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Abstract

We study the generic degeneration of curves with two singular points when the points merge. First
the notion of generic degeneration is defined precisely. Then a method to classify the possible results of
generic degenerations is proposed in the case of linear singularity types. We discuss possible bounds on
the singularity invariants of the resulting type in terms of the initial types. In particular the strict upper
bound on the resulting multiplicity is proved.

1 The problem

1.1 Introduction

Let C be a (complex, plane, projective) curve of (high) degree d, with singular points x, y ∈ P2 of (embedded
topological) types Sx, Sy. What can be said about the resulting type of their generic collision?

To formulate the question precisely, let PH0(OP2(d)) = P
Nd

f be the complete linear system (the param-

eter space of plane curves of degree d � 0). Here Nd =
(
d+2
2

)
− 1 (the number of monomials of degree d in

3 variables, minus one). Consider the stratum ΣSxSy ⊂ P
Nd

f of curves with 2 prescribed singularities. The

restriction of the topological closure ΣSxSy |x=y corresponds to the collision of the singular points.
The notion ”generic” in this case is problematic. The restriction above is often reducible, with compo-

nents of different dimensions (all of which might be important). One often has to consider collisions with
additional conditions. Say, the tangents lxi to (some of) the branches of Sx (do not) coincide with (some of)

those l
y
j of Sy. Or, they are distinct from the limiting tangent line l = xy to the curve

_
xy, along which the

points collide. In such cases one might be forced to consider a subvariety of an irreducible component of
ΣSxSy |x=y.

Therefore, we accept the following definition. For a given singularity type S, consider the classifying
space of the parameters of the singular germ (e.g. the singular point, the lines of the tangent cone, with
their multiplicities: TC = (lp1

1 ...l
pk

k ) etc.) To a curve with two singular points SxSy we assign also the line l

through the 2 points. All this defines a lifting of the initial stratum to a bigger ambient space:

Σ̃SxSy =

{( (x, {lxi }..)
(y, {lyj }..)

l, C

x 6= y

)∣∣∣ C has
Sx at x, with T = ((lx1 )p1 ...(lxkx

)pkx ), ....

Sy at y, with T = ((ly1)p1 ...(lyky
)pky ), ....

l = xy

}
⊂

Auxx × Auxy×

×(P2
l )

∗ × P
Nd

f

(1)
here Auxi are the classifying spaces (the name is for auxiliary), (P2

l )
∗ is the space of lines in the plane (each

is defined by a one-form). The simplest example is the minimal lifting (the universal curve)

Σ̃SxSy(x, y) =
{ (x, y, l, C)

x 6= y

∣∣∣C has Sx at x and Sy at y, l = xy
}
⊂ P2

x × P2
y × (P2

l )
∗ × P

Nd

f (2)
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Definition 1.1 The collision Sx +Sy→Sf is called primitive (relatively to the specified lifting) if the stratum

Σ̃Sf
is one of the irreducible components of Σ̃SxSy |x=y.

The collision is primitive iff it cannot be further factorized (i.e. the chain Σ̃Sf
( Σ̃Sf

′ ( Σ̃SxSy |x=y with

irreducible Σ̃Sf
′ is impossible).

Example 1.2 The cases below can be obtained e.g. by the methods of §3.1.
• In the case A1 + A1 we do not fix the tangent lines (as there is no preferred choice). So the lifting is

minimal (eq. 2) and the result is unique: Σ̃A1xA1y
(x, y)|x=y = Σ̃A3 .

• In the case A2 +A1 we fix the tangent line of A2 (denoted by lx) and consider the lifting Σ̃A2xA1y
(x, lx, y).

Now, two primitive collisions are possible: A2 + A1→A4 (with lx = l) and A2 + A1→D5 (with lx 6= l).
Naively, the first case (lx = l) could be thought of as being the boundary of the second (lx 6= l), but the
actual situation is converse (since ΣD5 ⊂ ΣA4). For the minimal lifting (neglecting the tangent of A2):

Σ̃A2xA1y
(x, y)|x=y = Σ̃A4 .

As the primitivity of the collision depends on the type of lifting, we fix the choice for the rest of this paper.
In the tangent cone of the singularity TC = (lp1

1 ...l
pk

k ), consider the lines appearing with the multiplicity
1. They correspond to smooth branches, not tangent to any other branch of the singularity. We call such
branches free. Call the tangents to the non-free branches: the non-free tangents. Assign to the singularity
the non-free tangents:

Σ̃SxSy :=

{( (x, {lxi })
(y, {lyj })

l, C

x 6= y

)∣∣∣ lxi are the non-free tangents of C at x

l
y
j are the non-free tangents of C at y

l = xy

}
⊂

Auxx × Auxy×

×(P2
l )

∗ × P
Nd

f

(3)

For ordinary multiple points (all the branches are free) this coincides with the minimal lifting.

Remark 1.3
• To specify a collision one should give (at least) the collision data. It is a list, specifying the lines among
l, lxi , l

y
j that coincide. The simplest case is: all the lines are distinct. Note that this (seemingly generic)

assumption is often non-generic (e.g. for the collision Ak>1 + A1).
• We specify the singularity types by giving their normal form (cf. §2.1) or by the letters from Arnol’d’s
tables [AGLV].
• We work mostly with linear singularity types (cf. definition 2.4). Typical examples of linear singularities
are: x

p
1 + x

q
2, p ≤ q ≤ 2p, Ak≤3, Dk≤6, Ek≤8 etc. Every linear singularity type is necessarily generalized

Newton-non-degenerate (cf. definition 2.2), in particular it has at most two non-free tangents.

While the collision phenomenon is most natural, it seems to be complicated and not much studied. Listed
below are more specific questions (for a given pair SxSy).

1.2 The specific questions and some partial results

1.2.1 A method/algorithm to classify the results of collision.

We propose a method (cf. §3.1) to check explicitly the possible results of a collision, when Sx is generalized
Newton-non-degenerate and Sy is linear. First we write down the defining equations of the lifted stratum

Σ̃SxSy (outside the diagonal x = y). Then specialize the so obtained ideal to the diagonal x = y, thus

describing the ideal of the stratum Σ̃SxSy |x=y. The specialization (the flat limit) is done e.g. by the usual
technic of Gröbner basis. The final step is to recognize the singularity type Sf , from the defining ideal of

the stratum Σ̃Sf
.

Using the method we discuss in some details the case: Sy is an ordinary multiple point(§3.1). In partic-
ular we list all the possible collision results for the cases:
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• Sx is an ordinary multiple point(i.e. all its branches are free)
• one branch of Sx is the cusp (xp

1 + x
p+1
2 ), all others are free (i.e. smooth and non-tangent).

There is also a geometric method for some collisions, but these seem to be very special (considered shortly
in §3.1.5).

1.2.2 Some bounds on the invariants of the resulting types

1.2.2.1 What are the possible values of the resulting multiplicity? Here we have two results
(§3.2.2):

Proposition 1.4 Given two types Sx, Sy of multiplicities mx ≥ my

• There always exists a collision Sx + Sy→Sf with mult(Sf ) = mx

• Let rx, ry be the number of free branches. If rx + ry ≥ my then for any collision Sx + Sy→Sf : mSf
= mx.

If rx + ry < my then for any collision Sx + Sy→Sf : mult(Sf ) ≤ mx − rx + my − ry.

1.2.2.2 Other invariants. Possible bounds for the resulting number of branches or order of determinacy
are difficult as these invariants are not semi-continuous (cf. §3.2.3).
• When is the lower bound µf = µSx + µSy + 1 realized? What is the upper bound for µf?
• How to characterize the δ = const collisions? (They seem to be especially simple.) What is the upper
bound for δf?

1.2.3 When does the collision commute with degeneration/deformation?

Namely, when the following diagram commutes? Here the degen-
eration (deformation) in both rows must be of course ”of the same
nature” (though applied to the different types, e.g. Ak→Ak+1,
Dk→Dk+1). Eventhough we cannot answer this question, the idea
itself leads to a useful criterion (§3.2.1).

S
def
x + Sy

��

Sx + Sy
deform
oo

��

degen
// S

deg
x + Sy

��

Sdef S
deform

oo
degen

// Sdeg

1.2.4 Topological approach

The curve CSx,Sy can be thought of as a partial smoothing of CS. Correspondingly, in the smoothing of
CSx,Sy we can choose vanishing cycles that will form a subset of vanishing cycles of CS. Which restrictions
does this produce? For example, an ADE singularity S can split to a collection of points of types S i ∈ ADE

iff the union of Dynkin diagrams DSi
can be obtained from DS by deletion of some vertices. This solves

completely the problem of ADE + ADE → ADE collisions (cf. §3.3.1). The natural generalization is
therefore:
Given the initial types Sx, Sy and a type S, whose Dynkin diagram DS (in some basis) contains DSx , DSy

(separated by at least one vertex). Is the collision Sx + Sy → S possible?
We hope to consider this question later.

1.3 Acknowledgements

Many thanks are to G.-M.Greuel, P.Milman, E.Shustin for numerous important discussions.
The work was done during my stay in Max Planck Institut für Mathematik, Bonn. I appreciate very

much the excellent working conditions.

2 Some auxiliary notions and notations

When considering the local questions, we work in the local coordinates (x1, x2) around the point. Working
with the strata we use the homogeneous coordinates (x0, x1, x2) on P2. A (projective) line through the point
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x ∈ P2 is defined by a 1-form l (so that l ∈ (P2)∗, l(x) = 0).

We often work with symmetric p−forms Ωp∈Sp(P̂2)∗ (here (P̂2)∗ is a 3-dimensional vector space of lin-

ear forms). Thinking of the form as of a symmetric tensor with p indices (Ω
(p)
i1,...,ip

), we write Ω(p)(x, . . . , x︸ ︷︷ ︸
k

)

as a shorthand for the tensor, multiplied k times by the point x ∈ P̂2

Ω(p)(x, . . . , x︸ ︷︷ ︸
k

) :=
∑

0≤i1,...,ik≤2

Ω
(p)
i1,...,ip

xi1 . . . xik (4)

So, for example, the expression Ω(p)(x) is a (p−1)−form. Unless stated otherwise, we assume the symmetric
form Ω(p) to be generic (in particular non-degenerate, i.e. the corresponding curve {Ω(p)(x, . . . , x︸ ︷︷ ︸

p

) = 0} ⊂ P2

is smooth).
Symmetric forms typically occur as tensors of derivatives of order p, e.g. f (p). Sometimes, to emphasize

the point at which the derivatives are calculated we assign it. So, e.g. f |
(p)
x (y, . . . , y︸ ︷︷ ︸

k

) means: the tensor of

derivatives of order p, calculated at the point x, and contracted k times with y.

2.1 On the singularity types

Definition 2.1 [GLSbook] Let (Cx, x) ⊂ (C2
x, x) and (Cy, y) ⊂ (C2

y, y) be two germs of isolated curve
singularities. They are topologically equivalent if there exist a homeomorphism (C2

x, x) 7→ (C2
y, y) mapping

(Cx, x) to (Cy, y). The corresponding equivalence class is called the (embedded topological) singularity type.

The variety of points (in the parameter space P
Nd

f ), corresponding to curves with singularity of the same
(topological) type S is called the equisingular stratum ΣS

The topological type can be specified by a (simple polynomial) representative of the type: the normal
form. Several simplest types are (all the notations are from [AGLV], we ignore the moduli of analytic
classification):

Ak : x2
2 + xk+1

1 , Dk : x2
2x1 + xk−1

1 , E6k : x3
2 + x3k+1

1 , E6k+1 : x3
2 + x2x

2k+1
1 , E6k+2 : x3

2 + x3k+2
1

Jk≥1,i≥0 : x3
2 + x2

2x
k
1 + x3k+i

1 , Z6k−1 : x3
2x1 + x3k−1

1 , Z6k : x3
2x1 + x2x

2k
1 , Z6k+1 : x3

2x1 + x3k
1

Xk≥1,i≥0 : x4
2 + x3

2x
k
1 + x2

2x
2k
1 + x4k+i

1 , W12k : x4
2 + x4k+1

1 , W12k+1 : x4
2 + x2x

3k+1
1

(5)

Using the normal form f =
∑

aIx
I one can draw the Newton diagram of the singularity. Namely, one marks

the points I corresponding to non-vanishing monomials in f , and takes the convex hull of the sets I + R2
+.

The envelope of the convex hull (the chain of segment-faces) is the Newton diagram.

Definition 2.2 [GLSbook]
• The singular germ is called Newton-non-degenerate with respect to its diagram if the truncation of its
polynomial to every face of the diagram is non-degenerate (i.e. the truncated polynomial has no singular
points in the torus (C∗)2).
• The germ is called generalized Newton-non-degenerate if it can be brought to a Newton-non-degenerate
form by a locally analytic transformation.
• The singular type is called Newton-non-degenerate if it has a (generalized) Newton-non-degenerate repre-
sentative.

For Newton-non-degenerate types the normal form is always chosen to be Newton-non-degenerate . So, the
Newton-non-degenerate type S can be specified by giving the Newton diagram of its normal form DS.

Newton-non-degeneracy implies strong restrictions on the tangent cone:
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Proposition 2.3 Let TC = {(l1, p1)...(lk , pk)} be the tangent cone of the germ C = ∪Cj (here all the
tangents li are different, pi are the multiplicities, so that

∑
i pi = mult(C)). If the germ is generalized

Newton-non-degenerate then pi > 1 for at most two tangents li.

So, for a generalized Newton-non-degenerate germ there are at most two distinguished tangents. We always
orient the coordinate axes along these tangents.

As we consider the topological types, one could expect that to bring a germ to the Newton diagram
of the normal form, one needs local homeomorphisms. However for curves the locally analytic transfor-
mation always suffice. In this paper we restrict consideration further to the types for which only linear
transformations suffice.

Definition 2.4 [Ker06] A (generalized Newton-non-degenerate ) singular germ is called linear if it can be
brought to the Newton diagram of its type by projective transformations only (or linear transformations in
the local coordinate system centered at the singular point). A linear stratum is the equisingular stratum,
whose open dense part consists of linear germs. The topological type is called linear if the corresponding
stratum is linear.

The linear types happen to be abundant due to the following observation

Proposition 2.5 [Ker06, section 3.1] The Newton-non-degenerate topological type is linear iff every seg-
ment of the Newton diagram has the bounded slope: 1

2 ≤ tg(α) ≤ 2.

Example 2.6 The simplest class of examples of linear singularities is defined by the series: f = xp+yq, p ≤
q ≤ 2p. In general, for a given series only for a few types of singularities the strata can be linear. In the low
modality cases the linear types are:
• Simple singularities (no moduli): A1≤k≤3, D4≤k≤6, E6≤k≤8

• Unimodal singularities: X9(= X1,0), J10(= J2,0), Z11≤k≤13, W12≤k≤13

• Bimodal: Z1,0, W1,0, W1,1, W17, W18

Most singularity types are nonlinear. For example if a curve has an A4 point, the best we can do by
projective transformations is to bring it to the Newton diagram of A3 a0,2x

2
2 + a2,1x2x

2
1 + a4,0x

4
1.

This quasi-homogeneous form is degenerated (a2
2,1 = 4a0,2a4,0) and by quadratic (nonlinear!) change of

coordinates the normal form of A4 is achieved.
By the finite determinacy theorem the topological type of the germ is fixed by a finite jet of the defining

series. Namely, for every type S, there exists k such that for all bigger n ≥ k: jetn(f1) has type S iff f1 has
type S. The minimal such k is called: the order of determinacy. E.g. o.d.(Ak) = k + 1, o.d.(Dk) = k − 1.
The classical theorem is [GLSbook, §I.2.2]: if mk+1 ⊂ m2Jac(f) then o.d.(f) ≤ k.

3 Partial results

3.1 Explicit calculation of collisions

One way of treating the problem could be to consider explicit equations of the stratum Σ̃SxSy and then to
restrict them to the diagonal x = y. But it is difficult to write down the complete set of the generators

of the ideal I(Σ̃SxSy). Instead, we start from the ideals I(Σ̃Sx), I(Σ̃Sy) of the coordinate ring K[Auxx ×

Auxy × (P2
l )

∗ × P
Nd

f ]. Their sum I(Σ̃Sx) ⊕ I(Σ̃Sy) defines the stratum Σ̃SxSy outside the diagonal. Over the

diagonal the sum does not define the stratum (since the intersection Σ̃Sx ∩ Σ̃Sy has residual components of
excess dimension).

One way to continue is to take the topological closure: Σ̃Sx ∩
x6=y

Σ̃Sy . From the calculational point of view

we should take the flat limit of I(Σ̃Sx) ⊕ I(Σ̃Sy) as y = x +
∑

εivi, ε→0. This is done e.g. by finding the
Gröbner basis [Stev-book, section 2].
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Thus the problem is reduced (at least theoretically) to the study of ideals I(Σ̃Sx), I(Σ̃Sy). For many
singularity types the generators of the ideals are known [Ker06] and can be written in a simple form. These
types include the linear singularities (cf. the definition 2.4). Examples of such types are Ak≤3, Dk≤6, Ek≤8,
x

p
1 + x

q
2, p ≤ q ≤ 2p...

In fact we attack a more general case: when the type Sy is linear and Sx is generalized Newton-non-
degenerate . Start from a generalized Newton-non-degenerate type Sx, bring the corresponding germ to a
Newton-non-degenerate form by a locally analytic transformation. Since the result of collision is invariant
under the locally analytic transformations of C2, can assume that the germ Sx is brought to its Newton

diagram by linear transformations. Consider the corresponding subvariety Σ̃
l

Sx
⊂ Σ̃Sx consisting of those

germs that can be brought to their Newton diagram by linear transformations. (In [Ker06] such a subvariety

was called: the linear substratum.) If the type Sx is originally linear then of course Σ̃
l

Sx
≡ Σ̃Sx

3.1.1 The collision trajectory

We always keep the point x and at least one of the non-free tangents to (C, x) fixed. In general y approaches
x along a (smooth) curve

_
xy : y = x +

∑
εivi. To simplify the problem, one would like to rectify the curve

into the line l = xy (by a locally analytic transformation preserving the tangents). But our method places
severe restrictions on the possible transformations. We assume Sy to be a linear type, while Sx is generalized
Newton-non-degenerate . To be able to write the defining conditions, the germ (C, x) is assumed to possess
the Newton diagram of the type Sx. Correspondingly, only the transformations preserving the diagram are
allowed.
• If Sx is linear then all the transformations preserving the tangents are allowed (i.e. xi→xi + φi, φ ∈ m2).
In particular, the collision can always be assumed to happen along a line.
• If Sx is not linear (but generalized Newton-non-degenerate ), then we have only the transformations allowed
by the diagram. So, if the tangent to

_
xy is distinct from all the non-free tangents of Sx, then the curve

_
xy

can be rectified to the line xy. Otherwise, one can only get an upper bound on the degree of the curve
_
xy.

3.1.2 The algorithm

The initial data consists of the two strata Σ
l
Sx

,ΣSy , with known generators of their ideals:

I(Σ̃Sx) =< {hi(x)}i >, I(Σ̃Sy) =< {gi(y)}j > (6)

Here the points x, y are assigned to emphasize the dependence. (Of course, the generators depend on other
parameters of the singularity also.) Fix the collision data of the types Sx, Sy: lxi , l

y
j , l.

3.1.2.1 The series. Expand y = x +
∑

i εivi. Here ε is an infinitesimal parameter, while the vectors
vi define the way of collision. The collision in general happens along a (smooth) curve and higher order
expansion parameters of the curve can be important (e.g. this is the case in Ak + A1 collision). Expand,
all the generators gj(y) into power series of ε, i.e. gj(y) = gj(x) + ε() + .... Here we take into account the
equations of Sx. Depending on the collision data, some additional terms in the series g(y) can vanish.

3.1.2.2 Gröbner basis. Apply now the Gröbner basis procedure for the terms: fi(x), gj(y). We work

outside the diagonal (in the ring K[[Auxx × Auxy × (P2
l )

∗ × P
Nd

f , ε, ε−1]]). Therefore, each time we get a
series with a common factor of ε we divide by ε.

The process depends in general on the (non-)coincidence of various tangents to the branches, the collision
line x̄y (i.e. the tangent to the collision curve), the conic osculating to the collision curve etc.

Note that the initial system of generators fi(x), gj(y) has a lot of structure (cf. the example §), various
equations are combined into some symmetric forms. Preserving this structure helps to recognize the resulting
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types. By the general theory, after a finite number of steps the procedure terminates: the standard basis
have been constructed.

Now take the limit ε→0, omitting all the higher order terms. The so obtained system is the system of

generators of the ideal I(Σ̃SxSy |x=y).

3.1.2.3 Recognition of the final singularity type Sf . The resulting equations are in terms of the
tangents lxi , l

y
j to Sx, Sy and parameters of the collision trajectory y = x +

∑
εivi. If some of the tangents

lxi , l
y
j coincide, then we should also consider the way they approach: l

y
j = lxj +

∑
εiwi. Note, that all the

initial equations fi(x), gj(y) are linear in f , since we work with linear (sub)strata. Therefore all the resulting
equations are also linear in f .
• The simplest case is when the initial system involves only lxi , l

y
j , v, f (e.g. for SxSy-linear). Then the

resulting stratum is linear. Thus the singular type is easy to recognize (to write the normal form, to draw
the Newton diagram etc.).
• When parameters of the expansions y = x +

∑
εivi, l

y
j = lxj +

∑
εiwi appear explicitly in the equations,

the situation is more complicated. One possible way is to fix some specific values of the parameters and
construct the resolution tree.

3.1.3 A generalized Newton-non-degenerate singularity Sx and the ordinary multiple point Sy =

x
q+1
1 + x

q+1
2

Here we assume mult(Sx) = p + 1 ≥ mult(Sy) = q + 1 and the collision data is generic, i.e. the curve
_
xy is

not tangent to any of the non-free branches of Sx. Thus (cf. §3.1.1) the curve
_
xy can be assumed to be a

line:
_
xy = xy = l.

We should translate the conditions at the point y to conditions at x. Outside the diagonal x = y the

stratum is defined by the set of conditions corresponding to Σ̃Sx , and by the condition f |
(q)
y = 0. This is

the (symmetric) form of derivatives of order q, calculated at the point y (in projective coordinates). In the
neighborhood of x expand y = x +

∑
i εivi (here ε is small and v1 is the direction along the line l = x̄y).

Since we have assumed that the collision data is generic, in the above expansion we need only the first term:
y = x + εv.

To take the flat limit, expand f |
(q)
y around x, we get 0 = f |

(q)
y = f |

(q)
x + .. + εp−q

(p−q)!f |
(p)
x (v..v) + ... First

several terms in the expansion vanish, up to the multiplicity of Sx. Normalize by common factor of ε:

1

(p − q + 1)!
f |(p+1)

x ( v..v︸︷︷︸
p+1−q

) +
ε

(p − q + 2)!
f |(p+2)

x ( v..v︸︷︷︸
p+2−q

) +
ε2

(p − q + 3)!
f |(p+3)

x ( v..v︸︷︷︸
p+3−q

) + . . . (7)

To take the flat limit, we should find all the syzygies between these series and the equations for Σ̃Sx . First
we find the ”internal” syzygies of the series themselves.

The syzygies are obtained as a consequence of the Euler identity for homogeneous polynomial
∑

xi∂if =
deg(f)f . By successive contraction of the tensor series with x we get the series

1
(p−q+1)!

f |
(p+1)
x ( v..v

|{z}

p+1−q

) + ε
(p−q+2)!

f |
(p+2)
x ( v..v

|{z}

p+2−q

) + ε2

(p−q+3)!
f |

(p+3)
x ( v..v

|{z}

p+3−q

) + ε3

(p−q+4)!
f |

(p+4)
x ( v..v

|{z}

p+4−q

) +..

(d−p−2)
(p−q+2)!

f |
(p+1)
x ( v..v

|{z}

p+2−q

) +
ε(d−p−3)
(p−q+3)!

f |
(p+2)
x ( v..v

|{z}

p+3−q

) +
ε2(d−p−4)
(p−q+4)!

f |
(p+3)
x ( v..v

|{z}

p+4−q

) +
ε3(d−p−5)
(p−q+5)!

f |
(p+4)
x ( v..v

|{z}

p+5−q

) +..

.. .. .. ..
Qq+1

i=2
(d−p−i)

(p+1)!
f |

(p+1)
x (v..v

|{z}

p+1

)+
ε

Qq+1
i=2

(d−p−1−i)

(p+2)!
f |

(p+2)
x (v..v

|{z}

p+2

)+
ε2

Qq+1
i=2

(d−p−2−i)

(p+3)!
f |

(p+3)
x (v..v

|{z}

p+3

)+
ε3

Qq+1
i=2

(d−p−3−i)

(p+4)!
f |

(p+4)
x (v..v

|{z}

p+4

)+..

(8)

Here the first row is the initial series, the second is obtained by contraction with x once, the p + 2’th row is
obtained by contracting (p + 1) times with x.
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Apply now the Gaussian elimination, to bring this system to the upper triangular form.
• Eliminate from the first column all the entries of the rows 2..(p + 2). For this contract the first row
sufficient number of times with v (fix the numerical coefficient) and subtract.
• Eliminate from the second column all the entries of the rows 3..(p + 2).
• ...
Normalize the rows (i.e. divide by the necessary power of ε).

In this way we get the ”upper triangular” system of series (we omit the numerical coefficients):

f |
(p+1)
x ( v..v

|{z}

p+1−q

)+εf |
(p+2)
x ( v..v

|{z}

p+2−q

)+ε2f |
(p+3)
x ( v..v

|{z}

p+3−q

)+ε3f |
(p+4)
x ( v..v

|{z}

p+4−q

)+..

0 + f |
(p+2)
x ( v..v

|{z}

p+3−q

) + εf |
(p+3)
x ( v..v

|{z}

p+4−q

) +ε2f |
(p+4)
x ( v..v

|{z}

p+5−q

)+..

0 + 0 + f |
(p+3)
x ( v..v

|{z}

p+5−q

) + εf |
(p+4)
x ( v..v

|{z}

p+6−q

) +..

.. .. .. ..

0 + 0 + 0 + ... + f |
(p+q+1)
x ( v..v

|{z}

p+q+1

)+..

(9)

There are no more ”internal” syzygies, i.e. we have obtained the Gröbner basis for the initial system (7).

Now the generators of I(Σ̃Sx) should be added and one checks again for the possible syzygies.

Example 3.1 Sx = x
p+1
1 + x

p+1
2 The defining equations of the stratum Σ̃Sx(x) are: f |

(p)
x = 0 (as there are

no non-free branches the lifting is minimal). Therefore, there are no more syzygies, so just take the limit
ε → 0 (i.e. omit the higher order terms in each row). Finally, we get the defining system of equations:

f |(p)
x = 0, f |(p+1)

x ( v..v︸︷︷︸
p+1−q

) = 0, f |(p+2)
x ( v..v︸︷︷︸

p+3−q

) = 0, f |(p+3)
x ( v..v︸︷︷︸

p+5−q

) = 0 .., f |(p+q+1)
x ( v..v︸︷︷︸

p+q+1

) = 0 (10)

Corollary 3.2 For the lifting Σ̃SxSy(x, y) there exists only one primitive collision Sx +Sy→Sf with the final

type having the normal form (xp−q
1 + x

p−q
2 )(xq+1

1 + x
2q+2
2 ).

Indeed, as was emphasized, the system is linear in f , so it defines a linear

(sub)stratum Σ̃
l

Sf
. We can obtain the Newton diagram of the resulting type by

fixing (in projective coordinates) e.g. x = (0, 0, 1), v = (0, 1, 0). Since all the slopes

of the diagram are bounded we get that the type is linear and Σ̃
l

Sf
= Σ̃Sf

.
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p+1

q+1

x
p+1
1 +x

q+1
1 x

p−q
2 +x

p+q+2
2

In several simplest cases we have: A1 + A1 →A3, D4 + A1 →D6, X9 + A1 →X1,2, D4 + D4 → J10,
X9 + D4→Z13.

Remark 3.3 If the curve
_
xy is tangent to one of the non-free branches of Sx, then the system (9) should

be re-derived. When Sx is linear, we can assume that
_
xy = xy = l, this greatly simplifies the calculations.

Example 3.4 Sx = x
p+1
1 + x

p+2
2 Now the result of collision depends on the (non)coincidence of the line

l = xy with the tangent line lx to Sx. The lifted stratum Σ̃Sx is defined by the condition (cf. [Ker06])

f |
(p+1)
x ∼ lx × .. × lx︸ ︷︷ ︸

p+1

, this can be written also as f |
(p+1)
x (vx) = 0.

Proposition 3.5 For l 6= lx the (only) resulting type is (xp+1−q
1 + x

p+1−q
2 )(xq+1

1 + x
2q+1
2 ). For l = lx the

(only) resulting type is (xp−q
1 + x

p+1−q
2 )(xq+1

1 + x
2q+2
2 ).

proof: As Sx, Sy are linear, can assume that the trajectory is a line: l = xy.
• lx 6= l. Contract the first row of (9) with vx. The ε0 term vanish and the whole series is divided by ε.
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So, we get: 0 = f |
(p+2)
x ( v..v︸︷︷︸

p+2−q

vx) + .... Contract this series with v and subtract from the third row of (9)

(contracted with vx). Apply the same procedure, up to the last row. Direct check shows that there are no
more syzygies, so substitute ε = 0 and get

f |
(p+1)
x ∼ lx × .. × lx︸ ︷︷ ︸

p+1

, f |
(p+1)
x ( v..v︸︷︷︸

p+1−q

) = 0, f |
(p+2)
x ( v..v︸︷︷︸

p+3−q

) = 0, f |
(p+2)
x ( v..v︸︷︷︸

p+2−q

, vx) = 0,

f |
(p+3)
x ( v..v︸︷︷︸

p+5−q

) = 0, f |
(p+3)
x ( v..v︸︷︷︸

p+4−q

vx) = 0, .., f |
(p+q+1)
x ( v..v︸︷︷︸

p+q+1

) = f |
(p+q+1)
x (v..v︸︷︷︸

p+q

vx) = 0
(11)

which gives (since vx 6= v and lx(v) 6= 0):

f |(p+1)
x = 0, f |(p+2)

x ( v..v︸︷︷︸
p+2−q

) = 0, f |(p+3)
x ( v..v︸︷︷︸

p+4−q

) = 0, . . . , f |(p+q+1)
x (v..v︸︷︷︸

p+q

) = 0 (12)

From here we get the normal form: (xp+1−q
1 + x

p+1−q
2 )(xq+1

1 + x
2q+1
2 ). -

6
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p+2

q+1

x
p+2
1 +x

q+1
1 x

p+1−q
2 +x

p+q+2
2

• lx = l. In this case the system should be re-derived, starting from eq. (7). Everything is just shifted
(p→p + 1) and we get the equations:

f |
(p)
x = 0, f |

(p+1)
x ( v..v︸︷︷︸

p+1−q

) = 0, f |
(p+2)
x ( v..v︸︷︷︸

p+2−q

) = 0,

f |
(p+3)
x ( v..v︸︷︷︸

p+4−q

) = 0 .., f |
(p+q+2)
x ( v..v︸︷︷︸

p+q+2

) = 0
(13)

This gives the normal form of the singularity (xp−q
1 + x

p+1−q
2 )(xq+1

1 + x
2q+2
2 )

-
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p+1

q+1

x
p+1
1 +x

q+1
1 x

p+1−q
2 +x

p+q+3
2

3.1.4 More general case

If Sx is not an ordinary multiple point, then to the conditions of the system (9), one adds the conditions of
Sx and checks for possible additional syzygies.

In some cases there are no new syzygies. For example, let the tangent cone of Sx, with multiplicities be
TCx = {lp1

1 ..l
pk

k }, such that ∀i : pi ≤ p + 1 − q. Consider the primitive collision Sx + Sy→Sf such that the
collision line l is distinct from all the tangents with pi > 1. Then the defining ideal of the resulting stratum
is especially simple:

I(ΣSf
) =< I(ΣSx), lim

ε→0
Iε > (14)

here Iε is the ideal of the equation (9).

3.1.5 Geometric approach

Sometimes the collision can be traced explicitly on the blown up plane. Namely, blow up the plane at x (if
needed, do it several times, for example resolve the germ (C, x)). Assume that all the branches of (C, y)
intersect one component E of the exceptional divisor.
Then push the point y to E, contracting some parts of the curve. One gets
a curve on the blown up plane, with a singular point (of the type Sy) on E.
Now, blow down (i.e. contract all the exceptional divisors). This gives the
resulting germ.

Example 3.6 The collision of two ordinary multiple points. Suppose, the
multiplicities of Sx, Sy are p + 1, q + 1 such that p ≥ q. Blowup at x, push y

to the exceptional divisor, then blowdown, as in the picture.
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More generally, suppose the number of free branches for the type Sx is at least the
multiplicity of Sy. Use the same procedure as above, to get the final answer. The
restrictions of this approach are evident: the primitive collision can be traced for
some special types only. In addition, working with real pictures we necessarily loose
information.
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3.2 Bounds on invariants

3.2.1 Semi-continuity principle

This principle allows to reduce some general questions to the collisions of more restricted types.

Proposition 3.7 Let inv be an invariant of the singularity type, upper semi-continuous (i.e. non-increasing
under the deformations).

• Let Sy→S′
y be a degeneration and Sx + S′

y→S′
f a primitive collision. Then there

exists a primitive collision Sx + Sy→Sf and a degeneration, such that the diagram
commutes. In particular, inv(S ′

f ) ≥ inv(Sf ).

Sy
degen

//

Sx+

��

Sy
′

+Sx

��

Sf
degen

// Sf
′

• Under the assumptions above, suppose for every primitive collision Sx + S′
y→S′

f the bound inv(S ′
f ) ≤ a is

satisfied. Then for any primitive collision Sx + Sy→Sf : inv(Sf ) ≤ a.

proof: • We should prove the existence of a type Sf such that ΣSf
′ ⊂ ΣSf

. But this is obvious due to the

inclusion of ideals: I(Sx) ⊕ I(Sy) ⊂ I(Sx) ⊕ I(Sy
′).

• Let the degeneration Σ̃Sy→Σ̃S′
y

be done by applying the equations {fi}. So, I(Σ̃S′
y
) =< I(Σ̃Sy), f1... >.

Every collision Sx +S′
y→S′

f is described by the flat limit: < I(Σ̃Sx), I(Σ̃Sy), f1... >−→
y→x

I(Σ̃S′
f
). The collision

Sx + Sy→Sf is described by < I(Σ̃Sx), I(Σ̃Sy) >−→
y→x

I(Σ̃Sf
). This gives the inclusion Σ̃S′

f
⊂ Σ̃Sf

for at least

one type S′
f . The proposition follows by the semi-continuity of the invariant. �

A useful consequence is the possibility to consider only linear sub-strata. Namely, let Σ
(l)
SxSy

⊂ ΣSxSy be a

linear substratum. Then Σ̃
(l)

SxSy
|x=y ⊂ Σ̃SxSy |x=y and all the lower bounds for semi-continuous invariants of

Σ
(l)
SxSy

are satisfied for ΣSxSy .

3.2.2 Multiplicity

Proposition 3.8 For any initial types Sx, Sy there exists a primitive collision Sx+Sy→Sf with the resulting
multiplicity: mult(Sf) = max(mult(Sx),mult(Sy)).

proof: Use the semi-continuity principle. First degenerate each of Sx, Sy to a uni-branched Newton-non-
degenerate type (preserving multiplicities). This can always be done as follows.
Force all the tangents of a given germ to coincide. If the so obtained germ is
not Newton-non-degenerate with respect to its Newton diagram , kill all the
necessary monomials, preserving the multiplicity. (This is always possible by
standard arguments from [AGLV, section III.3]). If the so-obtained germ is not
semi-quasi-homogeneous remove the necessary monomials, preserving x

p
1.
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So, we have arrived to the semi-quasi-homogeneous germs, of the types Sx
′ : x

px

1 +x
qx

2 , and Sy
′ : x

py

1 +x
qy

2 .
Collide them such that all the tangents coincide (i.e. lx = l = ly). Immediate application of the collision
algorithm gives that the multiplicity of the resulting type is max(mult(Sx

′),mult(Sy
′)). Now invoke the

semi-continuity principle. �

In general the situation is much more complicated, multiplicity can jump significantly. This happens when
the collision line l and all the non-free tangents are distinct. However there is always the following bound:
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Proposition 3.9 Let the initial type SxSy have the multiplicities mx,my and the numbers of free branches
rx, ry. If rx + ry ≥ my, then for any collision Sx + Sy→Sf : mSf

= mx. If rx + ry < my, then for any
collision Sx + Sy→Sf : mult(Sf ) ≤ mx − rx + my − ry.

proof: We degenerate the types (preserving the multiplicities and the number of free branches) and then
apply the semi-continuity principle.
• Degenerate both Sx and Sy to generalized Newton-non-degenerate types;

Sx→ xmx

1 + xmx−rx

1 xrx

2 + xNx

2 , Nx � 0, Sy→ x
my

1 + x
my−ry

1 x
ry

2 + x
Ny

2 , Ny � 0 (15)

• Degenerate Sy to the form xmx

1 + x
my−ry

1 x
mx−my+ry

2 + x
Ny

2

• By the semi-continuity, can assume both of the degenerated germs to be linear, i.e. we consider the linear

substrata Σ
(l)

Sx
′ ⊂ ΣSx

′ and Σ
(l)

Sy
′ ⊂ ΣSy

′ . Thus can write the defining conditions of the stratum Σ̃
(l)
SxSy

(outside

the diagonal x = y) explicitly:

f |(mx+k)
x ∼ (Arx+k+δx

k
, lx.lx︸︷︷︸
mx−rx−δx

k

), k = 0, 1...Nxf |(mx+k)
y ∼ (Ary+mx−my+k+δ

y

k
, ly.ly︸︷︷︸
my−ry−δ

y
k

), k = 0, 1...Ny

(16)

So, if rx + ry ≥ my, the conditions for k = 0 can be resolved without increasing the multiplicity: f |
(mx)
x ∼

(Arx+ry−my , lx.lx︸︷︷︸
mx−rx

, ly.ly︸︷︷︸
my−ry−δ

y

k

). From the equation above it is seen that all further conditions (with k > 0)

do not increase the multiplicity. So the final multiplicity is mx.

If rx + ry < my then necessarily f |
(mx)
x = 0 = f |

(mx+1)
x = ... = f |

(mx+my−rx−ry−1)
x , while the conditions

for f |
(mx+my−rx−ry)
x can be resolved in the form f |

(mx+my−rx−ry)
x ∼ (A∗∗, lx.lx︸︷︷︸

∗∗

, ly.ly︸︷︷︸
∗∗∗

). As previously, it follows

that all the higher order conditions can be resolved also. �

Note that this bound is sharp, e.g. it is realized in the collision of xmx

1 + xmx−rx

1 xrx

2 + xNx

2 and xmx

1 +

x
my−ry

1 x
mx−my+ry

2 + x
Ny

2 (as in the proof), with Nx, Ny big enough. But it is not the best possible, e.g.
when there are distinct non-free tangents, the bound probably could be improved.

3.2.3 Not semi-continuous invariants

For such invariants the semi-continuity principle is not valid, so it is difficult to give any bounds.
Number of branches
For the lower bound we can only propose the conjecture:
for a primitive collision Sx + Sy→Sf : rSf

≥ min(rSx , rSy) and rSf
≥ |rSx − rSy |.

Regarding the upper bound we give an example.

Example 3.10 Consider the primitive collision of two uni-branched germs (xp
1 + x

p+1
2 ), (x2

1 + x3
2), with all

3 lines different lx 6= l 6= ly. The resulting type is (xp−2
1 + x

p−2
2 )(x3

1 + x4
2) (with p − 1 branches).

So a possible bound on the number of branches should necessarily involve the multiplicities.

Order of determinacy. We only can propose a natural conjecture: δSf
≤ δSx + δSy

3.2.4 δ = const collisions

Proposition 3.11
• Suppose there exists a δ = const collision Sx + Sy→Sf

′. Then there exists a primitive δ = const collision

that factors the original: Sx + Sy→Sf
degeneration

→ Sf
′
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• Let rx, ry be the (total) number of branches of SxSy. For a δ = const collision: rSf
= rx + ry − (µSf

+ 1−
µx − µy). In particular, rSf

≤ rSx + rSy − 2.

proof: The first statement follows from semi-continuity. The second from the classical formula δ = µ+r−1
2

and the necessary inequality µSf
≥ µSx + µSy + 1. �

3.3 Examples

3.3.1 ADE+ADE→ADE

By the analysis of Dynkin diagrams and by applying the above algorithm we get the following collisions:

Ak + Al
//

%%L

L

L

L

L

L

L

L

L

L

Ak+l+1

��
�O
�O
�O

Dk+l+2

Ak + A3
//

%%J

J

J

J

J

J

J

J

J

J

��

Ak+4

Ek+4 Dk+4

Ak + A1
//

%%J

J

J

J

J

J

J

J

J

J

Ak+2

Ek+2

A3 + A2
//

$$
$d

$d
$d

$d
$d

��

A6

��
�O
�O
�O

D6
///o/o/o/o/o E7

A4 + A2
//

$$
$d

$d
$d

$d
$d

��

A7

��
�O
�O
�O

E7
///o/o/o/o/o D8

D5 + Ak
//

��

D5+k+1

E5+k+1

E6 + A1
// E8

Dk + Al
// Dk+l+1

(17)

The collisions corresponding to the straight arrows are generic (this can be seen e.g. by codimension or
Milnor number). Wavy arrows indicate the non-generic collision or degeneration. For the types Ek, we
assume 6 ≤ k ≤ 8

3.3.2 The Dk collisions for some lower cases

D4 + D4→J10, D4 + D5
//

''O

O

O

O

O

O

O

O

O

O

O

O

X1,2, µ = 11

J2,1, µ = 11

D4 + D6
//

''O

O

O

O

O

O

O

O

O

O

O

O

X1,2, µ = 11

J2,2, µ = 12

(18)
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3.3.3 Some other results

Sx Sy Sf Sf

x
p+1
1 + x

p+1
2 x

q+1
1 + x

q+1
2 (x

p−q
1 +x

p−q
2 )(x

q+1
1 +x

2q+2
2 )

µ p2 q2
p2+q2+q

δ p2+p
2

q2+q
2

p(p+1)+q(q+1)
2

x
p
1 + x

p+1
2 x

q+1
1 + x

q+1
2 (x

p−1−q
1 +x

p−q
2 )(x

q+1
1 +x

2q+2
2 ) (x

p−q
1 +x

p−q
2 )(x

q+1
1 +x

2q+1
2 )

µ p2 − p q2
p2−p+(q+1)2 p2+q2

δ p2−p
2

q2+q
2

p(p−1)+(q+1)(q+2)
2

p(p+1)+q(q−1)
2

∏r
i=1 li(x

p
1 + x

p+1
2 ) x

q+1
1 + x

q+1
2

p ≤ q :

(xp+r−q−1
1 + x

p+r−q−1
2 )(xq+1

1 + x
2q+2
2 )

q ≥ r :

(xp+r−q
1 + x

p+r−q
2 )(xq−r+1

1 + x
2q−2r+1
2 )(xr

1 + x2r
2 )

q < r :

(xp+1
1 + x

p
2)(xr−q

1 + x
p+r+1−q
2 )(xq

1 + x
2q
2 )

µ p2 − p − 1 q2
(p+r)2+q2−r

δ p2−p
2

q2+q
2

p ≥ 3(x1 + x2
2)(x

p−2
1 + x

p
2) x2

1 + x2
2 x2(x2

1+x4
2)(x

p−3
1 +x

p−2
2 ) x2(x1+x2

2)(x
p−1
1 +x

p−1
2 )

µ (p − 1)2 + 1 q2

δ dp2

2 e − p + 1 q2+q
2

(x1 + x2
2)(x

p−1
1 + x

p
2) x2

1 + x2
2 (x

p−2
1 +x

p−1
2 )(x2

1+x5
2) x2(x

p−2
1 +x

p−2
2 )(x2

1+x3
2)

µ p2 − p + 1 q2

δ p2−p+2
2

q2+q
2
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