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Abstract
We complete the work of Part land present a pseudodifferential calculus for boundary
value problems on a manifold D with finitely many conical singularities.
Outside the singular set, D is a smooth bounded manifold, anel we use Boutet de Monvel's
calculus in its standard form. Near a singularity, D is diffeomorphic to the cone X x
[0,00)/ X x {O}, where X is a smooth compact manifold with boundary. We then work
on the cylinder X x R+ with operators of I\1ellin type on R+ taking values in Boutet de
Monvel's calculus on X.
First we construct the so-called cone algebra without asymptotics. It provides a fran1ework
in which all the relevant operations can be performed, although it is too coarse a tool to
achieve a Fredholm theory. To this end we then develop the cone algebl'a with asymptotics,
a calculus for boundary value problems based on meromorphic Mellin symbols. The
associated operators act between Mellin Sobolev spaces with and without asyTnptotics.
A basic result is the construction of parametrices to elliptic operators in the algebra. The
ellipticity is defined in terms of the symbols involved. It entails the Fredhohn property of
the associated operators and allows conclusions on regularity anel asymptotics of solutions
to elliptic equations.
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Introduction

In this paper we construct an algebra of pseudodifferential boundary value problems of
Boutet de Monvel type on a manifold with conical singularities. We began this project
with Part T, [40]. In order to keep the present article self-contained, we start in Section
1 with a review of the fundamental lnaterial, in partinIlar, the concepts of the Mellin
Sobolev spaces with and without asymptotics, meromorphic Mellin symbols, and the
ideals of Green and Sllloothing t\1ellin operators.
We then construct two operator algebras with sYlnbolic structure, namely the cone algebra

without aSYTnptotics in Section 2, and the cone algebl'a wilh asymptotics in Section 3.
The basic concept is the salne in both ease. A manifold with conical points and boundary,
D, is a topological I-Iausdorff space, which, outside the finite set of the so-caJled singulari­
ties, is a smooth lllanifold with boundary. elose to a singularity, D is diffeomorphic to the
cone X x [0, oo)/X x {O}. The cross-section, X, is a compact manifold with boundary. We
blow up the singularity and work on the cylinder X x R+. Here we use Mellin operators
with respect to R+ taking values in Boutet de Monvel's caIculus on X.
The essential difference between the two caIculi is that the eone algebra without asymp­
totics is based on smooth (paralneter-dependent and operator-valued) Mellin symbols
while in the cone algebra with asymptotics we elnploy meromorphie (operator-valued)
Mellin symbols. In fact the eone algebra without asymptoties may be viewed as an ana­
log of the pseudodifferential ealculus with totally characteristie or Fuchs type symbols.
Tbe precise relation is given by the so-ealled MelEn quantization. Details can be found in
Section 2.4. The operators in this calculus aet on the Ivlellin Sobolev spaees HIJ,'Y intro­
duced in Part Ij thc so-called weight r here is fixed. The residual operators in this calculus
are smoothing with respect to the regularity parameter s, but they do not improve the
weight ,. In general, they are not compact. Therefore the cone algebra without aSYlnp­
totics provides an excellent framework in which all relevant operations ean be performeel;
it is, however, not precise enough to yielcl a Fredholm theory.
The cone algebra with asymptotics is a subalgebra of the cone algebra without asymp­
toties. The operators now have meronlorphic l\1ellin sYlnbols. In view of a de·composition
theorem ([40, Theorem 4.1.8], here Theorem 1.7.6) the singularities can be confined to the
regularizing part of the operator. The final algebra therefore consists of operators that
are sums of

(i) a Mellin operator with a holomorphic (operator-valued) Mellin symbol, localized to
a neighborhood of the singularities,

(ii) an operator in Boutet de Monvel's calculus for the slnooth part of D, localized away
[rOIn the singularities ,

(iii) a Mellin operator with a regularizing meromorphie Mellin symbol, localized to a
neighborhood of the singularities, and

(iv) a Green operator.

The operators in the eone algebra with asymptotics act on the Mellin Sobolev spaces with
and without asymptoties. Here, the a.nalyticity of the Mellin sYlnbols plays a clecisive.
role. The residual elelnents in this calculus are the Green operators. Apart from minof
cOlnplications due to the existence of the 'type ' in Boutet de i\1onvel's eaIculus, these
operators are characterized by the fact that they, as weil as their adjoints, Inap any
weighted Mellin Sobolev space HS''Y, S > -1/2, to a Mellin Sobolev space HC;,J with
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infinite regularity and asyn1ptotics described by P. These operators are compact, and
this will enable us to obtain Fredholm results.
The construction of the cone algebra with asymptotics is carried out both for the case of
elassical symbols and for that of non-elassical symbols. We define a notion of ellipticity.
In general, it requires (i) the ellipticity of the interior symbol, (ii) Fuchs type ellipticity
elose to the singularities, and (iii) the invertibility of the principal conormal sYlnbol. In
the case of classicaloperators the situation is slightly simpler. vVe obtain three principal
symbol levels: the interior principal pseudodifferential symbol, the principal boundary
symbol, and the principal conormal symbol. The ellipticity condition asks that all three
be invertible.
We eventually construct parametrices to elliptic elements: Given an elliptic operator A
in the cone algebra with asymptotics, we find an operator B within the cone algebra with
asymptotics, such that AB - I anel BA - I both are Green operators. B therefore is
a Freelholm inverse to A. Moreover, the fact that we know the structure of Brather
precisely allows us to conclude for the regularity and the asymptotics of solutions u, to an
equation Au, = f, given the regularity or the asymptotics of f.
It is the general intention of our approach to obtain 'pseudoeliffercntiaJ' algebras for singu­
lar spaces by an iterative process. Parallel to the geometric description of the singularities
in terms of, say, repeatedly forming cones a,nd wedges of increasing singularity orders, one
would like to obtain ltigher pseudodifferential algebras by constructing cone or wedge al­
gebras with correspondingly arranged symbolic structures, the (operator-valued) symbols
taking values in the pseudodifferential algebras aJreaely treated~ During the last few years,
this has become realistic, and, by a sequence of papers anel books of Schulze [41,45,44,49],
Dorschfelelt & Schulze [9], Egorov & Schulze [10], Schrohe [35, 38], rnore anel more explicit.
The symbols along thc cone axis for examplc are modelIed on a parameter-depeneIent ver­
sion of tbe ca1culus for the base of tbe cone and aclapted to the Mellin quantization, with a
very precise control up to the conical singularities. Thc subsequent singularity, the wedge,
locally is the Cartesian proeluct of an infinite model cone anel the edge. Following arecent
point of view [49], the symbols therefore should be analogs of the boundary symbols in
Boutet cle I\1onvel's calculus, living on the cotangent bundle of the edge and acting along
the model cone. Starting with a closed cOlllpact Inanifold as the cone base, tbe operator
algebras on tbe corresponding manifolds with conical singularities regarcled as a "surface"
have been constructed in [44, 49]. In the present case the base of the cone is a manifold
with boundary, hence the resulting singular manifold has a boundary. The context then
is the analysis of boundary value problems, and for applications as weIl as for index prob­
lems Boutet de I\10nvel's algebra is the natural framework. One challenge in carrying out
the above program is the complexity of the structures involved. The resulting theory on
one hand contains Boutet eIe Monvel's ca1culus, nalnely by restricting to the cross-section;
on the other hand, it ineludes the algebras for manifolds with conical singularities when
tbe cross-section is a elosed compact Inanifold, namely by restrietion to the boundary.
In order to facilitate the handling of the caIculus we bave introduced in Part I a new
and very fast approach to Boutet de Monvel's caJculus with parameters based on ideas
[rom the eeIge pseudodifferential calculus. Parts of our paper also develop further the
Ineans on the cone algebra in the boundaryless case: For one thing, we treat the case
of nonclassical symbols. This requires a Inore careful analysis of the smoothness of the
operator-valued Mellin symbols up to the singularity, which in turn led us to a sin1plified
parametrix construction. Also our approach to ~1eIlin quantization is considerably easier
than earlier presentations.
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In Part I, we already eommenteel on thc relation of our eaIculus to the work of other
authors. Let us reeall that, for the early interest in phenomena near eonieal singularities,
motivateel by eonerete llloelels anel applications in engineering, Kondrat'ev's paper [21]
was a major breakthrough. lt brought about a general understanding of the concept of
ellipticity for differential boundary value problems, of the role of the Mellin transform,
anel of the weighted Mellin Sobolev spaces for the Fredholm property. The calculation of
the asymptotics of solutions near eonieal points by Ineans of the merOlllorphie inverses of
the conormal symbols is often referred to today as Kondrat'ev's teehnique.
Another version of the analysis of operators near conieal singularities in the boundaryless
case has been eleveloped by Plamenevskij [29], who emphasized speeifie Mellin transfor­
mation teehniques with respeet to the cone axis variable. This approach was extended by
Derviz [6] to the ease of boundary value problems. He constructed a Boutet de Monvel
type calculus including a cotleept of elliptieity as weIl as parametrix construetions.
Dur calculus, however, is more preeise anel gives more insight into the problem: By using
Mellin symbols that are smooth up to zero we obtain an algebra with the ideal of Green
operators as the residual elements. This in turn allows us to operate on Mellin Sobolev
spaces with asymptotics and to obtain information on the asymptotics of solutions to
elliptic equations.
The paper [26] by Melrose has established another approach to the analysis of pseudod­
ifferential and Fourier integral operators with totally charaeteristie symbols. Applying
these teehniques, !vIelrose and Meneloza [28], in partieular, established a Fredholm the­
ory including ellipticity and parailletrix eonstruction for an algebra of pseudodifferential
operators on manifolds with conical singlliarities, the eone bases being closed compact
1l1anifolds. In recent years, applieations to Atiyah Patodi Singer type index theoreills
were given [27].
The results obtained here will playa role for the index theory on lllanifolds with COfl­

ical singularities. Following the general concept, they will also serve as the necessary
foundation for an iteration of the calculus, in partieular, for lllanifolds with edges anel
boundaries, to be perfofllled in aseries of fortheoming papers.

Acknowledgment: The authors thank S. Behnl, eh. Dorschfeldt,.1. Gil, M. Korey, N.
Tarkhanov, J. Seiler (Potsdanl) as weil as B. Gramsch and R. Lauter (Mainz) for valuable
diseussions.

1 Review of Smoothing Mellin and Green Operators

In this seetion we will reeall some of the coneepts introduced in the first part of this paper
[40]. \rVhen referring to adefinition, lemilla, 01' theorem in Part I, we shall write e.g.
Definition 1.3.1.3 to indicate Definition 3.1.3 of Part I.

1.1 Notation. Manifolds with Conical Singularities

An n-dimensional manifold with boundary is a topologieal (seconel eountable) Hausdorff
spaee AI such that each point in M has CL neighborhood which is diffeomorphic to either
Rn 01' the closed half-space IG-. The former points are ealled the interior points of M,
the latter the boundary points. We will llse the standard notation int M anel 81\1-.
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1.1.1 Definition. A 1nani/o{d with bo'ltndary and conical singularities D 0/ dimension
n + 1 is a topological (second countablc) Hausdorff space with a finite subset "E C D
('singularities') such that D\~ is an n + I-dilnensional manifold with boundary and, for
every v E ~, there is an open neighborhood U of v, a compact manifold with boundary
X of dimension n, and a system :F =f 0 of mappings with the following properties:

(1) For all 4> E :F, 4> : U -+ X x [O,l)/X x {O} is a homeomorphism with 4>(v) =
X x {O}/X x {O}.

(2) Given rPl, rP2 E :F, the rcstriction rPI rP'21 : X x (0,1) -+ X x (0,1) extends to a
diffeomorphisrn X x (-1,1) -+ X x (-1,1).

(3) The charts cP E :F are compatible with the charts for the manifold for [j\~, i.e., the
restrict10n 4> : U\ {v} -+ X x (0,1) is a diffeomorphism.

We can and will assume that, for each singularity v E ~, thc system :F is Inaxin1al with
respect to the properties (1), (2), anel (3).

1.1.2 Definition and Remark. Let D be a ma.nifold with bOllndary anel conical sin­
gularities. By assulnption, D\~ is a manifold with boundary. Properties 1.1.1(1) and (2)
imply that any neighborhood of a point v E E contains points of the topological boundary
of D\E, namely of 8X x (0,1).
We may therefore elefine the interior anel the boundary of D just as usual: x E D 1S an
interior point 01 D if there is an open neighborhood of x which is homeon1orphic to an
open ball in R n+l, and int D is the collection of a1l 1nterior pointsj 8 D = D\int D is the
boundary of D. We always have L: C 3D.

1.1.3 Definition. Let D be a manifold with bounda,ry anel conical singularities. Then
the topological boundary 8D of D is a (boundaryless) n1anifold with conical singularities
in the sense of [47, 1.1.2, Definition 10].
By lD (the "stretched object associated with D") denote the topological space constructed
by replacing, for every singularity v, the neighborhood U in Definition 1.1.1 by X x [0,1)
via glueing with any one of the eliffeomorphisms rP. This procedure also defines a "stretched
object" 1B associated with B = aD.

1.1.4 Notation and Assumptions. Throughout this article we will keep the following
notation fixed.

• D is a manifold with conical singularities of diInension n +1 with singularity set E;
lD is the associated (12 +1) -dimensional stretched object defined in 1.1.3.

• B = 8D is the boundary of D, cf. 1.1.2, it is of dimension 12 and a n1anifold with
conical singularities (without boundary); IB is the corresponding stretched bound­
ary object defined in 1.1.3.

In a neighborhood of one of the singularities,

• X will denote the cross-sectiOl"l as in 1.1.1; by definition, X is a manifold with bound­
ary of dilnension 12, in particular, X contains its boundary. For practical purposes,
this is often inconvenient. Wc shall therefore agree to denote by X the open interior,
and by X the manifold including the boundary. X/\ = X x R+; X/\ = X X R+.
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• Y = ax is the topological boundary of X j Y is a closed manifold of diIllension n -1 j

Y"=YxR+.

vVe will assume that X is endowed with a Riemannian metric and erllbedded in a closed
Riemannian manifold n and that 1D has a Riemannian Illetric which coincides with the
canonical (cylindrical) rlletric on X x [0,1) near each singularity.

1.2 Symbols and Sobolev Spaces

As before, X will be the interior of a compact n-dimensional 11lanifold with smooth
boundary Y. We assume X to be embedded in a compact Illanifold n without boundary,
e.g. the 'double' of X. In a collar neighborhood of the boundary we introduce nOfillal
coordinates. A point there can be written x = (y, r) with y E Y, r 2:: O. If U is an open
subset of Rn-I, then coordinates in U x R will also be written in the form x = (x', r) 01'

likewise x = (x', xn ), with x' E U and r, X n E R.

1.2.1 Sobolev Spaces on Rn and R~. Let U be an open subset of Rn-I. For a function
or distribution u on U X RIet r+ll denote its restrietion to U X R+. We shall also use
the operator r+ to indicate thc restriction of functions or distributions on !1 to X.
[F'(Rn), s E R, is the l1sual Sobolev space over Rn. We let H"(R~.) = r+ H"(Rn) and
[f~(R~) = {u E H"(Rn) : supp u ~ IG}. Equivalently, H~(R~.) is the closure of C~(R~)
in the topology of HS (Rn).
For functions 01' distributions in [P(R+), s > -1/2, we let e+ denote the operator of
extension (by zero) to Rn. For -1/2 < s < 1/2 this yields a bounded map

The notation extends to the case of conlpact Inanifolds via a partition of unity. This
defines the spaces H"(!1), H"(X), and Hü(X). We shaJl employ the notation H"(n x
R), HS(X X R), H8(X X R), etc., understanding that we use L2(X x R) with the Ineasure
dxdt.
S(Rn) denotes the space of all rapidly decreasing functions on Rn, and S(R~) is the
space of all restrietions of functions in S(Rn) to R~. "Ve have the following relations

proj - 1in10",TEN HO",T (R+),

ind - limO",TEN H;O",-T (R+),

where [fO",T (R+), H~,T (R+) are the weighted Sobolev spaces defined by

H~,T(R+)

HO"!T(R+)
{(1·)-T'lt: u E H~(R+,r)},

= {(r)-T u: u E HO"(R+!r)}.

1.2.2 Group Actions and Operator-Valued Synlbols. Let E, F be Banach spaces
with strongly continuous grotlp actions {fi:.\ : A E R+} anel {~.\ : A E R+} respectively.
By definition this means that

(i) A~ fi:.\ E C(R+,LO"(E)), A ~~.\ E C(R+,LO"(F)) (strang continuity of ~ and ~),

and
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Here Lu (.) refers to thc space L(') endowed with the strong topology.

Let U ~ R k anel p E COO(V x Rn,L:(E, F)),J-l E R. 'vVe shall write p E Stl(U, Rn; E, F)
provided that, for every [( ce V anel all multi-indices Q', ß, there is a constant C =
C( I<, Q', ß) with

IIK(11)-1{D~D~p(Y,77)}t\:(fJ)lk(E,F):::;C(1])/l-lal , y E [(,77 ERn, (1)

cf. [44,3.2.1, Definition 1]. The space SJJ.(U, Rn; E, F) is a Frechet space topologized by
the choice of the best constants C.
A symbol p E S" (U, Rn; E, F) is said to be classical, if it has an asymptotic expansion
p '"V L~o Pi with Pi E S/l-j(U, Rn; E, F) satisfying the homogeneity relation

for all A 2: 1, 1771 ~ l.
For the usual 01' weighted Sobolev spaces on R+, we will always eJnploy the group action

(2)

On E = C we use the trivial group action t\:).. _ id. For E = F = C we shall write
S/l(U, Rn) instead of SJJ.( V, Rn; C, C). The above definition then coincides with the stan­
dard symbol dass notation.
Tf FI f---J F2 f---J .•. is a sequence of Banach spaces with the same group action, and F is
the Frechet space given as thc projective limit of the Fk , then let

(3)

Vice versa, if E is the inductive limit of the Banach spaces EI e........r E2 e........r ••• with the same
group action, then

(4)

Finally, a symbol p belongs to St,(V, Rn; E, F), E = ind - limEk , F = proj -lirn Fr, if the
group actions coincide on the Ek and Fi , respectively, and p E SJJ.(U, Rn; Ek , Pt) for all k
anel l. We give it the topology induced by all the topologies of the spaces S/l(U, Rn; Ek , Fr).
We will, in particular, deal with thc spaces SJJ.(U, Rn; S'(R+), S(R+)). For the inductive
alld projective limit constructions we shall then use the representation of S'(R+) and
S(R+), respectively, as limits of weighted Sobolev spaces over R+, cf. 1.2.1.
In view of the nuclearity of COO(U) we have

(5)

thc functions in the last space on the right hand side being independent of y.

1.2.3 Definition. Let U = VI X V2 ~ Rn X Rn be open anel P E S/l(U, Rn; E, F) an
operator-valued symbol. Then the pseudodifferential operator op P is defined by

[op p(J)](y) = (211"t n Jlu, ei(.-.')~p(y, y', 1J )f(y')dy'dr/

8
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for JE CO(V2 , E),y E VI' This reduces to

[opp(f)](y) = (27r)-n j
2 JeiY'lp(y,7])j(7])d7], (2)

for 'simple' symbols, i.e. those that are independent of y'. Here, j(rl) = (27r )-~ f e-iy'l
f(y)dy is the vector-valued Fourier transfornl of f.
We mayaiso consider the case, where apart of the covariables serves as parameters:
p E S~(V, R~ X R~; E, F) defines a parameter-dependent operator op p(.-\) by

[ap p('x)f](y) = (271")-nJLe'(Y-Y')"p(y, y', 1], >')f(y')dy'd1]

for f E CO(V2 , E).

(3)

1.2.4 The Manifold Case. Let n be a smooth manifold, and E, F Banach spaces
with strongly continuous group actions. Moreover, let P : C~(n, E) --+ COO(!1, F) be a
continuous operator. We shall say that P E opS~(!1, Rn; E, F) if the following holds:

(i) For all C[;' functions 4>, 'ljJ, supported in the same coardinate neighborhood, the
operator (4)P'ljJ)* : C[;'(U, E) --+ COO(U, F) induced on U ~ Rn by 4>PljJ and the
coordinate maps has the form (4)P'ljJ)* = op p for some P E S~(U, Rn; E, F).

(ii) For all Ct: functions 4>, ljJ, with disjoint supports, the operator 4>P'ljJ is given as
an integral operator with a kernel in cooCn x !1, L(E, F)) (more precisely a kernel
section, see [7, Section 23.4)).

If P depends on a paralneter .-\ E R 1
, then (i) carries over, while in (ii) we ask that the

integral kernel belangs to S(R1, Coo(!1 x !1, l( E, F))).
Suppose we are given a locally finite covering of the manifold by relatively compact co­
ordinate neighborhoods {nj } with associated coordinate rnaps Xj : !1j --+ Uj • Then we
can find Pi E S~ (Uj ,Rn; E, F) and an integral operator f<j with coo kernel such that
P(f 0 Xi)(Xj l(X)) = op pi(f)(x) + f<jf(x) for all f E C~(Ui' E). We shall call the tuple
{Pi} the symbol of P.
Let now !1j n fh =f 0, and suppose that both 4> and 'ljJ are supported in the intersection.
Denote by Pi and PI. the operators on C~(n, E) induced by (4) 0 XjI) op Pj ('Ij; 0 Xjl) and
(4) 0 Xk l

) op Pk (1/1 0 Xk l
). Then Pi - PI. is an integral operator with a kernel in Coo(!1 X

!1, L(E, F)). Vice versa, given a tuple {Pi} with this property, we can define an operator
P : C~(n, E) --+ C~(n, F) whose symbol is {Pi}' Hence the notion S~(n,Rn; E, F)
makes sense.

1.3 Boutet de Monvel's Calculus

1.3.1 Definition. Let 11 E R, dEN and U ~ Rn-I open. In the following definition
the parameter-dependence will always refer to the parameter .-\ E R i •

(a) A regularizing paran1eter-dependent singular Green operator (s. G.0.) of type 0 on
U X R+ is a family of integral operators
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given by a kernel in S(R1,Coo(U X R+ x U X R+)). Here we identify Cgo(U,S(R+))
and Coo(U,Coo(~)) with subsets of Ooo(U x R+). A regularizing s.G.o. Go of type d
is a paralneter-depenelent operator of the form Go(..\) = L;;o Goj (..\)8! with regularizing
parameter-dependent s.G.o's GOj of type zero and the derivative Ur on R+.
A parameter-elependent s.G.o. of oreler JL anel type d on U is an operator

that can be written G = z::j;o[op 9j]8t +Go, where each 9j is a (parameter-dependent and
operator-valueel) symbol9j in S~-j(U, Rn-l x R1j S'(R+), S(R+)) and Go is a regularizing
parameter-dependent s.G.o. of type d.
(b) A regularizing paralneter-dependent trace operator of type 0 on U X R+ is an operator

with an integral kernel in S(R1, Coo(U X U X R+)). A regularizing trace operator '10 of
type d is a surn To(..\) = Z::j;o TojD:; each TOj being regularizing of type O.
A parameter-dependent trace operator T of order jJ.. and type d on U is an operator that
can be written T = z::j;o[op tj]a! + To, with tj in S~-j (U, Rn-l X R1;S'(R+), C) a,nd a
regularizing parameter-dependent trace operator To of type d.
(c) A regularizing parameter-dependent potential operator on U is an operator

given by an integral kerne1 in S(R1, COO(UxR+ xU))j a paralneter-dependent potential op­
erator I< oforder jJ.. is asum [( = opk+l(o with asymbol k in S~(U,Rn-l XRI; C,S(R+))
anel a regularizing parametcr-dependent potential operator [(0.

(d) All these spaces of operators carry Frechet topologies in a natural way: We use the
topology of non-direct sunlS of Frcchet spaces in connection with the natural topologies
on the symbol spaces and on the spaces S(R1, •.• ) for the integral kerneIs.
(e) We call 9 = Z::;;u gjß!, t = z::;;o tjD!, anel k symbols for C, T, anel I<, respectively.
We shall say that they are classical, if the 9j, tj, anel kare classical in the sense of 1.2.2.

1.3.2 Remark. Let E, F be Frechet spaces and suppose both are continuously embedeled
in the same Hausdorff vector space. Thc exterior direct sUln E EB F is Frechet and has
the closeel subspace ß = {(a, -a) : a E E n F}. The non-direct SUITI of E anel F then is
the Frechet space E + F := E ffi F/ ß.

1.3.3 Parameter-Dependent Operators and Symbols in Boutet de Monvel's
Calculus. Let U ~ Rn-l be open. A pal'ameter-dependent operator 0/ order JL E Rand

type dEN in Boutet de Monvel's calculus on U x R+ is a family {A(A) : ..\ E R 1} of
operators

where

A(..\) = [ P+(..\) +G(..\) 1«..\)]
T(..\) S(..\)

Cgo(U X R+)
EB -+

Cö(U)
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(2)
Cooo(R+)n1

k(X',e,A) ] . E9
s(x', (', A)' c m1

=

P(·) = op p(.) with pE Si:-(U x R+ x U x R,-, Rn; R I
), P+ = r+ Pe+,

G(·) is a parameter-depenelent singular Green operator of order 11 and type d,
K(.) is a parameter-dependent potential operator of order fl,
T(·) is a parameter-dependent trace operator of order 11 and type d,
S(·) is a parameter-dependent pseudodifferential operator of order fl on U.

The subscript 'tr' indicates that the symbol p satisfies the translnission condition (see [30,
Section 2.2.2.1] 01' 1.2.1.5) at the boundary U x {O}. Note that the decomposition P+ +G
is not unique; the regularizing pseudodifferential operators provide examples for operators
that belong to both c1asses. vVe shail write A E BJ-t,d(U x R+; R l ). The topology on this
space is that or a non-direct SUIl1 of Frechet spaces induced by (1) and the topologies on
the spaces of pseudodifferential, singular Green, trace, anel potential operators.
A parameter-depenelent regulaTizing operator A of type d in Boutet de Monvel's calculus
on U is one that can be written in the form (1) with all entries being regularizing operators.
'vVe shall write A E B-oo,d(U X R+; R 1

), anel give this space the obviollS Frechet topology.
It is a consequence of 1.3.1 that the operators in (1) indeed have the desired mapping
properties.
In general, all entries will be 111atrix-valueel.
Given an operator A E ßJ-t,d(U x R+i R I ) there is the quintuple a = {p, 9, k, t, s} of the
symbols for the operators P, G, K, T, and S, rcspectively, cL 1.3.1(e). As pointed out
before, there is a certain ambigllity in the choice of the symbols; we understand them as
equivalence dasses of tuples ind llcing the same operator modulo ß-oo,d(U x R+; R 1). We
usuaily refer to this symbol as the fuil symbol of A.
Moreover, we have a, paralneter-dependent operator-vaIuecl sYll1boI aA(A), the so-called
complete (parameter-depenelent) boundary symbol of A, namely

a1\(A) (x', (, A)

[
op;..p(x,~, A) +g(x', t, A)

t(x', (', A)

with p, g, t, k, s as berore, x' E U,~' E R n-l, A E R I . Again, wc understand the symbol
aA(A) as an equivalence dass of tuples in the corresponeling synlbol dasses with the
property that

A - op'aA(A) E B-oo,d(U X R+; R I ).

Here, al r"oJ az iff op'al - op' (Lz E ß-oo,d(U x R+i R 1) and op' denotes the pselldodifferential
action with respect to the x'-variables.

1.3.4 Boutet de Monvel's Algebra on a Manifold. Symbol Levels. Let X be an
n-dimensional c oo 1l1anifold with boundary Y, embeeleled in an n-dimensional manifold n
without boundary, all not necessarily compact. Let VI, Vz be vector bundles over n anel
W1 , Wz be vector bundles over Y.
Let {nj } elenote a locally finite open covering of n, anel suppose that the coordinate
charts map X n Dj to Vj x R+ c R+. anel Y n Oj to Vj x {O} for a suitable open set
Uj ~ Rn-I, unIess nj n Y = 0.
For a smooth function 4> on n write A1tjJ for the mllltiplication operator with the diagonal
Il1atrix diag{ 4>, 4>ly }. We will say tha,t A E ßJl,d( X; R 1

), if

Cg:'(X,V;)
A(A) : EB -T

Cg:'(Y, vV1 )

Coo(X, \12)
E9

Coo(Y, Wz)
(1)
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is an operator with the following properties:

(i) For all C~ functions eP, 'lj;, supported in the same coordinate neighborhood o'j in­
tersecting the boundary, the operator

Ct:(Uj x R+, Vi)
(A1t,bA(.-\)M,p). : EB ---+

Cgo(Uj , Wt}

Coo(Uj x R+, \12)
EB

Coo(Uj , Wz)

induced on Uj x R+ by MfA(.-\)M,p and the coordinate Inaps, is an operator in the
dass BIl.d(Uj X R+; R 1) of Boutet de Monvel's calculus on R+. in the sense of 1.3.3.

(ii) If 4>, 'lj; are as before, but the coordinate chart does not intersect the boundary, then
all entries in the matrix (MtjlA (.-\ )M,p). - except for the pseudodifferential part - are
regularizing.

(ii) If the supports of the functions 4>, 'lj; E C~(o,) are disjoint, then (Mt,bA(.\)M,p). is
an integral operator whose kernel density is Coo and a rapidly decreasing function
of .\ in all semi-nonns defining the Frechet topology of the smooth densities.

'vVe topologize ßIl,d(X; R 1) as the corresponding non-clirect SUDl of Frechet spaces.
QIl,d(X; R 1) is the subspace of all elements in ßIl.d(Xj R 1) where the pseudodifferential
part can be taken to be zero. Note that g-oo,d(X; Rl) = ß-oo,d(Xj R 1).

For each coordinate patch o'j intersecting the boundary, A(.\) induces an operator

A .(.\) _ [ Pj +(.\) +Gj ( .\ ) Kj ( .\) ]

J - 1j(.\) Sj(.\)

on Uj x R+, cL 1.3.3(1). We find a quintuple aj(.\) = {pj(.\),9j(.\), kj(.\),t j (.\), Sj(.\)} of
symbols for Pj (.-\), Gj (.\), f(j(.\), Tj (.-\), Sj(.\) in the sense of 1.3.3.
Given an interior chart nj , A(.\) induces a pseudodifferential operator Pj (.\) with a synlbol
Pj(.\) in the sense of equivalence dasses Inodulo S-oo, cf. 1.2.4.
We call the system

O",p(A) = {Pj(.-\)}

a complete (paramete1'-dependent) inferioT symbol fOT A. For those j where nj intersects
the boundary, the systenl {O",,(A)j} given by

O",,(A)j(x', (,.\) = (
OP~nPj (x 1 ~, .\) + f]j (x', f, .\)

tj(x',e,.-\)

C~(R+)nl coo(R+)nJ

EB --t EB
Cml Cm2

kj(x' , f,.-\) )
Sj(x/,C,.\)

is the complete (pararneteT-dependent) boundary symbol fOT A(.\).

We shall call A classical, if all entries in the quintuples aj = {pj, gj, kj, tj, Sj} are classical
elements in the respective symbol classes, i.e., Pj and Sj are classical pseudodifferential
symbols, while 9j, kj, tj are c1assica.1 operator-valued symbols, cf. 1.3.1(e). Write A E

B~·d(X j R 1
). The operator Athen ha..,;;:

12



• A principal pseudodifferential symbol, a~(A) = a~(A)(x, e, A), well-defined as a
function on (T* X x R1)\0, where Odenotes the zero-section in the sense that
(e, ..\) = 0, with values in vector bundle tnorphisms between VI and V;; O"~( A) is
the component of hOITIogeneity p. with respect to (e,..\) of the cmnplete interior
sYlnboIO"1j!(A).

• A principal boundary symbol, operator-valued, O",Ä(A) = a,Ä(A)(x', f, ..\), defined on
(T*Y x R1)\0. The construction is as folIows. In the complete boundary symbol
CTI\(A) replace oP~nP(x,f, Dn ,..\) by oP~nP(x',0, er, Dn , ..\). We then obtain a classical
operator-valued symbol, narnely

We define aÄ(A) as its component of homogeneity f-L with respect to (e', ..\). We then
have a bundle morphism

S(R+) 0 7i"*V1

aÄ(A) : EB
7i"*W1

S(R+) 01r*V2

--+ EB
1r*W2

here 7i" : (T*Y X R1)\0 --+ Y is the canonical p"rojection. This formulation differs from
that in [30, Section 3.1.1.1] in that we have replaced J[+ by its Fourier preimage
S(R+); it is, however, obviously equivalent.

1.3.5 Definition. \Ve will say that A E B~,d(X; R 1), d ::; fL+ = max{p.,O} is parameter­
elliptic if there is an operator B E B-~,d(X; R 1), d ::; (-p.)+, such that

• for each interior coordinate chart, the loeal components Pj, qj of the eomplete
symbols of A anel B, respectively, satisfy the relations

(1)

• for each eoordinate chart intersecting the boundary, the local complete boundary
synlbols aj, bj satisfy the following relations: For all functions 'Pj, 'lj;j E Cgo(Uj ) with
'Pj'lj;j = 'Pj we have

'Pjajbj'lj;j - 'Pj I = Clj,

'Pjbjaj'lj;j - 'Pj I = C2j,

(2)
(3)

with suitable parameter-dependent symbols Clj, C2j of order -1 and types dl =
(-/-t)+, d2 = J-l+. Here [ is the identity.

For classical operators, these two conditions are equivalent to the invertibility of both the
principal pseudodifferential symbol and the principal boundary symbol.

1.3.6 Theorem. Let A E B~,d(X; R l
) be parameter-elliptic, d ::; J-l+' Then there is an

operator B E B-~,d' (Xj R 1), d' = (-J-l)+ such that

R1 = AB - I E B-oo,d\ (X; R 1) and R2 = BA - I E B-oo ,d2 (X; R 1),

13



where d1 = (-p)+, d2 = P+. In particular, in t-he notation of 1.3.4:

HS(X, Vl)
A(A) : EB --+

}I~(Y, Wd

is a Fredholm operator [or s, S - J-L > -1/2.

fP-~(X, \12)
EB

frs-~(y, W2 )

1.3.7 Wedge Sobolev Spaces. Let E anel K,).. be as in 1.2.2, Cf E N, s E R. The wedge
Sobolev space W~ (Rq, E) is the completion of S(Rq, E) = S(Rq)01TE in the nonn

II U llw'(R.,E) = (j (T/)2'II K (")-IFv-t"u(T/ )111dT/) 1/2 ,

cf. [44, Section 3.1]. W~(Rq, E) is a subset of S'(Rq, E) := L:(S(Rq), E). For K,).. - id we
obtain the usual Sobolev spaces of E-valued distributions.
Suppose {Ek } is a sequence of ßanach spaces, Ek +! Y Ek , E = proj - lim Ek , and the
group action coincides on 3011 spaces. Then

Vice versa, if Ek Y Ek+1 , E = ind - linl Eh, and the group action is the same for 3011
spaces, then

W~(Rq, E) = ind -lim W 8 (Rq, E k ).

vVe shall write u E W~omp(Rq, E), if there is a function 4> E Cg=>(Rq) such that u = cPu.
Similarly, for 11, E S'(Rq, E), write u E Wtoc(Rq, E), if for arbitrary 4> E Cg=>(Rq), <pu E
W~(Rq, E).

1.4 Sobolev Spaces Based on the Mellin Transforrn

1.4.1 Mellin Transforms. For ß E R, l'ß denotes the verticalline {z E C : Re z = ß}.
We recall that the classical Melli Tl transform Mu of a complex-valued Cg=>(R+ )-function
u is given by

(Mu)(z) = f' tz-1u(t) dt. (1)

M extencls to an isomorphism M : L2(R+) --+ L2(r1/ 2 ). Of course, (1) also Inakes sense
for functions with values in a Frechet space E. T'he fact that, for 1L E Cg=>(R+), one
has Mulrt/<l_"'(z) = A1t-tz(t--Yu)(z + ,) Illotiva.tes the following definition of the weighted
Me/lin l,ans!orm M-y:

The inverse of M-y is given by

1.4.2 Parameter-Dependent Order Reductions on n. Let n be a closed COffi­

pact manifold. For rL E R there is a paraIneter-elliptic pseudodifferential operator
A~ E opS~(n, Rn; R), depending on the paranleter T ERsuch that
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is an isomorphism for all T. Para1neter-ellipticity here simply means that there is a symbol
q E S-~(.{1, Rn; R) such that A~q - 1 and qA1

! - 1 both are elements of S-l (n, Rn; R).
In order to construct such an operator one can e.g. start with symbols of the form
(e, (T, C))jj E S~(Rn, Re; R.r) with a large constant C > 0 and patch them together to an
operator on the manifold n with the help of a partition of unity and cut-off functions.
Alternative1y, one can choose a Hermitean connection on \I and consider the operator
(C + ,2 - .6.)~, where .6. denotes the connection Laplacian and C is a large positive
constant.

1.4.3 Totally Characteristic Sobolev Spaces. (a) Let {Ajj : /1 ER} be a family
of parameter-elliptic pseudodifferential operators as in 1.4.2. For s" E R, the space
1{"tY(f1/\) is the closure of cgo(ni\) in the norm

(1)

Recall that n is the dimension of X and 0 and that rß = {z E C : Rez = ß}.
(b) We let H8''")'(Xi\) = {fixA: f E 1{8,')'(nl\)}. The space 1{"ti(Xi\) carries the quotient
nonn:

IIUll1i&I~(XA) = inf{llfll1i',~(nA) : f E 1{"{)' (nl\) , fixA = u}.

(c) H~'')'(Xi\) is the space of all distributions in HStY(Oi\) with support in Xi\ = X X R+.
Since, by definition, C~(OI\) is dense in H",')'(Oi\), the space 1{~',),(Xi\) is the closure of
Cgo(Xi\) in the topology of1{s l'Y(OI\).
(d) For 5 = 1 E N we obtain the alternative description

for a11 k ::; land all differential operators D of order::; l - k on !1, er. [44, Section 2.1.1,
Proposition 2].
(e) The space 1{S(Y(XI\) is independent of the particular choice of the order-reducing
family.
(f) H"'')'(Xi\) ~ Htoc(Xi\); 1{"'')'(XI\) =PHS,U(Xi\); 1{0,O(XI\) = t-nj2 L2 (XI\).
(g) HO,O( XI\) has a natural inner product

(u, v)1iO,O(XA) =~ ( (Mu(z), Mv(z))p(X) dz.
27ft Jr~

(h) lf <P is the restriction to Xi\ of a fllnction in C~(n X R), then the operator MI/J of
Illllltiplication by 4>,

M1> : 1{1'')'(Xi\) --+ 1{lJ'')'(XI\),

is bounded for all 5" E R, and thc mapping <P 1-+ M,p is continuous in the corresponding
topology.
(i) Suppose that {nj : j = 1, ... , J} is an open covering of n, and {<pj} is a subordi nate
partition of unity. Let {R~ : /1 ER} be an order-reducing family on Rn. We can define
the space HlJ'')'(Rn X R+) as before and denote by 11·111l,,'J(RnxRt) the corresponding norm.
Then

(2)
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furnishes an equivalent norm on H.!,'Y(!1i\). Here, (4)j'u)* is the distribution induced on
Rn X R+ via the coordinate functions.
(j) Near each singularity v, lD is diffeOIllorphic to X;, with suitable Xv as in 1.1.1. vVe
define 1{.!'-Y (UJ ) as the space of all distri butions belonging to HS" (X:) near a singularity v
and belonging to HS(ßJ) in the interior; for the precise construction use a cut-off function
W v near each singularity v.
Notice that (e) is a simple consequence of the fact that if {AI-' : J-l E R} and {AI-' : I-t E R}
are two order-reducing families, then for each I-l, the operator AI-'A-I-' is parameter-elliptic
of order zero. (h) is imn1ediate from (d) and interpolation in connection with 1.4.7, below.
We define the spaces 1{OOtY(n), 1{oo,-y(X) anel 1{~''''''(X) as the intersections of the corre­
sponding spaces taken over alt s E R.

1.4.4 Remark. On Rn we may choose a particularly simple order reduction, narnely
A~(7) = op (~, 7)1-'. Using the transfonnation <I>n,-y defined by

one can check that

in other words,

~+1-{.!'''''' (Rn x R+) = {t - 2 -y1l ( X, In t) : 7l E 11.! (Rn x R)},

cf. [44,2.1.6(4)]. For X = R+ in n = Rn we obtain

1{.!''''''(R~ X R+) = {l-~+""'u(x, In t) : u E H"(R~ x R)},
!!.±.l+'Y

1-l~,'Y(R~ X R+) = {t- 2 u(x,ln t) : u E H~(R~ X R)}.

(1)

(2)

(3)

We have the following relation between the Fourier anel the weighted Mellin transform:

[M..."f(x, ·)](1/2 -, + ir) = [:F71(X, ')](7).

Here, f(x, t) = t- 1!2+'YU(X, In t). As thc notation indicates, both transforms act with
respect to the last variable only. Therefore

if we identify the Hues r 1/2-, and R.
The well-known fact that for -1/2 < s < 1/2 we have H~(R+) = HS(R~) tagether with
1.4.4 then implies that

-1/2 < s < 1/2. (4)

The following lemllla is newj it has not been given in Part I. "Ve include it here since it
gives more insight iota the structure of 1{oo,'y+n!2(Xi\).

1.4.5 Lemma.
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Praa! In view of the nuc1earity of COO(X) we have COO(X, Hoo,'Y(R+)) = COO(X)®11"
1{oo,'Y(R+). So we only have to show the identity

Hoo ''Y+n / 2(XI\) = COO(X, Hoo,'Y(R+)) .

To this effect note that Hoo,'Y+ n / 2(XI\) consists of slnooth functions, so for u = u(x,t) E
Hoo,'Y+n/2 (X 1\) we can consider the fu nction x r-+ u( J;, .).

The norm on HOO,'Y+ n /2(XI\) is given by the family of semi-norms

Pka(u)2 = jlt-'Y(tadkB~u(x,t)lli2(X") =JIlt-'Y(tat)kD~u(x, ')lli2(R+)dx,

with suitable differential operators B~ on X, cf. 1.4.3. On the other hand, the last
expression is of the form

JQk(a;U(X, .))2dx,

where qk is the semi-norm on Hoo,'Y(R+) definecl by

00

qZ(f) = JIt-'Y(tBd kj(t)1 2dt.
o

(1)

By Sobolev's lemma, (1) is a system of semi-norms that is defining for the topology of
COO(X,1{oo,'Y(R+)). This shows the assertion. <J

The following lemma also is new. 'vVe shall need it in Section 3.1.

1.4.6 Lemma. Let f E H1,'Y(R+) [or some, > 1/2. Then

lim f(t) = O.
t--+O

Praa! \Nithout loss of generality we Inay assume that f(t) = 0 for t 2 1. By definition,

t-'"Y(tat );J E L 2(R+), j = 0,1.

In particular, f E C(R+) by Sobolev's Iemlna, and it makes sense to consider f(t) for
t > O. Moreover,

I!(t) 1 < [Iß.!(s)1 ds (1 - t)

< ([ Is-'Y(sß.J)(r)12 dS) 1/2 ([ s-2+2'Y dS) 1/2 (1 _ t)

( -1+2'"Y) 1/2< C'Yllfll'hIl,'}' 1 - t ,

so f is bouncled whenever 1 > 1/2. 'vVe have , - G > 1/2 for suitably small G. The fact
that H1,'Y(R+) = t~Hl,'"Y-~(R+) shows that lf(t)1 :::; C'"Y-~llfl17{I,'}'-,t~ -+ 0 as t -+ 0+. <J

1.4.7 Proposition. Tbe inner product in 1.4.3(g) extends [rom C~(XI\) x C~(XI\) to
a non-degenerate sesquilinear form

H8 ,'"Y(XI\) X H~",-"Y(XI\) -+ C

for aJI s E R. This admits the iden ti fication H;;8,-'Y (X 1\) ~ (Hs,'"Y (X 1\))'. Moreover,

11fll1l','}'(x A ) = sup{I(!,v)1l 0 ,O(x,,)1 : Ilvll1l;.,-'Y(X") = I}

furnishes another equivalent norm on Hs,'"Y(XI\).
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1.4.8 Theoren1. Let s > 1/2" E R, u E 1e,'Y(OA). Then the restriction ,DU = ulvA oE
u to VA i8 well-defined and belangs to 'HS- 1/2,"/-1/2(VA); the mapping

is continuOllS. Clearly, t}le saIrJe assertion holds iE we replace OA by XI\.
By r denote the nonnal coordinate in a neighborhood oE V. Then the operators ,j :u f---t

atulYA denne continuous rnappings

,j : 'Hs"')'(OI\) -+ 1e- j - 1/ 2,,,/-1/2(VI\) and

Tj : 'HS'''/(XA) -+ 'Hs- j - 1/2,..Y-l/2(VI\).

1.4.9 Lemma. Choose a sInootlJ Eunction 4> equal to 1 in a neighborhood o[ V and
supported in the neighborhood of V, where the nOfITJal derivative is defined. Then the
operator / f---t ar ( 4>/), defined [or / E COO(O") has a bOl1nded extension to an operator

1.4.10 Theorem. The spaees 11.""'"\'(01\) are in\rariant under ehanges o[ coordinates if we
restrict ollrselves to the subspaces of fllIlctions with sllpport in a cornpact set 0 x {t :
o ::; t ::; R}, and if we ask that the diffeomorphism, say ~, respects the set {t = O},
i.e. <P is the restricUon oE a diffeolnorphism oE 0 x R+ (in partiellIar, we wiJJ then have
q,(x, 0) E 0 x {O}).
More precisely: Let ~ be a diffeomorphism on 0 x R+ l respecUng {t = O}. Then the
space

{uE'HS''"\'(OI\):u=O on {i>R} forsuitable R}

is invariant under the change of coordinates indueed by<1>.

We say that a diffeorTIorphisnl <I> of XI\ is boulldary-preserving if there are open neighbor­
hoods VI, V2 of X A in 01\, and cI> extends to a difreomorphism <I> : VI -+ U2 respecting
{t = O}. This inlmediately leads to the following corollary.

1.4.11 Corollary. Also the subspace of 'H""'"\'(XI\) consisting of the distributions that
vanish for large t is invariant under changcs of coordinates induced by boundary-preserving
diffeomorphisms.

1.4.12 Definition. Let F be a subspace of 'O'(XI\) 01' '0'(0") with a stronger topology.
Suppose that 4> is a smooth function on R+ and that rTIultiplication by 4> is continuous
on F. Then [4>]F denotes the closure of the space {4>u : U E F} in F.

1.4.13 Theorem. Let w E C~(R+), w =1 near zero. Then for 8 2": 8'" 2": "

is continllous. For s > 5'" > " the embeddillg

is eompact.
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1.4.14 Definition. For 5, / E R , w a cut-off function on R+, let

Here, Ji:one(X/\) is as in 4.2.1. The definition is independent of the choice of w by 1.4.3(f).
In the notation of 1.4.12,

similarly,
K~'-Y(X/\) = [W]1t~'-Y(X/\) + [1 - w] Jf~,cone(X/\),

cf. 1.4.3(c). We shall give )(,ll,-y(X/\) the Banach topology induced by (2):

(2)

(3)

1.4.15 Remark. Note that, in contrast to Definition 1.3.1.18, we have slightly changed
the notation, replacing [1 - w]lIS(X/\) and [1 - w]If8(X/\) by [1 - w]H:one(X/\) and [1 ­
w]HJ,cone(X/\) respectively. The results of Part I hold with both conventions.

1.4.16 Definition. Let 8 be thc' intcrval (0 1 0], 0 < 0, and let 5, / E R.
)(,~-Y(X/\) is definecl as the intersection n(>o l(lll-Y-O-((X/\). We endow this space with thc
projective limit topology.
For e = (-00,0] define )(,~-Y(X/\) as thc intcrsection of all the above spaces for e < o.

1.4.17 Remark. (a) Let u E }CS1"(X/\) , 5 > 1/2. By Theorem 1.4.8 the restrietion uly
belongs to )(,1l-1/2 ,-Y-l/2(y/\).

(b) From Remark 1.4.4 we obtain natural dualities

for all 5 , f E R.
(c) Let</> bc as in 1.4.3(h). Then the multiplication operator

is continuolls.
(d) Of course, all these distributions may take values in finite-dimensional vector bundles
with a Hermitean structure which are restrietions of smooth Hermitean bundles on nx R.

1.5 Spaces with ASYlnptotics

1.5.1 Definition. (a) A weight datum g = (,,8) consists of a nllmber f E R anel an
interval e = (0,0] with -00 ::; 0 < O.
(b) The collection of asymptotic types As( X, g) for a weight datulTI g = ('l (0,0]) with
o> -00 ("finite weight interval" ) is thc set of all finite vectors

P = {(Pi, rnj, Lj) : j = 0, ... , N (P) E N}

consisting of
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(1)

(i) Pj E C with nil -, +0 < Repj < nil -" where n = dimX,
(ii) mj E N, and
(iii) Lj 30 finite-ditnensional subspace of Coo (X).

The elements P of As(X, g) are called asymptotic types.
If g is 30 weight datum with 0 = -00, ("infinite weight intervall') then As(X, g) is the
family of 3011 vectors P = {(Pj, mj, Lj ) : j = 0, ... , N(P) ::; oo} with the additional
assumption that

(iv) Repj --+ -00 as j --+ 00, whenever P is infinite.

By 1rc P denote the set {Pj : j = 0, ... , N( P)}.
Correspondingly, As(Y, g) is thc set of 3011 P = {(Pj, lnj, Lj ) : JEN} with ~ - , + f) <
Re Pj < ~ +" rnj E N, and Lj a finite-dimensional subspace of COO(Y). As before we
assun1e that Repj --+ -00 as j --+ 00 whenever P is infinite. Finally we let for g = Cr, 8)

As(X, Y,g) = {P = (p.,P2 ): PI E As(X,g),P2 E As(y,(,-1/2,8))}.

(c) Thc space JC~'Y(X/\), for P = {(Pj, lJl-j, Lj ) : j = 0, ... , N} E As(X, g) with finite
weight interval consists of allu = u(x, t) E K,~,'Y(XJ\) such that for suitable Cjk E Lj ,°::;
j ::; N, °::; k ::; rnj, and 3011 cut-off functions near zero, W,

N mj

U - L: L: Cjk( x )t-Pj Ink t w( t) E JC~'Y (XJ\);
j=Ok=O

cf. 1.4.16 for the definition of JC~'Y(X/\). In the case of an infinite weight interval first let
gk = (" (-k, 0]), k = 1,2, ... , and define Pk E As(X, g) by

Then let
JC~I(XJ\) = nJC~:(X/\).

k

JCC;,'Y(XJ\) is the intersection of all JC~'Y(X/\), s E R. It is 30 Frechet space.
(d) Near each singularity v, UJ is diffeomorphic to Xv x R+, with suitable XV CIS in
1.1.1. We define 1i~'(ID) as the space of all distributions belonging to 1i~'Y(X:) near a
singularity v and belonging to [P(D)) in the interiorj for the precise construction use a
cut-off function W v near each singularity v.

1.5.2 Remark. The representation of a function in the form

N mj

u(x, t) = 2:= L Cjk(X) t-Pj lnk tw(t) + f(x, t)
j=Ok=O

(1)

with f E JC~'Y(XJ\) as in 1.5.1(c) depends on the partiCltlar choice of coordinates. Un­
der a change of coordinates, the function L:f=o L~o Cjk( x) t-Pj lnk t w( t) transforms to a

function L~OL:locjk(x)t-pjhltwl(t)+g(x,t) with 9 E }Coo,M(XJ\) for arbitrarily leuge
M. As indicated by the use of N' anel pj, there may be lTIOre and different exponents in
the resulting representation. It is straightforward to see, cf. 1.3.2.2, that all pj are of the
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form Pk -l, for a, suitable Pk anel l E N. Moreover, if the Cjk vary over a finite-dimensional
subspace of COO(X), then so will the cjk.
Spaces with asyo1ptotics are therefore well-defined if we either keep coordinates fixed or
else interprete the subscript P associated with an asymptotic type P as an equivalence
dass of of possible asYluptotic types. This is the sense in which all the notation involving
asymptotic types should be understood.

Recall that we always have

1.5.3 Definition. For P E As(X, g) anel g = (,,8) let

S7(X/\) = [W]K~"(X/\) + [1 - w]S(X/\),

where S(X/\) = S(R+)011"COO (X). The definition depends on the choice of 8.

1.5.4 Lemma. Let ~ E C~(n x R), c,b = ~Ix". Then t'lJe multiplication operator

is bounded. Ir P E As(X, g) satisnes the "shadow condition" (i.e. given a tripie
(p, rn, L) E P and JEN, there is an element (p - j, m(j), L(j)) E P with m(j) 2:
m, L(j) 2 L) then also

is continllOUS.

1.5.5 Remark. Of course, all not ions luake sense for distributions with values in finite­
dimensional Hermitean vector bundles which are smooth up to the boundary with the
obvious Inodifications.

1.6 Green Operators. The Aigebras Ge (..-yA ,g) and Ge(1D ,g)

1.6.1 Definition. Let g = (,,0,8) with ,,0 E R,8 = (O,O],-<x> :::; () < Gjg also is
called a weight datum. Moreover, let P, Q be two asylnptotic types, P = (PI, P2) E

As(X, Y, (0,8)), Q = (Q1' Q2) E As(X, Y, (-,,8)), and Vi, Wr, ... smooth Hermitean
vector bundles.

(a) Let

GEn .c(K,s,'Y(X/\, V.) EB K S1'Y- 1/ 2(y,\ W.), }Coo,O(X/\, \12) EB KOO,O-I/2(y/\, W2 )).

3>-1/2

vVe shall write G E cg(X/\, g)p,Q if the following holds: for all s > -1/2

(1)
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a.nd
K,8,-S(X/\, \1;) SQ7 (X/\, Vd

G* : EB -* EB (2)
K&,-S-I/2(y/\, W2) SQ;-t/2(y/\, Wt}

are continuous. In (2), G* is the fornlal adjoint of G. lt is defined from the duality between
K&"'Y(X/\, Vd ffi K&,,-1/2(y/\, l'Vt} and K,~ß,-,(X/\,~) EB K,--,,-,-1/2(y/\, Wt}, which comes

from an extension of the inner product

on HO(X/\) EB HO,-1/2(y/\). Notice that the second term on the right ha.nd siele differs
from the standard inner product on H"" (Y/\), where the integration is over rn/2-" for
dirn Y = n - 1. Since (Mu)(z + 1/2) = M(t 1/2U)(Z), this term yields a duality between
H&,,-1/2(y/\) anel H-s'-'-1/2(y/\). As before, we will not refer to the bundles in the no-
tation.

(b) cg( UJ ,g)p,Q is the corresponeling space with X/\ replaceel by UJ anel the spaces

S~l (X /\, V2 ), .•• , SQ;-1 /2 (Y '\ IVd by H~'o(UJ , \"2), ... ,HQ;--V- 1/2 (U3 , Wd. \tVe call the el­
ements of cg(X/\, g)p,Q anel CO

( D), g)p,Q the Green operators 0/ type zero on X/\ and JD,
respectively.

(c) Let dEN. An operator G acting as in (1) is callecl a Green operator 01 type d, if it
can be written

(3)

with Green operators Gj of type zero. The oreler s in (1) then is assumed to be > d -1/2.
With the replacements in (b) we can use the same definition for operators acting on
functions over UJ. In (3), Or denotcs thc normal derivative defined in a neighborhooel
of the boundary of the Rietnannian Inanifolds X/\ and ID, respectively, Illultipliecl by a
cut-off function, so that it tnakes sense everywhere.
We shall write

G E C~(X/\,g)p,Q anel G E C~(ID ,g)p,Q,

respectively. Without loss of generality we assurne that the asynlptotic types Panel Q in
(1) anel (2) are the same for 3011 Gj,} = 0, ... ,d.

(cl) The I11apping properties (1) and (2) give a natural Frechet topology for the spaces
cg(X/\,g)p,Q ancl C~(ID,g)p,Q' The spaces C~(X/\,g)p,Q anel C~(JD,g)p,Q are topolo­
gized as non-direct sums of Frechet spaces, cf. 1.3.2.

In the following, g, P, Q will denote an arbitrary weight datum and arbitrary asYlnptotic
types. Vi, W 1 , ..• are Hennitean vector bundles smooth up to the boundary.
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1.6.2 Theorem.

cg(X A
, g)p,Q (1)

~ [S~l (X A, '1:2) EB S;~ 1/2 (yA, w2 )] 01T [S~~ (X A, VI) EB S~:-1/2 (yA, Wt}] .

The isomorphisIn is given by the mapping that associates with G its integral kerne!. Here,
Q = (QIl Q2) is an asymptotic type in As(X, Y, g). Qk is constructed by replacing each
element (p, m, L) E Qk by OIe cornplex conjugat'e (p, m, L), k = 1,2. Similarly,

cg(ß) ,g)p,Q (2)

~ [tlA,O(lD, '1:2) EB 1i~,O-1/2(lB, W2)]01T[tl~:-'Y(1D, Vd EB H;~-r-l/2(1B, Wd] .

1.6.3 Corollary. (a) Let 4>1 and 4>2 be excision functions for the singular set of D, and
let G E cg(ß) ,g). Then 4>1 G4>2 is a. regularizing singula.r Green operator in Boutet de
Monvel's ca1culus for DJ.

1.6.4 Lemma. Let GI E cg(XA
, g)p,Q and O2 E cg( ID, g)p,Q. Then the rnappings

K/,r(X A , \;;)

GYI : EB
K",I-l/2(y", WI )

Kt,s(X", V2 )

-r EB
Kt,S-1/2(YA, W2)

and
1-[3,1 ( ID 1 \;;)

G2 : EB -r
H"'I-I/2(1B, Wd

are compact for every choice of s, t > -1/2.

Ht,O( ID, V2 )

EB
Ht ,O-I/2( D3 , Wz)

1.6.5 Lemma. Let gl = (1',0, E», g2 = (0, T}, 8) be weight data, P, Q, R, and S asyrnp­
totic types, let GI E C~(XA, gt}P,Q, and G2 E C& (X", g2)R,S. Then

G2G1 E G~(X", g3)R,Sf

with g3 = (,,7],8) and a resl1lting asymptotic type S'. We tacitly assurne that GI and
Gz act on vector bundles so that the composition makes sense.
The corresponding result also holds with X A replaced by UJ.

1.6.6 Definition and Relnark. For g = (,,0,8) we let GC(XA
, g) denote the space

of a11 operators that belong to any one of the families G~(XA, g)p,Q for arbitrary d, P,Q.
In view of Lemma 1.6.5, the elements of GC(X A

, g) that act on fitting weight data and
vector bundies can be composed. The composition is continuous with rcspect to the
corresponding topologies. The corresponding results are true for Cc(ß) ,g).

1.7 Mellin Symbols with Values in Bautet de Monvel's Algebra

The following lemlna is easily cleduced from the elementary properties of the Mellin trans­
form, see [20] or [40, Appendix 5.1].
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1.7.1 Lemma. (a) Let w be a cut-off function near 0. Then Mw(z) = z-lM( -t8tw)(z).
Since -t8tw E Cg:>(R+), its IvIelJin transform is rapidIy decreasing on each line rß. If X
is a smooth function on C which vanislles near zero and is equal to 1 near infinity, then
X M w is rapidly decreasing on each line ['ß' uniforrnly for ß in compact intervals.

(b) Given a cut-offfunctionw E Cgo(R+) withw(t) == 1 nearzero, p E C, and k E N, let

dk

'l/Jp,k(Z) = Mt-tz(t-P Ink tw(t))(z) = dzk(_z-l M(t8tw)(z))(z - p).

Here we interprete !vlt-tz as t'he weighted fvlelJin transform M-y with , < 1/2 - Re p. Then
'l/Jp,k extends to a meromorphic function in C with a single pole of order k + 1 in p. If X
is a smooth function on C which vanishes near p and is equal to 1 outside so/ne co/npact
set, then X'I/Jp,k is rapidly decreasing on each line rß, uniformIy for ß in compact' intervals.

1.7.2 Definition. (a) A Mellin asymptotic type is a sequence

with Pj E C, Repj -t ±oo as j -t =foo, mj E N, and L j a finite-dilnensional subspace of
finite-dimensional operators in ß-oo,d(X).
vVe denote the collection of all these asymptotic types by As (ß-oo,d( X)). Just Iike in

1.5.1, we let 7rcP = {Pj : j E Z}.

(b) Let P E As (ß-oo,d( X)), J-l E R, dEN. Then M~,d(X) denotes the space of all
functions

with the following properties

(i) in a neighborhood of Pj E 7T"c P

Tnj

a(z) = L Vjk(Z - pj)-k-l +ao(z)
k=O

with Vjk E Lj , k = 0, ... 1 mj, and ao holomorphic near Pj.

(ii) Given Cl < C2 in R we can find ajk E Lj such that, for each ß E [CI, C2],

mj

a(ß + iT) - L L 'l/Jpj,k(ß + iT)ajk E ßtl,d(X; Rr),
{j:Pj E[ct ,c:;z]} k=o

(1)

(2)

(3)

uniformly for ß in [Cl, c21.

We call the elements of M~,d(X) Mellin symbols of order 11, type d, with asymptotic type
P.
We are assuming in (1) that the vector bundles a(z) is acting on, cf. 1.3.4(1), are inde­
pendent of z.

(c) M~';I(X) is the corresponding space with ßlt ,d(X) replaced by B~,d(X).,

(cl) If P = 0 then we shall write MtJ,d(X) ancl Mb'~I(X).,
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(1)

1.7.3 Remark. The topology of M~,d(X) is given by three semi-norm systen1s

(i) that for the topology of A (C\'iTC P, ß~,d (X)) ;

(ii) that induced by a 1-+ Vjk E Lj ~ ß-oo,d(X), where a E Mt,d (X) is as in 1.7.2(2),
and the Euclidean topologie on Lj ;

(iii) that given by 1.7.2(ii).

M~,d (X) is a Frechet space in thc above topology. Mpoo,d(X) = n~ M~,d (X) is a nuc1ear
Frechet space.

1.7.4 Theorem. Let P be a A1ellin asymptotic type, lL E R, dEN. The function
a E A(C\7fc P, ßp-,d(X)) is a !vfellin symbol in i\1~,d(X) if and only if it can be written

d [ak 0]a(z) =~ ak(z) cl I

with ak E A1Q-k,O(X). Here, Dr stands {or the operator given by the norrnal derivative in

a neighborhood o{ the boundary, multipJjed by a suit'able cut-off {unction. Q is a slightly
moditled asyrnptotic type; it contains the saIne Pj and mj, but the Lj are now suitable
finite-dimensional spaces o{ (jnite-dirnensional operators in B-OO,O(X).

1.7.5 Proposition. Let J-L, J.L' E Z, d, dl E N, and let P = {(pj,rr~j,Lj)}, pi =
d 1 d'{(pj, mj, Lj)} be two Mellin asymptotic types. For a E M~' (X) and b E M~,' (X)

the function

" d"belongs to Mt,,' (X), where

• J.L" = J-L + /1.' j

c(z) = a(z) b(z) (1)

• d" = max Vi + d, d'}j

• P" is a suitable Mellin asymptotic type that can be deterrnined from a and b; in
particular, 7fc pli ~ 7fc P U 7fc Pi.

We are tacitly assuming that thc composition in (1) makes sense, i.e. a(z) and b(z) are
acting on appropriately chosen bundles.

1.7.6 Theorem.
k[~,d (X) = Atlß,d (X) + A1pOO ,d(X).

1.7.7 Definition. Let r E R, E, F Hilbert spaces.
(a) lf f is a function on U ~ C, then let (T'Y f)(z) = f(z + ,) whenever z + lEU.

(b) For a polynomially bounded function 9 on r 1/2 with values in l( E, F) let 0PMg :

Cgo(R+, E) -+ COO(R+, F) be defined by

(oPMg)(u) = fvt-1g Mu

with the vector-valued l\1ellin transform M : [2(R+, E) -+ [2(f1/2, E).
(c) For 9 defined on 1"'1 /2-"'fl' E R, let

, t' (T-' ) t-I M- 1 MoPM9 = oPM 9 =, 9 I'

with the weighted Mellin transfornl MI' In particular, op~ = 0PM'
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1.7.8 Lemma. Let a E Mt,d (X), fL E Z, dEN, f E R, P a Mellin asYInptotic type
with 7fc P n r 1/2-')' = 0. Suppose that, for fixed z, a(z) E ßIJ.,d (X) acts on vectof bundles
as in 1.3.4. Then

Cr(X", Vt}
op1-a; EB

C~(Y", Wd
is a continuous operator.

COO(X", \12)
---+ EB

COO(Y", W2 )

(1)

1.7.9 Theorem. Under the assumptions of 1.7.8, opIt a has a bOllnded extension

1-l~,r+~(X", Vd
üp1 a; EB

1-l~'')'+ "-;;1 (y" 1Wd

fOf all s E R, s > d - 1/2.

1-l~-IJ.,')'+~ (X", \"2)
---+ EB

1-l~-IJ.,')'+ ";1 (Y", W
2

)

1.7.10 Corollary. Let w,w' E C~(R+). Under the assumptiüns of 1.7.8

JC~'')'+~ (X", Vd
wüp1(a)w': EB

JC~'')'+ n~l (y", ~Vd

is büunded für all s E R, s > d - 1/2.

KS-IJ.'')'+~(X'',V2 )

---+ EB
K~-IJ.,')'+ ";-1 (Y", W

2
)

1.7.11 Lemma. Use the notation of 1.7.8 an d assume addi tionally that d = 0, s > -1/2,
and J-l ::; O. Then the operator A = üp1a has a fornlal adjoint A* with respect to the
duaJities

and

We have
A* = üp;\:?-n a (*) with a(*) = a(n + 1 - z)*j (1)

the last asterisk indicates the lnatrix adjoint. The fact that a E i\1~'o(X) implies that
a(*) E MQ'O(X) for a reslllting asymptotic type Q.

1.7.12 Theorem. Let a E Mt,d(X), with JJ.,d,P as in 1.7.8. Moreovcr, lctw,w' E

Cgo(R+) and g = (f + n/2, 8), 8 = (0,0] be a weight datum.
Then for every asyrnptotic type Q = (Ql, Q2) E As(X, Y, g) there is an asymptotic type
R = (R1 , R2 ) E As(X, Y, g) such that

KS,')'+~(X" \1,)
Ql , 1

W op1(a) w' : EB
KS,"Y+ ";-1 (Y" vF)

Q2 ,1

is continuous [or all s > d - 1/2.
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1.8 Mellin Operators and Green Operators

1.8.1 Theorem. Let a E IvJt,d(X) , It E Z, dEN, P a Mellin asymptotic type. Moreover,
let, E R, ß 2: 0, W, WI E C~(R+), and suppose that

Then
W tßoplt(a) W\ - W op1t(Tßa) tß

WI E C~(X/\, g)Q,R (1)

for suitable asynlptotic types Q, R E As(X, Y,g),g = (, + n/2" + n/2, (-C(), 0]), de­
pendiIlg on P; (Tßa)(z) = a(z + ß). The operator in (1) has finite-dimensional range.
lt is given as a contour integral around the finitely many singularities of a in the strip
between r I/Z-')' and l\/z-')'+ß' In particlllar, the difference is zero if a has no singularities
in the strip {1/2 -, ~ Rez ~ 1/2 -, + ß}.
For ß < 0, the same is tl'lle witll the weight daturn g = (,+ n/2 - ß,,+ n/2 +ß, (-C(), 0]).

1.8.2 Theorenl. Let hE Mpoo,d(X), 1 E R, 1rcP n r 1/ Z-'Y = 0. !v[oreover, let W,WI,WZ,
W3, W4 be arbitral'Y Cil t-off functions neal' 0 E R, and <p E C~ (R+). Then

(a) W op1(h) <p E C~(X/\, g)Q,o.

(b) epoplt(h)w E Cf!;(X/\,g)O,R'

(c) wloplt(h)wz -W30p1(h)W4 E C~(X'\g)Q,R'

ln (a), (b) and (c), Q and R a.re suitable asymptotic types in As(X, Y, g); 0 is tlle 'zero'
asymptotic type, and g is the weight datuITJ g = (, + n/2" +n/2, (-C(), 0]).

-/\
1.8.3 Remark. (a) In the notation of 1.8.1, we have for f E C~(X ) and ß E R

= tßw r t-Ca(()M(wlf)(()d(
Jr l/2--r+ß

W f t-Za(z + ß)M(wlf)(z + ß)dz
Jrl/'J--r

W op1(Tßa)WI 't
ßf. (1)

By 1.8.1, the last operator equals wtßop1(a)wlf modulo a Green operator, say G. Here
we have assumed that r 1/2-')' n 1rc P = 0 = r1/2-'Y+ß n 7rc P. For every j 2: ß we therefore
have

wtioplt(a)wl - wti op1;ß(a)wl = ti - ß C,

which also is a Green operator, namely with respect to (, +n/2" + n/2, (-C(), 0]), even
(, +n/2" +n/2 +j - ß, (-C(), 0]) for ß 2: 0 anel with respect to (, +n.j2 - ß" +n/2 +
j, (-C(), 0]) for ß < O.
(b) In view of 1.8.1 anel the discreteness of the singularity set we note the following
consequence: If j > 0, r 1/2-')' n 1rc P = 0, a.nd € > 0 is sufficiently smalI, then on C~(X/\)

wti op1(a)wl = wtiop1t"(a)wl' (2)

Part (a) of this remark is the basis for the proposition below.
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1.8.4 Proposition. Let 1 E R, j > 0, and 0 S; pk, p~ S; j, k = 1, ... , r. ll/Ioreover, let

Pk , Pk be Mellin asymptoUc types with Jrc Pk n r1/2-,+Pk = 0 = Jrc Pkn r1/2-,+p~, and

finally let ak E Mt,d(X), a~ E Mptl:d(X). For w, Wl E C~(R+) define
k k

r

A Wtj z= oP'Xi Pk (ak) Wh and
k=l

. r I

A' = wt J Z=op;Pk(a~)Wl'
k=l

Then A - A' E C~(X'\ g)Q,R, whenever Lk=1 ak(Z) = Lk=t a~(z) for all z.
Here, g = (, + n/2" + n/2, (-00,0]); Q and Rare resulting asymptotic types.

1.9 The Aigebras CM+C(.yA, g) and CM+c(ID, g).

1.9.1 Definition. Let J1.,V E R,tL-v E N,d E N, and let g = (,+n/2,,+n/2-J1.,8)
be a weight datlun, , E R. We suppose that 8 = (-N, 0], for sotne N E N\{O}.
For dEN we let C~/+c(X/\,g) denote the space of all operators A = AM + Ac, where

(i) AM is a Mellin operator of the form AM = t-V 2::7=(/ Wj t j op'k1(hj )Wj with
(i.1) suitable cut-off functions Wj, Wj near zero,

(i.2) / - (fL - v) - j :s; ,j :s; "
(i.3) hj E A1p.OO1d (X), anel

J

(i.4) Mellin asyrnptotic types Pj with 7rc Pj n r 1/2-l'j = 0.

(ii) Ac is a Green operator in C~(X/\, g)p,Q for suitable asymptotic types P, Q E
As(X, Y, g).

N-l N-1

t-V ~ w· t j op,j (h') w· - t-tl ~ w· tj+tl-Vopl'j (h·) w·L J M J J- L J M J J
j=O j=O

and tL - v E N. C~~c(ID, g) is the corresponding space, where in (ii) we replace X/\ by
ID , and in (i) we additiona,lly make the support of Wj, Wj so small that the operators are
well-defined on the cylindrical parts of ß) elose to the singularities. In view of 1.8.2 we
might also ask that the cut-off functions Wj anel Wj are independent of j.

In the following we will assume that "tL, vER, d, N E N, 8 = (-N, 0], and the weight
datum g = (, + n/2" + n/2 - f.l, 8) are fixed with the properties in 1.9.1 unless spec­
ified otherwise. In order to also fix the notation suppose that A acts on vector bundles
Vi, ... )W2 in the following way:

C~(x/\, \~)

A : EB
C~(Y/\, vVd

COO(X/\, V2 )

-r EB
COO(Y/\, vV2 ).
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1.9.2 Renlark. Using Theorem 1.7.4 and thc definition of the Green operators, an
operator A E C~/+c(X/\, g) can bc written

with A j E C;'P+c(X/\, g).

1.9.3 Theorenl. For operators A E C~d+C(X/\,g) and B E C~~c(UJ ,g) the ITlappings

K.!'/'+ ~ (X/\, \I.)
A: EB

K.!(y+n;-l (Y/\, Wd

Koo,/'+~-JL(X/\, \I;)
-+ EB

}Coo,/,+ n;-I -JL (Y", W
2

)

Hoo,/'+~-JL(DJ, V2 )

EB
Hoo,/,+n;l-JL(IB , w

2
)

B:
HS'/'+~(ß),VI)

EB
H!J,/,+ ";1 (JB , Wt)

are continuous for all s > d - 1/2.
If P = (PI, P2) E As( X, Y, Cr +n/2, 8)) is an asyrnptotic type, then there is a resulting
asymptotic type P' = (P{, pn E As(X, Y, Cf +n/2 - 11" 8)) sl1ch that

and

K;""'+~-JL(X/\, V2 )
1

EB
K~/,/,+n21_J.l(y/\, W

2
)

:J

B:

and
HS''Y+?J: (lD ll.)

PI ' I

EB
H.!(y+n;-I (83 W)

P:J ,I

are continuous for all s > d - 1/2.
Note: Since 8 = (- N, ü} is a finite weight interval, 1rc PI and 1rc P2 are finite sets in
the strip {1/2 - , - N < Re z < 1/2 - 1'}; 1rc P{ and 1rc P2 are finite setR in the strip
{1/2 + f1. -, - lV < Rez < 1/2 + 11 - ,}, cf. 1.5.1.

1.9.4 Lemma. Let A E C~d+C(X", g) be as above. Given a, ß .2: °with a +ß .2: N we
will have

ta A tß E C~(X/\, g)p/,Q/

with resulting asymptotic types P' and Q'. In particl11ar, C~~c(X/\, g) C C~(X", g) for
f1. - v .2: N. Recall that 8 = (-N, 0].

1.9.5 Definition. Let A = AM + Ac E C~/+c(X/\, g) be as in Definition 1.9.1. Define

a~j(A)=hj, j=O, ... ,N-(f1.-v)-l,

and call a~j (A) the conormaJ symbol of order v - j of A.
Note that for j .2: N - (J-l - v), the operators Wj t- v+j op~(aj) Wj are necessarily Green
operators.
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1.9.6 Remark. 'vVe know from Proposition 1.8.4 that two operators in C;;/+G(X/\, g)
which have the same conorrnal sYlnbols of all order differ only by a Green operator,
provided the weights ,j are suitably chosen.
Vice versa, the conormal symbols a~-j (A), j = 0, ... ,lV - (/.1, - v) -1, are also well-defined.
This follows from the proposition, below, which is of independent interest.

1.9.7 Proposition. The operator A in 1.9.3 is a Green operator, iE and only ifa~-J (A) =
0,] = 0, ... , N - (fL - 1/)-1.

1.9.8 Theorem. Let A E c~f+G(x/\, g), g = (, + n/2,! + n/2 - fi', 8). Then the formal

adjoint A* of A belongs to C':.:t~G(X/\, h), h = (-, - n/2 + /-L, -, - n/2, 8).

1.9.9 Theorem. Let A E C~~G(X/\, g), HEer; (X/\, h)Q,R, K E e& (X/\, k)S,T, where
h = (, + n/2 - /-L, 0,8), k = (0" + n/2, 8), and Q, R, S, T are corresponding asymptotic
types. Then

Ir A E C~(X/\, hdQ,R

A J( E eS (X/\, kdQ,R

(1)

(2)

with h 1 = (, +n/2, 0,8), k 1 = (0" +n/2 - /1,8) and resulting asymptotic types Q, R.

1.9.10 Theorem. Let A E C~~G(X/\, g) and B E e;:;"~'G(X/\, h) with h = C, + n/2 +
/-L'" + n/2, 8) and g = (r + n/2,! + n/2 - IL, 8). Then AB E C~,t;ddl (X", k) with
k = (, + n/2 + p', f + n/2 - p, 8). The conormal symbols satisfy the relations

a~VI-r(AB) = E [TVI-q (j~-P(A)] a~-q(B).
p+q=r

1.9.11 Lemma. Let P be a Mellin asyrnptotic type, dEN, and h E Mpoo,d(X). Then
[ + h(z) E B-oo,d(X) is an invertible operator on JJ~(X, Vt) EB lI~(Y, vV1 ) , s > d - 1/2,
for aH but countably Illilny z E C. Moreover, there is a Mellin asyrnptotic type Q and an
f E MQoo,d (X) such that

[f + h(Z)]-1 = f + f(z).

2 The Cone Algebra without Asymptotics

2.1 General Mellin Symbols with Values in Boutet de Monvel's
Algebra

In Section 4 of Part I we introduced Mellin symbols with asymptotics; they are meromor­
phic functions on C with values in Boutet de ~1onvel's algebra. For the definition of the
Mellin operator op1Ja associated with the Mellin sYlnbol (L, we only need to know aon the
line r 1/2-"(, and we certainly do not need its analyticity. We shall extend the caIculus to
even larger classes of Mellin sYlnbols by considering the case where the symbols addition­
ally depend on thc space variables t and t ' - comparable to studying pseudodifferential
'double' symbols p(x, y,~) after having treated Fourier multipliers p(~).
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2.1.1 Notation. In the following let lL E Z and dEN be fixed. Given f E COO(R+ X

R+, B/l~d(X; fl/2-...,,)) we shall write f = f(t, 'L', z), wherc z inelicates the variable in f 1/2-...".
For t, t', z fixed, f( t, t', z) is a boundary value problem in Boutet de Monvel's caJculus, so
it acts on sections of vector bundles over X anel Y. In order to fix the notation, assurne
that

COO(X, Vd
f(t, t', z) : EB

COO(Y, Wd

Coo(X, V2 )

-+ EB
Coo(Y, W2 )

(1)

with smooth vector bundles VI, V2 , over X anel W1, W2 , over Y.

2.1.2 Definition. Let f E Coo(R+ X R+,BtJ,d(X;f1/ 2_...,,)). For 11, E C(f(X/\,\!l) EB
C~(Y/\, Wd = C~(R+, Coo( X, Vd EB Coo(y, Wd) let

00 d'
[opl1J]u(t) = ~ J J(t/t')-Z f(t, t', z)u(t')~dz.

2?TZ t'
r 1 / 2 -" 0

(1)

The right hand side of (1) is to be understood as an iterated integral. lf f is independent
oft' or, equivalently, f E Coo(R+,B/l,d(Xjr 1/ 2_...,,)), then (1) reduces to

[op1J]u(t) =~ f t- Z f(t, z) [M..."u] (z)dz.
21TZ Jr1/2-"

(2)

We did not specify the variable x in (1) or (2), understanding that, for fixed t', u(t') =
u(-, t') is in COO(X, \ld EB COO(Y, \tVd and that j(t, t', z) acts as an operator in Boutet de
Monvel's calculus with respect to the x-variables.
Like pseudodifferential double symbols, Mellin double symbols are not uniquely deter­
mined. It is ilnmediate fron1 integration by parts in (1) that

(3)

For f E COO(R+ X R+,Bj.l,d(X; f 1/ 2-...,,)) or f E COO(R+,BIL,d(X; f 1/ 2-...,,)) we will have a
continuous map

Ct:(X/\, VI)
op1f: EB -+

Ct:(Y/\ 1 Wd

COO(X/\, \12)
EB

COO(Y/\, W2 )

(4)

Smoothness of f up to zero yields coritinuity of op1tf on the weighted Mellin-Sobolev
spaces, cf. Theorem 2.1.3; the preceding relation (3), however, shows that smoothness is
not necessary.

2.1.3 Theorem. Let f E COO(R+ X R+,BIL,d(X; r 1/ 2-...,,)),Wl,W2 E Cg:'(R+). For s >
d - 1/2, there is a bOllnded extension

1-l"''''''+~(X/\,Vi)
wdop1f]W2 : EB -+

H S''''''+ ";1 (Y/\, Wd
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For d = 0 and s ::; -1/2

(2)

H,,-jltY+ ~ (X /\ \1.)
{a} , 2

EB
HS-IJ.(Y+ n;l (Y/\, W

2
)

that we are Ilsing the Ha-spaces for

H~"+~ (X/\, VI)

wdü plf]w2 : EB -f

Hs,,+n;l (Y/\, Wd

is continuous. Here, the subscript {O} indicates
s - I-l ::; 0, and the usual H-spaces otherwise.

Für the proof of Theorem 2.1.3 we need the following two reslllts.

2.1.4 Lemma. Let f E COO(R+ X R+, Bjl,d(X; r l / 2-')')) as in 2.1.3. Then there are

functions <pj E COO(R+), VJj E Coo(~), j = 1,2, , tending to zero in the topology of
COO(R+), elements aj E BIJ.,d(X; r l / 2-,)'j = 1,2 , tending to zero in the corresponding
topology, and a sequence {Aj} E [l such that

(1)
00

f(t, t', z) = L Aj<Pj(t)VJj(t')aj(z)
j=1

with convergence in COO(R+ x R+, BIJ.,d(X; f 1/2-')'))' Conversely, eacb series of this type
defines an elernerJt of Coo(~ x R+, BIJ1d(X; f 1/ 2 -')')).

Sirnilarly, if 9 E COO(R+,BIJ,d(Xj r 1/ 2-,)), then there are null sequences <pj E COO(R+)
and aj E BJ-l,d( X; ['1/2-,) and a sequence {Aj} E [l Sllch that

00

g(t, z) = L Aj cpj(t) aj(z).
j=1

Again, all series of this form determine elements in Coo(R+, BIJ,d(X; f l / 2-')')).

The same results hold with BIJ,d(X; f l / 2_,) replaced by B~,d(X; f l / 2 -')').

Proof. By definition

Coo(R+ x R+,BIJ,d(X; f 1/ 2-')')) = COO(R x R,B1l,d(X; f 1/ 2 -')')) IRtXRt .

In view of the nuc1earity of Coo(R) we have

COO(R x R, BIJ,d(X; f l / 2- r )) = ICOO(R)07fCoo(R)]07fBIJ.,d(X; r l / 2 -')').

Representation (1) then is immediate frolll the representation of elements in 7T"-tensor
prodllcts of vector spaces, cf. Treves (51]. <J

2.1.5 Proposition. Let a E BIJ.,d(X; f 1/ 2-')'). Then

H""+~ (X/\, \ld H"-J-l"',(+~(X/\, V2 )

op1ta : EB -f EB
H",r+ n;l (Y/\, Wd H"-lJ.l')'+ n;l (Y/\, W2 )

is bounded for each s > d -1/2. For d = 0 and s ::; -1/2,

H""+~(X/\ \1,) H"-IJ,r+~(X/\ V)a , 1 {a} , 2

op1t-a : EB -f EB
H",r+ n;l (yA, Wd HS-IJ.,')'+ n;l (Y/\, W

2
)

is continuous. As before, the subscript {O} indicates that we are using the Ha-spaces (or
s - I-l ::; 0) and the usual H-spaces otherwise.

32



Proof For both statements we may use the proof of Theorem 1.4.1.11. For the sake of
eompleteness let us repeat the argurnent. For simplicity we will assurne that the veetor
bundles over X are trivial one-dimensional while those over Y vanish.
Write a(1/2 - / + ir) = 'L1;;;;o aj(r)8t + 'L1=o rj(r)8t, where the aj are loeal terms, given
by symbols of order fL - j anel type zero, while eaeh rj( r) is an integral operator whose
kernel is rapidly deereasing in rand sn100th in thc spaee variables up to the boundary of
X.
The nonnal derivative ßr Il1aps 'Hs,-y+r(x") to 'Hs-1,-y+r(x") for s > 1/2. Moreovcr, the
integral operators indueed by the 1'j are eontinuous on both the spaces 'H",'y+r(X A

), s >
8 -y+!l

-1/2 ancl 'Ho' • (X"), s :::; -1 /2.
So we can focus on the first SUln anel assurne that we are dealing with a single parameter­
dependent operator a = a(r) of order fL anel type zero in Boutet de Monvel's algebra on
R~, supporteel by a compact set, uniformly in r.
Now we reduce the problem to a continuity result for operator-valued pseudodifferentia.1
operators: We know from 1.4.4 that 1\1')'1ls'-Y+~(R+' x R+) = Fn+1H8(R+. x R) and

l\1-y1l~'')'+~(R+' x R+) = Fn+!HÜ(R+. x R), iclentifying r 1/ 2-')' and R. Fn+1 denotes
the Fourier transform with respeet to the last variable. Applying additionally the Fourier
transform with respect to the first n-1 variables, F', the space Fn+1Hlf (R+' x R) is Il1apped
to W 8 (Rn-l x R, HS(R+)) and Fn+! Ht(R+. x R) is mapped to W"(Rn-l x R, H8(R+)).
Hence, for s > -1/2,

op1a = Nl;IF'-1 uA(a)F'ft,1-y: 1-l8'-Y+~(R~ x R+) ---+ ""l"-tl,')'+!j-(R~ x R+)

is continuous if anel only if

op+a

= (F'Fn+d-1 u,,(a) (F'Fn+d : W"(Rn x R, HS(R+)) ---+ WS-J~(Rn x R, H"-tl(R+))

is bounded. The latter fact, however, is given in 1.2.2.19.
For s :::; -1/2, the continuity of

')' u'--l '1:"'-1 () '1:"'M '11"""'1'+ !} (Rn R) '11"-tl,')'+ !} (Rn R)0PMa = IVl-y.r UA a.r -y: no + X + ---+ no + X +

is equivalent to that of

(F'Fn+1 )-1 U A(a) (F'Fn+1 ) : W" (Rn X R, H~ (R+)) ---+ W"-~(Rn X R, H{~r(R+)).

Again, 1.2.2.19 gives the desired result. Notice that we can omit the subscripts comp and
loc, for a(T) is eornpactly supported. <l

P1'oof of Theorem 2.1.3. We first notice that

wdop1f]w2 = op1g

with g(t, t', z) = Wl(t)W2(t')j(t, t', z). Using the representation 2.1.4(1) it is sufficient to
show the following two facts:

(i) Multiplication by a function r.p E Cgo(R+) is a bounded operator on 'H,",'Y(X", \I)
and 1{",'Y(yA, W) for all sand ,and for arbitrary vector bundles \I over X, vV over
Y; the eorresponding operator nonns depend continuously on the semi-norn1S of r.p
in COO(R+), keeping the support in a fixed compact set.
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(ii) For a (t, t')-inclependent Mellin sYlllbol a E B~,d(X; f l/ 2--y), the operator op1-a has
the required mapping properties.

Fact (i) is statcd anel proven in 1.4.3(h), while (ii) is precisely the statement of Proposition
2.1.5. <J

We now introduce the operator classes with respect to this ca1culus.

2.1.6 Definition. Let I ERbe fixed.

(a) MB:;oo,O(X/\) is the set of all linear mappings

such that, for all WI, W2 E Cgo(R+) anel all s E R,

1-t,')'+~(X /\ \1,)
{a} , 1

W I GW2: EB
1-l!J,')'+ n-;,l (Y/\ 1 Wt}

1-loo,')'+~(x/\, V2 )

-+ EB
1-loo ,')'+ n;l (Y/\, W

2
)

(2)

is continuous. The subscript {O} indicates that we use the tlo-spaces for s ::; -1/2,
the usual tl-spaces otherwise.

(b) For dEN, MB:;oo,d(XI\) is the space of all operators of the form

with Gj E 1\1B:;oo,O(X/\). Here Dr elenotes the normal derivative with respect to
ax = Y, and the matrix refers to the vector bundles the operator acts on, cL (2).

(c) For 11 E Z anel dEN 1 M8~,d(X/\) is the space of a11 operators of the form op1 f +G,
where f E COO(R+ X R+,BIi,d(X; ['1/2-')')) anel GE MB:;oo,d(XI\).

2.1.7 Remark. Let G* elenote the aeljoint operator to G1 E MB:;OO,O(X/\) , taken
with respect to the sesquilinear pairing associated with 2.1.6(2), for details cL 2.3.2,
below. The relations tl~,')'+~(X/\, \lt}' = tl-!J,-')'-~(X/\, Vt} and 1-loo ,')'+rr(X/\, V;) =

proj - lim!J-"oo1-f"'')'+~ (X /\, Vi) together wi th the corresponding reSli1ts for t he spaces over
Y ilnply the following mapping properties:

tloo,-')'- ~ (X /\, \;;)

-+ ffi
1-loo,-')'-~(y/\, W

2
)

The following lemIna anel Corollary 2.1.9, below, show that the definitions in 2.1.6(b) and
(c) are consistent:
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2.1.8 Lemma. Let f E COO(R+ X R+, BJl,d(X i l\/2-...,,)). Then f can be written

f (t, t', z) = ~ fj (t, t', z) [~ ~], (1)

where fj E COO(R+ X R+, BJl-j,O(X; fl/2-...,,)) and the matrix on the rigllt hand side of (1)
refers to the vector bundles f(t, t', z) is acting on, cf. 2.1.1(1).

Proof This follows from the deeomposition 2.1.4(1): Each of the operators aj E
BJl,d(X; f 1/ 2-...,,) ean be written

with ajk E BJl-k,O(X; f l / 2-...,,). vVe ean then rearrange the summation, since it is absolutely
convergent in all semi-norms. <J

2.1.9 Corollary. For f E COO(R+ x R+,B-OO,d(x;r1/ 2_...,,)) the operator op1f is an
element of MB~OO,d(X/\).

P1'oof This is imlnediate frOln 2.1.8 and 2.1.5. <J

2.1.10 Renlark. Note that there are symbols f rJ. COO(R+,B-OO,O(Xirl/2_...,,)) such
that still 0P7vtJ E MB~OO,O(X /\): Choose an arbitrary paralneter-dependent operator

o-# a E B-OO,O(Xj fl/2-...,,). Then the sYlnbol f defined by f(t, z) = t 1/
2a(z) is an element

of COO(R+,B-OO,O(Xj f l / 2_,))\COO (R+,B-OO,O(X; f l / 2-,)). On the other hand, the fact
that op7vta belongs to MB:;oo,O(X/\) by 2.1.9 together with Lenlma 2.1.11, bclow, implies
that op1f E MB~OO,O(X/\).

2.1.11 Lemlna. Let <p E LOO(R+) and suppose that for all JEN we have

(1)

Then the operator Mrp of rnultiplication by ep

M~ : 1-l~''''''(X/\) --+ 1-ls ,,(X"), and

M rp : 1-l~'''''' (X /\) --+ 1-l~" (X /\ )

is bounded for all s, I E R.

Proof By interpolation anel duality we ma,y assume that sEN. 'l'hen 1-l 8 ,,(X/\) is the
space of all functions u = u(x, t) on X/\ such that t!j-,(t8t )j Dxu(x, t) E L2 (X/\) whenever
j ::; sand D is a differential operator of order ::; s - j. Now (1) together with Leibniz'
rule implies the assertion. Sinee 1l1ultiplication by <p does not increase the support, the
argument for H.~''''''(X'') is the same. <J
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2.1.12 Theorem. (Asymptotic Summation) Let dEN be fixed, /-lt, /-l21 ... a sequence
in Z tending to -00, fi E COO(R+ X R+, BIJj,d(X j f 1/2-')')), and J--l = Inax /Li' Then there
lS an

f E COO(R+ X R+,BIJ,d(Xj f 1/ 2-')'))

such that (or any N E N there is a J with

J

J - LI;, E COO(R+ X R+,BIJ-N,d(Xj f l / 2 -,,)).

j=l

(1)

This f is unique modulo COO(R+ X R+, B-OO,d(X; f 1/ 2-,,)). 'Ve sha11 write f f'J 'LJ=o fi'

The same result is true with R+ X R+ replaced by R+, R+ X R+, Of R+.

Proof Choose a partition of unity {epk : k = 1, ... , I<} and cut-off functions 'l/Jk on X, sub­
ordinate to the coordinate neighborhoods, satisfying epk'l/Jk = epk. Let <Pk E BO,O(X) denote

the operator of multiplicatioll by [~k 'P~II']' similarly for 'l!k. For j = 1,2, ... consider

the (operator-valued) symbols <pkfj(i, i', Z)Wk' We have Jj(i, t', z) - 'Lf=1 <pkfj(t, t', Z)Wk E
Coo(R+ X R+; B-oo,d( X j f 1/2-')')) while ipkfj(t, t', z) \li k is given by a quintuple of synlbols
in the respective classes.
Now we appeal to the theorems on asyrnptotic summation in these classes, cf. [30, Section
2.2.5.1 Proposition 3]. In fact, the present situation differs [rOIn the case treated in [30] in
two respects: (i) we have the paralneter zEr1/2-')' and (ii) we have the additional vari­
ables t and i' in which everything is smooth on R+. Inspection of the classical summation
procedure, however, shows that neither (i) nor (ii) causes any difficulty: The variable z
enters like an additional covariable while t and t' enter like additional space variables, so
that the sanle procedure can be applied. <]

()

2.2 The Kernels of Mellin Symbols

2.2.1 Mellin Operators and Kerneis. As the exposition in Section 2.1 shows, the
theory of general Mellin symbols eIoes not depend on the particular choice of the line
f t / 2- T Throughout this sectioll we will therefore a..,;sume that / = 1/2 and consider the
line f o.

We will be interested in the (operator-valued) kerneis of Mellin operators with sYll1bols
f E Coo(R+ X R+,ßIJld(X; fo)). As before, I" E Z anel dEN are fixed. According to 2.1.2
we have for u E Cü(X )

00 00 .

[Op~2 flu(t) = 2~ JJ(f,)-<T f(t, t', ir)u(l') ~;' dr.
-00 °

So, op~2f is the integral operator with the distributional (operator-valued) kerneI

00 .

k( t, t') = ;11' J (f,f' I( t, t', ir )dr = [M;;~f(t, t', .)]( f,) .
-00

(1)

(2)

with respect to the density ~ on R+. The integral in (2) is to be understood as a
distriblltional integral.
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OccasionaJly we shall need the following consideration.

2.2.2 Lemma. Let f E COO(R+ X R+, BIl,d(X; fo)), and let cf; E C~(R+). Thcn

op;!/[cf;(t/t')!(t, t', z)] = op~2[Mlj2,p-tz{cf;(p)M0~,'-tpf(t, t' , ()}]. (1)

For the moment we assume the expression on the right hand side makes sense. This fact
wi II be shown later in Theorern 2.2.17.

Pl'oof. Sy 2.2.1, the integral kernel of the operator on the right hand siele is

k(t, t' ) = [cf;(p)M0~,'-tp!(t, t', ()]p=tjtt = cf;(t/t')[M;i~,'-tp!(t, t', ()]p=tjtt.

Again by 2.2.1, the last expression is the integral kernel of the operator on the left hand
siele of (1). Hence both operators coincide. <l

2.2.3 Definition and Remark. 5(fo, B-oo,d(X)) elenotes the Schwartz space of
al1 rapidly decreasing functions on f o with values in B-oo,d(X). It coincides with
B-oo,d(X; f o). Ta these functions we apply the inverse Mellin transform M0~ anel call
T the resulting space:

What is the topology on T? The nuclearity of 5(fo) implies that

So the natural topology on T is the projective limit topology induced via the topologies
on B-oo,d(X) anel on Ml/~5(ro). The latter in turn simply is the topology carried over

from 5(f0) by the isomorphisIll !vf0~' ~10re precisely: the semi-norm system

(1)

M, N E N, on 5(fo) induces the system

on Ml/~5(ro). Here we have employed the fact that

( )

M
M N d NMp-tz(ln p(-p8p) h) = dz z (Mh)(z).

(2)

(3)

Summing up we have the following: Let Pi be a selni-norm systelTI for the topology of
B-oo,d(X). Then the topology on T is given by the system {rMNi : M, N,j E N} defined
by

(4)
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2.2.4 Theorenl. Choose'IjJ E C~(R+) with 1j; _ 1 near 1, f E COO(R+ X R+,BtLld(X;
r0)) and let k(t, t', p) = {A10~,z-tpf(t, t', z )](p). Then

(1)

In particular, the singular support oE k(t, t', .) is contained in {p = 1} for all t, t' E R.r.
Moreover, the mapping ('ljJ, f) 1-+ (1 - 'ljJ)k induces a separately continuous operator

(2)

Clearly, the corresponding result holds with R+ x R+ replaced by R+.

Pl'OOf. Using that COO(R+ x R+,BtL,d(X; r o)) = COO(R+ x R+)01l"BtL,d(Xj r o) and
COO(R+ x R+, T) = COO(R+ x R+ )011"T we only have to show thc following:
For a E BtLld(X; ro) and k = M;i~a, we have (l-'lj;)k E T, anel the Inapping a 1-+ (1-7jJ)k
induces a continuous operator frOin ßji,d(X j r0) to T.
In order to see this let us first check that, for each fixeel p, the operator (1 - 7jJ(p ))k(p)
belongs to ß-oo,d(X): 1 - 'lj;(p) vanishes near p = 1, thus, for each L E N, the [unction
In-L p (1 - 7jJ(p)) is smooth on R+, anel we can write

after integration by parts. Since a E B1l1d(Xj ro) we conelude that, for fixed p, (1 ­
7jJ(p))k(p) E ß/!-L,d(X), hence in ß-oo,d(X).
In a similar way we will now show that the T-semi-norms for (1 - 'ljJ)k are finite. Letting
7jJj(p) := (p8p )j(1 - 7jJ(p)), we obtain that 7jJj E Cr(R+) for JEN. Moreover, we have
for arbitrary L, M, N E N

Leibniz' rule shows that the integral is a linear combination of terms of thc fonD

(3)

pj (1: p-iT (T jl f)~a(iT))dT) 50 C

with a constant C = C( L, j1, j), independent of p. We conelude that, in the notation of
2.2.3(4), the senli-norm l'MNj((l - 'ljJ)k) can be estimated by finitely many expressions

where jl + j2 + j3 = N. We may now choose a semi-norm system {Pj : j = 1,2, ...} for
ß-oo,d(X) such that each Pj is a semi-norm on ßJ-'-j,d(X). Fixing N, M and j, choose
L > M + N +j + 2. Then 1\1- L - j3 < 0; moreover (1 +72)7 j1 (ß:a)(i7) E ßJi-j,d(X; Rr),
so that

const.
{ }

1/2
00 . 2 dp10 IlnM

-
L

-
J3 p1/>j, (p) I p < 00.
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Thus all the selni-norms in 2.2.3(4) are finite, and they continuously depend on the selni­
norms for a in Bp.,d(X; f o) anel on the semi-norms for 'tj; in V K , K C R+ con1pact. Here,
VI{ denotes those elements in CQ'(R+) that have support in a fixed compact [( C R+.
For details see [31, Theorem 6.6]. This completes the proof. <J

2.2.5 Corollary. Let /, 'tj;, and k be as in Theorem 2.2.4 anel define

h(t,t',z) = M1/ 2,p---tz{(1-ljJ(p))k(t,t',p)}.

Then h E COO(R+ X R+,B-OO,d(X; f o)). Clearly, the same result holds with R+ x R+
replaced by R+.

PiOO! This follows from the tensor procluct representation in Lemma 2.1.4 together with
the fact that M1/ 2T = 5(fo, B-oo,d(X)) = B-oo,d(X; f o). <J

2.2.6 Lemma. Let r.p E C~(R+) and a E BJ!,d(X; f o). Then r.p(p)[M0~,z-+pa(z)](p)

defines an element of E"(R+, Bp.,d(X)). The rnapping

given by (r.p, a) t-+ r.p( Ml/~a) is separately continuous.

The Me1lin transform of r.p(Ml/~a) gives an elenlent of A(C, Bp.,d(X)), and the mapping

given by (r.p, a) t-+ M(r.p(Ml/~a)) is separately continuous.

Proo/. By definition, E"(R+,BP.,d(X)) = 'c(COO(R+),BP.,d(X)) with the topology of
bounded convergence. In order to show that r.p f\1i/~a E E"(R+, BIJ.,d( X)) let 'tj; E COO(R+)

anel denote by ( , ) the duality induced by the inner product on L2(R+,;') via

(u, 'tj;) = (u, 'tj;)L2(f4.,~), u, VJ E C~(R+). Thcn

00

(r.pMl/~,T-+pa,'tj;) = (r.p Jp-iTa(ir)dr,'tj;)
-00

00(J p-l-iTa(ir)dr,pr.p'tj;)
-00

00

((_pDp)N Jp-l-iT(1+ir)-Na(ir)dr,pr.p'I/J.)
-00

0000 . d
= JJp-"(l+ irtNa(ir)dr p-t (p8p )N(pep(p),p(p)) :. (1)

0-00

The last integral is an LI-integral with values in Bp.,d(X), provided lV is sufficiently large.
This follows from the fact that, for every semi-norm q on BIJ,d(X), we have q(a(ir)) =
O( (r)IJ.).
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Moreover: if the semi-norms for 1jJ in COO(R+) tend to zero, then the last integral tends
to zero in all semi-norms of BlJtd(X). So it indeed defines an element of E'(R+, BJ.l1d(X)).
Now let us show the continuity of thc mapping ('P, a) f---t 'P(M0~a) [rOln Cg=>(R+) X

BJ.l,d(X; f o) to E"(R+,BJ.l1d(X)): As 'lj; varies over a bounded set in COO(R+), the
integral in (1) can be estiInated in terms of finitely many semi-norn1s for a E

BJ.ltd(X; f o) anel finitely many semi-norms for 'P E 'DK , K c R+ con1pact. Fi­
nally note that the Mellin transform yields a continuous map [rom E'(R+, BIJ,d(X)) to
A(C, B1i,d). Indeed, this follows from the fact that

E"(R+,BlJld(X)) =

A(C, BJ.l,d(X))
E' (R+ )01f BJi 1d(X)
A(C)01fBJitd(X),

and

together with the fact that the Mellin transfonn maps E'(R+) to A(C). The latter is
well-known. It is easily seen in the following way. For f E E"(R+) we have M j = (j,t- Z

).

Now t- Z E Coo(R+, A(C)) = Coo(R+)01fA(C), so pairing it with f E E"(R+) = Coo(R+)'
gives an element of A(C) in a continuous way. <J

2.2.7 Proposition. Let a E BJi,d(Xj f o) and 'P E Cü(R+). Then M'P(M0~a) E
MtJ,d(X), and the indllced mapping

is separately continllolls.

The proof of Proposition 2.2.7 is rather lengthy. We shall give it in several steps stated
as independent lelnmas. The final conclusion will be obtained in 2.2.16. As apreparation
we first recall what is the topology of BJi,d(X; f o).

2.2.8 The topology of BlJld(X; ["0)' For simplicity we shall assurne that the vector
bundles V; anel \!2 are trivial one-dimensional while W1 anel W2 are O. We choose on
n a covering by coordinate neighborhoods, a partition of unity {'Pj : j = 1, ... , J} anel
cut-off functions {'lj;j : j = 1, ... , J} subordinate to this partition such that 'Pj'lj;j = 'Pj'
By K,j denote the corresponding coordinate Inaps. In a first step we write an operator
A E BJ.l,d(X; f o) in the form

J

A(z) = I: 'PjA(z)'lj;j + R(z).
j:;;:l

[n this representation, we have R(z) = L.-f=o RI(z)8; where each R1 is an integral operator
with a kernel function kl(z,x,y) E S(fo,z,Coo(X x X)), while

here 'Pj*, 'lj;j* denote t he functions 'Pj 0 K.j 1 and 'lj;j 0 K.j 1 on Rn, K,* (.) indi cates the pull­
back operators from Euc1ielean space to the manifold, and Aj(z) is a suitable parameter­
dependent operator on Euc1idean space.
The topology on BIJ,d(Xj f o) then is that of a non-direct surn of the topologies of
S(f0, 0 00 (X x X)) anel those of t he symbol spaces on relati vely open subsets of IG.. Let us
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recaU what those are. Let U be an open subset of R n-l. An element A E ß/-l,d(U x R+; r0)
has the form

d

A(z) = [op p(z)]+ +I: op'gj(z) 0 &1:
n

.

j=O
(1)

We briefty recaU the precise lneaning of (1), cf. 1.3.3:

(i) p E S:':'(U x R, Rn X R z ), [op p(z )]+ = r+op p(z) e+, with e+ denoting the operator
of extension (by zero) frOln U x R+ to U x Rand r+ that of restrietion to U x R+;
op is the usual pseudodifferential action with respect to the variables in Rn. Here,
we identify R z and r o.

(ii) For j = 0, ... , d, 9j is a paranleter-dependent and operator-valued singular Green
symbol in S/-I-j(U, Rn-l x R z ; S'(R+), S(R+)), cf. 1.2.2j op' denotes the pseudod­
ifferential action with respect to the variables in Rn-l.

We therefore topologize the operators in ß/-l,d( U X R+, r0) as a non-direct SUIl1, cf. 1.3.2,
via the topologies on S;:'(U X R,Rn X R z) and S/-I-j(U,Rn-l X Rz;S(R+),S(R+)) for
j = 0, ... , d. Note that the latter is the projective limit proj-linlq ,T-too sl-l-j (U, Rn-l X R z ;

Hüq,-T (R+), Hq,T (R+)) with the usual weighted Sobolev spaces on R+, cf. 1.2.1.

2.2.9 Lemma. Lei E,:F and Y be Frechet spaces, and assUf11e that E and :F are eIIl­
bedded in a common vector space X. Suppose T : E + F --+ Y is a linear lnap, and the
res trictions

T : E --+ Y, T::F --+ Y

are continuous in the topologies of E and F. Then

T:E+:F--+Y

is continuous in the topology of the non-direct SUl11 (cf. 1.3.2 for the de-nni tion of non­
direct surns of Frechet spaces).

Proof Let {Pl,P2, ... }, {ql' q2, ... }, be increasing systems of semi-nünns für E and F
respectively. Denote the translation invariant metric in Y by d. Then a system of
semi-nünl1s for E +:F 1S givcn by 7'j(X) = inf{pj(e) + qj(/) : e + f = x}. So sup­
pose Xo E E + Fand V ~ Y is an E-ball about Txo. Then there is a JEN and a
o> 0 sueh that d(Te, O) < %and d(T /,0) < ~, provided that e E E, f E F, pj(e) < 0
and qj(f) < o. This implies that Tx E V for all x with rj(x - xo) < 0: In this case
we ean find el E E, /1 E F such that el + /1 = X- xo and pj(et} + qj(fd < J. Bence
d(Tx, Txo) = d(T( x - xo), 0) ::; d(T( el), 0) +d(T(fl)' 0) < E. <J

2.2.10 Outline. We saw in LemIlla 2.2.6 that, for 'P E Cg:'(R+) and a E B/-l,d(X; f o),
we have !vt('P!v10~a) E A(C,ß/-l,d(X)). In order to prove Proposition 2.2.7 we therefore
only have to show that

M('PM1/~a) E ß/-I,d(X; f ß ),

for each line rß, uniformly for ß in compact intervals, plus the continuity of the corre­
sponding mappingj indeed this is everything Definition 1.7.2(b) requires. Let us make
the salne sill1plification as in the proof of Proposition 2.2.8: 'vVe assllll1e that the matrices
in ß/-I,d(Xj ro) consist of the left upper corner only, i.e., the operators act on a trivial
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one-dimensional bunelle over X only, the bundles over Y vanish. It will become clear that
full matrices can be treated in the saOle way. Uneler this assumption LeITIrna 2.2.9 shows
that it is sufficient to prove the following:

(1) For s = s(z) E S(fo,COO(X x X)) the function M(cpMl/~s)lrß is an element of
S(fß, COO(X x X)), uniformly for ß in compact intervals, anel the corresponeling
mapping is continllous.

(2) For pE Sf,.(U x R,Rn x f o), the function M(ep M0~p)lrß is an element of St;.(U x
R, Rn X f ß), llniformly for ß in compact intervals, anel the corresponeling mapping
is continuous.

(3) For 9 E S~(U, Rn-l x f o; E, F), thc function M(cp M1/1g)lr
ß

is an element of

S~(U,Rn-l x f ß; E, F), uniformly for ß in compact intervals, anel the corresponding
mapping is continuous.

Here, as in Proposition 2.2.8, U elenotes an open set in Rn-I, while E = H~U,-T(R+),

F = HU''''(R+) for arbitrary fixed a, T 2 O. Moreover, we can assurne in both cases that
the symbols vanish outside compact sets in U x Rand U, respectively.

We will now prove the statements (1), (2), anel (3) of 2.2.10, starting with (1). The final
conclusion will be reacheel in 2.2.16.

2.2.11 Lemma. Let ep E Cg=>(R+), h E S(fo), s E S(r'o, COO(X x X)). Then

(a) M01h E COO(R+). The mapping h Ho M1/1h is continuous from S(fo) to COO(R+).

(b) H := M(!.pM0~h) E A(C). Moreover, Hlrß E S(fß) for every ß, with estimates
uniformly in f:J for ß in compact intervals. The corresponding induced mapping
(cp, h) ~ H frorn C~(R+) x S(fo) int'o thjs subspace of A(C) js separately contjn­
uous.

(c) F := M(epM0~s) E A(C, COO(X x X)), F IrßE S(fß , COO(X X X)) for every ß,
with estimates unifonnly in ß [or ß in compact intervals. The mapping (!.p, s) ~ F
js separately continuous (rom Cgo(R+) X S(fo,COO(X x X)) to t'his subspace of
A(C, COO(X X X)).

PToof (a) By the Mellin inversion formula, cf. 1.4.1, (M0~h)(t) = 2~ J~oo t-Üh(is)ds. The
integral converges, and we can differentiate under the integral sign for the derivatives.
(b) In view of (a), cpM01h is a function in C~(R+)j its 11ellin transform therefore is
rapidly decreasing on each line f ß, uniformly in ß, cf. Theoreln 1.5.1.7 or [20]. Clearly,
the mapping (cp,g) ~ epg is separately continuous from Cg='(R+) X COO(R+) to Cgo(R+),
anel the Mellin transform is conti nuous from Cg='(R+) to the subspace of A(C) consisting
of functions that restrict to S( f ß), uniformly for ß in compact intervals, i.e. the space
Nfooo for dirn X = O. So the separate continuity follows from (a).
(c) follows from (b), noting that S(r'ß'COO(X X X)) = S(rß)0,.COO (X X X) and
A(C, COO(X X X)) = A(C)011"COO(X X X). For the continuity assertion we use the
continuity of the Mellin transforrn frOln Cg='(R+ 1 COO(X X X)) to the corresponding sub­
space of A(C, COO(X x X)). <J

We need some preparations for showing statelnents (2) and (3) of 2.2.10. Lemma 2.2.14,
below, contains a technical result relating Mellin anel Fourier transform.
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2.2.12 Lemma. Let u be a function on R+ and ß E R. Then

(1)

defines a function Sßu on R. Ir, additionally, 11, E tßL2 (R+), then

Here, Mß is the weighted !v[ellin transfornl, and :;: is tlle one-dirnensional Fourier trans­
form: :;:f( T) = f e-i17T f( a) da. Vice versa, if h = MßU, then

[Mit h}(t) = u(i) = [Sit :;:-1 v](t),

wi th v (T) = h (1/2 - ß+iT).

Proof By a straightforward COIllputation.

(2)

<J

2.2.13 Lemma. Let E be a Banach space and let {~). : A E R+} ~ 'c(E) be a strongly
continuous group action, cf 1.2.2. Then there are constants c and M such that

A proof may be [ound in [17] or [44].

We can now prove statement (3) of 2.2.10.

<J

2.2.14 Lemma. Let E, F be Banach spaces with strongly continuous group actions ~).,

K,)., A E R+. Let J--l ER, m,k E N, and

For the notation see 1.2.2. Suppose that a = a(x, e, z) vanishes for all x outside a compact
set, say [(. Then [ar every r.p E C~(R+) the function

is analytic on C with values in SJl(Rm, R k ; E, F). A1oreover, for all ß E R,

(1)

uniformly for ß in cornpact intervals, and the mapping (ep, a) f---t A frorn Cg'(R+) x
Sk(Rm, R k x f o; E, F) to this rrechet suhspace of A(C, SJl(Rm, R\ E, F)) is separately
continuol1s. Here the index [( of SJl indicates the space of those elements t'hat vanish for
x outside J{.

Proof 'vVe have

SJl(R;, R~ x fo,z; E, F) = COO(R;, SJl(RO, R~ x fu,z; E, F))

COO(Rm)01fSJl(RO, R~ x fa,z; E, F).
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Similarly, A(C, SIl(Rm, R k
; E, F)) = coo (Rm)01f A(C, SIl(RO, R k

; E, F)). Without loss
of generality we may therefore assume rn = 0, i.e., a E SIl(R~ x fo,z; E, F) is independent
of x. 'vVe conclude that

cp[M0~a] E E'(R+, Stl(Rk
; E, F))

applying the sanle considerations as in equation (1) of the proof of Lemlna 2.2.6: A
pairing with 'lj; E 0 00 (R+) and integration by parts gives us an integral that converges in
all selni-norms of SIl(Rk

; E, F). IVloreover, the tensor product argument llsed there shows
that

A = 1\tf(cpA10~a) E A(C, S1l(Rk
; E, F)).

This proves the first part of the statement.
Now consider Alr

ß
. We mayassurne ß = 0 in view of a well-known property of the Mellin

transform: (M j)(z + ß) = Mt-tz(tßj)(z), so that replacing Alrß by Alro corresponds to
replacing cp(t) by t-ßcp(t) E O~(R+). For the analysis of Alro it is more convenient to
switch from the Mellin to the Fourier transform. Vle write the variable in r 0 in the form
z = iT, T E R anel let p(T) = a(iT) . Accoreling to 2.2.12 we have

(Ml/2CPM0~a)(iT) = (:FSI/2cpS~AF-lp)(T)

= (Fcp(e-r)F-1p)(T).

The symbol p is an element of S1l(Rk+1
; E, F) and r t-+ cp(e-r ) = 'lj;(r) is a function in

Cgo(R). So our task is redllced to showing that q = F'lj;(r):F-1p E SIl(Rk+l; E, F). We
abbreviate 17 = (~, T) and consider a derivative D~q = Dg1 Dfj?q. We then estimate

11 ~(1J)-1 {J)~[Fr~T'lj;( r ):Fi~rP]( ~, T) }K(1J) 11 C(E,F)

I1 ~(1J)-1 D~ (~ * p)(e, T )K(1J) 1I C(E,F)
00

- 11~(tl)-l J-J;(er)(D~p)(~,T - er)der K(1J)lIC(E,F)
-00

00

= 11~(1J)-1 J~(T - er)(Dg
l D~2p)(e, a)der J'l;(1J)IIc(E,F)

-00

00

= 11 JK,(e,u)(1J)-1 ~(T - er )~(e,u)-I (Dgl D~2 p)( ~,er )K(e,U)J'l;(1J)(e,u)-1 derll C(E,F)
-00

(2)

00

< J11 ~(e,u)(1J) -I 11 C(F) I~(T - er) 1I1 ~(e,u)-I (Dfl DIj; p)( ~, er )K(e,u) llC(E,F) 11 K(1J)(e,u)-t IIL(E)der.
-00

Here we have llsed the fact that (scalar) multiplication by ~(T - er) commutes with the
action of K. According to 2.2.13 there are constants c anel M such that

(3)

anel

llK(e,u)-I(1J)IIC(E) ::; cL(Cer,r/)M, (4)

where L(~,er,17) = max{(~,er)-I(1]),(e,cr)(1])-I}. Peetre's inequality states that

(a+b)8::; c~(ar(b)I.'I1 for arbitrary a,b E Rm, 1n E N,s ER. We recall that 1] = (~,T)

allel conclucle that
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and, by symmetry, (~, 0') (7])-1 ::; C (0' - r) for a suitable constant C. For the last expres­
sion in (2) we combine this estimate with (3) and (4). Together with the facts that

and that 'ljJ is rapidly decreasing we conclude with Peetre's inequality that the final integral
in (2) is O( (1])~-IßI).
This shows (1). Clearly, all estimates depcnd continllollsly on 'P and p, thus they depend
continuously on a, and the corresponding mapping is separately continuous. <J

2.2.15 Lenlma. Let p E st~(Rn, Rn X r0), and suppose that p vanishes for X outside a
cornpact set KeRn. Let 'P E C~(R+). Then

(1)

it vanishes [ar x outside J(. Moreover, for every ß E R,

The corresponding estirnates are satisned uniforrnly for ß In cOlnpact intervals. The

mapping ('P, p) J--+ q is separately continuolls as a map [rom

C~(R+) x Srr K(Rn
, Rn X f o) (3)

I

to this Frechet sllbspace of A(C,S~(Rn-1 X R+,Rn)). As be{ore, the index K In (3)
indicates that the functions vanish [or x outside J(.

Proof If it were not for the subscript "ir", (1) and (2) would follow from LemIl1a 2.2.14,
because the usual symbol classes correspond to the operator-valued symbols with E =
F = C and trivial group action.
So we only have to show that the transmission property is preserved under the operation
in (1). This, however, is sinlple: a sytnbol a E S~(Rn, Rn X f o) has the transmission
property iff

a;na(x', 0, e, (e) ~n, z) E S~(R~;-t, Re,-l x f 01Z )01f Hen,

cf. [30, Seetion 2.2.2.1, Definition 2]. In the present situation we have

(4)

a;nq(C x', 0, e, (e) ~n) Mt-t,(r.p(t)Mli~,z_Ha;nP(x',0, e, (e) ~n, z) (5)
E A(C, SJ~(Rn-l,Rn-I) )01fHen

by a tensored version of the argument in 2.2.14. The last space coincides with
A(C, SJ~(Rn-l,Rn-l )01f Hen) and (1) is proven. For (2) we can argue in the sarne way:
restricting (5) to f ß furnishes an eleInent in S~(Rn-l,Rn-l )01fHen' Note that the symbols
always vanish for x and x' outside a cOInpact set.
Finally the separate continuity of the mapping follows frOITI the closed graph theorem and
the continuity properties established in Lemm.a 2.2.14, since the topology of the space
with the transInission property is finer than the original one. The closed graph theorem
indeed can be applied: a mapping A : Cö(R+) -t Y, Y a locally convex space, is contin­
uous if and only if its restrietion to the Frechet spaces DK are continuous. As befoTe, DK
denotes those elements in C~(R+) that have support in a fixed compact J( C R+. <J
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2.2.16 Conclusion. As pointed out in Remark 2.2.10, the assertion of Proposition
2.2.7 follows from Lemtna 2.2.14 and Lemma 2.2.15.

2.2.17 Theorem. Let J E COO(R+ X R+, B~,d(X; ro)). For<p E Cü(R+) define

h(t, t', () = Mp~d<p(p)M0~,z~pl(t,-t', z)} .

Then h E COO(R+ X ~, Mb,d(X)). A1oreover, the induced mapping

is separately continuous. Clearly, the corresponding statement holds with ~ x ~
replaced by R+.

Proo]. This is imrnediate from Proposition 2.2.7 together with the fact that

COO(R+ X R+, B",d(X; f o))

COO(R+ X R+, Mb,d(X))

<]

2.2.18 Corollary. "Ve use the notation of Theorem 2.2.17 and assurne additionally
that cp =1 near 1. Then Corollary 2.2.5 implies that

2.2.19 Corollary. Let I E COO(R+ X R+, ßl l ,d(X; f o)), cp E Cü(R+), and suppose
that, for some fixed N E N, we have (1 - p)-N cp(p) E Cü(R+). Then there is a symbol

- - Nd' 1/2 -I 1/2IN E COO(~ X R+, ß~- , (X; f o)) such that OPM McpMt / 2! = 0PM IN.

Prooj. Clearly, A1cpMl/~f = M<p(p) In -N pInN p M0~,z~pJ. We obtain the assertion

from an application of Theorern 2.2.17 and the fact that InNp Ml/~,z~pf(t, t', z) =

Mt/;,z~p[a;v f(t, t', z)}. <l

2.2.20 Proposition. Let J E COO(R+ X R+, ßjl,d(X; f o)), and suppose that, for same
fixed N E N, we have

- - Nd 1/2 1/2Then there is a symbol IN E COO(R+ X R+, ßjl- , (X; f o)) such that oPM I = oPM IN.

Proo]. Let g(t, t', z) = (t')N(t - t,)-N f(t, t', z). Then [} E COO(R+ X R+, ßll ,d(X; f o)), anel
f(t, t', z) = (~ - 1)Ng(t, t', z). Choose 'IjJ E Cgo(R+) with 'IjJ =1 in a neighborhood of 1.
Let

and

h(t, t', () = A11/2,P~d1jJ(p) lVfl/~,z~pf(t, t', z)]

ho(t,t',() = A11/2,p~d(1-1jJ)(p)M0~,z~pl(t,t',z)] .
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It follows from Corollary 2.2.5 that ho E COO(R+ X R+, B-oo,d(X; f o)). Since Op~2f =

op~2h + op~2ho, it is sufficient to treat op~2h for a fuoction h as in (1).
Now op~2h is the integral operator 00 Cgo(X") with the distributional kernel

[1jJ(p)M~/1 -+ j(t,t',z)]lp:;::t = [<p(p) InNp M}-{1 -+ g(t,t',z)]lp:;::t ,,z p t' ,z p tT

where tp(p) = (1 - p)N In- Np1jJ(p) E C~(R+); recall that the density on R+ was ~.

Furthermore, InN p M}j~,z-+pg(t, t', z) = A10~,z-+p[a;Vg(t, t', z)]. Therefore, according to
Lemma 2.2.2,

op~2h(t, t', () = op~2 [Mp-+(<p(p) M0~,z-+p {a;'gel, t', z)}].

By Theorem 2.2.17 M[<pM0~(afg)] E COO(R+ X R+, Mb-N,d(X)). This yields the asser­
tion. <J

2.2.21 Proposition. For f E Coo(R+ X R+, B~,d(X; f o)) and tp E Cgo(R+) we llave
M<p(M0~f) E Coo(R+ x R+, Mb',:/(X)), and the induced rnapping

C~(R+) x Coo(R+ x R+, B~,d(X; f o)) -t Coo(R+ X R+, Mb',:/(X))

is separately continuous.

Pl'oof. 'A'e ooly have to make sure the space on the left hand side is tllapped into the
space on the right hand side. The separate contiouity will then follow from the closed
graph theorem applying the argument at the end of the proof of Lelllma 2.2.15. In order
to see the former stateillent, we only have to check that, for every ß E R, M<pM1/;f E

Coo(R+ x R+, B~,d(X; f ß)), uniformly for ß in compact intervals. The tensor product
representatioo in Letllma 2.1.4 allows HS to assume that f(t, t', z) = O'(t, t')a(z), where
0' E Coo(R+ x R+) anel a E a:/,d(X; f o). vVithout lass of generality assume 0' _ 1. We
have, for arbitrary N E N,

[M<pM0~f](t,t',ß + iT)

= [M<pM0;a](ß + iT)

~ {OO <p(p)pß+iT r p-z a(z )dzdp
2'JTt Ja iro

~ {oo p/3+iT+l<p(p)jOO p-(1+iu)a(ia)dadp
21Th -00

~ (OO (_p8p)N[pß+i-r+ltp(p)] Joo (1 + ia)-Np-(l+ieT)a(ia)dadp. (1)
21Th -00

Since the semi-norms for a(ia) are all O( (a)J.l), the integral converges in ß~,d(X) for fixed
ß, T. Moreover, we now write u = p - 1 and use the binomiaJ expansion (1 + u)ß =

L~o (j) 11,1 + O(11,N+l) to conclude that

[M<pM1j;a](ß + iT) = [M<pp/3 M0~aJ(iT)

= ~ (j) [Mrp(p)(p-l)j Ml/~a](iT)

+ [M!fNM0~a](iT)
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with a function <PN E Cgo(R+) that has a zero of order 1\' + 1 in p = 1. Accol'ding to
Corollary 2.2.19 the remaineler term in (2) yields an operator that can be rewritten with a
Mellin symbol in COO(R+ X R+, ß/-L-N-l,d(X j rß)) while the othel' terms yield elements of
COO(R+ x R+, ß/-L-j,d(X; rß)). Hence we obtain an asynlptotic expansion for the symbol
on rß in terms of the symbol on r 0, and it only remains to check the assertion for ß = O.
"Ve use a similar argument as before. First choose a function 'Ij; E Cgo(R+) with 'Ij;(p) =1
near p = 1 and 'Ij;<p = <po Now llse a Taylor expansion for the function 9 E Cgo(R) given
by g(u) = <p(ett

). vVe have g(u) = L:f=o gU)(O)jj! uj +9N, where YN(U)U- N- 1 is smooth
in u = O. Therefore,

N

<p(p) = L: Cj In
j P + <PN(p)

j=O
(3)

(4)

where Cj = g(j)(O)jj!, anel <PN(p) = 9N(lnp). In particula,r, ({;N(p) In-N-1p is smooth neal'
p = 1, anel so is (1 - p)-N-I<pN(p), We conclude that

N

[M<pM0~!](t, t', iT) = L:: Cj M 1/ 2 ['Ij;(p) In j
pMi/~,z--+pa)( iT)

j=O

+1\11/2 [1jJ(p)<p N(p) MI/~,z--+p a] (iT)
N

- -L Cj MI/2[1jJ(P)Mi/~,z--+p~a) (iT)
j=ü

+MI /2 ['Ij;(p )'PN(p)Mi/~,z--+pa] (iT).

EInploying Corollary 2.2.19, the last term can be rewritten as a Mellin operator with a
Mellin symbol in COO(R+ x R+, ß/-L-N-1,d(X; r0)), since 7/J ({;N is a function in Cgo(R+)
which vanishes to order N + 1 in p = 1. For the terms under the summation we note that

M[1jJ(p)Ml/~,z--+pa~a]= a~a - N1[(I-1jJ(p))1\11/~,z--+pa~a].

The first tenn on the right hand side is an elenlent of COO(R+ x R+, B~l-j,d(X; r o)) while
the second is an element of COO(R+ x R+, ß-oo,d(X; f o)) according to Corollary 2.2.5.
Since N was arbitrary, we obtain the desired l'esult. <]

2.2.22 Remark. The last arglunent in the proof of Proposition 2.2.21 can be used to
obtain an asyIl1ptotic expansion for the operator op~2(M<pMi/~fJ,independent of the fact
whether f is a classical symbol or not:
Let f E COO(R+ x R+, ßJL,d(Xj ro)), anel let <p E C~(R+). Wl'ite <p(p) = L:f=o Cj Inj p +
({;N(p), where Cj = [<p 0 exp](j)(O)jj! and 'PN ln-N-1p is snlooth neal' p = 1. Then equation
(4) in the proof of Proposition 2.2.21 together with Corollary 2.2.19 shows that

N
1/2(M M-1j'] " 1/2aj ! + 1/2/-OPM <P 1/2 = L.J CjOPM z oPM N

j=O

with IN E COO(R+ X R+
1
ßJL-N-l,d(X; f o)).

2.2.23 Remark. For several cases we have proved continuity results of the following
form: For suitable Frechet spaces Fand Gf, the bilinear 111ap

A : C~(R+) x F --+ G

is separately continuous. Since Cgo(R+) is barrelIed, the mapping A automatically is
hypocontinuous, see Köthe [22, 40.2(5)].
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2.3 Compositions and Adjoints

In this section we will show that the operators in the union of the classes MB~,d(X"),

!-L E Z, dEN, form an algebra and that elements of nonpositive order anel type zero have
adjoints within the calculus.
We will sornetimes Tleeel the following observation. The proof is straightforwarel by induc­
tiOTl.

2.3.1 Lemma. For each 1 ::; k E N there are constants Ckj, dkj such that

k
(t8d

k = L Ckjt
j a1 and (1)

j=1

k
tkak = L dkj (t8t )j (2)t

j=1

The coefHcients dkj are easily seen to be the Sterling nurnbers of tlle first kind, while the
Ckj are the Sterling numbers o[ the second kind [19].

We start with the result on adjoints.

2.3.2 Lemma. Let 0 2:: f.l E Z and f E COO(R+ X R+,Btl,O(X;r l / 2_"Y))' WI,W2 E

C~(R+), s > -1/2. Then tbe operator

1-lS'-Y+ ~ (X", V.)
wdop1!]W2 : EB --+

1-ls,-y+n~l (Y", Wd

1-lS-tl,"Y+~(X", \12)
EB

1-l8-tl,"Y+~ (Y", W2 )

has a fOrInal adjoint with respect to the pairings between

1-l3,"Y+~(X", V.)
EB

1-ls,"Y+ n;l (Y", ~Vd

on one hand, and

1-l3-tl,-y+~(X", \i2)
EIl

1-ls-tl,"Y+ n;l (Y", W2 )

on the other. The adjoint is given by

1-l;s,--y-~(X", Vi)
and EIl

1-l-s,--y-~ (Y", W1)

1-l~3+tl,-"Y- ~ (X", V
2

)

and EIl
1-l-3+tl ,--y-~ (Y", W2 )

where

(1)

j(*)(t,t',z)=!(t',i,n+1-z)*, (2)

and the asterisk denotes the pointwi.se formal L2-adjoint of the operator JU, 'l', n +1- z) :
COO(X, Vd EB COO(Y, vV.) --+ COO(X, \i2) EB COO(Y, ~V2) in Btl10(X).
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Proof. 'vVe use the representation of I established in Lenlma 2.1.4. It implies the conver­

gence of the corresponding series for wdoprr I]W2' We therefore have, using the notation
of 2.1.4(1),

00

L Aj(WlSOj[OPlr aj]W27Pj)*
j=l
00

L: AjW27Pj [OPM')'-naYI<)]WlSOj.
j=1

(3)

(1)

We have employed a fact from Lenlma 1.5.1.10: The adjoint of the Mellin operator
op'Xta, given by the t, t'-independent symbol a E B~,d(X; f l / 2-')'), is the Mellin opera­
tor oPMn-')'a(*) with a(*)(z) = a(n+ 1-z)"'. Now (3) implies (2) and c0l11pletes thc proof.

<J

Now we shall have alook at compositions. For what folIows, the choice of f is not essential,
anel we assuo1e f = 1/2. We will need the following observation.

2.3.3 Theorem. For I E COO(R+ x R+,Bjl,d(X;fo)) there is a lvlellin syrnbol 9 E
COO(R+,Bjl,d(X; f o)) such that, for arbitrary N E N,

1/2f ( ') 1/2 ( ) _ 1/2} (. I )oPM t, t ,Z - OPM 9 t, Z - oPM tN l, t ,Z

- - Nd 1/2 1/2for suitable hN E COO(R+ x R+,B- '(Xj fo)). In particular, 0PM f - 0PM 9 E
MB~/C;,d(XI\). The 1\1eIlin symbol 9 can be chosen with the asymptotic expansion

~ 1 ..
g(t, z) '"V LJ ~(-t'Otl F8;f( t, t', z) It'=t .

j=O J.
(2)

Proof A Taylor expansion gives for arbitrary N E N

N-l 1
f(t, t' , z) = L ~(t' - t)ia{l(t, t', z)It/=t + iN(t, t', z)

j=U J.

with (t' - t)-N iN(t, t', z) = l/(N - 1)! J0
1(1 - O)N-lf}{f f(t, t + O(t' - t), z)dO E COO(R+ x

R+, Bjl,J(X; f o)).

By Proposition 2.2.20 there is a YN E COO(R+ X R+, BJl-N,d(Xj f o)) such that op;!/ IN =

op~2gN. In order to treat the terms under the summation let

(t'-t)j .
fj(t, t', z) '1 at, l(t , t', z) Itl=t and

J.
tJ .

hj ( t, z) - ~ (ffl I (t, t', z) It ' =t .
J.

Choose 7jJ E Cg=>(R+) with 1jJ == 1 near 1. The function SOi clefined by

SOj(p) = (p-l - l)j ln-ip 'lj;(p)

is in Cg=>(R+). Moreover, according to Lemma 2.2.2,

op~2 fj = op~2 [kf1/ 2I.pj Inip1\10~hi]

+op~~2[MI/2(1 - 7P )M0~fj].

50

(3)



We have M(l - 'IjJ)M0~fj E COO(R+ x R+, ß-oo,d(X; f o)) by Corollary 2.2.5. For the

term before, we note that Inj{JM1/~,z-+phj(t,z) = M0;,z-+p(a~hj(t,z)). Since a~hj E

COO(R+, BIt-j,d(X; r0)), an application of Theorem 2.2.17 yields that

gj(t, () Ml/7.,p-+'(~j(p)In} p M0;h j]

Ml/7.,p-+dcpj(p)Ml/;a~hj] E COO(R+,ßIt-j,d(X;fo)).

Since N is arbitrary, we obtain a sequence {g}} of t\1ellin symbols of decreasing order.
According to Theorem 2.1.12 wc may choose 9 E COO(R+, BIt,d(X; f o)) with 9 f'.J L~o gj,
and we will have for any f/ E N,

op~7.f - op~7.g = Op~7.gN

for suitable 9N E COO(R+ X R+,ßIt-N,d(X; fo)). It reInains to show that 9 can be taken
with the asymptotic expansion (2). One expansion is given by the above consideration:

~ 1 l' ..
g(t, () f'.J L- -:'j' 1\11/7.,p-+dCPj (p )M07.,z-+p(tJOf,D;f(t, t' , z) Itl=t}l .

j:;;:o J.

Using Remark 2.2.22 and Lemma 2.3.1, it may be written in the form

00

L dkl(-t'8:)k8~f(t,t',z)lt'=t
k,I=O

with sllitable constants dkl . The constants dkl are independent of f; they contain infonna­
tion about the functions (p-I - I)} / ln j p, JEN, for suitable j, rn, and on the coefficients
in the conversion formula 2.3.1(2). We may thererore choose a particularly simple f to
determine them. For f(t, t', z) = cp(t')zk, cp E Cü(R+), we have

[op~7.f]u(t) = (-t8t )k(cpu)(t)

~ ( ~) (-t8,)'rp(t)( -t8,)k-lu(t)

op~2 [~ (n (-t8')'rp(t)zk-l] u(t)

op~2 ~ ~(-tlB" )'B~f(t, t' , z)I,;"u(t),

noting that 8;zk = k· .... (k - l + l)zk-l = (k~!I)!zk-l. Hence dkl = hÖkl, just as asserted.
<.J

2.3.4 Theorem. Given f E COO(R+ X R+, ß,"""d(X; f o)) there is a syrnbol 9 E
COO(R+, ßIt,d(X; f o)) such that, for arbitrary lV E N,

op~7. f(t, t', z) - op~7.g(t', z) = OP~7.hN(t, t', z)

with suitable hN E COO(R+ x R+,B-N,d(X;fo)). In particlllar, op~7.f - op~7.g E
Mß;/C;,d(X"). The symbol 9 can be t'aken with tlle asYlnptotic expansion

~ 1 . .
g(t' , z) f'.J L- ~ (-'lafF(-ßz )' f( t, t' , z) !t=t l

j=O J.
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Proof. This is analogous to the proof of Theorelu 2.3.3 by interchanging the roles of t anel

t'. <J

2.3.5 Theorem. Let {ll, /-l2 E Z and dl , d2 E N. Fix w E Cg:'(R+). Then the composi­
tion of operators yields a continuous rnapping

given by

( 1/2. G 1/2/ G ) (1/2 G) ( 1/2f G)opM } 1 + Tl, 0PM 2 + 2 M opM 11 + 1 W opM 2 + 2·

Here J--l = {LI + {L2, and d = maX{1l2 + d1, d2 }. More precisely we should take into account
the vector bundles the operators are acting on and use the following formulation.
Let Vo, V" V2 be vector bllndles over X and Wo, W1 , ~V2 be vcctOl' bundles ovel' Yj let
opj!/!j + Gj E MB~:;dj(X"), J' = 1,2 with fj E COO(R+ X R+,ßtlj,dj(Xj f o)), Gj E

A1B;t:,dj (X") having the mapping properties

!2(t, t', z) E L:(COO(X, Vo) ffi COO(Y, Wo), COO(X, VI) ffi COO(Y, Wt}) ,
G2 E L:(Ct:(X", Va) ffi C~(Y", Wo), COO(X", Vt} ffi COO(Y", Wt}) ,

JI(t,t',z) E L(COO (X,Vt}EBCOO(Y,Wd,C OO (X,V2)EBCOO(Y,W2)) ,

GI E L(C~(X", Vd ffi C~(Y/\ W1 ), GOO(X", \12) EB COO(Y", W2 )) •

Then
(Op~2Jt + GdW(op~2/2 +( 2) = Op~2! + G E MBi;~(X")

with Il = III + 1l2, d = ruax(1l2 + dt ,d2), f E COO(R+ X R+,ß1l,d(Xj ro)), and G E
Mß~/C;,d (X") such that

and

Proof. The proof splits into four parts in a natural way:

(i) The cOInposition Gt wG2 .

(ii) The composition G1WJOp~2/2).
(iii) The composition (oPN2!dwG2'
(iv) The composition (opl/JdW(op~2/2)'

Without loss of generality we may assume that the bundles are trivial one-diluensional

over X and 0 over Y. So let us show (i) - (iv).

(i) We nlay write G2 = L:~;o Hk8; with Hk of type zero. Then GtwG2 = L[G1wHk ]8:,
and it is easily checked that the operators G,wHk belong to Mß;):{'O(X") for they
have the required luapping properties.
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(ii) Using Lemma 2.1.8, write !2(t, L', z) = 'L,1=0 hj(-t, t' ,z)8t with hj E COO(R+ X

R+, B~2-j,0(X; f o)). An application of Theorem 2.1.3 shows that for Wl,W2 E

Cü(R+), the operators WI G1WOI\~~\hj)W2 have the mapping properties required

for an operator in Mß;/C;'U(X"'). Hence GIW[Op~212] E MB;/C;,d(X"').

(iii) is proven in the same way.

(iv) Let J1(t, t ' , z) = w(t')f(t,t', z). Then 11 E Coo(R+ X R+, B~11dl (X; f o)) anel, by
Theorem 2.3.4, there is a symbol 91 = 91(i,z) E Coo(R+,ßJ~l,dl(X;fo)) with

1/2(/) 1/21- - 1/2 IMB-00 ,d1 ('T"') S' '1 1 tl· .oPM 1 W = 0PM 1 = oPM 91 moc 1/2 ./\. . llnl ar y lere IS a 92 =

92(t' , z) E Coo(R+, ßJ~'J,d'J(X; ['0)) such that op~212 _ op~2g2 mod MB;/,;,d2 (X"').
Now we apply Lenlrna 2.1.4, writing

9,(t,Z)
00

L Aj<pj(t)aj(z)
j=1
00

92(t' ,Z) = 2:~j1fj(t')bj(z)
j=O

with suitable {Aj},{~j} E LI, anel null sequences {<pj},{1fj} C Coo(R+), {aj} C
B~l,dl(X; f o), {bj} ~ ß~'J,d'J(X; f o). We note that

where Cjk (z) = aj (z) 0 bk(z); here 0 denotes the cornposition B~11dl (X) x B~21d'J (X) --+
B~ld(X). Since this composition is continuous we obtain the assertion frorn (i), (ii),
and (i i i ). <l

2.3.6 Reluark. In 2.3.5 we may assurne that both 11, and 12 are independent oft' .
Then f can be taken independent of t' with the asYlnptotic expansion

(1)

In fact this is a consequence of the asymptotic expansion fonTIulae in 2.3.3 and 2.3.4 in
addition to the identity (x + y)q = Lm+r=q r!!~!xmyr, cf. [49, proof of Theorern 1.3.30].

2.4 Mellin Quantization

2.4.1 Push-forward of Pseudodifferential Operators. Let U, V be open sets in
Rn, X : U --+ V a diffeonl0rphism. Moreover, let E, F be Banach spaces with group
action. Given an operator

P : C;:(U, E) --+ Coo (U, F),

the push-forward X... ? : Cü(V, E) --+ Coo(V, F) is defined by

(x. P)f(x) = [P(f 0 X)][X-1(x )].
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If P = op p for some P E S~(U, Rn; E, F) then there is a symbol q E S~(V, Rn; E, F)
with op q = X.P Inodulo regularizing operators, anel q is unique up to symbols in
S-oo( V, Rn; E, F). In this sense X defines a push-forward also on the symbol level:

The Inapping is injective; the inverse is ineluced by the push-forward via X-I. The same
statements are true for symbols with the transmission property.
One way of proving this is to first convert the symbol P to a 'double' sYlnbol Pt (y, y', Tl)
by multiplying P by a cut-off function 1J = ~(y, y') near the diagonal {y = y'}; op P and
op Pt only differ by a regularizing operator. Then one can computc a 'double' symbol
qt E S~(\I X V, Rn; E, F) with X.Op PI = Op qI anel finally switch to a y'-independent
sYlllbol q with Op qt == Op q 1l10dulo regularizing operators.
In what follows it will often be possible to find a 'double' symbol qt with x.op P = op '11 by
a straightforward substitution in oscillatory integrals. We will then also write fit = x.p.

2.4.2 Corollary. Let X : U --+ V be a diffeomorphislll of open sets in R, and let
a E Coo(U, BJ~,d(X; R)) induce a pseudodifferential action by

op a(u)(y) = 2~ JJei{y-y').a(y, IJ )u(y')dy'dlJ
u

for u E Gt:(U,Coo(X, Vi) EB Coo(Y, ~Vd). For thc push-forward x.opa we then have

x.op a = op b+ G,

where

(1)

(2)

(i) the symbol b belongs to Coo( \I, B~,d( X; R)). lt is determined via the symbol push­
forward of the various loca,} symbols for a. [n this sense we shall uso the notation

b = x.a.
(ii) The operator G belongs to ß-oo,d(XI\). In other words, we can write

(3)

here 8 r is the normal derivative on X, and each Gj is a matrix of integral operators
with kernel functions which are stnooth up to the boundary of X.

Proo! We have Coo(U, ß~,d(X; R)) = Goo(U)®1rß~,d(X; R). Since convergence of the
symbols ilnplies convergence of the associated operators, it is sufficient to assume that
a(y,TJ) = 'Ij;(y)A(TJ) with 'Ij; E Ooo(U) and A E B~,d(X;R). The assertion is certainly
true for regularizing A: In this case, op aalready has the fOrIn (3); hence the push­
forward is of the same type and (2) holds with b = 0, for 8r is not affected. We can
therefore localize with respect to a coordinate neigborhood nj for n and assume that A
is given locally by a quintuple of paralneter-depcndent symbols in Boutet de Monvel's

calculus, (pj,9j,kj ,ij,sj), where pj = Pj(x,~,TJ) E Str(Xj,R? x Rn), X j = Oj n X, is
a pseudodifferential sYlllbol with the transmission property, g is a parameter-dependent
singular Green symbol, etc., cf. 1.3.4. 'vVe then have to show that their push-forward is
preserved.
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In order to see this, let us focus on Pi; the arguments for the other symbols are similar.
"Ve have

(4)

thus ljJ(y)p(x, e, 7/) E 8t;.(U x Xj, Rn X R). These spaces are invariant under coordinate
transforms, therefore the push-forward X",('lj;{y)p{x, e, 17)] belongs to St;.(V x Xi! Rn X R)
ITIodulo S-oo(V X Xj, Rn X R). We know that the push-forward of the regularizing
part is regularizing. ErTIploying now (4) with with U replaced by V plus the fact that
Coo(V,F) = Coo (V)0 1rF for every Frechet space F, we see that X*[1/J(y)p(x,Cry)] E
0 00 (V, Si,.{Xj , Rn X R)) may be considered the pseudodifferential part (with transmission
property) of a parameter-dependent symbol tuple for an operator in Coo{V, ß/-l,d(Xj ; R)).
Applying the same argument for the foul' other components gj, kj , tj, and Sj we obtain
the symbol b E Coo(V, ß/-l,d(X; R)). <J

2.4.3 Pseudodifferential and Mellin Synlbols. Given f E Coo(R+, ß/-l,d(X; ['0)) let

(1)

Denoting by exp the diffeomorphisln y t--+ eY from R --+ R+ we have

(2)

In more detail: For 'lt E C~(R+,Coo(X, V) EB Coo(y, V2 )) let u*(y) = u(eY ); then

[op~2 f(u)]( eIl) = [op b(u*)](y). This is a simple consequence of the identity

1 00 eY -z dt' 1 00 00 .

271"i JJ(-tl) f( e
Y

, z)u(t')t7dz = 271" JJe'(Y-Y')" f( e
Y

, -i1) )u*(y')dy'dl).
ro 0 -00-00

Equation (1) implies that b E Coo(R, B/-l,d(X; R)). According to Corollary 2.4.2, we will
have exp..op b op a ITIod ß-oo,d(X A

). Hence,

We shall now analyze the relationship between f anel a.

2.4.4 Definition and Remark. For J-l E Z and dEN let

Analogously, we let

For f E Coo(R+, B-oo,O(X; r o)), op~2f is an integral operator with smooth kerne! on X A
•

Hence lvfß-oo,d(X A ) := nw'~lBtl,d(X")= ß-oo,d(X A ).

The following lemITIa nlay be consielereel a 'coarse' quantization result. It shows that
pseudodifferential anel Mellin symbols induce the same operators modulo S-oo,d(X A

) as
long as we consider sYIl1bol c1a..c;ses with a.rbitrary behavior near t = o.
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2.4.5 Lemma.

NIap.,d(XI\) / NIa-OO,d(XI\) ~ ap-,d(XI\) / a-oo,d (XI\), anel

NIa~~,d(XI\)/ NIa-oo,d(XI\) ~ a~,d(XI\)/ a-oo,d(XI\).

The isomorphisrn is given by f f---+ exp* b with b(y,1]) = l(eY , -i1]); the inverse bya f---+ f
witb 1(5, z) = [ln" a](ln 5, iz).

Prao! By 2.4.2 anel 2.4.3 the mapping 1 f---+ exp"b, where b = f( eY , -i1]), maps the left
hand siele to the right hand side injeetively. A direet eomputation then yields thc above
inverse. <]

2.4.6 Corollary. If f E Coo(R+,ap-,d(X; ro)) a,nd op~2f E a-oo,d(XI\), thcn 1 E

Coo(R+
1
ß-oo,d(X j r0))'

- d
Let HS now have a look at a classieal elernent f E coo (R+, ß~' (X; r0))' For eaeh t E R+
we have the eomplete parameter-dependent interior symbol O'1}J(f(t)) and the eomplete
parameter-dependent boundary synlbol O'I\(f(t)), ef. 1.3.4. Both are smooth up to t = O.
Thus all the homogeneous eomponents of the Ioeal representatives Pj of the interior symbol
anel the homogeneous e0l11pOnents of the elements 9j, kj, tj, 5j of the loeal representatives
of the Green, potential, traee anel bounelary part of the boundary symbol are smooth up
to t = O.

2.4.7 Lemma. Ir J E coo(R+,a~,d(x;ro)) and op~2f E ß-oo,d(XI\), then f E
Coo(R+

1
ß-oo,d(Xj f o)).

Proo! In virtue of Corollary 2.4.6 we know that f E Coo(R+, ß-oo,d( X; r0))' Thus all
homogeneous eomponents of the symbol of f vanish on R+. Sinee they are smooth on
R+ 1 we obtain the assertion. <]

For what follows it will be interesting to know Inore preeisely what the push-forward by
exp looks like. "Ve start with a formal ealculation.

2.4.8 Lemma. Let P E SP-(R+, R). Then exp*op p is the pseudodifferential operator
with the 'double' symbol

1
(exp"p)(t, t', T) = p(In t, M(t, t')-lT)t;M(t, t')-l. (1)

Here !vl(t, t') = In~=~~e is Coo and strictly positive on R+ x R+.

Prao]. For u E Cg=>(R+), t' = eY', we have

[üp p(u ü exp)](In t) = 2
1
7f JJei(ln t-Y'J"I'(ln t, 1/ )u(eY')dy'd'l

00 d'
2
1
7f JJei(ln <-ln t'l" p(ln t, 'I )U(t') -f,-d'l

u

00 d'
2~ JJei('-<'JM(t,t'l"p(ln t, '1)u(t')-f,-d'l

o
00

2~JJei(t-t'lTp(ln t, M(t, t't 1T)U(t')iM( t, t't 1dt' dT
o
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This gives (1). The function M (t, t') is snl00th and 2: 0, for In is monotonely increasing.
Moreover, M has no zero sinee, for t = t', we have M(t, t) = +> 0. <J

2.4.9 Lemma. (a) a~M(t, t' ) Itl;;;;t= Ckt-k-1 for suitable Ck E R, k = 0,1, .... In
particular, (t'atl )k[t'M(t, t')]ltl;;;;t is srnooth IIp to t = 0.
(b) tk-la~[MCt, t')-l]It';;;;t is smooth up to t = 0, k = 0,1, ...

Proof (a) Let 'lt, v E R+. We have for 1 + x = ~, Ix] < 1

u 00 (_l)i+ l 00 (_l)i+ 1 (u - v)i
In 'lt - In v = In (-) = In(1 + x) = L . xi = L. .,

vi;;;; 1 J i;;;; 1 J v J

henee
N/(u, v) = In'lt -ln v = f: (_l)k (u - v)k

'lt - v k +1 v k+Ik;;;;O

Therefore

f)kM( ) I kl(-l)k -k-l
u U, V U;;;;V= '-k--v .

~ + 1

This proves the first statement. Applying Lemma 2.3.1 we obtain the seeond statement,
tao.
(b) By induction, a~[M(t, t')-l] is a linear combination of ternlS of the form

r

M(t, t,)-r-l II afl M(t, t'),
1;;;;1

where r ~ k and LI;;;;1 ]/ = k. This implies that a~[M(t, t')-l] It';;;;t is a linear eombination
of terms tr+1t-r- k °< r < k. <J, - -

2.4.10 Definition. Let /1, E Z, dEN. By COO(R+, B~,d(Xj R)) we denote the set of
all a E COO(R+, B~,d(Xi R)) for which there is ab E COO(R+, B/-l,d(X; R)) such that

a(t, r) = b(t, t7).

We eaU these operator-valued SYlllbols totally charaeteristic or Fuchs type syrnbols. Anal-
- ~ d d

ogousIy we defi ne 0 00 (R+, B~' (X i R)) as thc set of all a E Coo (R+, B~' (X j R)) for whieh
there is ab E Coo(R+,B:z,d(XiR)) such that a(t,r) = b(t,t7).

2.4.11 Remark. What does this mean for the symbols of the eorresponding operators
in Boutet de Monvel's ealculus? For eaeh fixed t > 0, the parameter-dependent operator
a(t) E B~,d(Xi R) has a cOlllplete parameter-dependent interior symbol a,p(a(t)) and a
complete parameter-dependent boundary symbol a 1\(a(t)) see 1.3.4 for details. The fact
that a E COO(R+, ß~,d(Xj R)) implies that both a1/J(a(t))(x, e, 7ft) and ITI\(a(t))(x' ,t, 7ft)

- - d
are slTIooth int up to t = 0. If a E COO(R+, B~t' (Xi R)) then
(i) the honlogeneous components of the Ioeal eomplete parameter-dependent interior sym­
bols IT1/J(a(t))(x,e, 7ft) are smooth in t up to t = 0i
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(ii) for the Ioeal e0I11plete parameter-dependent boundary symbols (now also depending
on t),

UI\(a(t)).(x' ( T) = (optnpj(X,t,e,r)+gj(xI,t,e,T) kj(xI,t,e,r))
J , , t '(x' t c' r) s ·(x' t c' r) ,

J "~, J "~,

all the hOInogeneous cOInponents of the operator-valued sYll1bols

9j (x', t, e, Tjt), k j(x', t, e, r /t) ,tAx', t, (, r jt), Sj (x', t, e, Tjt)

are smooth in t up to t = 0.

2.4.12 Theorem. For f E COO(R+, BJi,d(X; f o)) there is an a E COO(R+, B1l,d(X; R))
with

op a _ Op~2f moel B-oo,d(XI\).

If f E COO(R+, B:zld(X; 1"'0)), then we can find a E COO(R+, B~/d(X; R)).

(1)

Proof. We know from 2.4.3 that op~2f - op(exp*p) where p(y,ry) = !(eY,-iry), and,
accoreling to Lemnla 2.4.8, c,(t,t',r) = [exp*p](t,t',r) = p(lnt,M(t,t')-lr)~M(t,t')-l

= f(t, -iM(t, t')-lT)bM(t, t')-l. Let us convert the 'double' symbol Cl to a symbol
c E COO(R+, BJi,d(X; R)) independent of t';

(2)

Now

a;'D;c,(t, t/, r) = a;'{(-i)k(a:J)(t, -iM(t, t't1r)~M(t, t')-k-l}. (3)

By induction this is a linear combination of tenns of the form

(8;+j f)(t, -iM(t, t')-lr) r j 9kj(t, t'), J = 0, ... , k,

where gkj(t, t' ) is a linear combination of terms of the form

r

(t')-l-Io rr 8::{ M(t, t')-l}.
i=l

(4)

Here T = k +1+J, and Lo+L~=l Li = k. Using Lemma 2.4.9 we condude that t-jgkj(t, t)
is smooth up to t = 0.
COInbining (3) and (4) we see tha,t fJ~ D~Cl (t, t' , r) It'=t is a linear combination of terms
of the form (8;+j f)(t, -itr) (tr)jskj(t), where Skj is a smooth function on R+. Since
(8;+j f)(t, -itr) E COO(R+, Btl-k-j,d(X; R)), we obtain the symbol a by asymptotic sum­
mation in COO(R+, BJi,d(X; R)). Note that there is asymptotic summation in this dass:
Given a sequence {aj} with aj E COO(R+,l3tl- j ,d(X;R)) anel aj(t,r) = bj(t,tr) for
bj E COO(R+, BJi-j,d(X; R)) ehoosc b"" L bj anel let a(t, r) = b(t, tT). Then a - Lf=o aj E
COO(R+, BJi-N,d(X; R)) ~ COO(R+, Btl-N,d(X; R)); hence op C - op a E B-oo,d(XI\).
If f is dassieal, then the construction shows that the resulting a also is dassical. <l
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2.4.13 Theorem. (Mellin Quantization) Let a E COO(R,-, ßI"d(X; R)). Then there
is an f E COO(R+, ß",d(X; f o)) such that

op~2f =op a mod ß-oo,d(XI\). (1)

For later use we note that f(t,i7) - a(t,-7/t) E COO(R+,ß,,-l,d(X,Rr)).
For a E COO(R+, B~,d(X; R)) we can choose f E COO(R+, ß~,d(X; f o)). In tlJat case, f is
unique up to an element in COO(R+, ß-oo,d(X; f o)) and

j(t, iT) - a(t, -7/t) E COO(R+, ß~-I,d(X; f o)).

Pt'oof We know from Lemma 2.4.5 that op a =op~2g with

g(t, t', z) = [ln* a](ln t, In t', iz) j (2)

here, we use the 'double' symbol of [In,. a] one obtains by straightforward substitution in
the oscillatory integral. Given a sYlllbol q E S"(R+, R) a cornputation similar to that in
2.4.8 shows that

(In,. q)(y, y', 1]) = q(eY , M(e Y , eY')T/)eY' M(e Y , eY')

with the function M(t, t') = In~=~~t! introduced in 2.4.8. Hence, in our case,

g(t, t', iT) = a(t, -M(t, t')T) t' M(t, t'). (3)

(4)

Now we apply Theorern 2.3.3. We have op~2g == op~21 mod ß-oo,d(XI\) whenever f E
COO(R+, ß",d(Xj f o)) has the asymptotic expansion

f(t, z) ~E;, (-t'o,ya;g(t, t', z) 1,,=, .

Sy assumption, the synlbol b(t, T) = a(t, t-IT) is an elelnent of COO(R+, ß",d(X; R)). Thus
t-k(,a;a)(t,t-1T) = a;b(t,T) E COO(R+,ß,,-k,d(X;R)). By Lemma 2.4.9, the function
(t'at,)i (t' M( t, t')) It/=t is sfTIooth up to t = 0 for j = 0, 1, .... So all the terms on the right
hand siele of (4) are smooth up to t = 0, and the asymptotic summation can be carrieel
out in COO(R,-, ß",d(X; f o)).

If a is classical, then the asymptotic expansion (4) procluces a classical Mellin symbol f.
- - 1/2 1/2 -

Suppose we have /, f E COO(R+, ß",d(X; f o)) with OPM f == op a =oPM.f fnod
B-OO,d(XI\). Then op~2f - op~~21 E ß-oo,d(XI\), so / -1 E COO(R+,ß-oo,d(X; f o))

by Corollary 2.4.6. If, in addition, fand 1 are classical Mellin symbols, then 1 - j E
COO(R+, ß-oo,d(X; ro)) by Lemma 2.4.7. From the corresponding ielentity in the non­
c1assical case we have

since the hOlll0geneous components of order fL vanish on R+ anel are snl00th up to t = o.
<J

2.4.14 Mellin Quantization für Arbitrary Weights. In the previous section we stud­
ied the question how to associate to a totaJly characteristic pseudodifferential symbol a E
COO(R+, ß",d(X; R)) a Mellin sytnbol fl/2 E COO(~, ß",d(Xj ro)) with op a =Op~2 11/2
mod B-oo,d(XI\). Given an arbitrary weight f E R this result allows us to easily find a
Mellin symbol f..., E COO(R+ l ßI"d(X; r l/ 2 -...,)) sLIch that op a =oPMI..., mod ß-oo,d(XI\) :
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2.4.15 Theorem. For every a E COO(R+, Bjj,d(X; R)) anel every, E R there is an

/-r E COO(R+,8 jj ,d(X; r 1/ 2--r)) such that

opl1f-r =op a Jnod B-oo,d(X/\). (1)

The cOl'responding si'iitement hold8 [ar classical symbols.

Proof The Mellin sYlnbol 1'1 ean be computed in terms of the function I 11/2 In
Theorem 2.4.13. The definition of op1 shows that

- 1/2/ _ ,
opa = OPM 1/2 - 0PMg"

where g'Y(t, t', z) = (t/l')l/2-r11/2(l, z -1/2+,). We eonvert g'Y to a t'-independent symbol
I, with

f..,( t, z) ~ E~! (-t'at,)ka:g..,(t, t', z) 1.,=.

~ f= k
l
,(-t'ßtl)k( ;)1/2-'Ylt l =t a;11/2(t, z - 1/2 +,)

k=O . t

~ 1 k k
~k!(1/2-,) 8z/l/2(t,z-1/2+,), (2)

where we used that (-t'Btl)k(t/t')1/2-"ltl=t = (xDx)kx 1
/

2
- r lx=1 = (1/2 _,)k. Sinee /1/2

is smooth up to t = 0, the asymptotie surTIlnation ean be carried out in COO(R+,
ß~,d(X; r 1/2-r)), and we obtain the assertion.
If a is classical, then so is 11/2 by 2.4.13, henee /-r will be classical. <l

2.4.16 Relnark. In Part I we denned spaces M~,d(X) of (t, t')-independent Mellin sym­
bols of order I-t and type d. They are meromorphie funetions on C, their only singu­
larities are poles deseribed in tenns of the asymptotie type P. We ean then eonsider
the classes COO(R+, M~,d(X)) alld the associated Mellin operators. If the singularity
set P is empty we shall write h E COO(R+, MÖ,d(X)). Then hO,') is an entire fune-

tion, and Cauehy's theorem implies that op1h = opth for all ",' E R. We now let
11/2 = hl ro ' Aceording to Theorern 2.4.15, op1fr op1(1dr

l
/

2
_,.) mod 8-oo ,d(X/\).

Therefore, Ir - hl r1 /2 _"'f E COO(R+,B-OO,d(X; r 1/ 2-,,)). This ean be viewed as a slightly
different convergence I'esult for the Taylor series on the right hand side of 2.4.15(2).

2.4.17 Corollary. For every a E COO(R+,B~,d(X;R)) there is an hr E COO(R+,
Mb,d(X)) such that

op1h-y == op a mod 8-oo,d(X/\) (1)

for every , E R. The corresponding statement holds for classieal symbols.

Proof According to Theorem 2.4.13 we find f E COO(~, BIJ,d(X; ro)) with opa Op~2 I
mod 8-oo,d( X/\). Choose <p E Cgo(R+) with <p(p) =1 in a neighborhood of p = 1. Let

h(t, z) = Mp-tz<p(p )M0~,'-tpf(t, ().

Then h E COO(R+, Mi),d(X)) by Theorem 2.2.17 and f - h E COO(R+,8-00 ,d(X; f o)) by
Corollary 2.2.18. 8y Cauchy's theorelll, cf. Remark 2.4.16,

op1 h = op~2h == Op~2 f = opa mod B-oo,d(X).

Given classieal f, the i\1ellin symbol h will be classieal by Proposition 2.2.21. <J
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3 The Cone Algebra with Asymptotics

3.1 The Cone Pseudodifferelltial Operators

3.1.1 Notation and Terminology. Let us recall the 'stretched object' DJ associated
with the manifold with conical singularities D, cf. Definition 1.1.3. It is a Inanifold with
cylindrical ends obtained by replacillg, for each singularity v, a neighborhood of v by the
cylinder X x [0,1). "Ve assurne that the gluing near X x {I} between the cylindrical
and the remaining pa.rt has been performed by a fixed diffcOITIorphism. We will now
construct an algebra of operators which consists of usual operators in Boutel de Monvel's
calculus outside any neighborhood X x {O}, and Mellin operators on functions 01' sections
over X x [0,1). We will patch these operators together to operators acting on functions
01' sections over ID. In order to avoid superftuous pull-backs a,nd push-forwards we will
identify operators defined over the above cylinclrical part of ID by operators definecl over
X X [0, 1) 01' X x R+. We shall say that a function 01' distribution on 1D is supported dose
to the singular set, if there is an t: > °such that it vanishes outside the sets X x [0, t:)
associatecl with the singularities. Conversely, we shall say that it is supported away /rom
the sin.gular set, if it vanishes on all the sets X x [0, t:) for suitable t: > 0. We shall also
use the terminology "on the singular part 0/ DJ "and "on the regular part 0/ UJ". We
shall now consider ~1ellin symbols h E Coo(R+ X R+, M~,d(X)). Here J-L E Z, dEN,
anel P is a Mellin asynlptotic type, cf. 1.7.2(a). For (t, t' ) E R+ X R+, h(t, t' ,·) is a
meromorphic funetion on C with singularities elescribed by Pi it takes values in Boutel ele
Monvel's algebra over X. Coo(R+ x R+, M~,d(X)) is endoweel with the natural Frechet
topology indueed by the Frechet topology of M~,d(X). By definition we have M~,d(X) y

B~,d(X; r 1/ 2-')'), henee

(1)

provieled the line r 1/2-')' does not intersect the singularity set 1rcP of P.

3.1.2 Conventions. ror the rest of this seetion let lt E Z, dEN, N E N" E R, ancl
the Mellin asymptotie type P be fixedj go is the weight datum (, + ~" + ~, (-lV, 0)).
We shall always assull1e that

1rc P n r 1/2-')' = 0.
- - d

Moreover we suppose that a generic element h E Coo(R+ x Rr, Mt' (X)) acts on veetor
bundles VI, V2 over X anel W t , W2 over Y as in Section 2, cf. 2.1.1(1).

Unless specified otherwise, W, Wh W2, ... ,W, Wl, W2, ... denote functions in Cg:>(R+).
When speaking of an element A E B~,d(DJ ) in Boutet ele Monvel's calculus on UJ , we mean
an element of Boutet de Monvel's calculus on the open bounded manifolel OJ \ {t = O}.
The following lemma collects a few straightforward results.

3.1.3 Lemma. For h E Coo(R+ X R+ l M~,d(X)) the following assertions hold.
(a) There are (unctions c.pj,1f;j E Coo(R+), j = 1,2, ... , tending to zero in the topology o[
Coo(R+), elements aj E M~,d(X), j = 1,2, ... , t'ending to zero in the Frechet topology o[

M~,d(X), cf. 1.7.3, and a sequence {Aj} E [l such that

00

h(t, t', z) = :L Ajc.pj (t)7jJj (t')a}{z)
j=1
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with eonvergenee in COO(R+ x R+, M~,d(X)). Viee versa, eaeh series with these prop­
erties defines an element of COO(R+ x R+, iVf~,d(X)). A eorresponding resl1lt holds [ar
Coo(R+, Mt,d(X)).
(b) h ean be written

h(t,t',z) = th;(t,t'Z) [~ ~],

where h j E COO(~ X ~, MQ-i,O(X)), 8r denotes the normal derivative, and Q lS a
slightly modified Mellin asymptotic type Witll 7rcQ = 7rcP, cf. Theorem 1.4.1.5.
(c)

COO(R+ x R+, Mt,d(X)) = Coo(R+ x R+, Mb,d(X)) +Coo(R+ X R+, Mpoo,d(X))

is a non-direct sum o[ Freehet spaees. This resl1lt will be improved by Theorern 3.1.9,
below.
(d)

Cg='(X", Vd
op1h: EB

Cg='(Y", W1 )

is eontinuous.
(e) For Wl ,W2 E Cg:' (R+ )

COO(X, V2 )

-+ EB
Coo(Y", W2 )

HS,'Y+~(X", Vd
EB

n-lH8,-r+-:2- (Y", vVd
---+

HtJ-Jl,-r+~(X", V2 )

EB
HtJ-Jl,-r+ n;1 (Y", W

2
)

is bounded provided s > d - 1/2. For d = 0 and s ~ -1/2,

H~,-r+I(X", \11)

Wl [op1 h ]W2 : EB
H8,-r+~(y", Wd

HtJ-jj,-r+ %(X" \"')
{O} , 2

-+ EB
HtJ-jj,-r+ ";1 (Y", W

2
)

is bounded. The subseript {O} indicates that we are Ilsing the Ho-spaces [ar s - /1 ~ 0
and the usual H-spaees otherwisc.

Proof (a) is immediate from the nuclearity of COO(R+ x ~), cf. the proof of Lemlna
2.1.4.
(b) follows from (a) and the decompüsition result for M~,d(X) in Theorem 1.7.4.
(c) follows from (a) anel Theorem 1.7.6.
(cl) ancl (e) follow frOln the corresponding results in the case without asymptotics, since
hlr E COO(R+ x R+, ßjj,d(X; r 1/ 2--r)) as 7rcP n r l / 2--r = 0. <J1/:2-,.,

'A'e shall need the following Lemlna as apreparation für Theorenl 3.1.6, hut it also is of
independent interest.

- - d
3.1.4 Lemma. Let h E Coo(R+ X R+, Mb' (X)) and 7/J E C~(R+) with 7/J(p) =1 for
p dose to 1. Define ht/J(t,t',z) = iVfp~z7/J(p)A1:;'<-+ph(t,t', (). Then

00 - - -00 dh - ht/J E C (R+ X R+,Mo '(X)).
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Recall that we showed already that h - ht/J E Coo(R+ X R+, ß-oo~d(Xj r 1/2--y)) n Coo(R+

xR+ l , Nfb,d(X)), cf. Theorem 2.2.17 and Corollary 2.2.18.

Praaf. \rVithout loss of generality let us assume / = 1/2. Choose ß E Rand a nonnegative
integer M > /.t+IßI+1. Then D~h(t, t' ,') is integrable along r'ß. Moreover, the analyticity
of the function z l---+ p-zD~h(t, t' , z) together with Cauchy's TheorelTI implies that

i: p-iT(D~ h)(t, t', iT)dT = i: p-(ß+iT)(D~ h)(t, t ' ,ß+ ir)dT, (1)

so that (Nfl/~(D~h)) (t, t ' , p) = p-ß 1\11/~, (-4p (D~ h(t, t ' , ( + ß)). Hence, for z = ß+ iT,

(h - ht/J)(t, t' ,z) (2)

100

pß+iT-l (1 -1jJ(p)) (Ml/~h) (t, t ' ,p) dp

= 100

pß+iT-l (1 - 1jJ(p)) In-M p( !Vlli~ (D~ h))(t, t ' ,p) dp

100

pß+iT-l(1 -1jJ(p)) In-M pp-ßM;A/,,-+p(D~ h)(l, t' , (+ ß) dp

= 100

piT-l(l -1jJ(P))Ml/~,(-+ph(t,t', (+ ß) dp

= [Ml/2~p-+A1-1jJ(p))Mli~t(-+ph(t, t' , (+ ß)J (z - ß)· (3)

On the other hand, the function (t, t' , z) l---+ h(t, i ' , z + ß) is an element of Coo(R+ X

R+, Mb,d(X))j the corresponding symbol estimates hold uniformly for ß in compact
intervals. Applying Corollary 2.2.18, the function in (2) IS an element of Coo(~ x
R+, B-oo,d(X; rß )), unifornl1y for ß in conlpact intervals. <J

3.1.5 Corollary. For h E COO(R+ X R+, M~,d(X)) we have h - h1/! E COO(R+ X

R+, Mpoo,d(X)). The notation is as in LeIlllTIa 3.1.4.

- - d -
Praa! vVe can write h = ho+hs , with ho E COO(R+ X R+, Mb' (X)) and h~ E COO(R+ X

R+ l Mpoo(X)). Denoting by the subscript 1jJ the result of the operator f l---+ M1jJ M:; 1f of
Lemma 3.1.4 we have

h - h1jJ = (ho - ho1jJ ) +"h s - h~1jJ.

By Lemma 3.1.4, !Lo - hut/J E COO(R+ X R+, NlöOO,d(X)), while hst/J E COO(R+ X

R+, Möoo~d(X)) by Theorem 2.2.17. <l

3.1.6 Corollary. If h E COO(R+ X R+, M~,d(X)) and hl r1 /:2_-r E COO(R+ x

R+,B-OO,d(Xj r l /2--y)) then h E COO(R,- X R+ 1 Mpoo,d(X)).

Praaf. Denote, as before, by the subscript 1jJ the result of the operator f l---+ M1jJ A1:; I f
of Lemma 3.1.4. Then h1jJ E COO(R+ X R+, MOoo,d(X)) by TheorelTI 2.2.17, while

h - ht/J E COO(R+ X R+ 1 M;oo,d(X)) by Corollary 3.1.5. <J
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3.1.7 Theorem. (Asymptotic Summation) Let h j E COO(R+ X R+, Nft/,d(X)), j =
0, I, ... , with 'ti -+ -00 and p = lTIaX {J-li}' Tllen there is an h E Coo (R+ x R+, Mb,d (X))
with h r-.J L.-f=o h j , i.e., given M E N there is a JEN with

J

h - L hj E COO(R+ X R+, lvfb-M,d(X)).
j=O

(1)

Prooj. We have hj Ire E COO(R+ X R+, B~jld(X; r0)) so that, by Theorem 2.1.12, there is an
f E COO(R+ X R+, B~,d(Xj ro)) with f r-.J L.- hjl ro modulo COO(R+ X R+, B-oo,d(X; ro)).
Let h = M'ljJM~Af for some 7/J E C~(R+) with 7/J(p) _ 1 near p = 1. Then h E

COO(R+ X R,-, ft/f/!;,d(X)). Given 1'.1 E N there is a J such that fJ := f - L.-f=o hjl re E
COO(R+ X R+, BJ.l-M,d(X; ro)). Then

M 1/; M0~fJ - M (1 -1/;) M0~ (~hjlro)
E COO(R+ X R+, Mb-M,d(X))

by Lemnla 3.1.4 anel Theorem 2.2.17. <J

3.1.8 Lemma. Given h E COO(R+ X R,-,M/!;,d(X)), Wl,W2 E Cü(R+), and Q =
(Q1, Q2) E As(X, Y, (')' + ~, (-N, 0]), there is a resulting asYlnptotic type R = (Rh R2) E
As (X, Y, (')' + ~, (- IV, 0]) S 11 eh tfl a t

is eontinuous [ar each s > d - 1/2.

Proo! This follows [rom the rcpresentation in 3.1.3(a): First fix j, anel consider
hj(t, t', z) = Aj<pj(t)7/Jj(t')aj (z) with Aj E C, <pj, 7/Jj E C~(R+) anel aj E i\1~,d(X).

By Lemma 1.5.4, multiplication by 'ljJj maps 1l~7+!j-(X''', VI) EB 1l~~+ n;! (Y''', Wd to

1l~~+~(X'\ VI) EB H~I+ n;-1 (YI\ Wd. Here, Q' = (Q;, Q~) is the aSYlnptotic type indllced

by Q with the 'shadows' in 1.5.4 added.

According to Theoretn 1.7.12, op1aj maps this space to 1-l~~J.l"'),+~(X",V2 ) EB
!

n-l

1l~J.l"'Y+-2-(y", l'V2 ) for suitable R' = (R;, ~). Now the continuity of the ffiultiplica-

tion by <pj shows the continuity of oPAthj.
The topologies on CQ'(R+) and J\tf~,d(X) are stronger than the topologies of continuous
mappings involved. Therefore the fact that L~o h j converges in the symbol topology
implies the assertion. <J

3.1.9 Theorem. For hE COO(R+ X R+, lVfpOO,d(X)) and Wl,W2 E C~(R+),

w'[op1h]W2 E C~~G(X" 1 go).
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Proof Write
N .

h (t, t" z) L t.~ a{h (0, t' , z) + tN+1hN ( t, t" Z)
j=O J.

N t j (k -
= L -:'j kl ata~ h(O, 0, Z) + t'N+1 hN(t', Z) + tN+1hN(t, (, Z)

j,k=O J. .
N _

= l:= tjt'khjk(z) + t'N+lhN (t', Z) + tN+1hN (t, t', z) (1)
j,k=O

with the obvious notation. Then h jk E Mpoo,d(X), hN E COO(R+ X R+, Mpoo,d(X)), and

hN E COO(R+, Mpoo,d(X)).
Let us treat the three terms separately starting withtjt'kh jk . Choose a small Ck 2:: 0 such
that rl/2-")'+k-~k n 7rcP = 0; Ck = 0 is allowed. Indeed, for k = 0, we can always choose
co = 0, since r 1/2-")' n 1rc P = 0 by assumption. Theorem 1.8.1 shows that

wdop1t j t'k hjk ]W2 Wltj+kt-~k[Op1-(T-k+~khjk)]t~kw2 +Gjk

= wltj+k[opl1~k(T-khjk)]w2 +Gjk,

with Gjk E ct(X/\, go).
Let us check that Wltj+k[opli~k(T-khjk)]W2is a smoothing Mellin operator: For one thing

T-kh jk E M:;~;(X); the notation T- kP indicates that the position of the poles are
shifted by k. Moreover, we will have, - (j + k) ::; / - Ck ::; , , if Ck is chosen sufficiently
small. _
Next let us show that oPIt [t'N+lhN(t', z)] is a Green operator in C~(X/\, go)' According
to Lemnla3.1.3(b), we can write

hN(t', z) =~ hN,j{t', z) [~ n
with hN,j E COO(R+, MqOO,O(X)) for a suitable asymptotic type Q with 7rcQ = 1rC P.
Choose l/ E R with N < v < N + 1 anel 7rc P n r 1/2-")'+1I = 0. By Theorem
1.8.1, wdop1-hN ,j]tN+1W2 = Wltllop'1t[T-VhN,j]tN+l-lIW2 + GjtN+1-

V for some Gj E
cg(X/\,gO)R,S with a.ppropriate asymptotic types R = (R1 , R2 ),S = (81 ,82 ), In view
of the factor t ll we conclude that

<J

--+
1-l~'")'+~(X/\, VI)

Wl [Op1 hN,j]tN+1W2 : ffi
H~(Y+ n~l (Y /\, Wd

s")'+~ (X/\ V)R 1 ,2

EB
S")'+ n;-' (Y/\ W)

R 2 ,2

is continuous. Its adjoint is the operator W2tN+1 [op1hN,j]*WI = W2tN+1oPM')'-n h~!jWI,
n n-l -')'_!!.

cf. Lemma 2.3.2. It maps 1-(,3'-")'-"2 (X/\, \12) EB 1-lß
,-")'- -2-(Y/\, W2 ) to So 2 (X/\, Vd EB

n-l
-")'--

So 2 (Y/\, Wd. Hence the second tenn in (1) is a Green operator.
In essentially the same way we can treat the thirel term. This completes the proof.

3.1.10 Lemma. Let h E COO(R+ X R+ 1 MÖ,d(X)). Then, [or all ß" E R,Wl,W2 E
Clf (R+) we have

wdop1h]tßW2 = w1tß[op1T-ßh]W2'

Recall that T-ß is the translation operator by ß: T-ßh(t, t', z) = h(t, t', z - ß).

65



Proof Without loss of generality assume that VI, \!2 are trivial I-dimensional while Hit =
W2 = O. Let u E C~(XI\), X EX, t E R+ be fixed. It is sufficient to show that

Let us first suppose that
h(t, t' , z) = ep(t) 1j;(t' )a(z)

- d
with rp, 'ljJ E COO(R+), a E Mb' (X). Then

[op1h]( tßW2U)(t) = ~ ( rp(t) a(z) (OO (t/t')-Zt'ß'ljJ(t') W2(t')U(t') d~' dz
21Tt Jr 1 /7.-"'r Ja t

~ ( tßrp(t)a(z) (OO(t/t')-Z-ß('ljJW2U) (t') d~'dz
21Tt Jr1/7.--r Ja t

= ~tßep(t) ( a(w - ß) {OO (t/t')-W('ljJw2 u)(t') d:' dw.
21Tt Jr 1 /7.--r+ß Ja t

(1)

(2)

The interior integral furnishes a holomorphic function of w which is rapidly decreasing
on all lines f8, uniformly for <5 in cOinpact intervals. Since the function 10 t-+ a(w - z) is
holomorphic with values in Bjl,d(X) anel polynomially bouneleel, Cauchy's theoreln shows
that we can replace integration over r1/2-'Y+ß by integration over r1/2-, in the outer
integral. This proves the assertion for h of type (2).
In the general case, Lemma 3.1.3(a) shows that h is aseries in terms of this kind which
converges in a11 semi-norms. This implies the convergence of the corresponding operators
in, say, L:(C~(R+,COO(X)), COO(R+, COO(X))). Hence (1) also holds in the general case.
<l

3.1.11 Theorem. Given h = het, t', z) E COO(R+ X R+, M~,d(X)), there is a !J

g(t, z) E COO(R+, NJb,d(X)) such that, [or all Wl,W2 E C~(R+),

wdop1h]W2 - wdop1g]W2 E C~~G(XI\,ga)' (1)

Similarly, there is an 9 = g(t', z) E COO(R+, M~,d(X)) such that

(2)

Ir P = 0, then we can achieve that thc error is in C~(X, ga).

Proof According to Lemnla 3.1.3(c), h can be written as a sum of two functions, one in
COO(R+ x R+, Mb,d(X)) anel one in COO(R+ x R+, Mpoo,d(X)). From Theorem 3.1.9 we
know that the latter ineluces an operator in cX1~G(xl\, ISo) after multiplication by Wl anel
W2. Hence we rnay assume that P = O. Let m = 2N + 2. A Taylor expansion gives

m-I

h(t,t',z) = 2::= t'jhj(i,z)+t,mhm(i,t',z)
j=O

(3)
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so let us look at t'mhm(t, t', z). 'vVe apply Theorem 2.3.3 in connection with Theorem
2.2.17 and Corollary 2.2.18: There is a function gm = 9m(t, z) E COO(R+, Mb,d(X)) and
an R E !vfB:;oo,d(X), such that

op1(T-N - 1hm) = op1(T-N - 1gm ) + R.

Therefore, applying twice Lelnma 3.1.10,

Wl op1(hm (t, t' , z)t'm)W2 Wl op1(tN+1T-N - 1hm(t, t', z)t,m-N-t )W2

= WtOp1(tmr-mgm(t, Z))W2 +wtt
N+1 Rtm-N-1w2

The first summand is of the desired type. In view of the fact that both N +1 and rn - N -1
are> N, both wttN +1 anel W2tm-N-t Inap 1{oo,')+~(X(\) to S~+~(X(\). Hence the second

sUffilTIand is an operator in C~(X(\, g)o,o. This conelndes the proof of the first part; the
second part follows in the same way. <l

3.1.12 Remark. We deduce frOln Lemma 3.1.4 anel Theorems 2.3.3,2.3.4 that we may
choose 9 anel h with the asymptotic expansion

g(t, z)

h(t',z) '"'-J

f ~(-t' 8tl )ia1 h(t, t', z)lt'=t, and
i=O J.

f ~(-t Bt)i (-8z )ih(t, t' ,z) It=t l

i=O J.

modulo COO(R+, Möoo,d(X)).

3.1.13 Lemma. Let h E COO(R+ X R+, Nfb,d(X)),w E Cö(R+), and ep E Cö(R+)
with supp W n Supp ep = 0. Then
(a) w[op1h]ep E C~(X(\, g')o,o, and
(b) ep[oplth]w E C~(X(\, g/)O,o.
Here, g' = (,+ ~,,+ ~,(-OCl,O]).

Proof (a) Writing

h(t,t',z) = ~hi(t,tl,Z) [~ ~],

we see that it is no restrietion to assurne d = O. Moreover, we find tjJ E Cö(R+), W E
C~(R+) with eptjJ = ep,ww = w, and supptjJnsuppw = 0. Then w[op1h]ep =
w op1 [w(t) h(i, i', z) tjJU')] ep. In other words: we may assume that there is an c: > 0
such that

h( i, t', z) = 0 whenever li - i/l < c.

Now let m E N be arbitary anel gm = (, + ~,/ + ~,( -m, 0]). It is sufficient to show the
result for gm instead of g/. Applying Lemma 3.1.10

w [op1h] ep w op1[h(i, t' , z)'t,m] [t-mep]
= w tm [op1T- m h] [t-mep].
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Note that epm = t-mep E Cr(R+) anel, for arbitrary L E N, (t - t')-L(T-mh)(t, t', z)
E GOO(R+ x R+, ß~,d(X; r 1/ 2-/,)), Combining Proposition 2.2.20 with Theorem 2.1.3, we
conclude that, for every s > -1/2,

1i3 ,/,+ ~ (X", lIt)
w[oplIh]<p : EB

1i3 ,/,+ ";1 (Y", Wd

1ioo ,'Y+m + ~ (X", V2 )

-+w EB
1iOO ,'Y+Trl+ ";-1 (Y", W2 )

s;+~ (X", \12 )

~ EB
s~+ ";-1 (Y", W2 )

Now consider the adjoints. We first note tbat, indeed, there is an adjoint, sInce, by
Proposition 2.2.20, w[op1h]ep = w[oplho]ep for SOIne ho of order:::; O. Write

[w [op1h] <p]* = rp [w [oplh] 0]* w; (2)

and apply the above method, then (a) is scttled. The proof of (b) is analogous. <J

3.1.14 Lemma. Let R E B-oo,d(X") and ep,7/J E Cr(R+). Then, for every choice of
(1,(2 E R,

with g = ((1, (z, (-00,0]).

The proofis an easicr analog of the proof of Lenlma 3.1.13, using tbe fact that, for every
choice of AI E N, t-M<p anel t-M 1jJ are functions in Cü(R+). <J

3.1.15 The Cone Algebra. Let I E R, f-l, v E Z such that 11. - v E N, cl, N E N,
N > O. vVrite g = (, + ~" + ~ - J.t, (-N, 0]). Let lIt, Vz be vector bundles over DJ anel
W1 , Wz vector bundles over 3D) = IB. In order to connect to the assumption made before
assume that, near the conical points, i.e., on X X [0,1) and Y x [0,1), respectively, VI
and V; are induced from bundles over X while WI , Wz are induced from bundles over Y.
By Gü (ID , VI) denote for the ffiOInent the space of all smooth sections of Vi that vanish
near the singular set.
Gv,d( UJ ,g) is the space of all operators

Cg<'(UJ,lIt)
A : EB ---+

C~(IB, vVt}

that can be written in the following form

COO( UJ , \12)
EB

COO(lB, IVz)
(1)

A = AM + At/J + R,

where

(2)

(i) AM = wlt-~[op1h]wz, with suitable functions Wl,WZ E Cg<'(R+) supported in [0,1)
and h E COO(R+, M~,d(X)), is a l\1ellin-type operator acting on fUl1ctions supported
elose to the singular part.

(ii) A,p = 1/JIÄ7/JZ' with suitable functiol1s 'l/Jl' 'l/Jz E COO( UJ), supported away from the
singular set and A E ßv,d( JD ), is an operator in Bautet ele Monvel's calculus on the
regular part of /D.
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(iii) R E C;';/+G( ff) ,g), is a SUlll of slnoothing Mellin anel Green operators, acting elose
to the singular set, cf. Definition 1.9.1.

We call the enti ty of all cv,d (ff) , g), /-1 ~ v E Z, dEN the cone algebra associated with
the weight datum g.

3.1.16 The Classical Cone Algebra. C~,d( ID ,g) is the space of all operators A =
AM + A,p + R E CV1d( UJ ,g) for which, in the notation 3.1.15,

(i) the Mellin symbol h is an element of COO(R+ X R+, M~,d(X)), anel

(ii) the pseudodifferential operator Ä is an element of B:/d
( ID).

3.1.17 Remark. By Theorem 2.4.12 we have cv,d( UJ, g) Y Bv,d( UJ). Let gt =
er + ~'f + ~ - /-1, (-Nil 0]), gz = (, + ~" + ~ - /-1, (-NZl 0]) with Nt ~ Nz, and use the
notation of Definition 3.1.15. Then

3.1.18 Remark. The boundary IB = 3UJ of ff) is a, boundaryless manifold with conical
singularities, anel the corresponding cone algebra cv,d( 1B ,g') is embedded in cv,d( ID , g):

here g' = (, + n; I " + n;l - /-t, (- N, 0]), anel thc embedding is gi Yen by identifying
parameter-dependent operators A(.-\) of the form

---+

in Boutet de Nlonvel 's calculus on X with the parameter-elependent operator

in the usual pseudodifferential calculus on Y, plus the corresponding identificatioIl of the
lower right corners of elements in Boutet de Monvel's calculus on UJ with pseudocliffer­
ential operators on IB . The shift in the weight is due to the fact that dirn IB = n - 1 anel
that the dimension determines the positions of singularities , cf. Definition 1.9.1(i.2).

3.1.19 Lemma. Suppose A E n~oCJi-j,d(UJ,g). Then A E C~(DJ,g).

Proof For arbitrary N! E N write

A = tM-JiWI [oplth] Wz + (1 - w4)A,p(1 - W3) + R;

here, h E COO(R+,MoOO,d(X)),A,p E B-oo,d(X), anel R E n~oCÄ1-jG(UJ,g). Accord­

ing to Theorem 3.1.9, tM
-IJ. WI [ap1h] Wz EtM CM~G( DJ ,g) = C';,,-+~,d( ID ,g). Hy Lemma

3.1.14, (1 - w4)A,p(1- W3) E C~(UJ, g). The fact that, by Lemnla 1.9.4, CfA-+~,d(ID, g) Y

C~( lD ,g) whenever ft - M ~ N completes the argull1ent. <l
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3.1.20 Lemma. Let w E C~(R+),w(t) _ 1 [or t elose to 0, s" E R. Then rnultipli­
cation by (1 - w(t))t-N defines bounded maps

(1)

and
(1 - w(t))t-N : H3 (X/\) -+ 1rty (X/\), (2)

provided that N > [s) + 1 + n/2 -,. Recall that i1 is the boundaryless 'double' of X.

Proof (2) follows from (1). (1) is IDeal in the x-variables. First let sEN. In order to
check that, for u E HS(i1/\), we have (1 - w(t))t-N

l.l E 1{,3(Y(i1/\) it is sufficient to check
that, given k, a with 10'1 + k ::; 5,

for any coordinate neighborhood U for i1. By Leibniz' rule for differentiation the left hand
siele is an expression of linear combinations of terms of the form

tn/ 2-')'+ko(1 - w(t) )(kdt-N-1.2a;3 a~'U ,

where k l + k2 + k3 = ko ::; k. Since a~3a~u E L2 anel the preceding factor is a bounded
function, we get the desired statelnent.
For s E -N, we use the dualities (f[3(O,/\), Hö3 (O,I\)) and (1-l3(y(n/\),1-l-SI-'Y(O,/\)). The
subscript "0" indicates that we deal with distributions with support in i1 x R+ a fact
we need not worry about, for we multiply by a function that vanishes for small t. The
corresponding adjoint operator to (1 - w(t))t-N is (1 - w(t))t-N +n ; the shift by n is due
to the fact that 1{,OI~(0,/\) = L2 (n/\). So the task is to show thc boundedness of

for sEN, anel this can be done in the same way as before. <]

3.1.21 Theorem. Let 9 E COO(R+ X R+, Mb,d(X)), and suppose that, for all k,l E N,

(1)

Then
'H:"')'+ 't (X/\, Vt} 'H~-~ty+ ~ (X/\, \t;)

OP19 : EB -+ EB
1-l~''Y+ n;l (Y/\, Wt} 1-l~-p.,'Y+ n;l (Y/\, W

2
)

is bounded for each s > d-1/2" E R. For fixed s", we only need to have (1) for finitely
many k and I. Note that this Theorenl generalizes Lemnla 2.1.11

For the proof we need the following results.

3.1.22 Lemma. Let 9 be as in Theorern 3.1.21. Then

oPM9 = exp.op b

for b = b(7',r',p) = e-(1/2-')')(r-r')9(er ,er' , 1/2 -,- ip).
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Proof Let u E Cgo(R+, COO(X)). Then

(op1g)u(er) = ~ [ [00 (er/t')-Z g(er,t',z)u(t')dt'/t'dz
27ft Jrt / 2 _,., Ja

2~ JJe-(r-r')(1!2-'Y+ir)g(er, er', 1/2 - "I + i T)(U 0 exp) (r')dr' dT

= (op b)(u 0 exp) (r )

where b(r, r', p) = e-(1/2-I')(r-r l
)g(er, er', 1/2 - f - ip).

3.1.23 Lelnma. For s E R

Here exp i8 the mapping (x, r) --+ (x, er).

<]

Proof Using a partition of unity on n we see that the result is loeal in the x-variables.
We can therefore apply Remark 1.4.4 and immediately get the statement. <]

3.1.24 Corollary. Restricting to X/\, we eonclude that

Proof 0/ Theoreu~ 3.1.21. lt is suffieient to prove the theorem for / = 1/2, for

Moreover, we may work with trivial I-dimensional bundles VI, V2 , while Wh W2 ean be
assumed to be zero. By 3.1.22, the boundedness of optj/r l / 2-l'g is equivalent to the
boundedness of

op b : HS(X x R) --+ fltl-tJ(X X R),

where b(r, r', p) = g(er, er',l/2 -, - 'ip) E Cr(R x R, BJl1d(X; R)). This boundedness
result, however, is well-known. Notiee that, for fixed 8, we only need finitely many
estimates on b for the continuity of op b, thus we only need a finite nllmber of the estimates
in (1) for g. <]

We are now able to prove a stronger version of Lemma 3.1.13, namely the following.

3.1.25 Len1ma. Let 9 E COO(R+, A1b,d(X)), and Wt,W2 E Cgo(R+) with WtW2 = Wt.

TlJen, for every choice of /, N,

Here 0 refers to the asynlptotic type (",,(-1V,0]).
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Pr'oof Without loss of generality we may assurne that d = 0 and that VI, Vz are trivial
one-dimensional while H/1 , Wz vanish. vVe then have to show that, for each s > -1/2,

(1)

anel
(2)

are continuous. Let us start with (1). In view of the factor Wl, it is indeed sufficient to
show that, for each M E N,

(3)

is continuous. Here we let, for the mOlnent, H~"Y+~(XA
), S E R, denote the space

nO:5c:$N H';''Y+~+C(XA), where N refers to the weight datum (, + ~" + ~,( -N, 0]). Now
Wl [op1g] (1 - wz) = op1th with

h(t, t', z) = Wl (t)g(t, z)(l - W2(t')) E COO(R+ X R+, Mb'o(X)).

Since we have a zero of infinite order, we can apply Proposition 2.2.20: For each rn E N,
we find a symbol hm E COO(R+ X R+,Btl-m,O(Xj f 1/ 2-"Y)) with op1h = op1hm. We need
to know more about the precise fonn of hm and therefore review the proof of Proposition
2.2.20. We have hm = ho + hm where

ho = M(l-'ljJ(p))M:;lh, and

hm =t'm(t - t,)-m M<p(p )M:;1 (ar;h).

Here 'ljJ is an arbitrary C~(R+) function equal to 1 near p = 1, anel r.p E C~(R+)

is a suitable function. Clearly, ho E COO(R+ X R+, MoOO,o(X)) and l~m E COO(R+ X

R+, Mb-m,o (X)). Note that, for sui table fu nctions WI, Wz E C~ (R+) with WI (t), Wz (t) =1
neal' t = 0, we have

ho(t, t', z) =

hm.(,t,t',z)
Wl (t )ho(t, t', z)(1 - wz(t')),
Wj (t)j~m. (t, t', z)(1 - wz(t')).

and

Next apply Lemma 3.1.20: Given ,I E R, there is a k > 0 such that

(4)

is continuous. By Lemma 4.2.2, also

(5)

is continuous, provided k is large. vVe have from Lemma 3.1.10

Wl [oPMgl (1 - W2) op1ho +op1hm.

WI top1ho] t k
( 1 - wz)t-k

+WI (op1 [(t - t,)-mt'm. A1<pM; 1(ar;h)] t'k] (1 - wz)t-k

tkW} (OPA1T-kho] (1 - W2)t-k

+tm.+kW1 [oP1t(t - t,)-m.T-k-m. (M<pM:; 1(a:h))] (1 - wz)t-k.
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Both the symbols T-kho anel T-k-m A1<pM:; 1ar;h satisfy the assumptions of Theorem
3.1.21, since h vanishes for lt - t'l < c., where c. is a suitable positive ntnnber, (t - t,)-N E
Cr(R2\ {It - i'l < c.} ), anel h has cOlnpact support with respect to t and is independent
of t' for large t'. Applying Theorem 3.1.21 anel using (4) as weIl as (5)

WI [op1g] (1 - W2) : K8,'Y+~ (X/\) --t 1-e-ll+ml-Y+ ~ (X/\)

is continuous. Now let 0 ::; c ::; N anel, in (4), 11 = , + c. Since

on C~(R+,COO(X)), which is dense in H8 1-Y+C(X/\), a second application of Theorem
3.1.21 in connection with (5) shows that also

is bounded. According to (3) this is what we had to show for (1).
Next let us prove (2). Note first that oP'Xtg indeed has an adjoint in the Mellin calculus,
since it can be written with a Mellin symbol of negative order. The argument now is
simple: we have, by Letnma 2.3.2,

with g(·)(t, t', z) = g(t', n+1-:Z)*. Choose arbitrary m and k in N. Applying an a,rgtunent
analogous to that used in the first part, we ma,y replace (1 - W2)[OPMI

-
n

g(*)]Wt by

t - k (1 -) [ --y-nh] - tk + t-k (1 -) [ --y-nh] - tm +k
- W2 opM 1 Wl - Wz opM Z WI ,

where h 1 E COO(R+ X R+, MOOOIO(X)) anel hz E COO(R+ X R+, ft;f/)-mlo(x)) satisfy the
assumption of Theorern 3.1.21, anel Wl, Wz E Cgo(~) are suitable functions. Multiplica­
tion by w1t m +k or w1tk maps K"l-I'-~(X/\) to H"l--Y-~-K(X/\) for arbitrary K E N. The
operators op1hl anel op1h2 map this space to H,,+m-Il l --Y- ~-K(X/\). Finally,lnultiplica­
tion by 1 - W2 sends this space to distributions u that vanish in a fixed neighborhaad of
{t = O} anel have the property that

tn+-y+K (tat)ja~u E LZ(X/\), for j + 10:1 :::; s + m - J1..

Since m anel K were arbitrary, these functions are elements of S;-Y-~(X/\), anel the praof
is camplete. <]

3.1.26 Len1ma. Let h = h(t, t', z) E COO(~ X R+, Mb1d(X)), and WI, W2 E Cgo(R+).
Then there is ag = g(t, z) E COO(R+ 1 1\1b1d (X)), depending on WI , Wz, such that

Wl [op1h] Wz - OP19 E C~(X/\, go),
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Proof Let h(t,t',z) = h(t,t',z)Wt(t)W2(t'), so that wdop1h]wz = op1h. Next choose
9 for h according to Theorem 3.1.11. By construction, we mayassurne that g(t, z) = 0
whenever t ~ supp Wt.

Now pick functions Wl, Wz E C~(R+) that are equal to 1 near zero and on the support of
Wl and Wz, so that WtWt [op1h] wzwz = Wl [op1h] Wz. By Theorem 3.1.11,

Wl [oplr h] Wz - Wl [op1g] Wz E C~(Xfl, go).

Clearly, Wt [op1g]wz = [oplrg]wz. Moreover, [opltg](l - wz)
C~(XfI, go) by Lemma 3.1.25, so the proof is cOlnplete.

= wdor1fg](l - wz) E
<J

We next analyze the structure of those Mellin operators that induce Green operators.
An essential tool is the following result which extends Proposition 1.4.3.7 and follows by
similar arguments.

3.1.27 Proposition. Let g = C, + ~,1' + ~,(-N,O]),fL E Z,d E N, and Wt,WZ E
C~(R+),Wj (t) =1 (or srrlall t. Consider an operator of the fonn

N-l

A = Wt L: tj[op~hj]wz + RN
j;:;:;O

for RN = tNwdop1hN]WZ' Here, h j E Mj;,d(X), j = 0, ... , N -1, for suitable asymptotic
J

types Pj with 7fCPj n rt/z-/,j = 0, while hN E COO(R+, M~:(X)) for an asyulptotic type
PN with 7fC PN n r I/Z-/' = 0.
Suppose A E C~(XfI, g). Then hj = 0 (or j = 1, ... ,N - 1.

Proof For silnplicity let HS deal with a trivial scalar bundle over X/\ only. Choose a

cut-off function W near zero and a function cf; E C~(X). For p E C with Re p < 1/2 let
up(t) = t/'-Pw(t)cf;(x) E KOOl')'+~(XfI). By 1.7.1(b) we have Mup(z) = v(z + I - p), where

c
v(z) = Iv!W ( z) 4> = (- + f (z)) <P

z
(1)

with an entire function fand some c =I- O. By assumption, there is a Green operator
G E GC(XfI ,g) such that

N-l

o= A +G = :L Wl ti op~ (h j ) Wz + RN + G.
j;:;:;O

We will show that we can recover the functions ho, . .. , hN - t by considering the Mellin
transform of (A + G)up • Hence all will have to vanish in order for A + G to be zero.
We may choose W with support very elose to zero. Therefore it is no loss of generality to
ask that W2 W= w; in other words, the function W2 can be ignored in our considerations.
Let tlS now analyze the effects of the various operators. The continuity of RN :
K"'')'+~(XfI) -+ wK$-Jl,...,,+~+N(Xfl) for arbitrary s > d - 1/2 implies that RNUp E

S;+~ (XfI ) for all p. Hence 1v!~,t-tzRN'ltp exists for all l' :S 1 < l' + N. It yields a
hololTIorphic function of z E {1/2 - l' - N < Re z < 1/2 - I} for fixed p E {Re p < 1/2}
and vice versa of p for fixed z, cf. Theorem 1.3.2.8.
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The function Gup belongs to S~+fJ:(XI\) for a finite asymptotic type Rindependent of p.

For fixed p, the Mellin transform M~lt-4ZGuP exists for all but finitely many 1 in [",+N)
and yields a holomorphic function of Z in the semi-strip

Sa = {z E C : 1/2 - , - N < Re z < 1/2 - " Im z > (j}, (2)

for a suitably large constant a, depending on R. For fixed Zo E Sa and po, the function
P f---t M~,t-4zGup(zo) is holonlorphic in P as P varies over a suitably small neighborhood of
Po in {Re z < 1/2}.
Choose a small t: > 0 such that

(i) 7fCPj n r 1/ 2--y-(+j = 0 for j = 0, ... ,N,
(ii) Po has no singularities with real part in [1/2 - , - t:, 1/2 - ,).

Then Wt [op1ho]up = w.[opXj( ho]up. Moreover, there are Green operators Gj E
C~(XI\, g), j = 1, ... , N - 1 such that

Fix Zo with real part 1/2 -, - t:. The operators Gj are independent of f for small f > 0 for
they are determined by the singularities of the hj . We may apply the above statement:

M~Gjup exists for all but finitely many 1 in [" ,+ N); for fixed Po, Zo with large Im Zo, the
function p f---t MGjup(zo) is holonlorphic in p whenever p runs over a small neighborhood

U of Po in {Rez < 1/2}.
Restricting p to U we have up E 1-t:<l,-y+(-j+ ~ (X") and therefore t j [op;i(-j hj ]up E

1ioo'-Y+(+~(XI\), uniformly for p E U. In particular, M-y+((l - w.)tjopri(-J hjup(zo) ex­

ists and extends to a hoIomorphic function of p on U. Finally,

extends to a merOITIorphic function of P on C.
Now we fix jo. By possibly increasing the imaginary part of Zo we may assurne that

M-y+(Gup(zo), M-Y+f.Gjup(zo) , and M-y+(RNup(zo) are holomorphic in p in a small neigh­
borhood of Po = Zu +/ - jo We then integrate M(A +G)up(zu) over a small contour C
around po. By Cauchy's formula, the hoIomorphic contributions vanish, and (1) implies
that

-2
1

. f M-y+((A + G)up(zo) dp = c hjo (zo + jo)q,.
1ft Je

On the other hand, A + G = 0, hence hio (zo + ja) is zero. Since we may vary Zo slightly
and since we know that the h j are meromorphic functions, we conclude that hjo and con­
sequently all hj vanish. <J

3.1.28 Proposition. If 9 E COO(R+, Mb,d(X)),Wt,W2 E Cg=>(R+) equal to 1 near zero,
and

Wt [op19] W2 E C~(X", gO)P,Q

for go = (, + ~,/ +~, (-N, 0]) and same asymptotic types P and Q, then

Moreover, the asynlptotic types P and Q both are O.

75



Proof. For siInplicity let us assurne that the operators act on a triviaJ 1-dimensiona,}
bunelle VI = V2 over X whilc the bunelles W1 , W2 over Y are zero. Also it is no lass of
generality to assurne d = O. 'vVe first write

N-l t i
g(t, z) = L: ~&tg(O, z) + tN gN(t, z)

j=O J.

with gN E COO(R+, M5'0(X)). According to Proposition 3.1.27, the fact that Wl [OPAtg]W2
is a Green operator implies that ~a{g(O, z) = 0 for j = 0, ... , N - 1, so that 9 E

J.

tNCOO(R+, Mb'o(X)). Applying now Lemma 3.1.10, we conclude that wdOP1-g]W2 has the
mapping properties of a Green operator with asymptotic types P = Q = O. Next we
employ Lemnla 3.1.26 and supposc that

for otherwise we might replace 9 by a function with the same properties. According to
Theorem 1.6.2, the Green operator has an integral kernel k = k(t, t', x, y) in

FroIn the kernel k we can recover the symbol by

g(t, z) = faoo (t/t'Ykx(t, t')dt'/t'.

Here kx (t, t') is thc operator on, say, COO(X), resulting from the action of thc integral
operator with kernel k(t, t', x, y) for fixed t, t'. Let us suppose first that

k(t, t', x, y) = f(t)go(t')Ix(x, y)

with fE 53(R+), go E 50,-n(R+),lx E COO(X x X). Then

g(t, z) = e f(t)(M90)(Z) Lx,

where Lx is the operator on COO(X) given by the kernellx . Thus Lx E B-OO,O(X), and all
semi-norms in ß-oo,O(X) can be estimated in terms of the semi-norms for Lx. Moreover,
M,go(z) E 5(f1/ 2-,): In fact, on one hand M, : w1i~'~,o](R+) --+ 5(f1/ 2-,); on the other
hand, M, : (1 - w)S(R+) --+ S(['1/2-,). Now we restrict to the line f l / 2-,. We have
glr1n _,.,,(t,l/2+iT) = t 1/ 2-,+i-r f(t)h(T)L x with h(T) = (M,9o)(1/2-,+iT) E S(R). We
shall now prove that

(1)

Inorder to see this, we only have to make sure that the function t1/2-,+i-r f( t )h(T) belongs

to SY2(R+, S(R)). This in turn amounts to checking that it satisfies the estimates

11 sup ITrla~2(tat)ll{("t)IJt-,+i-r-N+~f(t)h(r)}IIILJ(I4) < 00
-r

for every choice of rl, r2,ll, l2 E N, c: > O. Using the fact that, for I E N, we have
(t8t)lt-,+i-r = (-, + iT)1 anel fJ~t-,+i-r = t-,+i-r In1 t, this follows from the properties of 11
and h.
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In view of the properties of thc 7f tensor product, relation (1) stays true for general k,
since the semi-nonns for 9 can be estimated in terms of the semi-norms for /,90, and lx.
Now we choose a function 'Ij; E Cgo (R+) with 'Ij;(p) == 1 for p near 1. FrorTI Proposition

2.2.7,and the nuclearity of S6/2(R+), we conclude that

On the other hand we know from Lemma 3.1.4 that

M(l - 'Ij;)M;l g E COO(R+, MoOO,o(X)).

vVe see that 9 = 91 + 92 with 91 E COO(R+, Mooo,d(X)) and 92 E S6/\R+,M;OO,d(X)).
Now we again apply Propsition 3.1.27 to see that a1(91(O,Z) + 92(O,Z)) = O,j =
1, ... , N - 1. Since JC(:'~~](R+) = ~>o JCoo,1/2+N-~, we deduce from Lemma 1.4.6 that

Pl(92(t, z)) = O(tN-~) for every c: > °and every selni-norm PI in MöOO,o(X). On the other
hand, 91 is smooth in t; so we find that a191 (0, z) = 0, j = 1, ... , N - 1 and the proof is
complete. <J

3.1.29 Corollary. (a) If 9 E COO(R+, M5,d(X)), and OPf.A9 E C~(XA,g), then 9 E
tNCOO(R+, Mb,d(X)).
(b) lf 9 E COO(R+, Mb,d(X)), and

OP19 E C~(XA, (, + ~,,/ + ~,( -00,0]),

P1'oof (a) We have
N-l t j

g(t,z) = L "7jEJ{g(O,z) + tN9N(i,z)
j=O J.

for suitable gN E COO(R+, M5 ,d(X)). Using that elelnents in S~/2(R+, Mooo,d(X)) are
O(tN-~) for each c > 0, see Lemma 1.4.6, we conclude that o1g(O, z) =°for j = 0, ... , N­
l.
(b) is imn1ediate from the fact that functions in S6/2(R+, Möoo,d(X)) are O(tN-~) near
i = 0.
(c) Since 9 E COO(R+, MOC;;,d(X)) by Proposition 3.1.28 we obtain that 3011 homogeneous

terms of the syrnbols vaTli~h on R+. By definition of the topology in COO(R+, M5'~I(X)),
all homogeneous symbol terms are sll100th up to t = 0, so 9 E COO(R+, MÖoo,d(X)). <J

3.1.30 Proposition. Let h E COO(R+ X R+, Mb,d(X A
)), M = t-{lop1h, and A E

B{l,d(XA ) with
M - A E B-oo,d(XA).

Suppose Wl, W2, W3, and Wt, W2, W3 are two trip/es of (unctions in Cgo(R+) equal to 1 near
zero with WIW2 = Wl,WIW3 = W3 and WIW2 = W.,W}W3 = W3. Then, for every X E Cgo(R+)
withX=l onsuppW2 U SUPPW2,
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ITJodulo C~(X/\, g), g = C"Y + ~,1 + ~ - J-t, (-00,0]).
Note that

and

Proof. Choose a function W E C~(R+) with W =1 near zero anel WW3 = w. In particular,
we will then have WWt = w. Then

WtMW2 - W1Mw2 = (wlvfw2 + (Wt - W)MW2] - [WMW2 + (Wt - W) MW2]
= wA1(W2 - (2) + (Wt - W) MW2 - (W1 - W) MW2

WM(W2 - (2) + (Wt - w)MX + (Wt - W)M(W2 - X)
-(Wt - w)!vfx - (W1 - W)M(W2 - X)

WM(W2 - (2) + (W1 - wdMx

+(Wt - W)M(W2 - X) - (W1 - W)M(W2 - X). (1)

Now supp w n supp (W2 - (2) = 0, supp (Wt - w) n supp (W2 - X) = 0, anel supp (W1 - w) n
sUPP (W2 - X) = 0. In view of Letnma 3.1.13 we therefore have

WM(W2 - (2), (Wt - W)M(W2 - X), (Wl - W)M(W2 - X) E C~(XI\,g),

and the only tenn of interest is

(2)

The fact that supp (W1 - wd n supp W = 0 implies that the first summand on the right
hand side of (2) is an operator in C~(x/\, g). Now we use that

with an operator R E B-oo,d(X/\). According to LeInma 3.1.14, the second sllInmand is
an operator in C~(X/\, g), so the remaining contribution is (Wt - wdA(X - w).
Consider the second difference.

(1 - wdA(X - W3) - (1 - wdA(X - (3)

(1 - wdA(x - w) + (1 - wdA(w - W3)

-(1 - wdA(X - w) - (1 - wdA(w - (3)

- -(Wt - wdA(X - w) + (1 - wdA(w - W3) - (1 - wdA(w - W3)' (4)

Since supp (1 - wd n supp (w - W3) = °and supp (1 - wd n supp (w - (3) 0, we
may replace A in the last two stlInmands by an operator in B-oo,d(X/\). An application
of Lemma 3.1.14 then shows that the second and the thircl operator in (4) belong to
C~(X/\,g). Since the operator -(W1 - wdA(X - w) cancels the operator remaining from
the first difference, the proof is cOlnplete. <J
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3.1.31 Proposition. Every operator in cv,d(D] ,g) [or g = er + ~'1' + %- f.l, (-N,O])
ean be written in the form

(1 )

with h E COO(R+, M~,d(X)), A,p E Bvld(D]), R E C~~o(D] ,g),. rnoreover, we ean choosc
A,p in such a way that, for all functions w, W E Cg:'({O,1/2)), equal to 1 near 0 and with
ww = w, we have

wt-V[op1h]w - wA1jJw E B-OOld(X"). (2)

In (1), Wt,W2,W3 are funetions in Cg=>(R+) supported in [0,1/2) with w,(t) = W2(t) "=
W3(t) =1 for t dose to zero and WIW2 = Wl, W1W3 = W3' The representation is independent
of the ehoice of Wt, W2, W3 in the following sense: if we replaee Wl, W2, W3 by WI, W2, W3 with
the same properties, we ha"ve to modify R byan operator in C&( D], g).

Für the prüüf we need the following leIllma.

3.1.32 Lemma. Let A E Bv,d(X"), / E R, and let 'l/JI, 'l/J2 E Coo(R+) be funetions with
'l/Jl (t) = 'l/J2 (t) = 0 [ar srnall t. Then there is a Mellin syrn bol h1 E coo (R+, M~,d(X)) with

t-V opI,h1 - 'l/Jt A'l/J2 E B-OOld(X"). (1)

Praa! of Lemlna 3.1.32. By LemIlla 2.4.5 we can find f E Coo(R+, Bv,d(Xj f 1/ 2-,)) with

t-V op1! -1/; IA'l/J2 E B-oo,d(X/\). (2)

Moreover, f(t, z) = 0 for small t due to 'l/Jl' henee f E COO(R+, Bvld(X; f l / 2-,)). We now

apply Theorenl 2.2.17 and Corollary 2.2.18 to find h E COO(R+, M~ld(X)) with

aPM f - op~h E M"B:;oo,d(XI\) Y B-OOld(X").

<]

Prao! of Proposition 3.1.31. Clearly, each of the operators of the fonn (1) is an operator
in the cone algebra cvld( ID, g). In order to see that each operator can be represented in
this way we dü the following. Suppose A E cvld( U) ,g) is gi yen in the form

A = wtt-V[op1h]W2 + 1/;tA1jJ'l/J2 + R

with J~ E COO(R+,lvf~,d(X)),A1/J E Bv,d(U)), and R E C;;/+o(D,g). Applying Theorem

2.4.12 we find AI E Bv,d(X/\) (even in COO(~,ßv,d(XjR)) with

Wl [op1h]W2 - AI E B-oo,d(X/\).

I-Ience t-VwdOplthJW2 - t-V AI E B-OOld(X"), anel t- V Al E Bv,d(X/\). Next eonsider the
operator A 2 = 'l/JtA1jJ1/;2' Choose functions Xl, X2, X3 E Cgo(R+), supported in [0,1), equal
to 1 on [0,1/2), anel satisfying XIX2 = Xl, XIX3 = X3. Then

A2 = X1A2X2 + X I A2(1 - X2) + (1 - XdA 2X3 + (1 - XdA 2(1 - X3)'

Notice that X1A 2(1- X2) and (1- XdA 2X3 are regularizing operators. Since A2 = 'l/JI Ä,p1/;2
with functions 1/;1, 1/;2 vanishing near the singular set, both these operators induce Green
operators in C~(X/\, g) by LeIllma 3.1.14.
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Applying Lemma 3.1.32 we find h2 E COO(R+, M~,d(X)) with

t- lIopf.Ah2 - XI A2X2 E B-oo,d(XA
).

So let

(1)

(2)
(3)

hdt, t', z) = wdt)h(t, Z)W2(t') + h2(t, z),

A,p = t- II Al +A 2 .

Given w, W with support in [0,1/2) we have WXI = W, WX2 = W, and therefore

w[t- lIop1h l - A,p]w = W[W l t-1I [op1h]WI - t- II A.]w
+ W[l-1I0p f.Ah 2 - XI A2X2]W.

Now choose W2 E C~(R+) with W2(t) =1 near zero anel support in [0,1/2) such that
(X X SUPPW2) n [SUPP~1 U SUPP~2] = 0; moreover choose WI,W3 E COO(R+) with WI,W3
equal to 1 near zero and WIW2 = WI, WIW3 = W3.
We then have, with the abbreviation M = t- lI opf.All"

A - R - [W1t- II [Op1h1]W2 + (1 - wdAw(l - W3)]

= WI M W2 - WIWI M W2W2 - W1t-
II [Op"Lh2]W2

+A2 - (1 - WI Ht- V Al + A2 ](1 - W3)'

Consider the first difference (2) first. In view of the fact that supp WI n supp (1 - W2) = 0
while supp W2 is compact, Lenlma 3.1.13 implies that

WtWt M W2W2 = WtWt M W2 + GI

with an operator GI E C~(XA, g). Moreover, since (X x supp wI) n supp ~t = 0, we
mayassurne that Wt (t)h2(t, z) =0; if necessary, we can modify h2 to achieve this while
(1) rernains preserved. So (2) equals (1 - wI)Wt M W2 + GI. Let HS now have a look
at (3). Since (X x suppwt) n supp ~t = 0 and (X x SUPpW3) n supp ~2 = 0, we have
A2 - (1 - wI)A2(1 - W3) = O. We introduced Al as an operator satisfying

t-V At - Wt N! W2 E B-oo,d(X).

lt is therefore no restriction to assume that t-V Al = Xlt-V AIXt. An application of Lemma
3.1.14 shows that

(1 - wdt-V
At (1 - W3) = (1 - WdWt M w2(1 - W3) + G2

with G2 E C~(XA, g). Next we notice that supp W3 n supp (1 - Wt) = 0, anel therefere

(1 - wt}Wt MW2(1 - W3) = (1 - WdWt M W2 +G3

with GT3 E C~(XA, g).
Thus the surn of (2) anel (3) is a sunl of Green operators in C~(XA, g). We now have
proven that each operator in C~(XA, g) can be represented in the form (1) with h t E
COO(R+ X R+, M~,d(X)) and special Wt, W2, W3. Applying Proposition 3.1.30, we see that
any ether choice of cut-off functions results in a change in ct(X A

, g) only.
Finally, we apply Theorem 3.1.11 in order to see that we may find a function h E
COO(R+, M~,d(X)) satisfying

Wt t-V[oplthdw2 - Wl t-V[oplh]w2 E C~(XI\ g).

This cornpletes the proof.
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3.1.33 Totally Characteristic Symbols. The operator A,p in Proposition 3.1.31 is
uniquely determined by 3.1.31(1), (2) up to an element of ß-oo,d(ID). Applying the Mellin
quantization result 2.4.12, we can find a symbol a E COO(R+,BlI,d(X;R)) such that the
operator t-V [op1h] - t-V[op a] is an element of B-OOl

d(X A )i hence

w1t-V[op a]w2 - w1A,pW2 E B-OO
l
d(X A

)

for all Wl, W2 E Cr(R+), supported in [0,1/2). "Ve can and will therefore assurne that the
pseudodifferential part A,p of A has a totally characteristic operator-valued symbol.

3.1.34 Totally Characteristic SYlnbols in the Classical Case. For A E C'd,d(DJ, g)
written in the fonn of Proposition 3.1.31 there is an a E COO(R+,B~id(X; R)) with

and
t-V [op a] - A,p E ß-oo,d(XA

).

Indeed, we then have h E COO(R+, 1\1~1:1(X)) and A,p E B~id(DJ). By Theorem 2.4.12 the,
associated totally characteristic symbol a is also classical.
Note that the parameter-elependent honlogeneous components of order v hoth of h anel
a in the sense of 2.4.11 are uniquely determined by A. Those of h are smooth in t up
to t = 0, while thc homogenous components of a,p(a( t))( x, ~,r /t) and (J'A (a( t))( x', e, r /t)
are smooth in t up to t = O.
For fixed t, the function hV(t,r) = h(t,-i7) E ßv,d(X;R,.) is a parameter-dependent
operator. By TheorelTI 2.4.13, its principal symbols are locally near t = 0 related to that
of a by

(J'~ ( a(t) )(x, ~, r / t)
O"~(a(t))(x', e, 7/t)

= a~(hV(t"))(X,~,7);

O"~ (hv (t, .)) (x', e, 7).

Similarly we have the following relation between the symbols of A,p anel a froln 3.1.33:

In particular,

a~(a(t))(x,~,r)

O"~(a(t))(x', t, 7)

tVa~(A,p)(X, t,~, 7);

= tVO"~(A,p)(x', t, (, r).

tVa~(A,p)(x, t,~, r jt)!t=o
t v O"~ (A,p) (x', t, e, r / t) 1t=o

a~(hV(O"))(x,~,r), and

a~(hV(O, '))(x,~,7).

3.1.35 Theorem. Let A E CV1d
( ID, g) for 9 = Cr = ~" + ~ - J-L, (-N, 0]) have two

representations as in Proposition 3.1.31:

A = w1t-V[OPA1h]W2 +(1 - wdA,p(1 - W3) + R
WI t- V [op1 h]W2 + (1 - Wl )A1jI(1 - W3) + R

with R, RE C~~G( DJ ,g) of the forrn

N-I

R = WI L tj-V[op~hj]W2 + G
j=O
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(1)

(2)

(3)

N-l

R= Wl L: t j
-

V [ap11h j ]w2 +G.
j=O

in the obvious notation. Then

Alj! - Alj! E 8-oo,d(DJ); and

1 . 1 .- --=-jal h(O, z) + hj(z) = -=-jat h(O, z) + hj(z), j = 0, ... , N - (Il - 1/) - 1.
J. J.

Notice that other values oE j are irrelevant. [n fact, we Inay also limit the upper index in
the summation {or Rand k to N - (/1. - 1/) - 1.

- dProof The fact that, far 'l/JI, 'l/J2 E C~(R+), we have 'l/JI (R - R)'l/J2 E Cc (DJ ,g) r-r
B-oo,d( DJ) tagether with the required compatibility of hand Alj! on one hand and 11. and
AtP on the other, cf. Condition 3.1.31(2), illlplies that A1/J - Av.. E B-oo,d( OJ). This proves
(2).
In order to see (3), choose a, function w E C~(R+) such that WW3 = W, WW3 = w.

Then w(1 - wd = °= w(l - wd, WWl = W, WWl = w. Hence wA = wt-V[op1h]W2 +
wR = wt-V[OPA.th]W2 + wH. We next recall frOln Lemnla 3.1.13 and Theorem 1.8.2 that

wt-V[op1-h](wz - Wl) and W L~~I t i- V[op:Zl1.](w2 - WI) both are elements in C~(XA, g).
We deduce that

N-I

wt-V[opl(h -11. )]wz + wt-VL t j [op~hj - OP~ILi] Wz E C~(XA, g). (4)
j=O

vVe next use a 'T'aylor expansion and write

N-I ti
(h - h)(t, z) = L -=-j (ath(O, z) - ath(O, z)) + tN f(t, z)

j=O J.

with f E COO(R+, Mb,d(X)). Then we apply Proposition 3.1.27 for the uniqueness of the
Mellin symbols and conelude that identity (3) holds.
Finally, we consider the operator with respect to the simplified weight datuln g = (, +
~,')' + ~ - Il, (-1,0]), so that the operators Wl t-v+j[op~hj]W2 and wtt- v+j[op~hi]wz are
Green operators for all j > 0. We conelude that

°= wt-V[op1(h + ho) - opl(lt + 1Lo)]wz + Gf l ,

where GI E C8(X A
, g). From (3) we know that ho - ho = h(O, .) -11.(0, '), so

wt-Vopl[h - 11. + h(O,') - h(O,.)]wz E C~(XA,g).

We conelude from Proposition 3.1.28 that

Relation (1) folIows.
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3.1.36 Symbol Levels in the Cone Algebra. Let A be an operator in cv,d( UJ, g),
g = (, + ~ ,/ + ~ - j1., ( - N, 0]) represented in the form of Proposition 3.1.31:

w[op1h]w - wAtj.w E ß-oo,d(XI\)

for all w, wE C~([O, 1/2)). Then we define the following:
(a) The pseudodifferential symbol of A is the pair {(Ttj.( A,p), (T1\( Atj.)} in the sense of 1.3.4.
(b) As apreparation for the definition of the conorn1al symbol write the operator R in
the form (cf. 1.9.1)

N-I

R = t-V w L: t j [opI1hj ]w +G
j=O

with w, wE c~([O, 1/2)) equal to 1 near zero, /j E R satisfying / - (I'. - v) - j ::; ,j ::; /,

h j E Mp;OO(X),'TrCPj n f 1/ 2-'Y; = 0, and G E C~(ID,g).

Then the conormal symbol 0/ order' v - j 0/ A, (T~j (A), is given by

3.1.37 Principal Symbols in the Classical Case. Using the notation of 3.1.36,
let A E C:r,d( UJ ,g). We then ean dcfine the principal symbol of A. It is a triple
{(T~(A), (T~(A), (TM(A)}, where

• (T~(A) := (T~(Atj.) is the prineipal pseudodifferentia.I sYlnbol of A1/J in the sense of
1.3.4j

• (T~(A) := (T~(Atj.) is the prineipal boundary sYlnbol of Atj. in the sense of 1.3.4, and

• (TM(A) is the conormal symbol of A in the sense of 3.1.36.

3.1.38 Theorem. Let A E cv,d( ID, g), g = (/ + ~" + ~ - j1., (-N, 0]), s > d - 1/2.
Then A has continuous extensions

HS,'Y+ r; (DJ , Vi) H!I-jj(Y+~-jj(DJ, \12)
A: EB --+ EB

H!J,'Y+ ";1 (18 , Wd HIJ-jj(Y+ ""2 1 -jj( lB , W
2

)

and

H!I,'Y+~(DJ ~) H!I-jj,-Y+ ~-jj (ID \1.)
PI ' 1 Q1 ' 2

A: EB --+ EB
H!I·'Y+9-(JB W) HtI-Ji.,'Y+ ";1 -Ji. (IB W)

f~ ,1 Q'J ' 2

(1)

(2)

For v > j1. the mapping (1) is cOlnpact. In (2), P = (Pt, Pz) E As(X, Y, (, + ~,( -N, 0]))
is a given asymptotic type, while Q = (Q., Q2) E As(X, Y, (/ + %- /1, (-N, 0])) is a
resulting asymptotic type.
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Proof By Definition 3.1.15, we can write A a sum of operators A = AM +A", + R, where
AM is a Mellin operator supported elose to the singular set, Al,!; is a pseudodifferential
operator supported on the regular part, and R is an operator in CM+G(ßJ, g). So it is
sufficient to prove the result for the three operators separately. For AM it has been estab­
lished in Lemma 3.1.3(e) and Lemlna 3.1.8. The pseudodifferential operator is supported
away frOln the singular set. There 1i8

{'1 (UJ , VI) coincides with Htoc(intUJ, VI). Therefore
neither the weight , nor the asymptotic types playa role; the assertion follows from the
usua} mapping properties of At!':

[{~p(intU), Vd
Al,!;: ffi ~

II:omp(intlB , vVd

H:o:/J (intlD , \12)
ffi

H:o~ti(int1B , W2 )

(3)

For the operator R we employ Theorem 1.9.3.
Finally, to see the compactness for J.l > v we notice that the range of AM and At!' is in fact
contained in 'H~-IJ,'Y+Jt-IJ(UJ, V2)EB'H~-IJ''Y+n;1_1J(D3,W2), which is compactly embedded in

'H~-li''Y+~-p.(ßJ, \12) EB H~-/J''Y+n;l_I'(1B , W2 ), since J-l > v. Writing R = L: Rj +G, where

each Rj is ofthe form Wttj-lJ[op~hj]W2 with hj E MptQ,d(X) anel G E C~(DJ ,g), we know
J

that each Rj indeed maps continuously to Hoo''Y+~-IJ(ID,V2) EB HOO''"'I+n;l_lJ(lB, W2), so
we can also uso the compact en1bedding argulnent. For G at last we know from 1.6.4 that
it yields a compact lnapping between the spaces in (1). <J

3.2 The Algebra Structure

3.2.1 Outline. It is the purpose of this section to show that the operators in the cone
algebra can be composed without leaving the elass; it is obvious that addition and scalar
multiplication can be performed within the calculus.
So let f ER, jLt,P2,Vt,V2 E Z, dt ,d2 E N, 0< N E N, Pt - Vt,J-l2 - V2 E N. Moreover
let

gt = ('+~'f+~-Ilt,(-N,O]),
g2 = (f + ~ - PI" + ~ -1l1 - I-l 2, (-N, 0]) ,
At AlM + Atl,!; + Alt +GI E C IJ1 ,d1 (lD,gl)'
A2 A2M + A2l,!; + M 2 + G2 E CIo"2,d2 (lD ,g2)'

We assurne that the operators AI anel A 2 act on vector bundles which 'fit together', cf. e.g.
the assumptions in Theorem 2.3.5. We know from Theorem 3.1.38 that the composition
A 2A I is defined as an operator on weighted Mellin Sobolev spaces. We shall see now that
A2AI E CV3 ,d3 (lD, g3) with

g3 = (, + ~" + ~ - /11 - /12, (-N, 0]) , V3 = VI + V2, d3 = max {VI +d2 , dt}.

In other words: The composition of operators defines a continuous multiplication

CIo"2,d2 (UJ, g2) X elJl ,d l (ßJ, gl) -+ C
1J
3,d3 (ID, g3)' (1)

The subspaces of SD100thing Mellin and Green operators form two-sided ideals within this
setting; the above mapping ha.s the following continuous restrietions.

(2)
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CV2,d~(lD,g,J x C:Jta(lD,gd --+ cztC(DJ,g3),

C~~(DJ,g2) x CVI,dl(DJ,gl) --+ C~3(ID,g3)'

C~,d2(JD,g2) X G~l(Jf),gl) --+ G~1(lD,g3)'

(3)'

(4)
(5)

Note the 'd1 ' at the right hand side of (3) and (5). Since both Al and A2 are sums of four
terms, we will have to deal with 16 terms, and this makes the exposition a little lengthy.
The line of thought is as folIows. We shall first show the ideal property of GG( JD , '), thus
dealing with seven compositions, see Lemma 3.2.2. We then prove the ideal property of
CM+G( JD,'), see Proposition 3.2.3. This leaves HS with four compositions. Üne of them
is trivial: the composition A21,bA ItjI is an operator in ßva,d3 (ID). We shall treat the others
in Lemma 3.2.4 and 3.2.5. Notice that the composition A2M A 1M is a Mellin operator,
A 2tj1 A 11,b is a pseudodifferential operator, while A 2M A ItjI anel A 2tj1 A IM each are a sum of a,
Green operator anel a pseuelodifferential operator supporteel away from {t = O}.
In particular, since the Green operators anel the smoothing Mellin operators are snloothing
on the regular part of ß) , we have

• The pseudodifferential sYlnbol {(]tjI( A2Ad, (]A( A2Ad} of A2A 1 is the Leibniz product
of the pseudoelifferential symbols of AI anel A 2 . Locally,

anel

• The conormal symbol of A2A 1 is given by

(]~+~-j(A2Ad= L {TVI-qa~-P(A2)}a~-q(Ad,
p+q;:;:j

(6)

j = 0, ... ,N - (fll + fL2 - VI - V2) - 1, with the conormal symbols a~-P(A2) anel
a~-q(Ad of AI anel A 2 , respectively.

For simplicity we shall keep the notation AI, A 1M, ... , G2 , Vl, ... ,d3 fixed.

3.2.2 Lemma. The Green operators bave tbe rnapping properties 3.2.1(4) and (5).

Proof. From TheoreITI 1.6.2 we know the kerneIs of Green operators. In particular, we
note that, for JEN, the composition with the normal derivative atc is a Green operator
of type zero whenever Cis. FrOITI the mapping properties in Theorem 3.1.36 we therefore
obtain the required mapping properties of Green operators. <]

3.2.3 Proposition. The smoothing Nlellin operators have properties 3.2.1(2) and (3).

Proof We know from Theorem 1.9.10 that the smoothing Mellin operators fonTI an
algebra. We therefore have to consider the compositions

(i) A2M M 1 •

(ii) M2AIM.
(iii) A2t/JMl .
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Let us begin with (i). 'vVe have to deal with a composition

with h2 E COO(R+,M3,d·(X)), Wl,W2,W3 E Ccr(R+), JEN, hl E Mpoo,dl(X), Pa

Mellin asymptotic type, and I - j S ,I S " 7fcP n f 1/ 2 -')'1 = 0.
We first apply Lemma 3.1.10 to conlmute t j

- vI to the left, replacing h2 by TVI-j h2 ; next
use Theorem 3.1.11 and Lemma 3.1.25 to find h3 E COO(R+, M3 (X)) with

with suitable R E C~· (ID, go) with go = (, + ~, {' + ~, (-N, 0]). We know alrea,dy from
Theorem 1.9.10 that

tj-Vt-iJ'l R[opl1hdw3 E C~l (DJ, g3)'

The analyticity of h3 implies that OpI!PI h3 = op1}h3, hence [opX1J't h3 ] [op1}htl
op1}(h3hd. An application of Proposition 1.7.5 shows that

for a suitable asymptotic type P'. Now Theorem 3.1.9 gives the a..,;sertion.
The composition (ii) can be treated in a similar way: we consider

tj-iJ'lWI [op1}h2]W2 t - VI [oplh.]w3

with j E N,,- /-LI - (/-L2 - 1/2) - j ::; {'2 ::; ,- {LI,h2 E M poo ,d·(X), 7fc P n f 1/ 2-')'2

0, h1 E COO(R+, M~Ildt (X)). We tnay comnlute t-VI to the left, noting that

Now let h3(t, z) = w2(t)h1(t, z), find a symbol h4 = h4(t' , z) with [opI,h3 ]W3 = [op1h 4]W3+
R, R E C~I (DJ, go), anel proceed as before.
Our next goal is to show that the cOlnposition in (iii) anel (iv) furnishes Green operators.
In view of the cut-off functions associated with M1 and M2 , and the fact that A1,p as weIl
as A 2"b are operators supported away from {t = O}, we have

for suitable functions <PI, <P2 E Ccr(R+). Hence Theorem 1.8.2 and Lemtna 3.2.2 yield the
assertion. <J

Proof We have to consider an operator of the form
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with Wt, W2,W3 E C~(R+), hj E COO(R+, M3"d i (X)), j = 1,2. Using thc analyticity of h2
we may rewrite it as t-VI-V2Wdop1 (TVI h2)]W2[Op1htlW3' We let h3(t, z) = wz(t)ht (t, z).
By Theoreln 3.1.11 in connection with Lemma 3.1.25 we can find hA = h4 (t', z) such that

W2[op1h.]W3 = [Op1 h3]W3 = op1h4 + R

with R E C~l (DJ , go)' We know from Proposition 3.2.3 that Cc (DJ , .) is an ideal, hence
the fact that

conel udes the proof. <J

3.2.5 Lemma. A2M A t1jJ find A21,bA 1M belang to C V
3l

d
S (UJ ,g3). In fact both are sl1ms

of a Green operator and a pseudodifferential operator supported away {rom {t = O}.

Proof Let A 2M = t-V'lWt [oP1i 1l1 h2] W2, At?jJ = 7J;tB7J;2 with h2 E COO(R,-, M3,d'J(X)),
B E BVI ,d1 (1D ), Wt, W2 E C~ (R+), while ,pt,,p2 E COO( UJ) both vanish for t < 2e, e > o.
Choose a smooth function W3 supported in [0, e), equal to 1 elose to t = 0, and a smooth

function W4 with W3W4 = W4' Then

AZM A t1jJ - A2MW3A t?jJ + w-t A2M(1 - w3)At?jJ + (1 - w,dA2M(1 - w3)A t1,b

= °+ Cl + C2

with the obvious notation. Now

by Theorem 3.1.9 in connection with Theorem 3.1.11 and Relnark 3.1.12. Knowing this
we may apply TheorelTI 1.8.2 to conelude that it even is an element of C~2(ID,g2). So
Proposition 3.2.3 implies that Cl is a Green operator. The operator (1-w4)A2M(1-w3) is
supported away from the boundary. It therefore coincides with an operator in B~,d'J (UJ )
supported in the interior; hence composition with A11/1 furnishes an element of BVJ1ds (UJ ),
supported away frmn {t = O}. The argument for A21/1A IM is the same. <J

3.2.6 Formal Neumann Series. Supposc wc are given an R E C-l,d( ID, g), where

g = (r + ~,/ + ~,( - N, 0]). Then the inverse to the operator I - R is formally given
by L~o RJ. Although this series will in general not be convergent, we shall use it in tbe
following sense. Let

N-l

R = t wdop1r]w2 + (1 - wt}ßt,(l - W3) + Wt L: tt+k[op~rk]w2 + G
k=o

with r E coo(R+
l
Motld(X)), ~ E B-1,d(ID), 7'k E MpkOO,d(X) , and G E C~(D), g).

According to 3.2.1 we can compute [rom these data r U] E COO(R+, Moj,d(X)), R~] E

B-j,d(DJ), 7'~] E M-b'l'd(X),J = 0,1, ... , such that
P

k
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Notice that, for j ~ N, we can take ,r] = 0, k = 0, ... , N - 1, since the induced operators
are Green operators by Lemma 1.9.4. Next we take the asymptotic sum of these symbols:
we let

00 00 N-l

S '" '""" t j r[j] S.I. '" " R[j] Sk - '""" t j ,[j]
~ ''P LJ,p , - LJ k,
j=O j=O j=O

where the first is an asymptotic sum in COO(R+, M~,d(X)), cf. Theorem 3.1.7, the second
an asymptotic surn in ßO,d( 1D), while the third is finite. Set

N-l

S = Wt [OP1 S ]W2 + (1 - wdS(l - W3) +Wl L [Opn S k]W2'
j=O

We then have
S(I - R) - I E C~(ß), g). (1)

In order to see this notice that SM := S - L~o nj E C-M,d( DJ, g) by construction.
Therefore

S(I - R) = L~o Rj(J - R) +SM(J - R)
= J - RM+1 + SM(J - R) E J +C-M,d(lD, g).

Since M was arbitrary and nMEN C-M,d(DJ ,g) = C~(OJ, g) by Lemma 3.1.19, we get the
desired result.

3.3 Ellipticity, Parametriees, and the Fredholm Property

3.3.1 Definition. Let g = C, + ~,/ + ~ -11" (-N, 0]) ,ll E Z, d = p,+ E N, and

N-I

A = wtt- Jl {op1h]w2+(1- wdA,p(1-W3)+Wl L tj-Jl [op~hj]W2+G E CJl,d(ß),g) (1)
j=O

with the usual convention (i.e., WI,W2,W3 =1 near 0, WtW2 = Wt,WIW3 = w3,h E
COO(R+,Mb,d(X),A,p E ßJl,d(DJ),h j E M~,OO,d(X),,_j::; ,j::; "G E C~(DJ,g)).

Recall that I-l+ = max{I1"O}.
We shall say that A is elliptic of order I-l, provided that the following holds:
(i) A1/J is an eIl iptic elelnent of ßJl,d( ß) ), i.e., there is a B'lj; E B-J-I.,d' (OJ ), d' = (-/1)+, such
that for all w E C~(R+) with w(t) - 1 near t = 0

A,p(l - w)B'lj; - (1 - w)J E ß-oo,d'(ID), and
B'lj;(l - w)A'lj; - (1 - w)J E B-oo,d(DJ).

In other words, A,p is an elliptic element of Boutet de Monvel's calculus for the interior
of DJ in the standard sense.
(ii) h is el1iptic in the following sense: there is a 9 E Coo (R+, B-Jl,d'(X j r 1/2--Y)) and a
function w E Cgo(R+), equal to 1 near t = Ü, such that

w(hg - J) E COO(R+, ß-oo,d'(X; r 1/ 2--y)), and
w(gh - J) E coo(R+, ß-oo,d(X; r 1/ 2--y)).

(iii) Für each z E r l / 2--Yl the operator a~1(A)(z) = h(O, z) + ho(z) E ßlt ,d(X) is invertible
by an element in ß-Jl,d'(X).
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3.3.2 Remark. (a) In view of the spectral invariance of Boutet de Monvel's algebra,
see Corollary 4.1.3(b), we can replace condition 3.3.1(iii) by the invertibility of

(b) It follows from Theorem 3.3.1(i) and 3.3.1(ii) that the conditions in 3.3.1 are inde­
pendent of the representation of A with suitable h, A1/J' hj, G. Condition 3.3.1(ii) reftects
the Fuchs type ellipticity of A. As we shall see in 3.3.11, it also is independent of the
representation.

3.3.3 Definition. Ellipticity in the Classical Case. Let A E C~,d( ff) ,g) be written
in the form of Definition 3.3.1 with Al/> E 8~,d( lD) and h E COO(R+, Mb:~l(X)). We say
that A is elliptic of order J-l, if
(i) a~(A) is invertible on T*(int DJ )\0.
(ii) a~(A) is an invertible operator falnily on T*(int lB )\0.
(iii) aÄt (A) is invertible by an element in S-f-L,d' (X i ['1!2---y).

As before, d' = (-j.L)+.

3.3.4 Proposition. For A E C~,d(DJ, g), the ellipticity in the sense of Definiton 3.3.3
implies ellipticity in the sense of Definition 3.3.1.

For the proof we need the following lemma.

3.3.5 Lemnla. Let A be a unital algebra, A- I its group of invertible elements. Let
Al, A 2 be subsets of A-l, endowed with Frechet topologies, and suppose that inversion

is continuous. Moreover assume that J is a bounded c10sed interval in Rand F E
COO( J, Ad. Then the function G : J --+ A2 defined by G(t) = F(t)-l i8 an element of
COO(J, A2 ).

Proof. The continuity of inversion implies that G is continuous. For t, tu E J we have

G(t) - G(to) = -G(t) F(t) - F(to)G(to).
t - to t - to

Hence the limit t --+ to existsj it equals -G(to) F'( to)G(tu) and also is continuous. Itera­
tion completes the argument. <J

Proof of Proposition 3.3.4. By 2.44, the invertibility of a~(A) and aÄ(A) implies the
existence of a parametrix to A"" so condition (i) of 3.3.1 is satisfied. Condition 3.3.1(iii)
clearly is weaker than 3.3.3(iii), because in 3.3.3(iii) we ask parameter-dependent invert­
ibility. It remains to check 3.3.1(ii). We focus on a neighborhood of t = 0, so that we
only have to deal with X x R+. For all fixed (x,~,'T) E (T*X X R)\O, t > 0

is invertible as a consequence of the interior ellipticity. Similarly
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is invertible for all (X', (, T) E (T*Y X R) \ 0, t > 0, by an element in BciJl,d
l

(R+), d' =
(- J.l)+. Here B~,d(R+) denotes the classical elements of order J.l and type d in Boutet de
Monvel's calculus, acting from V1x l 09 S(R+) EB W1x' to V2x , 09 S(R+) EB W2x" What about
t = O? We introduce the notation hv (t, T) = h( t, -iT). Condition 3.3.3(iii) in connection
with 2.4.15(2) shows that h(O, r) E B1i1d( X; f O,T) is elliptic. Hence, by 3.1.34,

is invertible for (x, C, T) E (T* X x R)\O, and

tlio-~(A)(X/,t,(,r/t)lt:=o = o-~(J~V(O"))(x',e,r) E B~,d(R+)

is invertible for (x', C', T) E (T*Y x R)\O.
We recall that tl'o-~(A)(x,t,c,T/t) anel tlio-j.(x',t,(,r/l) are smooth in X,t,c,T up to
t = O. Localizing on (T* X x R)\O anel (T*Y x R)\O to neighborhoods over which
the vector bundles are trivial, we Inay consider tl-'o-~(A)(x,t, C, T /t) a smooth map on a

bouneled closed interval in R;~~2T with values in matrices of finite size, which in addition is
pointwise inverti ble. By Leln~~ 3.3.5, the inverse b,p = b,p( x, t, C, r) given by b(x, t, E, T) =
[tlio-~(A)(x, t, C, T /l)]-1 is a smooth functioD, since inversion is continuous on matrices.
Moreover, the inverse is a homogeneous function in (E, T) of degree -IL
With the same localization, we can consicler tlia~(A)(x', t', C', r) a smooth function on a,
closed interval in R;~ t ~I T1 taking values in B~,d(R+). Since inversion

, , ... 1

(.)-1 . ßl-'ld(R )-1 -+ B-l-'ld/(R )
. cl + cl +

is continuous, we nlay again apply Lemma 3.3.5: The inverse b" = b,,(x', t', (, T) also is a
smooth function, homogeneous of degree -J.l in ((, r).
Next we consider b,p and b" as (t, T )-elependent symbols and define frOll1 them a family of ­
operators B( t, r) by applying thc pseuelodiffercntial action with respect to the x-variables.
The homogeneity anel sll100thness iIl1ply that

Let 90(t, -ir) = B(t, r) so that 90 E COO(R+, B~t,dl (X; f o)). Now take an arbitrary
function 7/; E G~(R+) with 7/;(p) = 1 near p = 1 and define

91 (t, z) = Mp~z'ljJ(p)M0~,T~p90(t, z).

We have 91 E COO(R+, l\1Ö:~ldl (X)), !JI - 90 E COO(R+, Bdoo,d
f

(X; 1'0)), anel

0-;1-' (g 1( t, - i .)) = 0-:;/ (B(l, .)) = [o-~ (h(t, - i .))] -1 ,

o-;:Ii(gl(t, -i·)) = 0-;:1-' (B(t, .)) = [o-Ä(h(t,-i.))]-I.

This implies that, for Wh W2 E Cf: (R+) with Wl (t) == w2(l) - 1 for small t and WtW2 = W1,

[ 1/2 ] [ 1/2]
Wl oPM 91 W2 oPM h - Wl!

[ 1/2/.] [ 1/2 ]Wl opM /, W2 opM 91 - WI [
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for suitahle Tl E COO(R+, Nlö,~'ld(X)), rr E COO(R+ l Mö,~{ (X)). From the aSYlnptotic
expansion formulas for the sYlnbols we conclude that

W1 (g1h - I) E COO(R+ l Mö,~'/(X)), and

wdhg t - I) E COO(R+, Mö,~{ (X)).

Thc standard iteration process yields ag E COO(R+ l MÖ~ld' (X)) satisfying,

w1(gh - J) E COO(R+, MÖ~,d(X)),,

Wt (hg - I) E COO(R+, MÖ~,dl (X)).,

In particular, the conditions of 3.3.1(ii) are satisfied.

3.3.6 Theorem. Let g= er + ~" + ~ - p, (-N, 0]), Jl E Z, d = J.l+ E N, and A E
C~,d( DJ ,gY. Ir A is elliptic, then there is a pararnetrix B E C-~,d' (DJ 1 g), d' = (-J--l)+, g =
(, + ~ - j-L" + ~,( -N, 0]), such that

AB - J E C~ ( ID , gI), and

BA - I E C~(ID ,gz)

with g1 = (, + ~ - J-L" + ~ -p, (-Pl, 0]), g2 = (, + ~,1' + ~, (-I\r, 0)).

3.3.7 Outline. The proof of Theorem 3.3.7 will take up a large part of this section. 1n
order to avoid unnecessary repetitions, we shall assurne that A has thc form anel the prop­
erties in Definition 3.3.1. The notation J-L,d,d', g,g,gl,g2",N, g,h,A1j.J,ho, ... ,hN-hG
will be fixed. vVe shall start with apreparatory proposition illuminating conditions
3.3.1(ii) anel 3.3.1(iii). Then the paraInetrix construction will be carried out in several
steps. Corollary 3.3.10, below, will complete the proof.

3.3.8 Proposition. There is a Mellin asymptotic type Q, a function w E C~(R+),

equal to 1 near t = 0, and a Mellin sYlnbol 9 E COO(~, MQIJ.,d
l

(X)) such that

w(t)(h(t, z) +ho(z))g(t, z) - w(t)J E COO(R+, MÖr:,d
l

(X)), (1)

w(t)g(t, z )(h(t, z) +ho(z)) - w(i)I E COO(R+, MÖr:,d(X)), (2)

(h(O,z) +ho(z))g(O,z) = I, (3)
9(0, z)(h (0, z) + ho(z)) = I, (4)

with suitable A1ellin asymptotic types Ql and Q2. Note that, accarding to Propo­

sition 3.1.3(c), 9 = 9ana + g~ing with 9ana E COO(R+, MÖIJ.,d'(X)) and g~ing E
COO(R+, Möoo,d' (X)). lvloreover, (1) taget'her with (3), and (2) tagether with (4) irrJ-

ply that, (ar suitable Sr E COO(R+, A1Q~,d(X)) and S/ E COO(R+, MÖ/oo,d
l

(X)), we have

w(t)(h(t, z) +ho(z))g(t, z) - w(i)I

w(t)g(t, z)(h(t, z) +ho(z)) - w(l)! =

91

tsr(t, z), and

lSl(t, z).

(5)
(6)



P1'oof Choose a function 'Ij; E CO'(R+) with 'Ij;(p) == 1 for p elose to 1, and let

go(t,z) = !V[P-tz'lj;(p)M;'~-tpg(t, ().

Then 90Ir\/:il-'l - 9 E COO(R+, B-oo,d'(X; f 1/ 2-,,)), and 90 E COO(R+, MÖJ"d'(X)) by Propo­
sition 2.2.21. Moreover, Corollary 3.1.6 in connection with the ellipticity properties
3.3.1(ii) implies that relations corresponding to (1) and (2) hold for 90 instead of g.
We also know that

Ti(Z) 90(0, z)(h(O, z) + ho(z)) - J E Mp\oo,d(X) , and

r'2(z) = (h(O,z) + ho(z))gu(O,z) - J E Mp2
oo

,d
f

(X)

for suitable Mellin a,..;;ymptotic types PI and P2. Now we apply Lelnma 1.9.11 to see that
there are Mellin asymptotic types Q3, Q.l, and 1'3 E MQc;,d

l

(X), 1'4 E MQ~,d(X) such that

(I + 1'1 )-1 = J + 1'3, and
(I +1'2) -1 = I +l'4.

Then
(I + 1'3)(z)go(O, z)(h(O, z) + ho(z)) = I, and
(h(O, z) + ho(z))go(O, z)(I + 1'4)(z) = I

in the sense of merOlnorphic operator-valued functions. In particular, we have for z E

f 1/ 2-"
(I +T3)(Z)gO(0, z) = go(O, z)( [ +T4)(Z) = [h(O, z) +hO(Z)]-l,

since h(O, z) + ho(z) by assun1ption is invertible on this line.

According to Proposition 1.7.5 we know that 90(0,·)(I +1'4) is an elenlent of MQJ"d'(X)
for a suitable Mellin asynlptotic type Q. Finally we let

g(t, z) = 90 (t, z) (I + T 4) (z ).

Since g(t, z) - 90(t, z) = 9o(t, Z)T4(Z) E COO(R+, MQoo,d' (X)), relations (1) and (2) will be
satisfied, while by construction we have (3) alld (4). Relations (5) and (6) follow from
(1), (2), (3), alld (4) with Taylor's formula. <l

3.3.9 Proposition. There is a BI E C-J~,d' (DJ ,g) such that

In the same way thefe is a Er E C-jl,d' (ID ,g) such that

Hefe, g, gl and g2 are as in Theorem 3.3.6.

Proof Let ß,p be the parametrix to At/J of Definition 3.3.1(i). Related to the functions
Wl, W2, W3 used in thc representation of A choose W4, W5, W6 E CO'(~) with the following
properties: W5W3 = WS,W4W5 = W4,W4W6 = W6. We also assuIne that W6W = WB for the
function W in 3.3.1{ii). Next let
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Here, 9 is the meromorphic Mellin sYlnbol of Proposition 3.3.8. This indeed is an operator
in C-Jj,d' (ß), g), since we can decolnpose Y= Yana + 9tfing as in 3.3.8 and apply Theorem
3.1.9. In order to show the desired result, we may forget about the terms 11,1, . .. ,hN - 1
and G of A, since they contribute errors in CN/+~( UJ, g) by 3.2.1(3). So we let he(t, z) =
h(t, z) +ho(z) and have

A = wlt-~[Op1he]wz +(1 - wt}A,p(l - W3)'

Then
BrA = [w4t~[opX1~T-Jlg]W5][WI t-~[op1he]wz]

+[w4t~[opX1~T-llg]w5][(1 - wt}A1,V(l - W3)]
+[(1 - w4)Bw(1 - ws)][Wtt-Jj [OPAl he]wz]
+[(1 - w4)B,p(1 - ws)][(l - wdA1,V(l - W3)]

= Tl +Tz +T3 + T4

with the obvious notation. Let llS consider these terms separately, starting with Tl.
The identity WIW3 = w3 implies that Ws = W5WI. Hence, noting that [opl1~T-~g]t-Jj =
t-~op1g,

Tl = W4 [op19l Wo [opIthc] Wz
- w4[op1ghe]wz lnod C-I,d( ß), gz)

w.. I + w.{l[op1sdwz.

Here Si is the Mellin symbol introduced in Proposition 3.3.8, and we have used 3.2.1(6).
The term Tz is zero, for W5(1 - WI) = W5 - W5WI = O. In order to treat T3, we first note
that (1 - ws) [WI-t- ll [op1ho]wz] is a Green operator by Theorem 1.8.2. We now choose a
function W7 such that W6W7 = W7 and obtain from Lemma 3.1.13 that

T3 - (1 - W4) B,p(l - W6)Wlt-~[op1h]wz mod C~( lD, gz)= (1 - w4)B1,V(1 - W6)Wlt-~[oPXth]wz(1 - W7) n10d C~(UJ ,gz).

By assumption, wlt-~[op1h]wz- wIA~wz E B-oo,d(XI\). The multlplications by 1 - WB
and 1 - W7 in connection with Lemrna 3.1.14 then imply that

T3 (1 - w4)B,p(1 - WS)WI A~wz(1 - W7) moel C~(UJ, gz)
= (1 - w4)B~(1- W6)WlA~(1 - W7) mod C~(ID ,gz)·

In the last equivaJence we have used that the supports of WI and 1 - Wz are disjoint. This
is good enough for our purposes and we turn our attention to T4• Employing the fact that
the supports of 1 - WI anel W3 - W7 da not intersect, we obtain that

From 3.3.1(i) we conc1ude that

T3 + T4 - (1 - W4) B~( 1 - w6)A~(1 - W7) fiod C~(DJ ,gz)
= (1-w4)1 modC~(DJ,g2)'

Again we have used Lenlma 3.1.14. Hence B[A = Tl +Tz+T3 +T4 _ I moel C-1,d(HJ, gz).
The construction of Br is analogaus. <l
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3.3.10 Corollary. In the notation of Proposition 3.3.9, there is an operator B E
C-~,d' (UJ ,g) such that

and

Proo! Let Rl = I - B1A anel Si = L~o Rf be the formal Neumann series, cf. 3.2.6. Then

SIBI E C-/l,d'(UJ ,g), anel, by 3.2.6(1),

G1
1 = SIB{A - I E C~(UJ ,gd.

Similarly we can let Rr = I - ABI anel Sr = L~o Rt as a fornlal Neumann series. Then
BrSr E C-~,d' (DJ, g), and

This iInplies that

where, accoreling to 3.2.1, G = S{B{Gr-G1BrSr E cg/(UJ ,g) with d" = max {d',d-J-L} =
d'. We can therefore let B = SI BI (or B = BrSr) anel obtain the elesired result. <J

3.3.11 Fuchs Type Ellipticity and Mellin Symbols. Thc proof of Proposition 3.3.8
shows that h(O, z) + ho(z) is invertible as a meromorphic function on C, so it is rare for it
not to be invertible on r 1/2-"(' This, however, is the point where choice of ho is important.
The relation

w(l)g(t, z)(h(t, z) +ho(z)) = w(t)I + tSI(t, z)

ilnplies that, for small t, w(t)I + [sl(l,z) = r + tS1(t,Z) is invertible in C + B-oo,d'(X;
r l / 2-,). The latter space is a 'lJ*-algebra accoreling to Theorem 4.4.4. In particular,
inversion is continuous by Theorem 4.4.2. Using Proposition 3.3.5,

Replacing W by a function WI E Cg'(R+) with WI (t) == 1 near zero and supported in a
snlall neighborhood of t = 0 anel replacing 9 by 91 (t, z) = (I + tSl( t, z))-1g(t, z) we then
have

W I (t )91 (i, z) (h (t, z) + ho(z)) = W I ( t ) I,

In the same way we obtain the relation

zEr1/2-,.

Hence h(t,z) +ho(z) has an inverse in COO(R+,B-~,d'(X; rl/Z-,)) for small t.

Next suppose we have another representation of the operator A as in Theorem 3.1.35 with
Mellin symbols h, ho. "Ve then know that
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Thus
Wt(t)Y1(t, z)(il,(t, z) -Tl,o(z)) = f + tr(t,z)

with r E COO(R+, ßO,d(X; r 1/ 2 -'Y)) n COO(R+, ß-oo,d(X; r 1/ 2-'Y))' For each small t, we can
therefore in vert f +tr(t, .) in C+ß-oo,d (X; f 1/2-r ) by TheorelTI 4.4.4. On the other hand we
know that ßO,d(X; r 1/2-r ) has continuous inversion by Theorem 4.4.2. Hence Proposition
3.3.5 shows that (I + tr(t, Z))-1 E COO(R+ 1 ßO,d(X; r 1/ 2-r))' Consequently we find W2 E
COO(R+) with W2(t) == .L near t = 0 alld 92 = (f + tr)-l g1 E COO(R+1B-~,dl(X; f l / 2-'Y))
with

W2(t)Y2(t, z)(il,(t, z) + ll,o(z)) =

w2(t)(h(t, z) + hO(Z))Y2(t, z)

In particular, the Fuchs type ellipticity condition 3.3.1(ii) also holds for the other repre­
sentation.

3.3.12 Theorem. Let A E CIl,d( UJ ,g) be elliptic, g = (, + ~" + ~ - It, (-N, 0)),
J-L E Z,d E N,d::; It+ = max {p,O}. Then

HS,r+~(UJ , VI)
A: EB

H!I,'Y+ 1121 (IB 1 Wd

H!I-~,r+ ~-Jj (DJ , \12)

--+ EB
H!I-lll'Y+ 1121 -Ji (D3 , W

2
)

is a FredholIn operator. Given f E H!I-~,r+rr-Jl( UJ, V2 ) EB HS-~,r+ 11~1 -Jl( lB , W2 ) or 9 E
!I-~ 1'+ '!1.._~ !I-Il r+!!..=.l-IlH p1 ' 2 (DJ, V2) EB H p2 ' :il (lB, lrV2) {ar some fixed asyrnptotic type (Pt 1 P2) and

any solutions u, v E Ht,'Y+ ~ (ID , \"1) E:B Ht,'Y+ 11;-1 (lB , 1/Vd o{ the equations Au = f or Av = 9

with l > (-fl)+ - 1/2, we rnay conc1ude that

u E HS,'Y+!!r (ID , V.) E:B HS,r+ 1121 (IB ,Wd anel

v E '1..Js,'Y+ T(DJ V) ffi H!I,r+ 11;-1 (IB W)
nQ1 ,I "CD 'h ,1

{ar a suitable asymptotic type (Ql, Q2)'

Praof. By Corollary 3.3.10 there is an operator B E C-~,d' (DJ, g), g = (, + ~ - J-l" +
~,( -N, 0]), d' = (-lt)+ = max {-{t, O} such that

with gl = (, + ~ - J-L" + ~ - fl, (-N, 0]), g2 = (, + ~" + ~, (-N, 0]). The operator B
induces a bounded map

H!J-li,r+~-~(UJ,V2 )

B : E:B
HS-~''Y+ 11;1 -~( IB , W

2
)

H!I,'"Y+ ~ (DJ , Vd
--+ EB

HS''Y+ 11;-1 (JB ,Wd,

by Theorem 3.1.38 while, by Lenllna 1.6.4,

Rr E Je (1-l!I-lll'Y+~-Il(DJ, V2 ) EB H!I-Il,r+11~1-1l(D3 ,lIV2 )) ,

R1 E Je (Hs,r+ ~ (DJ , Vi) E:B 1-[!I,r+ 1121 (IB , W.)) .

95



So thc first statement is imIllediate. Supposing that Au = f 01' Av = 9 we conclude that
Bf = BAu = (I + Rt)u, henee u = Bf - R1uj similarly v = 8g - R1v. Sinee B maps
spaees with and without asymptoties, cf. TheoreITI 3.1.38, anel sinee R1 maps any spaee

1{t,'Y+ ~ (DJ , Vt} EB 1{t,'Y+~ (U3 , Wd, t > d' - 1/2, to 1-l~;'Y+!(}(DJ , Vi) EB 1{r;;~'Y+ n-:;l (IB , Wt}
for suitable asymptotic type (Q3, Q4), we get the assertion. <]

4 Appendix

4.1 A Theorem on Analytic Fredholm Families

In this seetion we shall prove a result on the invertibility of analytie Fredholm faIllilies.
lt is a variant of a classical theoreIll on analytic Fredholm families, with a long history.
First steps are due to Tamarkin 1927, [50] progress was made by Atkinson, Gohberg
[12], Sz.-Nagy, and Gramsch, see [14] for more details. \Vhat we are mainly interested
in is Theorem 4.1.6, below. Gnee Theorem 4.1.1 anel Lemma 4.1.5 have been proven,
Theorem 4.1.6 fo11ows from a result of Granlsch and Kaballo [15, Proposition 1.6]. For
the cOIllpleteness of the exposition we give a proof. It is baseel on [49, Seetion 2.2.5].
We eonsider an analytic family {A(z) : z E C} of operators in ßO,O( X), acting on sections
of veetor bundles V over X anel W over fJX = Y, respeetively:

Coo(X, V)
A(z) : EB -+

Coo(Y, W)

A(z) extends to a boundecl linear map

HO(X, \I)
A(z) : EB -+

flO(y, W)

For simplicity we shall use the notation

HO(X, \I)
EB

HO(y, W)

H = IIO(X, V) EB HO(y, W),
Coo = Coo(X, V) EB Coo(y, W).

We sha11 denote by N(A) and R(A) the kernel and range of an operator A. Three facts
will play an important role.

4.1.1 Theorenl. (Schrohe [34, 37, 39]) \Ve consider ßO,O(X) a subalgebra of [,( H). The
symbol topology in ßO,O(X) is stronger than that of [,( H), so the embedding ßO,O(X) y

.c(fl) is continuous. BU,O(X) is syrnmetric: For A E ßO,O(X) the .c(H)-adjoint A* also
belongs to BO,O(X). Finally, if A E BO,O(X), and A : H -+ H is invertible, then A-1 E
BO,O(X). In other words, ßO,O(X) is a W*-subalgebra of .c(fl).

w*-algebras were defineel by Gramsch [13, Definition 5.1]:

4.1.2 Definition. Let A be a Frechet subalgebra of a unital C*-algebra C with the same
unit. A is callecl a W*-subalgebra of C if it is continuously embeelded, symmetrie, anel
speetra11y invariant, i.e., A n C- 1 = A-I.
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Here, A- 1 and C- I denote the groups of invertible elements in the respective algebras.

4.1.3 Corollary. (a) The identity BOlO(X) n ['(fl)-I = BOlO(X)-1 implies that BOlO(X)
has an open group of invertible elements. Hence a theorem by Waelbroeck, see Theorem
4.1.4, below, ilnplies that inversion is continuous on BOlO(X).
(b) Let A E B~ld(X), It E Z, d = J-l+ = lnax {J-l, O}. If VI, \12, and W1 , W2 , are vector
bundles over X anel Y 1 respectively, anel

H~+(X, VI)
A : EB ---+

H~+(Y, Wd

H~+-~(X, \12)
EB

fI ~+ -jj (Y, W2 )

is an isomorphism, then A-1 E B-~ld' (X), d' = (-li)+. In fact this is straightforward froln
Theorem 4.1.1 llsing order reductions; see Schrohe [37].

4.1.4 Theorem. (Waelbroeck, [55, Chapter VII, Proposition 2]) Let A be a
Frecbet algebra, A- 1 its grollp of invertible elernents. Inversion x t-+ X-I is continuous in
A- 1 if and only if the invertible element form a Go subset of A.

4.1.5 Lemma. Let A E BO,O(X), and suppose A : H --+ H bas finite rank. Then
A E B-oolO(X).

PTOO! (cf. Schrohe [37, Lemlna 4.3]) The fact that 0 00 is dense in H implies that A(000
)

is dense in the finite-din1ensional range of A. Since A(0 00
) ~ 0 00

, the range of A : H --t H
is contained in COCJ. Let 11, ... ,fk be an orthonorn1al basis. Then

k

Af = L(!, uj)fj
j=1

for suitable Uj E fl. The operator A* also has finite rank. The same argument applies.
So we conclude that A is an integral operator with a kernel in 0 00 ® 0 00 (the algebraic
tensor product). <J

4.1.6 Theoren1. Let U be a domain in C and

an analytic family of elliptic operators acting on H. Assume tbat tbere is a z E U such that
A(z) is invertible in ['(H). Then A(z) is invertible in BO,O(X) for alJ z outside a countable
set D with no acnlInulation point in U. Tbe function z t-+ A(z)-1 is a rnerornorphic
function with values in BO,O(X); in z E D, A(z)-I has a pole, the coefflcients of the
principal part oE tbe LaurerJt series being finite rank operators in B-OO,O(X).

Proof Step 1. The embedding BOlO(X) Y. [,( lf) is continuous, and we may consider A
a n1apping A : U -+ f:( [f). Since A(z) is clliptic, A is an analytic Fredholm family. Let
V ce U be an open set. We shaJI say that a function is analytic on \I if it extends to an
open neighborhood of V as an analytic funetion. Consider

A : V --+ L(H).

97



For each z E V we obtain that R(A(z))l. = N(A*(z)) is a finite-din1ensional subspace of
0 00 since A(z) is elliptic. 'vVe may choose finitely many 0 00 functions generating it, say
fiz,'" ,fNz' Define the operator kz ; C N -+ H by kz(Ci, ... ,CN) = L~i cjfjz. Then

H
(A(z) kz): EB -+ H

CN

is surjective. By continuity, (A, kz) will also be surjective in a neighborhood of z. In
view of the cOInpactness of V we may find finitely many functions Ii, ... ,IM, define the
operator k : C M -+ H by k( Cl, ... , CM) = L~i Cjlj and achieve that

ff
(A(z) k); EB -+ H

CM

is surjcctive for all z E V.

Step 2. In particular: Let p be the orthogonaJ projection onto F = span {lI, ... , IM} in
Hand q = I - p. Then

H
q(A k) = (qA(z) 0): ffi -+ qH

CM

is surjective, and so is qA : H -+ qH. Notice that qfl = (I - p) fI = pl. is finite
codimensionaJ. 'vVithout loss of generality we mayassurne that /1, ... , IM are orthonorrnal
so that

M

p(f) = L(f, fj )fj .
j=1

Therefore pis a finite rank operator in ß-oo,O(X), while q E ßO,O(X) is a Fredholm operator
of index O.

Step 3. For each z, the kernel of qA(z) : Ir --+ H is a finite-dimensional subspace Lz of H,
consisting of 0 00 functions. The orthogonal projection pz onto Lz is given as aresolvent
integral

pz =~ [ (Al - A(z)"' A(z))-ldA.
27ft Jr

Hence z r-+ pz is a holomorphic function with values in BO,O(X). Here we are using the fact
that ßU,O(X) is spectrally invariant in .c( H). For each fixed z, pz E a-oo,O(x), since it is
a finite rank operator. Hence qz := I - p% is a. holornorphic falnily of Frcdholrn operators
of index O. Now we may identify A with the matrix function

(
B(z) K(Z)) L; pl. _

A(z) = T(z) Q(z) : T -+ ~; z E V.
%

Here B(z) = qA(z)qz, f«(z) = qA(z)pz, T(z) = pA(z)qz, Q(z) = pA(z)qz' Note that
B(z) E BO,O(X), while f{(z), T(z), Q(z) E B-oo,O(X). All these functions are analytic
BU,O(X)-valued functions. By construction, B(z) : L; -+ Fl. is invertible for each z E V.
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Step 4. Lzo is a vector bundle over V: For each point Zo E V, there is an open neighborhood
Vzo and a,n analytic map

R : Vzo --+ ,c( Lzo , H)

so that R(z) is an isomorphism between L zo and Lz for each z E Vzo ' In order to see this,
choose an orthonormal basis {li, ... ,lN} of L zo ' We have det (Pzolj, pzolk) = det (lj,lk) = 1.
The continuity of z l---7 pz implies that the determinant stays non zero as z varies over a
neighborhood ~o of zoo The vectors pzlj will therefore form a basis of Lz. The n1apping
R then is defined by

5tep 5. Given Zo E V, there is an analytic family {8-(z) : z E ~o} C ßO,O(X) such that

B-(z) inverts 8(z) as an operator in 'c(L;, Fi.): Define 5(z) : H --+ II by

M

5(z)1 = E(!, R(z)lj)fi' z E Vzo '
j=1

Then S(z) : Lz --+ F is an iSOl110rphism for all z E Vzo: The matrix (( R( Z )lk,
R(z)lj))j,k=I,. .. ,M is invertible, so {R(z)lk : k = 1, ... , M} is a basis of Lz with

M

8(z)(R(z)lk) = E(R(z)lk' R(z)lj)fj, k = 1, ... , LVI,
j=1

being linearly independent.
Clearly, z l---7 B(z) + S(z) is an analytic family on Vzo with values in BO,O(X), moreover,

8(z) + 8(z) : H --+ H

is invertible for all z E Vzo ' Theorem 4.1.1 in connection with Corollary 4.1.3 implies
that z l---7 C(z):= (8(z) + S(Z))-I E A(Vzo,BO,O(X)). ~1oreover, it is easily checked that
C(z) = qzC(z)q + PzC(z)p alld that z l---7 8-(z) .- qzC(z)q E A(Vzo,BO,O(X)) is the
desired faIl1ily.

Step 6. Let

J.(z) = ( -T(z{B-(z) n: FJ. FJ.

EB --+ EB
F F

and

J ( ) _ ( [ - B-(z )[((z) ) .
Li. Li.z z

1 Z - 0 I . EB --+ EIl
Lz Lz

Both J 1 and J2 are analytic BO,O(X)-valued functions. In fact, both J1 anel J2 are elements
of BO,O(X)-I, hence

are analytic. A computation shows that

(1)
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Hence A(z) is an isorl1orphism for precisely those z where

E(z) := (Q - T B- [()(z) : Lz --+ F

is an isomorphism. E is a family of operators acting between finite din1ensional spaces
both of dinlension M. The space F is independent of z; we therefore pick an arbitrary
isomorphism J : F --+ CM .

Step 7. Let R(Z)-l be the inverse to the iSOlnorphism R(z) : Lzo --+ Lz . This also is an
analytic faInily of operators on Vzo: [<'ar LE Lz and the above fixeel vectors Lj let

M

5(z) I = ~(l, pzlk) Lk.
k=l

Clearly S is analytic. For each z E Vzo , 5(z) : L z --+ Lzo is a linear map. We have

M

5(z )(pz1m) = 'L,(pz1m, pzLk)lk.
j=l

Hence S(z)R(z) acts a.s the invertible matrix function z 1-+ ((pzlj,pzlk))j,k on the basis
{lI, ... , lM} of L zo , so that R(z)-l is analytic. Identifying Lzo anel CM , we may consider
R(Z)-l an invertible element of ['(Lz , CM).

Step 8. vVe now have an analytic tnapping

~o 3 z 1-+ f[(z) := J E(z)R(z) E [,(CM
).

By assumption, there is at least one point z, where A(i) is invertible. Apply the above
construction to the corresponding neighborhood Vi. Then E(z) is invertible anel so is
H(z). Since H is a Inatrix-valued analytic function, it will be invertible on all of Vi
except for a discrete set of singularities. According to Cramer's rule, the singularities are
poles.

Step 9. Since U is a domain, the above considerations in connection with identity (1) show
that A(z) is invertible for all z E U except for a countable subset. The spectral invariance
of BO,O(X) in .c(H) ilnplies that A(Z)-l E BO,O(X) whenever it exists. l\1oreover, the fact
that inversion is continuous in BO,O(X) shows the analyticity of z 1-+ A(Z)-l outside the
singularities. Since the singularities of A(Z)-l are precisely those of E(Z)-l, anel, locally

we conclude that the singularities of E- 1 are poles anel that the coefFicients of the principal
parts are finite rank operators. Thc coefficicnts of the principal part of thc Laurent series
for A(z)-1 in a pole can be computed by Cauchy's integral theorem from the values of
A(Z)-l on a. contour around the pole. The fact that A(Z)-l is an analytic ßo,O(X)-valued
function implies that also thc cocfricients are opera.tors in BO,O(X). On the other hand we
know that they are finite rank operators as elements of .c( fl). We conclude froDl Lemma
4.1.5 that they even belong to B-OO,O(X). <J
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4.2 The Cone Sobolev Spaces H:one

As in Section 1, X denotes the open interior of a compact manifold with boundary, X,
which is embeddded in a closed compact manifold n.

4.2.1 The Spaces H:one ' Let {nj};=l be a finite covering of n by open sets, K,j :

nj -+ Uj the coordinate Inaps onto bounded open sets in Rn, and {<pj };=I a subordinate
partition of unity. The Illaps K,j induce a push-forward of functions and distributions: For

a function u on nj

for a distribution u ask that

xE U··
J'

(1)

For J = 1, ... ,J consider the diffeomorphisms

(2)

Xj: Uj X R -+ {(x(t),t): xE Uj,t E R} =: Cj C Rn+l
.

given by Xj(x, t) = (x(t), t). Its inverse is Xjl(y, t) = (y/(t), t). For 8 E R we define

H:one(n x R) a,s the set of all u E fItoc(n x R) such that, for j = 1, ... ,J, the push-forward
(Xj"'j ).('Pju), which may be regarded as a distribution on Rn+1 after extension by zero,
is an element of H8(Rn+l). The space I-/:one(n x R) is endowed with the corresponding
Hilbert space topology. "Ve let

H~ne(X x R) =
H~ cone(X x R)

1

H:one (n") =
ff:one (X") =

IJ~!cone(XA) =

{ u Ix x R : u E H~one (n X R)},
{u E H:one(n x R) : suppu ~ X X R},

{ulo x l4 : u E Jf~one(n X R)},
{ U Ix x 14 : u E H:one (X x R)},
{uI XXRt : U E f/~,cone(X x R)}.

For 8 = 0, we haveu E ff~one(nxR) ifand only ifXj."'j.(CPjU) E L2(Rn+l) for j = 1, ... , J.
In view of the identities

LIKj.(<PjU)(y/(t), tW dy dt
J

= 1 r (t)n l"'j.('Pj'U)(X, t)1 2
dl dx

Uj i R

this is the case if and only if (t)n/2 "'j*('PjU) E L2(Uj x R). Moreover, supposing w =
l'i'-j. ('PjU) is sufficiently Sl110oth, we have

8Xj.w ( t)
8

y,
Yk aa [w(yl(t),t)]

Yk

-I Bw -I (Bw)(t) 8
X
k(YI(t),l)=(t) Xj. 8

X
k (y,t),

t n Yk 8w 8w
--2 L: -()-8 (yI (t), t) + T(Y/ (t), t)

(t) k= 1 't x k (A

= - (tt)2 EXi' (Xk::J (y, t) + Xi' (~:) (y, t).
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For 5 E N, the fact that u E (t) -n/2 H"(rt X R) implies that (t)n/2 txQa ~w E L2(Uj X R)

whenever k + laI::; 5, j = 1, ... ,J. Then we have Xi*( txQa ~)w E L2(Rn+l). Using (3)
anc! (4) we conc1ude that u E H~one(rt X R), so that

8(Xj l)*V( )
8t x, t

o ov ov
-0[v(x (t) ,t)] = (t) -8 (x (t) ,t) + -0 (x (t) ,t)

Xk Yk t

) ( -1) (8v) -I (fJv)= (t Xj * 0Yk (x, t) + (Xj )* fit (x, t),

t n OV fJv
= -() LXk-a (x(t),t)+-a (x(t),t)

t k;l Yk t

t (-I (DV ) -1(t)xk Xj )* aYk (x, t) + (Xi ).v(x, t).

(5)

(6)

lf u E H:one(rt X R), 5 E N, then ty: ~v E L2(Rn+l), lai + k ::; 5, j = 1, ... , J. Hence

(Xj l)*j;y: ~v] E (t)-n/2 L2(Uj X R). Applying (5) and (6), u E (t)"-~ HS(rt X R). 'A'e
conclu e that

!f:one(fl X R) Y (t)"-~ HlJ(rt x R).

4.2.2 Lemma. (a) For 5 E R, the dual space (H~one(rt X R))' to lf~one(fl x R) can
be identified with H:O~e(fl x R). Here the duality is with respect to the L2(Rn+l) inner
product induced via the maps Xj in 4.2.1, equivalently with respect to the inner product
in (t)-n/2 L2(rt X R).
(b) For s ~ 0 choose s ::; s' E N. Then

(t) -n/2 H"(fl x R) Y H~one(fl x R) Y (t)"
I

-n/2 ffS(rt X R),
(t)-n/2 H"(X x R) Y H:one(X x R) Y (t)"'- n/2 H"(X x R),

(t)-n/2 H"(rtl\) Y H~one(OI\) Y (t)"'-n/2 H"(fll\),
(t)-n/2 H"(XI\) Y !r:one(xl\) Y (t)s'-n/2 ffS(XI\),

(t)-n/2-1I
1

H-S(fl x R) Y H~~e(rt x R) Y (t)-n/2 H-S(fl x R),
(t)-n/2-1I

1

H-lI(X x R) Y H~~e(X x R) Y (t)-n/2 H-S(X x R),
(t)-n/2-s' f{-"(Ol\) Y H;;'~e(rt"') Y (t)-n/2 H-lJ(rt/\),
(t)-n/2-1I

1

H-S(X"') Y H:O~e(X/\) Y (t)-n/2 !I-lI(XI\).
(c) There is a natural R+-action on rt X R, inducing a corresponding action on functions
or distributions, "'>., A E R+, by

!!.±.l(",>.u)(x, t) = A 2 u(x, At).

For fixed A, K)., is an element of .c(fr:one(rt x R)), s E R. The Inapping A f--7 K)., is strongly
continuous (The action K,)., ShOltld not be confused with the coordinate maps K,j.)

Proof. (a) is imlnediate from the definition of the duality in connection with the fact that
]I"(Rn+l)' = H-s(Rn+I).
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(b) Let us consider the first identity. For sEN, the elnbeddings have been shown in
4.2.1. \Ve have interpolation both for IfS(f! X R) and H~one(f! X R), so we obtain the
assertion for s 2 O. Thc following three embeddings are immediate by restriction. For
the fifth embedding, we note that the dual spacc of (t)a HS(f! x R), a E R, with respeet
to the duality induced by (t)-n j 2 L2(f! x R) is (t)-a-n H-S(f! x R); it then follows from
the first by duality. The final three embeddings again follow by restriction.
(c) For u E H~one(f! x R), let us first eheck that K,).,U E FI~one(f! X R). We may suppose
U has support in a single coordinate chart and show the stateInent in loeal coordinates.
We suppose that U is supported in U X R, for some open set U in Rn, anel consider the
push-forward of U under X = Xj. By assuIllption, this is an element of HS(Rn+I). The
push-forward of fI,)., u is

Here, <I>)., : Rn X R ---+ Rn X R is the diffeomorphism

It is easily checked that Da q,)., = O(1) for aB 0' =j:. O. Indeed, this is a consequence of the
fact that, for each A > 0,

is a positive function in Cr(R), boundcd away from zero. Its inverse is given by the Cr
function iP~l(W, r) = (w«(~~), r/ A) = iP1/>.(w, r). Therefore, the push-forward by (lh not

only leaves HS(Rn+l) invariant, so that <1>:\; X.U E fIS (Rn+l ); the mapping iP:\; even is
bounded on HS(Rn+l) for every s E R. In order to see the strong continuity of fI,)." we
note that

Suppose first that s = O. Let us show that Ilx*fI,).,7t - x.K:/lullp ---+ °as A ---+ f-L. For
u E C~(Rn+I), supported in U X R,

tends to zero as A ---+ Ji by Lebesgue's theorem on dominated convergence, since
iP).,iP~I(w,r) = iP).,(wW,r/tt) = ('W(r~/r},r*). Now choose a sequence {um} C

C~(U X R) with X.Um ---+ x.U in L2 (Rn+l). Then, for mE N,

Ilx.K,).,U - x.K,J~ullv~

< 11 X. K,)., U - X. K,)., Um 1I L2 + 11 X >I< K,)., Um - X >I< K,tl Um 1I L2 + 11 x. fI, /lUm - X >I< K,tlU 1I L2

< (,,\~ 11 iP:\111 C(L2) + IL~ 11 <I>;; 1I1:(L2)) Ilx.U - X.Um 11 L2 + I! X. K,), Um - X.K,tl Um I)DJ
---+ ° as rn ---+ 00, .-\ ---+ f-L.
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The case sEN is only slightly more complicated. This shows the strong continuity of /\,).,
for sEN. Sy interpolation tbe result extends to s 2 O. The equation

shows that, up to a multiplier, the adjoint to K,)., is r;.l/).,' Hence the assertion holds for
s < 0 by duality. <:J

4.2.3 Remark. (30) "Ve clearly can replace the function (t) by any 0 00 function 0 < J
satisfying J(k}(t) = O( (t) I-k), e.g. a smooth function [.] : R --+ R+ with [-tl = l'll for
t 2:: c > O.
(b) The spaces Jf~one(O x R) coincide with the Sobolev spaces ff(s,O)(O x R) if 0 x R
is considered a manifold with two cylindrical ends and SC coordinates are introduced on
the ends, cL [32, Example 3.4, Definition 4.4].

4.2.4 Remark. The subscript "cone" has the following motivation. Let U be a function
on Oj x R+ with support in Oj X (1,00) with Oj ~ sn a coordinate neighborhood. Define
the function U on Rn+l by U(x) = u(x/lxl, Ixl). Then 1L E H~one(sn x R+) if and only if
V E H~(Rn+I). Notice that V(x) = 0 for Ix] :::; 1.
In order to see this we first let r;. : Oj ~ sn --+ Vj ~ Rn be the coordinate map, and define

x: Vj X (1,00) --+ Cj := {(y,t) E .Rn+1
: y = xt,x E Vj,t > I}

For s 2:: 0 we then have u E H~one(sn X R+) if and only if (XK,)*u E H~(Rn+I), i.e.,
(y,t) f-t U(K,-l(y/t),t) E HS(Rn+l). Now U(K,-I(y/t),t) = U(r;.-I(y/t)t) = V 0 «I>(y,t),
where «I>(y, t) = K,-l(y/t)t. Note that (y, t) E Cj anel that

is a diffeomorphism; its inverse being given by «I>-I(X) = (K,(i/lil)lxl, lxi). We know that
the Sobolev spaces on Rn+l are invariant under all diffeomorphisms «I> such that, for every
k > 0, the k-th total derivative Dk«I> is bounded and D«I>-l is bounded.
In order to see the former, we compute that

D«I> ( ) ar;.-l (y). 8«I>() ~ 8K,-1 (Y) Yt -I (Y) .-yt =-- - -yt =-LJ-- - -+K, -
8Yk' 8Xk t ' 8t' 1=1 aXt t t t '

iteration then yields thc assertion. For the latter statement, we use that

4.3 Spectral Invariance of Parameter-Dependent Pseudodiffer­
ential Operators

Let 0 be an n-dilnensional closed COlnpact manifold. By L~(O; R /) = op S~(n, Rn+I),
jJ. E R, denote the space of all paralneter-dependent pseudodifferential operators of order
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{L on 0 with paralneter space R I . Thc point-wise composition of operators yields a
continuous multiplication:

L1J(O; R l ) x LlI(Oj R 1) -r LJ~+lI(OjR 1),

(A(T), 8(T)) ~ A(T)B(r), r E R I
.

Here the spaces L1J(O; R I ), LlI(O; R 1
), and L1J+lI (O; R I ) are endowed with the canonical

Frechet topologies of 1.2.4. In particlllar, LO(fl; R 1) is a Frechet algebra. lt is continuously
eInbedded in the algebra Cb(RI, L:( L2 (fl))) of bounded continuous functions on R I with

values in .c(L2(0)). Thc following lelnma is obvious, noting that sUP-rERIIIA(r)* A(r) 1I =

sUPTERdI A (r)11 2
= (suPTERdI A(r)II)2.

4.3.1 Lemma. LO(O; R 1) i8 a syrnrnetricsubalgebra ofthe C*-algebra Cb(R l , .c(L2 (0)))
with respect to the *-operation induced by taking pointwise adjoints and the norrn IIAII =

sUPTERlll A(T) ILc(L2(11))'

We will now show the following theorem.

All we have to show is the spectral illvariance, i.e., the relation

cf. 4.1.2. This will take up the rest of this section. In part we shall relyon 111aterial from
[37J and [39]. We first rcduce the task a Ettle.

4.3.3 Lemma. Let C be a C* -algebra with unit e. Let A be a Frechet subalgebra with
a stronger topology, e E A, and A* = A. Suppose there 1S an € > 0 such that

a- 1 E A {or all a E A with Ile - alle< €.

Then A is a \Ji* -subalgebra of C.

(1)

Proof. vVe ooly have to check spectral invariance. So suppose that a E A and that there
is acE C with ac = e. Denote by B the C*-closure of A, i.e. the intersection of all
closed C*-subalgebras of C containing A. Since A is a symlnetric algebra, we simply have
ß = A, the closure of A in C.
Now a E ß n C- 1

, thus c E ß by a weIl-known theoreln . The continuity of the rnultipli­
cation implies the existence of some b E A with Ilab - elle< E, so a- l = b(ab)-1 E A. <l

4.3.4 Reduction. By Lemtna 4.3.3 it is sufficient to find an c. > 0 such that (/- A)-1 E

LO(n; R 1
) whenever A E LO(fl; R I

) and SllPTER.1 IlA(r) Ilc(L2(11)) < E.

4.3.5 Lemma. The algebra C + L-oo(f2; Rl) = {zI + A ; z E C, A E L-oo(Oj R 1)} is a
\Ji*-subalgebra of Cb(RI, L:(L2(0))).
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Proof. Applying Reduction 4.3.4, we have to show that, for A E L-00(!1; R I ), the operator
zf + A is invertible in C + L-oo(f!; R l

) whenever Iz - 11 and IlAII are small. It is no loss
of generality to assume z = 1. Clearly [,-oo(!1jRI ) = S(RI ,L-oo(!1)). Now recall that
PE L-oo(!1) ifand only if

P : H-k(rt) -+ Hk (!1)

is continuous for every k E N. Assuming that IIA(T) Ilc(L2(ü)) < 1, we know that 1 - A(T)
is invertible. The identity

(/- A(T))-l = 1 + A(T) + A(T)(f - A(T))-1 A(T)

shows that (I - A(T))-l E I + [-00(!1) for each T E R 1• Moreover the fact that

8Tj (1 - A(T))-I = (I - A(T))-18Tj A(T)(1 - A(T))-1

(1)

in connection with (1) shows that all the countably lllany selni-norms for Ta8~(J ­
A(T))-l, a,ß E NI, in .c('D'(rt), V(f!)) are uniforn11y bounded in T. Hence (I - A(T))-l E

S(RI ,.c('D'(!1),V(!1)) = S(R1,L-00(f!)Y. <]

Lemlna 4.3.5 essentially will allow us to localize the result and to work on Euclidean
space, where spectral invariance is well-known.

4.3.6 Notation and Remarks. Let {ni}]=l be an open covering of 0, {'Pi}]=l a
subordinate partition of unity, and 1jJj E C~(!1j), j = 1, ... ,J, be functions with 'Pj'IjJi =
'Pi' By Kj : Oj -+ Uj ~ Rn denote the coordinate maps. We then have A E LJl(!1; R 1) if
and only if

(i) Kj* ('Pj A(· )'ljJj) E op Si,o(Rn, R n+l), and

(ii) 'PjA(l - 'ljJj) E [-oo(Oj R l ).

Here, "'j* is the push-forward of operators defined by

and the subscript '0, l' indicates the symbol classes with uniforIll estimates with respect
to x, cf. Kumano-go [23, Chapter 2, Definition 1.1]. The push-forward of 'Pi A(· )'ljJj has a
uniquely defined sYlnbol Pi = Pi(x,~, T) E Sr,o(R;, Re,tl ). Given A E LO(O; R l

) we can
regard Kj* ('Pj A'ljJj) ei ther as an elell1eIlt of Cb(RI , .c( L2 (Rn))) or an element of .c( L2(Rn+I))
in view of the embedcling

SJl (Rn R n+l ) y. SJl (Rn+l R n+I ).
1,0' 1,0'

The following lemma states that there is uo difference between both points of view.

4.3.7 Lemma.The embeddings S?,o(Rn, Rn+l) y. .c(L2(Rn+l)) and S?,o(Rn, Rn+l) '-+

Cb(R1, .c(L2 (Rn))) are equivalent: \Vriting the variables in Rn+1 as (x, t), the covariables
as (~, T) we IJave for a, b E Sr o(Rn, Rn+l),

(1)

where #(x,t) is the Leibniz product of syrnbols with respect to (x, t) E Rn+1 while #x is
the Leibniz fJroduct with respect' to x only. A1oreover,

(2)
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Proof We have by Kurnano-go [23, Chapter 2, Theorem 2.6]

(a#{x,t)b)(x, t,~, I)

= Os - JJe-ix'e-it'T'a(x, ~ +e, 1 + I/)b(x +x', e, I) dx' dt' a( aT'

Os - JJe-ix'e' a(x, e+(, T)b(x + x', e, I) dx' de'

(a#xb)(x, e, T)

with de = (21T )-nde, aT = (21r )-1dl. Notice that the integrals do not depend on ti in the
second equality we have used that, for f E Cr(R1),

f( I) = Os - JJe-it!T' f( 1 + I/)dt' al'.

Now let us have a look at (2). vVe may consider the elements of Cb(RI , l-( L2(Rn)))
as 'multipliers' on L2(R1,L2(Rn)). The operator A(T) E Cb(R I ,l-(L2(Rn))) n1aps f E
L2(R1,L2(Rn)) to the function 9 given by 9(T) = A(T)f(r). Clearly we can identify
L2(R1, L2(Rn)) anel L2(Rn+l). For /1 E L2(Rn),/2 E L2(R1) let f(x, t) = 11(x)f2(t) =
/1 ® /2(X, t). Then, given a E SO(Rn, Rn+l) we have

= f f IF;~t[opxa(I)J1(x)(Ft'-+TJ2)(T)](t)12 dx dt
JRIJRn

f f lopxa(T)f1(x)(Ff2)(T))2dxdr
JRIJRn

= l.i Jnn IOPxa(T)Jl(X)1
2

dx IF/2(T)1 2
dT

JRl Ilopx U (T)fl 1112 (Rn) 1(F12)(r) 1
2dT

II(OPxa(' )fdF121Ii2(R"L2(Rn)). (3)

Here we have used Plancberel's ielentity. We concIueIe that

11 (oPx,t U)/11 L2{Rn+l) ::; sUPTER'lIoPxa(T) 11 C(L2{Rn)) 11/111 L2(Rn) 11F1211 L2{RI).

Hence, in view of tbe ielentity lIfIIL2(Rnt') = IlfIIIL2(Rn) IIFJ211v(R') and the fact that
L 2(Rn+l) = L2(Rn) ®H L2(R1),

!loPx,tull C{L2{Rntl)) ::; sUPTERlll oPxa (r) IIC{L2{Rn)).

Conversely fix Il E L2(Rn). Given e > 0, we can find a bouneleel interval J such that

IloPxa(T')/.IIL.(Rn) 2:: sUPTERlllopxu(T)/111 - e

for 3011 I' E J. Let 12 = IJI- 1
/
2F- 1XJ. As usuaJ, IJI is the length ofthe interval J anel XJ

its characteristic function. Then we deduce from the above identity (3) that

sUPTER11lopxa(T)/1111.(Rn) -E: < IJI-1JR,llopxa(T)!tlli2{Rn)XJ(I)dT

= f Ilopx a(T)fdli2{Rn)IFf2(T)1 2dT
JRl

IloPx"u(ft 0 12) Ili2{Rntl)

< IloPx,tall~{L2{Rntl))llfl ® 121Ii2([tnt').
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But llfl ~ fllll;;z(Rn+l) = Ilfl JIE,;;z(Rn) Ilf2111;;z(RI) anel, by Plancherel, Ilf21Ip(R') =

IJ\-1/21IxJIIL;;Z(RI) = 1. This shows that

sUP'TERllloPxa (T) I1 C(p(Rn)) :; II0P:r,tall C(~;;Z(Rn+I)).

<J

We shall make use of the following theorem.

4.3.8 Theorem. Let a E S?,o(Rn+l, Rn+l) and suppose that

op a : L 2(Rn+l) --+ L2(Rn+l )

is invertible. Then there is a symbol b E S?,o(Rn+I, Rn+l) with (op a)-l = op b.
If a E So (Rn Rn+l) then b E SO (Rn Rn+l).

1,0" 1,0'

Proof The first part of TheoreIn 4.3.8 is a remarkable result due to R. Beals [2]; for a
different proof see Schrohe [39] 01' Ueberberg [53]. In order to check that the sYlnbol b of
the inverse is independent of t we note that b satisfies the equation

Os - JJe-i:r'e'-it'T1b(x, t, ~ + e, T + T')a(x + x',~, r) dx' dt' il( dr' == 1.

Since b is uniquely deterrnined, and the above equation holeIs for all t, we conclude that
b(x, t,~, r) = b(x, O,~, r). <l

4.3.9 Lemma. Let A E LOU.1; R 1
) and suppose IIAllc

b
(RI,L(L2(ü))) is srnall. Then, for

each r E R l
,

I - 'f'jA(r)1/Jj : L2(f!) --+ L2(f!)

is invertible. Defining the operator C(r) = (1 - 'f'jA(r)~j)-l we obtain C E LU(f!j R 1).

Pr'oof We may assume that 1I All is so small that

IIKj .. ('f'jA~j)IIC(L2(Rn+l)) = Ill\,j .. ('f'jA~j)llcb(R',C(L2(Rn))) < l.

Then I - I\,j .. (<pj A7f;j) is an invertible pseudodifferential operator on R n+l. V\fe find a
sYlnbol a = a(x,~, r) E SO(Rn, Rn+l) such that

with <pj.. = Kj ..<Pj,7f;j .. = Kj,,7f;j. Applying Theorem 4.3.8, there is a sYlnbol b E
S?,o(Rn, Rn+l) such that [I - Kj .. (<pjA~i)]-l = I + op b. In view of the fact that

(1 - <Pi .. top a]7f;i .. )-1

= I + <Pi"[oP a]~i" + <pj .. [op a]7f;j .. (I - <Pi"[oP a]1jJj .. )-I<pj.. [op a]7f;i"

b is supported in Vj x Rn X R 1, and we may define

D(r) = I +Kj[Op b](T).

Being the pull-back of an operator in op SO(Rn, Rn+l), clearly D E LO(f!; R 1). On the
other hand, I)(r) inverts I - <pjA(r)'Ij;j, hence D = C. <J
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4.3.10 Conclusion. Let A E LO(f2; R l
) and suppose IIAllcb(RI,C(P(Rrl))) is snlall. Then

J - A(r) : L2 (f2) -t L2(f2) is invertible for all r E R, and the family C defined by

C(r) = (f - A(r))-l

is an element of LO(f2; R l
).

Proof. \-Vrite

J - A(r) = f - 'PtA(r) - 'P2A(r) - ... - <PJA(r)
[f - 'P2A(r)(f - 'PtA(r))-1 ... - 'PJA(r)(J - 'PIA(r))-l](1 - 'PIA(r)).

Now f - 'PIA(r) = (f - 'PIA(r)~d(f - (J - 'PIA~d-l'PlA(J - ~d). Assuming that IIAII
is smalI, the product is invertible in LO(f2; R 1) by Letnmata 4.3.5 alld 4.3.9. Iteration
completes the proof. <J

4.4 ßO,d(X; R l ) Has an Open Group of Invertible Elements

4.4.1 Notation. By ß~,d(X j R1) we denote the space of all paraIneter-clependent bound­
ary value problems in Boutel de l\1onvel's calculus as introduced in 1.3.4. The parameter
space is here R 1• We will pritnarily consider the elements of ßlJld(X; R 1) as operator
families {A(r) : T E R 1}. The pointwise conlposition yields a continuous multiplication

ß~,d(X;R 1) X ßIJ',d' (Xj R 1) -t ßM+J/,d" (X; R 1)

where d" = lnax{d', p' +d}. In particular, ßO,d(X; R 1). is a Frechet algebra. The operators
in ßI-t,d(X; R 1) will in general act on spaces of sufficiently smooth sections in vector bundles
over X and Y respectively. \-Ve will fix bundles V over X anel W over Y. For each T E R 1,

an operator A E ßO,d(X; R 1) will furnish a boundecl nlap

H3(X, V)
A(r) : ffi -t

HS(y, W)

HS(X, V)
ffi

H~(Y, W)
(1)

provided that s > d - 1/2. vVe cau therefore, similarly as in Section 4.2, view ßO,d(X; R l)
as a continuously embedcled subalgebra of the C*-algebra Cb(Rl,[,( HS)), with the Hilbert
space H3 = fP(X, V) ffi fI3(Y, l'V), s > d - 1/2.
lt is a natural conjecture that ßO,d( X; RI) is a W· subalgebra of Cb(R1, [,( HS)). For the
definition of W*-algebras see 4.1.2. A W* subalgebra of a C*-algebra always has an open
group of invertible elements, cf. 4.1.3. This is what we will show for ßO,d(X; R 1). The
proof relies on techniques used in [37} anel [39].

4.4.2 Theorem. ßO,d(X; R 1) has an open group of invertible elernents. In particular,
inversion is continuous on ßO,d(X; R 1) by Theoreln 4.1.4.

We start the proof with two observations concerning the elements of order -00 ;

4.4.3 Lemma. A family of operators {G( r) : r E R 1} acting on vector bundles as in
4.4.1 (1) is an element of ß-oo,O( X; R l ) if and only i[ [01' all multi-indices Ci, ß and all
N E N the extension

exists and is uniforrnly bounded with respect to T.
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PFaof By definition, {G( T) : T E R 1} E ß-oo,O( X; R 1) if and only if it is an integral oper­
ator with a smooth kernel density, ,(x, x, T) such that T f---t '(', " T) is rapidly decreasing
with respect to all Coo sen1i-norms. In the proof of 4.3.5, on the other hand, we have seen
how the kernel semi-norms can be controlled in terms of the mapping properties. <l

4.4.4 Theorem. Let G E S-oo,d(X; R 1
), and suppose that [or given s E R, s > d - ~,

f + G(T) : H S --+ ff~

is invertible for all T. Then tl1ere is an f! E ß-oo,d( X; R 1) such that (J + G)-l = I + H. In
particlllar, C +S-oo,O( X; R 1) is a \]1* -Sll balgehra of Cb(R1, L( HS)) [or every s > d - 1/2.

Pl'oof For simplicity consider the case where G consists only of the singular Green part,
i.c. W = 0; moreover, we will asstllne that G is scalar, i.e. V = C.
vVrite G = 'L1=o GJBt, where GJ E S-OO,O(X; R i ) and 8r denotes the normal derivative,
defined in a neighborhood of the boundary. We now use the fact that

[f + G']-l I - G +G[! + G]-IG
d

= 1-2:(Gj -G[!+G]-IGJ )8t·
}=o

In view of 4.4.3, all we have to check is that for all 0', ß, N

,Xa D~(Gj('x) - G('x)[f + G'('x)]-'(ij('x)) : H;N(X) --+ HN(X)

is uniformly bounded. This, however, is in1mediate from the corresponding properties of
theGj . <J

4.4.5 Reduction. All we have to show for Theorern 4.4.2 is the following: There is a
neighborhood U of zero in ßO,d(X; R 1) such that, for all A EU, we have ! + A : H~ --+ H~

invertible, and (f + A )-1 E SO,d(X; R l
). In order to see this we rnay asslune that W = O.

In fact, let A = [~:: ~:~]. Supposing that J + All is invertible within BO,d(Xj R l
) (as

an operator acting on H~(X, \I)) we write

!+A=[ f I O][I+All 0][1 (J+All)-
IA 12]

A 21 (I + A ll )- lOB ° 0

with B = (! + A 22 ) - A 21 (I + All )-1 A 12 . Sinee the outer matriees ean be inverted within
ßO,d(X; R 1), we onIy have to consider the lniddle one. Now, the ealculus shows that

A22 - A21 (f + All)-l A l2 E LO(y; R 1)

with the algebra LO(y; Rl) of paraIlleter-dependent pseudodifferential operators on Y =
ax as introduced in Seetion 4.3. l\10reover, the corresponding selni-norms are smalI, so
that B is invertible in LO(y, R 1) by Theorelll 4.3.2.
This shows that we can focus on the invertibility of I +All. Finally we ean apply Theorem
4.4.4 and the decomposition trick in Conclusion 4.3.10 to see that the result essentially is
loeal in X, so that we mayassurne \I to be trivial one-dimensional. In the following we
shall therefore eonsider A an operator falnily

A(T) : H~(X) --+ H~(X), T E R i •
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4.4.6 Proposition. There is a neighborhood U of zero in ßO,d( X j R 1) such that J +A
is pararnetel'-elliptic for all A E [J.

P1'oa! BO,d(X; R 1) is topologized as a non-direct sum of Fn~chet spaceSj for details see
2.2.8. What we have to show is that f + A is a pa,rameter-elliptic wherever finitely I1lany
of the symbol selni-norms for Aare small. "vVe can write A in the fornl A = Px +G; here
P is a paralneter-dependent pseudodifferential operator in LO(!1; R 1), G' is a parameter
dependent singular Green operator, and !1 denotes the cOinpact "double" of X. By
definition, we can find representatives P and G such that
(i) suitably many of the sYlnbol semi-norms for P in LO(!1j R 1

) are slnall, and
(ii) suitably many of the symbol selni-norms for G in BO,d(X j R 1) are small.
Condition (i) will ensure the invertibility of J+P by an operator I +Q with Q E LO(!1; R 1).

In addition, suitably 111any of the symbol semi-nonns for Q will be small. We then have

(f +Qx )( f + Px ) = J + GI,

where GI has also small senli-norms in BO,O(Xj R 1). We can therefore invert the operator­
valued singular Green symbols. By the standard process, we find a. parametrix to f + GI
thus a parametrix to r + Px , in BO,O(X;R1). Let as rewrite it in the fOfln 1+ R,R E
BO,O(R1). The parametrix construction process is continuous with respect to the sYlnbol
topology, hence R can be assumed to have suitably many selni-norms small. Multiplying
J + A by J + R we have

(I+R)(f+A) = (J+R)(J+Px)+(J+R)G
= J+S+G+RG

with S E ß-oo,O(X; R 1). Both G and RG have suitably many sYlnbol semi-norms smalI,
so we can construct a paralnetrix to J + G + RG. rrhis cOI1lpletes the proor. <:J

4.4.7 Corollary. Under the assumptions of Proposition 4.4.6 we can first find a
parametrix B to f + A such that B(f + A) E B-oo,d(Xj R 1). B then necessarily is a
Fredholnl falnily of index zero. Next we use a construction due to Gramsch and Kaballo
[15], which can also be found in the proof of Theorem 1.4.3.18: We can Inodify B by a
finite rank operator so that it beconles an invertible element of BO,d(X; RI) and, silnul­
taneously, B(J + A) E f +5, S E ß-oo,d(X; R 1). But then 1+ S is necessarily invertible
in C + B-oo,d(X; R 1). The inverse by Theorem 4.4.2 also belongs to this algebra. We
therefore obtain the assertion: ([ +S)-l ß E BO,d(X; R 1) is an inverse to J + A. <:J

4.5 List üf Misprints für Part I

We would like to make a few changes with respect to the material in Part] of this paper.
For one thing, we would like to 1110dify the definition of the spaces K/'""'f in I.3.1.18. lnstead
of letting thein be isonlorphic to -t-n / 2 fiS near infinity we would like them to be isolnorphic
to the cone-like Sobolev spaces H;one' introduced in 4.2.1. The new definition can be found
in 1.4.14. Let us point out that all the results of Part I are valid with both definitions.
This is essentially a consequence of the fact that, for every w E C~(R+), we have

[ ] 1""",""'f rv [ ] 1""",')'w f\..,old = W f\..,new·
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Notice that the proof of Theorem 1.4.3.17 does not carry over literally with the new
definition. Due to the above iSOInorphism, however, the result trivially holels for the
modified spaces.
The definition of the spaces M~,d(X) of Ineromorphic Mellin symbols with values in Boutet
de Monvel's algebra in 1.4.1.1 should be replaced by the one given here in Definition 1.7.2.
Again, all results of Part I are valid in the new formulation.
Proposition 1.4.3.7 could be generalized; at the same time the proof became somewhat
more transparent. It is included here as Proposition 3.1.27.
Finally, we use thc opportunity to makc the following minor corrections.

p. I. IS

109 12 (c)

111 6 C

131 2 2.2.10

135 17 that A(Ä) is invertible

142 2 op(~,r)

142 14

142 17 :Fs-+tH~(R+ x R)
151 14

156 1 COO

157 19 '2k
157 -1 3.1.18(a)

158 6 ... VI ... V3 ... V2 ..• V4

158 10 ... VI ... V3 ... V2 ..• V4

159 3 s, t '2 0

160 -8 P,Q,R

160 -7 .. .)Q,R
160 -6 .. .)P,RI

160 -5 G2 and R

160 -4 R'= R

161 12 (1',1',8)
161 13 C d ( .. .)

161 19 ?k
162 14 1+ /Jo

165 4 topology of ß-oo,d

ShOllld be

(d)

ce
2.2.11

that I +A(Ä) is invertible

op (~, r)tL

add: Here, f(x, t) =
!!±.!.+t- ~ 'Yu(x, In t).

Ft-tT fl s (R+' x R t )

add: (f) Let H;;'Y(DJ) denote
the space of all distributions in
Htoc(intID) which, elose to each sin­
gularity v, are elements of K~'Y(X{;).

Cff
> k - 1/2

3.1.19

· .. V2 V4 ..• VI V3

· .. V2 V4 ... VI V3

s,t> -1/2

P,Q,R,S

· ..)R,S

.. ')R,RI

GI and G2

R'=Q

(,,8,8)

C~(. . .)

> k - 1/2

I + Ho + P

Euclidean topology on Lj
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p. 1. lS should be

165 -8 ... M· ..• ,j1., be differential operators.

166 15 BJl,O(X) 8-00,0 (.,y)

172 -3 s :2: 0 s> -1/2,M::; O.

173 2 1l-.f+Jl ,-'+!} ( \'!\ V) 1l-"+Jl,-'+!} (X!\, V2).{o} .-, 2

173 4,5 de/eie: Here, ... , cf. 3.3.1.

173 15 s:2:d s > d - 1/2

177 -8 cg(...) C~(. . .)

178 5,6 de/eie: Note ... type d.

179 16 weight data GI weight data for GI

179 -1 rt--y r~_-y

181 8 7rCP2 7rcPf
188 4 < O. < 0, unless F is Ilowhere invertiblc.

188 10 !(E) -+ !(E) E-+E

188 12 AN-k Ak

188 18 s :2: d. s > d - 1/2.

189 16 4.3.14 we may assurne that I' = 4.3.16 we may assume that I' = O.n
2'

189 17 = L2(.-l{, Vd EB L2 (y, V3 ) = llo,O(X!\, Vd EB KO,-~(YI\, V3 )

189 -9 L2 (X!\) (3 times) 1{o,O(X!\) (3 times)

190 a11 KO,? (XI\) KO,O(XI\)

190 a11 I . !!±.!. .2+ 1.. .. 2 + 1.. ..

190 all rl r~
2 ~

190 5 by ~ by nil
190 10 KO,~(X!\) = L2(X!\) /Co,U(X!\) = 1l0 ,O(XA )

191 all I . !!±.!. .2+ L .. 2 +L ..
193 -7 pEC p>O

196 3 Jl E Z 0:2: J1- E Z,s > -1/2

196 9 1{-S+ll,--y+ ~ (XI\ V) ll.-S+Il ,--Y+ ~ (X!\ 1 V2).{O} , 2

196 10,11 deleie: Here, ... , cf. 3.3.1.

204 12 Co C OO

205 2 (€)k-I (€)k-2

205 -1 O( (~,)k-2) O((€)k-Z)

206 14 +X(N+I)(8) +bNX(N+I)(8)

We thank OUf readers for several helpful remarks.
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