 to find hy € C®(Ry, MZ (X)) with

t%w, [OPL-Mhz] wat? T = T op T P hy + 9T TR

with suitable R € CZ(ID ,g,) with go = (v + Z,7 + 2,(=N,0]). We know already from
Theorem 1.9.10 that 4
#7717 Rlopjyhilws € CG (D, g,)-

The analyticity of ks implies that opi;*'hs = opiyhs, hence [op}; " hs][opishi] =
oprs{hshy). An application of Proposition 1.7.5 shows that

hshy € C=(Ry, M5 (X))

for a suitable asymptotic type P’. Now Theorem 3.1.9 gives the assertion.
The composition (ii) can be treated in a similar way: we consider

™ 0w, [opRzho] wat™" [opishi]ws

with 7 € N;_’Y —m = (pa =) —J <y <y—p,hy € M};m’dz(X)JFCP Ny =
0,k € CP(Ry, M5 (X)). We may commute t™ to the left, noting that

710, [opThha] wat ™ = 1771720 0p P [T h] ws.
Now let hs(t,z) = wa(¢)h (1, 2), find a symbol hy = hy(t, 2) with [op}shs]ws = [opigha]ws+
R,R e C&(ID,g,), and proceed as before.
Our next goal is to show that the composition in (iii) and (iv) furnishes Green operators.

In view of the cut-off functions associated with M; and M, and the fact that A;, as well
as A,y are operators supported away from {¢ = 0}, we have

A2¢Ml = Az,j,(,ﬂ]ﬁ’[[, and MgAh'(, = MZSD2A1¢'
for suitable functions ¢, € C§°(R4). Hence Theorem 1.8.2 and Lemma 3.2.2 yield the
assertion. <
3.2.4 Lemma. AyyAym € C%R(D,g,).
Proof. We have to consider an operator of the form

£ wi[opyy ! halwat ™ [opirhi ws
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with wy,wy,ws € CP(R,), h; € C°(Ry, ng'df(X)), J = 1,2. Using the analyticity of ks
we may rewrite it as 1772w [op}, (T hs)lwslopishi]ws. We let ha(t, z) = wa(t)h(t, 2).
By Theorem 3.1.11 in connection with Lemma 3.1.25 we can find hy = h4(¢, z) such that

wz[opXshi)ws = [op} halws = opY ha + R

with R € C&(ID,g,). We know from Proposition 3.2.3 that Ce(ID,-) is an ideal, hence
the fact that

wi[op T ha)[oprshalws = wi[opFy ({17 ha)hg)|ws

concludes the proof. <

3.2.5 Lemma. A;pmAry and Ayy Ay belong to C”a'ds(lD,ga). In fact both are sums
of a Green operator and a pseudodifferential operator supported away from {t = 0}.

Proof. Let Agp = t™2w; [op}r* ho| wa, Avy = 1By with hy € C°(Ry, MF*(X)),
B € B (D), wi,w; € CP(R4), while 11,9, € C°(ID) both vanish for ¢ < 2¢, & > 0.
Choose a smooth function ws supported in [0, ), equal to 1 close to ¢t = 0, and a smooth
function w4 with wyws = wy. Then

AamAry = AspwsAry +wadAom(l —w3) Ay + (1 — wi) Aom (1l — ws) Ay
= 0+C,+C,

with the obvious notation. Now
wi Ao (1 — w3) = ™" wiopf ™ fwa(t)ha (¢, 2)(1 — wa(t'))] we € Cris (D, g,)

by Theorem 3.1.9 in connection with Theorem 3.1.11 and Remark 3.1.12. Knowing this
we may apply Theorem 1.8.2 to conclude that it even is an element of C&Z(ID,g,). So
Proposition 3.2.3 implies that C| is a Green operator. The operator (1 —wy) Aoy (l—ws) is
supported away from the boundary. It therefore coincides with an operator in B*%(ID)
supported in the interior; hence composition with A,y furnishes an element of B4 (D),
supported away from {¢ = 0}. The argument for Az, A;pr is the same. <

3.2.6 Formal Neumann Series. Suppose we are given an R € C~"¢(ID,g), where
g = (y+3% 7+ % (=N,0]). Then the inverse to the operator [ — R is formally given
by Y52, B?. Although this series will in general not be convergent, we shall use it in the
following sense. Let

N-1

R=twoprlws + (1 —wi)Ry(l —ws) +wi Y ' HFopirilws + G
k=0

with 7 € C®(Ry, M3 (X)), Ry € B~Y4(ID),r € Mp™*(X), and G € C4(ID, ).
According to 3.2.1 we can compute from these data rli) € C”(ﬁ.*.,Mo_"d(X)),RB] €
B_j'd(ll)),1‘[,f] € M;E;”d(/\’),j =0,1,..., such that

R — thw[oplrWw, — (1 — wi)R[’] 1 —ws) Z t”’k[op [,f]]wz € C4LDD,g).
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Notice that, for 7 > N, we can take T‘E] =0,k =0,...,N—1, since the induced operators
are Green operators by Lemma 1.9.4. Next we take the asymptotic sum of these symbols:
we let

0 00 . N-1
8 ~ Zt’r[-’],5'¢ ~ R[J],Sk = Z ter],
3=0 =0 =0

where the first is an asymptotic sum in C*°(R,, Mg'd(X)), cf. Theorem 3.1.7, the second
an asymptotic sum in B%¢(ID ), while the third is finite. Set

Not o
S = wiloppslws + (1 — wi)S(1 —ws) +wy Y _ [opissews.
7=0
We then have
S(I~R) -1 € CX(ID g). (1)

In order to see this notice that Sy = 5 — Z?io R e C~MA(ID g) by construction.
Therefore

S(I-R) = LM R(I—R)+Su(l-R)
= [—RMM L Sy (I-R)el+C MDD, g).

Since M was arbitrary and Nyen C~M4(D,g) = C&(ID,g) by Lemma 3.1.19, we get the
desired result.

3.3 Ellipticity, Parametrices, and the Fredholm Property
3.3.1 Definition. Let g = (fy + 57+ 55— (=N, 0]) e e€Z,d=p, €N, and

N-1
A =wit™lopihlwr+ (1 —w))Ay(l—ws) +wy Y 77 [op:{jhj] we+G € C*Y(ID,g) (1)

7=0

with the usual convention (i.e., wi,ws,w3 = 1 near 0, wyw, = wy,wws = wy,h €
C=(Ry, M5™(X), Ay € B*(D),h; € Mp™*(X),y —j < 3 < 7,G € C&(D,g)).
Recall that gy = max{p,0}.

We shall say that A is elliptic of order g, provided that the following holds:

(i) Ay is an elliptic element of B#4(ID), i.e., there is a By, € B~*%(ID),d" = (—)4, such
that for all w € C°(R;) with w(t) = 1 near t = 0

Ayl —w)By — (1 —w)l € B~ (D), and
By(l —w)Ay — (1 —w)l € B=>4(ID).

In other words, Ay is an elliptic element of Boutet de Monvel’s calculus for the interior
of ID in the standard sense.

(ii) h is elliptic in the following sense: there is a g € C®(Ry, B~*¥(X;T/3_,)) and a
function w € C§°(Ry), equal to 1 near ¢ = 0, such that

W(hg - [) (S COO(E+,B_OO'GI’(X; F1/2_.Y)), and
w(gh = 1) € C°(Ry, B~ X T1j3-y)).

(iii) For each z € T'yj5_, the operator oy, (A)(z) = h(0, z) + ho(z) € B#*(X) is invertible
by an element in B=*%(X).
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3.3.2 Remark. (a) In view of the spectral invariance of Boutet de Monvel’s algebra,
see Corollary 4.1.3(b), we can replace condition 3.3.1(iii) by the invertibility of

R0, 2) + ho(z) : H™ (X, Vi) @ H* (Y, W,) = H™ (X, V4) @ H™ (Y, W,).

(b) It follows from Theorem 3.3.1(i) and 3.3.1(ii} that the conditions in 3.3.1 are inde-
pendent of the representation of A with suitable h, Ay, h;, G. Condition 3.3.1(ii) reflects
the Fuchs type ellipticity of A. As we shall see in 3.3.11, it also is independent of the
representation.

3.3.3 Definition. Ellipticity in the Classical Case. Let A € C4*(ID,g) be written
in the form of Definition 3.3.1 with Ay € B4%(ID) and h € C“(ﬁ+,M5:f,(X)). We say
that A is elliptic of order p, if

(i) o (A) is invertible on T*(int ID)\0.

(i) o&(A) is an invertible operator family on T*(int /B )\0.

(iii) o%;(A) is invertible by an element in B4 (X; [ /5_,).

As before, d' = (—p)+.

3.3.4 Proposition. For A € C4%(ID,g), the ellipticity in the sense of Definiton 3.3.3
implies ellipticity in the sense of Definition 3.3.1.

For the proof we need the following lemma.

3.3.5 Lemma. Let A be a unital algebra, A™! its group of invertible elements. Let
Ay, Ay be subsets of A™', endowed with Frechet topologies, and suppose that inversion

()71 A = A

is continuous. Moreover assume that J is a bounded closed interval in R and F €
C*(J, Ar). Then the function G : J — Ay defined by G(t) = F(t)™! is an element of
C>=(J, Az).

Proof. The continuity of inversion implies that G is continuous. For ¢,ty € J we have

G(t) — G(b) F(t) = F(to)

— - W

G(to).

Hence the limit ¢ — %, exists; it equals —G(to) F'(to)G(¢0) and also is continuous. Itera-
tion completes the argument. ' Q

Proof of Proposition 3.3.4. By 2.44, the invertibility of o};(A) and ok(A) implies the
existence of a parametrix to A, so condition (i) of 3.3.1 is satisfied. Condition 3.3.1(iii)
clearly is weaker than 3.3.3(iii), because in 3.3.3(iii) we ask parameter-dependent invert-

ibility. It remains to check 3.3.1(ii). We focus on a neighborhood of ¢t = 0, so that we
only have to deal with X x Ry. For all fixed (z,£,7) € (T*X x R)\0,£ >0

tral(A)z, 6, 7[t) : Vig = Vo,
is invertible as a consequence of the interior ellipticity. Similarly
thoR(A)(=', 1, €', 7/t) € B (Ry)
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1s invertible for all (z',&,7) € (T*Y x R)\ 0,t > 0, by an element in B wmd (Ry),d =
(—p)4. Here B4*(Ry) denotes the classical elements of order u and type d in Boutet de
Monvel’s ca,lculus acting from Viz @ S(R4) @ Wiy to Vo ® S(Ry) @ Wa,r. What about
t = 0?7 We introduce the notation h¥(¢,7) = h(t, —ir). Condition 3.3.3(iii) in connection
with 2.4.15(2) shows that ~(0,7) € B*4(X;Ty,) is elliptic. Hence, by 3.1.34,

ol (A)z,t, &, 7/t) im0 = ol (RY(0,))(2,&,7) : Vig = Vi
is invertible for (z,£,7) € (T*X x R})\0, and
t#aﬁ(A)(:CIJrEI:T/t) t=0 = ax(hv([): '))(37’:5’:7.) € B;’d(R+)

is invertible for (z',¢',7) € (T*Y x R)\0.

We recall that t*oy(A)(x,t,£,7/t) and t*of(2',1,&,7/t) are smooth in z,t,€,7 up to
t = 0. Localizing on (T*X x R)\0 and (T*Y x R)\0 to neighborhoods over which
the vector bundles are trivial, we may consider t*oy(A)(z,t,£,7/t) a smooth map on a
bounded closed interval in Ri"f& with values in matrices of finite size, which in addition is
pointwise invertible. By Lemma 3.3.5, the inverse by, = by(z,t,£,7) given by b(z,t,£,7) =
[throy(A)(z,t, &, 7/t)]7" is a smooth function, since inversion is continuous on matrices.
Moreover, the inverse is a homogeneous function in (£, 7) of degree —p.

With the same localization, we can consider t*ox(A)(z',t', €', 7) a smooth function on a

closed interval in R2?, ., _, taking values in B»*(R.). Since inversion
-1, jpud -1 —ud!
() s Ml (R+) - Bcl (R+)

is continuous, we may again apply Lemma 3.3.5: The inverse by = ba(2/, ¢/, £, 7) also is a
smooth function, homogeneous of degree —u in (€', 7).

Next we consider by and b, as (4, 7)-dependent symbols and define from them a family of
operators B(t,7) by applying the pseudodifferential action with respect to the z-variables.
The homogeneity and smoothness imply that

B e C*(R,, B;*"(X;R,)).

Let go(t,—i7) = B(t,7) so that go € C°°(ﬁ+,Bc_,”’d’(X;Fg)). Now take an arbitrary
function ¥ € C§°(R4) with ¥(p) = 1 near p =1 and define

91(t,2) = Moo (p) M7, 90(8, 2).

We have g1 € C=(Ry, M5" (X)), o1 — g0 € C°(Ry, B7™* (X; 1)), and

1

o (@it =) = o3 (B(L,)) = [al(h(t,—i-)]
o (gut, —i)) = oxH(B(, ) = loh(h(t, =) "

This implies that, for w;,w; € CP(Ry) with w(t) = wy(t) = 1 for small ¢ and wjw, = wy,

il

wilopyy i lwalopyith] —wil = opgyir,
1/2 1/2
w1 [op g h,]wg[opM qi] —wil = opyyr,
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for suitable r; € COO(E_;_,A/IO_}C}CI(X)),T,- € C“(ﬁhMal’,d‘(X)). From the asymptotic
expansion formulas for the symbols we conclude that

wi(gih = 1) € C*(Ry, M5 (X)), and

wi(hgr — 1) € C=(Ry, Mg (X)),

The standard iteration process yields a g € C*°(Ry, Mg;’ld'(X)) satisfying

wi(gh — I) € C*(Ry, M5,c:f’d(X)),
wihg — I) € C=(Ry, M55 (X))

In particular, the conditions of 3.3.1(ii} are satisfied. <

3.3.6 Theorem. Letg= (v+ 5,7+ %~ u,(-N,0]),p € Z,d =y, € N,and A €
CH4(ID ,g). If A is elliptic, then there is a parametrix B € C™*Y(ID,g),d' = (—p) 4,8 =
(’){ + % — + %: (_N7 0]); such that

AB—1T € C&(ID,g), and
BA—1 € CG(DD,g)

withg = (v + 5 — g,y + 5 =, (=N,0]), g2 = (v + 5,7 + 5. (=N, 0]).

3.3.7 Outline. The proof of Theorem 3.3.7 will take up a large part of this section. In
order to avoid unnecessary repetitions, we shall assume that A has the form and the prop-
erties in Definition 3.3.1. The notation u,d,d', g,8,81,82,7, N, g,h, Ay, ho, ..., hn_1,G
will be fixed. We shall start with a preparatory proposition illuminating conditions
3.3.1(i1) and 3.3.1(iii). Then the parametrix construction will be carried out in several
steps. Corollary 3.3.10, below, will complete the proof.

3.3.8 Proposition. There is a Mellin asymptotic type @, a function w € C(Ry),
equal to | near t = 0, and a Mellin symbol §j € C*(Ry, Mg“’d (X)) such that

() (h(t, 2) + ko)L, 2) - w(t)] € C=(Ry, MG (X)), (1)
w(D)i(t, 2)(h(1,2) + hol2)) — w(i)] € C=(Ry, MZ=(X)), (2)
(h(0,2) + ho(2))3(0,2) = 1, 3)
§(0, 2)(h(0, 2) + ho(2)) = I, (4)

with suitable Mellin asymptotic types @, and Q2. Note that, according to Propo-
sition 3.1.3(c), § = Gana + Gring With fana € CP(Ry, M3"" (X)) and Guny €
C“(ﬁ+,M5°°'dI(X)). Moreover, (1) together with (3), and (2) together with (4) im-
ply that, for suitable s, € C*(R., A’Iéfo’d(X)) and s; € C*(R,., Mé:’o'd'()«f)), we have

w(t)(h(t, 2) + ho(2))g(t, z) —w(t)] = ts.(¢,2), and (5)
w(t)g(t, 2)(h(t, z) + ho(z)) —w()] = tsi(t,2). (6)
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Proof. Choose a function v € C§°(Ry) with ¥(p) = 1 for p close to 1, and let
go(t,z) = A/[P—M[)(p)M'y_,l—ypg(ta ().

Then 90|F,,,_7 -g € C°(Ry, B~=¥(X; 1/2-+)), and go € C=(Ry, Mo_“'d’(x)) by Propo-
sition 2.2.21. Moreover, Corollary 3.1.6 in connection with the ellipticity properties
3.3.1(i1) implies that relations corresponding to (1) and (2) hold for go instead of §.
We also know that

ri(z) = go(0,2)(h(0,2) + ho(2)) = I € Mp™¥(X), and
ra(z) = (h(0,2) + ho(2))g(0,2) — I € Mz (X)

for suitable Mellin asymptotic types P, and P,. Now we apply Lemma 1.9.11 to see that
there are Mellin asymptotic types @3, 4, and r3 € M&:o'd (X),rs € Mafo'd(X) such that

(I4+m)'=T+r; and
([+T2)_1 = I+T‘4.

Then
(I +73)(2)g0(0, 2)(h(0,2) + ho(2)) = I, and
(h(0,2) + ho(2))g0(0, 2)(1 + ra)(z) = 1
in the sense of meromorphic operator-valued functions. In particular, we have for z €

F1/2-+
(1 +75)()u(0, ) = o0, 2)([ + r2)(2) = [1(0, 2) + hof )],
since h(0, z) + ho(z) by assumption is invertible on this line.

According to Proposition 1.7.5 we know that go(0,-)( + r4) is an element of Mé“’dr(X)
for a suitable Mellin asymptotic type 7. Finally we let

9(t:2) = go(t, 2)(1 + 74)(2)-

Since §(t, z) — go(?, 2) = go(t, 2)ra(z) € C=(Ry, Macc.d‘(X)), relations (1) and (2) will be
satisfied, while by construction we have (3) and (4). Relations (5) and (6) follow from
(1), (2), (3}, and (4) with Taylor's formula. <

3.3.9 Proposition. There is a B € C™*%(ID,§) such that
BA—-1e€C™(D,g,).
In the same way there is a B, € C~*(ID,g) such that
AB, — e C™Y(D,g).
Here, g, g, and g, are as in Theorem 3.3.6.

Proof. Let By be the parametrix to Ay of Definition 3.3.1(i). Related to the functions
wi,wz,ws used in the representation of A choose wy,ws,ws € C§°(R4) with the following
properties: Wpws = Ws,Wals = Wy, Wyws = wg. We also assume that wew = wg for the

function w in 3.3.1(ii). Next let

By = wyt*[opys " T Glws + (1 — wa) By (1 — we).
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Here, & is the meromorphic Mellin symbol of Proposition 3.3.8. This indeed is an operator
in C"“'d'(lD , &), since we can decompose § = Jang + Jsing as in 3.3.8 and apply Theorem
3.1.9. In order to show the desired result, we may forget about the terms hq,...,Axy_1
and G of A, since they contribute errors in C;,;_;_%(ﬂ) ,8) by 3.2.1(3). So we let h(t,z) =
h(t,z) + ho(z) and have

A = wit™#[opi helws + (1 — w) Ayl — ws).

Then
BiA = [wgt*[opis “T " §lws)[wit™*[opaghelws]
+wat*lopry “T ™ glws][(1 — wi) Ay(1 — wy)]
+{(1 = ws) By(1 — we)][wit*[opishcws]
(1 — wa) By(1 — we)][(1 — wi) Ay(1 — ws)]
= N+ +T5+ 71,

with the obvious notation. Let us consider these terms separately, starting with 7.
The identity wyws = w3 implies that ws = wsw;. Hence, noting that [opy, “T gt ™* =
t~*opi7,

T wq [op3s 7] we [opRshe] w2
walopyghelws mod C~14(ID, g,)
wal + watopiysilws.

Here s; is the Mellin symbol introduced in Proposition 3.3.8, and we have used 3.2.1(6).
The term T3 is zero, for ws(1 — wy) = ws —wsw; = 0. In order to treat T3, we first note
that (1 — we) [wit™*[opishojws] is a Green operator by Theorem 1.8.2. We now choose a
function w7 such that wgwr; = w7 and obtain from Lemma 3.1.13 that

T (1 — wq)By(l — we)wit™#[op}shlws mod C&(ID, g,)

(1 — wq) By(1 = we)wit™#[op) hjwa(l — w7) mod CE(ID, g,).

By assumption, wiz™#[opi hlws — w1 Ayws € B74(X"). The multiplications by 1 — ws
and 1 — wy in connection with Lemma 3.1.14 then imply that

T3 (l - u4)B¢,(l - wﬁ)wlA,;.wz(l - w',r) mod Cg;(lD ,gg)

(1 —wq)By(l —we)wiAg(l —wz)  mod CE(ID,g,).

In the last equivalence we have used that the supports of w; and 1 —w; are disjoint. This
is good enough for our purposes and we turn our attention to Ty. Employing the fact that
the supports of I —w; and w3 — w7 do not intersect, we obtain that

Ti = (1 —wq)By(l —we)(1 —wi)Ay(l —wr) mod CE(ID, g,).
From 3.3.1(i) we conclude that

Ts + Ty (1 — wy) Byl —we)Ay(l —w7) mod CL(ID,g,)

(1 —wy)! mod C&(ID,g,)-

Again we have used Lemma 3.1.14. Hence BjA = Ty +To +T5+ T4y =  mod C~14(ID , g, ).
The construction of B, is analogous. <
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3.3.10 Corollary. In the notation of Proposition 3.3.9, there is an operator B €
C—#4(ID, &) such that
BA—1IeCg(D,g,)

and

AB~T¢€ CE(ID,g,).

Proof. Let By =1— BiAand S; = jf'iﬂ R‘f be the formal Neumann series, c¢f. 3.2.6. Then
S By e C~¥(ID,§), and, by 3.2.6(1),

Gi=SBA-1¢€ Cg(ﬂ),gd.

Similarly we can let R, = { — AB; and S, = o R} as a formal Neumann series. Then

B.S. e C~*¥(ID,g), and
G.=AB.S, — T € C&(ID,g,).
This implies that
B,S, = ($iBiA — G})B,S, = S;B{(I + G,) — G1B,S, = $;B; + G,

where, according t0 3.2.1, G = $;B,G, - GBS, € C& (ID , &) with d’ = max {d',d—pu} =
d'. We can therefore let B SiBy (or B = B,S,) and obtain the desired result. q

3.3.11 Fuchs Type Ellipticity and Mellin Symbols. The proof of Proposition 3.3.8
shows that h(0, z) + ho(2) is invertible as a meromorphic function on C, so it is rare for it
not to be invertible on T'y/,_,. This, however, is the point where choice of h¢ is important.
The relation

w(0)i(t, 2)((t, 2) + ho(2)) = w(t)] + tau(t, 2)

implies that, for small ¢, w( W+ tsi(t,2) = [ + tsi(t, 2) is invertible in C + B~% (X
Tyjo—y)- The latter space is a W*-algebra according to Theorem 4.4.4. In particular,
inversion is continuous by Theorem 4.4.2. Using Proposition 3.3.5,

(I +ts(t, )™ € C=(Ry, C + B~ (X; 1),

Replacing w by a function w; € C¢°(Ry) with w;(t) = 1 near zero and supported in a
small neighborhood of ¢ = 0 and replacing g by ¢(t,z) = (I + tsi(t, 2)) "' §(¢t, 2) we then
have

wi (g (t, 2)(h(t, 2) + ho(2)) = wi(t)], z€&yjp_sy.
In the same way we obtain the relation

w ('t)(h'(.t, z2) + hoz))n(t,2) = wi(t)], 2z € [yjay.

Hence h(t, 2) + ho(2) has an inverse in C®(Ry, B~#%(X;T'/3—y)) for small .
Next suppose we have another representation of the operator A as in Theorem 3.1.35 with
Mellin symbols %, hg. We then know that

(h(t,2) + ho(2)) = (h(1, =) — ha(2)) € tO°(Ry, MEL(X)) N C=(Ry, M5=*(X)),
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Thus
wi (g (t, 2)(h(2, 2) = ho(2)) = [ + tr(t, 2)

with r € C°(Ry, BY(X; Ty /2, )) NC®(Ry, B~4(X; 'y /2-,)). For each small ¢, we can
therefore invert /+tr(t, ) in C+B'°°"I(X; FI/Q_.Y) by Theorem 4.4.4. On the other hand we
know that B%(X; T /;_,) has continuous inversion by Theorem 4.4.2. Hence Proposition
3.3.5 shows that (I + tr(t,z))~" € C°(Ry,B%(X;T/2-)). Consequently we find w, €
C*(R4) with wy(t) = L near t = 0 and g, = (I +tr)"'g1 € C®(Ry, B~ (X;T12-))
with

wg(t)gg(t,z)(fz(f,z)-|-ia0(z)) = wy/, and
wo(t)(h(t,2) + ho(2))g2(t, 2) = wel.

In particular, the Fuchs type ellipticity condition 3.3.1(ii) also holds for the other repre-
sentation.

3.3.12 Theorem. Let A € C*¥(ID,g) be elliptic, g = (v + 2y + 5 —u,(—N,0)),
p€Z,deN,d<py =max {1,0}. Then

'H*’""*'%([D ’ V]) 'Hs-#,ﬂ»%-u(m ’ ‘[/2)
A 35 — a5}

n—1

’H”T+T(]B , Wl) 'Ha-ua’H- "-2;1-;:(18 1 Wz)

is a Fredholm operator. Given f € H*™*"I=#(ID V,) @ H"‘“""””n—;i_“(lB,Wg) oryg €
_ n_ — . .
’H;:l Al "D, V2) ® Hp, w "(IB,W,) for some fixed asymptotic type (P;, P;) and
any solutions u,v € Ht"3 (D, V))@H"+ ™5 (IB, W) of the equations Au = f or Av =g
with L > (—u)y — 1/2, we may conclude that
w e HE(ID, V) @ HOH T (B, W) and
veHg H(D, V) BHG, (B, W)

for a suitable asymptotic type (Q1, Q).

Proof. By Corollary 3.3.10 there is an operator B € C™*¢(ID |g),g = (v + 2 — p,7 +
2 (=N,0]),d = (—p)3 = max {—x,0} such that

R, = AB-1eC&(ID,g,), and
R = BA-TeC4D,g,)

with g, = (y+ 5 — 7+ 5 — 1, (=N,0)),8, = (v + 5,7+ 5, (=N, 0]). The operator B
induces a bounded map

Hem* 34D, V) H*E (D, V)
B: b — D
How* 54 (B, Wh) HHE (1B, W),

by Theorem 3.1.38 while, by Lemma 1.6.4,

R € K(H™™E (D, Vo) @ H™H ™55 ~(B, W),
Ry € K (MWD, V)@ H5F (IB,W)).
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So the first statement is immediate. Supposing that Au = f or Av = g we conclude that
Bf = BAu = (I + Ri)u, hence u = Bf — Rju; similarly v = Bg — Rjv. Since B maps
spaces with and without asymptotics, cf. Theorem 3.1.38, and since R; maps any space

n=—1

H"”"'%(ID,Vl) @’}_‘tn"{-—ﬁ-(”;‘,wl)’ t>d — 1/2, to HZO;T'F%(H)’V]) @?—,{C’Q"m"ﬁ"g;l(B,W])

4
for suitable asymptotic type (@3, @4), we get the assertion. <

4 Appendix

4.1 A Theorem on Analytic Fredholm Families

In this section we shall prove a result on the invertibility of analytic Fredholm families.
It is a variant of a classical theorem on analytic Fredholm families, with a long history.
First steps are due to Tamarkin 1927, [50] progress was made by Atkinson, Gohberg
[12], Sz.-Nagy, and Gramsch, see [14] for more details. What we are mainly interested
in is Theorem 4.1.6, below. Once Theorem 4.1.1 and Lemma 4.1.5 have been proven,
Theorem 4.1.6 follows from a result of Gramsch and Kaballo [15, Proposition 1.6]. For
the completeness of the exposition we give a proof. It is based on [49, Section 2.2.5].

We consider an analytic family {A(z) : z € C} of operators in B%(X), acting on sections
of vector bundles V over X and W over dX =Y, respectively:

Ce(X,V) Ce(X,V)
A(z): ® - @ :
C=(Y, W) c=(Y, W)

A(z) extends to a bounded linear map

HY(X, V) H(X,V)
A(z) @ — @ .
HO(Y, W) HO(Y, W)

For simplicity we shall use the notation

H = HX,V)@® HO(Y,W),
C® = C®(X,V)® Ce(Y,W).

We shall denote by N(A) and R(A) the kernel and range of an operator A. Three facts
will play an important role.

4.1.1 Theorem. (Schrohe (34,37, 39]) We consider B®(X) a subalgebra of L(H). The
symbol topology in B®°(X) is stronger than that of L{H), so the embedding B®°(X) —
L(H) is continuous. BYY(X) is symmetric: For A € B®*(X) the L(H)-adjoint A* also
belongs to B®°(X). Finally, if A € B®(X), and A : H — H is invertible, then A™' €
B%Y(X). In other words, B"*(X) is a ¥*-subalgebra of L{H).

U*-algebras were defined by Gramsch [13, Definition 5.1}:

4.1.2 Definition. Let A be a Fréchet subalgebra of a unital C*-algebra C with the same
unit. A is called a ¥*-subalgebra of C if it is continuously embedded, symmetric, and
spectrally invariant, i.e., A N ¢! = A7L
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Here, A~! and C~! denote the groups of invertible elements in the respective algebras.

4.1.3 Corollary. (a) The identity B*°(X) N L(H)™' = B®(X)~! implies that BY°(X)
has an open group of invertible elements. Hence a theorem by Waelbroeck, see Theorem
4.1.4, below, implies that inversion is continuous on B%%(X).

(b) Let A € B*4X),n € Z,d = py = max{p,0}. If V|, V;, and W,, Ws, are vector
bundles over X and Y, respectively, and

Hes (X, Vl) Hu+—u(X, Vz)
A S5} — @®
Hr+ (Y, W) FHr+=2(Y, Wo)

is an isomorphism, then A~' € B=#¥(X),d’ = (—t)+. In fact this is straightforward from
Theorem 4.1.1 using order reductions; see Schrohe [37].

4.1.4 Theorem. (Waelbroeck, [55, Chapter VII, Proposition 2]) Let A be a
Fréchet algebra, A~! its group of invertible elements. Inversion z — z~!
A~V if and only if the invertible element form a G subset of A.

is continuous In

4.1.5 Lemma. Let A € B%%(X), and suppose A : H — H has finite rank. Then
A € B~(X).

Proof. (cf. Schrohe [37, Lemma 4.3]) The fact that C*° is dense in H implies that A(C*)
is dense in the finite-dimensional range of A. Since A(C*®) C C*, therangeofl A: H - H
is contained in C*°. Let f,..., fr be an orthonormal basis. Then

k
Al =23 (f,ui)f;

for suitable u; € H. The operator A* also has finite rank. The same argument applies.
So we conclude that A is an integral operator with a kernel in C* @ C® (the algebraic
tensor product). <

4.1.6 Theorem. Let {/ be a domain in C and
AU = B™(X)

an analytic family of elliptic operators acting on H. Assume that thereisaz € U such that
A(2) is invertible in L(H). Then A(z) is invertible in B°(X) for all z outside a countable
set D with no accurnulation point in U. The function z — A(z)™! is a meromorphic
function with values in B®%(X); in z € D, A(z)™" has a pole, the coefficients of the
principal part of the Laurent series being finite rank operators in B=*°(X).

Proof. Step 1. The embedding B*°(X) < L(H) is continuous, and we may consider A
a mapping A : U — L(H). Since A(z) is elliptic, A is an analytic Fredholm family. Let
V CC U be an open set. We shall say that a function is analytic on V if it extends to an
open neighborhood of V' as an analytic function. Consider

AV = L(H).

97



For each z € V we obtain that R(A(2))* = N(A*(2)) is a finite-dimensional subspace of
C* since A(z) is elliptic. We may choose finitely many C* functions generating it, say
fizy- -+, fnz. Define the operator k; : C¥ — H by k,(c1,...,cn) = Z?‘;l ¢; fiz- Then

H
(Az) k): & — H
CN

is surjective. By continuity, (A4,k,) will also be surjective in a neighborhood of z. In
view of the compactness of V' we may find finitely many functions fi,..., far, define the
operator k: CM — H by k(cy,...,cm) = Z‘;‘il ¢; f; and achieve that

H
(A(z) k): & — H
CM

is surjective for all z € V.

Step 2. In particular: Let p be the orthogonal projection onto F' = span {fi,..., fas} In
H and ¢ = I — p. Then

H
(A k)=1(qA(z) 0): & — qH
CM

is surjective, and so is qA : H — qH. Notice that gff = (I — p)H = F* is finite
codimensional. Without loss of generality we may assume that fy,..., far are orthonormal

so that
M

p(f) =2 (5 F) i
7=l
Therefore p is a finite rank operator in B7°°(X), while ¢ € B%%(X) is a Fredholm operator
of index 0.

Step 3. For each z, the kernel of gA(z) : H — H is a finite-dimensional subspace L, of H,
consisting of C° functions. The orthogonal projection p, onto L, is given as a resolvent

integral
1 . -1
pe = %/F(Al — A(z)" A(2))d.

Hence z ~ p. is a holomorphic function with values in B%°(X). Here we are using the fact
that B»9(X) is spectrally invariant in £L(H). For each fixed z, p, € B~°°(X), since it is

a finite rank operator. Hence g, := [ — p, is a holomorphic family of Fredholm operators
of index 0. Now we may identify A with the matrix function

L.L FL
_(B() K@), - T
A(Z) - ( T(Z) Q(Z) ) : E.i — ? 3 eV.

Here B(z) = qA(2)q., K(2) = qA(2)p., T(z) = pA(2)q,, Q(z) = pA(z)q.. Note that
B(z) € B%(X), while K(2),T(z),Q(z) € B~ X). All these functions are analytic
B X)-valued functions. By construction, B(z): L — F* is invertible for each z € V.
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Step 4. L,, is a vector bundle over V': For each point zg € V, there is an open neighborhood

V., and an analytic map
R:V,, = L(L,, H)

so that R(z) is an isomorphism between L,; and L, for each z € V. In order to see this,
choose an orthonormal basis {{;,...,{n} of L. We havedet (p,,1;, pslx) = det (I, l) = L.
The continuity of z — p, implies that the determinant stays nonzero as z varies over a
neighborhood V;; of z5. The vectors p,l; will therefore form a basis of L,. The mapping
R then is defined by

R(Z)lj=pzlj; j=1,...,M.

Step 5. Given z5 € V, there is an analytic family {B~(2) : z € V,,} C B"9(X) such that
B~(z) inverts B(z) as an operator in L{LL, F*): Define S(z): H — H by

M
S(Z)f = Z(f7 R(Z)lj)fj, z € Vzo'

Then S(z) : L, — F is an isomorphism for all z € V,: The matrix ((R(z)k,
R(2);));k=1,..,.m 1s invertible, so {R(z)}lx : k =1,..., M} is a basis of L, with

M
S(2)R(2)l) = S (R(2)i, RNV iy b= 1,..., M,

=1
being linearly independent.
Clearly, z — B(z) + S(z) is an analytic family on V,, with values in B®°(X), moreover,

B(z)+S(z): H -+ H

is invertible for all z € V,;. Theorem 4.1.1 in connection with Corollary 4.1.3 implies
that z — C(z) := (B(2) + S(2))~" € A(V,,, B*°(X)). Moreover, it is easily checked that
C(z) = ¢.C(2)q + p,C(2)p and that z = B~(z) := ¢,C(2)q € A(V,,,B"%(X)) is the
desired family.

Step 6. Let
L L
Ji{ ! 0. IZB — 1;9
= repe 1) 9 7 ¢
and [L L
Jl(z) = ( é _B_(j)h(z) ) : EB — ? .

Both J; and J; are analytic B%%(X)-valued functions. In fact, both J; and J; are elements
of BY9°(X)~!, hence
JTL IV, = BYO(X)

are analytic. A computation shows that

NSz = ( g Q—JQB'K ) 1)
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Hence A(z) is an isomorphism for precisely those z where
E(z)=(Q~-TB K)(2) : L,» F

is an isomorphism. FE is a family of operators acting between finite dimensional spaces
both of dimension M. The space I is independent of z; we therefore pick an arbitrary
isomorphism J : F = CM.

Step 7. Let R(z)™' be the inverse to the isomorphism R(z) : L,, = L,. This also is an
analytic family of operators on V,,: For [ € L, and the above fixed vectors [; let

M

S'(z)l = E(lapzlk)fk-

k=1

Clearly § is analytic. For each z € V,,, §(z) : L, = Ly, is a linear map. We have

5 M

S(Z)(pzlm) = Z(pzlm:pzlk)lk-

7=1

Hence S’(z)R(z) acts as the invertible matrix function z — ((p,!;, p:lx));x on the basis
{l,...,Ip} of L, so that R(2)~! is analytic. Identifying L,, and C™, we may consider
R(z)~! an invertible element of £(L,, C*).

Step 8. We now have an analytic mapping
Vi, 3z H(z) := JE(2)R(2) € L(CM).

By assumption, there is at least one point Z, where A(Z) is invertible. Apply the above
construction to the corresponding neighborhood V;. Then E(Z) is invertible and so is
H(%). Since H is a matrix-valued analytic function, it will be invertible on all of V;
except for a discrete set of singularities. According to Cramer’s rule, the singularities are
poles.

Step 9. Since U is a domain, the above considerations in connection with identity (1) show
that A(z) is invertible for all z € U except for a countable subset. The spectral invariance
of BY(X) in L{H) implies that A(2)~! € BY?(X) whenever it exists. Moreover, the fact
that inversion is continuous in B®»°(X) shows the analyticity of z — A(z)™! outside the
singularities. Since the singularities of A(z)~! are precisely those of £(z)7!, and, locally

E(z)=J"" H(z)R(z)_l

we conclude that the singularities of £7! are poles and that the coefficients of the principal
parts are finite rank operators. The coefficients of the principal part of the Laurent series
for A(2)™" in a pole can be computed by Cauchy’s integral theorem from the values of
A(z)7™" on a contour around the pole. The fact that A(z)~" is an analytic B%°(X)-valued
function implies that also the coefficients are operators in B°(X). On the other hand we
know that they are finite rank operators as elements of L(H). We conclude from Lemma
4.1.5 that they even belong to B=%(X). <
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4.2 The Cone Sobolev Spaces H?

As in Section 1, X denotes the open interior of a compact manifold with boundary, X,
which is embeddded in a closed compact manifold .

4.2.1 The Spaces H?, ,. Let {Q;}]., be a finite covering of Q by open sets, «; :
; — U; the coordinate maps onto bounded open sets in R*, and {(,oj}fﬂ a subordinate
partition of unity. The maps &; induce a push-forward of functions and distributions: For
a function u on {2;

(5ju)(z) = u(kj (), = €U (1)

for a distribution u ask that
(ki)(9) = (wpaky), o€ CPUy). @)
For j =1,...,J consider the diffeomorphisms
x; U x R = {(z(t),t) : z € U;,t € R} =: C; C R*.

given by x;(z,t) = (x(t),t). Its inverse is xj'(y,t) = (J/( ),t). For s € R we define

H:,..(1xR) as the set of all u € [} (8 xR) such that, for y =1,...,J, the push-forward
(x;%;)«(w;5u), which may be regarded as a d1str1but10n on R"“ after extension by zero,
is an element of H*(R™!), The space HZ,.,(Q X R) is endowed with the corresponding
Hilbert space topology. We let

cone (

Hipne(X xR) = {ulxxr:u€ H,, (2 xR)},
Hg cone(X xR) = {u€ H,, (2 xR):suppu CX x R},
Hioe (%) = {ulnxm u€ H,. (2 xR)},

‘H;one(X ) = {ulxxn—f Tu e Hcone(X X R)}:
h (‘XA) {u|ji—"xR+ ru€ hrg,cone(X X R)}

O,cone

It

For s = 0, we haveu € H? _(2xR)ifand only if x;.k;.(p;u) € LA R forj=1,...,J.

cone
In view of the 1dentities

[ ers-toi)(w OF dyds = [ (/) OF dya

i
= / / ) 5. (p50) (2, )| dt da

this is the case if and only if (t)nfz k;(p;u) € L*U; x R). Moreover, supposing w =
k;«(pju) is sufficiently smooth, we have

5;;;“} 0,1) = -a?y— fw(y/ {t) , )
- (t)_lg—:(y/(t),f)=(t)-]Xj-(3: )(yat% ()
DL iyt) =~ X T (0),0)+ G0/ (),



For s € N, the fact that u € (¢)™"/* H*({1 x R) implies that (¢)"* 2% 25w € L*(U; x R)
whenever k + |a] < 5,7 = 1,...,J. Then we have th(is—aa%})w € L*(R™1). Using (3)
and (4) we conclude that u € H 2 x R), so that

cone (

(O H (Q X R) < HEoo(Q X R),
Conversely, let v = (x;£;)«(¢ju). Then
(x5 ')sv _ 0 _ iy 9v A
20 = Do, = () el (8,0) + S (0,0
= 006" (72) @0+ 65 (3) ) )
AN i v v
P20 = g Tagle .0+ 5 0.0
= Lol (22 @0+ (oo ©

Ifue H,, (2 xR),s €N, then 5~ a%rv € LAR™Y), || +k<s, j=1,...,J. Hence

(- [ 85 £50] & (07" (U, ). Appling (5) and (6, € (077 (0 5 ). We
conclude that

He (0 x R) < ()% H*(Q x R).

cone

4.2.2 Lemma. (a) For s € R, the dual space (H? .( 2 e
be identified with H_? (£t x R). Here the duality is with respect to the L*(R™*!) inner
product induced via the maps x; in 4.2.1, equivalently with respect to the inner product
in (1)™™% L*(Q) x R).
(b) For s > 0 choose s < s’ € N. Then
)™ H*(Q x R)

QxR)Y to HZ,..(Q x R) can

)" (0 x R),

— H: . (2xR) — {

(O H(X xR) <= H (X xR) <= ()" H (X xR),
OTH(ON o HL () = ()T,
OTHXN) o HL (XN o (0T (XN,

O™ HH(QxR) = HI(AxR) — (O H*(Q xR),
W™ H(X xR) < HZ (X xR) o )" H~*(X xR),
O HT(QN) o HR QY = TP H@),
OTTH(XN) o HGJ(XN o @7 HT(X).

(c) There is a natural Ry.-action on @ x R, inducing a corresponding action on functions
or distributions, k), A € R.., by

(rau)(z,t) = Aﬂziu(:c, At).

For fixed A, ky is an element of L(H1?,,,.( xR)),s € R. The mapping A — &, is strongly

cone
continuous (The action &) should not be confused with the coordinate maps «;.)

Proof. (a) 1s immediate from the definition of the duality in connection with the fact that

JHF.S(Rn+l)I — H—S(Rn+l).
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(b) Let us consider the first identity. For s € N, the embeddings have been shown in
4.2.1. We have interpolation both for H*({} x R) and HZ .(§! x R), so we obtain the
assertion for s > 0. The following three embeddings are immediate by restriction. For
the fifth embedding, we note that the dual space of (£)° H*(Q x R),o € R, with respect
to the duality induced by (¢)="/2L*(Q x R) is {t)"°""H=*(Q x R); it then follows from
the first by duality. The final three embeddings again follow by restriction.

(c) Foru € Hgm(n x R}, let us first check that xyu € HZ, (€ x R). We may suppose
u has support in a single coordinate chart and show the statement in local coordinates.
We suppose that u is supported in U x R, for some open set U in R™, and consider the
push-forward of v under y = x;. By assumption, this is an element of H*(R"*!). The

push-forward of x)u is

Xe(kw) (1, 8) = (Kau) ((%t) = )._tu ((y> )\t) = A 05 x.(w)] (v, 1).

Here, @) : R® x R - R"” x R is the diffeomorphism

(At) (/\t)
Oy (y, ()\J At AL
W= ) =\
It is easily checked that D*®, = O(1) for all a # 0. Indeed, this is a consequence of the

fact that, for each A > 0,

o (A)2 14 A% ATl
M2(1)2 T AZ LA T 1442

is a positive function in Cf°(R), bounded away from zero. Its inverse is given by the Cf°
function ®5'(w,7) = (w i—%1,1/)\) = ®y/5(w,r). Therefore, the push-forward by @ not
only leaves H*(R™!) invariant, so that ®7!x.u € H*(R™!); the mapping ®3! even is
bounded on H?*(R™!) for every s € R. In order to see the strong continuity of xy, we

note that

X-(ra)(y,8) — Xa(5u(y, 1) = A (051xan) (,1) — ™% (@50 x0w) (9,1).

Suppose first that s = 0. Let us show that |x.xau — xuruu|[g2 — 0 as A — p. For
u € C2(R™!), supported in U x R,

J I () (83(2)) — 5F () (@,(2) Pz
/ |/\"".2U*(X‘u) (@,\@;1(5&)) - ;Lﬂzix*u(:iﬂz.]‘p]/#(i) dz

tends to zero as A — pu by Lebesgue’s theorem on dominated convergence, since
00 (w,r) = @A(tu‘—%ﬁ r/pn) = (UJM u)' Now choose a sequence {u,,} C
C&(U x R) with xuuy, — xau in LQ(R"‘H) Then, for m € N,

X+RAU — Xak || 2

llxemate — Xekrtml|lzz + || XxBrUm — Xebptm |22 + || XaButim — Xakiput| L2
ntl -1 ntl —1

(V10 ey + #5115 ey lIxwu — Xetim Iz +

0 as m— 00,A > p.

[XeBAUm — XaRptm]|| L2

LA IA
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The case s € N is only slightly more complicated. This shows the strong continuity of &y
for s € N. By interpolation the result extends to s > 0. The equation

]£p+1 u(®a(z))v(= )dm"'];n+,“(y)”(Qlﬁdy))J¢uA(y)dy

shows that, up to a multiplier, the adjoint to ) is x1/y. Hence the assertion holds for
s < 0 by duality. <

We clearly can replace the function (¢t} by any C'* function 0 < f

4.2.3 Remark. (a)
= O((t)"™*), e.g. a smooth function [] : R — Ry with [t] = [t| for

satisfying f(®)(1)
t>c> 0.

(b) The spaces H2,.(Q x R) coincide with the Sobolev spaces H*9 () x R) if @ x R
is considered a manifold with two cylindrical ends and SG coordinates are introduced on
the ends, cf. [32, Example 3.4, Definition 4.4].

4.2.4 Remark. The subscript “cone” has the following motivation. Let u be a function
on {); x Ry with support in ; x (1, 00) with ; C 5™ a coordinate neighborhood. Define
the function U on R™! by U(2) = u(&/|z|,|z}). Then v € H: __(S* x R;) if and only if
U € H*(R™!). Notice that U(Z) = 0 for |z] < 1.

In order to see this we first let & : §2; € 5™ — U; C R” be the coordinate map, and define

x:U; x(1,00) = C; :={(y,t) e R**" 1y =at,z € U;,t > 1}
For s > 0 we then have u € HZ,.(S" x R,) if and only if (xk)ou € A*(R™!) Le.,
(y,8) = u(s™(y/t),1) € H'(R™). Now u(k™!(y/t),¢) = U(x~'(y/t)t) = U o ®(y,1),
where ®(y,t) = k™ 1(y/t)t. Note that (y,t) € C; and that
(iR CJ‘ — (I)(Cj) = DJ'

is a diffeomorphism; its inverse being given by ®~'(z) = (x(Z/|z|)||, |£|). We know that
the Sobolev spaces on R™*! are invariant under all diffeomorphisms ® such that, for every
k > 0, the k-th total derivative D*® is bounded and D®~! is bounded.

In order to see the former, we compute that

L B ok ty 09 o Ok~! W -1 (IJ)
500 = 5= (5)s grlw =~ D )5+ (%)

iteration then yields the assertion. For the latter statement, we use that
(0 (£) [ (1) B A
Dz o o= \l2l) 13] - 1EP 2]/ 12| 12|

4.3 Spectral Invariance of Parameter-Dependent Pseudodiffer-
ential Operators

Let Q be an n-dimensional closed compact manifold. By L*(€;R") = op S#(Q, R™),
p € R, denote the space of all parameter-dependent pseudodifferential operators of order
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g on §) with parameter space R!. The point-wise composition of operators yields a
continuous multiplication:

LM, RY x LY RY = LT (Q; R,

(A(r), B(7)) — A(7)B(1), re R

Here the spaces L*($4; RY), L*(Q; RY), and L#*+7(Q; R} are endowed with the canonical
Fréchet topologies of 1.2.4. In particular, L°(Q; R') is a Fréchet algebra. It is continuously
embedded in the algebra Cy(R', L{L*(§2))) of bounded continuous functions on R! with
values in £(L*()). The following lemma is obvious, noting that sup,cp:||A(7) A(7)|| =

sup el A(T)I* = (sup,eme || A(T)II)*.

4.3.1 Lemma. L°(Q;R) is a symmetric subalgebra of the C*-algebra Cy(R!, L(L*(1)))
with respect to the x-operation induced by taking pointwise adjoints and the norm ||A|| =

sup,er | A(7) ez ()-

We will now show the following theorem.

4.3.2 Theorem. L°(Q;R') is a U*-subalgebra of Cy(R', L{L*(R))).

All we have to show is the spectral invariance, i.e., the relation
LO(Q;RY) N Gy(R, L(LA(Q))) ™" = LY RY) ™,

cf. 4.1.2. This will take up the rest of this section. In part we shall rely on material from
[37} and [39]. We first reduce the task a little.

4.3.3 Lemma. LetC be a C*-algebra with unit e. Let A be a Fréchet subalgebra with
a stronger topology, e € A, and A* = A. Suppose there is an € > 0 such that

a'e€ A forall a€ A with |e—al¢ <e (1)

Then A is a ¥*-subalgebra of C.

Proof. We only have to check spectral invariance. So suppose that ¢ € A and that there
is a ¢ € C with ac = e. Denote by B the C*-closure of A, i.e. the intersection of all
closed C*-subalgebras of C containing A. Since A is a symmetric algebra, we simply have
B = A, the closure of Ain C.

Now a € BNC™!, thus ¢ € B by a well-known theorem . The continuity of the multipli-
cation implies the existence of some b € A with ||ab— ellc < ¢, 50 a™' = b(ab)™' € A. <«

4.3.4 Reduction. By Lemma4.3.3 it is sufficient to find an £ > 0 such that (/—A)~! €
L€, RY) whenever A € L°(9; RY) and sup,cp [|A(7)|lc2ay) < €

4.3.5 Lemma. The algebra C+ L™(Q;RY ={z/+ A:2€ C,A € L™(Q;R)} is a
W*-subalgebra of Co(R', L(L*())).
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Proof. Applying Reduction 4.3.4, we have to show that, for A € L=°(Q;R/), the operator
2l + A is invertible in C 4 L~°(Q; R') whenever |z — 1| and ||A|| are small. It is no loss
of generality to assume z = 1. Clearly L=°(Q; R') = S(R!, L=°(2)). Now recall that
P e L=°(Q) if and only if

P: H*Q) = HYQ)

is continuous for every k € N. Assuming that || A(7)|{zz2q)) < 1, we know that [ — A(7)
is invertible. The identity

(I = A(M) =T+ A(r)+ A(T)T — A(7)) 1 A(7) (1)
shows that (I — A(7))™! € I 4+ L7(Q) for each 7 € R!. Moreover the fact that
8,,(1 = A()™ = (1 = A(F) 8, A(T)(I — A(r)"

2

in connection with (1) shows that all the countably many semi-norms for 7*9°(/ —
A(T)) ™ a, B € N in L(D'(Q), D(Q)) are uniformly bounded in 7. Hence (1 — A(7))™" €
SR, L(D'(Q), D(Y) = SRS, L™(Q)). <

Lemma 4.3.5 essentially will allow us to localize the result and to work on Euclidean
space, where spectral invariance is well-known.

4.3.6 Notation and Remarks. Let {Q2;};_; be an open covering of Q,{p;}7_; a
subordinate partition of unity, and ¥; € C§°(€;},7 =1,...,J, be functions with ¢;¢; =
@;. By k; : Q; = U; C R* denote the coordinate maps. We then have A4 € L#(Q; R') if
and only if

(i) #5.(0;A()%;) € op Sto(R*, R™), and
(i) @ A(L — ;) € L™ (4 RY).
Here, «;. is the push-forward of operators defined by
(53 A)f(x) = A(f 0 ) (w5 (2), [ € C(Uy),w € U,

and the subscript ‘0,1’ indicates the symbol classes with uniform estimates with respect
to z, cf. Kumano-go {23, Chapter 2, Definition 1.1]. The push-forward of ¢; A(-)¥; has a
uniquely defined symbol p; = p;(z,€,7) € Sﬁo(Rg,R?;’). Given A € L°(Q; RY) we can
regard ;. (¢; A;) either as an element of Co(R!, L(L*(R™))} or an element of L(L*(R™*))

in view of the embedding
:‘,O(RnaRnH) — S{‘,O(RnH,RnH)-
The following lemma states that there is no difference between both points of view.

4.3.7 Lemma. The embeddings 57 o(R*, R*) — L{L*(R*)) and 574(R* R™") —
Cy(R!, L(L*(R™))) are equivalent: Writing the variables in R**! as (z,t), the covariables
as (£,7) we have for a,b € 57 (R", R*)

(a#=nb)(z, ¢, 7) = (a(r)#:0(7)) (2, £), (1)

where #(51) is the Leibniz product of symbols with respect to (z,t) € R™! while #, is
the Leibniz product with respect to © only. Moreover,

0P alleqragrntyy = llop.a(r)lloyri,czamnyy- (2)
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Proof. We have by Kumano-go [23, Chapter 2, Theorem 2.6]
(a#@nb)(z,1,€,7)
= Os— [ [ €4 a6 4 &, r 4 7Yolo + o', €, 7) do’ dU' ¢’ '
_ os—]/e-wfa(m,g+g',f)b(m+$',g,r)d$'d§'
= (o#ad)(s6,7)

with d¢/ = (2n)™"d¢’, dr = (2m)~'dr. Notice that the integrals do not depend on t; in the
second equality we have used that, for f € C°(RY),

f(r)=0s - f/e'i‘JTrf(T + 7)dt' dr’.

Now let us have a look at (2). We may consider the elements of Cy(RY, L(L*(R™)))
as ‘multipliers’ on L%(R', L?(R")). The operator A(r) € Cy(R', L{L*(R™))) maps f €
L*(RY, L*(R™)) to the function g given by g(7) = A(r)f(r). Clearly we can identify
TA(RE IA(R™)) and LA(R™). For f; € (R, f; € LARY let f(s,1) = fi(a)falt) =
f1 ® fa(z,t). Then, given a € S°(R™, R**) we have

”(Opa:,ta)f”%,z(ﬁn+l ./;t‘] | —;:[Opz ) fi(z )(E,#sz)(fr)](t)‘z d di
/Rx /R,, lop,a(7) fi(z)(F fa)(7)* dz dr
j;(,/ lopa(7)fi(2)|? dz | F fa(r)|* dr

= [ llop,a(r)fiaunl(F L)) dr
= ”(Opx ()fl)Ff2||L2(RI'L2(R_n)). (3)

Here we have used Plancherel’s identity. We conclude that

[I(0ps,e@) fll 2ty < sup,ersllopsa(r)l| eqrammy) | /ill L2 rmy | F foll 2wy
Hence, in view of the identity ||f||zarntyy = ||fillzzmm)\F folli2mey and the fact that
LA(R™) = [HR") @ L(RY)
NOpm,ta”E(L?(R"‘“)) < SuprER'||0pza(T)I|E(L7(R"))-
Conversely fix f; € L*(R"). Given € > 0, we can find a bounded interval J such that
lopza(r") fillLamn) 2 sup epillopya(r) fill — ¢

for all 7/ € J. Let fo = |J|~'2F~'x,. As usual, |J| is the length of the interval J and x;
its characteristic function. Then we deduce from the above identity (3) that

supenlop,a(r)fillamny =& S 117 [ llop.a(r) fillfaqmoxa(r) dr

[ Nop.a(r) fulls oy F £o()

Ilop:r,ta(fl ® f2)||L2(Rn+l)
< Ilopx,talli(LQ(R“'ﬂ))”fl b2y f2||2Lz(“_n+:).
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But llf] ® fl”iﬂ(RHH) = “f]”%?(nn)”fQ”‘in(R]) a.rld, by Pla,ncherel, ||f2“L’J(R_!) =
|J]_1/2HXJ||L7(R‘) = 1. This shows that

sup,epeflopa(7)llc(zamny) < llopg il cqzamatry).-

We shall make use of the following theorem.
4.3.8 Theorem. Let a € S7o(R™ R™) and suppose that
opa: AR o L2(R™)

is invertible. Then there is a symbol b € 57 (R**, R™!) with (opa)~' = opb.
Ifa € SY4(R™ R™), then b € S7o(R*, R™).

Proof. The first part of Theorem 4.3.8 is a remarkable result due to R. Beals [2]; for a
different proof see Schrohe [39] or Ueberberg [53]. In order to check that the symbol b of
the inverse is independent of ¢ we note that b satisfies the equation

Os — //e"i"f'_“'"b(m, LEHE T+ )ale+ 2, €, 7)da’ di' dE dr' = 1.

Since b is uniquely determined, and the above equation holds for all ¢, we conclude that
b($,i,§,T) = b($1oa§aT)' <

4.3.9 Lemma. Let A € L°(Q;R!) and suppose ||Allg,(ri cir2(ny) is small. Then, for
each T € RY,
[ = s A(rYb; - Q) = 13(Q)

is invertible. Defining the operator C(1) = (I — @; A(T)¥;)™" we obtain C € [°({;RY).
Proof. We may assume that ||A|| is so small that
150 (@5 AP cqza(rmeyy = N85 (05 A%s)loyme caammyy) < 1

Then I — &;.(;A;) is an invertible pseudodifferential operator on R™'. We find a
symbol a = a(z,&,7) € S°(R™ R™*) such that

I — k(i A;) = I — @j.fop alip;.

with @ = Kjpj, ¥ = kj;.  Applying Theorem 4.3.8, there is a symbol b €
57 o(R™, R™) such that [/ — kj.(p;A%;)]™" = [ +opb. In view of the fact that

(1 = @jlop alp;) ™!
= [+ @jufop alihju + @ju[op (1 — @ju[op altpj.) ™ wjulop alh;.
b is supported in U; x R* x R/, and we may define
D(ry=1+ K..;[Op b)(7).

Being the pull-back of an operator in op S°(R™, R™), clearly D € L%(;RY). On the
other hand, D(7) inverts [ — p; A(7);, hence D = C. <
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4.3.10 Conclusion. Let A € L°(€;R') and suppose ||A||c,mre,(13(rny)) 15 small. Then
I — A(r): L3(8)) = L*Q) is invertible for all 7 € R, and the family C defined by

Cr) = (1 = ()
is an element of L2(Q; RY).
Proof. Write

[—A(r) = [—plA(T) —pA(T) — ... — s A(T)
1= AT = A = s AT — 1A — A7),
Now [ — 1 A(7) = (I — @1 A(T)01) (I — (I — o1 A1) Lo  A(T — 1)), Assuming that ||A||

is small, the product is invertible in L°(2; R!) by Lemmata 4.3.5 and 4.3.9. Iteration
completes the proof. <

4.4 B%(X;R') Has an Open Group of Invertible Elements

4.4.1 Notation. By B*¢(X;R') we denote the space of all parameter-dependent bound-
ary value problems in Boutel de Monvel’s calculus as introduced in 1.3.4. The parameter
space is here R!. We will primarily consider the elements of B4¢(X:R!) as operator
families {A(7) : 7 € R'}. The pointwise composition yields a continuous multiplication

B4YX;RY) x B (X;RY) — B (X R)

where d” = max{d’, ;' +d}. In particular, B%4(X; R'). is a Fréchet algebra. The operators
in B#4(X: R} will in general act on spaces of sufficiently smooth sections in vector bundles
over X and Y respectively. We will fix bundles V over X and W over Y. For each 7 € R/,
an operator A € B%¢(X; R") will furnish a bounded map

H*(X,V) H(X,V)
A(T): & - D ) (1)
H(Y,W) H* (Y, W)

provided that s > d —1/2. We can therefore, similarly as in Section 4.2, view B%4(X; R/)
as a continuously embedded subalgebra of the C*-algebra Cy(R!, L(H*)), with the Hilbert
space H* = H*(X,V)® H* (Y, W), s >d—1/2.

It is a natural conjecture that B4 X;R') is a ¥* subalgebra of Cy(R', L(H*)). For the
definition of W*-algebras see 4.1.2. A ¥” subalgebra of a C*-algebra always has an open
group of invertible clements, cf. 4.1.3. This is what we will show for B%¢(X;R'). The
proof relies on techniques used in [37] and [39].

4.4.2 Theorem. B%¢(X;R') has an open group of invertible elements. In particular,
inversion is continuous on B%#(X;R') by Theorem 4.1.4.

We start the proof with two observations concerning the elements of order —oo :

4.4.3 Lemma. A family of operators {G(7) : 7 € R'} acting on vector bundles as in

4.4.1(1) is an element of B~=%(X;R") if and only if for all multi-indices o, 8 and all
N € N the extension

T DPG(T) : HyN(X, VYo H-N(Y,W) = HY(X,V)® HY (Y, W)

exists and is uniformly bounded with respect to 7.
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Proof. By definition, {G(7) : 7 € R'} € B~°(X;R'} if and only if it is an integral oper-
ator with a smooth kernel density, y(z, #,7) such that 7 — (-, -, 7) is rapidly decreasing
with respect to all C* semi-norms. In the proof of 4.3.5, on the other hand, we have seen
how the kernel semi-norms can be controlled in terms of the mapping properties. <

4.4.4 Theorem. Let G € B~¢(X;R'), and suppose that for given s € R,s > d — %,
[+G(r): H = H*

is invertible for all 7. Then there is an H € B~4(X; R') such that ([+G)™' = [+ H. In

particular, C + B~ X; R') is a V*-subalgebra of Cy(R', L(H?*)) for every s > d — 1/2.

Proof. For simplicity consider the case where GG consists only of the singular Green part,
i.e. W = 0; moreover, we will assume that G is scalar, i.e. V = C.

Write G = Y0, G;0!, where G; € B~(X;R') and 8, denotes the normal derivative,
defined in a neighborhood of the boundary. We now use the fact that

I+G™"" = I-G+GI+G]"'G
d
I=-Y(G; -Gl + G]7'G;)6:.
7=0
In view of 4.4.3, all we have to check is that for all &, 8, N
A" DY(G5(X) = GAT + GO G5(A) = By (X) = HY(X)

is uniformly bounded. This, however, is immediate from the corresponding properties of
the Gj. <

4.4.5 Reduction. All we have to show for Theorem 4.4.2 is the following: There is a
neighborhood U of zero in B%4(X; R') such that, for all A€ U, we have [+ A : H® — H®
invertible, and (/ + A)~' € BY4(X;R'). In order to see this we may assume that W = 0.

In fact, let A = ﬁ;: ﬁlz . Supposing that [ + A,y is invertible within B%(X; R') (as
an operator acting on H?(X,V)) we write
I+ A= ! 0 I+ Ay 0 I (74 An)™" Ay
= | An(l+ AL T 0 B||o 0

with B = (I + Ag) — Ay {1 + Ay1)~ "' Aj,. Since the outer matrices can be inverted within
BY%4(X; R'), we only have to consider the middle one. Now, the calculus shows that

Agy — Ap(I + A) TAp € LY Rl)

with the algebra L2(Y; R!) of parameter-dependent pseudodifferential operators on Y =
0JX as introduced in Section 4.3. Moreover, the corresponding semi-norms are small, so
that B is invertible in L°(Y,R'} by Theorem 4.3.2.

This shows that we can focus on the invertibility of 7+ A;,. Finally we can apply Theorem
4.4 4 and the decomposition trick in Conclusion 4.3.10 to see that the result essentially is
local in X, so that we may assume V to be trivial one-dimensional. In the following we
shall therefore consider A an operator family

A(T): H*(X) = H(X), T7€R.
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4.4.6 Proposition. There is a neighborhood U of zero in B%¢(X;R'} such that I + A
is parameter-elliptic for all A € U.

Proof. B%Y(X;R') is topologized as a non-direct sum of Fréchet spaces; for details see
2.2.8. What we have to show is that [ + A is a parameter-elliptic wherever finitely many
of the symbol semi-norms for A are small. We can write A in the form A = Py + G, here
P is a parameter-dependent pseudodifferential operator in L°(§}; R'), G is a parameter
dependent singular Green operator, and ) denotes the compact “double” of X. By
definition, we can find representatives P and G such that

(i) suitably many of the symbol semi-norms for P in L°(}; R') are small, and

(ii) suitably many of the symbol semi-norms for G in B%¥(X;R') are small.

Condition (i) will ensure the invertibility of /+ P by an operator I4-Q with @ € L°(£; R}).
[n addition, suitably many of the symbol semi-norms for ¢ will be small. We then have

(I4+QxYI+ Px)=1+0G,

where G has also small semi-norms in B%°(X; R'). We can therefore invert the operator-
valued singular Green symbols. By the standard process, we find a parametrix to [ + G,
thus a parametrix to / + Py, in B®°(X;R'). Let as rewrite it in the form / + R, R €
BY%(RY). The parametrix construction process is continuous with respect to the symbol
topology, hence R can be assumed to have suitably many semi-norms small. Multiplying
I+ A by I+ R we have

U+R(IT+A) = (I+R)({U+Px)+(I+RG
= [+54+G+RG

with § € B~(X;R'). Both (@ and RG have suitably many symbol semi-norms small,
so we can construct a parametrix to / + ' + RG. This completes the proof. <

4.4.7 Corollary. Under the assumptions of Proposition 4.4.6 we can first find a
parametrix B to [ + A such that B(/ 4+ A) € B~¢(X;R’). B then necessarily is a
Fredholm family of index zero. Next we use a construction due to Gramsch and Kaballo
[15], which can also be found in the proof of Theorem 1.4.3.18: We can modify B by a
finite rank operator so that it becomes an invertible element of B%¢(X;R') and, simul-
taneously, B(I + A) € [ + 5,5 € B==¢(X;R'). But then [ -+ S is necessarily invertible
in C + B~=4(X;R!). The inverse by Theorem 4.4.2 also belongs to this algebra. We
therefore obtain the assertion: (/ + 5)~!'B € B*(X;R!) is an inverse to [ + A. <

4.5 List of Misprints for Part I

We would like to make a few changes with respect to the material in Part 1 of this paper.
For one thing, we would like to modify the definition of the spaces £*™ in [.3.1.18. Instead
of letting them be isomorphic to ¢t~/ f1* near infinity we would like them to be isomorphic
to the cone-like Sobolev spaces H7 ., introduced in 4.2.1. The new definition can be found
in 1.4.14. Let us point out that all the results of Part | are valid with both definitions.
This is essentially a consequence of the fact that, for every w € CZ(Ry), we have
WIS = [WIKLE

new’
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Notice that the proof of Theorem [.4.3.17 does not carry over literally with the new
Due to the above isomorphism, however, the result trivially holds for the
modified spaces.
The definition of the spaces M&“(X) of meromorphic Mellin symbols with values in Boutet
de Monvel’s algebra in 1.4.1.1 should be replaced by the one given here in Definition 1.7.2.
Again, all results of Part I are valid in the new formulation.

Proposition 1.4.3.7 could be generalized; at the same time the proof became somewhat
more transparent. It is included here as Proposition 3.1.27.

[Finally, we use the opportunity to make the following minor corrections.

definition.

p. l. s should be

109 12 (c) (d)

111 6 C CcC

131 2 2.2.10 2.2.11

135 17 that A(A) is invertible that / 4+ A(A} is invertible

142 2 op{¢,T) op (€, )"

142 14 add: Here, f(z,t) =
t~ na_ﬂ*"’u(m, Int).

142 17 F,o.H*(RY x R) Fuiu-HA(RY X Ry)

151 14 add: (f) Let Hp (D) denote
the space of all distributions in
H{ (intID ) which, close to each sin-
gularity v, are elements of K" (X}).

156 1 C* C§°

157 19 >k >k-1/2

157 -1 3.1.18(a) 3.1.19

158 6 A IR AT PN 1 Ve Ve VLV,

158 10 ...V...Va... Vh... V4 N S "7 R Y

159 3 5,20 s,t>—1/2

160 -8 PQ,R PQ,R,S

160 -7 .. —)Q,R .. .)R’s

160 -6 ... PR .. ~)R,R’

160 -5 Gy and R G and Gy

160 4 R =R R=Q

161 12 (y,7,9) (v,4,0)

161 13 C4(..) Ch(..)

161 19 >k >k~1/2

162 14 I+ Hg [+ Ho+ P

165 4  topology of B~ Euclidean topology on L;
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p. ! is should be

165 -8 e ..+, i, be differential operators.
166 15 B (X) Bl (X)

172 -3 520 s> —1/2,1<0.

173 2 Hor "7 E (XA, ) Hor BT (XN V).

173 4,5 delete: Here, ..., cf. 3.3.1.

173 15 s>d s>d—1/2

177 8 CY(..) Ch(..)

178 5,6 delete: Note ... type d.

179 16 weight data G, weight data for G,

179 -1 I“%_T I‘l;d._ﬂf

181 rch; nch;

188 < 6. < &, unless F is nowhere invertible.
188 10 L(E) = L(E) E—-F

188 12 An—k A

188 18  s>d. s>d—1/2.

189 16 4.3.14 we may assume that vy = 4.3.16 we may assume that y = 0.
189 17 i LA(X, V) & LAY, V3) =HOH XM V) @ ICU'_%(Y", Vi)
189 -9 L2(X") (3 times) HEO(X M) (3 times)

190 all Ko7 (X1 KOO(XA)

190  all 3+i. e

190 all [‘% Fn_;j-_l

190 5 by % by "gi

190 10  K%3(X") = LX) KOO(XA) = HOO(X M)

191 all 14 mlpg.,

193 -7 peC p>0

196 3 pez 0>peZ,s>-1/2

196 9 Hoy T E (XN, ) HoHm VR (XA V).

196 10,11 delete: Here, ..., cf. 3.3.1.

204 12 Cg Ce°

205 2 (O "

205 -1 O 0((&)* )

206 14 +x{NMH(9) +on V1 (6)

We thank our readers for several helpful remarks.



References

(1]

[2]

(3]
[4]

[10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

(19]

Agranovic, M.S., and Visik, M.1.: Elliptic problems with a parameter and parabolic prob-
lems of general type (Russ.), Usp. Mat. Nauk 19 (1963), 53-161 (Engl transl. Russ. Math.
Surveys 19, (1963), 53 - 159).

Beals, R.: Characterization of pseudodifferential operators and applications, Duke Math.
J. 44 (1977), 45-57.

Behm, S.: Pseudo-Differential Operators with Parameters on Manifolds with Edges, Dis-
sertation, Universitat Potsdam 1995,

Boutet de Monvel, L.: Boundary problems for pseudo-differential operé.tors, Acta Math.
126 (1971), 11 - 51.

Buchholz, Th., and Schulze, B.-W. : Anisotropic edge pscudo-differential operators with
discrete asymptotics. Preprint MPI/95-35, MPI fiir Mathematik, Bonn 1995

Derviz, A.O.: An algebra generated by general pseudodifferential boundary value problems
in the cone {Russ.}, in: Problems in Math. Analysis 11 Non-linear Equations and Vari-
ational Inequalities. Linear Operators and Spectral Theory. Edited by the University of
Leningrad, pp. 133 - 161, Leningrad 1990.

Dieudonné, J.: Grundzige der modernen Analysis, vol. 7. VEB Deutscher Verlag der
Wissenschaften, Berlin 1982,

Dorschfeldt, Ch.: An Algebra of Mellin Pseudo-Differential Operators near Corner Singu-
larities, Dissertation, Universitat Potsdam 1995.

Dorschfeldt, Ch., and Schulze, B.-W.: Pseudo-differential operators with operator-valued
symbols in the Mellin-edge-approach. Preprint, SFB 288, Berlin 1993, Ann. Global Anal.
and Geom. 12 (1994), 135 - 171.

Egorov, Yu., and Schulze, B.-W.: Pseudo-Differential Operators, Singularities, Applica-
tions. Birkhduser, Basel (to appear).

Eskin, G.1.: Boundary Value Problems for Elliptic Pseudodifferential Equations (Russ.),
Moscow 1973 (Engl. transl. Amer. Math. Soc. Translations of Math. Monographs 52, Prov-
idence, R.1. 1981).

Gohberg, [.Z.: On linear operators depending analytically on a parameter (Russ.), Dokl
Akad. Nauk SSSR 78 (1951), 629 - 632.

Gramsch, B.: Relative Inversion in der Stérungstheorie von Operatoren und W-Algebren,
Math. Annalen 269 (1984), 27 - 71.

Gramsch, B.: Meromorphie in der Theorie von Fredholmoperatoren mit Anwendungen auf
elliptische Differentialoperatoren, Math, Ann. 188 (1970), 97-112.

Gramsch, B., and Kaballo, W.: Decompositions of meromorphic Fredholin resolvents and
U*.algebras, Integral Equations Op. Th. 12 (1989), 23 - 41.

Grubb, G.: Functional Calculus of Pseudo-Differential Boundary Problems, Progress in
Mathematics 65, Birkhauser, Boston, Basel 1986.

Hirschmann, T.: Functional analysis in cone and edge Sobolev spaces, Annals of Global
Analysis and Geometry 8 (1990), 167 - 192.

Hoérmander, L.: The Analysis of Linear Partial Differential Operators, vols. | - [V, Springer,
Berlin, New York, Tokyo 1983 - 1985.

Jacobs, K.: Einfiihrung in die Kombinatorik, de Gruyter, Berlin, New York 1983.

114



[20]
[21]
[22]
[23]
[24]
[25]
[26]

(27]
[28]

[29]
[30]

(31]
[32]

[33]

[34]

[35]

(36]

[37]

[38]
[39]

Jeanquartier, P.: Transformation de Mellin et développements asymptotiques, Enseigne-
ment Mathématiques 25 (1979), 285 - 308.

Kondrat’ev, V.A.: Boundary value problems in domains with conical or angular points,
Transactions Moscow Math. Soc. 16 (1967), 227-313.

Kéthe, G.: Topological Vector Spaces, Grundlehren der math. Wissenschaften, volume 237,
Springer, Berlin, New York 1979. ‘

Kumano-go, H.: Pseudo-Differential Operators, The MIT Press, Cambridge, MA, and
London 1981.

Lewis, J.E., and Parenti, C.: Pseudodifferential operators of Mellin type, Comm. in Partial
Diff. Eq. 8 (1983), 477 - 544,

Lopatinskij, Ya.: On a method of reducing boundary problems for a system of differential

equations of elliptic type to regular integral equations (Russ.), Ukrain. Math. Zh. 5 (1953),
123 - 1561 .

Melrose, R.: Transformation of Boundary Problems, Acta Math. 147 (1981), 149 to 236.
Melrose, R.: The Atiyah-Patodi-Singer Indexz Theorem, A K Peters, Wellesley, MA 1993.

Melrose, R., and Mendoza, G.: Elliptic operators of totally characteristic type. Preprint
MSRI 047-83, Berkeley 1983.

Péaémenevskij, B. A.: Algebras of Pseudodifferential Operators (Russ.), Nauka, Moscow
1986.

Rempel, S., and Schulze, B.-W.: Indez Theory of Elliptic Boundary Problems, Akademie-
Verlag, Berlin 1982.

Rudin, W.: Functional Analysis, Tata McGraw-Hill, New Delhi 1974.

Schrohe, E.: Spaces of weighted symbols and weighted Sobolev spaces on manifolds, in:
Pseudo-Differential Operators, Cordes, H.O., Gramsch, B., and Widom, H. (eds.), Springer
LN Math. 1256, pp. 360 - 377, Springer, Berlin, New York, Tokyo 1987.

Schrohe, E.: A Pseudodifferential Calculus for Weighted Symbols and a Fredholm Criterion

for Boundary Value Problems on Noncompact Manifolds, Habilitationsschrift, FB Mathe-
matik, Universitiat Mainz 1991.

Schrohe, E.: Functional calculus and Fredholm criteria for boundary value problems on

noncompact manifolds, in: Operator Theory: Advances and Applications 57, Proceedings
Lambrecht Dec. 1991, 271 - 289, Birkhiduser, Boston, Basel 1963).

Schrohe, E.: A characterization of the singular Green operators in Boutet de Monvel’s

calculus via wedge Sobolev spaces, Comm. in Partial Differential Equations 19 (1994), 677
- 699.

Schrohe, E.: A characterization of the uniform transmission property for pseudodifferential
operators, Advances in Partial Di_q;zrential FEquations 1: Pseudo-Differential Operators and
Mathematical Physics. Akademie Verlag, Berlin, 1994, 210 - 234.

Schrohe, E.: Fréchet algebra techniques for boundary value problems on noncompact
manifolds: Fredholm criteria and functional calculus via spectral invariance. Preprint
MPI/94-11, MPI fiir Mathematik, Bonn 1994.

Schrohe, E.: Invariance of the cone algebra without asymptotics. Preprint, Potsdam 1995.

Schrohe, E.: Fréchet Algebras of Pseudodifferential Operators and Boundary Value Prob-
lems, Birkhiduser, Boston, Basel (to appear).

115



[40] Schrohe, E., and Schulze, B.-W.: Boundary value problems in Boutet de Monvel’s algebra

for manifolds with conical singularities 1. Advances in Partial Differential Equations 1:
Pseudo-Differential Operators and Mathematical Physics. Akademie Verlag, Berlin, 1994,
97 - 209.

[41] Schulze, B.-W.: Pseudo-differential operators on manifolds with edges, Symp. ‘Partial Diff.
Equations’, Holzhau1988, Teubner Texte zur Mathematik 112, 259 - 288, Leipzig 1989.

[42] Schulze, B.-W.: Corner Mellin operators and reduction of orders with parameters, Ann.
Sec. Norm. Sup Pisa 16 (1989), 1 - 81.

[43] Schulze, B.-W.: Mellin representations of pseudo-differential operators on manifolds with
corners. Ann. Global Anal. and Geometry 8 (1990), 261-297.

[44] Schulze, B.-W.: Pseudo-Differential Operators on Manifolds with Singularities, North-
Holland, Amsterdam 1991.

(45] Schulze, B.-W.: The Mellin pseudo-differential calculus on manifolds with corners, Proc.

Int. Sym[;). ‘Analysis in Domains and on Manifolds with Singula.rities’, Breitenbrunn 1990,
Teubner Texte zur Mathematik 131, 271 - 289, Leipzig 199

[46] Schulze, B.-W.: The variable discrete asymptotics of solutions of singular boundary value

roblems, in: Operator Theory: Advances and Applications 57, Proceedings Lambrecht
ec. 1991, 271 - 289, Birkhauser, Boston, Basel 1992.

[47] Schulze, B.-W.: Pseudo-Differential Operators and Asymptotics on Manifolds with Corners,
varts -1V, VI-IX: Reports of the Karl-Weierstra3-Institute, Berlin 1989 - 91, parts XII,
[1I: Preprints no. 214 and 220, SFB 256, Univ. Bonn 1992,

[48] Schulze, B.-W.: The variable discrete asymptotics in pseudo-differential boundary value
problems |, Advances in Partial Differential Equations 1: Pseudo-Differential Operators
and Mathematical Physics. Akademie Verlag, Berlin, 1994, 9 - 96, Part II: this volume.

(49] Schulze, B.-W.:Pseudo-Differential Boundary Value Problems, Conical Singularities and
Asymptotics, Akademie Verlag, Berlin 1994.

[50] Tamarkin, J.D.: On Fredholm’s integral equations, whose kernels are analytic in a paran-
eter, Ann. of Math. 28 (1927), 127 - 152.

[51] Treves, F.: Topological Vector Spaces, Distributions and Kernels, Academic Press, San
Diego, New York, London 1967.

[62] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland,
Amsterdam, New York, Oxford 1978.

[53] Ueberberg, J.: Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in der
LP-Theorie, manuscripta math. 61 (1988), 459 - 475.

[54] Visik, M.1., and Eskin, G.l.: Normally solvable problems for elliptic systems in equations
of convolution, Math. USSR 5b. 14 (116) (1967), 326 - 356.

[65] Waelbroeck. L.: Topological Vector Spaces and Algebras, Springer Lecture Notes Math.
230, Springer, Berlin, Heidelberg, New York 1971.

116



